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1 Introduction

This paper considers two questions raised by the conventional use of the arbitrage pricing theory
(APT) in empirical finance. Firstly, APT is generally regarded as an empirical model and there
is a question as to how the risk factors in the APT formulation relate to the inter-temporal model
of asset pricing in which a stochastic discount factor represents the fundamentals. Secondly,
estimation of risk premia and the construction of the factors tends to be done using portfolios,
and there is a question as to whether using portfolios, rather than individual securities, helps
identify the prices of risk factors and reduces the small sample bias.
The APT, formalised by Ross (1976), assumes that there are many assets, with returns

determined by a small number of factors, and that competitive markets do not permit arbitrage
opportunities in equilibrium. Thus returns can be split into two components: a non-diversifiable
systematic risk component and an idiosyncratic part which can be eliminated in a well diversified
portfolio. Assets with similar risk factors are close substitutes so should have similar expected
returns. In this linear return generating process, expected excess returns are proportional
to systematic risk, measured by factor loadings and risk premia are the coeffi cients of such
loadings.1

The loadings and risk premia are usually estimated using a two-pass procedure suggested
by Fama and MacBeth (1973). The first-pass, is a time series regression of excess returns for
each asset, rit, i = 1, 2, ..., n on K observed factors, fkt, k = 1, 2, ..., K, t = 1, 2, ..., T. This is
used to estimate the factor loadings, βik, which are assumed to be stable over the given sample
period. The second-pass, cross section regression of average returns on the factor loadings is
then used to price the factors and obtain the risk premia, λk, for the factor fkt.2 For estimation,
it is assumed that factors are strong in the sense that they impact all security returns, almost
surely. In terms of a measure of factor strength, discussed further below, a factor is said to be
strong if αk = 1, semi-strong if 1 > αk > 0.5, and weak if αk ≤ 0.5. Throughout this paper we
assume that the potential factors are known. There is no shortage of suggested factors, Harvey
and Liu (2019) document a "factor zoo" of over 400 potential factors in their paper.
Following the pioneering contribution of Fama and MacBeth, it is conventional in this

literature to use mean returns on a relatively small number of portfolios (P < n) formed from
the underlying securities in the second pass regression rather than the securities themselves.
It is argued that the sampling errors in the estimates of the first stage βik from individual
securities can be substantially reduced by using the β′s of portfolios. We provide a theoretical
investigation of this practice and give conditions under which the use of portfolios rather than
individual securities could be justified.
More specifically, this paper first relates factors in the statistical factor model to a theo-

retically consistent set of factors defined by their conditional covariation with the stochastic
discount factor, denoted bymt, used to price securities within inter-temporal asset pricing mod-
els. We show that a risk factor is priced only if its conditional covariance with mt is non-zero.
In contrast, pricing errors arise when there is non-zero correlations between the idiosyncratic
errors of asset returns and the stochastic discount factor. The APT theory places bounds on
the pricing errors, requiring them to be square summable.

1Wei (1988) links the APT to the capital asset pricing model, CAPM.
2The asymptotic properties of the Fama-MacBeth estimation procedure have been investigated by Shanken

(1992), Shanken and Zhou (2007), Kan, Robotti and Shanken (2013), and Bai and Zhou (2015). See also the
survey paper by Jagannathan, Skoulakis & Wang (2010) for further references.
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Secondly, having linked the APT to the inter-temporal asset pricing condition, we compare
the use of portfolios and individual securities in the identification of risk premia using an ap-
proximate linear factor model. The assumptions made about portfolio weights cover a wide
variety of portfolio types, both fully diversified and non-diversified portfolio weights are con-
sidered. We show that the use of portfolio returns and their associated β′s in the second pass
does not alleviate the small T bias and in some settings could even accentuate it. We begin by
assuming known factor loadings. This allows us to focus on the identification of risk premia in
the second pass regression, without the complications arising from the first pass estimation of
factor loadings, βik. If one allows for pricing errors, which are often ignored in the literature on
estimation, n has to be large. We show, that for known loadings and large n the risk premia
can be

√
n consistently estimated if all the factors are strong (namely if αk = 1 for all k), and

the pricing errors are suffi ciently weak (namely if a measure of their strength αη = 0). This
applies whether individual securities or portfolios are used.3

In the more realistic case where the first-pass loadings are estimated, there is a small T bias
on the second-pass risk premia estimates, whether individual securities or portfolios are used.
We obtain an expression for the small T bias of risk premia using portfolios which corresponds
to a similar result obtained by Shanken (1992) using individual securities. But when using
portfolio returns the small T bias depends on the portfolio weights and error covariances, and
can be estimated consistently only for large n and T , even if it is assumed that the errors are
weakly cross-correlated. This contrasts with the result obtained for individual securities that
does not depend on error covariances. We also compare the bias of estimating the risk premia
based on portfolio returns with the one based on individual securities and show that in general
no clear cut ranking of the two estimators is possible. This is illustrated in the case of a simple
example, where it is shown that the use of portfolio returns can be justified only when returns
can be sorted a priori into groups with systematically different loadings.
The rest of the paper is organized as follows. Section 2 relates the statistical factor model

to the theory consistent factor model in terms of the stochastic discount factor to derive the
APT risk premia and pricing errors. Section 3 analyses the effect of using portfolios for the
identification of the risk premia for the factors from a cross section when the factor loadings are
known. Section 4 analyses the effect of using portfolios when the factor loadings are unknown
and provides a Shanken type bias correction formula. Section 5 has some concluding comments.
Lemmas, proofs and related results are provided in appendices.
Notation: Generic positive finite constants are denoted by C when large, and c when small.

They can take different values at different instances. →p denotes convergence in probability as
n, T → ∞. λmax (A) and λmin (A) denote the maximum and minimum eigenvalues of matrix
A. A > 0 denotes that A is a positive definite matrix. ‖A‖ = λ

1/2
max(A′A) and ‖A‖F =

[Tr(A′A)]1/2 denote the spectral and Frobenius norm of matrix A, respectively. If {fn}∞n=1

is any real sequence and {gn}∞n=1 is a sequences of positive real numbers, then fn = O(gn),
if there exists C such that |fn| /gn ≤ C for all n. fn = o(gn) if fn/gn → 0 as n → ∞.
Similarly, fn = Op(gn) if fn/gn is stochastically bounded, and fn = op(gn), if fn/gn →p 0, where
→pdenotes convergence in probability. If {fn}∞n=1 and {gn}

∞
n=1 are both positive sequences of

real numbers, then fn = 	 (gn) if there exists n0 ≥ 1 and positive finite constants C0 and C1,
such that infn≥n0 (fn/gn) ≥ c > 0, and supn≥n0 (fn/gn) ≤ C <∞.

3The significance of factor strengths for the estimation of risk premia when using individual securities is
investigated in a companion paper (Pesaran and Smith, 2021).
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2 Statistical factor models, the stochastic discount fac-
tor and the APT

This section sets out the statistical factor model, imposes the equilibrium conditions from
standard pricing theory in terms of the stochastic discount factor to derive the associated
theoretically consistent factor model. This is then interpreted in terms of the risk premia and
pricing errors of the APT model used by Ross and others in the literature. The implications of
the theory consistent model for portfolios is then examined.

2.1 Statistical and theory consistent factor models

Following the literature we suppose that returns, ri,t+1, on securities i = 1, 2, ...n are generated
by a linear multi-factor model of the form:

ri,t+1 − rft = ait +

K∑
k=1

βikfk,t+1 + ui,t+1, for i = 1, 2, ..., n, (1)

where rft is the risk free rate; ait are the intercepts in the factor model; fk,t+1, k = 1, 2, ..., K are
the observed common factors with associated factor loadings, βik.4 The error ui,t+1 is a mean
zero serially uncorrelated idiosyncratic component of returns.5 The model can be written more
compactly as

ri,t+1 − rft = ait + β
′

ift+1 + ui,t+1, (2)

where βi = (βi1, βi2, ..., βiK)′, and ft+1 = (f1,t+1, f2,t+1, ..., fK,t+1)′.
We now examine the restrictions that the standard inter-temporal asset pricing theory

imposes on the above ‘statistical’factor model in order to interpret the risk premia and pricing
errors in terms of a theory consistent model. As it is well known, the inter-temporal equilibrium
pricing condition is given by

Et

[
mt+1(ri,t+1 − rft )

]
= 0, (3)

for all i, where mt+1 is the stochastic discount factor used to price all assets in the market,
and rft is the risk free rate, and Et(◦) stands for conditional expectations with respect to the
information set, It. More specifically Et(mt+1) = E (mt+1 |It ). In addition,

Et(mt+1) = 1/(1 + rft ) > 0. (4)

To derive conditions under which the statistical factor model (2) also satisfies the equilibrium
pricing condition, substitute for ri,t+1 − rft from (2) in (3), to give

aitEt(mt+1) + β
′

iEt (mt+1ft+1) + Et(mt+1ui,t+1) = 0.

Since Et(mt+1) > 0, then ait can be solved as

ait = − 1

Et(mt+1)

[
β
′

iEt (mt+1ft+1) + Et(mt+1ui,t+1)
]
. (5)

4We assume that the loadings, βik, are constant, but this could easily be relaxed at the cost of a more
complex notation. In practice, the time-varying loadings are estimated by rolling regressions.

5Ross (1976) assumed ui,t+1 were cross sectionally independent, Chamberlain & Rothschild (1983) weakened
this to an approximate factor model that requires the maximal eigenvalue of the covariance matrix of ui,t+1 is
bounded.
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Imposing this restriction by substituting (5) back into (1) yields the following theory consistent
factor model

ri,t+1 − rft = β
′

igt+1 + ηit + ui,t+1, (6)

where

gt+1 = ft+1 −
Et (mt+1ft+1)

Et(mt+1)
(7)

and

ηit = −Et(mt+1ui,t+1)

Et(mt+1)
, (8)

is the pricing error of the ith security. Note that by construction the theory consistent factor
model in (6) satisfies the equilibrium pricing condition (3) for all i. Also using the identity
Covt(mt+1, ft+1) = Et (mt+1ft+1) − Et (mt+1)Et (ft+1) in (7) the theory consistent factors, gt,
can be written equivalently as:

gt+1 = ft+1 − Et (ft+1)− Covt(mt+1, ft+1)

Et(mt+1)
. (9)

This representation provides a transparent link between risk premia and (conditional) covari-
ance of ft+1 and mt+1. This follows since Et [ft+1 − Et (ft+1)] = 0, and taking conditional
expectations of (6) yields (note that Et (ηit) = ηit)

Et

(
ri,t+1 − rft

)
= β

′

iEt (gt+1) + ηit, (10)

whereEt (gt+1) = −Covt(mt+1,ft+1)
Et(mt+1)

, is the vector of risk premia, withEt (gk,t+1) = −Covt(mt+1,fk,t+1)

Et(mt+1)

being the conditional risk premium of factor gk,t+1. Therefore, the statistical factor fk,t+1 has a
non-zero conditional risk premium if it is correlated with the discount factor. A simple example
of such a factor is consumption growth discussed in the example below.
The above results readily generalize to (unconditional) risk premia if gt+1 and ηit are sta-

tionary processes. In this case taking unconditional expectations of (10) we obtain:

E
(
ri,t+1 − rft

)
= β

′

iE (gt+1) + E(ηit),

This corresponds to the APT cross section return regression

E
(
ri,t+1 − rft

)
= β

′

iλ+ ηi, (11)

where (in terms of the theory consistent factor model) we have λ = E (gt+1), and ηi = E(ηit).
Here λ is the vector of risk premia, and ηi is the pricing error of the ith security.
Our derivation allows us to relate λ to the theory consistent factor model. In particular:

λ = E (gt+1) = −E
[
Covt(mt+1, ft+1)

Et(mt+1)

]
= −E

[
(1 + rft )Covt(mt+1, ft+1)

]
, (12)

or for an individual factor, fk,t+1,

λk = −E
[
(1 + rft )Covt(mt+1, fk,t+1)

]
, for k = 1, 2, ..., K. (13)

The above results are summarized in the following proposition:
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Proposition 1 Suppose that returns, ri,t+1, on security i = 1, 2..., n are generated according to
the multi-factor model (1) subject to the inter-temporal equilibrium conditions in (3). Then the
risk premium of factor fk,t+1 is given by (13) and only factors that are conditionally correlated
with the stochastic discount factor, mt+1, have non-zero risk premia.

Example 1 To illustrate the derivation of the theory consistent factor model, consider the case
of the stochastic discount factor which comes from the familiar consumption based asset pricing.
Assume that utility is based on current and discounted expected future consumption, ρ is the
subjective discount rate and there is power utility U (Ct) = C

(1−κ)
t /(1 − κ), with κ > 0. Then

we have mt+1 = e−κ∆ct+1/(1 + ρ), where ct = log(Ct). For this specification

gt+1 = ft+1 −
Et
(
e−κ∆ct+1ft+1

)
Et(e−κ∆ct+1)

,

and using
Covt(e

−κ∆ct+1 , ft+1) = Et
(
e−κ∆ct+1ft+1

)
− Et

(
e−κ∆ct+1)Et(ft+1

)
= ft+1 −

Covt(e
−κ∆ct+1 , ft+1) + Et

(
e−κ∆ct+1)Et(ft+1

)
Et(e−κ∆ct+1)

= [ft+1 − Et(ft+1)]− Covt(e
−κ∆ct+1 , ft+1)

Et(e−κ∆ct+1)
.

Thus corresponding to (13) λk = −E
[
(1 + rft )Covt(e

−κ∆ct+1 , fk,t+1)
]
, for factor fk,t+1 to have

a non-zero risk premium we must have Covt(e−κ∆ct+1 , fk,t+1) 6= 0.

2.2 Pricing errors

From (8), the pricing errors in the theory consistent factor model is

ηi = E (ηit) = −E
[
(1 + rft )Et(mt+1ui,t+1)

]
, (14)

which Ross (1976, condition 18) assumes to be bounded such that
n∑
i=1

η2
i < C. (15)

To further investigate the pricing error, decompose the errors in the statistical factor model,
ui,t+1, into a part correlated with mt+1 and a remaining idiosyncratic part uncorrelated with
mt+1, namely

ui,t+1 = φimt+1 + εi,t+1, (16)

thus using (16) in (8)

ηi = −φiE
[
(1 + rft )m2

t+1

]
. (17)

Then in terms of Ross’s condition (15) we must have
n∑
i=1

η2
i = θ2

(
n∑
i=1

φ2
i

)
, (18)

where θ = E
[
(1 + rft )m2

t+1

]
> 0. The strength of the pricing errors depends on their degree

of pervasiveness, namely the rate at which
∑n

i=1 φ
2
i rises with n. The APT condition requires

that
∑n

i=1 φ
2
i < C.
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2.3 Portfolios

As noted in the introduction, the analysis of factor models is usually done in terms of portfolios.
Consider a return portfolio rpt =

∑n
i=1wiprit, represented by the vector of weights, wp =

(w1p, w2p, ..., wnp)
′, where

∑n
i=1 wip = 1. Then aggregating (11) it follows that

Et

(
rp,t+1 − rft

)
= β̄

′
pλt + η̄pt,

p = 1, 2, ..., P ≥ K,

for p = 1, 2, ..., P , where

β̄p =

n∑
i=1

wipβi, and η̄pt =

n∑
i=1

wipηit.

If the weights are granular such that w′pwp=	 (n−1), and the pricing errors are bounded such
that λmax(Vη) < C

V ar

(
n∑
i=1

wipηit

)
= w′pVηwp ≤

(
w′pwp

)
λmax(Vη)→ 0.

It is possible to identify the risk premia, λt, using portfolio returns rpt, for p = 1, 2, ..., P so
long as β̄p does not tend to zero.
In this regard, following the literature, the equilibrium condition, (3), can be written equiv-

alently as

Et

(
ri,t+1 − rft

)
= −Covt(ri,t+1 − rft ,mt+1)

Et(mt+1)
= β′iEt(gt+1) + ηit,

Et

(
n∑
i=1

wipri,t+1 −
n∑
i=1

wipr
f
t

)
= −

∑n
i=1 wipCovt(ri,t+1 − rft ,mt+1)

Et(mt+1)

= −
Covt

[∑n
i=1wip

(
ri,t+1 − rft

)
,mt+1

]
Et(mt+1)

,

or more compactly

Et

(
r̄p,t+1 − rft

)
= −Covt(r̄p,t+1 − rft ,mt+1)

Et(mt+1)
.

The above analysis highlights the importance of distinguishing between the ‘statistical factor
model’ given by (2), and the ‘theory consistent factor model’ given by (6). The focus of
theoretical and empirical analysis should be on the theory consistent factor model, where it
clearly shows that only factors that are known (or expected) to be correlated with the stochastic
discount factor should be considered for inclusion in return regressions.
We now conduct a more formal presentation of the issues that surround identification of

risk premia using portfolios.
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3 Identification of risk premia

The debate over whether it is better to use portfolios or individual securities to estimate risk
premia is an old one, and dates back to Fama and MacBeth (1973) who recommend using
mean returns on a relatively small number of portfolios (P < n). Ang, Liu and Schwarz (2020)
provide a survey of the issues involved, and consider the effi ciency of estimation of risk premia
using portfolios compared to individual securities. They comment "The majority of modern
asset pricing papers testing expected return relations in the cross section now use portfolios."
(p.710). Fama and MacBeth argued that more reliable estimates of λ can be obtained by using
portfolios because the sampling errors in the estimates of the first stage βik from individual
securities can be substantially reduced by using the β̄pk of portfolios. To compensate for loss
of information from using portfolios as compared to individual securities, it is often recognized
that P must be relatively large and the different portfolios not too closely correlated. Fama
and MacBeth (1973, p. 615) recommend forming P = 20 equal weighted portfolios from ranked
values of β̂ik estimated over a training sample of four years. Portfolios are also often used to
construct factors, like the five Fama and French (2015) factors.
In this section, we provide a theoretical framework for comparing the use of portfolios and

individual securities for identification and estimation of risk premia. We consider two types
of portfolio, a small number of fully diversified portfolios, and a large number of portfolios
formed from a small number of securities. To clarify the central issues in identification, we
first assume factor loadings are known and do not need to be estimated in the first-pass. This
avoids the complications associated with the small T bias that comes from using estimated
factor loadings. Unlike much of the literature on estimation of risk premia, we explicitly allow
for pricing errors and establish the restrictions on the pricing errors needed for the identification
of the risk premia.
In the next section, we relax the assumption of known factor loadings and compare the

small T bias when one uses portfolios rather than individual securities.

3.1 Preliminaries

First we introduce the following definition of factor strength discussed in detail in Pesaran and
Smith (2021) and make a number of assumptions to be used throughout the paper.

Definition 1 (Factor strengths) The strength of factor fkt is measured by its degree of perva-
siveness as defined by the exponent αk in

n∑
i=1

β2
ik = 	(nαk), for k = 1, 2, ..., K, (19)

and 0 ≤ αk ≤ 1. We refer to {αk, j = 1, 2, ..., K} as factor strengths. Factor fkt is said to be
strong if αk = 1, semi-strong if 1 > αk > 0.5, and weak if αk ≤ 0.5. We also require suffi cient
heterogeneity across the such that

n∑
i=1

(
βik − β̄k

)2
= 	 (nαk) ,

where β̄k = n−1
∑n

i=1 βik.
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Remark 1 The above definition of factor strength allows for the possibility of non-zero pricing
errors (ηi 6= 0) in the theory consistent factor model (6), and in the related APT equilibrium
condition (11).

Assumption 1 (Idiosyncratic errors) The errors {uit, i = 1, 2, ..., n; t = 1, 2, ..., T} are serially
independent over t, with zero means, E(uit) = 0, and constant covariances, E(uitujt) = σij,
such that 0 < c < σii < C <∞,

(a): sup
j

n∑
i=1

|σij| < C,

and

(b): n−2

n∑
i=1

n∑
j=1

Cov
(
u2
it, u

2
jt

)
→ 0, as n→∞.

Assumption 2 (Pricing errors) The pricing errors, ηi, defined by (14) have zero means and
satisfy the approximate bound

n∑
i=1

|ηi| = Op (nαη) . (20)

Assumption 3 (Common factors) The T×K matrix F = (f1, f2, ..., fT )′ is full column rank and
theK×K matrix T−1F′MTF is positive definite. T−1F′MTF→p Σf = E

[
(ft+1 − µf ) (ft+1 − µf )′

]
>

0, where µf = Et (ft+1), K is a fixed number, MT = IT − T−1τ Tτ
′
T , and τ T is a T × 1 vector

on ones.

Assumption 4 (Factor loadings) (a) The factor loadings βi and the errors ujt are indepen-
dently distributed for all i, j and t. (b) supi ‖βi‖ < C, and (c) The n × K matrix of factor
loadings, Bn = (β1,β2, ...,βn)′, have full column rank and Σββ, defined by

lim
n→∞

(
n−1B′nMnBn

)
= Σββ, (21)

is positive definite, where Mn = In − n−1τ nτ
′
n, and τ n is an n× 1 vector of ones.

Part (a) of Assumption 1 is standard in the literature and allows for errors to be weakly
cross correlated. It rules out serial correlation, but can be relaxed to allow for a limited degree
of serial correlation when both n and T are large. But it is required if T is fixed and n large.
Assumption 2 is more general than is assumed in the literature which either ignores the

pricing errors, setting ηi = 0, or assumes a very limited degree of pricing errors by setting
αη = 0.6 Note also that the above assumptions do allow for correlations between pricing errors
and the factor loadings.
Assumptions 3 and 4 are also standard in the literature.

Remark 2 Assumption 4 can be relaxed if we were willing to settle for a slower rate of con-
vergence, and the factor strengths, αk for factors ftk, k = 1, 2, ..., K are known, then condition
(21) can be further relaxed by requiring that limn→∞ (DnB

′
nMnBnDn) is positive definite where

Dn is a K × K diagonal matrix with elements n−αk/2, for k = 1, 2, ..., K. See Pesaran and
Smith (2021).

Remark 3 The asymptotic covariance matrix of factor loadings, Σββ, defined by (21) is posi-
tive definite only if all the factors are strong, namely if αk = 1 for all k = 1, 2, ..., K.

6This assumption is discussed further in remarks 5 and 6 of Pesaran and Smith (2021).
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3.2 Identification using portfolios with known loadings

We consider two types of portfolio weights: (a) a small number of fully diversified portfolios,
and (b) a large number of portfolios formed from a small number of securities. In both cases
we denote the portfolio weights by the n × 1 vector wp = (w1p, w2p, ..., wnp)

′, and consider P
return portfolios, rpt, defined by

rpt =
n∑
i=1

wiprit = w′prnt, for p = 1, 2, ..., P. (22)

Collecting all the portfolio weights in the n×P portfolio weights matrixWP = (w1,w2, ....,wP ),
we also have η̄P = W′

Pηn, and
rPt = W′

P rnt, (23)

where rPt = (r1t, r2t, ..., rPt)
′, is the P × 1 vector of portfolio returns.

In the case of fully diversified portfolios we assume that supi,p {n |wip|} < C < ∞ and
infi,p {n |wip|} > c > 0, which ensures wip = 	 (n−1) and ‖WP‖ = 	

(
n−1/2

)
. In the case of

non-diversified portfolios, wip is non-zero only for a finite number of securities. The following
assumption covers both types of portfolios and is generally applicable.

Assumption 5 (Portfolio weights) The portfolio weights, wip, for i = 1, 2, .., n; p = 1, 2, ..., P
satisfy the following conditions

(a):
n∑
i=1

wip = 1, (b): sup
p,n

n∑
i=1

|wip| < C, and (c): sup
i,P

P∑
p=1

|wip| < C. (24)

Remark 4 The normalization restriction,
∑n

i=1wip = 1, is made for convenience and is not
necessary and other choices such as

∑n
i=1w

p
i = 0, can also be entertained. Short sales (wpi <

0) are allowed, and it is easily verified that the Assumption 5 applies to a wide variety of
portfolios, fully diversified or mutually exclusive portfolios with each security appearing in only
one portfolio. Condition (b) of the assumption follows from the normalization condition if
wi ≥ 0. The important binding condition (c) restricts the frequency with which the same
security enters all the P portfolios. Conditions (a) and (b) can also be written as bounds on
rows and columns of WP , namely ‖WP‖1 < C and ‖WP‖∞ < C.

Remark 5 For the purpose of identification analysis that follows, the primary difference be-
tween fully diversified and non-diversified portfolios is captured by the rate at which the spectral
norm of the portfolio weights matrix, ‖WP‖, varies with the number of securities included in
each portfolio. In the case of fully diversified portfolios we require that ‖WP‖ = 	

(
n−1/2

)
, and

for non-diversified portfolios we will assume that ‖WP‖ = 	
(
m−1/2

)
where m is the maximum

number of securities included in a single portfolio. As an example of the latter note that for
mutually exclusive portfolios w′pwp′ = 0 for all p 6= p′, and w′pwp = 1/m, where m is the
integer part of n/P , and ‖WP‖ = m−1/2. In this set up m is fixed and n and P → ∞, such
that n/P → m ≥ 1. When m = 1 portfolios and individual securities coincide.

Aggregating (1) we have the following expressions for portfolio excess returns (using
∑n

i=1w
p
i =

1)
rp,t+1 − rft = ap + β

′
pft+1 + up,t+1, for p = 1, 2, ..., P, (25)
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where

ap =
n∑
i=1

wipai, βp =
n∑
i=1

wpiβi, and up,t+1 =
n∑
i=1

wipui,t+1. (26)

The APT equilibrium condition for portfolios, corresponding to (11), is given by

E (rp,t+1) = µ̄p = rf + β
′
pλ+ η̄p,

where λ is defined as before. For identification of λ (given the portfolio mean returns, µ̄p, and
portfolio factor loadings, βp, p = 1, 2, ..., P ), we stack the portfolio return equations to obtain

µ̄P = rfτ P +BPλ+ η̄P ,

where µ̄P = (µ̄1, µ̄2, ..., µ̄P )′ , B
′
p =

(
β1,β2, ...,βP

)
, η̄P = (η̄1, η̄2, ..., η̄P )′. To identify λ using

the portfolio return equations it is now required that

P−1
(
B
′
PMPBP

)
> 0, and P−1

(
B
′
PMP η̄P

)
→p 0,

where MP = IP − P−1τ Pτ
′
P , and τ P is a P × 1 vector of ones. Note that

βp =
n∑
i=1

wipβi = B′nwp, η̄p =
n∑
i=1

wipηi = w′pηn,

and

B
′
P = B′n (w1,w2, ....,wP ) = B′nWP , (27)

η̄P = W′
Pηn.

Now write the identification conditions when portfolio returns are used as

P−1
(
B
′
PMPBP

)
= P−1 (B′nWPMPW′

PBn) > 0, (28)

and
P−1 (B′nWPMPW′

Pηn)→p 0. (29)

Using portfolios does not relax the identification condition but requires that the portfolio
weights are such that WPMPW′

P is a full rank matrix. Factors must be strong whether
individual securities or portfolios are used for estimation of risk premia. To show that this con-
dition is also necessary when portfolios are used to estimate λ, suppose that n−1B′nBn → 0, as
n→∞, and hence λ cannot be identified at the standard

√
n rate using individual securities.

Consider the limiting properties of P−1
(
B
′
PMPBP

)
given by (28), and note that7

P−1
∥∥∥B′PMPBP

∥∥∥ = P−1 ‖B′nWPMPW′
PBn‖

≤ P−1 ‖Bn‖2 ‖WP‖2 .

7Note that since MP is an idempotent matrix then ‖MP ‖ = 1.
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Consider the case of non-diversified portfolios and recall that in this case ‖WP‖2 = 	
(

1
m

)
, and

hence
P−1

∥∥∥B′PMPBP

∥∥∥ ≤ C n−1 ‖Bn‖2 ,

and P−1
∥∥∥B′PMPBP

∥∥∥→ 0 if n−1B′nBn → 0. The same result follows in the case of fully diver-

sified portfolios where P is fixed and ‖WP‖2 = 	
(

1
n

)
. Condition (29) matches an associated

condition for individual securities. Using (29) note that

P−1 ‖B′nWPMPW′
Pηn‖ ≤ P−1 ‖Bn‖ ‖WP‖2 ‖ηn‖ ,

and since ‖WP‖2 = 	
(

1
m

)
, for the non-diversified portfolios, we have (recall that mP = n)

P−1 ‖B′nWPMPW′
Pηn‖ ≤ C

∥∥n−1/2Bn

∥∥∥∥n−1/2ηn
∥∥ ,

and the right hand side of the above tends to zero if
∥∥n−1/2ηn

∥∥ → 0, since
∥∥n−1/2Bn

∥∥ < C.
But ∥∥n−1/2ηn

∥∥2
= n−1η′nηn = n−1

n∑
i=1

η2
i = O(nαη−1),

and hence P−1 ‖B′nWPMPW′
Pηn‖ → 0, if αη < 1, which is the APT equilibrium condition at

the level of individual securities.

4 Identification of risk premia with estimated factor load-
ings

The above analysis shows that even when the true factor loadings, βik, are known the factor
risk premia could only be identified at the standard

√
n if the factors are strong, αk = 1 such

that
∑n

i=1(βik − βk)
2 = 	(n). In practice the factor loadings must be estimated and then

additional restrictions are required. In what follows we derive the finite T, large n, bias of
two-pass estimators of risk premia when portfolio returns are used. But for the purpose of
comparison of risk premia estimates based on individual securities and portfolio returns we
first consider the estimation based on individual securities discussed in the companion paper
by Pesaran and Smith (2021).

4.1 Using individual security returns

Stacking the returns on individual securities by time we have

rnt = an +Bnft + unt, for t = 1, 2, ..., T, (30)

where rnt = (r1t, r2t, ...., rnt)
′ is an n× 1 vector of excess returns on individual securities during

period t, an = (a1,a2, ...,an)′, Bn = (β1,β2, ...,βn)′, and unt = (u1t, u2t, ...., unt)
′. Stacking the

return equations by individual securities we have

ri◦ = aiτ T + Fβi + ui◦, (31)
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where ri◦ = (ri1, ri2, ..., riT )′, F = (f1, f2, ..., fT )′, and ui◦ = (ui1, ui2, ..., uiT )′. True values of the
risk premia, λ, are defined by the cross section regressions (CSR)

E (rit) = λ0 + β′iλ+ ηi, for i = 1, 2, ..., n, (32)

where ηi is the pricing error.
The two-pass estimator of risk premia, λ, based on individual returns is given by8

λ̂n =
(
B̂′nTMnB̂nT

)−1

B̂′nTMnr̄n, (33)

where Mn = In − n−1τ nτ
′
n as defined above, B̂nT = (β̂1,T , β̂2,T , ..., β̂n,T )′, r̄n = (r̄1, r̄2, ..., r̄n)′ ,

r̄i◦ = T−1
∑T

t=1 rit,
β̂i,T = (F′MTF)

−1
F′MT ri◦, (34)

F = (f1, f2, ..., fT )′, MT = IT − T−1τ Tτ
′
T , and ri◦ = (ri1, ri2, ..., riT )′. Under (31), β̂i,T =

βi + (F′MTF)−1 F′MTui◦, and hence

B̂nT = Bn + UnGT , (35)

where Un = (u1◦,u2◦, ...,un◦)
′, and GT = MTF (F′MTF)−1. Also, averaging the return equa-

tions (31) over t for each i, we have

r̄i◦ = ai + β′if̄T + ūi◦, and E (r̄i) = ai + β′iE
(
f̄T
)
, (36)

where f̄T = T−1
∑T

t=1 ft, and ūi◦ = T−1
∑T

t=1 uit. Hence, using the above results together with
the APT condition given by (32), we have

r̄n = λ0τ n +Bnλ
∗
T + ū+η, (37)

where
λ∗T = λ+dT , (38)

dT = f̄T − E
(
f̄T
)

= T−1

T∑
t=1

[ft − E(ft)] , (39)

ū = (ū1◦, ū2◦, ..., ūn◦)
′ , and η is the n× 1 vector of pricing errors.

As established in Pesaran and Smith (2021), for any fixed T > k we have (as n→∞)

λ̂n−λ→p

[
Σββ +

σ2

T

(
F′MTF

T

)−1
]−1(

ΣββdT −
σ2

T

(
F′MTF

T

)−1

λ

)
. (40)

where λ̂n is defined by (33) and

σ2 = lim
n→∞

1

n

n∑
i=1

σ2
i > 0. (41)

8The two-pass estimator depends on T as well as on n. We omit the subscript T for convenience, but keep
n to highlight the direct use of individual returns in the computation of the estimator.
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4.2 Using portfolio returns

Consider now the estimates of λ based on portfolios discussed in Section 3.2. Using portfolio
returns defined by (23), we assume the portfolio weights, wip, are fixed and do not depend on the
factor loadings or the errors. The risk premia can be estimated either forming portfolio betas,
as in (26), or basing the two-pass regressions on portfolio returns, r̄pt =

∑n
i=1 wiprit = w′prnt,,

for t = 1, 2, ..., T and p = 1, 2, ..., P . The resultant estimates will be identical. Denoting the
portfolio estimate of λ by λ̂P we have

λ̂P =
(
B̂
′
PTMP B̂PT

)−1 (
B̂
′
PTMP r̄P

)
, (42)

where r̄P = ( r̄1, r̄2, ..., r̄P )′, r̄p = T−1
∑T

t=1 r̄pt, B̂PT = (β̂1,T , β̂2,T , ..., β̂P,T )′,

β̂p,T =
n∑
i=1

wipβ̂i,T = (F′MTF)
−1

F′MT

n∑
i=1

wipri,T = (F′MTF)
−1

F′MT r̄P .

To relate λ̂P to the estimator, λ̂n, based on the individual securities, we note that B̂PT =
W′

P B̂nT , and r̄P = W′
P r̄n, where WP = (w1,w2, ...,wP ), with B̂nT and r̄P defined above.

Using these results λP can now be written equivalently as

λ̂P =
(
B̂
′
nTWPMPW′

P B̂nT

)−1 (
B̂
′
nTWPMPW′

P r̄n

)
. (43)

It is clear that the limiting properties of λ̂P depend on the choice of WP , and reduces to λ̂n
only if P = n and WP = In. In what follows we shall consider the asymptotic properties of
λ̂P when Wp (or wip) satisfy the normalization and the summability conditions of Assumption
5. The asymptotic properties of λ̂P can now be derived using (35) and (37) in (43) under the
following identification assumption:

Assumption 6 (Portfolio factor loadings) (a) The k × 1 vector of portfolio loadings, β̄p =∑n
i=1wipβi and the portfolio errors, up′t =

∑n
i=1 wip′uit are independently distributed for all

p, p′ = 1, 2, ..., P and t = 1, 2, ..., T . (b) supp
∥∥β̄p∥∥ < C, and (c) The n × k matrix of factor

loadings, Bn = (β1,β2, ...,βn)′, have full column rank and Σββ,w defined by

lim
P→∞

(
P−1B′nWPMPW′

PBn

)
= Σββ,w > 0, (44)

is positive definite.

Remark 6 When portfolio weights, wip, satisfy the bounds in (24), then it is readily seen that
part (b) of the above assumption follows from part (b) of Assumption 4, and it is therefore
somewhat weaker. Similarly, part (a) of the above assumption follows from part (a) of As-
sumption 4. The weaker conditions in parts (a) and (b) of the above assumption is party due
to the implicit assumption that the portfolio weights, wip, are given and known. Part (c) of
the above assumption is more demanding as compared to part (c) of Assumption 4, and also
imposes further restrictions on the portfolio weights.
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Remark 7 As an example, suppose K = 1, with Bn = (β1, β2, ..., βn)′, and note that B′nWP =(
β̄1, β̄2, ..., β̄P

)′
, where β̄p =

∑n
i=1 wipβi. Suppose further that

∑n
i=1w

2
ip = O (m−1), and βi

follows the random coeffi cient specification βi = β + ξi, where ξi have zero means and a finite
variance, σ2

ξ , and are cross sectionally independent as well as being distributed independently
of the weights wjp for all i and j. Under the normalization

∑n
i=1wip = 1, β̄p = β + ξ̄p, where

ξ̄p =
∑n

i=1wipξi, and B
′
nWP = βτ ′P + ξ̄

′
P with ξ̄P =

(
ξ̄1, ξ2, ..., ξ̄P

)′
, and we have

P−1B′nWPMPW′
PBn = P−1

P∑
p=1

ξ̄
′
pMP ξ̄p ≤ P−1

P∑
p=1

ξ̄
′
pξ̄p.

Also since ξi ∼ IID(0, σ2
ξ ), and V ar

(
ξ̄p
)

= σ2
ξ

(
w′pwp

)
= O (m−1), then ξ̄P = Op

(
m−1/2

)
and

we have
P−1B′nWPMPW′

PBn = Op

(
m−1

)
.

Therefore, for identification m must be finite, which rules out using diversified portfolio weights
with wip = O (n−1). In this example, the use of portfolios in estimation of risk premia can be
justified only if m is fixed with the number of portfolios, P →∞.

The small T bias of λ̂P for a fixed m and P →∞, is given in the following theorem:

Theorem 1 (Small T bias of portfolio estimator of risk premia) Consider the multi-factor
linear return model (30) and the associated risk premia, λ, defined by (32), and suppose that
Assumptions (1), (2), (3), and (6) hold, and αη < 1 where αη is defined by (20). Suppose further
that λ is estimated by Fama-MacBeth two-pass estimator based on portfolio excess returns,
r̄pt = w′P rtn, for p = 1, 2, ..., P , and the factors, ft, for i = 1, 2, ..., n, and t = 1, 2, ..., T .
Then under Assumption 5 and assuming that portfolio weights are suffi ciently bounded, namely
‖WP‖ = 	

(
m−1/2

)
where WP = (w1,w2, ...,wP ), and m is the maximum number of securities

included in a single portfolio, then for any fixed T > K we have (as P →∞)

λ̂P−λ→p

[
Σββ,w +

ω̄2

T

(
F′MTF

T

)−1
]−1 [

Σββ,wdT −
ω̄2

T

(
F′MTF

T

)−1

λ

]
. (45)

where λ̂n is defined by (33), dT = T−1
∑T

t=1 [ft − E(ft)] ,

Σββ,w = lim
P→∞

(
B′nWPMPW′

PBn

P

)
, and ω̄2 = lim

P→∞

1

P

P∑
p=1

(
w′pΣuwp

)
> 0, (46)

where Σu = (σij).

A proof is provided in sub-section A.3 of the Appendix.
It is clear from the above theorem that the small T bias continues to be present when

portfolio returns are used to estimate λ. Following Shanken (1992) it is possible to construct
a bias-correced version of λ̂P . Suppose that ω̄2 is known then Shanken type bias-corrected
estimator of λ is given by

λ̂P =

[
B̂′nTWPMPW′

P B̂nT

P
− ω̄2

T

(
F′MTF

T

)−1
]−1(

B̂
′
nTWPMPW′

P r̄n
P

)
. (47a)
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Now using (A.28) and (A.29) in the Appendix we have

B̂′nTWPMPW′
P B̂nT

P
− ω̄2

T

(
F′MTF

T

)−1

→p Σββ,ω,

B̂
′
nTWPMPW′

P r̄n
P

→p Σββ,ωλ
∗
T .

Using these results in (47a), and assuming that all factors are strong (so that Σββ,ω is full rank),
we obtain

λ̃P →p λ
∗
T = λ+ dfT , (48)

where dT is defined by (39), and λ
∗
T is Shanken’s "ex-post" risk premia. However, to implement

this correction a small T unbiased (as n → ∞) estimator of ω̄2 = limP→∞
1
P

∑P
p=1

(
w′pΣuwp

)
.

Since portfolio weights, wp, are given, small T unbiased estimator of w′pΣuwp, requires small
T unbiased estimation of Σu which does not seem possible unless uit are cross-sectionally
independent. In general estimation of Σu requires both n and T large even when uit are
weakly cross correlated. In contrast, when individual security returns are used the Shanken
correction requires small T unbiased estimation of σ2 = limn→∞

1
n

∑n
i=1 σ

2
i which does not

involve covariances, σij, and can be estimated by ̂̄σ2

nT = 1
n(T−k−1)

∑T
t=1

∑n
i=1 û

2
it which is shown

to converge to σ2 for a fixed T > k + 1 and as n→∞.
Also when the focus of analysis is λ, whether the bias of estimating λ can be reduced using

portfolio returns instead of individual security returns is unclear and depends in a complicated
way on the within portfolio correlations, as characterised by w′pΣuwp, and the relative norms
of Σββ and Σββ,w. The issue is illustrated in the following example.

Example 2 Suppose that T is suffi ciently large such that dT is negligible, and K = 1, so that
the risk premia, λ, is a scalar. Also assume that λ > 0, then the bias of the estimator of λ,
whether based on individual securities or portfolios is negative and the magnitude of the bias of
the estimator based on portfolios relative to the estimator based on individual securities is given
by the ratio (using (40) and (45))

ω̄2

[
σ2
ββ + σ̄2

T

(
f ′MT f
T

)−1
]

σ̄2
[
σ2
ββ,w + ω̄2

T

(
f ′MT f
T

)−1
] .

Further, for λ̂P to be less biased as compared to the estimator based on individual securities,
λ̂n, we must have

σ2
ββ,w >

(
ω̄2

σ̄2

)
σ2
ββ,

which can be written equivalently as the limit (n, P →∞) of the following inequality

β′nWPMPW′
Pβn

P
>

(
1
P

∑P
p=1

(
w′pΣuwp

)
1
n

∑n
i=1 σ

2
i

)
β′nMnβn

n
. (49)

It is clear that the answer will depend on the choice of the portfolio weights. Consider P equally
weighted, mutually exclusive portfolios, each with m securities, such that n = mP . In this
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case wp = m−1(0′m,0
′
m, ...,0

′
m, τ

′
m,0

′
m, ...,0

′
m)′, where τm is an m × 1 vector of ones. Suppose

that the allocation of securities to portfolios are done randomly, and without loss of generality
assume that the first m securities form the first portfolio, p = 1, the second m securities the
second portfolio, p = 2, and so on. Then

r̄1t = m−1

m∑
i=1

rit, r̄2t = m−1

2m∑
i=m+1

rit, ...., r̄Pt = m−1

n∑
i=(P−1)m+1

rit,

Similarly

β̄1 = w′1β = m−1

m∑
i=1

βi, β̄2 = w′2β = m−1

2m∑
i=m+1

βi, ...., β̄P = w′Pβ = m−1

n∑
i=(P−1)m+1

βi, (50)

with the sample average of β̄p across p given by

β̈P = P−1

P∑
p=1

β̄p = P−1

P∑
p=1

w′pβ = n−1

n∑
i=1

βi = β̄.

Using these results we now have

P−1B′nWPMPW′
PBn = P−1

P∑
p=1

(β̄p − β̄)2.

Similarly, for the estimate of λ based on individual securities we have (noting that n = mP )

n−1β′nMnβn = n−1

n∑
i=1

(βi − β̄)2 = n−1

P∑
p=1

mp∑
i=(p−1)m+1

(βi − β̄)2

= n−1

P∑
p=1

mp∑
i=(p−1)m+1

(βi − β̄p + β̄p − β̄)2

= n−1

P∑
p=1

mp∑
i=(p−1)m+1

[
(βi − β̄p)2 + (β̄p − β̄)2 + 2(βi − β̄p)(β̄p − β̄)

]

=
1

P

P∑
p=1

m−1

mp∑
i=(p−1)m+1

(βi − β̄p)2

+
1

P

P∑
p=1

(β̄p − β̄)2,

which decomposes the total cross variations of individual β’s into within and between portfolio
variations. To rank order the bias of the two estimators we also need to consider within and
between error covariances. We note that w′pΣuwp = m−2τ ′mΣp,uτm, where Σp,u is the m ×m
covariance matrix of the errors of the returns included in the pth portfolio, and

ω̄2
n =

1

Pm2

P∑
p=1

τ ′mΣp,uτm.

It is now easily seen that ω̄2
n = m−1σ̄2

n, when Σp,u is diagonal, namely when within portfolio
errors are uncorrelated, although between portfolio errors are still allowed to be correlated. Under
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this additional restriction and using the above results in (49), then for λ̂P to be less biased than
λ̂n, we require

P−1

P∑
p=1

(β̄p − β̄)2 >
1

m

P−1

P∑
p=1

m−1

mp∑
i=(p−1)m+1

(βi − β̄p)2

+
1

P

P∑
p=1

(β̄p − β̄)2

 ,

or equivalently if

ψP (β) = (m− 1)

[
P−1

P∑
p=1

(β̄p − β̄)2

]
− P−1

P∑
p=1

m−1

mp∑
i=(p−1)m+1

(βi − β̄p)2

 > 0.

This condition is met if dispersion of βi within a given portfolio is small relative to the dispersion
of β̄p across the portfolios. Introducing non-zero within portfolio error covariances leads to
further reduction in relative bias of λ̂P when on average these covariances are negative and vice
versa, when they are positive. Therefore, to achieve bias reduction the portfolio approach should
be capable of identifying securities with similar β’s whose errors are negatively correlated. It is
also important that these differences do not vanish as n→∞. For instance, when βi follow the
random coeffi cient model, βi = β + ξi, with ξi ∼ IID(0, σ2

ξ ), then (also see Remark 7)

ψP (β) = P−1

P∑
p=1

(m− 1) (ξ̄p − ξ̄)2 −m−1

mp∑
i=(p−1)m+1

(ξi − ξ̄p)2

 ,
and

E [ψP (β)]

σ2
ξ

= (m− 1)P−1

P∑
p=1

(
1

p
+

1

n
− 2

pn

)
− P−1

P∑
p=1

(
1− 1

p

)

= −1 +m

(
P−1

P∑
p=1

p−1

)
− 2 (m− 1)

mP

(
P−1

P∑
p=1

p−1

)
+

(m− 1)

mP
.

Since
∑P

p=1 p
−1 ≈ ln(P ), then ln(P )/P → 0, as P → ∞, and therefore E [ψn (β)] → −σ2

ξ .

Hence, in this random setting λ̂n, which uses individual securities is likely to be less biased as
compared to λ̂P , for n suffi ciently large. This example highlights that using portfolio returns
to estimate the risk premia can be justified if there are a priori known stock characteristics
that could be used to sort the returns into groups with systematically different β̄p across p.
Furthermore, the number of portfolios, P, still needs to be suffi ciently large.

5 Concluding remarks

This paper examines two questions associated with the APT. The first question is the relation-
ship between the statistical factor model determining returns and the theoretically consistent
factor model which takes account of the restrictions implied by the inter-temporal equilibrium
pricing conditions. The factors included in the statistical model are priced only if they have
non-zero conditional correlation with the stochastic discount factor. Pricing errors arise from
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non-zero correlations between the errors in the statistical factor model and the stochastic dis-
count factor. From a theoretical perspective, the factors used in the return regressions should
be the ones that are thought to be correlated with fundamentals, represented by the stochastic
discount factor.
The second question addressed in this paper is the pros and cons of using portfolios, rather

than individual securities, in the estimation of risk premia. We show that conditions for identi-
fication of the risk premia are unaffected whether one uses portfolios or individual securities. In
both cases, even when the true factor loadings, βik, are known, the factor risk premia can only
be identified at the standard

√
n rate if the factors are strong, αk = 1, and the pricing errors

are suffi ciently weak, namely if αη = 0. For general values of αk ≤ 1 and αη ≥ 0, Pesaran and
Smith (2021) show the risk premia of factor ftk with strength αk can be estimated at the rate
of n(αk−αη)/2. Their proof is based on individual security returns, and can be shown to extend
to portfolio returns that we consider in this paper.
Portfolios are used in an attempt to reduce the generated regressor bias that results from

the effect of the sampling error of the estimated first stage loadings. However, as shown in this
paper, the small T bias continues to be present when portfolio returns are used to estimate risk
premia. Whether the bias can be reduced using portfolio returns instead of individual security
returns is unclear and depends in a complicated way on the covariances of the individual
securities within the portfolio. We derive the bias correction for portfolios, but whereas with
individual securities the bias correction is operational when the factors are strong, this does
not seem to be the case for portfolios. Again this is because the correction will depend on
the covariances of the individual securities within the portfolio. In any event, if portfolios are
used, the number of portfolios, P, must still be suffi ciently large, which presents the investigator
with a fine balance between the number of individual securities to be allocated to individual
portfolios for estimation of the loadings, and the number of portfolios to be used in the second
pass to estimate the risk premia.
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A Mathematical Appendix

A.1 Introduction

We first state a number of lemmas that we shall then use to prove Theorem 1.

A.2 Statement and proofs of lemmas

Lemma A.1 Consider the errors {uit, i = 1, 2, ..., n; t = 1, 2, ..., T} in the factor model defined
by (30), and suppose that Assumption 1 holds. Then for any t and t′ (as n→∞)

an,tt′ =
1

n

n∑
i=1

uituit′ →p 0, if t 6= t′, (A.1)

bn,t =
1

n

n∑
i=1

(
u2
it − σ2

i

)
→p 0, if t = t′, (A.2)

and

cn,t =
1

n

n∑
i=1

(uitui◦ −
1

T
σ2
i )→p 0, (A.3)

where

σ2
i = E(u2

it), ui◦ =
1

T

T∑
t=1

uit.

Proof. See Pesaran and Smith (2021) section A.2.

Lemma A.2 Consider the n×T error matrixU = (u1◦,u2◦, ...,un◦)
′ , where ui◦ = (ui1, ui2, ..., uiT )′ ,

the n × K matrix of factor loadings, B = (β1,β2, ...,βn) , the n × 1 vector of pricing errors
η = (η1, η2, ..., ηn)′, and suppose that assumptions 1, 2 and part (b) of 4 hold, and α < 1.9 Then

B′MnU

n
→p 0, (A.4)

B′Mnu

n
→p 0, (A.5)

B′Mnη

n
→p 0, (A.6)

U′MnU

n
→p σ

2IT , (A.7)

U′Mnu

n
→p

σ2

T
τ T , (A.8)

U′Mnη

n
→p 0 (A.9)

where Mn = In − 1
n
τ nτ

′
n, u = (u1◦, u2◦, ..., un◦)

′, ui◦ = T−1
∑T

t=1 uit, and σ
2 = lim 1

n

∑n
i=1 σ

2
i .

Note that τ n and τ T are, respectively, n× 1 and T × 1 vectors of ones

9As compared to the notation in the body of the paper, we have dropped the subscript n from Bn as defined
by (30).

A1



Proof. See Pesaran and Smith (2021) section A.2.

Lemma A.3 Consider the n×T error matrixU = (u1◦,u2◦, ...,un◦)
′ , where ui◦ = (ui1, ui2, ..., uiT )′ ,

the n × k matrix of factor loadings, B = (β1,β2, ...,βn) , the n × 1 vector of pricing er-
rors η = (η1, η2, ..., ηn)′, and the n × P matrix of portfolio weights, WP = (w1,w2, ...,wP )′,
wp = (w1p, w2p, ...., wnp)

′. Suppose that Assumptions 5, 1, 2 and 4 hold, αη < 1, and ‖WP‖ =
	
(
m−1/2

)
. Then for a fixed m, k and T , and as P → ∞, such that P/n → π, (0 < π < 1),

then we have
U′WP τP

P
→p 0, (A.10)

B′WPMPW′
PU

P
→p 0, (A.11)

B′WPMPW′
Pu

P
→p 0, (A.12)

B′WPMPW′
Pη

P
→p 0, (A.13)

U′WPMPW′
Pη

P
→p 0, (A.14)

U′WPMPW′
PU

P
→p ω̄

2IT , (A.15)

U′WPMPW′
Pu

P
→p

ω̄2

T
τ T , (A.16)

whereMP = IP− 1
P
τ Pτ

′
P , u = (u1◦, u2◦, ..., un◦)

′, ui◦ = T−1
∑T

t=1 uit, ω̄
2 = limP→∞

1
P

∑P
p=1

(
w′pΣuwp

)
,

and Σu = (σij). Note that τ P and τ T are, respectively, P × 1 and T × 1 vectors of ones.

Proof. To establish result (A.10) first note that the tth element of P−1U′WP τP is given by
P−1

∑n
i=1 w̄iPuit, where w̄iP =

∑P
p=1wip. Also E (P−1

∑n
i=1 w̄iPuit) = 0, and

V ar

(
P−1

n∑
i=1

w̄iPuit

)
= P−2

n∑
i=1

n∑
j=1

w̄iP w̄jPσij

≤
(

sup
i,P
|w̄iP |

)2

P−2

n∑
i=1

n∑
j=1

|σij|

≤
(

1

P/n

)(
1

P

)(
sup
i,P
|w̄iP |

)2

sup
i

n∑
j=1

|σij| ,

which tends to zero as P → ∞, since under Assumptions 5 and 1, supi,P |w̄iP | < C, and
supi

∑n
j=1 |σij| < C, and 1 > P/n > 0. Hence, the elements of P−1U′WP τP all tend to zero in

mean square and hence in probability. Consider now A.11 and note that

P−1B′WPMPW′
PU = P−1B′WPW′

P U−
(
P−1B′WP τP

) (
P−1τ ′PWPU

)
, (A.17)
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Also B′WP =
(
β̄1, β̄2, ..., β̄P

)
, B′WP τP =

∑P
i=1 β̄p, where β̄p =

∑n
i=1 w̄ipβi, and by Assump-

tion 6 supp
∥∥β̄p∥∥ < C. Hence,∥∥(P−1B′WP τP

) (
P−1τ ′PWPU

)∥∥ ≤ ∥∥P−1B′WP τP
∥∥∥∥P−1τ ′PWPU

∥∥
≤
(
P−1

P∑
i=1

∥∥β̄p∥∥
)∥∥P−1τ ′PWPU

∥∥ ≤ C
∥∥P−1τ ′PWPU

∥∥ ,
and in view of (A.10), it follows that

P−2B′WP τP τ
′
PWP U →p 0. (A.18)

The first term of (A.17) can be written as

P−1B′WPW′
PU = P−1

(
P∑
p=1

B′wpw
′
pU

)
= P−1

(
P∑
p=1

n∑
i=1

wipβ̄pu
′
i◦

)

= P−1

(
n∑
i=1

φiPu′i◦

)
,

where φiP=
∑P

p=1wipβ̄p = (φi1,P , φi2,P , ...φik,P )′ , and φis,P =
∑P

p=1wipβ̄sp. Since T and k are
fixed, then it is suffi cient to consider the limiting property of a typical element of P−1 (

∑n
i=1 φiPu′i◦),

namely cst,P = P−1 (
∑n

i=1 φis,Puit). We note that E(csP ) = 0, and

V ar (cst,P ) = P−2

n∑
i=1

n∑
j=1

φisPφjs,Pσij ≤
(

sup
i,s,P
|φisP |

)2 ( n
P 2

)
sup
i

n∑
j=1

|σij| .

Also |φis,P | ≤ sups,p
∣∣β̄sp∣∣∑P

p=1 |wip| < C and supi
∑n

j=1 |σij| < C, by Assumptions 5, 1,and
6. Hence, it follows that V ar (cst,P ) → 0, for all s = 1, 2, .., k and t = 1, 2, ..., T , and hence
P−1B′WPW′

P U →p 0. Using this result together with (A.18) in (A.17) now establishes
(A.11). To prove (A.12) we first note that since u = (u1◦, u2◦, ..., un◦)

′ = T−1UτT , where
ui◦ = T−1

∑T
t=1 uit, and hence B′WPMPW′

Pu = T−1B′WPMPW′
PUτT , and∥∥P−1B′WPMPW′

Pu
∥∥ ≤ ∥∥P−1B′WPMPW′

PU
∥∥∥∥T−1τT

∥∥
= T−1/2

∥∥P−1B′WPMPW′
PU
∥∥ ,

and tends to zero in probability by virtue of result (A.11). To prove (A.13) we note that

P−1 ‖B′WPMPW′
Pη‖ ≤

∥∥P−1/2B′WPMP

∥∥∥∥P−1/2W′
Pη
∥∥ .

But limP→∞
∥∥P−1/2B′WPMP

∥∥2
= limP→∞ λmax (P−1B′WPMPW′

PB) < C, by Assumption 6,
and

P−1 ‖W′
Pη‖

2 ≤ P−1 ‖WP‖2 ‖η‖2 = P−1 ‖WP‖2

(
n∑
i=1

η2
i

)
.

Also, since by Assumption ‖WP‖2 = 	 (m−1), P/n → π, then P−1 ‖B′WPMPW′
Pη‖ =

	 (n−1
∑n

i=1 η
2
i ) = 	 (nα−1), which tends to zero since α < 1. Result (A.14) follows simi-

larly. To establish (A.15), in view of (A.10) it is suffi cient to establish the probability limit of
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P−1U′WPW′
PU . To this end we note that

P−1U′WPW′
PU = P−1

P∑
p=1

U′wpw
′
p U = P−1

P∑
p=1

(
n∑
i=1

wipui◦

)(
n∑
i=1

wjpu
′
j◦

)

= P−1

P∑
p=1

n∑
i=1

n∑
j=1

wipwjpui◦u
′
j◦.

Therefore, a typical (t, t′) element of the T × T matrix BP = P−1U′WPW′
PU is given by

btt′,P = P−1
∑P

p=1

∑n
i=1

∑n
j=1wipwjpuitujt′ and we have

E (btt′,P ) = P−1

P∑
p=1

n∑
i=1

n∑
j=1

wipwjpσij = P−1

P∑
p=1

w′pΣuwp, if t = t′,

E (btt′,P ) = 0, if t 6= t′,

and hence E (BP ) = ω̄2
P IT , where ω̄2

P = P−1
∑P

p=1 w′pΣuwp. The convergence in probability

follows by considering E
(
b2
tt′,P

)
when t 6= t′ and E (btt′,P − ω̄2

P )
2 when t = t′, and following

the approach used to establish results (A.1) and (A.2) in Lemma A.1. The details are tedious
and will be omitted to save space. Finally, result (A.16) follows from (A.15), noting that
U′WPMPW′

Pu = T−1U′WPW′
PUτT .

A.3 Proof of theorem 1

We first present some definitions for the case using individual securities. Consider the two-pass
estimator of λ defined by (33), and to simplify notations, write it as

λ̂n =

(
B̂′MnB̂

n

)−1(
B̂′Mnr̄

n

)
, (A.19)

where B̂ = (β̂1, β̂2, ..., β̂n)′, r̄ = (r̄1, r̄2, ..., r̄n)′, r̄i = T−1
∑T

t=1 rit,

β̂i = (F′MTF)−1F′MT ri◦, (A.20)

and ri◦ = (ri1, ri2, ..., riT )′. Under the factor model (30)

ri◦ = αiτ T + Fβi + ui◦, (A.21)

where ui◦ = (ui1, ui2, ..., uiT )′, and hence

β̂i = βi + (F′MTF)−1F′MTui◦. (A.22)

Stacking these results over i yields:

B̂ = B + UGT (A.23)

where U = (u1◦,u2◦, ...,un◦)
′, and

GT = MTF(F′MTF)−1 (A.24)
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Also using result (37) in the paper we have (in terms of the simplified notations used here)

r̄ =λ0τ n + Bλ∗T + ū+η (A.25)

where
λ∗T = λ+ dT , and dT = f̄T − E

(
f̄T
)
. (A.26)

and ū = (ū1◦, ū2◦, ..., ūn◦)
′.

Consider the portfolio estimator λ given by (43) and write it simply as

λ̂P =
(
P−1B̂

′
WPMPW′

P B̂
)−1 (

P−1B̂
′
WPMPW′

P r̄
)
, (A.27)

Substituting B̂ and r̄ using (A.23) and (A.25) respectively, we have

P−1B̂
′
WPMPW′

P B̂ = P−1B′WPMPW′
PB+P−1B′WPMPW′

PUGT

+ P−1G′TU′WPMPW′
PB+P−1G′TU′WPMPW′

PUGT ,

and
B̂
′
WPMPW′

P r̄ = (B + UGT )′WPMPW′
P (αiτ n + Bλ∗T + ū+η) ,

and recall that λ∗T is defined by (A.26). Also, note that since Σn
i=1wip = 1, for all p, then

W′
Pτ n = τ P and MPW′

Pτ n = MPτ P = 0. Hence,

P−1B̂
′
WPMPW′

P r̄=P−1 (B′WPMPW′
PB)λ∗T + P−1B′WPMPW′

P (ū+η)

+ P−1 (G′TU′WPMPW′
PB)λ∗T + P−1G′TU′WPMPW′

P (ū+η) .

Under Assumptions 1, 2 and 6, and using the results of Lemma A.3, we have (as P → ∞, for
a fixed m, T and k):

P−1B̂
′
WPMPW′

P B̂→p Σββ,ω +
ω̄2

T

(
FMTF

T

)−1

, (A.28)

P−1B̂
′
WPMPW′

P r̄→p Σββ,ωλ
∗
T , (A.29)

where ω̄2 and Σββ,ω are defined by (46). Result (45) then follows by using the above in (A.27),
and writing the outcome in terms of λ̂P−λ.
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