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Abstract

Innovation is part idea generation and part development. We build a model of “innovating-by-
doing,” whereby ideas come to practitioners. Successful innovation requires that practitioners’
ideas be developed through costly effort. Our model nests existing theories of laboratory research
and learning-by-doing. Empirically, we analyze the effect of the U.S. Medicare program on
medical equipment innovation. Our model’s structure allows us to infer the Medicare program’s
aggregate effects. We estimate that Medicare’s introduction led to a 20 to 30 percent increase in
medical equipment patenting across the United States, of which roughly half is due to the
innovating-by-doing channel.
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1 Introduction

Successful innovation requires blending ideas (or “inspiration”) with development
(or “perspiration”). An extensive literature has analyzed the research and development
process through which ideas are brought to fruition. The origins of innovative ideas, by
contrast, are less well understood.

Our analysis of the genesis and development of ideas focuses on the role of a technol-
ogy’s end user. By being the first to recognize a technology’s shortcomings, end users can
play a vital role in the innovative process. This is particularly true of technologies that
are applied by skilled practitioners (Von Hippel, 1976). We incorporate this insight into
a model of innovating-by-doing, which we apply in an analysis of medical equipment
and device patenting. We show that our model quite strongly predicts cross-sectional
patterns in medical patenting rates. We then use the introduction of the U.S. Medicare
program as an empirical setting for testing additional predictions of our model. Our
results indicate a substantial role for innovating-by-doing effects in shaping both the
magnitude and geographic dispersion of Medicare’s effects on medical patenting.

Our model bridges two literatures. In classic endogenous growth models, as in
Romer (1990) and Aghion and Howitt (1992), technical progress results from deliberate
investment in research and development. In models of learning-by-doing, as in Arrow
(1962) or Lucas (1988), productivity rises with experience. That is, productivity advances
as a by-product of production itself. In our model, innovation requires both ideas and
deliberate effort. During production, the users of frontier technologies have insights into
potential technological improvements. Put differently, we specify that ideas, rather than
productivity itself, arise as a by-product of production. These ideas only bear fruit, how-
ever, when they are developed into final products. This development process requires
deliberate research effort.

The contrast between pharmaceuticals and medical equipment can build intuition



for where our model will tend to apply. Pharmaceutical innovation is well described by
models of deliberate research and development. This reflects two factors. First, phar-
maceuticals are, in large part, a product of laboratory science. Second, their end user is
typically a consumer. The users of medical equipment, by contrast, are often practition-
ers. Further, the development of medical equipment can involve engineering insights
in which practitioners play central roles. This latter form of innovation is our model’s
focus. The conceptual contrast between pharmaceuticals and medical equipment is re-
flected in patent data, which reveal that pharmaceutical patents are far more likely to be
assigned to corporations than are medical equipment and device patents.

Our analysis proceeds in three steps. First, we discuss a rich set of case studies in
the history of medical innovation. These case studies motivate our theoretical assump-
tions and establish key differences between medical equipment and pharmaceuticals.
Next, we build a model with a central role for innovating-by-doing effects. In the model,
the development of new medical equipment requires both practical insights, derived
during interactions between physicians and patients, and deliberate effort to translate
these insights into commercialized products. The model delivers predictions for cross-
sectional correlations between geographic variations in the prevalence of practitioners
and of medical patenting. As predicted, we show that this correlation was quite strong
for medical equipment and device patents, but not for pharmaceutical patents. Finally,
the model motivates our empirical analysis of the introduction of Medicare, which in-
creased the flows of comprehensively-insured patients into physicians” offices. In our
model, it is precisely while treating a well-insured patient that a physician might gain
insight into the shortcomings of cutting-edge treatments and technologies. Importantly
for our purposes, Medicare’s impact on coverage varied in predictable ways across ge-
ographic markets (Finkelstein, 2007). We use these variations to further explore our

model’s predictions.



This brings us to the core piece of our empirical analysis. In our analysis of Medi-
care’s effects, we find that variations in Medicare’s impact across states predict substan-
tial variations in the rise of medical patenting. That is, in the states where Medicare gen-
erated its largest increases in insurance coverage, we observe larger increases in medical
patenting than we would otherwise have predicted. Importantly, the equilibrium struc-
ture of our model makes it possible for our analysis to push beyond what one could have
learned from reduced form evidence alone. Specifically, it allows us to draw inferences
about the Medicare program’s aggregate effect on innovation.

Our results shed light on the forces underlying long-run trends in medical patent-
ing. Figure 1 presents data on patents filed with the U.S. Patent and Trademark Office
(USPTO). The data reveal that medical equipment and device patenting began a steady
rise in the early 1960s. Further, in the late-1960s we see a divergence between the patents
the USPTO has granted to U.S.-based inventors relative to the patents granted to in-
ventors from other countries. Our estimates speak to the sources of this divergence.
Interpreted through the lens of our model, our estimates imply that the Medicare pro-
gram led to a 20 to 30 percent increase in medical equipment and device patenting across
the United States. This accounts for just over one-fifth of the overall increase in medical
patenting by U.S.-based inventors, as presented in Figure 1. Across a range of plausible
parameter values, we estimate that 25 to 75 percent of this aggregate effect is driven by
the innovating-by-doing channel, and the rest by a market size channel.

Our analysis contributes primarily to two literatures. Our most direct contribution is
to the literature on endogenous technological progress. This includes the literature on
models of growth through learning-by-doing (Arrow, 1962; Greiner, 1996; Lucas, 1988),
as well as the much larger literature on models of “invention” (Aghion and Howitt,
1992; Romer, 1990). In the latter models, technological progress occurs through costly

and deliberate research, whereas in the models of Arrow and Greiner, productivity rises



mechanically through economic activity. Our model requires elements of both. Inno-
vation begins with ideas that arise through economic activity. Realized technological
progress, however, requires that an idea be developed into a product, which requires
costly effort.”

A recent, related literature focuses on the innovation production function. Akcigit
et al. (2018), for example, model a researcher’s productivity as rising through both expe-
rience, which accrues exogenously, and through the intensity of their interactions with
other researchers, which is a choice. Whereas the primary interest of Akcigit et al. (2018)
lies in understanding heterogeneous productivity across researchers, our focus is on the
origin of the ideas that form the basis of innovation.

A growing literature on the dissemination of knowledge has many of the same tech-
nical features as our model (Eaton and Kortum, 2001, 2002; Buera and Oberfield, 2020).
In these models, less productive countries or agents learn from encounters with more
productive counterparts, and new techniques gradually spread to the whole economy.
In our model, practitioners do not learn from more productive individuals, but from
engaging in economic activity.

Our second primary contribution is to the empirical literature on the effects of po-
tential profits on medical innovation. A substantial body of research has related phar-
maceutical research and development activity to variations in potential profits. Papers
of note have analyzed the response of pharmaceutical innovation to vaccine mandates
(Finkelstein, 2004), to shifts in population demographics (Acemoglu and Linn, 2004),
to the Orphan Drug Act (Yin, 2008), to global disease burdens (Dubois et al., 2015),
to the introduction of Medicare Part D (Blume-Kohout and Sood, 2013), to drug for-

mulary exclusions (Agha et al., 2020), and to variation in expected effective patent life

*Other scholars, such as Young (1993) have also combined invention models with models of learning by
doing, but in the sense of having models where both elements are present as distinct forms of technological
progress. We only explicitly model one type of innovation, but it requires both features.
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(Budish et al., 2015). Surprisingly little research has focused on innovation related to
medical equipment and devices.> A notable exception is Clemens and Rogers (2020),
who analyze the effects of Civil War and World War I era demand on prosthetic device
innovation. The literature’s nearly exclusive focus on pharmaceutical innovation leaves
a substantial gap, as pharmaceuticals account for a modest share of overall health sector
spending and spending growth.3 Further, as noted above, the forces that give rise to
new medical equipment and devices can be economically distinct from those that give
rise to new drugs. Understanding what forces shape the development of new medical
equipment and devices is thus of independent interest.*

This paper proceeds as follows. In section 2 we summarize prior research and present
additional evidence on the role of practitioners in the development of medical equipment

and devices. In section 3 we present our theoretical model. In section 4 we present our

2The current paper supplants an earlier analysis circulated as Clemens (2013). It is worth noting four
key advances of the current analysis relative to this earlier, unpublished working paper. First, the earlier
analysis relied exclusively on the NBER Patent Database (Hall et al., 2001), which significantly limited its
ability to assess trends in medical innovation prior to Medicare’s introduction. Second, the earlier paper
did not include the current paper’s analysis of cross-sectional relationships between medical patenting and
the geography of the physician workforce. Third, the earlier analysis presented exclusively reduced form
estimates of the effects of Medicare’s implementation, while the current analysis connects our estimates
more directly to our model of innovating-by-doing. Fourth, the earlier analysis relied on relatively broad
technology “sub-categories,” as defined in the NBER patent database, to identify innovation connected to
medical equipment and devices. The earlier paper’s use of sub-category 44 “nuclear and x-rays” swept
in an overly broad set of patents other than diagnostic imaging patents associated with x-ray and nuclear
imaging technologies. In the current analysis, we combine information from the USPTO’s more detailed
technology classes with information from the complementary International Patent Classification (IPC)
system to construct more precisely defined counts of medical equipment and device patents.

3In historical data from the National Health Expenditure accounts, pharmaceuticals accounted for less
than 10 percent of all health expenditures over the period under analysis. Indeed, from 1960 through 1980,
pharmaceuticals as a share of all health spending declined from just under 10 percent to just under 5 per-
cent. Over this same time period, combined spending on the categories “Total Durable Medical Equipment
Expenditures” and “Other Non-Durable Medical Products Expenditures” are of the same magnitude as
“Prescription Drug Expenditures.” Importantly, medical technologies are key inputs to, and thus partial
drivers of, the much broader expenditures associated with hospitals, physician and clinical services, and
dental services.

4Analyses of directed technical change can be found in a number of literatures including demographics
and educational attainment (Acemoglu, 1998; Hémous and Olsen, Forthcomingb) and environmental eco-
nomics (see Hémous and Olsen (Forthcominga) for a review much of the literature on directed technical
change as it relates to both labor and environmental economics.



analysis of the cross-sectional relationship between medical innovation and the geogra-
phy of the physician workforce. In section 5 we present our analysis of the effects of the

introduction of Medicare on medical innovation. We conclude in section 6.

2  Where Does Medical Equipment and Device Innovation
Come From?

This section presents an initial set of facts that motivate both our theoretical frame-
work and our later empirical analyses. The facts come from a combination of industry

case studies and patent data.

2.1 Case Studies in the Origins of Medical Innovation

A rich literature of industry case studies provides key insights into the nature of

medical innovation during the time period of our analysis. Roberts (1988) writes:

[My] personal experience, supported by the few relevant studies on inno-
vation, indicates that... innovation in medical devices is usually based on
engineering problem solving by individuals or small firms, is often incremen-
tal rather than radical, seldom depends on the results of long-term research
in the basic sciences, and generally does not reflect the recent generation of
fundamental new knowledge. It is a very different endeavor from drug inno-

vation, indeed.

The case studies referenced by Roberts include detailed analyses of a sample of 34
medical-equipment innovations by Shaw (1985, 1986). In these analyses, Shaw finds that
physicians were involved in the design of prototypes for 18 of the 34 innovations. In

an additional 11 cases, Shaw finds that the key insight was developed by a physician
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who subsequently approached a manufacturer. Physicians thus played a leading role
in more than 8o percent of the innovations in Shaw’s post-World War II sample. In
complementary studies of scientific instruments, Von Hippel (1976) finds a similar pat-
tern of “user-dominated innovation.” Von Hippel (1976) found that practitioners, rather
than manufacturers, were primarily responsible for roughly 8o percent of major inno-
vations in scientific areas including Gas Chromatography, Nuclear Magnetic Resonance
Spectrometry, Ultraviolet Spectrophotometry, and Transmission Electron Microscopes.
The insights of Shaw (1985, 1986), Von Hippel (1976), and Roberts (1988) apply to
some of the most important medical innovations from the second half of the 2oth century.
In appendix C, we discuss two notable historical examples. A first example is the devel-
opment of the embolectomy catheter for removing blood clots, which is widely regard as
the first device invented for the purpose of minimally invasive surgery. Practitioners also
played central roles in the development of positive pressure ventilation equipment and
techniques, which were important in reducing death rates among patients with polio.
Key advances took place during epidemics in Los Angeles and Copenhagen.
Practitioners have played important roles in the development of surprising array of
medical technologies. Physician Raymond Damadian, for example, contributed to the
development of magnetic resonance imaging (MRI) for the purpose of cancer detection
(Damadian, 1971, 1974). Physician Julio Palmaz, in partnership with Richard Schatz and
Stewart Reuter, pioneered the development of coronary stents (Palmaz, 1988). Practi-
tioners have also been heavily involved in the developments of more recent technologies

including proton beam therapy (Slater et al., 1992) and robot-assisted surgery.

2.2 Data on the Geography of Patents and the Physician Workforce

In this section we describe our sources of data on patents as well as on the geography

of the physician workforce. Our analysis makes use of patent data from two sources.



One is the NBER patent database (Hall et al., 2001). The second is the “Comprehensive
Universe of U.S. Patents (CUSP)” database assembled by Berkes (2018). These sources
are complimentary in that the Berkes (2018) data have greater historical scope, which
our analysis requires, while the NBER database is more complete with respect to its
coding of geography and technology classes. In Appendix D.1, we more fully describe
the manner in which we merge these databases to capitalize on their relative strengths.

We use two patent classification systems to identify medical equipment and device
patents. Specifically, we use complementary information from the USPTO and IPC tech-
nology classification systems. Our classification of patents as medical equipment and
device patents is described in detail in appendix D.5.

Our analysis also makes use of variables that describe the geographic distributions
of physicians and other health care resources during the 1950s, 1960s, 1970s, and 1980s.
These data come from the “Bureau of Health Professions Area Resource File, 1940-1990”
(Health Resources and Services Administration. Bureau of Health Professions, 1994).
We subsequently refer to this data set as the Historical Area Resource File. Appendix
D.2 provides further detail on the manner in which we extract and shape these variables.

A key detail regarding the Historical Area Resource File is that it provides informa-
tion on the geography of the physician workforce for select years, rather than all years,
across the decades that are of interest for our analysis. Specifically, it provides detailed
information on the geography of the physician workforce in 1968, 1975, and 1985. In
our analysis, we associate the 1968 physician workforce data with patent data from 1950
to 1969; we associate the 1975 physician workforce data with patent data from 1970 to
1979; and we associate the 1985 physician workforce data with patent data from 1980 to
1989. This coding of time periods works nicely for both our cross-sectional and panel
analyses. When we turn to panel analyses, our interest is in the effects of the Medicare

program’s introduction. Introduced in 1965, the Medicare program’s earliest possible



influence on patenting activity would fall in the late 1960s.

Our analysis of the origins of Medicare requires us to generate variables that describe
variations in the Medicare program’s impact across states. Our approach extends mea-
sures of baseline elderly insurance coverage used by Finkelstein (2007). That is, we make
use of the fact that Medicare had relatively large coverage impacts in states where insur-
ance coverage among the elderly had previously been low. We augment the Finkelstein
(2007) measures by accounting for variations in the size of the elderly population across
states. In some specifications, we make additional use of cross-state variations in the
Medicare program’s early levels of expenditure per beneficiary. Appendices D.3 and D.4

provide a more detailed discussion of each of these variables.

2.3 Initial Facts on the Geography of Medical Innovation

The geography of post-World War II patenting for medical equipment and devices
is consistent with the idea of user-dominated innovation. Figure 2 illustrates the cross-
sectional, state-level relationship between medical patenting and the physician workforce
using data from the sources described above. As noted above, we match patent data
from 1950-1969, from 1970-1979, and from 1980-1989 with counts of physicians from
1968, 1975, and 1985, respectively.

Figure 2 shows that counts of physicians per capita were quite strongly correlated
with medical equipment patenting across the decades we analyze. Panel A presents data
from the 1950s and 1960s, Panel B presents data from the 1970s, and Panel C presents
data from the 1980s. Both the patent data and the physician data are residualized with
respect to counts of all non-medical (i.e., excluding both medical equipment and phar-
maceutical patents) patents per capita, so that the correlations are unlikely to be driven
by a tendency for physicians to locate in states with high levels of scientific output. As

the figures reveal, the positive partial correlation between medical patenting and counts



of physicians per capita is quite strong.

Panels D, E, and F of Figure 2 present equivalently constructed plots that correlate the
geography of the physician workforce with pharmaceutical patenting. A comparison of
panels D, E, and F to panels A, B, and C reveals that while patents for medical equipment
are positively correlated with the geography of the physician workforce, patents for
pharmaceuticals are not. This provides additional evidence that the relationship we
observe for medical equipment patenting does not merely reflect a tendency for areas
with large numbers of physicians to be centers of medical research.

An additional fact of interest is that, throughout the time period we study, pharma-
ceutical patents were far more likely to be assigned to corporations than were medical
equipment patents. Indeed, across the decades we analyze, roughly 85 percent of phar-
maceutical patents are coded by Hall et al. (2001) as having a corporate or university
assignee. This is true of 60 percent of medical equipment and device patents. From the
1960s to the 1980s, the share of medical equipment patents that are likely assigned to cor-
porations rose from 57 percent to 67 percent. These numbers provide an upper bound
on the corporate sector’s likely role, as Shaw (1985, 1986) finds that the ideas behind

corporate patents for medical equipment often originate from practicing physicians.

3 Theory

In this section we build a model of innovating-by-doing. Though we view the core
mechanisms as being quite general, we frame our model in the context of medical in-

novation. That is, our model emphasizes the idea that novel medical technologies arise

5Figure B.1 presents a similar set of correlations, but for which all observations are constructed as
the MSA level rather than the state level. The correlations are similarly strong, as will also be seen in
regression analyses presented later. This is consistent with the hypothesis we emphasize, namely that
physicians themselves may be integral to medical equipment and device innovation. We run our baseline
analyses at the state level because this is the level at which all aspects of our analysis, including our
estimates of the effects of the Medicare program, can sensibly be run.
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from the insights physicians obtain while treating patients. The key idea is that insights
regarding the weaknesses of existing technologies will tend to arise while one works
with those technologies. In the context of medical devices, we highlight the idea that
this experiential learning will tend to occur when physicians treat patients using tech-
nologies that are at or near the current frontier.

The specific model we develop is a continuous time model in which physicians ob-
tain ideas during encounters with patients. A physician’s likelihood of developing a
successful commercial product depends on both the number of idea-generating encoun-
ters and the effort the physician devotes to commercialization. The innovating-by-doing
effect thus depends on local patient flows, while the incentive for effort to commercial-
ize depends on the global market. Consequently, the flow of innovation in the model
is increasing in both the scale of the market, which is “global,” and in the flow of
comprehensively-insured patients, which is “local.” Additionally, the model captures
an equilibrium feedback mechanism, whereby an increase in the rate of innovation else-
where reduces the expected returns to a given inventor’s effort. The implications of
these forces, once introduced, are reasonably intuitive. To ease the derivation of a fully
characterized equilibrium, we make use of functional form assumptions.

The fully-specified model we present below captures the aspects of medical innova-
tion we analyze empirically. We stress that a broader class of models would generate
similar predictions. The crucial elements are the role of practicing physicians, the role of

patients, and the role of the aggregate size of the market.

3.1 The size of the market

Since the focus of our analysis is on the supply of innovation, we simplify our char-
acterization of demand. Total spending on a class of medical products (our focus being

on medical equipment and devices) is given by the number of patients, N, times aver-
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age spending per patient, R. In our analysis of Medicare’s introduction, we incorporate
heterogeneity in health needs, and hence spending, across patient groups. To keep the
notation streamlined, the model abstracts from this nuance. We adopt the approach of
Acemoglu and Linn (2004) and suppose that the market-leading manufacturer captures
a share 0 < 7 < 1 of total spending as profits.® This gives a profit flow of 7 = yRN.

The leading producer faces an endogenous probability v of being replaced by a new
producer. Let total spending (or, equivalently, the niche of spending over which new
medical products compete), RN, grow at some rate ¢ and let the relevant discount factor
be r. Let r = g such that the expected discounted profit from a new innovation is:

YRN YRN

* —(r+v)t gt _ ~
/0 e et rr(t)dt T S (1)

The key assumption for our results is that v +r — ¢ > 0, such that discounted profits
are finite. We assume ¢ —r ~ 0 in what follows for the sake of analytical convenience.
The exact formulation is not central to the analysis; what is crucial is that the expected
profit from an innovation is increasing in the size of the market, yRN, and decreasing in

the rate of innovation by potential competitors, v.

3.2 Innovation by physicians

Potential innovators are physicians who receive ideas during their encounters with
patients. Specifically, each of a physician’s encounters with a patient produces an idea.
An idea, i, has stochastic potential, X € (0, o), which determines the ease with which it

can be developed and commercialized through effort.”

®This can be micro-founded using a representative-agent framework, as in Acemoglu and Linn (2004).

7In what follows, we abstract from the possibility that variations in idea quality alter the size of the
market that is captured when an idea has been commercialized. Instead, we allow variations in the
quality of ideas to influence the probability with which they are developed into products. This choice
of emphasis is consistent with our empirical findings when we incorporate a measure of patent quality

12



The potential of an idea is distributed according to the Fréchet distribution:

-6

F(x)=P(X;<x)=e* (2)

where we impose 0 > 1. 6 is inversely related to the variance of the potential of ideas.
We assume that a physician can attempt to develop only a single idea at a time, and will
thus choose to work on her most promising idea. That is, if the physician sees T patients,
she will work on the idea with the highest quality, X = max{Xj, Xy, ...X7}. The Fréchet
distribution has the convenient property that the maximum of T Fréchet distributions is
also Fréchet. Specifically, the best idea received from T independent draws from patient
encounters is distributed according to:®

~ —6

FI(x) =P(X < x) = (F(x)) = Tx". (3)

Equation (3) weakly first-order stochastically dominates the distribution in (2) for
T > 1. That is, the more patients a physician encounters, the better will be the potential
of the physician’s best idea. Following Small (1987) and Eaton and Kortum (2002), we

permit some correlation between a physician’s ideas by replacing equation (3) with:

FT(x)=e T 1", (a)

Here, p = 0 implies no correlation between ideas, while p = 1 implies perfect correlation,

into our analysis. Extending our model to allow for better ideas to yield better products would be an
interesting avenue for future research.

8The Fréchet distribution (also called a Type 2 Extreme value distribution) is frequently employed
in the literature on international trade and growth (see Kortum (1997), Eaton and Kortum (2002), and
references therein). It arises naturally as an equilibrium object in models where countries adopt the best
available technology or import from the cheapest potential supplier (Eaton and Kortum, 1999). This is
so because for a large class of distributions including the Fréchet, the maximum of a series of draws
converges to a Fréchet distribution. Consequently, while it is convenient to employ the Fréchet our results
would have been approximately identical for a larger set of distributions, in particular all with tails fatter
than the exponential.

13



in which case additional ideas have no additional value. We assume p € [0, 1].
Given an idea with potential X, the physician must choose how much effort, W, to

exert in developing that idea. Let the intensity of the resulting idea development, Z, be:

Z(X,W) = SXWT, (5)

where § > 0 is a productivity parameter. ¥ > 0 implies decreasing returns to scale in
innovation for the physician. We further impose ¢ > (26)~! to ensure that expected
innovation is finite.

Given an idea of potential X, the innovator’s maximization problem is thus:

1

maxwly N5XW¢+1 — W. (6)

1%

The solution to this problem yields an innovation intensity of:

1 yRNYY 1w
F = | —— 0X) v .
: [1p+1 v } (6X) (7)
A physician who draws T ideas will therefore innovate with intensity
1 ARN|VY by e
E[ZT) = |— 5 / v dF
BT = | o [V ()
i 11/ [
_ (L RN ST&GT“’/ Xl T gy
_1P+1 v 0
1 gRN]YY e oo fity 1
=|—7 ster I (2= LY. 8)
p+1 v Yo

Moving from the first to the second equality above, we make use of the definition of

dFT(x) from equation (4). Next, we make use of the fact that for a variable b (where

. (1-p) . . N . 4
here we substitute b = xT~ 7 in the integral) distributed as a single-parameter Fréchet

with parameter a, E(b*) = T(1 — k/a) for k < &, where T is the gamma function. This is

14



met by our assumptions on ¢ (Coles, 2001). From the perspective of the physician, the
term I' (2 —1/ (¢0)) is a constant.

Two final substitutions deliver a simple expression for the innovation of physician
j who sees T; patients. That is, we define 5V = [14 )] /¥ 57 or (2—-1/(y0)) as
a rescaled productivity term and we define 7 = (1 —p)(1+ ¢)/6 > 0 to obtain (the

expected) intensity of physician j’s innovation:

1
4y ¥
I {—VRNTV} . 9)

zj L
The intensity of physician j’s innovation is clearly increasing in the size of the market,
RN, and in the number of idea-generating encounters with patients, T;. We explore the
relative importance of these effects in our empirical analysis.

Equation (9) shows how our model is able to nest both pure “learning” and pure
“invention” driven models of innovation. Note that 1 captures innovating-by-doing
effects, while 1 describes the curvature of the innovation function. When ¢ — 0 (and
§ — o0), the production function is linear, the returns to an individual physician’s efforts
are not diminishing, and innovation is highly responsive to changes in profits. As i —
oo, by contrast, idea generation is extremely convex, such that the physician develops
ideas at intensity 7" regardless of market incentives. This latter case mirrors classic
learning-by-doing models (Arrow, 1962; Greiner, 1996), where technological progress
is a function of economic activity.” Further, note that when # > 0 the intensity of idea
development increases with the number of patients. This reflects the fact that a physician

with more patients will tend to obtain an idea of higher quality."® When # = 0, the

development of higher quality products is purely a function of the effort exerted by the

9A point of contrast is that in our model new technology is explicitly embedded in products.

°This effect is strongest when the ideas generated from each patient interaction are less correlated (p
low), or when the variance of the signals is high (6 low).
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innovator, as in the classic model of Aghion and Howitt (1992). Our model thus bridges
these classic models. The relative importance of the “learning” and “market size” effects
depends on the values of # and 1, which should tend to vary across settings.

We assume a distinction between product markets and the more narrow market that
determines each physician’s patient flows. That is, we assume a nationally integrated
product market and local markets for each physician’s services. In particular, consider
innovation in a particular area s with M; potential physician innovators. For simplicity,
let each physician in area s have the same number of well-insured patients, such that
Ts = Ns/M;. Allow the efficiency of innovation, J, to vary by area s and use equation
(9) to write total innovation from area s as:

1ty
[

Vs = Mszs = Mg (NS/MS)”/IP(’yRN)l/I/’U_l/If”. (10)

According to equation (10), local innovation depends positively on the number of lo-
cal physicians, local productivity, the local number of patients per physician, and the
profitability of the national market. It depends negatively on total innovation, v.

We next define s(+¥)/¥ = (ZS M [Ng/ M)V 5§1+1p)/1p> / (M [N/M]”/¢> as the
weighted, national average of productivity, where M = Y M; and N = Y} ¢ N;. We
then solve for v = ) v5, substitute into equation (10), and divide by population, Pop;,
to obtain our expression for the expected per capita flow of innovation in area s:

1 a-

Vs M N M1 (v R) T (80/8)F (N M) T (11)

=
Pops * Pops

Equation (11) makes clear that the innovation rate in area s depends on both local
and national terms. First, since innovation is done by practicing physicians, innovation
per capita depends proportionately on the number of physicians per capita, Ms/Pops.

Second, so long as learning effects are positive, 7 > 0, innovation is increasing in the
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number of patients per physician, Ns;/M;. Third, it is increasing in the local productivity
term, Js. Local innovation will also be affected by three national-level variables. First,
it is positively related to total spending, YRN, due to a market size effect. Second, it
is negatively related to nationwide productivity, §, and to the nationwide number of
patients per physician. These latter factors increase the rate of innovation from physi-
cians in other states, which has an equilibrium effect. That is, they involve forces that
reduce the returns to effort by increasing the likelihood that today’s market leader will

be displaced by future innovation.™*

3.3 Transitioning to Empirics

We transition to our empirical analysis by taking logs of equation (11) and organizing

terms to obtain:

5 Ms N 1 1 1 (1—1) N
ln(Pl(;Ps) :ln(PopS)+%ln(ﬁs)+(1+¥)ln(5s)—Eln(5)—|—1+¢ln(r)/R)_|_ 1+;Z l”(ﬁ)
(12)

The relationships in which we have greatest interest are the relationships between physi-
cians, M;, patient demand, N;, and innovation. In the following sections, we present our
approach to analyzing these relationships, and discuss the limitations to interpreting our
results as well-identified estimates from our model. We use cross-sectional analyses to
shed light on the linkage between physicians and medical patenting. We then use the
introduction of Medicare to gain insight into the role of patient demand.

We conclude by emphasizing three issues regarding the variation with which we

might identify model parameters. First, note that the last three terms of equation (12)

"This also explains why innovation might depend negatively on the ratio % holding local %1 constant:

more patients in the country has a positive impact on incentive to innovate through a market size effect,
but a negative effect through the fact that other physicians innovate more. In principle either can dominate,
though our later empirical analysis strongly supports that % <L
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will be absorbed by a common intercept, which simplifies matters. Second, physician
counts exhibit substantial variation across states, but exhibit relatively little variation
over time in our data. Our analysis of the relationship between physician counts and
medical innovation is thus cross-sectional. While this poses a hurdle to pinning down
the causal role of physicians as drivers of medical innovation, there are nonetheless some
intriguing fact patterns. Third, it is difficult if not impossible to measure and pin down
exogenous cross-sectional variations in patient demand. We thus use the introduction
of Medicare as a time and spatially varying shock to demand. This analysis builds on

variation exploited by Finkelstein (2007), for which there is a strong causal argument.

4 Cross-Sectional Analysis of the Relationship between
Patenting and Physician Counts

In this section we analyze the cross-sectional relationship between medical innovation
and physician counts. We begin by discussing the connection between our theoretical
model and the cross-sectional models we estimate. We then present and discuss the

empirical relationships of interest.

4.1 Cross-Sectional Empirical Models

A first step is to consider the poisson regression model that follows naturally from
the cross-sectional relationship described by equation (12). Defining E[Cs|-] to be the

expected per capita count of medical patents, we can write:

E[Cs|] = exp(an + B1log[Ms/ Pops| + Balog[Ns/ Ms| + Balogds), (13)

Note that ay = —y¢In(s) + ﬁln('ﬂ{) + O%ﬁ)ln(N/M) is a national intercept in this
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cross-sectional analysis. As noted above, the primary relationship of interest in our cross-
sectional analysis is the relationship between patenting per capita and M;/Pops;. We
cannot cleanly identify 1, however, because we lack clean cross-sectional measures of
either patient demand per physician (Ns/M;s), or the local productivity parameter, 5. If
either J; or N5/ M; are correlated with both patenting and our measure of physicians per
capita, we will not obtain an unbiased estimate. While we can investigate the sensitivity
of our estimates of B; to the inclusion of controls that proxy for J; and Ns/Ms, this form
of robustness analysis is not perfect. We thus provide additional evidence in the form of
two falsification checks, which are described below.

We begin by estimating regressions of the following form:

E[Cs|Ms/Pops, Xs| = exp(an + B1log [Ms/Pops| + XsB + €5), (14)

where X; are various controls. The primary control variables we utilize include measures
of non-medical patenting per capita, the number of natural scientists per capita, hospital
spending per capita, and income per capita. We interpret non-medical patenting and
scientists per capita as proxies for variations in an area’s overall scientific productivity
(6s). We interpret hospital spending and income per capita as proxies for overall patient
demand (Ns).

In addition to simple robustness analyses, we conduct two placebo-style tests. First,
we investigate whether counts of physicians per capita are correlated with pharmaceuti-
cal patenting. The key point of this analysis is that our model does not have predictions
for the location of innovation driven by laboratory science. Our analysis of pharma-
ceutical patenting can thus shed light on whether the relationship between physicians
and medical equipment patenting reflects a broader pattern in health-sector patenting.
Second, we explore whether the correlation between counts of physicians and medical

patenting are driven by practicing physicians or by research and teaching physicians.
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Our model emphasizes a principal role for practitioners.

4.2 Analysis of the Cross-Sectional Relationship between the Medical

Innovation and the Physician Workforce

Table 2 presents estimates of equation (14). The results in panel A analyze the geog-
raphy of medical patenting in the 1950s and 1960s, while the results in panel B involve
the 1970s and the results in panel C involve the 1980s. Results in columns 1 through 4 of
each panel relate variables of interest to medical equipment and device patenting, while
results in columns 5 through 8 relate these same variables to pharmaceutical patenting.*?

The results in columns 1 through 4 reveal that there was a strong cross-sectional
relationship between the geography of the physician workforce and the geography of
medical equipment and device patenting during each of the time periods we analyze.
The specification in column 1 corresponds quite closely with the graphical presentation
of the data in Figure 2, as the regression controls solely for patenting in non-medical
technology classes. In panel A, the coefficient on the log of the count of physicians per
capita reveals that conditional on patenting rates in other technology categories, a 10
percent increase in the number of physicians per capita predicts a 7 percent increase
in the rate of medical equipment patenting. Column 2 shows that this estimate is only
modestly affected by including measures of the number of natural scientists per capita,
income per capita, and hospital spending per capita as covariates. Finally, columns 3
and 4 reveal that these estimates are robust to whether the observations are weighted
equally (columns 3 and 4) or according to each state’s population (columns 1 and 2).

Our estimates for the 1970s and 1980s, which are reported in panels B and C, are

2The observation counts (49 observations in some columns and 48 observations in others) result from
two facts. First, Hawaii and Alaska were not states until mid-way through the first time period in our
analysis, and are thus excluded throughout. Second, the covariates we include in columns 2, 4, 6, and 8
were not available for the District of Columbia, which is thus dropped from these regressions.
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similar in magnitude to the estimates in panel A. The estimates in column 1, for exam-
ple, imply that a 10 percent difference in the number of physicians per capita predicts
a 9 percent difference in medical equipment patenting in the 1970s and a 6 percent dif-
ference in the 1980s. The estimates for the 1980s are weaker than those for other time
periods, though they have substantial economic magnitudes in each case. There was
thus a sustained, though perhaps weakening, connection between the geography of the
physician workforce and the geography of medical equipment and device patenting.

It is natural to ask whether the correlations found in columns 1 through 4 of Table 2
reflect a tendency for certain areas to be major centers of medical research. If so, these
same areas would tend to have large flows of pharmaceutical patents. The estimates
from columns 5 through 8 reveal this not to be the case, as they suggest no systematic
or enduring relationship between the geography of the physician workforce and the
geography of pharmaceutical patenting. These patterns are reinforced by MSA-level
analyses, which we report in appendix Table B.1. The cross-sectional correlation between
the physician workforce and medical patenting is thus exclusive to the categories of
medical innovation for which our model predicts a relationship.

We next develop an additional set of facts of interest for distinguishing between
laboratory science and practical science. To do so, we divide the physician workforce
into practicing physicians, teaching physicians, and research physicians.’> We present
the results of this analysis in Table 3. In panels A and B, the predictive content of
variations in the geography of the physician workforce loads entirely onto practicing
physicians. The results for the 1980s (see panel C) are mixed. That is, in contrast with
the estimates for the 1950s, 1960s, and 1970s, the estimates for the 1980s are sensitive

to whether we weight observations equally or according to population. On the whole,

3In the Historical Area Resource File, this division of physicians is available in 1975 and 1985, but not
for earlier years. Consequently, we use the 1975 physician counts in our analysis of patents from the 1950s
and 1960s as well as from the 1970s.
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however, the predictive power of practitioners relative to teaching and research MDs
provides further support for the role of innovating-by-doing effects. These patterns are
reinforced by MSA-level analyses, which we report in appendix Table B.2.

Comparing the 1980s with earlier periods, the relative weakness of the predictive
power of the practitioner workforce is interesting in light of our earlier analysis. In Table
2, we showed that the overall relationship between the physician workforce and medical
patenting was weaker for the 1980s than for the earlier decades. Together, we take these
findings as suggestive that the role of practitioners may have weakened by the end of the
time period we analyze. This could be driven by a variety of factors. For example, if the
science underlying the technological frontier becomes more complex or interdisciplinary,
then innovation may shift away from small-scale inventors and towards larger firms.
Similarly, the Food and Drug Administration’s expanding role in the approval of medical
devices would have increased the fixed costs of entry, which would similarly tend to
increase the scale of the firms within which product development and commercialization
occur. Both of these factors would thus tend to reduce the strength of the geographic
relationship between the locations in which ideas are generated and the locations from

which they are patented, which is what we have tracked in the data.

5 Analysis of Medicare’s Effects on Medical Innovation

In this section we present our analysis of how the introduction of Medicare affected
medical patenting. We begin with analyses that rely exclusively on variation in the
magnitude of Medicare’s impact within the United States. We then present additional

results that contrast patenting by U.S. residents with patenting by non-U.S. residents.
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5.1 Empirical Framework for Analyzing Medicare’s Impact

Our model specifies how the innovating-by-doing effect depends on the number of
patients per physician, N;/M;. For our analysis of the effects of introducing Medicare,
we allow for the fact that some patients may require a larger number of technologi-
cally intensive procedures than others, and therefore be more likely to spur innovation.
Specifically, we replace the raw number of patients with an Innovation Opportunity In-
dex that allows treatments for the elderly to be more numerous and/or intensive than

treatments for the non-elderly. We define the Innovation Opportunity Index in state s as:

Qs = wdud PopS + w{ p Pop).. (15)

In the above expression, Pop? is the elderly population (those 65 and older), u9 €
[0,1] is the fraction of the elderly that have full insurance (Medicare or otherwise), and
w® > 0 describes the amount of care required by insured elderly individuals. Variables
with superscript “Y” refer to corresponding values for the young. The uninsured are
assumed to receive treatments that are rudimentary, or less technologically advanced,
and therefore less likely to spur new innovation.

Note that the key variable of interest in equation (13), as derived from our model, in-
volves the number of innovation opportunities per physician (%SS). Data limitations inhibit
us from conducting a per-physician analysis throughout, in particular when our samples
incorporate observations from countries outside of the United States. Nonetheless, we
are able to conduct a portion of our within-U.S. analysis using regression models that
hew as closely to our theoretical model as possible. For these estimates, we replace %ss

in equation (13) with %Z Allowing for time variation and reordering terms gives us:

M
0 > > ) + Xs,t,B + )\5 + )Lt + es,t)/ (16)

@)
EICl] = exp(Bilog(p ) + Palog (3
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where As and A; are state and time period fixed effects. In the panel specification de-
scribed by equation (16), national trends in treatment intensity, coverage, and the elderly
share of the population will be captured by time fixed effects. Note also that the in-
clusion of state fixed effects leaves very little variation in the number of physicians per
capita, M/ Pops;, since the correlation of the state-level counts of physicians per capita
exceeds 0.975 across the decades we analyze.

The Innovation Opportunity Index () is, of course, not directly observable. Our
baseline approach to proxy for the index makes use of available information on its key
inputs. We first normalize w/ to 1 for all time periods.’# Next, based on data from the
National Health Expenditure accounts, we assume a value of 0.65 for ), which captures
the pervasiveness of third-party payment (in other words, one minus the out-of-pocket
spending share) for non-elderly individuals.’> Our results are only modestly sensitive
to altering this assumption. Our estimates of Popzt and Popgt rely on state level data
on total population and Medicare enrollments. The parameter u{, which describes the
pervasiveness of insurance coverage among the elderly (Elderly Coverage), captures vari-
ation generated by the Medicare program. Our value for the 1970s and 1980s reflects the
universality of Medicare coverage, while our value for the 1950s and 1960s expands on
variables from Finkelstein (2007), which capture the share of the elderly that were either
uninsured or under-insured prior to Medicare’s introduction. Finally, and again using
data from the National Health Expenditure accounts, we apply two assumptions for the
value of w®, which describes the intensity of care received by the elderly relative to the

young.’® The values we apply are 2.5 and 2.0. As with other assumptions discussed

4Notes that this is an innocuous normalization given the sets of fixed effects that are included in our
empirical models.

15Using data from the National Health Expenditure Accounts, 0.35 is a rough estimate of the out-of-
pocket spending share for non-elderly individuals in 1970.

1®When our measure of Elderly Coverage makes use of Finkelstein’s measure of the fraction uninsured
prior to Medicare, we assume w9 = 2.5. When we use Finkelstein’s measure of the fraction under-insured,
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above, our results are only modestly sensitive plausible variations in these assumptions.

Taken together, we have:

_ 0.0 D0 Y .Y Y
Ot = wgihs Popsy + wg s POPs 4

= 2.5 x Elderly Coverage, , X Popgt +0.65 X Popzt.

Recall that prior to Medicare’s introduction, Elderly Coverage, , takes values reported
by Finkelstein (2007), while after Medicare’s introduction it is uniformly equal to 1.
After estimating equation (16), which is the empirical model most directly tied to our
theoretical model, we pursue a broad set of robustness analyses. Our primary interest in
this subsequent analysis is to establish that the empirical relationship between variations
in medical patenting and variations in the Medicare program’s expansion of insurance
coverage is robust. To do this, we explore a range of alternative measures of the Medicare
program’s impact. Further, we incorporate a cross-country dimension to our analysis.

To make this full set of analyses possible, we replace the 1\(/21; from equation (16) with

Ot

Pops ¢

. Here it is relevant to note that because %;:t is very strongly correlated over time,
it matters little for our estimates of f, whether we divide ()s; by population or by the

number of physicians.'”

we assume w© = 2.0. In the earliest available data from the Medical Expenditure Panel Survey, which
come from 1996, the ratio of the “mean events per person” for the elderly relative to younger adults is just
under 2.5. The National Health Expenditure Accounts can also be used to construct rough estimates of the
utilization of the elderly relative to the non-elderly. Reasonable approaches yield estimates in the range
of 2 to 3 across the relevant years. When applying Finkelstein’s measure of the fraction under-insured,
our use of w® = 2.0 applies a rough discount to account for the fact that some of the individuals in
question started with non-comprehensive insurance rather than no insurance. Medicare would thus have
constituted a smaller shift in coverage across this more broadly defined group.

7Note that when the number of physicians per capita, Ms;/Pops;, is included in the regression, our
estimate of B, will not be affected by dividing () by Pops; rather than by physicians, M;;. This can be
seen in practice by comparing coefficients in columns 3 and 4 of Table 4 to those in columns 3 and 4 in
panel A of Table 6. This choice does, however, have a mechanical impact on the estimate of 1, which is
the coefficient on M;;/Pops; itself. This can also be seen by comparing coefficients in columns 3 and 4 of
Tables 4 and 6.
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In Appendix D.4, we discuss several alternative ways to characterize the effects of the
Medicare program on the innovation opportunities associated with providing treatments
to well-insured patients. We show that our key results are robust to incorporating these
alternative measures into our empirical analysis. The alternative measures take several
forms. First, we consider alternative ways to construct the Innovation Opportunity In-
dex. Second, we use a measure that is less guided by our model and more guided by the
analysis of Finkelstein (2007). This simpler measure interacts our measures of the Unin-
sured Elderly (i.e., 1 — Elderly Coverage, ,., 19¢5) With time period dummy variables.
Third, we augment the second approach by incorporating information on cross-state
variations in Medicare spending per beneficiary. Fourth, we construct a variable we call
the Covered Market Share, which captures variations in the prevalence of insurance cov-
erage across the entirety of a state’s population. This variable is conceptually similar
to the Innovation Opportunity Index in that changes in its natural log can proxy for

changes over time in the log of the number of idea-generating encounters.

5.2 Estimates Exploiting within-U.S. Variation in Medicare’s Impact

This subsection proceeds in two parts. First, we present our baseline estimates of
equation (16). Second, we combine these estimates with our equilibrium model to quan-
tify the extent to which the innovating-by-doing effect and market size effect contributed

to innovation in medical equipment and devices.

5.2.1 Baseline Empirical Estimates

We present our initial estimates of equation (16) in Table 4. The coefficients on the log
of our measure of Innovation Opportunities Per Physician are economically substantial
and statistically distinguishable from zero in all specifications. As can be seen from

equation (12) this is an estimate of #7/¢. The estimates of 1/ range between 0.58 and
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0.84, which is consistent with an important role for innovating-by-doing effects, 7 > 0,
as well as with our assumption that /¢ < 1. The estimates are robust to the use of
population weights as well as to the inclusion of controls for income per capita and
other patenting activity within each state.

Estimates of the relationship between innovation and the number of physicians per
capita are consistent with our earlier cross-sectional analysis. The estimates of interest
range substantially across specifications, from 0.54 to 1.42. Consistent with this variabil-
ity, the estimates have substantial standard errors and thus come with wide confidence
intervals. This is not surprising, given the modest variations we observe in the number
of physicians per capita over time. As noted previously, the correlation of the state-level

physician counts exceeds 0.975 across the time periods in our sample.

5.2.2 Implications of Our Estimates for Medicare’s Aggregate Effects

What do these estimates imply about the magnitude of Medicare’s impact on medical
equipment and device patenting? Below, we show that answering this question requires
considering three economic channels.”® Two of these channels can be seen directly in
equation (10), which we reproduce below:

1ty
¥

Vs = Mgbs " (Ns/Ms)" ¥ (yRN)Y ¥ y=1/¥. (17)

Equation (17) describes innovation in state s, vs, when overall innovation, v, is held
constant. The first channel that can be seen directly in equation (17) captures the fact

that Medicare resulted in a larger number of well-insured patients, N, on the integrated

®Note that our analysis here assumes that the state-level counts of physicians (M) are held constant.
Allowing for physician entry would add an additional channel of interest. We note that because the num-
ber of physicians is a stock, which will move slowly with changes in retirement behavior and expansions
in available medical school slots, this fourth channel can be viewed as a “very long run” channel. The
channels we emphasize can be viewed as short to medium run channels.
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national product market for medical equipment. This reflects a classic market size effect
that, as specified in our model, has an elasticity of 1/¢." Second, Medicare generates
an innovating-by-doing effect by increasing the localized flows of well-insured patients,
N;, which increases the rate at which physicians obtain insights that can advance the
technical frontier. The introduction of this second force is our paper’s novel addition to
existing models of directed technical change. The innovating-by-doing elasticity is 1 /.

In additional to these “partial” effects that occur when we hold v constant, there is
an equilibrium effect. This third channel captures the fact that an increase in innovation
around the country reduces the gain from innovating by shortening the expected period
of market dominance. We can see this by making use of the fact that v = )  vs to

rearrange equation (10) and obtain:

1

b /
v = 6MT™¥ (yRN)T (N/M)T7 .

This expression for overall innovation, v, features a market size elasticity given by 1/(1+
¢) and an innovating-by-doing elasticity given by /(1 + ¢). We call these “total” to

distinguish them from the partial elasticities described above. We can write them as:

1/9  partial market size

Total ket si lasticity = = =
otal matket size elastaly =3 +¢ 1+1/¢  partial market size+1

<1, (18)

n/y  partial innovating-by-doing
1+1/yp partial market size+1

Total innovating-by-doing elasticity =

(19)

The total elasticity of innovation with respect to an increase in the national number of pa-
tients is given by the sum of the “Total market size elasticity” and the “Total innovating-

by-doing elasticity,” or:

YSee Acemoglu (1998) as well as Dubois et al. (2015). Besides the size of the market, these papers
also discuss a price effect from changes in the equilibrium prices at which the products are sold. Our
assumption of a constant profit per patient, yR, ignores such effects.
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1/¢y n n/y 1y +n/y
1+1/y  1+1/y  1+1/y

Total elasticity =

Our estimates so far, as presented in Table 4 are of /1. In what follows we take the
average of the estimates in Table 4 and let 17/¢ ~ 0.7. We use the expressions above to
make progress in relating this estimate of 7/ to Medicare’s total effect.

Consider first the total market size elasticity. In the context of pharmaceuticals,
Dubois et al. (2015) estimate a total market size elasticity of 0.25. In their review of
the literature, they find that estimates are typically around 0.5, albeit with notable ex-
ceptions including Acemoglu and Linn (2004).?° In a discussion of research on energy-
related innovation, Popp (2010) observes that the most directly comparable estimate in
the literature implies a long-run elasticity of 0.35. To allow for a range of possibilities,
we consider the implications of market size elasticities between 0.25 and 0.60.**

Taken together, estimates of the “Total market size elasticity” and “Partial innovating-
by-doing elasticity” enable us to derive several quantities of interest. These include
Medicare’s overall impact on medical patenting, as well as the impact that is attributable

to innovating-by-doing. Table 5 illustrates several steps in the underlying calculations

under a range of alternative estimates for key parameters. In line with research on

29Acemoglu and Linn (2004) find estimates around 4, which is inconsistent with our model. However,
as they discuss their regressions are concerned with the “potential market size” as defined by demo-
graphics. When they compare this with “actual market size” their estimates are consistent with a total
market-size elasticity of 1. Dubois et al. (2015) argue that an elasticity below 1 is natural because increased
innovation by competitors reduces the value of the market. In the language of our model, if v were to
grow proportionately with N, then the total value of the market, yRN /v could not have grown, which
contradictorily implies that there would not have been a market size effect. Consequently, the elasticity of
v with respect to N must be less than 1. The offsetting effect from the increased innovating by competitors
goes through reduced market size and is itself proportional to the market size elasticity. As discussed in
Acemoglu and Linn (2004), however, the result that the elasticity of v with respect to N must be less than
1 is driven in part by the assumption of a Cobb-Douglas functional form for preferences.

*!In principle, one could estimate the market size effect within our empirical framework using analyses
that incorporate information on patenting by inventors from other countries, as in Appendix Table A.1.
Interpreting the results in this manner requires quite strong assumptions, however, on linkages between
the US market and global markets. Further, the associated estimates are insufficiently precise to pin down
market-size elasticities within the relevant range. Consequently, we rely on estimates from the literature.
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pharmaceutical and energy innovation, assume that the total market size elasticity is
0.25 (Dubois et al., 2015; Popp, 2010). This implies that » = 3 and, further, that the
partial market size elasticity is 1/¢ = 1/3. Connected with our estimate that /¢ ~ 0.7,
this further implies that 7 = ¢ x 0.7 = 2.1. Finally, we can substitute into equation (19)
to estimate a “Total innovating-by-doing elasticity” of .7/(1 4+ 1/3) = .525. The “Total
elasticity” is thus 0.25 4 0.525 = 0.775. Note finally that 67.7 percent (0.525/0.775) of this
total elasticity comes through the innovating-by-doing channel.

Given the estimates above, how large is the estimated effect of the Medicare pro-
gram’s introduction on medical patenting? Across the United States, the mean increase
in the log of our measure of Innovation Opportunities Per Physician was 0.31. Multi-
plying this average change by an overall elasticity of 0.775, as derived above, yields our
estimate that the Medicare program led to a 0.31 x 0.775 = 24 percent increase in med-
ical equipment patenting. Of this, we estimate that 16.3 percentage points (estimated
as 24 x 67.7 percent) is attributable to the innovating-by-doing effect.>> The 24 percent
increase in medical patenting accounts for just over one-fifth of the overall increase in
medical patenting (relative to non-medical patenting) over the time period we study.?3
The remainder of the increase may be attributable to health’s status as a “superior”
good (Hall and Jones, 2007; Jones, 2011), to changes in the difficulty of innovation in the

medical sciences relative to other areas, or to other factors.?4

22Note that these calculations ignore the effects arising from incorporating the state-specific changes to
the innovation-opportunity index. In particular, by the definition of 5*¥ /1, changes in the innovation-
opportunity index might have an impact on the weighted productivity.

23In the overall patent counts, we observe that the average annual number of medical equipment patents
filed by US inventors rose from 761 for 1950 to 1969 to 2206 for 1980 to 1989. This is an increase of 108
log points. The average annual number of non-medical patents filed by US inventors declined marginally,
from 36796 for 1950 to 1969 to 35843 for 1980 to 1989. This is a decline of nearly 2 log points. Our estimate
of the total impact of Medicare is thus equivalent to roughly 24/110, or 22 percent of the increase in
the log of the number of medical equipment patents relative to the increase in the log of the number of
non-medical patents.

24Health’s apparent status as a superior good has the implication that demand for improvements in
health and health care will tend to rise disproportionately to increases in income (Hall and Jones, 2007).
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Absent the model’s structure, reduced form evidence will tend to provide a mis-
leading impression of either the aggregate implications of innovating-by-doing or of the
Medicare expansion’s total effect. A “naive” reading of the empirical analysis would
consider areas with little increase in the innovation opportunity index to be untreated
by the expansion. The presence of v in equation (10), however, makes clear that they are
not. Neglecting the role of equilibrium effects would lead to an estimate of the contri-
bution of the innovating-by-doing effect of .7 x .31 = 21.7 percent. By failing to account
for equilibrium effects, this naive calculation will tend to overstate the true aggregate
implications of innovating-by-doing (a 16.3 percent increase in medical innovation, as
calculated above). Similarly, because the naive calculation does not capture the market
size effect, it will tend to understate Medicare’s aggregate impact, which includes both
the market size effect and the innovating-by-doing effect (a 24 percent increase in medi-
cal innovation, again as calculated above). The biases in the naive calculations both rise
with the magnitude of the market size effect.

Both our estimate of Medicare’s total effect and our estimate of the innovating-by-
doing effect’s contribution depend on the value we assume for the market size elasticity.
Table 5 illustrates how these estimates shift if we assume an elasticity of 0.35, as re-
ported by Popp (2010), or an elasticity of 0.6, which is slightly higher than several of
the estimates from the literature on pharmaceutical innovation, as discussed by Dubois
et al. (2015). A total market size elasticity of .6 implies ¢ = 0.67 and 5 = .48. The total
effect of Medicare would be a 27.3 percent increase in medical patenting, of which 8.7
percentage points come through the innovating-by-doing effect.

We can see in Table 5 that the estimate for the innovating-by-doing effect declines as

the estimate for the total market size elasticity rises. This can be seen analytically by

Jones (2011) develops additional implications of the income elasticity of demand for health and safety for
the direction technological progress.
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considering the relative contributions of the 1/¢ and 7 /¢ terms in equation (20). This
reflects the fact that other innovators reduce the expected profits from capturing the

market, and are thus the source of equilibrium feedback within the model.

5.3 Additional within-U.S. Estimates of Medicare’s Impact

The analysis above raises a question of whether our estimates have truly distin-
guished between the market size elasticity and the partial innovating-by-doing elasticity.
That is, how appropriate is our assumption that the markets for medical equipment and
devices are primarily national or global rather than local?

A combination of external facts and supplemental analyses mitigate this potential
concern. First, If the relevant product markets are sub-national, it would be natural to
expect regional effects. In Appendix Table B.3, we thus report results from regressions
in which we add a regional version, meaning calculated across census divisions, of our
Innovation Opportunity Index to the analysis. In these regressions, the state-level In-
novation Opportunity Index retains its magnitude and statistical significance, while the
regional index exhibits no explanatory power. In related analysis, we find no evidence
that effects differ when comparing large states with smaller states. Second, historical
evidence reveals that product markets for medical equipment (specifically artificial arms
and legs) have extended across state lines since at least as far back as the U.S. Civil War
(Clemens and Rogers, 2020; Hasegawa, 2012). During the middle of the 2oth century, it is
also clear that medical supply companies like Medtronic, Inc., were national in scope and
were beginning to access markets in other countries (Medtronic, 2010). The assumption
of a nationally integrated product market thus seems appropriate for our setting.

Another question of potential interest is whether the Medicare program’s introduc-
tion influenced medical innovation’s average quality. We present an analysis of citation-

weighted patents in Appendix Table B.4. The standard errors in columns 1 and 2 reveal
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that effects on citation-weighted patents are estimated with less precision than effects on
patent counts. This is likely due to the strong skewness of patent citations; in column 4,
for example, we show that standard errors and point estimates are economically quite
similar to our baseline estimates if we censor the number of citations associated with
individual patents at 10. Column 3 shows that the estimated effect of Medicare on the
number of citations per patent is statistically indistinguishable from o.

Table 6 presents the next wave of our analysis of the robustness of our estimates of
the effects of the innovation opportunities created by the Medicare program. In panel
A, the key variable of interest is the Innovation Opportunity Index, while in panel B it
is the Covered Market Share. Details on the construction of these variables can be found
in Appendix D.4. As in Table 4, the coefficients on these variables are economically
substantial and statistically distinguishable from zero in all specifications, with estimates
ranging from 0.54 to 0.84.

Appendix Tables B.5 and B.6 show that the findings in Table 6 are not particularly
sensitive to the manner in which we construct our measures of the Innovation Opportu-
nity Index or the Covered Market Share. While columns 7 and 8 of Tables B.5 and B.6
replicate the results from columns 1 and 2 of Table 6, the initial 6 columns of both tables
deploy alternative versions of these key variables of interest. The restuls in Tables B.5
and B.6 reveal that we obtain quite similar estimates regardless of the choices we make
along several dimensions.>>

Finally, recall that we constructed the Innovation Opportunity Index to proxy for a

25For both variables one dimension along which the alternatives vary involves the two alternative vari-
ables used by Finkelstein (2007) to proxy for baseline coverage rates. While our preferred measure uses the
Finkelstein measure of the fraction of elderly individuals who are underinsured, we present alternative
estimates using her second measure, namely the fraction of individuals who lacked insurance altogether.
For the Innovation Opportunity Index, a second dimension of difference involves our assumption about
the evolution of coverage among the non-elderly. For the Covered Market Share, the second dimension of
difference involves our assumption for “baseline” coverage. We provide a detailed description of alterna-
tive measures of the Innovation Opportunity Index and the Covered Market Share in appendix D.4.
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key variable from our model. In Table B.7, we present additional estimates using alter-
native measures that relate closely to variables used in research by Finkelstein (2007).26
We then interact these changes with separate indicators for observations from either the
1970s or the 1980s. The estimates in Table B.7 reveal that each of these intuitively con-

structed policy variables predict increases in the rate of medical equipment patenting.

5.4 Additional Robustness Analyses

Next, we summarize a set of robustness analyses in which we add a cross-country
dimension to our analysis. The details of this analysis are described in appendix A. The
key finding from this analysis can be seen by comparing the estimates in Table A.1 with
the estimates from Table 6. That is, we obtain quite similar parameter estimates whether
we rely on within-US variation alone or incorporate comparisons of the US states to
other countries. Tables B.8 and B.9, which yield results quite similar to those in Tables
B.5 and B.6, reveal further that the cross-country estimates are largely insensitive to the
use of alternative assumptions in constructing either our Innovation Opportunity Index
or our Covered Market Share variable. This is a meaningful dimension of robustness,
as the similarity of the estimates was by no means guaranteed. Notably, estimates that
incorporate comparisons across countries could be influenced by U.S.-wide effects, while
our earlier estimates could not.

Finally, readers might worry that our grouping of observations into time periods
may mask differential trends in rates of medical equipment patenting across states or
countries. To investigate this concern, we use annual data to produce event-study style
estimates. Thus far, our time period groupings have been motivated by two factors.

One is the selective availability of data on the physician workforce, which varies across

260ne measure of Medicare’s coverage impact makes direct use of the percentage point change in the
fraction of individuals who lacked insurance. A second and third measure exploit cross-state variations
in total Medicare spending per state resident.
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decades rather than on an annual basis. The second is the fact that, during the 1950s
and 1960s, medical patents are sparse when counted on an annual basis at the state
level. For annual estimates, we collapse patent counts to the year-by-patent category-
by-geography level. The patent categories, ¢, are “medical equipment” and “all other,”
while the countries, s, are the U.S. and the rest of the world. We then estimate the

equation below:

E [Cs,c,t

= exp(z B:1{US}; x 1{Med. Equipment}_ x 1{Year}; + Act + Aps + Asc). (20)
120

The resulting estimates, presented in Figure 3, are in line with what one would expect
based on the time series presented in Figure 1. Reassuringly, the point estimates for
years preceding Medicare’s introduction provide no reason to worry that our estimates
are driven by an upward pre-existing trend in U.S.-based medical equipment patenting.
If anything, the pre-Medicare trend is in a modestly downward direction. Estimates for
years in the 1950s and 1960s exhibit non-trivial variation from year to year, reflecting the
relatively small number of patents from which these estimates are generated. Estimates
are much smoother as we reach the 1970s and 1980s, and are consistent with estimates
presented in Table A.1. In the 1970s, rates of U.S.-based medical equipment patenting
had risen by around 25 percent relative to patenting in other countries. By the 198o0s,

there were additional non-trivial increases.

6 Conclusion

The insights that arise from users of existing technologies are key inputs into inno-
vation. In the health care context, a rich set of case studies reveal the importance of

physician inventors, who have insights while treating their patients with existing tech-
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nologies. A physician-inventor’s incentive to develop these insights into commercial
products then depends, at least in part, on the size of the market.

We capture these ideas by developing a model of endogenous technological progress
with a central role for innovating-by-doing. Through the lens of our model, we then an-
alyze the introduction of the U.S. Medicare program. Our empirical analysis shows that
Medicare’s introduction significantly increased U.S.-based medical-equipment patent-
ing. Increases in medical-equipment patenting were systematically larger in the U.S.
states in which Medicare had greater impacts on insurance coverage.

Applying our model’s structure, we estimate that Medicare’s introduction increased
aggregate medical equipment and device patenting by around 25 percent. We can further
separate Medicare’s overall effect into the roles of the traditional market size effect and
the innovating-by-doing effect. We estimate that each of these channels are responsible
for roughly half of the overall effect we observe. While the importance of the market
size effect is well established in many settings, we show that innovating-by-doing effects
may be equally relevant in driving an important class of technologies. While our analysis
is limited to medical equipment, it illustrates that an exclusive focus on the incentives
created by market size can miss important channels through which policy can shape the
generation of ideas. The importance of innovating-by-doing in areas other than medical
equipment remains an open question for future research.

A final point of interest involves the particular aspects of products on which in-
ventors focus as they develop new technologies. A striking feature of medical inno-
vation has been its tendency to expand the frontier of quality rather than reduce cost.
The Medicare program initially paid both physicians and hospitals on a cost-plus basis,
which may have encouraged innovation of precisely this form. That is, by expanding the
prevalence of cost-plus payment, the U.S. Medicare program may have elevated medical

innovation’s emphasis on quality relative to cost. Whether such effects would enhance
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or reduce innovation’s effects on welfare is a second open question for future research.
The optimality, or efficiency, of the portfolio of innovations we realize depends on factors

that extend beyond our study’s scope.
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Figure 1: Medical Patenting Over Time:

Note: Series were constructed by the authors using data from the Comprehensive Universe of U.S. Patents
database (Berkes, 2018) and the NBER Patent Database (Hall et al., 2001). As described in greater detail
in appendix D.5, we classify patents as Medical Equipment based on a combination USPTO and IPC
technology classification codes. First, we define the universe of medical patents to include all patents
with IPC codes that begin with a61, which is titled “MEDICAL OR VETERINARY SCIENCE; HYGIENE,”
along with additional patents in USPTO codes 623 and 378, which correspond with “prostheses” and “x-
ray and gamma ray systems,” respectively. We then exclude the pharmaceutical patents associated with
USPTO classes 424, 514, 435, and 800. These excluded classes involve Drugs (424 and 514), Chemistry
(435), and Multi-Cellular Organisms. They aggregate to the full set of patents categorized in the NBER
patent data base as “Drugs” or “Biotechnology.” Patents are categorized as having a “US Innovator” if the
first inventor’s residence is listed as being as in the United States and as “Foreign” if the first inventor’s
residence is listed as being in a country other than the United States. If the first inventor’s residence is not
linked to a country, we exclude the patent. The year of each patent corresponds with the year in which it
was filed.

42



*€0°0 papasoxa ejrded 1od sueisAyd pazirenpisar jo arnseawr

AU} YOTYM 10§ 93e)s 9[3UIs e apnoxa sy a3 ‘uorjejussaid [ensia Jo asea 104 SQ6T ym spuodsariod J pue D) sppued 10§ pasn ainseawr oy}
pue ‘SZ61 yyim spuodsariod g pue g spaued 105 pasn aInseswr ay) S[IYM ‘96T Hm spuodsariod (] pue y S[aueJ I0j Pasn SINSeaur 9y, 3L
9DINOSAY BAIY [BOLIO)SIE] 9y} woiy awrod eyrded 1ad suenisAyd jo sjunod ay], '6861 03 0g61 wioiy Surpualxa porrad oy wosy eyep jussaid J
pue D sppueJ ‘6461 03 0461 woxy Surpuaixa pourad ayy woiy eyep juasaid g pue g spueJ ‘6961 03 0561 woiy 3urpuslxe porrad ay) woy ejep
jussaxd (1 pue vy spueq ‘eyded 1ad Sunusied Teonneoceurreyd ym spuodsariod aqeriea sixe-A ayj 3sa1 syuajed [esrpawr 4] pue ‘q ‘(q s[pued
uy ‘ejded 1ad Sunusied sd1asp pue juswdmbas [eorpawr M spuodsariod s[qerrea sixe-A 9y} ‘D) pue ‘g ‘v sued uf -are3s yoea ur eyded zod
syuayed [edIPaW-UOU JO IdqUINU dY) 0} }09dSal1 Y)IM PIZI[eNnpISaI Udaq dALY d[RLIBA SIXe-A PUe SIXe-X a3 Yjoq ‘ased yoea uy ‘eyrded 1ad syusyed
[esrpawr jo spunod pue eyded 1ad suenisAyd jo sjunod usamiaq drysuonepr ayy Surqusap suonep1iod [enied syussard a8y oy 930N
reyrde) 1ag Sunuaje [ed1pajq pue ejide) 19 sueISAYJ UaaM)dq suone[dLI0) T dINJL]

eyde) Jad sueloisAyd eyde) Jad sueloisAyd eynde) Jad sueloisAyd
m:,uo. vo,o. mo,oo. 0 S000™- 100~ m%o. 100 mc,oo. 0 mo@o.‘ _‘o,or mfoo. 100 momc. @ mo@oc vo,or

T
L0
10~

0 S00- L0~
S00™
T
S00™

eyde) Jad sjusjed [eannaoeweyd
T
0

T
0

T
S00°
T
S00°
ejde) Jad sjusied [ednnedeuLeyd

10" 500

T
10°

T
0
eyde) Jad sjusjed [eannaoewieyd

o
[ & ol
Lo @ L2 =
S o @
® . © . N
sjuajed [EOIPSIN-UON O] 10adsay Yum pazijenpisay sjuajed [BOIPSIN-UON O] 10adsay Uim paziienpisay sjuajed [eoIpa|\-UON O] }10adsay UYim pazijenpisay
S8 :Sjudjed |eolnadsewleyd pue sueisiyd SO/ :Sjusjed |eonnaoewleyd pue suemisAyd S09-S0G :Sjudjed [edinasewleyd pue sueisiyd
(S0861) sjpomasvuLIvYJ :q [oUvd (S0L61) sjpornaovuLivyJ g joUvg (509-50561) S[po1NaIVUADYJ (] [oUV]
epde) Jad suenisAyd epde) Jad suenishyd ejpde) Jad suenishyd
mfoo. Eo. mo,cQ _”,v mooc.. Fo,ow , mf@o. _bc. mo,oo. @ mo@o.y Fo,ov. ! m_bo. :”,vo. mOﬁo. n,u mo@ov. _,c,of )
Fa LS LS
Ls LS Lo
Sz &= &=
g g g
to8 to8 to8
s By s
28 38 =%}
[&7 (&3 [&3
Y s g
@ Lo 5 Lo & lo &
Hs Hg He
sjuajed [EOIPSIN-UON O] 10adsay Uum paziienpisay sjuajed [EOIPSIN-UON O] J0adsay UIm paziienpisay sjusjed [eoIpa|N-UON O] joadsay UYim pazijenpisay
SOQ :Sjudled |eolpajy pue sueisAyd SO/ :Sjudjed |eolpajy pue sueisAud S09-SOG :Slusjed [EDIPS|\ pue sueinisAyd

(S0861) Juandinbg [wopag D [ouvg  (S0L61) juamdinbg worpay :q 19uvg  (S09-s0S61) juamidinbg (worpat 1y jouvd

43



Differential Changes in U.S.-Based Medical Equipment Patenting
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Figure 3: Event-Study Estimates Using Annual Data: Some patent data.

Note: The figures presents “event-study” estimates of differential changes in medical equipment patenting
relative to other patenting among U.S. based inventors relative to inventors abroad. For this analysis, the
data are collapsed at an annual level. Unlike previous analyses, which collapse at the level of individuals
states or specific countries outside of the United States, for this analysis we collapse the U.S. data into a
single geographic aggregate and the data for inventors outside the U.S. into a single geographic aggregate.
We do this due to the sparcity of medical patents when counted on an annual basis at the state level during
the 1950s and 1960s. The estimates are then of an equation that mirrors the version of equation (A.1) that
lacks the Covered Market Share variable. It is thus a straightforward triple-difference style event study
estimator. The construction of the medical equipment category is described in appendix D.5. Because
this analysis is of the effects of the introduction of Medicare, the medical equipment aggregate excludes
patents associated with drugs, veterinary medicine, dental care, and eye care.
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Table 1: Summary Statistics

@ @ G @ G ©
US-Based Inventors Inventors Abroad
1950s-60s 19708 1980s 19508-60s 1970  1980S
Annual Medical Patents Per Capita 0.371 0.616 0.862 0.0678 0.171 0.273
(0.288) (0.534) (0.693) (0.0889)  (0.133) (0.201)
Annual Other Patents Per Capita 18.29 16.14 14.76 3.311 6.636 7.782
(16.71) (12.40) (10.50) (3-460)  (5.986) (5.554)
Log Medical Patents Per Capita -1.287 -0.806 -0.449 -3.211 -2.036  -1.525
(0.802) (0.814) (0.794) (1.041) (0.851) (0.763)
Log Other Patents Per Capita 2.589 2.544 2.484 0.800 1.603 1.812
(0.798) (0.691) (0.648) (0.967)  (0.830) (0.783)
Innovation Opportunities Index 0.638 0.808 0.815 1 1 1
(0.0250) (0.0302) (0.0439) (0) (0) (0)
Covered Market Share 0.550 0.725 0.734 0.900 0.900  0.900
(0) (0.0447) (0.0567) (0) (0) (0)
Baseline Uninsured Per Cap. 0.0547 0.0547 0.0547 o o 0
(0.0121) (0.0121) (0.0121) (o) (o) (o)
Baseline Underinsured Per Cap. 0.0873 0.0873 0.0873 0 0 0
(0.0223) (0.0223) (0.0223) (0) (0) (0)
MDs Per Cap. 0.00130 0.00158 0.00210 . . .
(0.000530)  (0.000633)  (0.000805) () ) )
Teaching and Research MDs Per Cap. . 0.0000523 0.000108 . . .
() (0.0000413)  (0.0000927) () () ()
Practicing MDs Per Cap. . 0.00152 0.00200 . . .
() (0.000596)  (0.000722) () () ()
Income Per Capita 6372.4 10478.2 11812.9 . . .
(1523.1) (1740.2) (2176.7) () () ()
Hospital Spending Per Cap. . 144.4 103.6 . . .
) (84.14) (71.60) ) ) )
Scientists Per Cap. 0.00141 0.00119 . . . .
(0.00139) (0.00128) ) ) ) ()
Observations 49 49 49 7 7 7

Note: The table presents summary statistics on the key variables underlying our analysis. Counts of

patents come from the NBER patent database (Hall et al., 2001) and the “Comprehensive Universe of U.S.

Patents (CUSP)” database assembled by Berkes (2018). Our measure of the “Baseline Uninsured Per Cap.”

comes from Finkelstein (2007). The Covered Market Share variables contain estimates of the fraction of

medical spending that is financed by a third party rather than out of pocket. The construction of these

variables is described in greater detail in appendix D. Information on the number of MDs per capita,

Income per capita and hospital spending per capita come from the Historical Area Resource File. Infor-

mation on the number of Scientists per capita comes from historical editions of the Statistical Abstract of

the United States. Sourcing for all variables is described in greater detail in appendix D. The 7 observa-

tions associated with “Inventors Abroad” correspond with Japan, France, Germany, Canada, Switzerland,

Italy, and the United Kingdom.
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Table 3: Practicing vs. Research/Teaching MDs and Medical Patenting

(1) (2) €) )

Dependent Variable Medical Patenting
Panel A Time Period: 1951-1970
Log Practicing MDs Per Cap. (1975) 1.00** 1.07** 0.94* 1.13**

(0.29) (0.21) (0.19) (0.22)
Log Teaching and Research MDs Per Cap. (1975) -0.12 -0.18 -0.12* -0.14*

(0.11) (0.11) (0.06) (0.07)

Log Scientists Per Cap. (1964) 0.20 0.10
(0.13) (0.16)
Log Hosp. Spend. Per Cap. (1975) 0.01 -0.07
(0.06) (0.07)
Log Income Per Cap. (1959) 0.71** 0.48
(0.25) (0.30)
Log Non-Medical Patents Per Cap. 0.66**  0.45%* 0.62** 0.42**
(0.10) (0.07) (0.08) (0.09)

Panel B Time Period: 1971-1980
Log Practicing MDs Per Cap. (1975) 0.99** 1.01**  0.63* 1.01**

(0.29) (0.30) (0.28) (0.25)
Log Teaching and Research MDs Per Cap. (1975) -0.05 -0.14 0.10 0.03

(0.12) (0.14) (0.10) (0.07)

Log Scientists Per Cap. (1975) 0.17 0.06
(0.20) (0.19)
Log Hosp. Spend. Per Cap. (1975) -0.05 -0.11
(0.06) (0.06)
Log Income Per Cap. (1975) 0.90+ 0.13
(0.51) (0.66)
Log Non-Medical Patents Per Cap. 0.75" 0.50™ 0.74** 0.52**
(0.11) (0.13) (0.11) (0.13)

Panel C Time Period: 1981-1990
Log Practicing MDs Per Cap. (1985) 0.78 o0.71+ 0.05 -0.04

(0.51) (0.41) (0.40) (0.46)
Log Teaching and Research MDs Per Cap. (1985) -0.05 -0.12 0.29+ 0.29
(0.20) (0.18) (0.15) (0.20)

Log Scientists Per Cap. (1975) 0.08 0.00
(0.28) (0.19)

Log Hosp. Spend. Per Cap. 1985) -0.12 -0.12
(0.11) (0.15)

Log Income Per Cap. (1985), (1000s) 0.15 -0.51
(0.54) (0.66)

Log Non-Medical Patents Per Cap. 0.79**  0.68** 0.85%* 0.88**
(0.14) (0.21) (0.07) (0.21)

N 49 48 49 48
Weighted Yes Yes No No

Note: **, *, and + indicate statistical significance at the 0.01, 0.05, and 0.10 levels. The estimates in this table
follow the same pattern as the estimates presented in columns 1 through 4 of Table 2. The key difference is
that the measure of physicians per capita is replaced with separate measures of the number of practicing
physicians per capita and the number of teaching and research physicians per capita.
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Table 4: Model Estimates Driven by Medicare’s Introduction within the United States

(1) ©) (3) 4)
Dependent Variable Medical Patenting
Log Innovation Opportunities Per Physician 0.62** 0.84** 0.58* 0.84**
(0.22) (0.19) (0.29) (0.21)
Log MDs Per Cap. 0.85% 1.42% 0.54 1.28+
(0-39) (0.61) (0.46) (0.71)
Log Income Per Cap. 0.81* 0.33
(0.33) (0.37)
N 147 147 147 147
Number of Clusters 49 49 49 49
Weighted No Base Pop. No Base Pop.
Base Period ‘'50to'70  ‘soto’7o ‘soto 7o ‘50 to “yo
Controls for Log Other Patents Yes Yes Yes Yes
Non-US Obs. No No No No

Note: **, *, and + indicate statistical significance at the 0.01, 0.05, and o.10 levels respectively. The table
presents estimates of equation (16). The 147 observations are associated with 49 states across 3 time
periods, namely 1950-1969, 1970-1979, and 1980-1989. The dependent variable in each regression is the
count of medical equipment and device patents per capita. Construction of the key independent variables
is described in detail in the main text and in appendix D.4. The key independent variable is the log of
our measure of Innovation Opportunities per Practicing Physician. As indicated in the body of the table,
the specifications in columns 1 and 3 equally weight all observations, while columns 2 and 4 are weighted
according to each state’s population during the first time period. All specifications control for state and
time period fixed effects, as well as interactions between the log of non-medical patents per capita and a
set of time period dummy variables. All specifications also include the log of the number of physicians
per capita. Columns 3 and 4 additionally include the log of income per capita. Standard errors account
for correlation clusters across time at the state level.
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Table 5: Implications of Model Estimates for the Overall Effects of Medicare

EYC) G
Total Market Size
Elasticity:
1/(1+1/9)
0.25  0.35 0.6
Panel A: Implied Value of i
Assumed Partial 0.5 3.000 1.867 0.667
Innovating by Doing 0.7 3.000 1.867 0.667
Elasticity: /¢ 0.9 3.000 1.867 0.667
Panel B: Implied Value of 7
Assumed Partial 0.5 1.500 0.933 0.333
Innovating by Doing 0.7 2.100 1.300 0.477
Elasticity: /¢ 0.9 2.700 1.667 0.600

Panel C: Implied Total Innovating by Doing Elasticity

Assumed Partial 0.5 0.375 0.325 0.200
Innovating by Doing 0.7 0.525 0.455 0.280
Elasticity: /¢ 0.9 0.675 0.585 0.360

Panel D: Percent Increase in Innovation Due to Medicare
(From o.31 rise in In(Innovation Opportunity Index))

Assumed Partial 0.5 0.194 0.209 0.248
Innovating by Doing 0.7 0.240 0.250 0.273
Elasticity: /¢ 0.9 0.287 0.290 0.298

Panel E: Percent Increase in Innovation Due to Medicare
through the Innovating by Doing Channel

Assumed Partial 0.5 0.116  0.101 0.062
Innovating by Doing 0.7 0.163 0.141 0.087
Elasticity: /¢ 0.9 0.209 0.181 0.112

Note: This table illustrates how our model parameters and empirical facts connect to generate estimates
of Medicare’s impact on innovation. The columns illustrate how the estimated effects evolve under alter-
native assumptions for the market size elasticity. Within each panel, the three rows of estimates illustrate
how the estimated effects evolve under alternative assumptions for the partial innovating while doing
effect. Note that the estimates in panel D are obtained by multiplying the sum of the total market size
elasticity and the total innovating-by-doing elasticity by 0.31, which was the average increase in the log
of our innovation opportunity index (the key variable used to estimate the partial innovating while doing
elasticity) across states. Recall that the total market size elasticity varies across columns, while the total

innovating-by-doing elasticities, which vary with both the market size elasticity and the partial innovating-

n/y
1+1/¢”

comes from equation (19). Finally, the effects of Medicare through the innovating-by-doing channel, as

by-doing elasticity, are reported in panel C. The formula for the total innovating-by-doing elasticity,
reported in panel E, are calculated as 0.31 multiplied by the total innovating-by-doing elasticity.
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Table 6: Effects of Medicare’s Introduction: Additional Within-U.S. Analysis

@ @ G @
Dependent Variable Medical Patenting
Panel A:
Log Innovation Opportunity Index 0.58** 0.69** 0.58* 0.84**
(0.20) (0.16) (0.29) (0.21)
Log MDs Per Cap. -0.04 0.44
(0-34) (0.59)
Log Income Per Cap. 0.81% 0.33
(0.33) (0.37)
Panel B:
Log Covered Market Share 0.55%* 0.63%* 0.54+ 0.76**
(0.19) (0.14) (0.28) (0.21)
Log MDs Per Cap. -0.04 0.43
(0-34) (0.58)
Log Income Per Cap. 0.81* 0.32
(0.33) (0.37)
N 147 147 147 147
Number of Clusters 49 49 49 49
Weighted No Base Pop. No Base Pop.
Base Period ‘'50to ‘70 ‘soto’7o0 ‘so0to’7o ‘50 to “yo
Controls for Log Other Patents Yes Yes Yes Yes
Non-US Obs. No No No No

Note: **, *, and + indicate statistical significance at the 0.01, 0.05, and o.10 levels respectively. The table
presents estimates of equation (16). The 147 observations are associated with 49 states across 3 time
periods, namely 1950-1969, 1970-1979, and 1980-1989. The dependent variable in each regression is the
count of medical equipment and device patents per capita. Construction of the key independent variables
is described in detail in the main text and in appendix D.4. In panel A, the key independent variable is
the log of the Innovation Opportunity Index, which is a proxy for the volume of technologically intensive
procedures that are delivered. In panel B the key independent variable is the log of the Covered Market
Share, which is a proxy for the fraction of all health spending that is covered by comprehensive insurance
arrangements. As indicated in the body of the table, the specifications in columns 1 and 3 equally weight
all observations, while columns 2 and 4 are weighted according to each state’s population during the
first time period. All specifications control for state and time period fixed effects, as well as interactions
between the log of non-medical patents per capita and a set of time period dummy variables. Columns 3
and 4 additionally include the log of the number of doctors per capita and income per capita. Standard
errors account for correlation clusters across time at the state level.
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Appendix Material

A Description of Cross-Country Panel Analysis

In this appendix, we describe robustness analyses in which we add a cross-country
dimension to our analysis. For this analysis, we collapse patent counts to the time
period-by-patent category-by-state or country level.?” With respect to time periods, we
refer to the 1970s as the Post Medicare Medium Run and to the 1980s as the Post Medi-
care Long Run. Our subscript for states (or countries) is s and our subscript for categories

of technology is c. We estimate equations of the form:

E [Cs,c,t

-] = exp(BmUSs x Medical Equipment_ x Post Medicare Medium Runy
+ BLUSs x Medical Equipment, x Post Medicare Long Run,

+ B1In(Innovation Opportunity Index)clslt + At +Aps + Ase). (A.1)

Equation (A.1) takes a triple-difference structure. The policy variation of interest involves
Medicare-driven variation in comprehensive coverage. This policy shock varies at the
state (or country), by time period, by technology category level, as it affects the U.S.
market for medical innovations. The specification thus includes state-by-period, period-
by-technology category, and state-by-technology category fixed effects.

The policy variation of interest is described in two ways. The first is by two variables
that interact an indicator for observations from the United States with an indicator for
medical equipment observations and two time period indicators.?® The second is by

the variable In(Innovation Opportunity Index). ., or, as a robustness check, the variable

27By “patent category” we refer to “medical equipment” and “other” technology categories.

28These variables appear as USg; X Medical Equipment, x Post Medicare Medium Run; and US;s x
Medical Equipment, x Post Medicare Long Run, in equation (A.1).
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In(Covered Market Share). ; ;. Note that the latter variables contain the cross-state vari-
ation utilized previously, while the former are binary variables that apply equally to all
observations associated with medical equipment patenting in U.S. states in time periods
after the introduction of Medicare. We present estimates of equation (A.1) as well as es-
timates that include one type of policy variable or the other, rather than including both
simultaneously.*?

The results are shown in Table A.1. As in Table 6, the key variable of interest in panel
A is the Innovation Opportunity Index, while in panel B it is the Covered Market Share.
The estimates in columns 1 and 2 are quite similar to our earlier estimates. On average
across the two specifications, the estimates imply that a 10 percent expansion in the
Innovation Opportunity Index or Covered Market Share generated a 7 percent increase
in medical patenting rates (the partial effect). This was by no means guaranteed, as these
estimates could be influenced by US-wide effects, while our earlier estimates could not.
Additional results in Tables B.8 and B.g reveal that these estimates are largely insensitive
to the use of alternative assumptions in constructing either our Innovation Opportunity
Index or our Covered Market Share variable.

In columns 3 and 4 of Table A.1, we present estimates in which variation in Medi-
care’s impact is described using simple indicator variables. Averaging once again across
specifications, we estimate here that U.S. states saw relative increases in medical patent-
ing on the order of 20 percent from the 1950s and 1960s to the 1970s, and on the order of

35 percent from the 1950s and 1960s to the 1980s. In columns 5 and 6 we include all of

*9The cross-country data face multiple limitations, which underlie our use of within-US variations
for our baseline estiamtes. First, since the appearance of the broadest possible set of countries is not
balanced over time, our estimates restrict the set of countries outside the United States to Japan, France,
Germany, Canada, Switzerland, Italy, and the United Kingdom. Together, these countries account for the
vast majority of patents for which the first inventor lives outside the United States during our sample
period. An additional short-coming of the cross-country data is that we lack consistently defined, time-
varying information on the number of physicians per capita. This is why we have excluded any physician
covariates from this portion of our analysis. Our earlier analysis suggests that this exclusion will matter
relatively little for the results.
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the policy variables in the same specification. The estimates on the log of the innovation
opportunity index and on the log of the covered market share are roughly o.5 and o.7
in the unweighted and weighted specifications respectively. These point estimates differ
negligibly from the estimates reported in Tables 4 and 6 we obtained when analyzing

within-U.S. variations alone.
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Appendix Table B.2: Practicing vs. Research/Teaching MDs and Medical Patenting
(MSA-Level Analysis)

(1) (2) €) 4)

Dependent Variable Medical Patenting
Panel A Time Period: 1951-1970
Log Practicing MDs Per Cap. (1975) 0.47**  0.49** 046"  0.39%

(0.18) (0.17) (0.16) (0.16)
Log Teaching and Research MDs Per Cap. (1975) 0.05 0.04 -0.01 0.00

(0.06) (0.05) (0.07) (0.07)

Log Income Per Cap. (1959) 0.44 0.92**
(0.38) (0.27)
Log Non-Medical Patents Per Cap. 0.68**  0.60" o0.71** 0.60**
(0.07) (0.06) (0.05) (0.06)

Panel B Time Period: 1971-1980
Log Practicing MDs Per Cap. (1975) 0.64* 0.51™  0.42*% 0.38+

(0.18) (0.15) (0.19) (0.20)
Log Teaching and Research MDs Per Cap. (1975) 0.04 0.03 0.04 0.05

(0.07) (0.06) (0.07) (0.07)

Log Income Per Cap. (1975) 1.13% 0.51
(0.28) (0.42)
Log Non-Medical Patents Per Cap. 0.69** 0.65% o0.75" 0.70%*
(0.08) (0.06) (0.06) (0.06)

Panel C Time Period: 1981-1990
Log Practicing MDs Per Cap. (1985) 0.38+ 0.30+ 0.22 0.15

(0.23) (0.18) (0.16) (0.16)
Log Teaching and Research MDs Per Cap. (1985) 0.14 0.09 0.15 0.14

(0.09) (0.09) (0.10) (0.10)

Log Income Per Cap. (1985), (1000s) 0.99** 0.94**
(0.28) (0.32)

Log Non-Medical Patents Per Cap. 0.72**  0.65** 0.76" 0.66**
(0.08) (0.08) (0.07) (0.08)

N 248 248 248 248
Weighted Yes Yes No No

Note: **, *, and + indicate statistical significance at the 0.01, 0.05, and 0.10 levels. The estimates in this table
follow the same pattern as the estimates presented in columns 1 through 4 of Table 2. The key difference is
that the measure of physicians per capita is replaced with separate measures of the number of practicing
physicians per capita and the number of teaching and research physicians per capita.
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Appendix Table B.3: Model Estimates Driven by Medicare’s Introduction within the
United States: Robustness to the Inclusion of a Regional Innovation Opportunity
Index

@ @ G @
Dependent Variable Medical Patenting

Log Innovation Opportunities Per Physician 0.69™* 0.79** 0.62% 0.79**

(0.18) (0.17) (0.28) (0.22)

Log Innovation Opp’s Per Physician across Census Division -0.37 0.60 -0.23 0.77

(0.72) (0.81) (0.65) (0.82)

Log MDs Per Cap. 0.80+ 1.58% 0.52 1.45%

(0.42) (0.65) (0.47) (0.72)

Log Income Per Cap. 0.80% 0.40

(0.34) (0.32)

N 147 147 147 147

Number of Clusters 49 49 49 49

Weighted No Base Pop. No Base Pop.

Base Period ‘'50to ‘70 ‘soto’7o0 ‘soto’7o ‘50 to “yo

Controls for Log Other Patents Yes Yes Yes Yes

Non-US Obs. No No No No

Note: **, *, and + indicate statistical significance at the 0.01, 0.05, and o.10 levels respectively. The table
presents estimates of equation (16). The 147 observations are associated with 49 states across 3 time
periods, namely 1950-1969, 1970-1979, and 1980-1989. The dependent variable in each regression is the
count of medical equipment and device patents per capita. Construction of the key independent variables
is described in detail in the main text and in appendix D.4. The key independent variable is the log of
our measure of Innovation Opportunities per Practicing Physician. As indicated in the body of the table,
the specifications in columns 1 and 3 equally weight all observations, while columns 2 and 4 are weighted
according to each state’s population during the first time period. All specifications control for state and
time period fixed effects, as well as interactions between the log of non-medical patents per capita and a
set of time period dummy variables. All specifications also include the log of the number of physicians
per capita. Columns 3 and 4 additionally include the log of income per capita. Standard errors account
for correlation clusters across time at the state level.
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Appendix Table B.4: Model Estimates Driven by Medicare’s Introduction within the
United States: Exploration of Citation-Weighted Patent Counts

(1) () &) 4)
Dependent Variable Patents  Patent Cites Cites Per Patent Cites Capped
Panel A
Log Innovation Opportunities Per Physician 0.84** 0.64* -0.03 0.66**
(0.19) (0.26) (0.23) (0.20)
Log MDs Per Cap. 1.42* 1.28 -0.22 1.38*
(0.61) (0.94) (0.50) (0.64)
N 147 147 147 147
Number of Clusters 49 49 49 49
Weighted Base Pop. Base Pop. Base Pop. Base Pop.
Base Period 50 to "70 50 to 7o 50 to 70 50 to 70
Controls for Log Other Patents Yes Yes Yes Yes
Non-US Obs. No No No No
Panel B
Log Innovation Opportunities Per Physician 0.62%* 0.29 -0.29 0.56**
(0.22) (0.38) (0.33) (0.21)
Log MDs Per Cap. 0.85% 0.35 -0.90 0.86*
(0.39) (0.84) (0.74) (0.41)
N 147 147 147 147
Number of Clusters 49 49 49 49
Weighted No No No No
Base Period 50 to "70 50 to 70 50 to 70 50 to "70
Controls for Log Other Patents Yes Yes Yes Yes
Non-US Obs. No No No No

Note: **, *, and + indicate statistical significance at the 0.01, 0.05, and o.10 levels respectively. The table
presents estimates of equation (16). The 147 observations are associated with 49 states across 3 time
periods, namely 1950-1969, 1970-1979, and 1980-1989. The dependent variable in column 1 is the count
of medical equipment and device patents per capita. The dependent variable in column 2 is the citation-
weighted count of medical equipment and device patents per capita. The dependent variable in column 3
is the average number of citations per patent. The dependent variable in column 4 is a citation-weighted
count of medical equipment and device patents per capita, where we have capped the number of citations
associated with any given patent at 10. Construction of the key independent variables is described in detail
in the main text and in appendix D.4. The key independent variable is the log of our measure of Innovation
Opportunities per Practicing Physician. As indicated in the body of the table, the specifications in panel A
are weighted according to state population at baseline, while the specifications in panel B are unweighted.
All specifications control for state and time period fixed effects, as well as interactions between the log of
non-medical patents per capita and a set of time period dummy variables. All specifications also include
the log of the number of physicians per capita.
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C Case Studies in Medical Breakthroughs Developed by
Practitioners

As noted in the main text, practitioners have played central roles in some of the most
important medical innovations from the second half of the 2oth century. This appendix
provides additional detail regarding two such developments. In particular, we discuss
breakthroughs in the treatment of blood clots and of polio.

An example of particular note is Thomas Fogarty’s development of the embolec-
tomy catheter for removing blood clots (Fogarty, 1969). Fogarty’s embolectomy catheter
is widely regarded as the first device invented for the purpose of minimally invasive
surgery. The embolectomy catheter’s development was a quintessential case of an in-
ventor tinkering in his or her attic (Riordan, 2000). Developed while he was in medical
school, Fogarty’s inspiration came in part from his teenage years working as a surgical
scrub technician. During that time, he had witnessed first hand the high mortality risks
of the prevailing, more invasive, techniques for removing blood clots. These observations
underlay Fogarty’s realization that improvements would require less invasive incisions.
To this problem, the embolectomy catheter proved an effective, often life saving, solution.

Another example involves the development and adoption of the use of positive pres-
sure ventilation for treating severe cases of polio. Through the middle of the 20th century,
mortality rates were high among patients infected with Bulbospinal polio. Bulbospinal
polio destroys nerves within the spinal cord that are critical for breathing. Through the
1940s, the primary method for assisting the breathing of polio patients was the iron lung,
a massive machine that creates negative pressure around the body to force the lungs to
expand. Treatment was ineffective, however, as patients often suffocated. Between 1946
and 1948 in Los Angeles, Albert Bower and V. Ray Bennett developed key insights and

equipment for improving the standard care (Trubuhovich et al., 2007). The key con-
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ceptual insight was to apply positive pressure ventilation rather than negative pressure
ventilation. Coupled with tweaks to existing equipment, this insight appears to have
substantially reduced mortality among polio patients at Los Angeles County Hospital
(Bottrell, 2017).

In 1952, during a severe Danish polio epidemic, anesthesiologist Bjorn Ibsen brought
Bower and Bennett’s insights to Blegdam Hospital in Copenhagen (Wertheim, 2020).
Ibsen’s application of positive pressure ventilation at large scale led to a dramatic decline
in mortality among polio patients. In addition to helping to revolutionize treatment, the
Copenhagen episode shaped medicine’s future organization. Due to the epidemic’s scale
and Blegdam Hospital’s lack of mechanical ventilator units, positive pressure ventilation
was applied manually via “bag ventilation” (Wertheim, 2020). This logistical challenge
required the aid of roughly 1,500 dental and medical students, who worked in shifts.
After the epidemic, Ibsen was positioned to set up the first modern Intensive Care Unit

(ICU), a model that would soon became commonplace in hospitals elsewhere.

D Data Appendix

Our analysis uses data from a variety of sources. This appendix begins with a dis-
cussion of the sources of our patent data, with emphasis on our use of the patent data’s
information on technology classification systems and inventors’ residences. We next
discuss the sources for our data on the geography of the physician workforce, on area-

specific health spending, and on the geography of the scientific workforce.

D.1 Patent Data

Our analysis makes use of patent data from two sources. The first is the ground

breaking NBER patent database (Hall et al., 2001). The second is the “Comprehensive

68



Universe of U.S. Patents (CUSP)” database assembled by Berkes (2018).

The NBER patent database (Hall et al., 2001) contains high quality data on key in-
formation including technology classifications and the geographic residence of each
patent’s lead inventor. It is not sufficient for our purposes, however, because the database
begins with patents granted in 1963. Consequently, we make use of data more recently
assembled by Berkes (2018), which extend back to the earliest surviving records of the
U.S. Patent and Trademark Office (USPTO).3° The NBER patent database (Hall et al.,
2001) and the Berkes (2018) database are complementary for our analysis. Specifically,
although the NBER patent database is more complete in its coding of geography and
technology classes than the Berkes (2018) database, it is the Berkes (2018) database that
makes it possible for us to analyze decades preceding the introduction of the U.S. Medi-
care program.

Our assembly of the patent data proceeds as follows:

e We begin by using source files from Berkes (2018) to assemble a data set con-
taining, for each patent: the associated patent number, the first IPC classification
code (ipco), the full USPTO classification code (main_uspto), the year in which
the patent was filed (fyear), the year in which the patent was granted (iyear), the
county (inv_county1), full county/state fips code (inv_fips1), state (inv_state1), and

country (inv_country1) of the first listed inventor.

3°In a comparison of several recent efforts to compile data sets on the universe of U.S. patents, Andrews
(2019) concludes that the database laid out in Berkes (2018) is “currently the gold standard.” Additional
analyses of 19th and early 2o0th century patents have been made possible by these data. Berkes and Nencka
(2019), for example, analyze the effects of the original Carnegie Library donations on innovative activity,
finding that the establishment of Carnegie Libraries had substantial effects on patenting rates. Berkes et al.
(2019) use the historical patent data to analyze the rise and fall of cities. They find that diverse innovation
portfolios are associated with a city’s resilience to the rise and fall of particular industries, while cities with
innovation in the most central fields exhibit the strongest growth over subsequent decades. A similarly
historic patent data set is under analysis by Akcigit et al. (2017). The PATSTAT database maintained by
the European Patent Office, as analyzed for example by Doran and Yoon (2018), enables patents granted
by the U.S. Patent Office to be tracked as far back as 1899.
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We next create a variable describing whether the first inventor is located in the
United States. We code this variable to equal 1 if so, o if the inventor has is coded
as having a non-US residence, and missing if the first inventor’s country code is

missing in the Berkes (2018) database.

et s

We next merge in the variables “country,” “postate,” “subcat,” and “nclass” from

the NBER patent database.

We then use the variable “country” from the NBER patent database to fill in coun-

try codes that were missing in the Berkes (2018) database.

Next, we use Stata’s “split” command to extract the leading digits of the USPTO
codes from the variable “main_uspto.” We name the resulting variable “nclass-
google1” to reflect that it contains information equivalent to that in the variable

“nclass” from the NBER patent database.

Next, we augment the state postal codes from the NBER patent database to include
the postal codes for earlier patents, as coded in the Berkes (2018) database. This
fills in postal codes for patents granted prior to 1963, so long as the postal code is

not missing in the Berkes (2018) database.

Next, we create a variable that defines the time periods across which we divide the
data. In this coding, 1 corresponds with patents filed between 1950 and 1969, 2
with patents filed between 1970 and 1979, and 3 with patents filed between 1980

and 1989.

Next, we merge in a data set of state coding schemes that facilitate subsequent

merges with data from other sources.

Next, we merge in policy variation describing the impact of the introduction of

the Medicare program. We describe the construction of these variables in a later
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section of this appendix. We then execute some minor additional steps to prepare

these variables for our regression analysis.

e Next, we merge in data from the Historical Area Resource File, which we describe

in a later section of this appendix.

D.2 Data from the Historical Area Resource File

Our analysis makes use of a number of variables that describe the geographic dis-
tributions of physicians and other health care resources during the 1950s, 1960s, 1970s,
and 1980s. These data come from the “Bureau of Health Professions Area Resource File,
1940-1990” (Health Resources and Services Administration. Bureau of Health Profes-
sions, 1994). Hereafter, we refer to this data set as the Historical Area Resource File. We
extract these variables from the source data set (09o75-0o00o1-Data.txt). The source data
are at the county level. To merge with state-level patent counts, we collapse the data
to the state level, taking sums of all counts and taking means of variables describing
income per capita and median income. Prior to collapsing, we correct a notable error in
the source data, namely missing values for population counts for Los Angeles County.

Note that the Historical Area Resource File provides data on counts of physicians of
various types (e.g., categorized by specialty or categorized by whether they are in pri-
marily practicing, teaching, or research positions) in selected years. Below we enumerate

the key variables we utilize and the relevant years for which they were available.

e Income: available from 1959, 1975, 1980, and 1985. Begins on .txt file columns

26714, 26709, 26684, and 26659.

e Population: available from 1960, 1970, 1975, 1980, and 1985. Begins on .txt file

columns 19941, 19934, 19908, 19885, and 19861.
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e Total Practicing MDs: available from 1975 and 1985. Begins on .txt file columns

01228, and o01213.

e All MDs: available from 1958, 1968, 1975, 1985, and 1989. Begins on .txt file

columns 00747, 00741, 00736, 00711, and 00696.

e Total Research MDs: available from 1975 and 1985. Begins on .txt file columns

01228 and 01213.

e Total Teaching MDs: available from 1975 and 1985. Begins on .txt file columns

01193 and 01178.

e Hospital Expenditures: available from 1975 and 1985. Begins on .txt file columns

18619 and 18601.

D.3 Data from Early Reports on the Medicare Program and from the

Statistical Abstracts of the United States

The list below provides additional information on the sourcing for information re-
quired to construct our variables that describe variations in the impact of the introduc-
tion of Medicare on coverage and spending across the U.S. states. The list also provides

sourcing for counts of the number of scientists per capita.

e Data on the fraction of elderly individuals who were either uninsured or underin-
sured (meaning they did not have comprehensive insurance through Blue Cross)

come from Table 1 of Finkelstein (2007)

e Data on Medicare spending by state (in millions of dollars) in 1975 were taken
from Table 1.1.1, page 1-93, of “Medicare: 1974 and 1975” from Social Security

Administration, Office of Research and Statistics (1977).

72



e Data on the number of Engineers, the number of Scientists, and the Population in
each state in 1964 were taken from the 1967 edition of the Statistical Abstract of
the United States. Data on the number of Chemists in each state in 1966 were also
taken from the 1967 edition of the Statistical Abstract of the United States (U.S.

Census Bureau, Various Years).

e Data on the number of Engineers and the number of Natural Scientists in each state
in 1975 were taken from the 1977 edition of the Statistical Abstract of the United

States (U.S. Census Bureau, Various Years).

D.4 Construction of Variables that Describe the Impact of the Medi-

care Program’s Introduction

In this section we describe the variables we construct to proxy for the influxes of
well-insured patients and federal dollars associated with the Medicare program. In the
main text (section 5), we provided a detailed explanation of the steps taken to construct
our Innovation Opportunity Index, which is the variable that most closely corresponds
with the driver of innovating-by-doing in our theoretical model. The main text briefly
discusses a set of alternative variables we construct as proxies for the innovation op-
portunities generated by Medicare’s introduction. Here we describe the construction of
these alternative proxies in greater detail.

Our proxies for variations in Medicare’s impact are assembled using several sources.
Each measure is connected to the fraction of elderly individuals who were either unin-
sured or underinsured at baseline. We take these initial two variables from Finkelstein
(2007), as discussed in the main text. We then supplement the Finkelstein variables with
additional information. Most notably, each of our proxies incorporate information on the

number of elderly Medicare beneficiaries in each state. Some of our proxies make use of
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additional information on either the average spending of the elderly or on state-specific
spending per Medicare beneficiary.
The mathematical expression for the variable we call the Medicare Shock appears

below:

Elderly Uninsured Ratep,, ,q¢. ; X Medicare Spending,

Medicare Shock; s = (D.1)

State Population,

The construction of the Medicare Shock can be summarized as follows. First, we multiply
the baseline elderly uninsured rate (i.e., Elderly Uninsured Ratep,, 4. ;) by state-wide
Medicare spending in 1975 or 1970 (e.g., Medicare Spendinglgms for 1975). The resulting
variable is an estimate of the “shock” to spending associated with those who were unin-
sured prior to Medicare’s introduction. We have adjusted the values of Medicare Spending; .
from all years for inflation so that they are expressed in 2018 dollars. These variables are
set equal to o for observations that are associated with countries outside of the United
States. Finally, the variable is divided by state population to obtain a measure of new
spending normalized on a per state resident basis.

The mathematical expression for the variable we call Baseline Uninsured appears

below:

Elderly Uninsured RatePre_1965ls x Medicare Enrollees;

Baseline Uninsured; = (D.2)

State Population,

The expression for Baseline Uninsured is structured in the same manner as the expres-
sion for Medicare Shock. The only difference is that Medicare Spending, . has been
replaced by Medicare Enrollees;s. The variable thus captures the shock to the statewide

coverage rate rather than the shock to spending per state resident. We use Finkelstein’s
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measure of the fraction of the elderly who were underinsured to construct a similar
variable we call Baseline Underinsured. The variables Medicare Shock and Baseline
Uninsured are used in the analysis reported in table B.7.

Constructing the measure we call the Covered Market Share involves a somewhat
more complicated sequence of steps. Our definition of the Covered Market Share is
straightforward. It is simply 1 minus the share of spending that is paid for by consumers
out of pocket. This is a standard variable that has been used, for example, by Finkelstein
(2007) in her back-of-the-envelope calculations of the aggregate effects of Medicare on
the hospital sector. We are limited by the fact that we do not have sufficient information
to construct values of the Covered Market Share for each state and time period in our
analysis sample. We do, however, have sufficient information to estimate state-level
changes in the Covered Market Share from the pre-Medicare period to the post-Medicare
period. We can thus fill out the panel by either assuming a set of baseline values or by
assuming a set of post-Medicare values. We do this using nationwide information on
the out-of-pocket share of spending from the National Health Expenditure Accounts.

Recall that we constructed the variable Baseline Underinsured to be equal to the
fraction of a state’s population that would be newly comprehensively covered due to the
introduction of the Medicare program. Importantly, this describes Medicare’s impact on
the coverage rate rather than on the Covered Market Share of spending. The next step is
thus to multiply either Baseline Uninsured or Baseline Underinsured by a mark-up that
translates each percentage point increase in the coverage rate (driven by the Medicare

program) into a change in the Covered Spending Share. That is, we can calculate

A Covered Spending Share, = Baseline Underinsured; x Elderly Spending Multiplier

(D.3)
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The variable Elderly Spending Multiplier is related to the parameter w® from the main
text, which describes the intensity of care received by elderly individuals with com-
prehensive insurance coverage relative to the young. Although there are some minor
conceptual differences between the relevant Elderly Spending Multiplier and the param-

O we use the same values as before. That is, when we use of Finkelstein’s measure

eter w
of the fraction uninsured prior to Medicare, we assume an Elderly Spending Multiplier
of 2.5, and when we use Finkelstein’s measure of the fraction underinsured, we assume
an Elderly Spending Multiplier of 2.0.

As noted above, we can construct panel variation in the Covered Market Share in one
of two ways. One approach is to add ACovered Spending Share, to assumed values for
Covered Spending Share,,, ;945 A second approach is to subtract ACovered Spending Share,
from assumed values for Covered Spending Share, g5 ;. For our baseline measure of the

Covered Market Share, we assume for period p = 1, corresponding with the 1950s and

1960s, that

Covered Spending Share, ; = 0.55. (D.4)

We then calculate that

Covered Spending Share,, ; = Covered Spending Share; ; +- ACovered Spending Share,,

(D.5)

for periods p = 2 and p = 3, which correspond with the 1970s and the 1980s respectively.

Qs,t
Pops ¢

We then use the log(Covered Market Share; ;) in place of log( ) when estimating
equation (16).

For robustness analysis, we consider three alternative measures of the Covered Mar-
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ket Share, which span two dimensions. A first dimension of robustness involves the con-
struction of A Covered Spending Share,. While our baseline measure uses Finkelstein’s
measure of the fraction underinsured (with an Elderly Spending Multiplier of 2.0), two
of our alternative measures use Finkelstein’s measure of the fraction uninsured (with an
Elderly Spending Multiplier of 2.5). A second dimension of robustness is that we can
impose assumptions about Covered Spending Share, ; and Covered Spending Share; .,
rather than about Covered Spending Share, ;. When working in this direction, we then

construct

Covered Spending Share, ; = Covered Spending Share, ; — ACovered Spending Share,, ..

(D.6)

The variation in this version of the Covered Market Share differs subtly from our baseline
measure. This is because the baseline measures values for Covered Spending Share,
and Covered Spending Share; ; include variation associated with changes in the number
of Medicare beneficiaries in each state over time, which would largely be driven by

demographics.

D.5 Definition of Medical Equipment Patents

We use a combination of IPC codes and USPTO technology classes to identify patents
associated with medical equipment and devices. We first focus on patents with IPC codes
that begin with a61; this category is titled “MEDICAL OR VETERINARY SCIENCE; HY-
GIENE.” We then add missing patents from USPTO class 623, which corresponds with
prosthetic devices, and USPTO class 378, which corresponds with x-ray and gamma-ray
systems.

For all analyses that exclude pharmaceuticals, we remove the USPTO classes associ-

77



ated with “Drugs” and “Biotechnology.” These categories include

e USPTO class 424: Drugs
e USPTO class 514: Drugs
e USPTO class 435: Chemistry

e USPTO class 8oo: Multi-cellular Organisms

Some of our initial analyses focus on pharmaceuticals. Our counts of pharmaceutical
patents include all patents in USPTO classes 424, 514, 435, and 8oo.

For our analysis of the effects of Medicare, we exclude uncovered categories of health-
related patents. These categories include drugs, biotechnology, optical, dental, and vet-

erinary patents. The associated list of exclusions can be found below:

e USPTO class 351: Optics

USPTO class 433: Dentistry

IPC class a61d: Veterinary

USPTO class 424: Drugs

USPTO class 514: Drugs

USPTO class 435: Chemistry

USPTO class 8oo: Multi-cellular Organisms
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