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Abstract 
 
Empirical welfare analyses often impose stringent parametric assumptions on individuals’ 
preferences and neglect unobserved preference heterogeneity. In this paper, we develop a 
framework to conduct individual and social welfare analysis for discrete choice that does not 
suffer from these drawbacks. We first adapt the broad class of individual welfare measures 
introduced by Fleurbaey (2009) to settings where individual choice is discrete. Allowing for 
unrestricted, unobserved preference heterogeneity, these measures become random variables. We 
then show that the distribution of these objects can be derived from choice probabilities, which 
can be estimated nonparametrically from cross-sectional data. In addition, we derive 
nonparametric results for the joint distribution of welfare and welfare differences, as well as for 
social welfare. The former is an important tool in determining whether those who benefit from a 
price change belong disproportionately to those who were initially well-off. An empirical 
application illustrates the methods. 
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1 Introduction

Discrete choice random utility models (DC-RUMs) have a long tradition in both theoretical and
applied microeconometric research. Since the pioneering work of McFadden (1974), these models
have been applied to a wide range of problems in transportation, education, health care, industrial
organisation, marketing, labour, and public finance. This success can be explained by DC-RUMs’
ability to model individual demand among a discrete set of alternatives in a flexible way, allowing
for the presence of unobserved preference heterogeneity. Some models within this class, such as the
binary and multinomial logit models, also yield convenient closed-form choice probabilities, which
considerably reduces the computational burden in both estimation and simulation (for a compre-
hensive overview, see Train, 2003). These parametric models are, therefore, widely used in empirical
research.

The structural modelling of individual preferences in DC-RUMs renders this class of models especially
suitable for the welfare analysis of price changes. In such an endeavour, the use of welfare measures
(metrics) based on the expenditure function, the so-called money metric utilities (MMUs), is a well-
established practice (for seminal contributions, see Diamond and McFadden, 1974; Dixit, 1975; King,
1983). Indeed, the reporting of deadweight losses, compensating variations (CV), and equivalent
variations (EV), which are all related to the expenditure function, are ubiquitous in the applied
welfare literature. MMUs facilitate interpersonal comparisons of welfare in the presence of individual
preference heterogeneity over important life dimensions such as health, housing quality, emotional
well-being, and material welfare.

In DC-RUMs, preferences are random from the point of view of the econometrician. Therefore,
preference-based welfare measures also become stochastic objects, which complicates the analysis
considerably (for an early discussion, see Small and Rosen, 1981). Over the last fifteen years, a meth-
odological literature has emerged that derives closed-form expressions for the distribution of the CV
and EV, which are both measures of changes in welfare, under ever less parametric assumptions on
the nature of individuals’ preferences.1 For the class of additive DC-RUMs, Dagsvik and Karlström
(2005) provide expressions for the distribution of the CV based on compensated (Hicksian) choice
probabilities. The authors provide analytical results for models where unobserved heterogeneity is
generalised extreme value distributed. Alternatively, de Palma and Kilani (2011) advance a direct
approach for this class, in which they express this distribution in terms of uncompensated (Mar-
shallian) choice probabilities. More recently, Bhattacharya (2015, 2018) showed that the marginal
distributions of the CV and EV can be written as a functional of uncompensated choice probabilities,

1Before, no closed-form expressions existed, even for the expected values of the CV and EV. Therefore, researchers
had to resort to approximations, except for the most simple of DC-RUMs in which individuals have constant marginal
utility of income and unobserved heterogeneity is additive and generalised extreme value distributed (Small and Rosen,
1981; McFadden, 1999). These approximations are either biased (Morey et al., 1993), rather uninformative (Herriges
and Kling, 1999), or computationally burdensome (McFadden, 1999).
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even when unobserved heterogeneity is essentially unrestricted, and therefore possibly nonadditive.2

His results readily imply that these objects are nonparametrically identified from cross-sectional data
with sufficient relative price variation.

The analysis of levels of welfare in DC-RUMs, however, has received much less attention from
econometricians. Characterising these levels is of first-order importance to applied welfare analysis
for at least three reasons. First, knowledge on these levels enables researchers to rank individuals
according to their well-being in any given situation, identifying those who are well-off from those
who are poor. Second, in aggregating welfare levels across individuals, overall social welfare can be
calculated and compared between two situations. Third, joint knowledge on levels and differences
of welfare enables the investigation of the association between individuals’ gains or losses from a
price change and their position in terms of initial welfare. This allows for the assessment of, for
example, whether the winners of a price change belong disproportionately to those who were initially
well-off.

In recent years, the fairness literature has made substantial progress in developing a comprehensive
theoretical framework that encompasses both the classical MMUs (Samuelson, 1974), adaptations
of other measures like Pazner’s (1979) ray utilities, and measures like the equivalent income and
wage metrics (among others, see Pencavel, 1977; Fleurbaey, 2006; Fleurbaey, 2007; Fleurbaey and
Gaulier, 2009; Fleurbaey, 2009; Fleurbaey and Blanchet, 2013; Decancq et al., 2015; and Fleurbaey
and Maniquet, 2017). A large subset of these measures cardinalise preferences by associating their
indifference sets with members of a family of nested opportunity sets; i.e. a lower ranked indifference
set is associated with a smaller opportunity set. The sizes of those budget sets are argued to
be an ethically more meaningful basis for interpersonal comparisons of well-being than income or
reports on subjective satisfaction levels. Indeed, contrary to income and subjective satisfaction, such
measures ensure that individuals with the same preferences and in a situation which makes them
indifferent among each other are always considered to be equally well-off. We call these metrics
nested opportunity set (NOS) measures and show how they relate to what is typically observed in
cross-sectional and panel data.

Contributions We adapt the class of NOS measures (Fleurbaey, 2009, Fleurbaey and Maniquet,
2017) to a setting where the choice set is discrete instead of continuous. This allows us to study wel-
fare levels and differences in DC-RUMs, taking into account unrestricted, unobserved heterogeneity
in individuals’ preferences. We then prove that the marginal distribution of NOS measures can be
recovered nonparametrically from cross-sectional data by evaluating the observed choice probabilities
at counterfactual prices. This allows researchers to study levels of individual welfare in any given
situation. Likewise, we show that the joint distribution of welfare levels and welfare differences can

2This result only holds for price changes. When quality changes occur, Bhattacharya (2018) demonstrates that
functionals of the choice probabilities only set-identify the distribution of the CV (or EV).
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be recovered nonparametrically from panel data by evaluating the observed transition probabilities at
counterfactual prices.3 Building on these two results, we are able to nonparametrically characterise
levels and differences in aggregate welfare for any additively separable social welfare function.

In addition, we show that Samuelson’s (1974) money metric utilities (MMUs) are within the class
of the discrete NOS measures, and use them as a leading example to illustrate our approach. This
also implies that we can specialise our results to cases where welfare differences are measured by the
CV or EV. In doing so, we generalise the results of Dagsvik and Karlström (2005) and de Palma and
Kilani (2011) to settings where unobserved heterogeneity is essentially unrestricted. As a by-product,
we also present all our results conditional on the endogenous pre- or post-price change choices, which
allows researchers to take the additional information conveyed by the observed choices into account.
This conditioning might also be important from a political economy perspective.

These results allow researchers to conduct individual and social welfare analyses without resorting to
stringent parametric assumptions on preferences or unobserved heterogeneity. Our identificationres-
ults are constructive and can be implemented in empirical work using only nonparametric regression.
We also demonstrate how Boole-Fréchet inequalities (Fréchet, 1935) and stochastic revealed prefer-
ence restrictions can be exploited to construct bounds on the transition probabilities in the common
event when only cross-sectional data is available. These bounds are functionals of the choice prob-
abilities and are, as such, straightforward to implement. They can be readily used to set-identify the
concepts that are expressed in terms of transition probabilities.

To illustrate the empirical usefulness of our results, we revisit the classical trade-off between leisure
and consumption. For this purpose, we make use of micro-data from the 2018 wave of the German
Socio-Economic Panel (SOEP), which contains detailed information on households’ demographics,
labour supply, wages, and out-of-work income. Single females’ labour supply is modelled as a choice
between three discrete alternatives: non-working, part-time employment, and full-time employment.
Using a MMU, we present nonparametric, distributional estimates of individual and social welfare for
the tax schedule that is currently in place in Germany. We also study the effects of replacing this
nonlinear and progressive schedule with a basic income flat tax.

In the baseline, we find that for approximately 25% of the single females in our estimation sample,
the distribution of the MMU is a step function. This means that we can determine their welfare level
exactly. Aggregating these individual distributions in groups based on gross hourly wage quartiles, we
find that the distribution of high-wage individuals who work full-time tends to first-order dominate
that of those who are non-working or work part-time. The reverse is true for low-wage individu-
als. This is explained by a mismatch between these individuals’ preferences and wages. Moreover,

3These transition probabilities are derived under the assumption that (unobserved) individual preferences are un-
altered by the price change. Alternatively, Dagsvik (2002) and Delle Site and Salucci (2013) consider models where
there is imperfect correlation in unobserved heterogeneity before and after the change.
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irrespective of the baseline choice, the distribution of high-wage individuals dominates that of the
groups with lower wages. For the latter, the distributions are more intermingled, which is suggestive
evidence that besides wages, (unobserved) preferences do play an important role in assessing the
welfare level of individuals.

For the entire population of single females, the distribution of welfare in the reform first-order
dominates that in the baseline.4 This does not imply, however, that every individual gains from the
reform. Around 15% of single females find their welfare diminished; this is especially the case for
those that are well-off in the baseline. Large gains are more prevalent among those that were initially
poor. Among the bottom two-thirds of the population in terms of baseline welfare, almost 98%
advance as a result of the reform. Approximately half of the single females gain up to 200 euro on
a monthly basis.

Other related literature Over the last decades, several semiparametric methods have been de-
veloped to relax functional form assumptions on either deterministic preferences or the distribution
of unobserved heterogeneity in DC-RUMs (e.g., for early results see Manski, 1975; Matzkin, 1991;
and Klein and Spady, 1993). Other contributions introduce entirely nonparametric methods that
do not impose functional form restrictions on either of these components for this class of models,
based on either shape restrictions (e.g., see Matzkin, 1993) or the availability of a large-support
special regressor (e.g., see Lewbel, 2000 and Briesch et al., 2010). The approach we follow in this
paper deviates from this literature as our objective is not to recover deterministic preferences and the
distribution of unobserved heterogeneity, but instead to identify individual welfare measures which
are functions of both these model primitives.

Another strand of literature focuses on the nonparametric identification of counterfactual choices and
welfare under unobserved heterogeneity in models where demand is continuous instead of discrete.
Most results exploit the smoothness of the underlying individual demand functions to arrive at
Slutsky-like restrictions on average and quantile demands (e.g., see Dette et al., 2016; Hausman
and Newey, 2016; Blundell et al., 2017; and Hoderlein and Vanhems, 2018). Other results exploit
the axioms of revealed preference (RP) to attain identification under the presence of unobserved
heterogeneity (e.g., see Blundell et al., 2014; and Cosaert and Demuynck, 2018). In contrast to our
results, however, the availability of cross-sectional and short panel data is generally not sufficient to
point-identify the distribution of welfare levels and differences in settings where demand is continuous
and unobserved heterogeneity is unrestricted.

Finally, this paper contributes to the literature that applies NOS measures empirically. Using SOEP
microdata, Decoster and Haan (2015) estimate a parameasure DC-RUM of labour supply and con-

4This is partially due to the fact that we constructed the reform to be revenue-neutral for the entire SOEP sample.
Therefore, revenue neutrality does not necessarily hold for our subsample of single females.
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struct rankings of households based on NOS measures. Carpantier and Sapata (2016) extend the
approach of Decoster and Haan (2015) by integrating unobserved preference heterogeneity through
a numerical procedure (comparable to the approach of Herriges and Kling (1999) for welfare differ-
ences). Our results show that the parametric assumptions imposed in these papers are not necessary
to obtain identification.

The remainder of this paper is organised as follows. In the second section, we introduce the class of
NOS welfare measures originally developed by Fleurbaey (2009) for settings where choice is continu-
ous. In section three, our conceptual framework is laid out. We first specify the DC-RUM and impose
some mild restrictions on individuals’ preferences. We then adapt the class of NOS welfare measures
to this discrete setting. Since preferences are random from the point of view of the econometrician,
these welfare measures are also random variables. In the fourth section, we present our main results.
We derive the distribution of the NOS measures, either conditional or unconditional on the initial
and final choices. We also study welfare differences induced by a price change and derive the joint
distribution of welfare in the initial choice and these welfare differences, again either conditional or
unconditional on the initial and final choices. Moreover, we discuss how measures for social welfare
can be constructed from these results. In section five, we discuss how the choice and transition
probabilities by which the welfare concepts are identified, can be retrieved from cross-sectional data.
In the sixth section, we illustrate our results by means of an application on female labour supply,
using the German SOEP microdata. The final section contains concluding remarks.

2 NOS welfare measures in a continuous setting

In this section, we briefly explain and motivate the class of NOS welfare measures, which have been
introduced by Fleurbaey (2009) for settings where choice is continuous.

These measures cardinalise preferences by associating each indifference set with a member of a family
of nested opportunity sets, which is common for all individuals. A lower ranked indifference set is
associated with a smaller set from that family, such that the size of the opportunity set acts as a
measure of individual well-being, respecting that individual’s preferences. Formally, let B ⊆ Rn+ be
the set of all bundles b an agent can possibly obtain, and let {Bλ ( B | λ ∈ Λ ⊆ R} denote a family
of nested budget sets indexed with a parameter λ such that λi < λj =⇒ Bλi ( Bλj . Given a
well-behaved utility function U(b) : B→ R, the NOS welfare measure evaluated in a bundle b ∈ B
is then defined as

W (b) = max
λ

{
λ | U(b) ≥ max

b′∈Bλ
U(b′)

}
, (1)

that is, the largest value of λ — or, equivalently, the largest opportunity set — for which the individual
still weakly prefers bundle b above all bundles b′ in the virtual opportunity set Bλ.5

5Note that the discussion here is informal as additional assumptions are needed to guarantee the existence and the
uniqueness of the NOS welfare measure. A more rigorous treatment is provided in Section 3.2.
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(a) NOS as a measure of well-being

good 2

good 1

R

R′

MMURpref (x)

MMUR
′

pref (x)
x

(b) The MMU measure

Figure 1: NOS welfare measures in a continuous choice setting

This definition is illustrated by means of a classical trade-off between two goods in Figure 1a. Suppose
first an individual obtains a bundle x, and let the thick blue line denote her indifference curve passing
through x. This indifference curve is associated with the opportunity set Bλ1 , which is shaded in dark
red. In accordance with the definition in Equation (1), this set is designed such that the individual
could obtain, at best, a bundle equally as good as x, when she would be faced with the opportunity
set Bλ1 . Suppose now that the individual obtains a bundle y, which is better than x, according to her
own preferences. Then the associated opportunity set Bλ2 , which is shaded in light red, is again such
that the best bundle in this set is equally good as y, and includes the set Bλ1 . From this illustration,
it is clear that the size of these opportunity sets serves as a measure of individual well-being that
respects preferences, in the sense that the well-being level of an individual in situation y is higher
than the well-being level in situation x, if and only if that individual prefers y to x. The size of an
opportunity set is measured by its indexing parameter λ.

Example: the MMU measures One important set of welfare measures within the NOS class
is the set of money metric utilities (MMUs) (Samuelson, 1974). In this case, the NOS are of the
form

Bλ ≡
{

b ∈ B
∣∣∣b′pref ≤ λ} , (2)

where pref is a vector of reference prices that are fixed by the researcher.

In this specification, the indexing parameter λ can be interpreted as a monetary amount. Applying
the definition in Equation (1), we find that the MMU measure evaluated in a bundle x, denoted
by MMUpref (x), measures well-being by the maximal monetary amount that can be granted to an
individual faced with reference prices pref , such that she would at most be equally well-off as in
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point x. This coincides with the expenditure function representation of preferences, which is how
MMUs were originally presented in the literature.

In Figure 1b, this is illustrated by means of a classical trade-off between two goods. The slope of
the dashed lines equals minus the reference price pref1 for good 1, as good 2 serves as numeraire
here. The welfare levels MMURpref (x) of an individual with preferences R and MMUR

′

pref (x) of an
individual with preferences R′ are determined such that the best point in the opportunity set is a
point on the indifference curve through their actual, common situation x (denoted by the red and
blue point, respectively). With the chosen reference price, the individual with preference R′ is better
off than the one with preferences R.

Other examples of NOS measures are the ray utilities of Pazner (1979) and the equivalent income
metrics introduced in Decancq et al. (2015). In the former, one fixes a reference bundle bref

and determines the NOS as the sets of bundles that lie on the ray from the origin through this
reference bundle, that is Bλ =

{
b ∈ B | b = αbref , α ≤ λ

}
. In the latter, one measures well-being

by the minimal amount of a numeraire good which is needed, given a reference value for the other
commodities or dimensions of well-being in order to make an agent equally well-off as in her actual
situation. We discuss the equivalent income metrics in more detail in Appendix A.1.

3 Conceptual framework

Our conceptual framework is similar to that of Bhattacharya (2015, 2018) and allows for unrestricted,
unobserved heterogeneity in DC-RUMs. As this set-up does not impose any restrictions on observed
individual characteristics, all results in this paper can be thought of as being conditional on these
covariates.

3.1 Discrete choice model

Preferences Let Ω denote the universe of preference types and let the associated probability space
(Ω,F ,Prω[{ω | ·}]) represent the distribution of these preference types in the population.6 Every
preference type can be thought of as a different individual, who has idiosyncratic preferences over a
finite (and common) set of alternatives C, with |C| := n ∈ N0, and a numeraire. These idiosyncratic
preferences are assumed to be representable by a utility function Uωc (y − pc) := U(y − pc, c, ω) :
R × C × Ω → R, in which y denotes exogenous income and pc the price of alternative c ∈ C.7 A
given set of prices for all alternatives, (pc, c ∈ C), are recollected in a vector denoted by p and we
will call (p, y) a budget set.

Note that our formulation of preferences is very flexible as it allows them to differ arbitrarily across

6In the remainder of the paper, we will abbreviate Prω[{ω | ·}] as Pr
ω

[{·}].
7For the sake of technical rigour, U(y − pc, c, ·) is required to be a F-measurable function.
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individuals. The only economically substantial restriction we will impose on this function is that
utility is continuous and strictly increasing in the numeraire y − p.

Assumption 1 Individual preferences are represented by a utility function Uωc (y − pc) that is con-
tinuous and strictly increasing in the numeraire for every preference type ω ∈ Ω and every alternative
c ∈ C. Moreover, preferences satisfy the following regularity conditions: (R1) For each pair of altern-
atives c, c′ ∈ C, and for each fixed y and pc, it holds that Uωc (y − pc) > limpc′→∞ U

ω
c′ (y − pc′) and

that Uωc (y− pc) < limpc′→−∞ U
ω
c′ (y− pc′). (R2) For every budget set (p, y), the set of types which

are indifferent between two or more alternatives in the choice set C has probability measure zero.

This assumption is ubiquitous in empirical work that employs (semi)parametric DC-RUMs. Mono-
tonicity in the numeraire establishes the existence and uniqueness of our welfare measures and yields
stochastic revealed preference conditions that we will exploit to obtain the identification results.
Regularity condition (R1) ensures that when the price of a given alternative goes to infinity, it will
never be preferred above another alternative with a finite price. Analogously, when the price of a
given alternative goes to minus infinity, or residual income in that alternative goes to plus infinity, it
will always be preferred above another alternative with a finite price. The negligibility of indifferences
between alternatives (R2) ensures that no tie-breaking rule has to be established.

In addition, we also assume that the distribution of the preference types, denoted by F (ω), is
independent of the budget set (p, y).

Assumption 2 The distribution of unobserved heterogeneity F (ω) is independent of prices p and
exogenous income y: i.e. F (ω | p, y) = F (ω).

The exogeneity of budget sets is a strong, but standard, assumption in the literature on nonparametric
identification of individual demand and welfare (e.g., see Hausman and Newey, 2016). Indeed, to the
best of our knowledge, there are no theoretical results that allow for general forms of endogeneity in
the presence of unrestricted, unobserved heterogeneity. Some forms of endogeneity, however, can be
mitigated by using a control function approach (see Section 5).

Individual choice behaviour Finally, we assume that observed choice behaviour is actually gener-
ated by a DC-RUM (for a detailed technical overview on RUMs, see McFadden (1981, 2005)). This
assumption entails that an individual ω chooses a given alternative i, if and only if this alternative
yields the highest utility among the elements in her choice set C.

Assumption 3 Let Jω(p, y) ≡ J(p, y, ω) : Rn+1×Ω→ C denote the individual demand function.
It holds that Jω(p, y) = i ⇐⇒ Uωi (y − pi) ≥ maxc 6=i{Uωc (y − pc)}.

Note that individual demand is single-valued with probability one as one can neglect indifferences
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between alternatives by regularity condition (R2) in Assumption 1.

Choice and transition probabilities The individual choices induced by a DC-RUM are stochastic
from the point of view of the econometrician, as the preferences types are non-observable. When this
random variation is averaged out across types, one obtains a set {Pi(p, y)}i∈C of uncompensated
(Marshallian) conditional choice probabilities,

Pi(p, y) = Pr
ω

[{
Uωi (y − pi) ≥ max

c 6=i
{Uωc (y − pc)}

}]
=
∫
ω
I

[
Uωi (y − pi) ≥ max

c 6=i
{Uωc (y − pc)}

]
dF (ω | p, y)

=
∫
ω
I [Jω(p, y) = i] dF (ω),

(3)

where I[·] denotes the indicator function.8 The last expression asymptotically coincides with the
observed choice frequency for every alternative i ∈ C, conditional on the budget set (p, y).9 If
cross-sectional data contains enough relative price and exogenous income variation, these objects are
nonparametrically estimable.10

Another concept induced by DC-RUMs is the set {Pi,j(p,p′, y)}i,j∈C of uncompensated conditional
transition probabilities. These probabilities are formally defined as

Pi,j(p,p′, y) = Pr
ω

[{
Uωi (y − pi) ≥ max

c 6=i
{Uωc (y − pc)}

}
∩
{
Uωj (y − p′j) ≥ max

c 6=j
{Uωc (y − p′c)}

}]
= Pr

ω

[
i = Jω(p, y), j = Jω(p′, y)

]
=
∫
ω
I [Jω(p, y) = i] I

[
Jω(p′, y) = j

]
dF (ω),

which asymptotically coincide with the transition frequencies from alternative i to alternative j after
an exogenous price change from p to p′.11 Naturally, if there is no price change, there are no
transitions between different choices. In principle, these objects are nonparametrically estimable

8These choice probabilities are designated conditional as they depend on a vector of prices and income. In the
interest of brevity, this qualification will be dropped in the sequel.

9This concept is also known as the average structural function (e.g., see Blundell and Powell, 2004). The asymptotic
equivalence follows from the law of large numbers as the choice probabilities are essentially conditional expectation
functions.

10It is clear from the second equality in Equation (3) that these probabilities are composed of both the utility function
Uω
c and the distribution of unobserved heterogeneity F . As such, they are not sufficiently informative to separately

identify these two model primitives. Fortunately, knowledge on such primitives is not necessary for our purposes.
11Note, however, that transition probabilities do not impose any temporal structure. In other words, Pi,j(p, p′, y) =

Pj,i(p′, p, y). Furthermore, the assumption that the exogenous income y is common to both situations with prices p
and p′ imposes no constraint. Indeed, if exogenous incomes are different when faced with prices p and p′ (denoted by y

and y′), we can redefine prices and incomes in order to obtain a common exogenous income. Defining p′′ = p′−y′+y,
we obtain

Pr
ω

[
i = Jω(p, y), j = Jω(p′, y′)

]
= Pr

ω

[
i = Jω(p, y), j = Jω(p′ − y′ + y, y)

]
= Pi,j(p, p′′, y).
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from panel data with at least two periods. In addition, Section 5.1 shows how transition probabilities
can be set-identified when only cross-sectional data is available.

Implicit in our definition of the transition probabilities is the assumption that individuals’ preferences
are unaffected by the price change. The perfect correlation between the preference types before and
after the price change implies that transition probabilities are not simply equal to the product of their
marginals: i.e. Pi,j(p,p′, y) 6= Pi(p, y)Pj(p′, y).

3.2 NOS welfare measures in a discrete choice setting

In Section 2, the family of NOS welfare measures is introduced in a setting of continuously divisible
goods. In this subsection, we will redefine them rigorously for settings where choice is determined
by a DC-RUM that satisfies Assumptions 1–3.

Nested opportunity sets in DC-RUMs The for all preference types ω ∈ Ω common family of
nested opportunity sets is defined as follows. Let there be a closed set Λ ⊆ R, and define for every
λ ∈ Λ a non-empty opportunity set Bλ ⊂ R× C, such that Bλ ( Bλ′ if λ < λ′, and such that with
yλc := sup{y | (y, c) ∈ Bλ}12 and yλ := (yλ1 , . . . , yλc , . . . , yλn):

(a)

λ < λ′ =⇒

∀c ∈ C : yλc ≤ yλ
′
c ,

∃c ∈ C : yλc < yλ
′
c ,

(4)

(b) the function
Λ→ Rn : λ 7→ yλ is continuous, (5)

(c) for all options c′,
inf
λ∈Λ

yλc′ = −∞, (6)

(d) and for at least one option c,
sup
λ∈Λ

yλc = +∞. (7)

Then (Bλ)λ∈Λ is called a family of nested opportunity sets. Note that the family is common to all
individuals. Conditions (4) and (5) ensure that the family (Bλ)λ∈Λ is continuously increasing, while
conditions (6) and (7) ensure that for every bundle x and preference type ω, there exists a member
of the family of which all bundles are considered worse than x by ω, and one which contains a bundle
considered to be better than x by ω. This latter property will prove necessary to define the welfare
measure.

12We define the supremum of the empty set in this context to be equal to −∞.
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The vector yλ can be seen as the upper bound of Bλ. Below, we will see that welfare measures
associated to families of nested opportunity sets with the same upper bounds are identical. Hence,
we will only consider opportunity sets of the form

Bλ :=
{

(y′, c) | c ∈ C, y′ ∈ R, y′ ≤ yλc
}
. (8)

It is often more convenient to characterise the opportunity sets in terms of virtual prices p̃c(λ) :=
y − yλc . In particular, we have that

Bλ :=
{
(y′, c) | c ∈ C, y′ ∈ R, y′ ≤ y − p̃c(λ)

}
. (9)

For future reference, we denote the vector of virtual prices as follows: p̃(λ) =
(
p̃1(λ), . . . , p̃n(λ)

)
.

Note that as yλ is increasing in λ, as described in Equation (4), p̃(λ) is decreasing in λ in the
same way. Moreover, λ → p̃(λ) is continuous by (5), supλ∈Λ p̃c′(λ) = +∞ for all c′ by (6) and
infλ∈Λ p̃c(λ) = −∞ for at least one c by (7). The fact that those virtual prices can become negative
might seem strange at first. However, in a discrete choice context, one can always redefine prices
and exogenous income by increasing both by an equal amount of the numeraire. As a result, negative
prices can be converted into positive prices.

The intuition behind the definition of nested opportunity sets can be illustrated using the famous
‘Matryoshka dolls’. If one has several boxes of different dimensions, one can measure their size in
different ways. One possible way is defining the size of these boxes by the biggest Matryoshka doll of
the set fitting in the box. Sets of Matryoshka dolls of different shape constitute different ‘metrics’.
Analogously, we use families of nested opportunity sets to construct welfare measures. Families of
opportunity sets with different shapes will define different metrics.

Welfare measures in DC-RUMs In the continuous setting, the NOS welfare measure evaluated
in a bundle was defined as the largest value of λ, or the largest opportunity set Bλ, such that this
bundle was weakly preferred over all bundles in Bλ. The same idea can be applied to a setting where
choice is discrete. More precisely, we define a NOS welfare measure as

Wω(y − pk, k) = sup
λ

{
λ | Uωk (y − pk) ≥ max

(y′,c)∈Bλ
Uωc (y′)

}
, (10)

that is, the largest value of λ such that option k is weakly preferred over all bundles in Bλ. Note that
the dependence on the preference type ω implies that this welfare measure is a random variable13.
According to Assumption 1, the utility function is strictly increasing in the numeraire, which allows
us to restate this definition in terms of the upper bound of the opportunity sets. Formally, we have

13As the utility function U is F-measurable, W is also F-measurable.
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that

Wω(y − pk, k) = sup
λ

{
λ | Uωk (y − pk) ≥ max

(y′,c)∈Bλ
Uωc (y′)

}
= sup

λ

{
λ | Uωk (y − pk) ≥ max

c
max
y′≤yλc

Uωc (y′)
}

= sup
λ

{
λ | Uωk (y − pk) ≥ max

c
Uωc (yλc )

}
.

(11)

This expression highlights that the value of the welfare measure only depends on the upper bound
of the opportunity sets and that the assumption that the opportunity sets are of the form of (8)
is not a genuine restriction. Furthermore, by conditions (6) and (7) and Assumption (R1), there
exists (i) a λmin ∈ Λ such that Uωk (y − pk) ≥ maxc Uωc (yλmin

c ), and (ii) a λmax ∈ Λ such that
Uωk (y − pk) < maxc Uωc (yλmax

c ). This implies that the set
{
λ | Uωk (y − pk) ≥ maxc Uωc (yλc )

}
is

not empty by (i), and bounded by (ii). Moreover, by continuity of the utility function and of the
function λ 7→ yλ, λ 7→ maxc Uωc (yλc ) is also continuous, which implies, together with the closedness
of Λ, that (iii)

{
λ | Uωk (y − pk) ≥ maxc Uωc (yλc )

}
is closed. As this set is not empty, bounded and

closed, one can conclude that the suprema in Equations (10) and (11) are in fact attained and can
be replaced by maxima.

Equivalently, when opportunity sets are characterised in terms of virtual prices, we can write that

Wω(y − pk, k) = max
λ

{
λ | Uωk (y − pk) ≥ max

c
Uωc (y − p̃c(λ))

}
. (12)

For notational convenience, the characterisation in terms of virtual prices p̃c(λ) instead of the nu-
meraire yλc will be used in the remainder of the paper.

The key insight of this paper is that the statement ‘Wω(y − pk, k) ≥ w’ is equivalent with k (at
its original price) being the optimal choice among all options with a virtual vector of prices that is
welfare measure specific. This result is made precise in Lemma 1. For didactic purposes, the proof
is included here.

Lemma 1

{
ω | w ≤Wω(y − pk, k)

}
=
{
ω | Uωk (y − pk) ≥ max

c
Uωc (y − p̃c(w))

}
Proof. Take an arbitrary ω ∈ Ω such that w ≤Wω(y− pk, k). Then there exists a λ ≥ w such that
Uωk (y − pk) ≥ maxc Uωc (y − p̃c(λ)). As λ ≥ w, p̃c(λ) ≤ p̃c(w) for all c ∈ C and, hence,

max
c
Uωc (y − p̃c(λ)) ≥ max

c
Uωc (y − p̃c(w)),

because Uωc is an increasing function by Assumption 1. It follows that Uωk (y − pk) ≥ max
c
Uωc (y −

p̃c(w)). The other inclusion follows immediately from the definition of Wω(y − pk, k).
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This equivalence is obtained without imposing any assumption on preferences besides Assumptions
1 and 2, and is, therefore, entirely nonparametric.14 As will be shown below, its main practical
implication is that the entire distribution of objects based on NOS measures can be obtained by only
evaluating choice and transition probabilities at virtual prices. This entails that these distributions
can be identified from cross-sectional and panel data in a nonparametric way.

Figure 2 provides a graphical illustration. The choice set C consists of three options: i, j, and k. For
each option, the amount of the numeraire, y − pi, y − pj , and y − pk is shown on the vertical axis.
The blue points indicate the indifference set of the point (y − pk, k). Three members of a family
of nested opportunity sets Bλ∈Λ are shown in red. For example, all option-numeraire combinations
in dark red belong to Bλ1 . For illustrative convenience, we choose yλc < yλ

′
c whenever λ < λ′, and

this for all c ∈ C. Finally, the figure shows how to calculate the NOS welfare measure for option k.
The welfare measure is defined by the nested opportunity sets Bλ∈Λ shown in red in the figure. The
upper bound of Bλ3 , consisting of the points yλ3

c , is denoted by the red dots. It is clear that λ3 is
the maximand of Equation (10) because the red dot of yλ3

j coincides with the blue point at position
j. This means that Uωj (yλ3

j ) = Uωk (y − pk), and hence Wω(y − pk, k) = λ3 in this example.

numeraire

Bλ1 Bλ1
Bλ1

Bλ2

Bλ2

Bλ2

Bλ3

Bλ3

Bλ3

yλ3
i

yλ3
j

yλ3
k

y − pi

y − pj

y − pk

option i option j option k

Figure 2: A graphical illustration of a NOS welfare measure in a discrete choice context

Example: the MMU measures Fix a set of n reference prices pref , one for each option and let
the upper bound of the opportunity sets be yλc = λ − prefc , or equivalently, p̃c(λ) = y − λ + prefc .
The crucial property is that the upper bounds increase by the same amount for every option: i.e.
yλ1
c − yλ2

c = λ1 − λ2 for all c ∈ C. The MMU evaluated in option k (with price pk) at reference
prices pref is then defined as

MMUωpref (y − pk, k) = max
λ

{
λ | Uωk (y − pk) ≥ max

c
Uωc

(
y − (y − λ+ prefc )

)}
. (13)

14This result is similar in nature to the result Bhattacharya (2018) obtains for the marginal distribution of the CV.
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This can also be defined implicitly as

Uωk (y − pk) = max
c
Uωc

(
MMUωpref (y − pk, k)− prefc

)
.

Similar to the continuous case, this highlights the equivalence of the MMUs with the expenditure
function representation of preferences, as each of them evaluates the expenditure function at a given
set of reference prices.

From Equation (13), it can be seen that MMUωp (y − pk, k) = y if k = Jω (p, y). When the
reference prices coincide with the actual prices, the level of well-being according to the MMU of
the optimal choice in the actual situation is equal to the actual amount of the numeraire (see also
Corollary 2 below).

4 Distribution of the NOS welfare measures, welfare differences, and
social welfare

As discussed before, the presence of unobserved preference heterogeneity entails that NOS welfare
measures are random variables from the point of view of the econometrician. This randomness
can be interpreted in two distinct ways. In the first interpretation, as the econometrician does
not observe an individual’s preference type, they can only derive the distribution of welfare for this
particular individual and not its exact realisation. That is, the distribution reflects uncertainty for
the econometrician. In the second interpretation, an observed individual in the sample represents the
class of individuals in the population that share the same observable characteristics. In this case, the
distribution reflects inequality in welfare among the members of this class. Our theoretical results
are valid for both interpretations.

For notational convenience, we will present all our expressions in terms of the complementary cu-
mulative distribution function (CCDF) instead of the more common cumulative distribution function
(i.e. 1 − F (x) for a CDF F ). The proofs in this section and the following ones are deferred to
Appendix B.

4.1 Distribution of the NOS welfare measures

In this section the marginal distribution for the NOS measures is derived in terms of choice prob-
abilities. We also provide distributional results joint with, and conditional on, the optimal observed
choice.

Under Assumptions 1–3, which were introduced in Section 3, we can prove the following theorem.

Theorem 1 The joint distribution of the NOS welfare measure W , evaluated in an option k with
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price pk, and choosing j at prices p′ and exogenous income y can be expressed in terms of transition
probabilities as follows:

Pr
ω

[
w ≤Wω(y − pk, k), j = Jω(p′, y)

]
= Pj,k

(
p′, (pk, p̃−k(w)) , y

)
I [pk ≤ p̃k(w)] , (14)

where (pk, p̃−k(w)) = (p̃1(w), . . . , p̃k−1(w), pk, p̃k+1(w), . . . , p̃n(w)).

See proof on page 47.

The crucial insight here is that, by Lemma 1, the event Wω(y − pk, k) ≥ w is translated into a
statement on k being optimal under virtual prices. The joint distribution in Equation (14) can,
therefore, be expressed in terms of transition probabilities, evaluated at both actual prices p′ and pk
and virtual prices p̃.

Theorem 1 is formulated in the most general form; it considers a joint distribution, and not a marginal
nor a conditional, and allows the price at which the welfare in alternative k is evaluated, pk, to be
different from the prices p′. For example, if one wants to evaluate welfare levels after a price change
from p to p′ when only information on choices before the price changed is available, p′ and p will
typically not coincide. However, if one wants to evaluate welfare in a setting with only one actual
price p′, the latter can be set equal to the actual prices p. Usually, one wants to evaluate welfare in
an optimal bundle; then k can be set equal to j in Equation 14. In Corollary 1 below, we will derive
some related distributions which are more directly relevant for applied work.

The exact formulation of p̃(w) depends, as explained in Section 3.2, on the specific choice of the
welfare measure. Nonetheless, we can give some intuition on the role of pk and the overall course of
the distribution of welfare. We know that the lower the price pk, the higher is the residual numeraire
y−pk in option k and hence, the more the indifference set containing (y−pk, k) is shifted upwards in
the numeraire dimension. As the indifference set is an upper bound of the (virtual) nested opportunity
sets, a higher indifference set implies higher welfare. Hence, the lower price pk, the higher is the
CCDF of welfare in option k and the more the distribution of welfare is shifted to the right.

Now, we examine the overall course of the CCDF in more detail by considering a typical plot of the
CCDF for fixed prices pk and p′ in Figure 3a. When w is negative and large in absolute value, the
p̃c(w) are large (and positive). Hence pk ≤ p̃k(w) and the CCDF approaches Pj(p′) as expected. As
w increases, p̃−k(w) decreases and the probability of choosing k at prices (pk, p̃−k(w)) decreases.
Therefore, Prω [w ≤Wω (y − pk, k) , j = Jω(p, y)] decreases until w reaches its highest value at
which point pk = p̃k(w), called w∗k. There the CCDF drops to zero discontinuously, as the indicator
function becomes zero. This means that w∗k is an upper bound for welfare and that the probability
distribution has a mass point.

As a corollary, we can immediately derive some associated distributions, such as the marginal and
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CCDF

Pj(p′)

welfare
w∗k

(a) Unconditional CCDF

CCDF
1

welfare
w∗ w∗k

(b) Conditional CCDF

Figure 3: The course of the (un)conditional CCDF of welfare

conditional CCDFs, which are more relevant in empirical applications.

Corollary 1

Pr
ω

[
w ≤Wω (y − pk, k) | j = Jω(p′, y)

]
=
Pj,k

(
p′, (pk, p̃−k(w)) , y

)
Pj (p′, y) I [pk ≤ p̃k(w)] , (15)

Pr
ω

[
w ≤Wω (y − pk, k) | k = Jω(p, y)

]
=
Pk
(
min

(
p, p̃(w)

)
, y
)

Pk (p, y) I [pk ≤ p̃k(w)] , (16)

where min
(
p, p̃(w)

)
=
(

min(p1, p̃1(w)), . . . ,min(pn, p̃n(w))
)
,

Pr
ω

[
w ≤Wω (y − pk, k)

]
= Pk

(
(pk, p̃−k(w)) , y

)
I [pk ≤ p̃k(w)] , (17)

and

Pr
ω

[
w ≤Wω

(
y − pJω(p,y), J

ω(p, y)
) ]

=
∑
k

Pk
(
min

(
p, p̃(w)

)
, y
)
I [pk ≤ p̃k(w)] . (18)

See proof on page 47.

We find again that the different derived distributions can be expressed in terms of choice and transition
probabilities. Equations (15) and (16) can be used to assess the distribution of welfare when the
researcher observes which bundle is optimal and wants to take this information into account. Equation
(17) describes the marginal distribution of welfare evaluated in a specific bundle, not taking into
account which bundle is optimal. Finally, Equation (18) specialises this result to a setting where
welfare is evaluated in the optimal bundle.

A typical example of the distribution of welfare in bundle k conditional on bundle k being optimal
is plotted in Figure 3b. As before, define for an option c, w∗c to be the highest value of w such that
pc = p̃c(w), and also define w∗ to be minc{w∗c}. Then we observe that for w ≤ w∗, pc ≤ p̃c(w) for
all c, and hence, min(p, p̃(w)) = p. It follows that Prω

[
w ≤ Wω(y − pk, k) | k = Jω(p, y)

]
= 1.
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Hence, w∗ is a lower bound for welfare in option k, conditionally on k being optimal. For w > w∗,
Prω

[
w ≤Wω(y−pk, k) | k = Jω(p, y)

]
decreases continuously until w reaches w∗k where Prω

[
w ≤

Wω(y − pk, k) | k = Jω(p, y)
]

drops to 0, as seen in Figure 3a. Hence, w∗k is an upper bound for
welfare in option k, conditional on k being optimal, and the distribution has a mass point at w∗k. If
w∗k = w∗, the distribution is thus a step function and, hence, the welfare level in bundle k, conditional
on k being optimal at prices p and exogenous income y, is deterministic and equals w∗k.

Example: the MMU measures For the MMUs, we obtain the following result.

Corollary 2 When using reference prices pref , we have

Pr
ω

[
w ≤MMUωpref (y − pk, k) , j = Jω(p′, y)

]
= Pj,k

(
p′, (pk, y−w+pref−k ), y

)
I
[
pk ≤ y − w + prefk

]
.

When pk = p′k, and the reference prices equal the actual prices p′ and k is the optimal choice, this
simplifies to

Pr
ω

[
w ≤MMUωp′

(
y − p′k, k

)
, k = Jω(p′, y)

]
= Pk(p′, y)I [w ≤ y]

and, hence,

Pr
ω

[
w ≤MMUωp′

(
y − p′k, k

)
| k = Jω(p′, y)

]
= I [w ≤ y] ,

Pr
ω

[
w ≤MMUωp′

(
y − p′Jω(p′,y), J

ω(p′, y)
)]

= I [w ≤ y] .

See proof on page 49. Both the MMU in the optimal bundle and the MMU in bundle k, conditional
on k being optimal, are, therefore, deterministic and equal the initial exogenous income y when
reference equal actual prices.

4.2 Joint distribution of welfare levels and welfare differences

In this section, we derive the joint distribution of welfare levels and welfare differences. Joint know-
ledge on levels and differences of welfare enables investigation of the association between individuals’
gains or losses from a price change and their position in terms of initial welfare. Assessment can be
carried out on, for example, whether the winners of a price change belong disproportionately to those
who were well-off in the first place. A price change is defined as an exogenous shift in prices from p
to p′. As discussed in Section 3.1, we will assume throughout that the unobserved preference type
ω is unaltered by the price change.

Firstly, we study the general case in which welfare differences are defined on the basis of changes in
NOS welfare measures (evaluated in optimal choices). We show that the joint distribution of levels
and differences can be expressed in terms of transition probabilities. Secondly, we specialise our
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results to the joint distribution of the MMU and the CV, which is a popular choice among applied
welfare economists.15 In doing so, we extend the results of Dagsvik and Karlström (2005) and de
Palma and Kilani (2011) to a nonparametric setting.

4.2.1 Welfare differences in terms of NOS measures

As an intermediate step, we first derive the joint distribution of welfare before and after a price
change in Proposition 1.

Proposition 1 The joint distribution of welfare in the optimal bundle i, before a price change, and
welfare in the optimal bundle j, after the price change, is as follows:

Pr
ω

[w ≤Wω
0 (y − pi, i), z ≤Wω

1 (y − p′j , j), i = Jω(p, y), j = Jω(p′, y)]

= Pi,j
(
min

(
p, p̃(w)

)
,min

(
p′, p̃(z)

)
, y
)
I [pi ≤ p̃i(w)] I

[
p′j ≤ p̃j(z)

]
.

(19)

See proof on page 49. Proposition 1 shows that this joint distribution can be written in terms of
transition probabilities, evaluated at initial, final, and virtual prices. Using this proposition, the joint
distribution of welfare levels and differences can be derived.

Theorem 2 The function h is defined by:

hi,j,p,p′(w, x, s) = Pi,j
(
min

(
p, p̃(max(w, x))

)
,min

(
p′, p̃(s)

)
, y
)
I
[
p′j ≤ p̃j(s)

]
= Pi,j

(
min

(
p, p̃(w), p̃(x)

)
,min

(
p′, p̃(s)

)
, y
)
I
[
p′j ≤ p̃j(s)

]
.

Then, the joint distribution of the stochastic welfare measure and the difference before and after the
price change of this measure becomes,

Pr
ω

[w ≤Wω
0 (y − pi, i),Wω

1 (y − p′j , j)−Wω
0 (y − pi, i) ≤ z, i = Jω(p, y), j = Jω(p′, y)] =

−
∫ +∞

−∞
∂3hi,j,p,p′(w, x, x+ z)I [pi ≤ min(p̃i(w), p̃i(x))] dx.

(20)

See proof on page 50. Unfortunately, it seems that this expression cannot be simplified. However,
even though expression (20) seems technically complicated, only the transition probabilities are used
as input. This object is nonparametrically identified from panel data.

4.2.2 Welfare differences in terms of the CV

We can specialise our results to the joint distribution of welfare and the CV, which is a popular
choice among applied welfare economists. The CV refers to the (possibly negative) amount of the

15The derivation for the EV is similar and can be found in Appendix A.2.
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numeraire an individual wants to give up after a price change to be equally well-off as before this
change. For an individual of type ω, the compensating variation CV ω is implicitly defined as

max
c
{Uωc (y − pc)} = max

c
{Uωc (y − p′c − CV ω)}, (21)

where, as before, p are initial prices and p′ final prices.16 In fact this definition of the CV is equivalent
to MMUωp′(y − p′Jω(p′,y), J

ω(p′, y))−MMUωp′(y − pJω(p,y), J
ω(p, y)), i.e. the difference between

the MMU with the final prices as reference price vector, in the optimal bundle after the price change,
and the same MMU in the optimal bundle before the price change.17 Note that the CV for a
composition of two or more price changes cannot be calculated from the CV for each price change
separately. In our more general general approach of measuring a change in welfare by the difference
between two valuations of a welfare metric, this problem is inherently nonexistent.

Note that the results in Theorems 3 and 4, and in Corollaries 3 and 4 below, can in fact be seen
as applications of Theorem 2. However, to give more insight, we also give direct proofs in Ap-
pendix B.

Distribution of the CV In order to derive the distribution of the CV when the choice is equal
to option i under initial prices and option j under final prices, we can follow a similar strategy as
Bhattacharya (2015) and de Palma and Kilani (2011). Analogously to Lemma 1, the condition
CV ω ≤ z, i = Jω(p, y), j = Jω(p′, y) can be translated in i being the optimal bundle when faced
with a counterfactual price vector.

Lemma 2 We have{
ω | CV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)

}
=
{
ω | Uωi (y − pi) ≥ max

c
{Uωc (y − p′c − z)}, i = Jω(p, y), j = Jω(p′, y)

}
.

(22)

See proof on page 51.

With Lemma 2, we can state the following theorem.

16Note that in our definition, the CV has the opposite sign of that in Bhattacharya (2015), but our results are
completely equivalent.

17Indeed, defining CV ω by MMUω
p′ (y−p′Jω(p′,y), Jω(p′, y))−MMUω

p′ (y−pJω(p,y), Jω(p, y)), we get MMUω
p′ (y−

pJω(p,y), Jω(p, y)) = y − CV ω by Corollary 2. Moreover, as i is the optimal bundle before the price change, we get

max
c
{Uω

c (y − pc)} = Uω
Jω(p,y)(y − pJω(p,y))

= max
c
{Uω

c (MMUω
p′ (y − pJω(p,y), Jω(p, y))− p′c)}

= max
c
{Uω

c (y − p′c − CV ω)}.
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Theorem 3 The joint distribution of the CV and the optimal choices before and after the price
change is as follows:

Pr
ω

[CV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)] = Pi,j(min(p,p′ + z),p′, y)I
[
pi ≤ p′i + z

]
. (23)

See proof on page 51.

We observe that Pr
ω

[CV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)] is bounded from below by pi − p′i. This
is as expected; if the initial optimal bundle was i and the price of pi drops to p′i, the numeraire must
drop with at least this amount to be equally well-off as in the initial situation. This means that the
minimal compensation, in terms of the joint distribution, is pi−p′i. Moreover, for z ≥ maxk{pk−p′k},
Pr
ω

[CV ω ≤ z | i = Jω(p, y), j = Jω(p′, y)] = 1. This means that the maximal compensation, in
terms of the conditional distribution, cannot be higher than the maximal price difference, which is
also as expected.

The next corollary follows immediately and may again be more useful to the applied researcher.

Corollary 3

Pr
ω

[CV ω ≤ z | i = Jω(p, y), j = Jω(p′, y)] = Pi,j(min(p,p′ + z),p′, y)
Pi,j(p,p′, y) I

[
pi ≤ p′i + z

]
, (24)

Pr
ω

[CV ω ≤ z | i = Jω(p, y)] = Pi(min(p,p′ + z), y)
Pi(p, y) I

[
pi ≤ p′i + z

]
, (25)

Pr
ω

[CV ω ≤ z | j = Jω(p′, y)] =
∑
i

Pi,j(min(p,p′ + z),p′, y)
Pj(p′, y) I

[
pi ≤ p′i + z

]
, (26)

and
Pr
ω

[CV ω ≤ z] =
∑
i

Pi(min(p,p′ + z), y)I
[
pi ≤ p′i + z

]
.18 (27)

Equation (27) gives an expression for the marginal distribution of CV. Equations (24), (25) and (26),
which present conditional distributions, can be used to calculate the distribution of CV when (i) the
optimal bundles before and after price change are known, (ii) only before the price change is known,
and (iii) only after the price change is known.

Joint distribution of the MMU and the CV We now apply Theorem 2 to the case where one
chooses the MMU with final prices as the reference price vector, as a welfare measure. The difference
in welfare before and after the price change is then equal to the CV.

18Note that Equation (27) is the main result of Bhattacharya (2015).
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Theorem 4 The joint distribution of the MMU and the CV is as follows:

Pr
ω

[w ≤MMUωp′(y − pi, i), CV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)]

= Pi,j
(
min

(
p,p′ + min(z, y − w)

)
,p′, y

)
I
[
pi ≤ p′i + min(z, y − w)

]
.

(28)

See proof on page 52.

Again, Corollary 4 follows immediately.

Corollary 4

Pr
ω

[
w ≤MMUωp′ , CV

ω ≤ z | i = Jω(p, y), j = Jω(p′, y)
]

=
Pi,j

(
min

(
p,p′ + min(z, y − w)

)
,p′, y

)
Pi,j(p,p′, y) I

[
pi ≤ p′i + min(z, y − w)

]
, (29)

Pr
ω

[w ≤MMUωp′(y − pi, i), CV ω ≤ z | i = Jω(p, y)]

=
Pi
(
min

(
p,p′ + min(z, y − w)

)
, y
)

Pi(p, y) I
[
pi ≤ p′i + min(z, y − w)

]
, (30)

Pr
ω

[w ≤MMUωp′
(
y − pJω(p,y), J

ω(p, y)
)
, CV ω ≤ z | j = Jω(p′, y)]

=
∑
i

Pi,j
(
min

(
p,p′ + min(z, y − w)

)
,p′, y

)
Pj(p′, y) I

[
pi ≤ p′i + min(z, y − w)

]
, (31)

and,

Pr
ω

[w ≤MMUωp′
(
y − pJω(p,y), J

ω(p, y)
)
, CV ω ≤ z]

=
∑
i

Pi
(
min

(
p,p′ + min(z, y − w)

)
, y
)
I
[
pi ≤ p′i + min(z, y − w)

]
. (32)

The joint cumulative distribution can again be written as (a sum of) choice or transition probabilities.
Each choice and transition probability is calculated using up to three price vectors: the initial price
vector p, the final price vector p′, and a translation of the p′ vector for the combined MMU and CV
part.
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4.3 Social welfare

A classical additively, separable Bergson-Samuelson social welfare function (SWF) takes the form

SWF =
∫
h(u) dGU (u), (33)

where u is the value of a utility function representing the well-being of an individual in a particular
state of the world, h is a concave function expressing the inequality aversion, and GU is the CDF
of the well-being distribution in the population in a given state of the world.19 For example, in the
utilitarian case, we have that h(u) = u.

Since the seminal work of Sen (1970), it is well known that in order to be able to meaningfully
formulate a SWF, stringent assumptions on the measurability and degree of interpersonal compar-
ability of such utility functions are required.20 As a first option, researchers sought for conditions
to make welfare prescriptions in terms of the income distributions instead (see, e.g. Roberts, 1980).
These conditions turned out to be restrictive; preferences should be identical and homothetic, and
the social welfare function in terms of incomes should be homothetic too.

A second option is to use the NOS welfare measures as a representation of preferences. Fortunately,
they are known to satisfy a set of attractive principles of interpersonal comparability (see Fleurbaey
and Maniquet, 2017; 2018). We can, therefore, use these measures directly as building blocks in
the SWF in Equation (33). More specifically, the equivalent to the Bergson-Samuelson SWF in our
framework reads as

SWF =
∫ ∫

h(w) dFW (w | p, y) dG(p, y), (34)

where G is the CDF of the joint distribution of prices and exogenous income in the population, which
can be observed from the data, and FW (w | p, y) is the conditional CDF of the NOS measure W ,
and equals Pr

ω

[
Wω

(
y − pJω(p,y), J

ω (p, y)
)
≤ w

]
.21

Proposition 2 illustrates how the results on the distribution of welfare levels in Corollary 1 lead to
the calculation of social welfare as defined in Equation (34), using only choice probabilities.

Proposition 2 The conditional CDF of individual welfare in the optimal bundle can be calculated
using choice probabilities:

FW (w | p, y) = 1−
∑
k

Pk
(
min

(
p, p̃(w)

)
, y
)
I [pk ≤ p̃k(w)] . (35)

19A function f is additively separable when it can be written in the form f(x1, . . . , xn) =
∑

i
fi(xi).

20In a context of demand under a linear budget constraint, an indirect utility function in terms of prices and income
may be a natural candidate to serve as utility function. However, such utility functions are only determined up to a
positive monotone transformation and economists did not find agreement on which representative is the most suitable
to serve as a basis for making interpersonal utility comparisons (for an overview of the debate, see Hammond, 1991).

21As social welfare is a population level concept, we rely on the second interpretation of the randomness in the
welfare measure (see the discussion at the beginning of Section 4).
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See proof on page 54.

Hence, social welfare can be computed from these probabilities. The joint distribution of prices and
exogenous income G can be estimated separately using standard nonparametric tools.

Moreover, this expression can be used to identify if a price change, for example, due to a policy reform,
has a desirable effect on social welfare. Indeed, the difference in social welfare can be calculated as
follows:

SWF ′ − SWF =
∫ ∫

h(w) dFW (w | p′, y) dG′(p′, y)−
∫ ∫

h(w) dFW (w | p, y) dG(p, y)

=
∫ ∫

h(w) dFW (w | p + ∆p, y) dG′(p + ∆p, y)

−
∫ ∫

h(w) dFW (w | p, y) dG(p, y)

=
∫ ∫

h(w) d
(
FW (w | p + ∆p, y)− FW (w | p, y)

)
dG(p, y).

(36)

where G (G′) is the joint distribution of initial (final) prices and exogenous income, and ∆p = p′−p.
With Equations (36) and (35), one can asses the desirability of a potential price change without
parametric assumptions and only using choice probabilities and the initial distribution of prices and
exogenous income.

Interestingly, in the spirit of Roberts (1980), we can derive conditions under which the expression
for the SWF can be formulated in terms of incomes alone. In particular, when prices are equal for
everyone and one uses the MMU with reference prices equal to those common prices, as individual
welfare measure, one obtains a price independent SWF in terms of income.

Corollary 5 When prices are equal for everyone and when one uses the MMU with reference prices
equal to those common prices as the welfare measure, the SWF can be written solely in terms of
income.

See proof on page 54.

5 Discussion on implementation

5.1 Set-identifying transition probabilities from cross-sectional data

As mentioned before, the transition probabilities are nonparametrically identifiable and estimable from
panel data that contains sufficient relative price and exogenous income variation. This immediately
implies that all the results from previous subsections are also nonparametrically identified in such
a data setting. One simply has to evaluate the estimated transition probabilities at virtual price
vectors.
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In many empirical applications, however, researchers only have access to (repeated) cross-sectional
data. This type of data nonparametrically identifies the choice probabilities, but not the associated
transition probabilities. However, by exploiting Boole-Fréchet (Fréchet, 1935) and stochastic revealed
preference inequalities, one can derive bounds on the now unobserved transition probabilities based
on the observed choice probabilities.

Proposition 3 Suppose Assumptions 1 – 3 hold. Then the transition probabilities {Pi,j(p,p′, y)}
are set identified from the choice probabilities {Pi} with bounds

PLi,i(p,p′, y) = max
{
Pi(p, y) + Pi(p′, y)− 1, Pi

((
max{pi, p′i},min{p−i,p′−i}

)
, y
)}

,

PUi,i(p,p′, y) = min
{
Pi(p, y), Pi(p′, y)

}
.

For i 6= j, Pi,j(p,p′, y) = 0 if pi ≥ p′i and pj ≤ p′j and

PLi,j(p,p′, y) = max{Pi(p, y) + Pj(p′, y)− 1, 0},

PUi,j(p,p′, y) = min
{
Pi(p, y), Pj(p′, y)

}
,

elsewhere.

See proof on page 55.

The Boole-Fréchet inequalities ensure that the transition probabilities are weakly smaller than their
associated marginal choice probabilities Pi(p, y) and Pj(p′, y). When Pi(p, y)+Pj(p′, y)−1 > 0 they
also deliver nontrivial lower bounds. The stochastic revealed preference inequalities, which stem from
the strong monotonicity of the utility function (see Assumption 1), provide additional identificational
power in two particular instances. Firstly, by evaluating the choice probabilities at the least-favourable
price vector (max{pi, p′j},min{p−i,p′−i}), they yield an informative lower bound for the transition
probabilities in the no-transition case where i = j. Secondly, when i becomes weakly less expensive
and j 6= i becomes weakly more expensive, the transition probability should equal zero, as it is
irrational for individuals to make this transition within the context of our model.

5.2 Estimating choice probabilities

Given the exogeneity of budget sets presupposed in Assumption 3, the choice probabilities can be
readily estimated using nonparametric regression, as they are essentially conditional expectation
functions. Standard tools, such as kernel and series based regression, are available in most modern
statistical software. One particular attractive feature of the Nadaraya-Watson kernel estimator is
that the estimated choice probabilities add up to one for all price vectors when the same bandwidth
is selected for every choice probability function.

When only samples of modest size are available, it might be useful to impose additional struc-
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ture to mitigate the curse of dimensionality. In particular, in a setting with high-dimensional re-
gressors, which arises when there are many goods or many choice and individual level characteristics,
a (semi)parametric estimator can be used to increase efficiency at the expense of functional form mis-
specification. In particular, our empirical illustration in Section 6 will make use of a semiparametric
estimator that can be interpreted as a sieve approximation.

Shape restrictions One point that needs further attention is that sampling noise might cause the
non- or semiparametric estimates to be inconsistent with the monotonicity condition in Assumption 1
over some ranges of the data. When this condition is violated, the CDFs of our distributional results
might be decreasing over some sections of their support. To avoid these inconsistencies, researchers
can impose the following shape restrictions on the estimated choice probabilities:

Proposition 4 Suppose Assumptions 1-3 hold. Then the estimated choice probabilities {Pi} should
satisfy the following shape restrictions at all (p, y) for all i, j ∈ C:

∂Pi(p, y)
∂pi

≤ 0,

∂Pi(p, y)
∂pj

≥ 0,

See proof on page 56. It is easy to see that, even under the presence of unrestricted, unobserved
heterogeneity, utility maximisation yields restrictions on the partial derivatives of the choice probab-
ilities. In particular, rationality implies that the choice probability for any given good is decreasing
in its own price and increasing in the price of the other alternatives. In addition, the adding-up
requirement for probabilities also imposes a restriction across choice probabilities.

Endogeneity of prices and income In some circumstances, it might be unreasonable to assume
that the budget set (p, y) is independent of the preference type ω. When a vector of instruments is
available, however, some forms of endogeneity can be handled by using a standard control function
approach (Blundell and Powell, 2004).

Ordered choice and outside good Similar to Bhattacharya (2015), it is important to stress that
identification generally fails in settings where choice is ordered and where the prices of alternatives
are multiples of one another. In such a setting, there is no relative price variation in the data that
identifies the effect of a price change in some alternative(s) while keeping the prices of the other
alternatives fixed.

Moreover, in some applications, there is an outside good that exhibits no independent price variation,
which also hinders the direct empirical implementation of our approach. However, this difficulty can
be circumvented by exploiting variation in the exogenous income y. Suppose good co ∈ C is the
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outside good for which one has to evaluate the effect of a price change ∆po = p′o− po. By a change
of variables, it then always holds that Pi(p′, y) = Pi(p′−∆po, y−∆po). Note that the expression at
the right-hand side does not require price variation for co, as p′o −∆po = po by construction.

5.3 Average welfare

A well-known implication of Fubini’s theorem is that the mean of any random variable X, given that
it exists, can be directly derived from its cumulative density function FX , i.e.

E(X) =
∫ ∞

0
(1− FX(u))du−

∫ 0

−∞
FX(u)du.

This result allows us to calculate average welfare from any of the distributional results derived above.
Note that when only bounds on the distribution of interest are available (see Section 5.1), the
expected value can be bounded by∫ ∞

0
(1− FUX (u))du−

∫ 0

−∞
FUX (u)du ≤ E(X) ≤

∫ ∞
0

(1− FLX(u))du−
∫ 0

−∞
FLX(u)du,

where FLX and FUX denote the CDF of the lower and upper bound respectively. This result allows
us to calculate average welfare from any of the distributional results derived above.

6 Empirical illustration

We highlight the empirical applicability of our results by revisiting the classical trade-off between
leisure and consumption. The goal of this illustration is two-fold. Firstly, we demonstrate how the
results in this paper enable researchers to assess the distribution of welfare within and across different
groups in society. Secondly, we show how our results allow to evaluate the effects of an income tax
reform on individual and social welfare. Thereby, we concentrate on two particular aspects: (i) a
comparison of the welfare distribution before and after the reform, and (ii) the extent to which the
winners and losers are (un)equally spread across the initial welfare distribution.

For this purpose, we make use of microdata from the 2018 wave of the German Socio-Economic Panel
(SOEP), which contains detailed information on households’ demographics, labour supply, wages,
and out-of-work income. We model single females’ labour supply as a choice between three discrete
alternatives: non-working (NW), part-time employment (PT), and full-time employment (FT). As
an income tax reform, we consider the introduction of a basic income flat tax in Germany, which
would replace the current nonlinear tax schedule.
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6.1 Setting and implementation

German tax system and a basic income flat tax reform The German personal income tax system
is distinctly progressive. Taxes and social security contributions are paid on both earned, capital,
and transfer income. After a basic tax-free allowance (8,820 euro in 2017), statutory marginal tax
rates increase almost continuously from 14 to 45%. The system also has deductions for work related
expenses, and allowances for lone parents and childcare expenses. There are no refundable tax
credits; taxes, therefore, cannot become negative. Parents with dependent children are eligible for
child benefits. For those who are not able to work, a subsistence income level is guaranteed by social
assistance, which includes allowances for housing and heating costs. These benefits are means tested
for income and wealth, and depend on the composition of the household.

As a policy reform, we consider the introduction of a basic income flat tax. In this exercise, the current
nonlinear tax schedule is replaced by one where only a single rate is applied to every individual’s
taxable income. This does not yield a fully proportional tax schedule, however, as we leave the
current deductions and reductions unchanged. The rate is set to 42%, which makes the reform
revenue neutral from the point of the government.22 In addition, we remove the means test for
social assistance with regard to earned income, such that it acts as a basic income.

Data selection and estimation From the SOEP sample, we construct a subsample with single
females that are available to the labour market. That is, we restrict the analysis to those below 60
years old. To reduce the effect of outliers, we also drop individuals with gross hourly wages outside of
4-90 euro and gross yearly asset income above 12,000 euro. Individuals with missing working hours
are also discarded. Our final subsample consists of 1,922 single females; Appendix C.1 contains
descriptive statistics for this subsample.

We map observed working hours into three discrete alternatives: non-working (i.e. hours strictly
lower than 5 hours/week); part-time employment (i.e. hours higher than 5 hours/week and strictly
lower than 32 hours/week); and full-time employment (i.e. hours higher than 32 hours/week). For
each of these alternatives, we calculate disposable income by means of a tax-benefit calculator.23

The disposable income for the unemployment alternative is at least at the level guaranteed by social
assistance.

We model the choice probabilities for alternatives PT and FT semiparametrically, as we estimate for
each a flexible binary logit model that contains cubic polynomials in the disposable income d of all

22Revenue neutrality is here defined without taking labour supply responses into account. It is also calculated on
the whole sample, not just on the subsample of single females for which we conduct the welfare analysis. We find that
behavioural reactions have little impact on tax revenues.

23Missing wages for the non-working are imputed using a Heckman-type selection model, with variables on the
number of children acting as exclusion restrictions, as they are only included in the selection equation and not in the
wage equation. For each individual, monthly disposable income is calculated for 0 (i.e. NW), 20 (i.e. PT), and 40 (i.e.
FT) hours of work per week.
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three alternatives and a linear index with demographic variables, such as age, years of education,
number of children, and region. The choice probability for NW is defined as the complement. By
means of an arbitrary normalisation, we fix an individual’s exogenous income to y = dFT , that is
to the amount of disposable income she would obtain when working full-time. This is convenient,
as it ensures that all prices are non-negative: i.e. pNW = dFT − dNW , pPT = dFT − dPT , and
pFT = 0. For each alternative, the shape restrictions in Proposition 4 are imposed by means of a
penalty function. This penalty function also ensures that the choice probability for NW is nowhere
negative in the support of the data. For more details on the estimation procedure, we refer to
Appendix C.2.

Welfare measure and reference prices All our results are calculated on the basis of a MMU (see
Equation (13) for a definition). We fix the reference price for each alternative at the sample median
of the difference in disposable income between working full-time and that respective alternative: i.e.
prefNW = med(dFT − dNW ), prefPT = med(dFT − dPT ), and prefFT = 0. The virtual prices, therefore,
become p̃c(w) = dFT − w + prefc , for c in {NW,PT, FT}.

6.2 Results

Individual and grouped welfare distributions We first study the distribution of individual welfare
in the baseline, conditional on the chosen alternative (i.e. Equation (16) in Corollary 1). Figure 4
shows estimates of this distribution for all females in our subsample, partitioned in quartiles of gross
hourly wages. Hourly wages reflect potential earning capacity and can be thought of as a proxy for
ability.

As was noted at the outset of Section 4, each individual distribution either reflects the econometician’s
uncertainty about the welfare level of an individual with such observable characteristics (i.e. choice,
prices, exogenous income, and demographic variables) or it reflects the distribution of actually realised
welfare levels in the population of single females with such observable characteristics. In either
case, possible differences in welfare for an individual with given observable characteristics are due
to unobserved preference heterogeneity. For simplicity of exposition, we will maintain the second
interpretation in the remainder of this empirical illustration.

Visual inspection of Figure 4 reveals that these distribution functions have the expected shape (see
Figure 3b).24 On the one hand, there is a critical welfare level w∗ below which the virtual prices
of all three alternatives are higher than the actual price, and the welfare level will surely exceed
that level. On the other hand, the welfare level wc∗ , for which the virtual price of the actually
chosen alternative equals its actual price, is the highest welfare one can obtain. When w∗c∗ = w∗,
the distribution degenerates to a step function, and we can determine the individual’s welfare level

24Note that Figure 3b plots the CCDF, while the figures we present here are CDFs.
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Figure 4: Individual welfare distributions for all females by alternative chosen and wage quartile

exactly, whatever her preferences are. This happens to be the case for approximately 25% of the
females in our subsample. It predominantly occurs for low-wage individuals who choose FT and
high-wage individuals who choose NW.

Figure 10 in Appendix C.5 also displays the individual unconditional welfare distributions, that is
the welfare distribution of individuals with the same observable characteristics (i.e. prices, exo-
genous income, and demographic variables), whatever their optimal choice would have been (i.e.
Equation (18) in Corollary 1). While these distributions turn out to exhibit several mass points, the
deterministic cases seem to vanish. This is to be expected, as conditioning on observed choices intro-
duces information that restricts the set of preference types. Therefore, the conditional distributions
are ‘less stochastic’ than their associated marginal distributions.

In Figure 5, we present the welfare distribution for groups based on the alternative chosen and wage
quartile. These grouped distributions are obtained by aggregating the individual distributions within
each of the panels of Figure 4.25 The figure, thus, represents the welfare distribution in society for

25In Figure 4, we plotted individual CDFs, i.e. for an individual `, Prω[Wω ≤ w | p`, y`, x`, i = Jω(p`, y`, x`), q].
When aggregating these distributions to a group level, we lower the level of conditioning by integrating out over prices,
exogenous income, and demographic characteristics. At the sample level, we obtained the aggregation as follows:

Pr
ω

[Wω ≤ w | i = Jω(p, y, x), q] =
∑
`

Pr
ω

[Wω ≤ w | p`, y`, x`, i = Jω(p`, y`, x`), q = q`]
1

#{` | i = Jω(p`, y`, x`), q = q`}
,

where x is a vector that contains demographic variables, and q indicates the wage quartile. Asymptotically, this is
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each of these twelve groups. The welfare distribution of high-wage (i.e. fourth quartile) individuals
who choose FT tends to first-order dominate the welfare distribution of those who choose alternative
PT, and the latter dominates that of NW. Notwithstanding some exceptions at the bottom part
of the distribution, the opposite is true for the low-wage individuals (i.e. first quartile). This can
be explained as follows. Low-wage individuals have a relatively low gain in disposable income from
choosing PT or FT compared with NW. As a consequence, low-wage individuals who choose FT
must have more intense preference for income relative to leisure than other low-wage individuals.
But because their disposable income is relatively low, this implies that their welfare is relatively low.
One could say that, for those individuals, their preferences are less adapted to their wages. The
reverse is the case for persons with high gross hourly wages.

Figure 5: Grouped welfare distributions by alternative chosen and wage quartile

In Figure 6, we further aggregate these distributions by integrating out the chosen alternative. The
group with the highest wages tends to first-order dominate the other groups.26 Substantially higher
wages thus lead to increased welfare, despite the large degree of unobserved preference variation
we allow for. However, systematic preference differences between the populations of different wage
quartiles, due to different composition of demographic variables (age, education, household size)

equivalent to the population concept∫
p,y,x

Pr
ω

[Wω ≤ w | p, y, x, i = Jω(p, y, x), q] dG(p, y, x | i = Jω(p, y, x), q).

26Inequality also seems to be higher in the highest wage group compared to the others.

31



among the wage quartiles, might play a role too in explaining the welfare dominance of the fourth
quartile. In contrast, welfare levels obtained by individuals belonging to the lower three wage quartiles
turn out to be more intermingled. This suggests that, besides wages, both systematic and unobserved
preference differences do play an important role in assessing the welfare of an individual.

Figure 6: Grouped welfare distribution by wage quartile

Social welfare and reform Our next point is to discuss the effects of the simulated reform, where
the existing nonlinear tax system is replaced with a basic income flat tax.

Figure 7 compares the overall welfare distribution for the baseline and the reform. The welfare
distribution is computed by further aggregating the distributions for the different wage groups of
Figure 6 into one overall welfare distribution for the entire population of single females. The reform
welfare distribution tends to first-order dominate the baseline welfare distribution.27 It is well known
that this implies that all the members of the class of SWFs we propose in Equation (34) will
unanimously prefer the reform welfare distribution over that for the baseline. For completeness, we
present some estimates for different inequality aversion parameters of the Atkinson SWF in Table 4
of Appendix C.5.

27This may be partly due to the fact that the reform is not budget neutral for this specific subsample. We leave a
detailed analysis of this result for future research, as it is beyond the scope of this illustration.
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Figure 7: Welfare distribution in the baseline and reform

Winners and losers The presence of first-order dominance does not imply that everybody gains.28

We further analyse, therefore, the extent to which the winners and losers are (un)equally spread
across the baseline welfare distribution. For this purpose, we approximate the over all individuals
and their baseline and reform choices aggregated joint distribution of welfare and welfare differences
(i.e. Equation (20)) numerically.29 Finally, we transform this joint distribution into the distribution
of welfare differences conditional on the baseline welfare level. We refer to Appendix C.4 for more
details on this procedure.

Figure 8 depicts a smoothed version of the 10th, 50th, and 90th iso-percentile contours (Figures 13
and 14 in Appendix C.5 show a more detailed picture). Each point (w, z) on the qth contour indicates
the minimal welfare gain z (or a loss, if z is negative) that is reached by q% of the population with
baseline welfare level w. First, observe that, despite the first-order dominance, there are a considerable
amount of losers. For example, welfare levels at which the 90th iso-percentile curve lies below the
zero point on the vertical axis, indicate that at least 10% of the persons with this baseline welfare
level exhibit a loss. This occurs especially for welfare levels above 2,000 euro (this is above the
mean, see Table 4 in Appendix C.5). Secondly, among the richer persons in the baseline, in terms of

28This is because first-order dominance is a combination of both Pareto-dominance and anonymity.
29Notice that we cannot use the simplified versions based on the CV (i.e. Equation (28) of Theorem 4) or the

EV (i.e. Equation (48) of Theorem 6). Indeed, in our application the actual baseline and reform prices are individual
specific. Using these as reference prices would imply that the resulting welfare measure does not any longer comply
with our definition, which requires that the nested opportunity sets are common to all individuals.
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well-being, there is a majority of losers. Thirdly, there is a small tendency for the number of losers
to increase with welfare. However, the distribution of losses and gains varies a lot across baseline
welfare levels, as might be seen from the more detailed pictures in Appendix C.5.

Figure 8: Distribution of welfare gains and losses conditional on baseline welfare

In Table 1, we distribute the population over three, roughly equal, groups of initial welfare levels, and
three categories of winners and losers (losers, small gains, and big gains). About 90% of the losers
turn out to belong to the initially best-off group. Overall, the losers form a minority of about 15%.
Large gains are more prevalent for the initially worst-off third. Moderate gains occur at an equal
frequency among the initially worst-off third and the middle group, and occur almost twice as much
these groups compared to the initially best-off third. Over 40% of the initially best-off third are losers,
while the latter account for only 3% in the middle group, and just 2% in the initially worst-off.

Table 1: Distribution of the winners and losers in terms of baseline welfare (in %)

Baseline welfare (euro) Welfare gain (euro) Row sums

(−1000, 0] (0, 200] (200, 1000]

(800, 1500] 0.6 19.1 14.8 34.5
(1500, 2000] 0.9 19.1 12.2 32.2
(2000, 4000] 13.1 11.2 8.9 31.7

Column sums 14.6 49.4 35.9
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7 Concluding remarks

In this paper, we provided a coherent framework to conduct individual and social welfare analysis
for discrete choice. Allowing for unrestricted, unobserved preference heterogeneity, we argue that
individual welfare measures become random variables from the point of view of the econometrician.
For the broad class of NOS measures, we developed nonparametric methods to retrieve their dis-
tributions from observational data. In particular, we proved that all relevant marginal, conditional,
and joint distributions can be expressed in terms of choice and transition probabilities, which are
nonparametrically point-identified from cross-sectional and panel data, respectively. We also showed
how transition probabilities can be set-identified when only cross-sectional data is available, which is
important in empirical applications.

To illustrate the empirical usefulness of our results, we revisited the classical trade-off between leisure
and consumption, using microdata from the 2018 wave of the German Socio-Economic Panel (SOEP).
We modelled single females’ labour supply as a choice between three discrete alternatives: non-
working, part-time employment, and full-time employment. Using a MMU, we present nonparametric
distributional estimates of individual and social welfare for the nonlinear and progressive tax schedule
that is currently in place in Germany. In particular, we found that (unobserved) preferences do play
an important role in assessing the welfare levels of single females: the welfare distributions of the
lowest three wage quartiles are intermingled. Only the distribution of welfare of high-wage individuals
tends to first-order dominate that of the other three groups. We also studied the welfare effects of
replacing the current schedule with a basic income flat tax. We found that around 15% of the single
females would see their welfare diminished; this is especially the case for those that are well-off in the
baseline. Large gains were more prevalent among those that were initially poor. Among the bottom
two-thirds of the population in terms of baseline welfare, almost 98% would advance as a result of
the reform.

There are several avenues for future research. Firstly, one could extend our results to settings where,
besides prices, other attributes of the alternatives are changed. In the same strand of thinking, the
welfare cost of the introduction, and removal, of some alternatives could be studied. This will likely
lead to set-identification, instead of point-identification, of the distributions of interest.30 Secondly,
another methodological innovation could allow for measurement and optimisation errors in the formal
analysis. Depending on the specific application, a significant part of the variation in outcomes can
be driven by these errors, which might bias welfare estimates. Lastly, future research is needed to
assess the sensitivity of empirical welfare estimates, with respect to the choice of the welfare measure
and the corresponding reference prices.

30Bhattacharya (2018) shows that this is indeed the case for the marginal distribution of the CV and EV.
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A Additional results

A.1 Additional NOS measures: the equivalent income metric and the wage met-
ric

Fleurbaey (2006) discusses two additional NOS metrics: the equivalent income (EI) metric and the
wage rate (WR) metric.31 These measures are especially useful in situations where there is a good,
such as leisure time or health for example, the consumption of which is bounded above.

A.1.1 Continuous setting

In the two-good continuous setting, we will call this capacity-constrained good as good 1 and the
other good, which acts as the numeraire, as good 2.

Equivalent income metric The EI metric measures an individual’s well-being by the amount of
good 2 necessary to enjoy the full amount of good 1, denoted by T , and to be equally well-off
as per her actual situation, denoted by x. Denote this amount by EIR (x), where R denotes
the individual’s preferences. The associated opportunity set is then the set of bundles Bλ ≡
{(g1, g2) |g2 ≤ λ, g1 = T }.

This is illustrated in Figure 9a for two persons, an individual with preferences R, who more intensely
values good 1, and an individual with preferences R′, who more intensely values good 2. Suppose
both receive the same bundle x. The individual with preferences R, for example, is considered to be
worse-off because she gets an equal compensation for not having good 1 at full capacity while she
values that good more.

Wage metric Consider the price a person with preferences R and bundle x should earn per unit of
good 1, such that she would be able to reach a point that is equally as good as x if offering good 1
(e.g. labour time, in which case the price is a wage, hence the name of the criterion) were her sole
source of income. The level of this price or wage rate, denoted by WRR (x), is the WR metric of
well-being. The associated opportunity set is Bλ ≡ {(c, `) |c ≤ λ (T − `)}.

Figure 9b illustrates that according to this measure, the individual with preferences R′, who values
good 2 (e.g. consumption) relatively more than the individual with preferences R, is now considered
to be worse-off than the other one, in contrast to the previous case.

A.1.2 Discrete setting

We now describe how these measures can be adjusted to the discrete choice setting and present
some distributional results.

31This last measure was originally developed by Pencavel (1977) and is also mentioned in Preston and Walker
(1999).
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EIR
′(x)

(a) The EI metric

good 2

good 1

R

R′

WRR(x) WRR
′(x)

x

(b) The WR metric

Figure 9: Additional NOS measures

Equivalent income metrics Fix a reference option, which we denote by 0. Well-being of an
individual obtaining option k at price pk is then defined as the amount of the numeraire good
necessary to be equally well-off in the reference option 0 as in the point (y − pk, k). To obtain this,
let Λ = R, and let yλc = −∞ for all λ, when c 6= 0, and yλ0 = λ. The family of opportunity sets can
then be defined as Bλ =

{
(y′, 0) | y′ ≤ yλ0

}
. It is a collection of growing spikes for the 0-option.

Equivalently, p̃c(λ) = +∞ for all λ, when c 6= 0, and p̃0(λ) = y− λ. The EI metric EIω (y − pk, k)
is equal to:

EIω (y − pk, k) = max
λ

{
λ | Uωk (y − pk) ≥ max

c
Uωc (y − p̃c(λ))

}
= max

λ

{
λ | Uωk (y − pk) ≥ Uω0 (λ)

}
.

(37)

Given a reference option 0, the equivalent income level of well-being of a type ω individual who
obtains option k at price pk, denoted by EIω (y − pk, k), is thus implicitly defined by:

Uω0 (EIω (y − pk, k)) = Uωk (y − pk) . (38)

Corollary 6 When using an EI metric, we have for k = 0

Pr
ω

[
w ≤ EIω (y − p0, 0) , j = Jω(p, y)

]
= Pj(p, y)I [w ≤ y − p0] , (39)
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and, hence,

Pr
ω

[
w ≤ EIω (y − p0, 0)

]
= Pr

ω

[
w ≤ EIω (y − p0, 0) | j = Jω(p, y)

]
= I [w ≤ y − p0] . (40)

For k 6= 0, we have

Pr
ω

[
w ≤ EIω (y − pk, k) | k = Jω(p, y)

]
=
Pk
((

min(y − w, p0),p−0
)
, y
)

Pk(p, y) (41)

and
Pr
ω

[
w ≤ EIω (y − pk, k)

]
= Pr

ω

[
Uωk (y − pk) ≥ Uω0 (w)

]
. (42)

Moreover,

Pr
ω

[
w ≤EIω

(
y − pJω(p,y), J

ω(p, y)
) ]

=
∑
k 6=0

Pk
((

min(y − w, p0),p−0
)
, y
)

+ P0(p, y)I [w ≤ y − p0]

= I [w ≤ y − p0] + I [w > y − p0]
∑
k 6=0

Pk
((
y − w,p−0

)
, y
) (43)

The marginal and conditional EI in bundle 0 are deterministic and equal to y − p0. The marginal
CDF of EI in bundle k equals the probability of choosing k, when the options are k with price pk
and option 0 with price y − w.

Proof. When using an EI metric, we have for general k ∈ C

Pr
ω

[
w ≤ EIω (y − pk, k) , j = Jω(p, y)

]
= Pr

ω

[
Uωk (y − pk) ≥ max

i
Uωi (y − p̃i (w)), Uωj (y − pj) ≥ max

c 6=j
Uωc (y − pc)

]
= Pr

ω

[
Uωk (y − pk) ≥ Uω0 (w), Uωj (y − pj) ≥ max

c 6=j
Uωc (y − pc)

] (44)

as p̃i (w) = +∞ for i 6= 0. Hence, for k = 0, this reduces to

Pr
ω

[
w ≤ EIω (y − p0, 0) , j = Jω(p, y)

]
= Pj(p, y)I [w ≤ y − p0] .

Equations (40) follow immediately.
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For k 6= 0, (44) implies that

Pr
ω

[
w ≤ EIω (y − pk, k) | k = Jω(p, y)

]
=

Prω
[
w ≤ EIω (y − pk, k) , k = Jω(p, y)

]
Pk(p, y)

=
Prω

[
Uωk (y − pk) ≥ max

(
Uω0 (w),maxc6=k Uωc (y − pc)

)]
Pk(p, y)

=
Pk
((

min(y − w, p0),p−0
)
, y
)

Pk(p, y) ,

and

Pr
ω

[w ≤ EIω (y − pk, k)] =
∑
j

Pr
ω

[
w ≤ EIω (y − pk, k) , j = Jω(p, y)

]
= Pr

ω
[Uωk (y − pk) ≥ Uω0 (w)] .

Wage metric Let xc reflect the number of units in option c of a good that is only available in
discrete amounts (e.g. labour time). Let Λ = R+ and yλc = λxc

32 where λ can be seen as the
unit price of that good. Equivalently, we have p̃c(λ) = y − λxc. The wage metric WRω (y − pk, k)
equals

WRω (y − pk, k) = max
λ

{
λ | Uωk (y − pk) ≥ max

c
Uωc (λxc)

}
. (45)

Let an option c be characterised by the availability of xc units of a good. The WR level of well-being
of a type ω individual who obtains option k at price pk, denoted by WRω (y − pk, k), is defined
implicitly by:

Uωk (y − pk) = max
c
Uωc (WRω (y − pk, k)xc) . (46)

Corollary 7 When using the WR metric, we have

Pr
ω

[
w ≤WRω (y − pk, k) , j = Jω(p, y)

]
= Pj,k

(
p, (pk, y − wx−k) , y

)
I [w ≤ (y − pk)/xk] (47)

32Strictly, this definition is not compatible with condition (6), as the infimum of yλc is not −∞, but 0, for all c.
However, a straightforward adaption to R+ is possible.
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and, hence,

Pr
ω

[
w ≤WRω (y − pk, k) | j = Jω(p, y)

]
=
Pj,k

(
p, (pk, y − wx−k) , y

)
Pj(p, y) I [w ≤ (y − pk)/xk]

Pr
ω

[
w ≤WRω (y − pk, k) | k = Jω(p, y)

]
=
Pk
(
min(p, y − wx), y

)
Pk(p, y) I [w ≤ (y − pk)/xk]

Pr
ω

[
w ≤WRω (y − pk, k)

]
= Pk

(
(pk, y − wx−k) , y

)
I [w ≤ (y − pk)/xk]

Pr
ω

[
w ≤WRω

(
y − pJω(p,y), J

ω(p, y)
) ]

=
∑
k

Pk
(
min(p, y − wx), y

)
I [w ≤ (y − pk)/xk] .

Proof. As p̃c (w) = y − wxc, we have

Pr
ω

[
w ≤WRω (y − pk, k) , j = Jω(p, y)

]
= Pj,k

(
p, (pk, p̃−k(w)) , y

)
I [pk ≤ p̃k(w)]

= Pj,k
(
p, (pk, y − wx−k) , y

)
I [pk ≤ y − wxk]

= Pj,k
(
p, (pk, y − wx−k) , y

)
I [w ≤ (y − pk)/xk] .

The conditional and marginal distributions follow immediately.

A.2 Results for the equivalent variation

This section derives analogue results to Theorem 3, Corollary 3, and Theorem 4, but now for the EV
instead of the CV.

For an individual of type ω, the equivalent variation EV ω is defined as

max
c
{Uωc (y − pc − EV ω)} = max

c

{
Uωc

(
y − p′c

)}
,

i.e, the amount of money (possibly negative) an individual has to pay before the reform to be equally
well-off as after the reform.
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Theorem 5 For the distribution of the EV, we have the following results:

Pr
ω

[EV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)] = Pi,j(p,min(p + z,p′), y)I
[
p′j ≤ pj + z

]
,

Pr
ω

[EV ω ≤ z | i = Jω(p, y), j = Jω(p′, y)] = Pi,j(p,min(p + z,p′), y)
Pi,j(p,p′, y) I

[
p′j ≤ pj + z

]
,

Pr
ω

[EV ω ≤ z | i = Jω(p, y)] =
∑
j

Pi,j(p,min(p + z,p′), y)
Pi(p, y) I

[
p′j ≤ pj + z

]
,

Pr
ω

[EV ω ≤ z | j = Jω(p′, y)] = Pj(min(p + z,p′), y)
Pj(p′, y) I

[
p′j ≤ pj + z

]
,

Pr
ω

[EV ω ≤ z] =
∑
j

Pj(min(p + z,p′), y)I
[
p′j ≤ pj + z

]
.

Proof. We have that{
EV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)

}
=
{

max
c
{Uωc (y − pc − EV ω)} ≥ max

c
{Uωc (y − pc − z)}, i = Jω(p, y), j = Jω(p′, y)

}
=
{

max
c

{
Uωc

(
y − p′c

)}
≥ max

c
{Uωc (y − pc − z)}, i = Jω(p, y), j = Jω(p′, y)

}
,

such that,

Pr
ω

[EV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)]

= Pr
ω

[
Uωi (y − pi) ≥ max

k 6=i
Uωk (y − pk), Uωj (y − p′j) ≥ max

l 6=j
Uωl (y − p′l),

max
c
Uωc (y − p′c) ≥ max

c
{Uωc (y − pc − z)}

]
= Pr

ω

[
Uωj (y − p′j) ≥ max

k 6=j
Uωk (y −min(pk + z, p′k)), Uωi (y − pi) ≥ max

l 6=i
Uωl (y − pl)

]
I
[
p′j ≤ pj + z

]
= Pi,j(p,min(p + z,p′), y)I

[
p′j ≤ pj + z

]
.

The other equalities follow directly.

Theorem 6 The joint distribution of the MMU, with initial prices as reference prices, and the EV
is expressed as:

Pr
ω

[w ≤MMUωp (y − pi, i), EV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)]

= Pi,j
(
p,min(p′,p + z), y

)
I
[
p′j ≤ pj + z

]
I [w ≤ y] .

(48)
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Proof. We have

Pr
ω

[w ≤MMUωp (y − pi, i), EV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)]

= Pr
ω

[
Uωi (y − pi) ≥ max

c′
Uωc′ (y − (pc′ + y − w)), Uωi (y − pi) ≥ max

k 6=i
Uωk (y − pk),

Uωj (y − p′j) ≥ max
l 6=j

Uωl (y − p′l), Uωj (y − p′j) ≥ max
c
{Uωc (y − pc − z)}

]
= Pr

ω

[
Uωi (y − pi) ≥ max

k 6=i
Uωk (y −min(pk, pk + y − w)), Uωj (y − p′j) ≥ max

l 6=j
Uωl (y −min(p′l, pl + z))

]
I
[
p′j ≤ pj + z

]
I [pi ≤ pi + y − w)]

= Pi,j
(
p, (p′j ,min(p′−j ,p−j + z)), y

)
I
[
p′j ≤ pj + z

]
I [w ≤ y]

= Pi,j
(
p,min(p′,p + z), y

)
I
[
p′j ≤ pj + z

]
I [w ≤ y] .
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B Proofs

Theorem 1 The joint distribution of the NOS welfare measure W , evaluated in an option k with
price pk, and choosing j at prices p′ and exogenous income y can be expressed in terms of transition
probabilities as follows:

Pr
ω

[
w ≤Wω(y − pk, k), j = Jω(p′, y)

]
= Pj,k

(
p′, (pk, p̃−k(w)) , y

)
I [pk ≤ p̃k(w)] , (14)

where (pk, p̃−k(w)) = (p̃1(w), . . . , p̃k−1(w), pk, p̃k+1(w), . . . , p̃n(w)).

Proof of Theorem 1. Using Lemma 1, we have that

Pr
ω

[
w ≤Wω (y − pk, k) , j = Jω(p′, y)

]
= Pr

ω

[
Uωk (y − pk) ≥ max

c
Uωc (y − p̃c(w)), Uωj (y − p′j) ≥ max

c′ 6=j
Uωc′ (y − p′c′)

]
= Pr

ω

[
Uωk (y − pk) ≥ max

c 6=k
Uωc (y − p̃c(w)), Uωj (y − p′j) ≥ max

c′ 6=j
Uωc′ (y − p′c′)

]
I [pk ≤ p̃k(w)]

= Pj,k
(
p′, (pk, p̃−k(w)) , y

)
I [pk ≤ p̃k(w)] .

Corollary 1

Pr
ω

[
w ≤Wω (y − pk, k) | j = Jω(p′, y)

]
=
Pj,k

(
p′, (pk, p̃−k(w)) , y

)
Pj (p′, y) I [pk ≤ p̃k(w)] , (15)

Pr
ω

[
w ≤Wω (y − pk, k) | k = Jω(p, y)

]
=
Pk
(
min

(
p, p̃(w)

)
, y
)

Pk (p, y) I [pk ≤ p̃k(w)] , (16)

where min
(
p, p̃(w)

)
=
(

min(p1, p̃1(w)), . . . ,min(pn, p̃n(w))
)
,

Pr
ω

[
w ≤Wω (y − pk, k)

]
= Pk

(
(pk, p̃−k(w)) , y

)
I [pk ≤ p̃k(w)] , (17)

and

Pr
ω

[
w ≤Wω

(
y − pJω(p,y), J

ω(p, y)
) ]

=
∑
k

Pk
(
min

(
p, p̃(w)

)
, y
)
I [pk ≤ p̃k(w)] . (18)
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Proof of Corollary 1. (a) For the conditional distribution on option j being chosen, we have

Pr
ω

[
w ≤Wω(y − pk, k) | j = Jω(p′, y)

]
= Prω [w ≤Wω (y − pk, k) , j = Jω(p′, y)]

Pj (p′, y)

=
Pj,k

(
p′, (pk, p̃−k(w)) , y

)
Pj (p′, y) I [pk ≤ p̃k(w)] .

(b) For the conditional distribution on option k being chosen, we have

Pr
ω

[
w ≤Wω(y − pk, k) | k = Jω(p, y)

]
=

Prω
[
w ≤Wω(y − pk, k), k = Jω(p, y)

]
Pk (p, y)

=
Pk,k

(
p, (pk, p̃−k(w)) , y

)
I [pk ≤ p̃k(w)]

Pk (p, y)

=
(

Pr
ω

[
Uωk (y − pk) ≥ max

c 6=k
Uωc (y − pc),

Uωk (y − pk) ≥ max
c 6=k

Uωc (y − p̃c(w)
]
I [pk ≤ p̃k(w)]

)
/Pk (p, y)

=
(

Pr
ω

[
Uωk (y − pk) ≥ max

c 6=k
Uωc
(
y −min(pc, p̃c(w))

)]
I [pk ≤ p̃k(w)]

)
/Pk (p, y)

=
Pk
(
min

(
p, (pk, p̃−k(w))

)
, y
)
I [pk ≤ p̃k(w)]

Pk (p, y)

=
Pk
(
min

(
p, p̃(w)

)
, y
)

Pk (p, y) I [pk ≤ p̃k(w)] .

(c) For the marginal distribution in option k, we have

Pr
ω

[
w ≤Wω (y − pk, k)

]
=
∑
j

Pr
ω

[
w ≤Wω (y − pk, k) , j = Jω(p′, y)

]
=
∑
j

Pj,k
(
p′, (pk, p̃−k(w)) , y

)
I [pk ≤ p̃k(w)]

= Pk
(

(pk, p̃−k(w)) , y
)
I [pk ≤ p̃k(w)] .

(d) Finally, for the marginal distribution, in the optimal option, we have

Pr
ω

[
w ≤Wω

(
y − pJω(p,y), J

ω(p, y)
) ]

=
∑
k

Pr
ω

[
w ≤Wω (y − pk, k) , k = Jω(p, y)

]
=
∑
k

Pk
(
min

(
p, p̃(w)

)
, y
)
I [pk ≤ p̃k(w)] .
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Corollary 2 When using reference prices pref , we have

Pr
ω

[
w ≤MMUωpref (y − pk, k) , j = Jω(p′, y)

]
= Pj,k

(
p′, (pk, y−w+pref−k ), y

)
I
[
pk ≤ y − w + prefk

]
.

When pk = p′k, and the reference prices equal the actual prices p′ and k is the optimal choice, this
simplifies to

Pr
ω

[
w ≤MMUωp′

(
y − p′k, k

)
, k = Jω(p′, y)

]
= Pk(p′, y)I [w ≤ y]

and, hence,

Pr
ω

[
w ≤MMUωp′

(
y − p′k, k

)
| k = Jω(p′, y)

]
= I [w ≤ y] ,

Pr
ω

[
w ≤MMUωp′

(
y − p′Jω(p′,y), J

ω(p′, y)
)]

= I [w ≤ y] .

Proof of Corollary 2. The first equation follows from plugging p̃(w) = y − w + pref (w) into Equa-
tion (14). Moreover, using actual prices p′ as reference prices and taking pk = p′k, I

[
pk ≤ y − w + prefk

]
implies that w ≤ y. Therefore,

Pr
ω

[
w ≤MMUωp′

(
y − p′k, k

)
, k = Jω(p′, y)

]
= Pk

(
min

(
p′, y − w + p′

)
, y
)
I [w ≤ y)]

= Pk(p′, y)I [w ≤ y)] .
(49)

The last two equations then immediately follow from Bayes’ theorem and summing over k.

Proposition 1 The joint distribution of welfare in the optimal bundle i, before a price change, and
welfare in the optimal bundle j, after the price change, is as follows:

Pr
ω

[w ≤Wω
0 (y − pi, i), z ≤Wω

1 (y − p′j , j), i = Jω(p, y), j = Jω(p′, y)]

= Pi,j
(
min

(
p, p̃(w)

)
,min

(
p′, p̃(z)

)
, y
)
I [pi ≤ p̃i(w)] I

[
p′j ≤ p̃j(z)

]
.

(19)
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Proof of Proposition 1.

Pr
ω

[w ≤Wω
0 (y − pi, i), z ≤Wω

1 (y − p′j , j), i = Jω(p, y), j = Jω(p′, y)]

= Pr
ω

[
Uωi (y − pi) ≥ max

c′
Uωc′ (y − p̃c′(w)), Uωi (y − pi) ≥ max

k 6=i
Uωk (y − pk),

Uωj (y − p′j) ≥ max
l 6=j

Uωl (y − p′l), Uωj (y − p′j) ≥ max
c
Uωc (y − p̃c(z)),

]
= Pr

ω

[
Uωi (y − pi) ≥ max

k 6=i
Uωk (y −min(pk, p̃k(w))), Uωj (y − p′j) ≥ max

l 6=j
Uωl (y −min(p′l, p̃l(z)))

]
I [pi ≤ p̃i(w)] I

[
p′j ≤ p̃j(z)

]
= Pi,j

((
pi,min

(
p−i, p̃−i(w)

))
,
(
p′j ,min

(
p′−j , p̃−j(z)

)
, y
)
I [pi ≤ p̃i(w)] I

[
p′j ≤ p̃j(z)

]
= Pi,j

(
min

(
p, p̃(w)

)
,min

(
p′, p̃(z)

)
, y
)
I [pi ≤ p̃i(w)] I

[
p′j ≤ p̃j(z)

]
.

Theorem 2 The function h is defined by:

hi,j,p,p′(w, x, s) = Pi,j
(
min

(
p, p̃(max(w, x))

)
,min

(
p′, p̃(s)

)
, y
)
I
[
p′j ≤ p̃j(s)

]
= Pi,j

(
min

(
p, p̃(w), p̃(x)

)
,min

(
p′, p̃(s)

)
, y
)
I
[
p′j ≤ p̃j(s)

]
.

Then, the joint distribution of the stochastic welfare measure and the difference before and after the
price change of this measure becomes,

Pr
ω

[w ≤Wω
0 (y − pi, i),Wω

1 (y − p′j , j)−Wω
0 (y − pi, i) ≤ z, i = Jω(p, y), j = Jω(p′, y)] =

−
∫ +∞

−∞
∂3hi,j,p,p′(w, x, x+ z)I [pi ≤ min(p̃i(w), p̃i(x))] dx.

(20)

Proof of Theorem 2. Fix i and j and define g(w, z) = Prω[w ≤Wω
0 (y−pi, i), z ≤Wω

1 (y−p′j , j), i =
Jω(p, y), j = Jω(p′, y)]. Then we have

Pr
ω

[w ≤Wω
0 (y − pi, i),Wω

1 (y − p′j , j)−Wω
0 (y − pi, i) ≤ z, i = Jω(p, y), j = Jω(p′, y)]

= −
∫ +∞

−∞
∂2g (max(w, x), x+ z) dx

= −
∫ +∞

−∞
∂3hi,j,p,p′(w, x, x+ z)I [pi ≤ p̃i(max(w, x))] dx

= −
∫ +∞

−∞
∂3hi,j,p,p′(w, x, x+ z)I [pi ≤ min(p̃i(w), p̃i(x))] dx.
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Lemma 2 We have{
ω | CV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)

}
=
{
ω | Uωi (y − pi) ≥ max

c
{Uωc (y − p′c − z)}, i = Jω(p, y), j = Jω(p′, y)

}
.

(22)

Proof of Lemma 2.{
ω | CV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)

}
=
{
ω | max

c
{Uωc (y − p′c − CV ω)} ≥ max

c
{Uωc (y − p′c − z)}, i = Jω(p, y), j = Jω(p′, y)

}
=
{
ω | max

c
{Uωc (y − pc)} ≥ max

c
{Uωc (y − p′c − z)}, i = Jω(p, y), j = Jω(p′, y)

}
=
{
ω | Uωi (y − pi) ≥ max

c
{Uωc (y − p′c − z)}, i = Jω(p, y), j = Jω(p′, y)

}
,

where the second equality follows from (21) and the last from i = Jω (p, y).

Theorem 3 The joint distribution of the CV and the optimal choices before and after the price
change is as follows:

Pr
ω

[CV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)] = Pi,j(min(p,p′ + z),p′, y)I
[
pi ≤ p′i + z

]
. (23)

Proof of Theorem 3. We have

Pr
ω

[CV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)]

= Pr
ω

[
Uωi (y − pi) ≥ max

k 6=i
Uωk (y − pk), Uωj (y − p′j) ≥ max

l 6=j
Uωl (y − p′l),

Uωi (y − pi) ≥ max
c
Uωc (y − p′c − z)

]
= Pr

ω

[
Uωi (y − pi) ≥ max

k 6=i
Uωk (y −min(pk, p′k + z)), Uωj (y − p′j) ≥ max

l 6=j
Uωl (y − p′l)

]
I
[
pi ≤ p′i + z

]
= Pi,j(min(p,p′ + z),p′, y)I

[
pi ≤ p′i + z

]
.

Corollary 3

Pr
ω

[CV ω ≤ z | i = Jω(p, y), j = Jω(p′, y)] = Pi,j(min(p,p′ + z),p′, y)
Pi,j(p,p′, y) I

[
pi ≤ p′i + z

]
, (24)

Pr
ω

[CV ω ≤ z | i = Jω(p, y)] = Pi(min(p,p′ + z), y)
Pi(p, y) I

[
pi ≤ p′i + z

]
, (25)
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Pr
ω

[CV ω ≤ z | j = Jω(p′, y)] =
∑
i

Pi,j(min(p,p′ + z),p′, y)
Pj(p′, y) I

[
pi ≤ p′i + z

]
, (26)

and
Pr
ω

[CV ω ≤ z] =
∑
i

Pi(min(p,p′ + z), y)I
[
pi ≤ p′i + z

]
.33 (27)

Theorem 4 The joint distribution of the MMU and the CV is as follows:

Pr
ω

[w ≤MMUωp′(y − pi, i), CV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)]

= Pi,j
(
min

(
p,p′ + min(z, y − w)

)
,p′, y

)
I
[
pi ≤ p′i + min(z, y − w)

]
.

(28)

Proof of Theorem 4. A direct proof of Theorem 4

We have

Pr
ω

[w ≤MMUωp′(y − pi, i), CV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)]

= Pr
ω

[
Uωi (y − pi) ≥ max

c′
Uωc′ (y − (y − w + pc′)), Uωi (y − pi) ≥ max

k 6=i
Uωk (y − pk),

Uωj (y − p′j) ≥ max
l 6=j

Uωl (y − p′l), Uωi (y − pi) ≥ max
c
Uωc (y − p′c − z)

]
= Pr

ω

[
Uωi (y − pi) ≥ max

k 6=i
Uωk (y −min(pk, p′k + y − w, p′k + z)), Uωj (y − p′j) ≥ max

l 6=j
Uωl (y − p′l)

]
I
[
pi ≤ p′i + z

]
I
[
pi ≤ p′i + y − w

]
= Pi,j

((
pi,min

(
p−i,p′−i + min(z, y − w)

))
,p′, y

)
I
[
pi ≤ p′i + min(z, y − w)

]
= Pi,j

(
min

(
p,p′ + min(z, y − w)

)
,p′, y

)
I
[
pi ≤ p′i + min(z, y − w)

]
.

Theorem 4 as implied by Theorem 2

When choosing the MMU with the final prices as reference prices, Theorem 2 implies:

Pr
ω

[w ≤MMUωp′(y − pi, i), CV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)]

= −
∫ +∞

−∞
∂3hi,j,p,p′(w, x, x+ z)I

[
pi ≤ min(p′i + y − w, p′i + y − x)

]
dx.

(50)

where the function h is defined by

hi,j,p,p′(w, x, s) = Pi,j
(
min

(
p,p′ + y −max(w, x)

)
,min

(
p′,p′ + y − s

)
, y
)
I
[
p′j ≤ p′j + y − s

]
.

(51)

33Note that Equation (27) is the main result of Bhattacharya (2015).
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Rewriting, (51), we obtain

hi,j,p,p′(w, x, s) = Pi,j
(
min

(
p,p′ + y −max(w, x)

)
,min

(
p′,p′ + y − s

)
, y
)
I
[
p′j ≤ p′j + y − s

]
= Pi,j

(
min

(
p,p′ + y −max(w, x)

)
,p′, y

)
I [s ≤ y] ,

and hence

∂3hi,j,p,p′(w, x, x+ z) = −Pi,j
(
min

(
p,p′ + y −max(w, x)

)
,p′, y

)
δ(x+ z − y),

where δ is a Dirac delta function. Plugging this in in (50), we obtain

Pr
ω

[w ≤MMUωp′(y − pi, i), CV ω ≤ z, i = Jω(p, y), j = Jω(p′, y)]

= −
∫ +∞

−∞
∂3hi,j,p,p′(w, x, x+ z)I

[
pi ≤ min(p′i + y − w, p′i + y − x)

]
dx

= Pi,j
(
min

(
p,p′ + y −max(w, y − z)

)
,p′, y

)
I
[
pi ≤ min(p′i + y − w, p′i + y − (y − z))

]
= Pi,j

(
min

(
p,p′ + min(y − w, z)

)
,p′, y

)
I
[
pi ≤ p′i + min(y − w, z)

]
as in Theorem 4.

Corollary 4

Pr
ω

[
w ≤MMUωp′ , CV

ω ≤ z | i = Jω(p, y), j = Jω(p′, y)
]

=
Pi,j

(
min

(
p,p′ + min(z, y − w)

)
,p′, y

)
Pi,j(p,p′, y) I

[
pi ≤ p′i + min(z, y − w)

]
, (29)

Pr
ω

[w ≤MMUωp′(y − pi, i), CV ω ≤ z | i = Jω(p, y)]

=
Pi
(
min

(
p,p′ + min(z, y − w)

)
, y
)

Pi(p, y) I
[
pi ≤ p′i + min(z, y − w)

]
, (30)

Pr
ω

[w ≤MMUωp′
(
y − pJω(p,y), J

ω(p, y)
)
, CV ω ≤ z | j = Jω(p′, y)]

=
∑
i

Pi,j
(
min

(
p,p′ + min(z, y − w)

)
,p′, y

)
Pj(p′, y) I

[
pi ≤ p′i + min(z, y − w)

]
, (31)
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and,

Pr
ω

[w ≤MMUωp′
(
y − pJω(p,y), J

ω(p, y)
)
, CV ω ≤ z]

=
∑
i

Pi
(
min

(
p,p′ + min(z, y − w)

)
, y
)
I
[
pi ≤ p′i + min(z, y − w)

]
. (32)

Proposition 2 The conditional CDF of individual welfare in the optimal bundle can be calculated
using choice probabilities:

FW (w | p, y) = 1−
∑
k

Pk
(
min

(
p, p̃(w)

)
, y
)
I [pk ≤ p̃k(w)] . (35)

Proof of Proposition 2.

FW (w | p, y) = Pr
ω

[
Wω

(
y − pJω(p,y), J

ω (p, y)
)
≤ w

]
= 1− Pr

ω

[
w ≤Wω

(
y − pJω(p,y), J

ω (p, y)
)]

= 1−
∑
k

Pk
(
min

(
p, p̃(w)

)
, y
)
I [pk ≤ p̃k(w)] ,

(52)

where the last equality follows from Equation (18) in Corollary 1.

Corollary 5 When prices are equal for everyone and when one uses the MMU with reference prices
equal to those common prices as the welfare measure, the SWF can be written solely in terms of
income.

Proof of Corollary 5. From Proposition 2 and the definition of the virtual prices in case of an MMU
with actual prices p as reference prices (p̃(w) = y − w + p), it follows that

FW (w | p, y) = 1−
∑
k

Pk
(
min

(
p, p̃(w)

)
, y
)
I [pk ≤ p̃k(w)]

= 1−
∑
k

Pk
(
min

(
p, y − w + p

)
, y
)
I [pk ≤ y − w + pk)]

= 1−
∑
k

Pk
(
p, y

)
I [w ≤ y]

= I [y ≤ w] .
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Hence,

SWF =
∫ ∫

h(w) dFW (w | p, y) dG(p, y)

=
∫ ∫

h(w)dI [y ≤ w] dG(p, y)

=
∫
h(y) dG(p, y).

Notice that p in the argument of G is redundant, as prices are assumed to be identical for all persons
in this case. This completes the proof.

Proposition 3 Suppose Assumptions 1 – 3 hold. Then the transition probabilities {Pi,j(p,p′, y)}
are set identified from the choice probabilities {Pi} with bounds

PLi,i(p,p′, y) = max
{
Pi(p, y) + Pi(p′, y)− 1, Pi

((
max{pi, p′i},min{p−i,p′−i}

)
, y
)}

,

PUi,i(p,p′, y) = min
{
Pi(p, y), Pi(p′, y)

}
.

For i 6= j, Pi,j(p,p′, y) = 0 if pi ≥ p′i and pj ≤ p′j and

PLi,j(p,p′, y) = max{Pi(p, y) + Pj(p′, y)− 1, 0},

PUi,j(p,p′, y) = min
{
Pi(p, y), Pj(p′, y)

}
,

elsewhere.

Proof of Proposition 3. We will first derive upper and lower bounds that are implied by elementary
probability theory. Denoting by A the set {ω|i = Jω(p, y)} and B the set {ω|j = Jω(p′, y)}, we
have P (A ∩B) = Pi,j(p,p′; y), P (A) = Pi(p; y) and P (B) = Pj(p′; y).

For the lower bound, note that

1 ≥ P (A ∪B) = P (A) + P (B)− P (A ∩B) (53)

and hence P (A ∩B) ≥ P (A) + P (B)− 1 which translates into

Pi,j(p,p′; y) ≥ Pi(p; y) + Pj(p′; y)− 1. (54)

For the upper bound, note that P (A ∩B) ≤ P (A) and P (A ∩B) ≤ P (B) and hence

Pi,j(p,p′; y) ≤ min(Pi(p; y), Pj(p′; y)) (55)

We will now exploit the monotonicity condition imposed on the utility function Uωc to construct
tighter bounds based on revealed preference restrictions. First consider the no-transition case.
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Note therefore that if
Uωi (y −max{pi, p′i}) > Uωk (y −min{pk, p′k}), (56)

then Uωi (y − pi) > Uωk (y − pk) and Uωi (y − p′i) > Uωk (y − p′k) and hence

Pi
(
(max{pi, p′i},min{p−i,p′−i}; y

)
= Pr

ω

[
∩k 6=i

{
Uωi (y −max{pi, p′i}) > Uωk (y −min{pk, p′k})

}]
(57)

is a lower bound of Pi,i(p,p′; y).

Finally, for the transition case, some transitions are ruled out by monotonicity. Indeed, if pi ≥ p′i
and pj ≤ p′j , good i becomes weakly less and good j weakly more expensive after the price change.
By monotonicity, it holds that Uωi (y − pi) ≤ Uωi (y − p′i) and Uωj (y − pj) ≥ Uωj (y − p′j) and hence,
if moreover Uωi (y− pi) > Uωk (y− pk) for all k 6= i and Uωj (y− p′j) > Uωk (y− p′k) for all k 6= j, then

Uωi (y − p′i) ≥ Uωi (y − pi) > Uωj (y − pj) > Uωi (y − p′i) (58)

which is a contradiction. Hence, if pi ≥ p′i and pj ≤ p′j , then Pi,j(p,p′, y) = 0.

Proposition 4 Suppose Assumptions 1-3 hold. Then the estimated choice probabilities {Pi} should
satisfy the following shape restrictions at all (p, y) for all i, j ∈ C:

∂Pi(p, y)
∂pi

≤ 0,

∂Pi(p, y)
∂pj

≥ 0,

Proof of Proposition 4. Remember that the choice probabilities are defined as

Pi(p, y) = Pr
ω

[{
Uωi (y − pi) ≥ max

c 6=i
{Uωc (y − pc)}

}]
.

Given Assumption 1, the first restriction immediately follows from observing that an increase in pi

would shrink the set
{ω | Uωi (y − pi) ≥ max

c 6=i
{Uωc (y − pc)}

and, hence, lowers the probability

Pr
ω

[{
Uωi (y − pi) ≥ max

c6=i
{Uωc (y − pc)}

}]
.

Analogously, an increase in pj with j 6= i would increase Pi(p, y).
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C Empirical illustration

C.1 Sample description

Table 2: Descriptive statistics estimation subsample

Variable N Min Q1 Median Mean Q3 Max SD IQR #NA

Weekly hours worked 1922 0.0 0.0 30.0 25.2 40.0 80.0 18.3 40.0 0
Hourly gross wage 1492 4.1 9.5 14.0 14.9 19.0 39.7 6.9 9.5 430
Yearly income from assets 1922 -5.0 0.0 3.0 260.8 131.5 11998.0 1085.5 131.5 0
Age 1922 18.0 34.0 45.0 43.3 53.0 60.0 11.1 19.0 0
Years education 1922 7.0 10.5 11.5 12.2 14.0 18.0 2.8 3.5 0
Number of children (all) 1922 0.0 0.0 0.0 0.5 1.0 3.0 0.8 1.0 0
Number of children (0-1) 1922 0.0 0.0 0.0 0.0 0.0 2.0 0.1 0.0 0
Number of children (2-4) 1922 0.0 0.0 0.0 0.0 0.0 2.0 0.2 0.0 0
Number of children (5-7) 1922 0.0 0.0 0.0 0.1 0.0 2.0 0.3 0.0 0
East Germany 1922 0.0 0.0 0.0 0.2 0.0 1.0 0.4 0.0 0

C.2 Estimation procedure

Choice probabilities To model the choice probabilities for alternatives PT and FT, we specify for
each a flexible binary logit model that contains cubic polynomials for the disposable income of all
three alternatives, and a linear index with demographic variables, such as individual `’s age, years of
education, number of children, and region. Formally, we have for c ∈ {PT, FT} that

Pr
ω

[c = Jω(d`) | x`] := Λc(d`,x`;θc) =
(

1 + exp
(
−
(
αc +

∑
c′

3∑
m=1

βc,c′,md
m
`,c′ + x′`γc

)))−1

,

where d` := (dNW,`, dPT,`, dFT,`) is a vector with disposable incomes, x` a vector with demographic
characteristics, and θc = (αc,βc,γc) a vector with parameters. Alternative NW is defined as the
complement of these two probabilities,

Pr
ω

[NW = Jω(d`) | x`] := 1− Pr
ω

[PT = Jω(d`) | x`]− Pr
ω

[FT = Jω(d`) | x`]

= 1− ΛPT (d`,x`;θPT )− ΛFT (d`,x`;θFT ),

which ensures that for every pair (d`,x`), the choice probabilities add up to one. The model is then
estimated by nonlinear least squares

θ̂
NLS = arg min(θPT ,θFT )

∑
`

[
[YNW,` − (1− ΛPT (d`,x`;θPT )− ΛFT (d`,x`;θFT ))]2

+ [YPT,` − ΛPT (d`,x`);θPT )]2 + [YFT,` − ΛFT (d`,x`);θFT )]2 + π(x`;θPT ,θFT )
]
,

where {Yc,`, c ∈ {NW,PT, FT}} are dummy variables that encode individual `’s observed choice.
The last term, i.e. π(x`;θHT ,θFT ), contains a positive-valued penalty function that imposes non-
negativity of Prω[NW = Jω(d`) | x`] and the shape constraints discussed in Section 5.2.
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Penalty function The penalty function consists of three components. Since some of these com-
ponents depend in a complex way on both the data and the parameters, we opt to impose these on
a three dimensional grid DG of disposable incomes: i.e. DG ⊂ D := supp(dNW ) × supp(dPT ) ×
supp(dFT ).

The first component of the penalty function ensures that the choice probability of alternative NW
is non-zero for every pair (dg,x`) ∈ DG × X : i.e. 1 − ΛPT (dg,x`;θPT ) − ΛFT (dg,x`;θFT ) ≥ 0.
The contribution to the penalty function then is defined as:

π1(x`;θPT ,θFT ) := −|DG|−1 ∑
dg∈DG

min(0, 1− ΛPT (dg,x`;θPT )− ΛFT (dg,x`;θFT )).

The second component of the penalty function ensures that choice probabilities for alternatives
PT and FT are increasing in their own disposable income and decreasing in the disposable income
of the other alternatives. To be precise, we have for every c ∈ {PT, FT} and for every pair
(dg,x`) ∈ DG ×X that

∂Λc(dg,x`;θc)
∂dg,c

= (βc,c,1 + 2βc,c,2dg,c + 3βc,c,3d2
g,c)Γc(dg,x`;θc) ≥ 0

∂Λc(dg,x`;θc)
∂dg,c′

= (βc,c′,1 + 2βc,c′,2dg,c′ + 3βc,c′,3d2
g,c′)Γc(dg,x`;θc) ≤ 0, ∀c′ 6= c,

in which Γc(dg,x`;θc) := Λc(dg,x`;θc)
(
1 + exp

(
αc +

∑
c′
∑3
m=1 βc,c′,md

m
g,c′ + x′`γc

))−1
, or equi-

valently that

βc,c,1 + 2βc,c,2dg,c + 3βc,c,3d2
g,c) ≥ 0

(βc,c′,1 + 2βc,c′,2dg,c′ + 3βc,c′,3d2
g,c′) ≤ 0, ∀c′ 6= c.

The contribution to the penalty function is defined as:

π2,c(θPT ,θFT ) := −|DG|−1 ∑
dg∈DG

min(0, βc,c,1 + 2βc,c,2dg,c + 3βc,c,3d2
g,c))

π2,c,c′(θPT ,θFT ) := |DG|−1 ∑
dg∈DG

max(0, βc,c′,1 + 2βc,c′,2dg,c′ + 3βc,c′,3d2
g,c′)).

Finally, the third part of the penalty function ensures that the choice probability of alternative NW
is decreasing in the disposable income of the other alternatives.34 For every c, c′ ∈ {PT, FT} with

34Note that the second part of the penalty function also ensures that the choice probability of alternative NW is
increasing in its own disposable income.
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c 6= c′ and for every pair (dg,x`) ∈ DG ×X , we have that

∂Λc(dg,x`)
∂dg,c

+ ∂Λc′(dg,x`)
∂dg,c

= (βc,c,1 + 2βc,c,2dg,c + 3βc,c,3d2
g,c)Γc(dc,x`;θc)

+ (βc′,c,1 + 2βc′,c,2dg,c + 3βc′,c,3d2
g,c)Γc′(dg,x`;θc′) ≥ 0.

The contribution to the penalty function is defined as:

π3,c,c′(x`;θPT ,θFT ) := −|DG|−1 ∑
dg∈DG

min(0, (βc,c,1 + 2βc,c,2dg,c + 3βc,c,3d2
g,c)Γc(dg,x`;θc)

+ (βc′,c,1 + 2βc′,c,2dg,c + 3βc′,c,3d2
g,c)Γc′(dg,x`;θc′)).

Arranging all components, the composite penalty function is then

π(x`;θPT ,θFT ) = π1(x`;θPT ,θFT ) +
∑

c∈{PT,FT}

π2,c(θPT ,θFT ) +
∑

c′∈{NW,PT,FT},c′ 6=c
π2,c,c′(θPT ,θFT )


+ π3,PT,FT (x`;θPT ,θFT ) + π3,FT,PT (x`;θPT ,θFT ).

C.3 Estimates

Table 3 contains the estimates for the choice probabilities of alternatives PT and FT. The 90%
confidence intervals are obtained by a bootstrap procedure, in which the model was re-estimated on
200 samples randomly drawn with replacement.

Table 3: Estimates choice probabilities

PT FT

Parameter Estimate 90% CI Estimate 90% CI

Constant -1.82 [-2.18, -1.25] -2.41 [-4.00, -2.30]
(d0/1000) 0.00 [-0.06, 0.00] -0.01 [-0.02, 0.00]
(d0/1000)2 0.00 [-0.01, 0.08] -0.08 [-0.20, 0.06]
(d0/1000)3 0.00 [-0.08, 0.00] -0.04 [-0.13, 0.04]
(d20/1000) 0.51 [ 0.01, 0.65] -0.14 [-0.20, 0.00]
(d20/1000)2 -0.29 [-0.27, 0.00] 0.06 [-0.02, 0.14]
(d20/1000)3 0.06 [ 0.00, 0.07] -0.01 [-0.06, 0.00]
(d40/1000) 0.00 [-0.06, 0.00] 1.09 [ 0.95, 2.50]
(d40/1000)2 -0.05 [-0.22, 0.00] -0.27 [-0.60, -0.16]
(d40/1000)3 0.01 [ 0.00, 0.03] 0.03 [ 0.01, 0.05]
Age 0.01 [ 0.00, 0.02] -0.01 [-0.01, 0.00]
Years education -0.01 [-0.03, 0.03] 0.13 [ 0.10, 0.15]
Number of children (0-1) -2.72 [-3.50, -2.29] -2.62 [-3.42, -2.26]
Number of children (2-4) -0.67 [-1.29, -0.42] -1.08 [-1.18, -0.55]
Number of children (5-7) 0.26 [-0.15, 0.45] -0.29 [-0.50, -0.01]
Number of children (all) 0.17 [ 0.06, 0.39] -0.20 [-0.49, -0.13]
East Germany -0.06 [-0.37, 0.04] 0.13 [-0.02, 0.35]
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C.4 Calculation distribution of welfare differences conditional on initial welfare

The practical implementation of the results in Theorem 2 poses some difficulties. Firstly, the distri-
bution depends on transition probabilities. As was noted in Section 5, with only cross-sectional data
available, these transition probabilities can only be set-identified. We, therefore, calculated upper
and lower bounds for the joint distribution of baseline and reform welfare levels (i.e. Equation (19) of
Proposition 1). As lower and upper bounds in the aggregate are not far apart (at most a 4 percent-
age point difference), we continue the analysis using only the upper bound. Secondly, Equation (20)
requires integration over the derivative of a transition probability, which is quite cumbersome.

Implementation We first calculate the joint distribution of baseline and reform welfare by integ-
rating out the optimal baseline and reform choices in Equation (19) of Proposition 1. The resulting
joint distribution function of initial and post reform welfare is denoted by H0(w, s), that is:

H0(w, s) = Pr (w ≤W0, s ≤W1) =∑
i,j∈{NW,PT,FT} Prω

[
w ≤Wω

0 (y − pi, i), s ≤Wω
1 (y − p′j , j), i = Jω(p, y), j = Jω(p′, y)

]
.

(59)
As we are interested in this distribution at the population level rather than at the individual level,
we aggregate the distribution H0 by defining

H(w, s) =
∫
H0(w, s) dG(p,p′, y), (60)

where G is the distribution of prices and exogenous income in the population. The joint distribution
of baseline welfare and the welfare gain, Pr (w ≤W0, z ≥W1 −W0), is then calculated by:

Pr (w ≤W0, z ≥W1 −W0) =
∫
Pr (w ≤W0, s− z ≤W0, s = W1) ds

= −
∫
∂2H(max(w, s− z), s) ds.

(61)

The integral and derivative in this equation can be approximated numerically. Note that this is an
approximation of Equation (20), aggregated across the population.

The distribution of gains and losses conditional on the initial welfare level can then be calculated as
follows:

Pr (z ≤W1 −W0 |w = W0 ) = Pr (z + w ≤W1 |w = W0 )

= Pr(z+w≤W1,w=W0)
Pr(w=W0)

= ∂1H(w,z+w)
∂1H(w,−∞) .

(62)

Again, derivatives can be computed numerically.
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C.5 Additional tables and figures

Individual welfare distribution Figure 10 shows the estimates of the individual unconditional
welfare distributions (i.e. Equation (18) in Corollary 1). Similarly as for the individual conditional
distributions in the main text (i.e. Figure 4), these distributions reflect either the econometrician’s
uncertainty about an individual’s welfare level, or the distribution of the actual levels obtained by
individuals in the population with the same observable characteristics (i.e. prices, exogenous income,
and demographic variables). The difference is, however, that now we take into account that some may
have found another optimal alternative instead of that chosen by the sampled individual, contrary
to what was the case for the conditional individual welfare distributions in Figure 4 of the main
text.

Figure 10: Unconditional individual welfare distribution by wage quartile

Social welfare In Table 4, we present baseline and post-reform estimates of social welfare, i.e.
Equation (34), for some members of the Atkinson-Kolm-Sen class of social welfare functions. This
class is defined by specifying the concave transformation h(w) in Equation (34) as h(w) = w1−ε

1−ε for
ε ≥ 0.35 The calculations are performed using the result of Proposition 2.

As the class of Atkinson-Kolm-Sen functions obeys the first-order stochastic dominance criterion, i.e.
all members of the class rank a distribution that first-order dominates another as the better one of

35The parameter ε is called the degree of inequality aversion. When ε equals zero, the social welfare function
amounts to the average individual welfare level. As ε increases, more weight is given to individuals with lower welfare.
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the two, it stands to reason that the reform distribution generates higher social welfare than the one
for the baseline for all values of ε.

Table 4: Social welfare of the Atkinson form for baseline and reform (in euro)

ε 0 0.5 5

Baseline 1,815 1,783 1,530
Reform 1,925 1,897 1,673

Winners and losers Figures 11 and 12 plot the joint distribution of baseline welfare and welfare
differences (i.e. Equation (61)). In Figure 11, the coordinates (w, z) of a point on the x-th iso-
contour indicate the initial welfare level w and welfare gain z (or loss if z is negative) such that x%
of the population obtains at least that initial welfare level w and does not gain more than z. In
Figure 12, the initial welfare level w denotes the maximum level, rather than the minimum, that that
number of people reach.

Figure 11: Joint distribution of baseline welfare and welfare gains/losses: W0 ≥ w

Figure 13 shows a more detailed, and less smoothed, version of the distribution of gains and losses
conditional on baseline welfare (Figure 8 of the main text). The upper boundary of the yellow region
tends to be lower than zero for higher welfare levels. For higher initial welfare levels, there are several
regions where the median, that is the lower bound of the blue region, falls under the zero of the
vertical axis. This confirms the findings highlighted in the main text.
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Figure 12: Joint distribution of baseline welfare and welfare gains/losses: W0 ≤ w

Figure 14 shows the same conditional distribution of gains and losses, but now disaggregated per
wage quartile and baseline choice. Gainers seem to be predominantly situated among individuals
choosing alternatives PT and FT, especially in the lower half of the wage distribution, and among
the initially poor persons with higher wages. Remarkably, high wage persons who initially choose
NW tend to lose out.
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Figure 13: Distribution of welfare gains and losses, conditional on baseline welfare

Figure 14: Distribution of welfare gains and losses, conditional on baseline welfare: by alternative
chosen and wage quartile
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