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Redistribution of Return Inequality 
 
 

Abstract 
 
Wealthier households obtain higher returns on their investments than poorer ones. How should 
the tax system account for this return inequality? I study capital taxation in an economy in which 
return rates endogenously correlate with wealth. The leading example is a financial market, where 
the rich acquire more financial information than the poor. Contrary to conventional wisdom, rather 
than calling for more redistribution, the presence of this scale dependence provides a rationale for 
lower marginal tax rates. The endogeneity of returns generates an inequality multiplier effect 
between wealth and its returns. Therefore, standard elasticity measures that determine the 
responsiveness of capital to taxes must be revised upwards. At an aggregate level, a rise in 
redistribution induces a compression effect on the distribution of pre-tax returns. In the financial 
market, I identify general equilibrium trickle-up externalities that provide a force for more 
redistribution relative to the partial equilibrium. Finally, I estimate partial and general equilibrium 
responses and demonstrate the quantitative importance of scale dependence for tax policy. 
JEL-Codes: H210, H230, H240, D310, G110, G120, G140, G530. 
Keywords: optimal taxation, capital taxation, heterogeneous returns, wealth inequality, general 
equilibrium, asset pricing, private information, financial literacy. 
 
 
 
 

Karl Schulz 
University of Mannheim 

Center for Doctoral Studies in Economics, L7 3-5 
Germany – 68131 Mannheim 

karl.schulz@gess.uni-mannheim.de 
  
  

 

 
 
March 16, 2021 
I thank Eduardo Dávila, Hans Peter Grüner, Eckhard Janeba, Thomas Piketty, Morten O. Ravn, 
José Víctor Ríos Rull, Dominik Sachs, Arthur Seibold, Sebastian Siegloch, Konrad Stahl, Holger 
Stichnoth, Alisa Tazhitdinova, Michèle Tertilt, Ernst-Ludwig von Thadden, Nicolas Werquin, and 
numerous seminar and conference participants for helpful comments and discussions. I gratefully 
acknowledge the support by the University of Mannheim’s Graduate School of Economic and 
Social Sciences, funded by the German Research Foundation (DFG). 



1 Introduction

Over the last decades, numerous countries have seen a rapid rise in wealth inequality. In the US,
for example, the wealth share of the top 0.1% has tripled over the past forty years (Saez and
Zucman (2016)). Heterogeneity and persistence in the idiosyncratic returns to wealth have been
successful in explaining the observed thick tail in the wealth distribution. Such “type dependence”
can, for instance, plausibly arise from differences in entrepreneurial ability. To account for the
cross-sectional dynamics in inequality, one needs to add to standard random growth models a
positive correlation between income and its return (Gabaix, Lasry, Lions, and Moll (2016)). This
“scale dependence” may arise from various sources. Most prominently, Piketty (2014) argues that
wealthier households obtain higher rates of return than poorer ones both across and within asset
classes because they can take more risks and hire skilled financial advisers. A recent wave of
empirical papers documents the prevalence of this scale dependence.1

A well-known result in public finance is that exogenous inequality in capital gains (type de-
pendence) justifies the positive taxation of capital. However, little is known about the policy
implications of scale dependence despite its potential to considerably amplify wealth inequality.
How should a government design the tax system in the presence of scale dependence to reduce in-
equality? When the rich become richer because they are rich, should they pay confiscatory taxes?
Which sources of inequality should governments address, and which not? Can the government alter
the inequality of pre-tax return rates? To answer these questions, I introduce endogenously formed
return inequality into the optimal taxation of capital. As a leading example, I follow the argument
by Piketty (2014), as originated by Arrow (1987): Wealthy households hold a sizable portfolio
on financial markets. Therefore, they have a high incentive to purchase information about the
stochastic fundamentals, which drive stocks’ payoffs. As a result of their better knowledge, they
make more informed investment decisions (portfolio choices) and obtain higher rates of returns on
their financial investments than poorer households.2

According to conventional wisdom, one might expect that, when the rich endogenously obtain
higher rates of return than the poor, this additional source of inequality provides a rationale for
higher tax rates. I show how to characterize the optimal tax system with and without scale

1For instance, see Bach, Calvet, and Sodini (2020) and Fagereng, Guiso, Malacrino, and Pistaferri (2020).
2I consider knowledge acquisition in the financial market as the leading example. It generates qualitatively the

same endogenous return inequality as other potential channels would do, e.g., stock market participation costs,
housing, liquidity constraints, and insurance against consumption risk. Moreover, it fits well into the empirical
setting I consider later. The positive and normative implications for capital taxation remain the same irrespective
of the underlying mechanism that generates scale dependence.
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dependence in terms of empirically observable sufficient statistics. Firstly, the optimal capital tax
is inversely related to the elasticity of capital. Secondly, the optimal tax is increasing in observed
inequality. Conditional on the observed inequality and elasticities, the optimal tax formulas are the
same irrespective of whether capital gains are exogenous (no scale dependence) or endogenously
formed (scale dependence).

These two measures that determine the optimal capital tax depend, however, on the process
under which returns form as well as on the underlying tax code. Scale dependence may raise
observed wealth inequality, which calls for higher capital taxes relative to a setting with exogenous
capital returns. In turn, the rise in capital taxes reduces inequality. Simultaneously, the wealth
elasticity has to be revised upward in the presence of endogenous capital gains, as I describe later.
This provides a force for lower marginal tax rates.

I show that, under certain conditions, the second force dominates the first one for a given
observed inequality. Perhaps surprisingly, the optimal marginal tax rate on capital is, therefore,
lower with scale dependence than without. In other words, when the rich become richer, not due to
their exceptional talent but simply because they are affluent, the government should redistribute
less. For a given wage distribution, I find a full neutrality result: Conditional on the primitives
of the economy, the introduction of scale dependence does not alter the optimal tax rate. The
rise in inequality just offsets the increase in the capital elasticity. Altogether, depending on the
comparative statics exercise, scale dependence is either neutral or provides a rationale for lower
taxes.

This conclusion is at odds with Piketty (2014) (Chapter 12), who uses scale dependence as an
argument for more redistribution (via a progressive wealth tax). It does not mean that return
inequality per se leads to lower capital taxes relative to an economy without return inequality. It
instead provides a note of caution regarding the policy implications of different sources of return
inequality. Also note that the results simply arise from pure efficiency considerations. From an
equity perspective, relative to type dependence, the optimal tax rate with scale-dependent capital
gains might be even lower. The society might put a higher marginal welfare weight on households
who took the effort to increase their rates of return (e.g., via the acquisition of financial knowledge).
Hence, they may deserve these rates of return, as these reflect a fair reward for effort, compared
to households who were just lucky enough to be talented investors (type dependence).

Under scale dependence, there is a two-way interplay between taxes and capital gains. On the
one hand, capital gains and their distribution across households shape the wealth distribution,
which serves as a critical primitive for designing a tax system (first channel). This channel is also
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present in standard taxation models with exogenous return inequality (type dependence). On the
other hand, if the savings elasticity is non-zero, taxes will affect the incentives to save. In the
presence of scale dependence, however, higher savings induce an increase in pre-tax return rates
which yields a convex relationship between pre-tax capital gains and savings (second channel).

According to the first channel, taxes are a function of capital return inequality. By the second
channel, the distribution of pre-tax capital returns is endogenous to the tax system. I demon-
strate that tax reforms induce a compression effect on the pre-tax return distribution. A rise in
redistribution reduces the variance of pre-tax returns (equity gains). However, this compression
comes along with the cost of lowering mean pre-tax returns (efficiency costs). Consequently, scale
dependence gives rise to a novel model-inherent trade-off for tax policy regarding pre-tax return
rates. This distributional effect of tax reforms may also provide a source for empirically identifying
the magnitude of scale dependence. If there is only type dependence and no scale dependence, the
mean pre-tax returns and their variance should not respond to tax reforms.

In the leading example of the financial market, the size of financial portfolios change with
capital tax rates. As a reaction, the amount of acquired information, e.g., via financial advisory
or financial education, and the optimally chosen portfolio composition adjust. This leads to the
described adjustment in the distribution of pre-tax return rates. To the best of my knowledge,
this is the first paper that addresses this simultaneous link between redistribution and financial
market outcomes.

In the presence of endogenous pre-tax return rates, the standard income and substitution
effects from tax reforms have to be augmented by inequality multiplier effects. To provide an
example, suppose that the government decreases the capital tax of an individual. Assuming that
the substitution dominates the income effect, she saves more. However, when the amount of
investment and its return endogenously correlate, the latter also rises (in the leading example,
because the individual increases her financial knowledge). Now, she earns more on every dollar
she invests in future consumption. In other words, saving money pays off to a greater extend.
Therefore, the individual saves more, which in response increases her returns and so on. The
responsiveness of the own returns (own-return elasticity) measures this inequality multiplier effect.
This observation implies a Le Chatelier principle for capital (see Samuelson (1948)). Due to the
endogeneity of pre-tax return rates, capital responds in the long-run more elastic than in the short
run for fixed return rates. As a result, one will underestimate capital elasticities (for instance, using
short-run data) if one does not account for the (long-run) adjustment in pre-tax return rates.

These observations hold under the partial equilibrium assumption of a small open economy
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and in general equilibrium. In general equilibrium, tax reforms also affect aggregate variables that
feed back into the return functions of households. In the financial market example, the equilibrium
stock price is an aggregation of information and risk-taking, which both correlate with aggregate
wealth. Thus, a household’s return on investment is not only a function of her own savings but also
of others’. Then, asides from an inequality multiplier effect, a tax reform also induces cross-return
effects. The reasoning is as follows. A tax reform changes the respective household’s savings and
returns (due to the altered financial knowledge). As her savings adjust, in general equilibrium, the
returns of others and, hence, their savings change as well. In response, this feeds back into the
return of the first household. I measure these general equilibrium externalities in terms of novel
cross-return elasticities and identify trickle-up forces that call for higher taxes in general than in
partial equilibrium.

To quantify the importance of the scale dependence, I estimate own- and cross-effects between
returns and endowment sizes from panel data on the returns of US private foundations. This idea
is similar to Piketty (2014) who descriptively documents the amount of scale dependence using
return data from US universities. Although universities and foundations are institutional investors
who potentially behave differently on the financial market, they may serve as a reasonable proxy
for wealthy investors.

Since the foundations’ endowment size is considerably larger relative to household wealth,
the amount of scale dependence is likely to be underestimated in the data. I find a statistically
significant point estimate for the lifetime own-return elasticity of 0.1. This estimate is substantially
lower than the one I retrieve from the study by Fagereng et al. (2020) (0.9). The adjustment of
capital elasticities and optimal tax rates resulting from this conservative amount of endogeneity in
capital gains is, nonetheless, economically sizable. Relative to a setting without scale dependence,
the revenue-maximizing linear capital gains tax declines by six percent. For a higher own-return
elasticity of 0.5, which is between the estimate obtained here and the one in Fagereng et al. (2020),
the optimal capital gains tax decreases by more than 25% (17 percentage points).

I find statistically significant but economically small cross effects. This suggests no or negligible
general equilibrium forces. The point estimates support some features of the financial market.
Negative cross-effects from the top of the wealth distribution indicate the presence of trickle-up
externalities. Moreover, there are slightly insignificant decreasing returns to scale in the own-return
elasticity.

Finally, I calibrate the statistical model that empirically describes the return rate formation
to match empirical moments in the Survey of Consumer Finances (2016). The model performs
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surprisingly well in explaining the degree of return inequality in the US. Using these data, I
simulate the aggregate responses of pre-tax return rates to various reforms of the current US
capital gains tax scheme. I find large revenue gains from raising the capital gains tax. However,
these gains decline in the amount of scale dependence, reflecting the efficiency costs resulting from
the adjustment of pre-tax return rates. This decline is quantitatively considerable.

The incidence on the level and the dispersion of pre-tax return rates depends on the type and
magnitude of tax reforms. Rises in the taxation of the rich evoke quantitatively larger responses
than tax cuts for the poor. The level of pre-tax return rates is more affected than their dispersion.
This observation indicates that the impact of scale dependence on the tax policy’s efficiency margin
is more substantial than the equity margin.

Related literature. This paper relates to four strands of the literature. Firstly, I add to the
sizable literature on capital taxation. As shown by Saez (2002), return inequality provides an
essential justification for why capital taxes should not be zero, unlike in Atkinson and Stiglitz
(1976), Chamley (1986), and Judd (1985). So far, the focus in the literature has been on return
inequality that arises from type dependence. For instance, Shourideh (2012), Saez and Stantcheva
(2018), and Guvenen, Kambourov, Kuruscu, Ocampo-Diaz, and Chen (2019) allow return rates
to exogenously differ across households and study the equity and efficiency implications of capital
taxation. Gerritsen, Jacobs, Rusu, and Spiritus (2019) analyze capital taxation under type and
scale dependence separately. They solely aim to show that capital taxes should be non-zero in
both settings without studying the differential implications of type and scale dependence.

I provide a comprehensive analysis of capital taxation in the presence of scale dependence and
place a particular focus on the positive and normative implications (relative to a setting without
scale dependence). Opposed to Gerritsen et al. (2019), I also microfound this scale dependence.
Moreover, I introduce scale dependence into two well-known frameworks: the dynastic framework
of linear wealth taxation by Piketty and Saez (2013) and the canonical Mirrlees (1971) model
of nonlinear capital income taxation, as in Farhi and Werning (2010). Using the perturbation
techniques introduced in Piketty (1997), Saez (2001), and, more recently, Golosov, Tsyvinski, and
Werquin (2014), I characterize the optimal linear and nonlinear capital taxation. Besides, I allow
for uncertainty (e.g., Aiyagari (1994)) and full intergenerational dynamics by restricting attention
to simple tax instruments. Similarly, I separate the nonlinear taxation of labor and capital income.
These restrictions allow me to derive a clear-cut characterization of the respective tax systems.
However, the main conclusions regarding the presence of scale dependence should carry over to a
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fully optimal mechanism as considered in the new dynamic public finance literature (see Golosov,
Tsyvinski, Werning, Diamond, and Judd (2006) for a review).

Secondly, my paper links to the literature on redistributive taxation in general equilibrium.
Rothschild and Scheuer (2013), Ales, Kurnaz, and Sleet (2015), and Sachs, Tsyvinski, and Werquin
(2020) extend the original framework by Stiglitz (1982). Deploying the techniques in Sachs et al.
(2020), I am, to the best of my knowledge, the first one to provide a thorough analysis of the
nonlinear capital tax incidence and optimal capital taxation in general equilibrium. Thereby, I
extend the well-known concepts of own- and cross-wage elasticities that matter for labor income
taxation to pre-tax return rates in the context of capital taxation.

Thirdly, I add to the literature on financial knowledge in partial (e.g., Arrow (1987) and Lusardi,
Michaud, and Mitchell (2017)) and general equilibrium (e.g., Grossman and Stiglitz (1980), Ver-
recchia (1982), Peress (2004), Kacperczyk, Nosal, and Stevens (2019)). I am not aware of another
paper formalizing a link between redistribution and informational efficiency in Grossman and
Stiglitz (1980) financial markets. The idea that capital taxes affect the accumulation of finan-
cial knowledge is, however, similar to the literature on taxation and human capital (for recent
examples, see Krueger and Ludwig (2013), Findeisen and Sachs (2016), and Stantcheva (2017)).
Also, notice that the implications of scale dependence for capital taxation derived in this paper
are similar to those of superstar compensation schemes for labor income taxation (see Scheuer and
Werning (2017)). Whereas superstar effects mostly manifest at the top of the income distribu-
tion, the empirical evidence presented here and in earlier studies suggests that scale dependence
is widely disseminated throughout the wealth distribution.

Fourthly, in my empirical analysis of a large panel of US foundations, I document the prevalence
of scale dependence and, more generally, return inequality as in Yitzhaki (1987). More recently,
Bach et al. (2020) and Fagereng et al. (2020) document scale dependence with Scandinavian data.
By providing estimates of own- and cross-return elasticity, I also add to the empirical literature
on the estimation of capital income and elasticities. I survey this literature in Section 3.1.

Outline of the paper. The paper is structured as follows. First, I establish the main findings
in a simple, conceptual framework (Section 2). In Section 3, I describe the empirical implications
and propose a direct estimation of own- and cross-return effects with returns data from US private
foundations. In Section 4, I calibrate the statistical model from Section 3 to the US economy. Then,
I analyze the aggregate incidence of reforming the current US tax code. Section 5 concludes. I
relegate all relevant proofs, model extensions, and the microfoundation to the Appendix.
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2 The Model

2.1 A Conceptual Framework

In this section, I describe a simple framework to think about capital taxation under the presence of
scale dependence. Suppose there is a unit measure of households i ∈ [0, 1] that differ in their labor
earnings ability wi. Aside from working li hours (in period 1), household i saves ai (for period 2). In
line with the microfoundation below, a household can increase the return on savings by taking effort
xi at some cost.3 Under standard monotonicity conditions ( dxi

dwi
> 0), this setting gives rise to scale

dependence. That is, the household’s rate of return on savings, ri (ai), is increasing in the amount
of savings ( dri

dai
> 0). Observe that this does not rule out the presence of type dependence. Both

type and scale dependence may co-occur. In contrast, I refer to type dependence only as a setting
where returns exogenously differ (ri 6= ri′ and dri

dai
= 0). Let there be a linear tax rate τK on capital

gains aR,i ≡ airi (ai). Suppose that utility is quasilinear in the consumption of final wealth. Utility
maximization yields each household’s Marshallian savings supply function ai (1− τK , ri (ai) ;wi)
with dai

dwi
> 0 and an indirect (present-value) utility U (τK ;wi). Define the elasticity of savings

as ζa,(1−τK)
i ≡ dlog(ai)

dlog(1−τK) and the capital gains elasticity as ζaR,(1−τK)
i ≡ dlog(aR,i)

dlog(1−τK) . Without scale
dependence, the return rates are fixed. Then, the two elasticities coincide ζ̃a,(1−τK)

i = ζ̃
aR,(1−τK)
i ,

where ζ̃i indicates that the respective elasticity is evaluated at a fixed return rate. Under scale
dependence, this is not the case. Let ζa,ri ≡ dlog(ai)

dlog(ri) measure the responsiveness of savings to the rate
of return. The novelty of this paper is to introduce scale dependence. The own-return elasticity
εr,ai ≡

dlog[ri(ai)]
dlog(ai) describes the extent of scale dependence. For simplicity, let ζ̃a,(1−τK)

i , ζa,ri , and εr,ai
be constant.4

Suppose that the utilitarian social planner wishes to maximize (steady-state) welfare at a given
budget by optimally choosing the capital tax: max

τK

∫
i ΓiU (τK ;wi) di subject to

∫
i τKaR,idi ≥ E,

where Γi is household i’s Pareto weight, Γi is weakly decreasing in i, and
∫
i Γidi = 1.5 In the

following, I use this basic framework to study capital taxation under scale dependence in contrast
to the one under type dependence holding all the other primitives of the economy fixed (such as

3I microfound the notion of scale dependence, later, on a financial market with portfolio choice and financial
knowledge acquisition. However, the findings carry over for any form of scale dependence (e.g., liquidity constraints).

4The assumption that εr,ai is constant over the population finds support in my empirical analysis of Section 3.
5Observe that both type and scale dependence feature return inequality. Whenever there is return inequality,

the government wishes to levy a non-zero capital tax even if there is a nonlinear labor income tax available. That
is, the zero-capital-taxation result (e.g., Atkinson and Stiglitz (1976), Judd (1985), and Chamley (1986)) breaks
down. The intuition is that the presence of return inequality makes household heterogeneity two-dimensional. The
government, then, uses the capital gains tax as an additional screening device (e.g., Saez (2002)).
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the savings elasticities at a given rate of return). I establish five novel findings that I summarize
in the following Proposition 1.

Proposition 1. Compare the optimal capital gains tax in the presence of scale dependence to the
capital gains tax in an economy with type dependence as the only source of return inequality.

(a) When expressed in terms of sufficient statistics, the conditions that describe the optimal
capital gains tax with and without scale dependence are the same.

(b) Under scale dependence, an inequality multiplier effect increases the elasticity of capital
income (relative to type dependence). This acts as a force for lower taxes.

(c) The optimal capital tax with scale dependence is either the same or lower than the capital
optimal tax without scale dependence (type dependence only).

(d) Under scale dependence, a rise in capital taxes compresses the distribution of pre-tax returns.
This compression effect comes along with the cost of lowering mean pre-tax returns.

(e) In the general equilibrium of the financial market of Section E, trickle-up externalities
provide a force for a higher capital gains tax than in partial equilibrium.

Part (a). The government’s problem yields a Ramsey formula for the optimal capital tax (e.g.,
Diamond (1975)) in both settings, under scale dependence and without scale dependence (with type
dependence only), τK

1−τK = 1
ζ
aR,(1−τK) I (τK) , where ζaR,(1−τK) ≡

∫
i

aR,i

E(aR,i)ζ
aR,(1−τK)
i di and I (τK) ≡

E
[

(1−Γi)aR,i
E(aR,i)

]
measure the average elasticity of capital income and the observed capital income

inequality, respectively. Irrespective of how returns form, the mean elasticity of capital income
and the observed inequality serve as sufficient statistics. A correct knowledge of these measures
is, therefore, enough to characterize the optimal capital tax which gives part (a) of Proposition 1.

Part (b). Without scale dependence, capital income under type dependence is linear in savings
a′R,i (ai) |ri = ri and a′′R,i (ai) |ri = 0. With scale dependence, the rate of return is endogenous. This
makes capital gains convex in savings a′R,i (ai) = ri (ai) and a′′R,i (ai) = r′i (ai) > 0. Consider an
individual i. In a setting with type dependence only, the individual is endowed with an investment
skill that allows her to realize a return ri. Her capital gains proportionally rise with her amount of
investment. Off equilibrium, to obtain the same capital income as another individual i′, she needs
to increase her savings substantially. Under scale dependence, the individual has the same return
rate ri in equilibrium than without scale dependence. However, she can reach the capital income
of individual i′ more easily. Still, she needs to save more. At the same time, she can raise her
rate of return to a higher level (in the financial market, by acquiring financial knowledge). This
convexity boosts the savings and capital income elasticities, as I describe in the following.
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Without scale dependence (with type dependence only), the average elasticity of capital in-
come is equal to the savings elasticity ζ

aR,(1−τK)|ri = ζ̃
a,(1−τK)
i for a given rate of return. With

scale dependence, the savings elasticity needs to account for an endogenous return adjustment.
Therefore, the savings elasticity and, accordingly, the average capital income elasticity are revised
upwards ζaR,(1−τK) = Φiζ

aR,(1−τK)|ri , where Φi ≡
1+εr,ai

1−ζa,ri εr,ai
= (1 + εr,ai )

∑∞
n=0 (ζa,ri εr,ai )n > 1 measures

the inequality multiplier effect. The size of the adjustment is proportional to the inequality mul-
tiplier effect Φi. The interpretation is straightforward: A tax cut increases a household’s savings
(when the substitution effect dominates the income effect). Under scale dependence, however, as
savings increase, the rate of return rises as well. The higher rate of return increases the incentives
to saves. In response, rates of return adjust, and so on. Φi captures this infinite loop of reactions
that arises with scale dependence. As a result, savings and capital gains react more elastic to tax
reforms. Since the optimal capital tax is inversely related to the mean capital gains elasticity, its
upward adjustment provides a force for lower capital taxes. Proposition 1 (b) follows.6

Part (c). How does the presence of scale dependence affect optimal capital taxes? On the one
hand, as described, scale dependence raises the observed capital gains elasticity, which reduces
taxes in the optimum. On the other hand, the presence of scale dependence has the potential
to amplify wealth inequality greatly. The optimal capital income tax is increasing in observed
inequality. Through this channel, one would expect higher taxes that would reduce observed
inequality. Therefore, I consider the following two comparative statics exercises.

Firstly, I compare the optimal capital income tax with scale dependence, τK , to the tax, denoted
as τ̃K , one would obtain in a baseline economy with the same but exogenous distribution of returns
(type dependence only). This exercise is, in principle, non-trivial, as the measure of inequality that
determines the optimal tax may be endogenous to the underlying tax code I (τK). With constant
elasticities, however, I ′ (τK) = 0. Therefore, compared to an economy with type dependence that is
observationally equivalent in terms of inequality (I (τK) = I (τ̃K)), taxes are lower in the economy
featuring scale dependence because the capital income elasticities are higher τK

1−τK = 1−ζa,ri εr,ai
1+εr,ai

τ̃K
1−τ̃K .

7

To demonstrate the quantitative importance of endogenous returns for optimal taxes, I calculate
the optimal revenue-maximizing capital tax with and without scale dependence in Table 1. Set the
elasticity of savings with respect to the rate of return equal to 0.5. Table 1 shows optimal tax rates
for realistic combinations of ζ̃a,(1−τK)

i and εr,ai . As usual, the larger the savings elasticity, the lower
6One can interpret this finding as a Le Chatelier principle for capital (see Samuelson (1948)). In the long run,

since return rates adjust, capital responds more elastic than in the short run for fixed return rates.
7In the dynastic economy of Section C, I show that a similar logic applies to a linear wealth tax.
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Own-Return Compensated Elasticity
Elasticity ζ̃

a,(1−τK)
i = 0.25 ζ̃

a,(1−τK)
i = 0.5 ζ̃

a,(1−τK)
i = 1

Baseline Model (No Scale Dependence): Exogenous Inequality in ri
εr,ai = 0 80 67 50
Microfounded Model (Scale Dependence): Endogenous Inequality in ri
εr,ai = 0.1 78 63 46
εr,ai = 0.25 74 58 41
εr,ai = 0.5 67 50 33
εr,ai = 1 50 33 20

Table 1: Optimal Rawlsian Capital Tax Rate (ζa,ri = 0.5 and Γi = 0).

the optimal capital tax. The novel aspect of this paper is to have a non-zero own-return elasticity.
As a benchmark, I consider εr,ai = 0 in the first row (no scale dependence). The other rows differ
by the magnitude of scale dependence. An own-return elasticity of 0.5, for instance, means that
doubling the savings raises the rate of return accumulated over a lifetime by fifty percent. This
amount of scale dependence leads to a reduction in the revenue-maximizing tax rate of more than
25% (17 percentage points). In the empirical section, I find a modest own-return elasticity of 0.1,
which, nonetheless, reduces the optimal capital tax by six percent relative to the benchmark. The
own-return elasticity that I retrieve from Fagereng et al. (2020) of 0.9 leads to a 50%-reduction of
the optimal capital tax relative to a setting without scale dependence.

Alternatively, one can interpret these back-of-the-envelope calculations as the difference be-
tween the optimal capital tax and the tax set by a politician who wrongly assumes that the
inequality he observes does not come from scale dependence (but from type dependence only). Al-
together, even for a relatively small amount of scale dependence, the implications for the optimal
tax rate are sizable.

Secondly, in Section G, I derive the optimal nonlinear capital gains tax in a life-cycle economy
and show that the optimal tax remains unchanged when one introduces scale dependence, holding
the primitives of the economy fixed. For given preferences and a fixed wage distribution, the intro-
duction of scale dependence is completely neutral. The rise in inequality just cancels the increase
in elasticities. Altogether, despite its potential to boost wealth inequality, scale dependence either
reduces the optimal capital tax or is completely neutral (Proposition 1 (c)). One can read this
result as a possible justification for why capital taxes (e.g., in the US) have not gone up, although
capital income inequality has mounted. If this rise in inequality came from scale dependence, one
should not tax more.

Part (d). Interestingly, the distribution of pre-tax returns is endogenous to the tax code. To
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see this, consider the variance of returns V (ri) and a rise in the capital gains tax dτK > 0.
Then, under scale dependence (εr,ai > 0), the variance of pre-tax returns declines dV (ri) =

−2V (ri) εr,ai ζ
a,(1−τK)
i

dτK
1−τK < 0. In other words, the elasticity of the pre-tax return variance with

respect to the retention rate is positive ζV(r),(1−τK) ≡ dlog[V(ri)]
dlog(1−τK) > 0. A rise in marginal taxes,

therefore, reduces the pre-tax return inequality. However, this compression effect of returns comes
along with the cost of diminishing mean pre-tax returns dE (ri) = −E (ri) εr,ai ζ

a,(1−τK)
i

dτK
1−τK < 0,

which shows part (d) of Proposition 1. Thus, scale dependence gives rise to a new model-inherent
trade-off for tax policy. On the one hand, a government that raises capital taxes can realize novel
equity gains by reducing the pre-tax return inequality. On the other hand, there are novel efficiency
costs from lowering the level of pre-tax returns.

For fully type-dependent rates of return, only the distribution of after-tax returns but not the
pre-tax return distribution respond to the tax system. In the presence of scale dependence, capital
taxes also affect the distribution of pre-tax returns. As a result, distributional responses of pre-tax
returns provide a potential source for empirically identifying the magnitude of scale dependence.
If all the return inequality came from type dependence, there should be no reaction of mean pre-
tax returns and their variance to tax reforms. Whenever there is some scale dependence, one
can observe such a response. As mentioned above, the strength of the reaction is, in this simple
framework, proportional to the amount of scale dependence, measured by εr,ai . In Section 4, I
demonstrate the nature of different tax reforms affects these distributional responses.

Part (e). In Section E, I microfound the notion of scale dependence. On a financial market,
households optimally choose their portfolio and the amount of information they wish to acquire.
Wealthier households invest more and, therefore, have a higher incentive to acquire financial knowl-
edge than poorer investors. As a result of their better knowledge, the former obtain higher rates of
return than the latter households. Portfolio returns become scale-dependent. In general equilib-
rium, an investor’s rate of return is not only positively associated with her portfolio size but also de-
pends on others’ investment decisions ri

(
ai, {ai}i′∈[0,1]

)
. The cross-return elasticity γr,ai,i′ ≡

∂log[ri(·)]
∂log(ai′ )

measures the responsiveness of a household i’s return to the amount of investment by another
household i′ (similar to the cross-wage elasticity in Sachs et al. (2020)). I show that, when costs of
information acquisition are linear and everyone acquires knowledge, a change in the savings by a
household i′ leads to the same change the returns of any other household i in the percentage points
γr,ai,i′ = 1

ri
δr,ai′ . Moreover, δr,ai′ is decreasing ai′ . It is positive for small values of ai′ and negative

for large ones. This situation features trickle-up forces, where a cut in the capital income tax of
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the rich shifts economic rents from the bottom to the top. The intuition is as follows. Absent
of income effects, a tax cut on the rich’s capital income income increases their portfolio size and
financial knowledge. Accordingly, their returns rise (εr,ai > 0). This channel is also present in
partial equilibrium. However, in general equilibrium, the amount of aggregate information also
rises, as the rich become more informed, and the value of private information declines. As a result,
the reward for the relatively small amount of information the poor purchase declines, leading to
lower return rates for them (δr,ai′ < 0). The tax cut on the rich increases their wealth but reduces
the resources of the poor.

The optimal capital tax in general equilibrium reads as τK
1−τK = 1

ζ
aR,(1−τK)
i

E

(1−Γi
(

1+γr,(1−τW )
i

))
aR,i

E(aR,i)

 ,
where γr,(1−τW )

i ≡
∫
i′ γ

r,a
i,i′ζ

a,(1−τW )
i′ di′ summarizes general equilibrium welfare externalities. Suppose

that cross-return elasticities average out such that
∫
i′ γ

r,a
i′,i′di

′ = 0.8 Then, one can show that the
average capital gains elasticity, ζaR,(1−τK)

i , declines relative to the partial equilibrium. Moreover,
γ
r,(1−τW )
i = 1

ri

∫
i′ δ

r,a
i′ ζ

a,(1−τK)
i′ di′ < 0. Both the general equilibrium externalities and the adjustment

of the wealth elasticity call for higher taxes.
For small general equilibrium forces (δr,ai′ ≈ 0 and τGEK ≈ τPEK ), one can use a first-order Taylor

approximation to compare the optimal capital income tax in general equilibrium to the tax rate
set by a politician who wrongly assumes that only partial equilibrium forces are present and sets
a tax, τPEK , that generates a capital income distribution for which the tax is optimal (as proposed
in Rothschild and Scheuer (2013, 2016)). The general equilibrium tax rate is larger than the one
in this self-confirming policy equilibrium τGEK > τPEK . Consequently, trickle-up forces call for more
redistribution in general equilibrium. This result is intuitive because cutting taxes would shift
resources from poor to affluent households and lower welfare.

One may think about this as a situation of rent-seeking, where the rich take away income
from the poor. It is optimal for the government to tax these rents away (see Piketty, Saez, and
Stantcheva (2014) and Rothschild and Scheuer (2016)). Of course, this does not mean that the
capital tax should be higher or lower than in the setting with type dependence only (without
scale dependence). This comparative static only compares capital taxes in partial and in general
equilibrium. To evaluate whether the presence of endogenous return rates that result from rent-
seeking should lead to more or less redistribution relative to a situation where return rates are
exogenous, one needs a precise notion of the relative strength of partial and general equilibrium
forces. In the empirical section, I attempt to disentangle these.

8In the empirical analysis (Section 3), I find some support for this assumption.
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One can also interpret this result in connection with the integration of financial markets. As
markets become internationally more connected, general equilibrium effects vanish (γr,ai,i′ → 0).
Foreign investors gain better access to a country’s financial market. Vice versa, domestic investors
can participate in foreign markets more easily when integration proceeds. As a result, domestic
investors’ impact on the return rates on the financial market is inversely related to the degree of
integration. In this trickle-up economy, the optimal capital gains tax and, therefore, the level of
redistribution declines with the international integration of financial markets.

2.2 Microfoundation, Extensions, and Discussion

In the following, I discuss the model’s main assumptions, their generality, potential extensions,
and policy implications of the framework.

Microfoundation. To begin, I describe the financial market of Section E as one potential mi-
crofoundation of scale dependence. I consider a repeated Grossman and Stiglitz (1980) financial
market, where households optimally choose their portfolio consisting of a risk-free bond and a
risky stock and acquire information about the stochastic fundamentals that drive the stock’s pay-
off. In the rational expectations equilibrium, the stock price clears the market for individuals’
portfolios, and the implied informativeness of the price is consistent with individuals’ information
acquisition.9 I incorporate taxes into this market and demonstrate the functional form of own- and
cross-return elasticities in a linear example. Moreover, I incorporate career effects and explicitly
add type dependence.

Even though scale dependence arises, in this leading example, from information acquisition on
a financial market, the exact source of scale dependence is in principle unimportant for tax policy.
In partial equilibrium, only the magnitude of the own-return elasticity throughout the wealth
distribution, εr,ai , matters. To identify the direction of general equilibrium externalities, if at all
present, the sources of scale dependence are relevant to the extent that they may enter differently
into the cross-return elasticities, γr,ai,i′ . Also, notice that, in the conceptual framework, I do not
assume away the joint presence of scale dependence and type dependence (e.g., entrepreneurial
talent). Just as in reality, these phenomena can co-occur in my analysis.

Discussion and extensions. Besides, the message of the paper is not that taxes should be
lower with return inequality than without. Instead, I analyze the policy implications of having
a non-negligible responsiveness of return rates to savings. Lower taxes in the presence of scale

9For a more detailed exposition, I refer to Section E.
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dependence do also not mean that the government should let wealth and return inequality grow
indefinitely. There seems to be an upper bound on households’ long-run return rates naturally
limiting the amount of scale dependence and, thereby, the upward adjustment in capital income
elasticities. In addition, the optimal capital tax rises with observed capital income inequality to
combat rising inequality.

As already mentioned, most of the simplifying assumptions in this section are inessential for
the main results. In the later sections, I show that those extend to income effects, the presence of
labor taxes (Sections C and G), uncertain returns, and dynastic considerations (both Section G).
For simplicity, I consider, in this section, a linear instead of a nonlinear capital gains tax (Section
G). Alternatively, one can analyze a wealth tax as in Section C. As I show, all the insights hold
for both capital gains and wealth taxation.

As noted by contributors to the literature (e.g., Guvenen et al. (2019)), a capital income and
a wealth tax do not coincide when there is return heterogeneity. In the framework of Guvenen
et al. (2019), type dependence generates return inequality between potentially liquidity-constrained
entrepreneurs. A wealth tax can raise efficiency relative to a uniform capital gains tax as the
former effectively levies a lower (higher) tax on capital incomes of individuals with a higher (lower)
entreprenerial talent and an exogenously higher (lower) rate of return. In their framework, return
rates are independent from the amount of savings for unconstrained entrepreneurs and, given their
calibration of the production function, even decreasing in the amount of savings for constrained
ones. Therefore, the positive correlation between return rates and wealth in Guvenen et al. (2019)
solely arises from type dependence. My model nests this type of return inequality. With scale
dependence, there are additional efficiency gains because the lower tax on high-return individuals
induces further efforts to increase their return rate. The focus of this paper is to study the effects of
scale dependence on redistribution where efficiency is one (but not the only) important dimension.

Furthermore, I deal with the presence of other policies such as financial education consistent
with the leading financial market example. Although such policies may be better suited to directly
address return inequality, empirical evidence suggests, nonetheless, a residual amount of scale
dependence governments cannot shut down. The reason is that these policies are also costly giving
rise to a trade-off between equity (reduction in return inequality) and efficiency (rise in costs).
Similarly, a government would face similar information acquisition costs if it provided a sovereign
wealth fund open to everyone and large enough to absorb all private investment rents. Aside
from information costs, this may give rise to other inefficiencies, such as agency frictions and
diversification limits.
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Even if these costs declined substantially, it seems unlikely that scale dependence would vanish.
In the leading example of the financial market, the unpredictability of stock market returns may
prevent the dissolution of scale dependence. Therefore, in this paper, I take as given existing
inefficiencies that create a residual amount of scale dependence and analyze tax policy for this
given amount of scale dependence.

Finally, the welfare weights may be endogenous to the amount of scale dependence. In the
spirit of Saez and Stantcheva (2016), one may generalize the notion of social marginal welfare
weights. For example, equity considerations may lead to even lower taxes when a given amount of
return inequality comes from scale dependence as opposed to type dependence. In the latter case,
rich individuals obtain higher rates of return than the poor, for instance, because of an inherent
talent they received from their parents. Under scale dependence, individuals may inherit a sizable
fortune which allows them, for example, to hire skilled financial advisers the poor cannot afford.
More generally, they are gifted by their parents with the absence of frictions the poor have to face.
However, at least partly the rich still need to pay a price to obtain higher rates of return than
the poor, for example by taking effort. Thus, to some degree these higher returns reflect a fair
compensation for costs the rich undertake. In that sense, scale dependence may reduce inequality
concerns in a society, thus, lowering the optimal capital tax also from an equity perspective.

At the same time, political economy considerations may counteract this force. If the political
power in a society is endogenous to an individual’s wealth, the amplification of wealth inequality
scale dependence causes may create a rich elite that either directly influences tax policy by running
for a political office or indirectly by lobbying. For instance, as proposed by Saez and Zucman (2019),
it may be desirable in the interest of sustaining democracy to set wealth taxes higher than the
revenue-maximizing rate to prevent an “oligarchic drift”. From this perspective, scale dependence
may provide a rationale for higher capital taxes.
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3 Empirical Analysis

In this section, I analyze the role of scale dependence for empirical analysis. First, I describe the
conceptual issues that arise from scale dependence for the estimation of capital gains and savings
elasticities and revisit estimates from the literature (Section 3.1). In this light, I, then, directly
estimate own- and cross-return elasticities using panel data on US foundations (Section 3.2).

3.1 Empirical Implications of Scale Dependence

In this section, I describe the empirical implications of scale dependence for the estimation of
capital gains and savings elasticities.

Conceptual description. To fix ideas, consider a tax reform dτK and abstract from income
effects. Then, the percentage change in the capital gains of household i in period t is given by
dai,t
ai,t

= −ζ̃a,(1−τK)
i,t

dτK
1−τK + ζa,ri,t

dri,t
ri,t

. Similarly, the change in the household’s wealth, aR,i,t = ai,tri,t,
reads as daR,i,t

aR,i,t
= −ζ̃aR,(1−τK)

i,t
dτK

1−τK +
(
1 + ζa,ri,t

)
dri,t
ri,t

.

This formulation immediately reveals the econometric implication of scale dependence for the
estimation of long-run capital elasticities. In the presence of scale dependence, estimates from
data that implicitly hold the return rate fixed (dri,t = 0) suffer from an omitted variable bias when
trying to identify the long-run elasticities. Then, the estimation misses the adjustment of returns
and the error term has a non-zero expectation, conditional on the covariates, violating a critical
identifying assumption in empirical studies. The according point estimates are biased downward.
In other words, wealth and capital income appear to be less responsive than they are in reality.

In the following, I describe three scenarios where this may be the case. Firstly, estimates may
be biased when the empiricist does not correctly observe fluctuations in return rates. For data
from a short time window, this is likely the case. In the short run, a household’s return rate forms,
for instance, conditional on her financial knowledge or advisers. In the longer term, she may react
to tax reforms, e.g., by hiring other financial advisers, and the return rate adjusts.

Secondly, using data from tax records, the empiricist misses unrealized capital gains. These
are not only but particularly relevant for households from upper parts in the wealth distribution,
who, for instance, buy stocks or private equity and do not sell them. Therefore, the empiricist does
not observe substantial parts of the adjustment in their capital income in response to a tax reform
even if the data capture a long time. This problem also applies to housing, intangible properties,
and other assets whose market value only reveals when being sold.
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Another issue is the extrapolation of estimates from one to another group in the wealth dis-
tribution, even if they are unbiased. Portfolios and their flexibility differ significantly across the
population. Households from low parts of the wealth distribution mostly hold cash and cannot
participate in the stock market. Median families hold mostly housing. For wealthy households,
financial and business assets are pervasive. Therefore, one cannot infer estimates of capital income
elasticities from the poor to the rich and vice versa. To overcome these issues, one may directly
estimate own- and cross-return elasticities along the wealth distribution. I approach this empirical
challenge in Section 3.2.

Relation to the empirical literature. Now, I summarize two strands of the empirical literature
bearing these issues in mind. The first one regards the estimation of the capital income elasticity
with respect to the capital gains tax. In the second strand of the literature, contributors estimate
the elasticity of capital to wealth taxes. The number of studies that try to address scale dependence
is limited. This does, of course, not mean that the other estimates are wrong, but their scope of
application depends on the nature of policies under consideration.

Contributors to the literature on the capital income elasticity, starting from Feldstein, Slemrod,
and Yitzhaki (1980), employ microdata and time-series mostly from the US. Their focus lies on
the estimation of realization elasticities (for recent contributions, see Bakija and Gentry (2014),
Dowd, McClelland, and Muthitacharoen (2015), and Agersnap and Zidar (2020)). The authors
distinguish between transitory and permanent responses. Permanent responses seem to be more
relevant for long-run tax policy. However, to apply to long-run capital taxation, estimates also need
to control for scale dependence in return rates. Existing studies may not capture them because
they are from a short-time window and only include capital gains realizations.

Unlike the sizable research on the elasticity of taxable income, only a few studies have, so far,
attempted to estimate the elasticity of capital with respect to wealth taxes. Zoutman (2015) stud-
ies the impact of a capital tax reform on wealth accumulation in the Netherlands, noting that the
portfolio composition changes over time and responds to the tax reform. However, the data only
include cash returns (e.g., dividends and interest), thereby lacking a measure of actual returns.
In their analysis of Swiss time-series and microdata, Brülhart, Gruber, Krapf, and Schmidheiny
(2016) omit adjustments in individual return rates. Seim (2017) provides evidence of bunching
at exemption thresholds in Sweden. Whereas being suited for identifying avoidance and evasion
responses, such estimates need to be interpreted locally for the respective wealth group and may
not represent real responses in the long run (see Kleven (2016)). In Denmark, Jakobsen, Jakobsen,
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Kleven, and Zucman (2020) estimate the wealth elasticity in a difference-in-difference setup. Since
the Danish wealth tax only applies to wealthy households in the observation period, the estimates
are not representative of the entire population. To sum up, this literature pays closer attention
to unrealized capital gains, which is natural, given its objective to estimate the wealth elastic-
ity. However, without knowing the amount of scale dependence, the estimates are not readily
generalizable to long-run wealth elasticities across the wealth distribution.

3.2 Estimation of Own- and Cross-Return Elasticities

In the following, I propose a direct estimation of own- and cross-return elasticities that can be
used to adjust the elasticity of capital to scale dependence. As I demonstrate in Sections 2, C, and
G, the adjustment of this sufficient statistic is important for tax policy.

Foundations data. I use the publicly available panel data on US foundations that annually
report their wealth and income to the IRS in the 990-PF form. The stratified random sample
covers approximately 10% of the foundation population. This procedure is similar to Piketty
(2014), who uses pooled returns data of US universities. The micro-files on foundations cover the
years 1986 to 2016. They include market-valued wealth levels, portfolio compositions, and capital
income. All observations are on an individual level.

The foundation data set has three main advantages. Firstly, it allows me to follow the relation
between return rates and wealth on an individual (foundation) level over a long period. Secondly,
although foundations are institutional investors who potentially behave differently on the financial
and non-financial markets, they may serve as a reasonable proxy for wealthy investors. Their
portfolios’ size is similar, and their assets are also partly shifted to legal entities instead of private
bank accounts. Thirdly, the data set contains both realized and unrealized capital gains, and
foundations explicitly report donations and withdrawals.

The main disadvantage of the data set is its limited generalizability to household behavior.
The average foundation has a substantially larger endowment than the average household, and,
even conditional on the same wealth level, investment behavior may differ. However, one may
argue that foundations provide a reasonable proxy for the rich with a similar portfolio size who
partly shifts their assets to these entities. Nonetheless, one should be cautious when interpreting
the findings in the context of households.

As in Fagereng et al. (2020) and Bach et al. (2020), one can directly calculate the real investment
return on wealth of foundation i during period h, ri,h, as the market-value capital income (both
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Wealth
g

Relative Wealth Level Return Rate
Group Ig Group Size Mean Mean Std Dev

Below $100k 1 7.9% 40 574 2.7% (0.072)
$100k to $1m 2 20.6% 416 464 4.9% (0.076)
$1m to $10m 3 24.6% 3 708 144 5.1% (0.084)
$10m to $100m 4 39.9% 31 065 438 5.0% (0.088)
$100m to $500m 5 5.7% 197 396 730 5.4% (0.091)
$500m to $5bn 6 1.1% 1 207 748 745 5.8% (0.090)
Above $5bn 7 0.1% 10 238 369 724 5.7% (0.097)

Table 2: Summary Statistics (Observations: N = 254 570)

realized and unrealized) divided by the average invested capital in that period. Denote foundation
i’s assets at market value at the beginning of year h as ai,h. All the observations are in 2016 dollars.
By construction of the empirical specifications below, I only use foundation-year observations with
positive beginning-of-year assets. Moreover, to avoid outliers, I exclude foundation-year observa-
tions with return rates above 25% and below −25%.10 Moreover, I drop foundation observations
with zero wealth at the beginning of a year. As in Saez and Zucman (2016), I classify foundations
by their market-value wealth at the beginning of each year into wealth groups g = 1, ..., 7 (index
set Ig). In Table 2, I display descriptive statistics for these different wealth groups.

The first three (four) wealth groups approximately capture the bottom 50% (90%) of founda-
tions. The last two groups cover the top 1% and the top 0.1%, respectively. Foundations achieve
a median return rate of 4.9% with an median portfolio size of $6 978 721. There is a substantial
degree of heterogeneity. Foundations differ in their endowment size (wealth inequality) and in
their investment returns (return inequality). Whereas small foundations (below $100k) attain an
annual return of 2.7%, the top 1% foundations gain 5.8% on their investments. A 1% increase
in the endowment size is associated with a reduced-form rise in the annual return rate of 0.2%.
Notice that the average foundation is substantially wealthier than the typical household. At the
same time, their return rates are comparable. Therefore, the amount of scale dependence is likely
to be underestimated in the data. The estimates of the own-return elasticity can be considered
conservative.

Estimation of own-return elasticities. To disentangle the role of type and scale dependence
for this return inequality, I utilize the data’s panel structure in the following. Like Fagereng et al.

10If one leaves out foundation-year observations with return rates below the 2.5 and above the 97.5 percentile,
the results will be similar. The uncut sample features a kurtosis above 100 000 which is far beyond any threshold
proposed in the literature for evaluating outliers and fat tails (e.g., see Kline (2015)). After cutting the sample in
the proposed manner, the kurtosis drops to 3.7, thus resembling a normal distribution’s tail behavior.
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Constant Returns to Scale Incr./Decr. Returns to Scale
(1) (3) (4) (2)

ε 0.0023∗∗∗ 0.0022∗∗∗ 0.0001∗∗∗ 0.0027∗∗∗
(0.0004) (0.0004) (0.0000) (0.0005)

ε2 0.0002
(0.0001)

ε3 0.0002
(0.0002)

ε4 0.0001
(0.0002)

ε5 −0.0002
(0.0002)

ε6 −0.0003
(0.0002)

ε7 −0.0008
(0.0006)

Individual FE Y Y Y Y
Time FE Y Y Y Y

Observations 254 570 254 570 254 570 254 570

Table 3: Own-Effects Regressions; Standard Errors (in Parentheses) Clustered by Foundation;
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

(2020), I regress real return rates on beginning-of-year net wealth

log (1 + ri,h) = ε · log (ai,h) + fi + fh + ui,h, (1)

where fi and fh are individual and time fixed effects. ε measures scale dependence, whereas fi
captures the amount of type dependence. Therefore, individual-specific time variation in wealth
identifies scale dependence that arises from any direct or indirect source (e.g., portfolio choice,
financial information, stock market participation costs, or liquidity). For instance, donations or
withdrawals trigger such time variation in portfolio size.

There may be nonlinearities in scale dependence. In the example of the financial market in
Section E.2.2, there are decreasing returns to scale. The own-return elasticity decreases with
wealth. To capture these nonlinearities, I estimate an alternative specification

log (1 + ri,h) = ε · log (ai,h) +
7∑

g′=2
εg′ · log (ai,h) ·Dgi,h,g′ + fi + fh + ui,h, (2)

where Dgi,h,g′ is a dummy variable indicating a foundation i’s affiliation to group g′ in period h.
In Table 3, I report the estimated coefficients of specifications (1) and (2). Specifications (1) and

21



(2) reveal a highly significant amount of scale dependence. Doubling a foundation’s endowment,
raises its annual return rate by 0.23 percentage points (period-h own-return semi-elasticity). There
is no evidence for increasing or decreasing returns to scale. Interestingly, for high foundations sizes,
the point estimates of (2) show (slightly non-significant) decreasing returns to scale that would
be in line with the financial market example in Section E.2.2. Whereas the specification cannot
confirm the parametrization in the example, it does neither reject it.

In specifications (3) and (4), I replace log net wealth in (1) by foundation’s group affiliation
and percentile in the wealth distribution both based on foundations’ beginning-of-year net wealth:

log (1 + ri,h) = ε · gi,h + fi + fh + ui,h, (3)

and
log (1 + ri,h) = ε · pi,h + fi + fh + ui,h, (4)

where gi,h and pi,h measure foundation i’s wealth group affiliation and percentile in period h. Again,
there is significant scale dependence. Including lagged foundation wealth into (1) does not change
the results qualitatively. Instrumenting foundation wealth in (1) with three-year lagged donations
yields the same results. By estimating (1) separately for boom and bust years (1990, 2001, 2008,
and 2009), one can show that scale dependence is driven by boom years. Large foundations realize
large capital gains (losses) during boom (bust) years because they take more risks than small ones
(higher return variance).

Now, I translate the scale dependence estimated with (1) into a value for the life-time own-
return elasticity εr,ai . Multiply the estimate of (1) by 1+rm,h

rm,h
, where rm,h = 4.9% is the median

return rate, to get an estimate of the period-h own-return elasticity of a representative foundation
(ε̂r,ai,h ≈ 0.05). To compute the life-time own-return elasticity, consider the compound return rate
earned by that household Rm = (1 + rm,h)H − 1. Accordingly, one obtains an expression for the

life-time own-return elasticity ε̂r,ai = H·(1+rm,h)H−1

Rm,h

dlog(1+ri,h)
dlog(ai,h) . For rm,h = 4.9% and H = 30, this

yields an estimate of ε̂r,ai ≈ 0.1. As we have seen, incorporating this conservatively estimated effect
into tax policy leads to a notable adjustment of the optimal capital tax.

By comparing the estimate of (4) to the one in Fagereng et al. (2020), one can immediately see
that the predictions from the foundations’ data set may severely understate the amount of scale
dependence among households. Based on the wealth distribution in Norway and the estimated
scale dependence in Fagereng et al. (2020), I calculate an estimate of the life-time own-return
elasticity of ε̂r,ai ≈ 0.9 in their data set, which is substantially higher than the estimate obtained
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here.11

One can explain the different estimates with the difference between the foundation data the
Scandinavian population data in Fagereng et al. (2020) and Bach et al. (2020). When extrapo-
lating the US foundation data to a country’s population, say US households, two important notes
of caution are, thus, in order. Firstly, the foundations’ portfolios are substantially larger. For
example, in the SCF data in Section 4, having the median foundation wealth would put a US
household into the 96th percentile in the wealth distribution. Therefore, the bottom half of the
foundations may better proxy the population than the whole foundation distribution.

Secondly, a household and a foundation with the same net wealth potentially behave very
differently. Consider a household and a foundation with $ 10 000. The household has comparably
small savings such that liquidity constraint may play an important role. Simultaneously, the
foundation may not face such constraints if it is funded by an affluent donor who endows several
charities and bails each of these foundations out whenever necessary. Altogether, the different
datasets lead to distinct estimates of scale dependence. In any case, the implications of scale
dependence for tax policy are sizable.

Estimation of cross-return elasticities. Recall that, in general equilibrium, a household’s
return rate ri

(
ai, {ai′}i′∈[0,1]

)
depends not only on its amount of savings but also on those of

others. A change in the savings by household i′ also affects household i’s return

d (1 + ri,h)
1 + ri,h

= ε1+r,a
i,h · dai,h

ai,h
+
∫
i′
γ1+r,a
i,i′,h ·

dai′,h
ai′,h

di′.

To bring this formulation closer to the data, consider the discrete counterpart

d (1 + ri,h)
1 + ri,h

= ε1+r,a
i,h · dai,h

ai,h
+
∑
i′

γ1+r,a
i,i′,h ·

dai′,h
ai′,h

.

In the following, I estimate the magnitude of general equilibrium externalities (for each wealth
group). To be able to identify cross effects, I impose more structure on these externalities. I assume
that they are constant over time (γ1+r,a

i,i′,h = γ1+r,a
i,i′,h ) and multiplicatively separable γ1+r,a

i,i′,h = 1
1+ri,h

δr,ai′,h,
as in the financial market example (Section E.2.2). Moreover, let general equilibrium externalities

11Using the wealth distribution reported in Table 1A of Fagereng et al. (2020), I regress the household percentile
on log wealth ( d̂pi,h

dlog(ai,h) = 0.1443). Then, note that d̂ri,h
dlog(ai,h) = d̂ri,h

dpi,h

d̂pi,h
dlog(ai,h) , where

d̂ri,h
dpi,h

= 0.1383 (see Table 9 in
Fagereng et al. (2020)), to obtain an estimate for the period-h own-return semi-elasticity. Finally, for rm,h = 3.2%
(reported in Table 3 of Fagereng et al. (2020)) and H = 30, I obtain a period-h own-return elasticity of ε̂r,ai,h ≈ 0.6
and a life-time own-return elasticity of ε̂r,ai ≈ 0.9. For rm,h = 5.6%, as in the SCF data in Section 4, ε̂r,ai,h ≈ 0.4 and
ε̂r,ai ≈ 0.7.
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be similar within a wealth group δr,ai′,h ≈ δr,ag′,h for all i′ ∈ Ig′ and let δr,ag′,h be small (δr,ag′,h ≈ 0). In the
estimation, I verify the latter assumption. Define the mean return in wealth group g as Eg (ri,h).
Then one can write the effect on returns as

d (1 + ri,h)
1 + ri,h

= ε1+r,a
i,h · dai,h

ai,h
+

7∑
g′=1

δr,ag′,h ·
∑
i′∈Ig′

dai′,h
ai′,h

· 1
1 + Eg (ri,h) + ui,h

with a bias term

ui,h ≡
7∑

g′=1

1
(1 + ri,h) (1 + Eg (ri,h))

∑
i′∈Ig′

[
(1 + Eg (ri,h))

(
δr,ai′,h − δ

r,a
g′,h

)
+ (Eg (ri,h)− ri,h) δr,ag′,h

] dai′,h
ai′,h

.

For small cross effects (δr,ag′,h) and return rates (ri,h − Eg (ri,h)) and similar cross-effects in each
wealth group (δr,ai′,h ≈ δr,ag′,h), the bias term becomes negligible ui,h ≈ 0. Therefore, I specify the
econometric model by augmenting (1) with cross effects

log (1 + ri,h) = ε · log (ai,h) +
7∑

g′=1
δg′ · log

(
ag′,h

)
· gi,h + fi + fh + ui,h (5)

and, controlling for group-specific effects,

log (1 + ri,h) = ε · log (ai,h) + β · gi,h +
7∑

g′=1
δg′ · log

(
ag′,h

)
· gi,h + fi + fh + ui,h (6)

where, again, gi,h indicates foundation i’s group affiliation and log (ag′,h) ≡
∑
i′∈Ig′ log (ai′,h) mea-

sures the wealth level of group g in period h.
There are two sources for identifying δg′ : movements in the groups’ wealth levels and founda-

tions’ mobility between wealth groups. Changes in the foundations’ group affiliation arise from
donations, withdrawals, and investment returns in the past. In Table 4, I display the amount of
inter-group mobility. As the diagonal of this mobility matrix reveals, there is a substantial group
persistence (96% of observations). The majority of foundation mobility is between adjacent wealth
groups. There is slightly more upward than downward mobility. Overall, 9 048 foundation-year
group movements identify the inter-group cross effects.

In Table 5, I show the coefficients estimated from (5) and (6). The estimated amount of scale
dependence remains relatively stable. Moreover, there are statistically significant cross-effects. The
estimates reveal no clear relationship between δg′ and g′. In the financial market example of Section
E.2.2, this relation would be negative. However, the sizes of the significant coefficients are, from
an economic point of view, negligible. The estimates justify using small general equilibrium forces
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gi,h = 1 gi,h = 2 gi,h = 3 gi,h = 4 gi,h = 5 gi,h = 6 gi,h = 7
gi,h−1 = 1 15 370 599 70 19 1 1 0
gi,h−1 = 2 1 073 43 217 1 239 30 1 1 0
gi,h−1 = 3 29 1 106 52 820 1 553 13 2 0
gi,h−1 = 4 6 10 1 035 89 911 1 151 16 0
gi,h−1 = 5 0 0 1 718 12 519 218 1
gi,h−1 = 6 0 0 0 1 134 2 536 14
gi,h−1 = 7 0 0 0 0 0 6 216

Table 4: Inter-Group Mobility (Observations: N = 225 637)

(δr,ai,t ≈ 0) in the comparative statics (Sections 2 and C) and validate the identifying assumption
that ui,h ≈ 0 (for δr,ai′,h ≈ δr,ag′,h).

If at all, the estimates of δ7 are economically relevant. As group 7 represents the top 0.1% of
foundations, this indicates the presence of negative externalities from the top hinting at trickle-up
forces in the general equilibrium financial market. Moreover, using the estimated coefficients from
specification (6), a simple Wald test does not reject the hypothesis that

∫
i′ γ

r,a
i′,i′di

′ = 0 at the 5%
level, which is in line with the assumption in the theoretical part.

To account for potential group-specific nonlinearities in cross effects, I also estimate

log (1 + ri,h) = ε · log (ai,h) +
7∑

g′=1

6∑
g′′=1

δg′,g′′ · log
(
ag′,h

)
·Dgi,h,g′′ + fi + fh + ui,h (7)

and

log (1 + ri,h) = ε · log (ai,h) +
6∑

g′′=1
Dgi,h,g′′ +

7∑
g′=1

6∑
g′′=1

δg′,g′′ · log
(
ag′,h

)
·Dgi,h,g′′ + fi + fh + ui,h, (8)

where Dgi,h,g′′ is a dummy variable equal to one if foundation i’s period-h group affiliation gi,h

is g′′. As in (5) and (6), the estimated cross effects (δg′,g′′) are economically small. Moreover,
the estimates do not reveal noteworthy nonlinearities in cross effects. Therefore, I abstain from
reporting them separately.

Altogether, I find a statistically significant and economically meaningful amount of scale de-
pendence. The preferred estimate leads to an own-return elasticity of 0.1. Using the statistics
reported in Fagereng et al. (2020), I retrieve an estimate of 0.9 in their data set. In both cases, the
resulting adjustment of capital elasticities and the implications for tax policy are quantitatively
important. The cross-effects estimates are statistically significant but economically unimportant,
suggesting either no or only small general equilibrium externalities. Some of the cross-effects es-
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Constant Returns to Scale Constant Returns to Scale
(5) (6)

ε 0.0008∗ 0.0025∗∗∗
(0.0004) (0.0004)

δ1 −0.0005∗ ×10−3 0.0007∗∗∗ ×10−3

(0.0003) ×10−3 (0.0002) ×10−3

δ2 0.0006 ×10−4 −0.0031∗∗∗ ×10−4

(0.0010) ×10−4 (0.0009) ×10−4

δ3 0.0030∗∗∗ ×10−4 0.0049∗∗∗ ×10−4

(0.0007) ×10−4 (0.0007) ×10−4

δ4 −0.0023∗∗∗ ×10−4 −0.0038∗∗∗ ×10−4

(0.0007) ×10−4 (0.0008) ×10−4

δ5 0.0076 ×10−4 0.0306∗∗∗ ×10−4

(0.0049) ×10−4 (0.0055) ×10−4

δ6 0.0036∗∗∗ ×10−3 0.0024∗∗ ×10−3

(0.0011) ×10−3 (0.0011) ×10−3

δ7 −0.0022∗∗∗ ×10−2 −0.0037∗∗∗ ×10−2

(0.0007) ×10−2 (0.0007) ×10−2

Individual FE Y Y
Time FE Y Y

Observations 254 570 254 570

Table 5: Cross-Effects Regressions; Standard Errors (in Parentheses) Clustered by Foundation;
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

timates seem to be in line with the specified general equilibrium financial market model. More
research is needed to assess in how far the estimates from foundations apply to household data
and whether general equilibrium externalities are present.
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4 Quantitative Analysis

Now, I document the substantial amount of return inequality in the US, using household-data from
the Survey of Consumer Finances (2016). Then, I use the type and scale dependence estimates in
the previous section and match the statistical model (1) to the cross-section of return rates in the
SCF. I show that the statistical model successfully explains the observed inequality in return rates.
Using the SCF data, I consider a set of tax reforms that alter the progressivity of the current US
tax code and study their distributional and revenue incidence. For a calculation of optimal tax
rates, I refer to Sections 2 and G.

4.1 Return Inequality in the US

Data. I extract the household-level asset data from the SCF for 2016 provided by Kuhn, Schu-
larick, and Steins (2020). The representative sample contains detailed information on household
wealth, portfolio composition, and demographic characteristics. For simplicity, I exclude around
16% of households, who report non-positive net wealth. I define net wealth as the market value
of all financial and non-financial assets net of the value of total debt. Since income from pension
funds and life insurance is exempt from capital taxation, I exclude these assets from the wealth
concept.

Construction of return rates. In the following, I construct household-level return rates. First,
I calculate portfolio shares for each household. Figure 1 displays the relationship between house-
holds’ position in the wealth distribution and their portfolios’ composition. There is a substantial
amount of heterogeneity in the portfolio composition. Housing and other real estate is the most
prevalent asset throughout the wealth distribution. Its importance is, however, declining in house-
hold wealth. Similarly, the share of liquid assets is considerably higher for households from lower
parts of the wealth distribution. The opposite holds for public and private equity. Business assets
and stocks are increasingly important throughout the wealth distribution. Debt is more prevalent
for the poor and the middle class than for the rich. Bond holdings (interest-bearing) only play a
minor role.

Now, using these asset shares, I construct household-level return rates. Formally, I calculate
household i’s period-h gross return rate as ri,h = ∑

a ς
a
i,hr

a
h, where ςai,h is the share of asset a in the

household’s portfolio and rah is the asset’s annual return rate. For simplicity, I assume uniform
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Figure 1: Asset Portfolio Composition

return rates, conditional on a given asset a.12 This procedure will likely underestimate the actual
degree of return inequality if return rates within an asset class rise with household wealth. I use
each asset’s 30-year average return rate in the US (1986-2015) from Jordà, Knoll, Kuvshinov,
Schularick, and Taylor (2019). To obtain real portfolio returns, I subtract the 30-year average
inflation in the US, based on the CPI.

In Figure 2, I show the return rates for each percentile in the wealth distribution. The graph
reveals a substantial return inequality throughout the wealth distribution. When moving from the
lowest to the highest wealth percentile, households’ annual return rates differ by more than 4.5
percentage points. This heterogeneity is remarkable given that I imposed uniform return rates
within asset classes and omitted the poorest households (16%) with zero or negative net wealth.

4.2 Statistical Model

Model description and parametrization. I use the statistical model (1) estimated in the pre-
vious section from the foundation data to explain the observed cross-section of household returns.
This exercise can be interpreted as an indirect test of the underlying data-generating process.

12The assumption of uniform return rates for a given asset class is in line with the microfoundation in Section
E. There, return inequality arises from heterogeneous portfolio choices by households that differ in their financial
knowledge.
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Figure 2: Pre-Tax Return Rates and Percentile in the Wealth Distribution

Moments Model Data
Mean 0.0556 0.0556
Median 0.0555 0.0556

Standard Deviation 0.0217 0.0216

Table 6: Moments of the Return Distribution (Model vs. Data)

Recall that the statistical model describing the relationship between return rates and wealth is
given by ri,h = aε̂i,hexp

(
f̂i + f̂h

)
exp (ûi,h)− 1, where ε̂ = 0.0023 measures the amount of scale de-

pendence and ûi,h ∼ N (0, σ̂u). I denote the amount of type dependence as υ̂. In the fixed-effects
regression (1), this type dependence is hidden in the correlation between the individual fixed effects
and the portfolio size. To recover υ̂, I regress the foundations’ fixed effects on the foundations’
mean log asset level, giving an estimate of υ̂ = 0.0011. Using this statistical model, I construct
the model-implied return rate for each household. Finally, I choose σ̂u = 0.02 and f̂h = 0.0104 to
match the cross-sectional mean and standard deviation of return rates.

Model fit. As demonstrated in Table 6, the statistical model successfully explains key moments
of the distribution of return rates. In Figure 3, I compare the distribution of return rates in the
SCF to those constructed from the model. The Left Panel of the figure displays the cross-section
of return rates. Although the foundations data from which I estimate the amount of scale and type
dependence in the statistical model are quite different from the household data, the model-implied
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Figure 3: Left Panel: Cross-Section of Return Rates (Model vs Data); Right Panel: Return
Inequality (Model vs Data)

cross-section of returns looks very similar to the actual one.
In addition to fitting the unconditional distribution of return rates, the model matches the

observed degree of return inequality. In the Right Panel of Figure 3, I compare the model-implied
return inequality to the observed inequality (Figure 2). As for the unconditional returns, the
model performs well in explaining the dispersion in return rates throughout the wealth distribu-
tion. If at all, the model overestimates return rates at the bottom and underestimates the rich’s
returns. Combined with the fact that the construction of return rates in the data should under-
state the amount of return inequality, the statistical model’s amount of scale dependence appears
conservative.

4.3 Incidence Analysis

To gain some notion of the quantitative importance of scale dependence, I study the incidence of
several tax reforms that change the current US tax code’s progressivity on the level and dispersion
of return rates, the capital gains tax base, and revenues. In the following simulations, I employ
a sufficient statistics approach. I take households’ savings decisions at the current US tax code
observed in the SCF, perturb the capital gains tax, and simulate the counterfactual choices using
a set of reduced-form elasticities.

Ignoring nonlinearities, the long-term capital gains tax in the US is currently τK = 0.15.
Observe that the government taxes realized capital gains only. The preceding computation of
return rates includes both realized and unrealized capital gains. To overcome this issue, I construct
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a realization share of returns (i.e., the ratio between realized and overall capital gains) to match
the annual amount of realized capital gains in the US (more than $700 billion). I assume, as a
benchmark, that this realization share is uniform across the population.

Moreover, suppose that the elasticities are constant in the population. As in the back-of-the-
envelope calculations, let ζa,ri,h = 0.5 and ζ̃a,(1−τK)

i,h = 0.5. I scale up the period-own-return elasticity
to εr,ai,h = 0.2, a value between the conservative estimate obtained from the foundation data and the
large one I retrieve from Fagereng et al. (2020). I compare the resulting incidence to an exogenous
return benchmark (no scale dependence εr,ai,h = 0). In the Figures in Appendix B.2, I also display
simulations using the estimate of Fagereng et al. (2020) (εr,ai,h = 0.4). Since general equilibrium
externalities appear to be small in the empirical analysis of Section 3, I neglect them. Moreover,
I hold the capital gains realization share fixed.

Tax reforms. I consider three types of tax reforms. The first type of tax reform (Reform 1)
raises the capital gains tax for all individuals above a certain wealth level holding the rest of the
tax code fixed. Reform 2 decreases capital taxes below some wealth threshold. The third reform
(Reform 3) increases taxes above a threshold and reduces those below the threshold. Thus, the
third reform is a combination of the first and second reform. Notice that all three reforms raise
the progressivity of the current US tax code.

Distributional effects. Now, I study the distributional responses (i.e., the response of mean pre-
tax returns and their dispersion) triggered by the three types of tax reforms more carefully. Figure 4
demonstrates the response of mean pre-tax returns (Left Panel) and their standard deviation (Right
Panel) to the three sets of tax reforms depending on the respective wealth threshold (horizontal
axes). The blue lines depict the initial mean and standard deviation observed under the current
US tax code. They also represent a situation without scale dependence (εr,ai,h = 0), where the
level and the dispersion of return rates do not respond to tax reforms. The red lines display the
distributional effects under a medium amount of scale dependence (εr,ai,h = 0.2). In Appendix B.2,
I also show the distributional impact when return rates react more sensitively (εr,ai,h = 0.4).

This quantitative exercise reveals three findings. Firstly, increasing the capital gains tax for
the rich induces quantitatively larger adjustments in the pre-tax return rate distribution than
tax cuts for the poor. Secondly, the response of pre-tax returns to capital tax reforms can be
significant. Thus, in the presence of scale dependence, capital taxation shapes the distribution
of pre-tax returns, and a government trades off novel equity gains that arise from a reduction in
pre-tax return inequality and novel efficiency costs (drop in the level of pre-tax returns). These
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Figure 4: Left Panel: Response of Mean Pre-Tax Returns; Right Panel: Response of Standard
Deviation of Pre-Tax Return

distributional responses to tax reforms may provide a source for empirically identifying the amount
of scale dependence in an economy. Thirdly, the magnitude of distributional responses is larger
for the level than the dispersion of pre-tax return rates. This observation indicates that efficiency
margins are quantitatively more important than equity considerations. Therefore, I focus on the
revenue effects of the tax reforms in the following.

Revenue effects. In Appendix B.2, I compare the different tax reforms’ revenue effects to each
other. Tax hikes (Reform 1) raise revenues, while tax cuts (Reform 2) reduce them. Thus, the
mechanical revenue gains from increasing the current US capital gains tax dominate the negative
behavioral effects. Therefore, the current US tax code is too low from a Rawlsian perspective and
absent of other behavioral responses, such as tax evasion and avoidance. Moreover, the incidence
of Reform 3 resembles the one of Reform 2. The reason is that Reform 3 is a mixture of the other
two reforms and the effects of Reform 2 are quantitatively negligible. Based on these observations,
I focus, in the following, on the reforms of type 1 that raise the capital gains tax above a certain
wealth level.

The Right Panel of Figure 5 shows the substantial revenue gains from the tax hike induced
by Reform 1. However, in the presence of scale dependence, this expansion of tax revenues is
considerably lower. The intuition is that the tax reform lowers household’s incentives to save. In
the presence of scale dependence, as households save less, their return rates decline. The higher
the amount of scale dependence, the larger this response (see Appendix B.2). Consequently, in the
presence of scale dependence, the adjustment of return rates dampens the gains in tax revenues,
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Figure 5: Left Panel: Response of Realized Capital Gains to Reform 1; Right Panel: Response
of Capital Gains Tax Revenues to Reform 1

which the government realizes when raising capital taxes. Thus, the tax base shrinks more with
than without scale dependence (Left Panel). This contraction is quantitatively sizable.

In this section, I have calibrated the statistical model of Section 3 to the US economy. Then,
I have studied the aggregate incidence of a large set of tax reforms. Altogether, the current US
capital gains tax appears too low. The quantitative analysis reveals substantial revenue gains from
raising the capital gains tax rate. However, in the presence of scale dependence, these gains are
considerably smaller.
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5 Conclusion

This paper introduces the endogenous formation of return inequality into the optimal taxation of
capital. As a microfoundation, I consider a Grossman and Stiglitz (1980) economy, in which the
rich obtain higher rates of return than the poor because they are rich. Since they invest more in
the financial market, wealthy households purchase more private information about the stochastic
fundamentals that drive stocks’ payoffs. As a result, they realize higher average rates of return. In
other words, portfolio returns become scale-dependent. Although this channel may considerably
raise wealth inequality, scale dependence is either neutral or provides a rationale for lower capital
taxes. The reason is that scale dependence makes capital more elastic to tax reforms. I show how
to adjust standard sufficient statistics that determine the elasticity of capital for scale dependence.
These need to account for inequality multiplier effects between wealth and its return. Therefore,
estimating the magnitude of scale dependence relative to type dependence is an important avenue
for future research.

Aside from limited access to financial knowledge or advisory, other channels such as housing,
liquidity constraints, insurance motives, increasing returns to wealth management, and a stock
market participation cost also explain scale dependence. Due to the generality of the tax analysis,
the conclusions regarding redistribution extend to these other scale dependence sources. It only
depends on the magnitude of empirically observable sufficient statistics that describe the respon-
siveness of return rates to wealth. For pure efficiency considerations, it substantially matters to
which degree the portfolios’ size explains return inequality relative to type dependence. Equity
considerations may even strengthen the result that taxes should be lower in the presence of scale
dependence because heterogeneous returns reflect a fair reward for effort (e.g., information acqui-
sition) and not the fortune of an inherent exceptional investment talent as with type dependence.
In reality, both phenomena co-occur, but, as this paper shows, the government should address
them differently.
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A Proofs of Section 2

A.1 Part (a) of Proposition 1

With and without scale dependence, the government solves max
τK

∫
i ΓiU (τK ;wi) di subject to∫

i τKaR,idi ≥ E. Assume that the optimization problem is concave. Taking the derivative of the
Lagrangian function L =

∫
i ΓiU (τK ;wi) di+ λ

[∫
i τKaR,idi− E

]
with respect to τK , the first-order

condition reads as
∫
i
(Γi/λ) dU (τK ;wi)

dτK
di+

∫
i
aR,idi = τK

1− τK

∫
i
aR,iζ

aR,(1−τK)
i di. (9)

With a utility function that is quasilinear in the consumption of final wealth, the first-order effects
on household utility is given by dU(τK ;wi)

dτK
= −aR,i and the shadow value of public funds λ is equal

to
∫
i Γidi = 1. Simplify (9) to obtain the Ramsey formula for the optimal capital gains tax.

A.2 Part (b) of Proposition 1

Without scale dependence, the average elasticity of capital income simplifies to

ζ
aR,(1−τK)|ri =

∫
i

aR,i
E (aR,i)

ζ̃
aR,(1−τK)
i di = ζ̃

aR,(1−τK)
i = ζ̃

a,(1−τK)
i (10)

for constant elasticities. Define φi ≡ 1
1−ζa,ri εr,ai

and Φi ≡ (1 + εr,ai )φi.With scale dependence, the
household elasticity of savings

ζ
a,(1−τK)
i ≡ dlog (ai)

dlog (1− τK) = dlog (ai)
dlog (1− τK) |ri + dlog (ai)

dlog (ri)
dlog [ri (ai)]
dlog (ai)

dlog (ai)
dlog (1− τK)

= ζ̃
a,(1−τK)
i + ζa,ri εr,ai ζ

a,(1−τK)
i = φiζ̃

a,(1−τK)
i

and the capital income elasticity

ζ
aR,(1−τK)
i ≡ dlog [airi (ai)]

dlog (1− τK) = dlog (ai)
dlog (1− τK) + dlog [ri (ai)]

dlog (ai)
dlog (ai)

dlog (1− τK)

= (1 + εr,ai ) ζa,(1−τK)
i = (1 + εr,ai )φiζ̃a,(1−τK)

i

both account for the endogenous return rate. Then, the average capital income elasticity with
scale dependence

ζ
aR,(1−τK) =

∫
i

aR,i
E (aR,i)

(1 + εr,ai )φiζ̃a,(1−τK)
i di = 1 + εr,ai

1− ζa,ri εr,ai
ζ̃
a,(1−τK)
i (11)
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is larger than the one without ζaR,(1−τK)
> ζ

aR,(1−τK)|ri for ε
r,a
i > 0.

A.3 Part (c) of Proposition 1

The response of the inequality measure I (τK) can be written as

I ′ (τK) = − 1
1− τK

∫
i aR,idi ·

∫
i (1− Γi) aR,iζaR,(1−τK)

i di−
∫
i ζ
aR,(1−τK)
i aR,idi ·

∫
i (1− Γi) aR,idi

(
∫
i aR,idi)

2 .

For constant elasticities ζ̃a,(1−τK)
i , ζa,ri , and εr,ai , the capital income elasticity, ζaR,(1−τK)

i , is also
uniform across the population. Accordingly, the denominator of I ′ (τK) is equal to zero.

A.4 Part (d) of Proposition 1

The change in mean returns, E (ri) =
∫
i ri (ai) di, from a tax reform dτK can be expressed as

dE (ri) = −
∫
i
ri (ai)

dlog [ri (ai)]
dlog (ai)

dlog (ai)
dlog (1− τK)di ·

dτK
1− τK

= −E (ri) εr,ai ζ
a,(1−τK)
i

dτK
1− τK

.

Similarly, differentiate the variance of returns, V (ri) = E (r2
i )− E (ri)2,

dV (ri) = −2E
(
r2
i

)
εr,ai ζ

a,(1−τK)
i

dτK
1− τK

+ 2E (ri)2 εr,ai ζ
a,(1−τK)
i

dτK
1− τK

= −2V (ri) εr,ai ζ
a,(1−τK)
i

dτK
1− τK

.

Whenever ζr,ai > 0, dE (ri) < 0 and dV (ri) < 0.

A.5 Part (e) of Proposition 1

Optimal taxation in general equilibrium. As in A.1, one calculates the social planner’s
first-order condition
∫
i
(Γi/λ) dU (τK ;wi)

dτK
di+

∫
i
(Γi/λ) dU (τK ;wi)

dri

∫
i′

dri
dai′

dai′

dτK
di′di+

∫
i
aR,idi = τK

1− τK

∫
i
aR,iζ

aR,(1−τK)
i di,

(12)

where the second term on the left-hand side of (12) collects cross-effects in each households’ return
rates. Note that by the quasilinearity of the utility function dU(τK ;wi)

dri
= (1− τK) ai. Using the
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definition of cross-return elasticities, the first-order inter-household externalities simplify to
∫
i
(Γi/λ) dU (τK ;wi)

dri

∫
i′

dri
dai′

dai′

dτK
di′di = −

∫
i
ΓiaR,i

∫
i′
γr,ai,i′ζ

a,(1−τK)
i′ di′di,

leading to the optimal capital gains tax in general equilibrium.

Elasticities in general equilibrium. Observe that, aside from collecting general equilibrium
externalities, one needs to adjust the elasticities. With multiplicatively separable cross-return
elasticities γr,ai,i′ = 1

ri
δr,ai′ , the savings elasticity is

ζ
a,(1−τK)
i = ζ̃

a,(1−τK)
i + ζa,ri εr,ai ζ

a,(1−τK)
i +

∫
i′

dlog (ai)
dlog (ri)

dlog [ri (·)]
dlog (ai′)

dlog (ai′)
dlog (1− τK)di

′

= φiζ̃
a,(1−τK)
i + φiζ

a,r
i

1
ri

∫
i′
δr,ai′ ζ

a,(1−τK)
i′ di′.

Multiply the left-hand side by δi and integrate out to get
∫
i′
δr,ai′ ζ

a,(1−τK)
i′ di′ =

∫
i′
δr,ai′ di

′ · φiζ̃a,(1−τK)
i + φiζ

a,r
i

∫
i′
δr,ai′

1
ri′
di′ ·

∫
i′
δr,ai′ ζ

a,(1−τK)
i′ di′

=
∫
i′
δr,ai′ di

′ · φiζ̃a,(1−τK)
i ,

where the second equality follows by the simplifying assumption that cross-effects average out∫
i′ γ

r,a
i′,i′di

′ = 0. Moreover, if δr,ai′ decreases in i′ (whereas return rates increase in i′),

COV
( 1
ri′
, δr,ai′

)
︸ ︷︷ ︸

>0

=
∫
i′
γr,ai′,i′di

′ − E
( 1
ri′

)
E
(
δr,ai′

)
= −E

( 1
ri′

)
︸ ︷︷ ︸

<0

E
(
δr,ai′

)
.

Then, E (δr,ai′ ) =
∫
i′ δ

r,a
i′ di

′ must be negative and the elasticity is smaller in general than in partial
equilibrium

ζ
a,(1−τK)
i =

(
1 + ζa,ri φi

1
ri

∫
i′
δr,ai′ di

′
)
φiζ̃

a,(1−τK)
i < φiζ̃

a,(1−τK)
i . (13)

Notice that the savings elasticity is increasing in i.
The elasticity of capital income can be written as

ζ
aR,(1−τK)
i = (1 + εr,ai ) ζa,(1−τK)

i +
∫
i′

dlog (airi)
dlog (ri)

dlog [ri (·)]
dlog (ai′)

dlog (ai′)
dlog (1− τK)di

′

= (1 + εr,ai ) ζa,(1−τK)
i + (1 + ζa,ri ) 1

ri

∫
i′
δr,ai′ ζ

a,(1−τK)
i′ di′. (14)

Assuming positive savings elasticities, the second term on the right-hand side is, again, negative
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since ∫
i′
δr,ai′ ζ

a,(1−τK)
i′ di′ = COV

(
δr,ai′ , ζ

a,(1−τK)
i′

)
︸ ︷︷ ︸

<0

+E
(
δr,ai′

)︸ ︷︷ ︸
<0

E
(
ζ
a,(1−τK)
i′

)
︸ ︷︷ ︸

>0

< 0.

Thus, in general equilibrium, one needs to downward adjust the capital income elasticity

ζ
aR,(1−τK)
i < (1 + εr,ai ) ζa,(1−τK)

i < (1 + εr,ai )φiζ̃a,(1−τK)
i .

Furthermore, the general equilibrium welfare externalities

γ
r,(1−τW )
i = 1

ri

∫
i′
δr,ai′ ζ

a,(1−τK)
i′ di′

are negative because
∫
i′ δ

r,a
i′ ζ

a,(1−τK)
i′ di′ < 0.

Comparative statics. Firstly, express the capital gains elasticity in Equation (14) as

ζ
aR,(1−τK)
i = (1 + εr,ai )φiζ̃a,(1−τK)

i︸ ︷︷ ︸
c1

+ (1 + εr,ai + ζa,ri φi)φiζ̃a,(1−τK)
i

∫
i′
δr,ai′ di

′︸ ︷︷ ︸
c2

· 1
ri
, (15)

where c1 > 0 and c2 < 0 are constants. Use this expression to write the measure of inequality that
serves as a sufficient statistic for the optimal capital income tax as

I ′
(
τGEK

)
= −c2

1− τGEK
E (ai)E (ΓiaR,i)− E (aR,i)E (Γiai)

[E (aR,i)]2
.

Notice that COV (Γi, aR,i) < 0, COV (Γi, ai) < 0, and, by the fact that capital income is convex
in savings, COV (Γi, aR,i) < COV (Γi, ai). Therefore, I ′

(
τGEK

)
is negative since

E (ai)E (ΓiaR,i)− E (aR,i)E (Γiai) = E (ai)COV (Γi, aR,i)− E (aR,i)COV (Γi, ai)

= E (aR,i)︸ ︷︷ ︸
>0

[COV (Γi, aR,i)− COV (Γi, ai)]︸ ︷︷ ︸
<0

+E ((1− ri) ai)︸ ︷︷ ︸
>0

COV (Γi, aR,i)︸ ︷︷ ︸
<0

for ri ∈ [0, 1].
In the following, I approximate individual and aggregate variables in general equilibrium (and

evaluated at the general equilibrium tax) around the values one would obtain when having the
partial equilibrium tax rate. In other words, to show that τGEK > τPEK , for small general equilibrium
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forces (δr,ai′ ≈ 0 and τGEK ≈ τPEK ), I apply a Taylor expansion to the optimal capital income tax

τGEK
1− τGEK

=
E
[(

1− Γi
(
1 + γ

r,(1−τW )
i

))
aR,i

(
τGEK

)]
E
[(
c1 + 1

rGEi
c2

)
aR,i

(
τGEK

)] .

A household’s capital income in general equilibrium is approximately

aR,i
(
τGEK

)
= aR,i

(
τPEK

)
−
(
τGEK − τPEK

) daR,i
d (1− τK) + o

(
τGEK − τPEK

)
= aR,i

(
τPEK

)
− τGEK − τPEK

1− τGEK
ζ
aR,(1−τK)
i aR,i

(
τPEK

)
+ o

(
τGEK − τPEK

)
= aR,i

(
τPEK

)
− τGEK − τPEK

1− τPEK
c1aR,i

(
τPEK

)
+ o

(
τGEK − τPEK

)
,

keeping in mind that the elasticities are evaluated in general equilibrium. Similarly, approximate
aggregate variables

E
[
ζ
aR,(1−τK)
i aR,i

(
τGEK

)]
= c1E

[
aR,i

(
τPEK

)]
+c2E

[
ai
(
τPEK

)]
−τ

GE
K − τPEK
1− τPEK

c2
1E
[
aR,i

(
τPEK

)]
+o
(
τGEK − τPEK

)

and

E
[(

1− Γi
(
1 + γ

r,(1−τW )
i

))
aR,i

(
τGEK

)]
= E

[(
1− Γi

(
1 + γ

r,(1−τW )
i

))
aR,i

(
τPEK

)]
− τGEK − τPEK

1− τPEK
c1E

[
(1− Γi) aR,i

(
τPEK

)]
+ o

(
τGEK − τPEK

)
.

Use the fact that, in the self-confirming policy equilibrium, τPEK
1−τPEK

= E[(1−Γi)aR,i(τPEK )]
c1E[aR,i(τPEK )] to express

the general equilibrium tax in terms of the one in partial equilibrium

τGEK
1− τGEK

= τPEK
1− τPEK

·∆ + o
(
τGEK − τPEK

)
, (16)

where

∆ ≡
1−

E
[
Γiγ

r,(1−τW )
i aR,i(τPEK )

]
E[(1−Γi)aR,i(τPEK )] − τGEK −τPEK

1−τPEK
c1

1 + c2E[ai(τPEK )]
c1E[aR,i(τPEK )] −

τGEK −τPEK
1−τPEK

c1

.

Noting that ∆ > 1 since γr,(1−τW )
i < 0 and c2 < 0, as defined in Equation (14), concludes the proof.
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B Proofs of Section 4 and Additional Figures

B.1 Proofs of Section 4

Level of pre-tax returns. In this section, I theoretically confirm the relationship between the
reform threshold and the pre-tax return distribution (mean and variance) for the three types of
reforms analyzed in Section 4. Denote i as the threshold wealth percentile. For Reforms 1 and 2
(dτK > 0 for i ≥ i and dτK < 0 for i ≤ i), the response of mean pre-tax returns read as

dE (ri,h) = −E
(
ri,h|i ≥ i

) (
1− F

(
i
))
εr,ai,hζ

a,(1−τK)
i,h

dτK
1− τK

and
dE (ri,h) = −E

(
ri,h|i ≤ i

)
F
(
i
)
εr,ai,hζ

a,(1−τK)
i,h

dτK
1− τK

,

respectively. The response is positive for a tax cut (Reform 2) and negative for a tax rise (Reform
1). A reduction in the capital tax raises the level of pre-tax returns, whereas an increase in capital
taxes reduces them. Moreover, the absolute value of the expression decreases in i. The intuition
is that a higher i reduces the number of individuals treated by the reform. The overall effect of
raising taxes at the top and cutting taxes at the bottom by the same amount dτK > 0 (Tax Reform
3) is ambiguous. The response is given by

dE (ri,h) =
[
E (ri,h)F

(
i
)
− E

(
ri,h|i > i

)]
εr,ai,hζ

a,(1−τ)
i,h

dτK
1− τK

.

It is easy to show that the expression increases in i, confirming solid lines’ positive slopes.

Dispersion of pre-tax returns. The relationship between the variance of pre-tax returns and
the reform threshold is less obvious. To demonstrate the nonlinearity between the distributional
response and the threshold ī, I write the reaction of the pre-tax return variance to Reform 1 as

dV (ri,h) = −2
[
V
(
ri,h|i > i

)
− E

(
ri,h|i ≤ i

)
E
(
ri,h|i > i

)] (
1− F

(
i
))
εr,ai,hζ

a,(1−τK)
i,h

dτK
1− τK

and to Reform 2 as

dV (ri,h) = −2
[
V
(
ri,h|i ≤ i

)
− E

(
ri,h|i > i

)
E
(
ri,h|i ≤ i

)]
F
(
i
)
εr,ai,hζ

a,(1−τK)
i,h

dτK
1− τK
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Similarly, the response to Reform 3 (dτK > 0) is given by

dV (ri,h) =− 2
[
V
(
ri,h|i > i

)
F
(
i
)
− V

(
ri,h|i ≤ i

) (
1− F

(
i
))

+E
(
ri,h|i ≤ i

)
E
(
ri,h|i > i

) (
2F

(
i
)
− 1

)]
εr,ai,hζ

a,(1−τ)
i,h

dτK
1− τK

.

Taking derivatives with respect to i and using the definitions of conditional means and variances,
one can show that the above-described nonlinearities are present.

B.2 Additional Figures
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Figure 6: Left Panel: Response of Mean Pre-Tax Returns; Right Panel: Response of Standard
Deviation of Pre-Tax Return
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Figure 7: Left Panel: Response of Realized Capital Gains to Reform 1; Right Panel: Response
of Capital Gains Tax Revenues to Reform 1
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Figure 8: Left Panel: Response of Realized Capital Gains to Reform 2; Right Panel: Response
of Capital Gains Tax Revenues to Reform 2
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Figure 9: Left Panel: Response of Realized Capital Gains to Reform 3; Right Panel: Response
of Capital Gains Tax Revenues to Reform 3

C A Dynamic Economy

In this section, I incorporate scale dependence into the dynamic bequest taxation model of Piketty
and Saez (2013) that can be interpreted as a theory of capital taxation. I show that the main
results from the previous section carry over. I discuss the main differences arising from a fully
dynamic setting relative to the conceptual framework of Section 2. Moreover, I derive the optimal
tax in general equilibrium. Finally, I deal with the role of uncertainty, which is present in the
financial market of Section E.
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C.1 Environment

First, I describe the economic environment closely following Piketty and Saez (2013). Consider a
discrete set of periods t ∈ {0, 1, ...}. In each period, there lives a generation of measure one.

Preferences and technology. Each household i, t from dynasty i ∈ [0, 1] in generation t differs in
a labor skill wi,t, which may correlate across generations. Let the distribution of skills be stationary
and ergodic. Individual i, t supplies labor li,t to earn a pre-tax labor income yL,i,t ≡ wi,tli,t which
is taxed linearly at rate τL,t. Let Et be an exogenous transfer. At the beginning of a period,
each household receives a capital endowment (inheritance) ai,t ≥ 0 from the previous generation
that carries a yield of ri,t and is taxed at rate, τW,t.13 Suppose the initial distribution of ai,0 is
exogenously given.

Households can take effort xi,t+1 at a cost v (xi,t+1) to increase the rate of return r′i,t (xi,t) > 0
(e.g., financial advisory or financial knowledge acquisition). Let the usual monotonicity conditions
hold. That is, effort choices, as well as savings, and, hence, labor and capital income are increasing
the index i.14 Intuitively, the higher an individual’s hourly wage, the more she will work, and the
more resources she can transfer to the retirement period. Moreover, an individual’s incentives to
take efforts to increase her capital gains rise with her position in the pre-tax wage distribution.
Accordingly, there is scale dependence. That is, larger portfolios earn higher rates of return than
smaller ones ri,t ≡ ri,t (ai,t) where r′i,t (ai,t) > 0 and r′′i,t (ai,t) < 0. When the rate of return is
deductible from the tax base, define ri,t ≡ ri,t (xi,t)− v (xi,t) /ai,t. In Section E, I microfound this
setup: There, returns form on a financial market in general equilibrium, making returns a function
of one’s own and everyone else’s choices, ri,t

(
ai,t, {aj,t}j∈[0,1]

)
. For the moment, I shut down general

equilibrium effects.

Household problem. Households optimally supply labor and use their after-tax, disposable
income for consumption, ci,t, and transfers into the next period (bequests), ai,t+1, to maximize
their utility Ui,t

(
ci,t, ai,t+1, li,t

)
, where aR,i,t+1 ≡ ai,t+1 (1 + ri,t+1) and ai,t+1 ≡ aR,i,t+1 (1− τW,t+1)

13With return heterogeneity, it has been noted that a tax on wealth is not equivalent to a tax on capital income,
τK,t+1. They yield different implications for efficiency (Guvenen et al. (2019)). That is, only when ri,t+1 = rt+1

for all i, aR,i,t+1 (1− τW,t+1) = ai,t+1 [1 + (1− τK,t+1) rt+1] if and only if τK,t+1 = τW,t+1
1+rt+1
rt+1

. In this
paper, I disregard the important debate, which of the two policy instruments is more suitable in a given situation,
and focus instead on the implications of endogenously formed return inequality for redistribution. Formally, with
heterogeneous returns, a rise in the wealth tax by dτW,t+1 also shifts the implied personal capital gains tax for any
individual i upwards: dτW,t+1 = dτK,i,t+1

ri,t+1
1+ri,t+1

> 0.
14In Section G, I address monotonicity more formally.
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are the pre- and after-tax final wealth. Altogether, households solve

max
ci,t,li,t,ai,t+1,xi,t+1

Ui,t (ci,t, aR,i,t+1 (1− τW,t+1) , li,t, xi,t+1) (17)

subject to their budget constraint ci,t + ai,t+1 = aR,i,t (1− τW,t) + wi,tli,t (1− τL,t) + Et. As re-
turns result from effort choices (xi,t+1), households take their rate of return ri,t+1 as given, when
choosing ai,t+1. The first-order condition for the optimal level of ai,t+1 is given by ∂Ui,t(·)

∂ci,t
=

∂Ui,t(·)
∂ai,t+1

(1− τW,t+1) (1 + ri,t+1).
Denote at ≡

∫
i ai,tdi, aR,t ≡

∫
i aR,i,tdi, ct ≡

∫
i ci,tdi, and yL,t ≡

∫
i yi,tdi as the aggregate variables

in period t. Suppose that the economy converges to a unique equilibrium with ergodic steady-state
distributions of earnings and wealth that are independent from the initial endowments ai,0.

C.2 Optimal Taxation in Partial Equilibrium

In the following, consider the optimal long-run tax policy in the steady-state equilibrium, (τW , τL, E).
Again, denote Γi,t ≥ 0 as the Pareto weights. The government maximizes the sum of weighted
utilities

max
τW ,τL

∫
i
Γi,tUi,t (ai,t (1 + ri,t) (1− τW ) + wi,tli,t (1− τL) + E − ai,t+1,

ai,t+1 (1 + ri,t+1) (1− τW ) , li,t) di (18)

subject to the balanced period budget τWaR,t + τLyL,t = E and scale dependence ri,t ≡ ri,t (ai,t).
Observe that, for a given amount of E, τW and τL are directly linked to each other. For a budget
neutral reform of the tax system, a change in τW triggers an according adjustment in τL and vice
versa.

Elasticities. As before, denote the savings elasticity as ζa,ri,t ≡
∂log(ai,t)
∂log(ri,t) , the own-return elasticity

as εr,ai,t ≡
∂log[ri,t(ai,t)]
∂log(ai,t) and φi,t ≡ 1

1−ζa,ri,t ε
r,a
i,t
> 0 as the measure of the inequality multiplier effect. It

is useful to define another version of the own-return elasticity as ε1+r,a
i,t ≡ ∂log[1+ri,t(ai,t)]

∂log(ai,t) .
With exogenous rates of return (type dependence), the elasticity of savings and initial wealth

of household i reads as

ζ̃
a,(1−τW )
i,t ≡ dlog (ai,t)

dlog (1− τW ) |E,ri,t = dlog [ai,t (1 + ri,t)]
dlog (1− τW ) |E,ri,t > 0.

With endogenously formed returns (scale dependence), the elasticity of initial wealth before and
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after interest are given by

ζ
a,(1−τW )
i,t ≡ dlog (ai,t)

dlog (1− τW ) |E = φi,tζ̃
a,(1−τW )
i,t

and
ζ
aR,(1−τW )
i,t ≡ dlog [ai,t (1 + ri,t (ai,t))]

dlog (1− τW ) |E =
(
1 + ε1+r,a

i,t

)
ζ
a,(1−τW )
i,t ,

respectively. Observe that, due to the endogeneity of returns, ζaR,(1−τW )
i,t > ζ

a,(1−τW )
i,t > ζ̃

a,(1−τW )
i,t .

Moreover, define the long-run elasticity of aggregate wealth and labor income with respect to their
retention rate as

ζaR,(1−τW ) ≡ dlog (aR,t)
dlog (1− τW ) |E

and
ζyL,(1−τL) ≡ dlog (yL,t)

dlog (1− τL) |E .

As in Hendren (2016), these policy elasticities eW and eL include own- and cross-price effects
as they feature behavioral responses to a budget-neutral reform of both τW and τL. Observe that
one can decompose ζaR,(1−τW ) = ζ

aR,(1−τW )
R + ζ

aR,(1−τW )
H + ζ

aR,(1−τW )
E , where

ζ
aR,(1−τW )
R ≡ 1

aR,t

∫
i
(1 +R) ai,tζ̃a,(1−τW )

i,t di

is the elasticity of savings at the mean rate of return R ≡
∫
i ri,t (ai,t) di,

ζ
aR,(1−τW )
H ≡ 1

aR,t

∫
i
[ri,t (ai,t)−R] ai,tζ̃a,(1−τW )

i,t di

captures the reaction of savings with return heterogeneity, and

ζ
aR,(1−τW )
E ≡ 1

aR,t

∫
i

[
ζ
aR,(1−τW )
i,t − ζ̃a,(1−τW )

i,t

]
[1 + ri,t (ai,t)] ai,tdi

characterizes the effects from the endogeneity in returns. This decomposition nests the setting of
Piketty and Saez (2013) in which ζaR,(1−τW )

H = 0 and ζaR,(1−τW )
E = 0. Observe that ζaR,(1−τW )

E > 0
for r′i,t (ai,t) > 0. Hence, for a given distribution of wealth and returns the elasticity of wealth,
ζaR,(1−τW ), is larger under scale dependence (when returns form endogenously) than under type
dependence (Part (b) of Proposition 1). Also note that, by the construction of scale dependence,
Proposition 1 (d) applies: ζV(r),(1−τW )

t = 2εr,ai,t ζ
a,(1−τW )
i,t > 0 and ζE(r),(1−τW )

t = εr,ai,t ζ
a,(1−τW )
i,t > 0 for

constant elasticities.

Distributional parameters. Denote gi,t ≡ Γi,t
∂Ui,t(·)
∂ci,t

/
∫
i′ Γi′,t

∂Ui′,t(·)
∂ci′,t

di′ as the social marginal
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welfare weight of an individual i, t in monetary units. Define the ratios

ainitial ≡
∫
i
gi,t

[1 + ri,t (ai,t)] ai,t
aR,t

di

and
afinal ≡

∫
i
gi,t

ai,t+1
aR,t

di

as the distributional parameter of initial and final wealth before interest (received and left be-
quests). Similarly, define the distributional parameter of labor income yL ≡

∫
i gi,t

yL,i,t
yL,t

di. For a
given unweighted population mean, a small distributional parameter indicates a strong taste for
redistribution. Alternatively, fix the redistributive goal of the society. Then, a high concentration
of the respective variable leads to a low value of the distributional parameter.

Steady state. To derive the optimal tax formula, one needs to find the combination of tax rates
that leads to no first-order welfare gain for any budget-neutral tax reform. First, I describe the
set of budget-neutral tax reforms (dτW , dτL, dE) with dE = 0. Accordingly, it follows from the
government budget constraint that dτW and dτL relate to each other in the following fashion

aR,tdτW

(
1− ζaR,(1−τW ) τW

1− τW

)
= −yL,tdτL

(
1− ζyL,(1−τL) τL

1− τL

)
. (19)

Using the envelope theorem and imposing that the first-order change in welfare equals zero
dSWF = 0, yields an optimality condition for the capital tax

∫
i
gi,t

[
−
(
1 + ζ

aR,(1−τW )
i,t

)
aR,i,tdτW + yL,i,t

yL,t

1− ζaR,(1−τW ) τW
1−τW

1− ζyL,(1−τL) τL
1−τL

aR,tdτW −
ai,t+1

1− τW
dτW

]
di = 0. (20)

There are three effects of a rise in the capital tax. The first one describes the negative effect on
initial wealth, whereas the third term the one on final wealth. The second term is the positive
effect of the reduction in the labor income tax resulting from budget neutrality. Use the definitions
of aggregates and distributional parameters to rewrite Equation (20)

− ainitial
(
1 + ζ̂aR,(1−τW )

)
+

1− ζaR,(1−τW ) τW
1−τW

1− ζyL,(1−τL) τL
1−τL

yL −
1

1− τW
afinal = 0 (21)

where ζ̂aR,(1−τW ) =
∫
i ζ

aR,(1−τW )
i,t gi,t

aR,i,t
aR,t

di/
∫
i gi,t

aR,i,t
aR,t

di is the welfare-weighted average initial wealth
elasticity. From these arguments, Proposition 2 directly follows.

Proposition 2 (Optimal capital tax in steady state). The optimal capital tax in the long-run
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steady-state equilibrium is

τW =
1− ainitial

yL

(
1− ζyL,(1−τL) τL

1−τL

) (
1 + ζ̂aR,(1−τW ) + afinal

ainitial

)
1 + ζaR,(1−τW ) − ainitial

yL

(
1− ζyL,(1−τL) τL

1−τL

) (
1 + ζ̂aR,(1−τW )

) (22)

for a given labor income tax τL.

Proof. Appendix D.1.

This proposition replicates the tax formula by Piketty and Saez (2013). Hence, I obtain a
version of the neutrality result (Proposition 1 (a)) in the previous section: The sufficient statistics
that describe the optimal capital tax are the same with and without scale dependence. As already
mentioned, these sufficient statistics are, however, endogenous to the process of return formation
and to the capital tax.

Comparative statics. To establish Part (c) of Proposition 1 in this economy, I introduce (a
small amount of) scale dependence into an economy without scale dependence that is otherwise
observationally equivalent. I analyze the comparative static that introduces scale dependence, in
the following, holding the labor supply elasticity (ζyL,(1−τL)), the distribution of labor income (yL),
labor taxes (τL), and the social marginal welfare weights (gi,t) fixed. Let the individual wealth
elasticities be uncorrelated with the marginal welfare weights such that ζ̂aR,(1−τW ) = ζaR,(1−τW ).
Moreover, I take the above-described elasticities of returns (εr,ai and ε1+r,a

i ) and savings (ζa,ri and
ζ̃
a,(1−τW )
i,t ) as given and omit distributional effects on the aggregate elasticity (ζaR,(1−τW )) that may,
for instance, arise when there is a correlation between elasticities and wealth. Of course, these
simplifications neglect the endogeneity of these measures to capital taxes and the allocations that
will change when introducing scale dependence. However, they allow for a tractable analysis of
taxes with and without scale dependence (τW and τ̃W , respectively).

As described, under scale dependence, the wealth elasticity has to be upward revised (Part (b)
of Proposition 1), providing a force for lower wealth taxes. Formally, ζaR,(1−τW ) > ζaR,(1−τW )|ri since
ζ
aR,(1−τW )
E > 0. The economic intuition for this result is the same as in Section 2. Capital gains
are convex under scale dependence. This convexity makes household wealth more elastic to tax
reforms. Since the optimal tax rate is inversely related to this elasticity, this channel calls for lower
capital taxes. For example, when wealth is infinitely concentrated (ainitial

yL
→ 0 and afinal

yL
→ 0),

the capital tax rate reduces to τW = 1
1+ζaR,(1−τW ) . All the distributional effects on the optimal

capital tax vanish. Relative to an economy with type dependence that is otherwise observationally
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equivalent in its wealth and returns distribution, the presence of scale dependence raises the wealth
elasticity (ζaR,(1−τW ) > ζaR,(1−τW )|ri). As a result, τW < τ̃W .

Nonetheless, scale dependence may raise wealth inequality relative to type dependence. A
lower tax under scale dependence may decrease afinal. This channel calls for higher taxes. In other
words, the expression in Proposition 2 is not in closed form. For small policy changes (τW ≈ τ̃W )
from introducing a small amount of scale dependence (εr,ai,t ≈ 0),15 one can use a first-order Taylor
expansion to approximate aggregate wealth

aR,t (τW ) = aR,t (τ̃W )
[
1 + τ̃W − τW

1− τ̃W
ζaR,(1−τW )

]
+ o (τW − τ̃W ) , (23)

bearing in mind that the elasticity ζaR,(1−τW ) needs to account for scale dependence. Therefore a
rise in the wealth tax diminishes the aggregate wealth level in the economy. Formally, aR,t (τW ) >
aR,t (τ̃W ) for τ̃W > τW .

Simultaneously, the wealth inequality in the society ultimately declines in response to a rise in
the capital tax

afinal (τW ) = afinal (τ̃W )
1 + τ̃W−τW

1−τ̃W ζa,(1−τW )

1 + τ̃W−τW
1−τ̃W ζaR,(1−τW ) + o (τW − τ̃W ) . (24)

If τ̃W > τW , afinal (τW ) < afinal (τ̃W ) since the elasticity of aggregate wealth is larger than the
aggregate savings elasticity ζaR,(1−τW ) > ζa,(1−τW ). Therefore, rise in the capital tax lowers the
concentration of final wealth (higher afinal). However, when one only introduces a small amount
of scale dependence, this effects disappears

afinal (τW ) = afinal (τ̃W ) + o (τW − τ̃W ) .

Interestingly, the initial (weighted) inequality is also unaffected by the tax scheme

ainitial (τW ) = ainitial (τ̃W ) + o (τW − τ̃W ) . (25)

The reason is that, in this specification, the decline in aggregate wealth just offsets the rise in
unweighted initial inequality when individual wealth elasticities do not correlate with marginal
welfare weights (ζ̂aR,(1−τW ) = ζaR,(1−τW )). Consequently, Proposition 1 (c) approximately holds
in this economy: The wealth tax in an economy with a small amount scale dependence is lower
than the one in an (in terms of ainitial and afinal) observationally equivalent economy without scale

15In Section G, I deal with a similar comparative statics exercise without imposing any assumption on the size
of policy changes.
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dependence as in the former the elasticity of capital is higher.16

Dynamic efficiency. Suppose that the government chooses (τW,t, τL,t) to maximize

SWF =
∞∑
t=0

βt
∫
i
Γi,tUi,t (ai,t (1 + ri,t) (1− τW,t) + wi,tli,t (1− τL,t) + Et − ai,t+1,

ai,t+1 (1 + ri,t+1) (1− τW,t+1) , li,t) di (26)

subject to the set of period budget constraints τW,taR,t + τL,tyL,t = Et and scale dependence
ri,t ≡ ri,t (ai,t), where β ∈ [0, 1] denotes the generational discount rate.

To solve for the optimal policy, consider a uniform, budget-neutral reform of the tax code
at a distant future point in time, T , when all variables have converged. That is (dτW,t, dτL,t) =
(dτW , dτL) for all t ≥ T . Imposing that the reform has no first-order effect on social welfare,
dSWF = 0, one obtains a dynamic version of the optimality condition from above

−ainitial
(

1 + (1− β)
∞∑
t=T

βt−T ζ
aR,(1−τW )
t

)
+yL (1− β)

∞∑
t=T

βt−T
1− ζaR,(1−τW )

t
τW

1−τW

1− ζyL,(1−τW )
t

τL
1−τL

− 1
1− τW

1
β
afinal = 0.

(27)

Hence, in the optimal dynamic tax formula, the steady-state elasticity is now replaced with dis-
counted elasticities. All the intuitions from the steady-state economy carry over.

C.3 Optimal Taxation in General Equilibrium

Reconsider the steady-state economy from before. Now, assume that returns are formed in general
equilibrium. That is, ri,t

(
ai,t, {ai′,t}i′∈[0,1]

)
. As in Section 2, define the cross-return elasticity as

γr,ai,i′,t ≡
∂log(ri,t)
∂log(ai′,t) .

17 Let the cross-elasticity be multiplicatively separable γr,ai,i′,t = 1
ri,t
δr,ai′,t (similar to

the CES example of Sachs et al. (2020)). That is, a change in the savings by a household i′ leads
to the same change the returns of any other household i in the percentage points. In the financial
market setting of Section E, this assumption holds when the costs of information acquisition are
linear and all households acquire financial information. It is useful to also define another version

16By similar techniques, one may analyze the impact of a small change in the amount of scale dependence.
17Less heuristically, one may define the cross-return elasticity as the Gateaux derivative of the return functional

ri

(
ai, {aj}j∈[0,1]

)
. That is, perturb {aj}j∈[0,1] by the Dirac measure at i′, δi′ ,

γr,ai,i′ ≡ lim
µ→0

d

dµ
ri

(
ai, {aj}j∈[0,1] + µδi′

)
.

The formulation of the return functional ri (·) is such that there are no discontinuous jumps of γr,ai,i′ at i′ = i. Any
non-infinitesimal effect of ai on the return functional is collected in the first argument of ri (·).
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of the cross-return elasticity γ1+r,a
i,i′,t ≡

∂log(1+ri,t)
∂log(ai′,t) = ri,t

1+ri,tγ
r,a
i,i′,t.

First, note that the elasticity of wealth before and after interest are augmented by general
equilibrium externalities

ζ
a,(1−τW )
i,t = φi,tζ̃

a,(1−τW )
i,t + φi,tζ

a,r
i,t

∫
i′ γ

r,a
i,i′,tφi′,tζ̃

a,(1−τW )
i′,t di′

1−
∫
i′ γ

r,a
i′,i′,tφi′,tζ

a,r
i′,tdi

′

and
ζ
aR,(1−τW )
i,t =

(
1 + ζ1+r,a

i,t

)
ζ
a,(1−τW )
i,t +

(
1 + ζa,1+r

i,t

) ∫
i′
γ1+r,a
i,i′,t ζ

a,(1−τW )
i′,t di′,

respectively. The aggregate and distributional variables are defined as before. The sign and
the distribution of cross-return (semi-)elasticities, δr,ai′,t, determine how the wealth elasticities are
adjusted. In the model of Section E with linear information costs, δr,ai′,t is positive for small values
of ai′,t and negative for large ones. This situation features trickle-up forces, where a cut in the
capital tax of the rich shifts economic rents from the bottom to the top.

To illustrate the implications for the wealth elasticities, assume constant elasticities ζ̃a,(1−τW )
i,t =

ζ̃
a,(1−τW )
i′,t , ζa,ri,t = ζa,ri′,t , and εr,ai,t = εr,ai′,t and suppose that cross-return elasticities average out such
that

∫
i′ γ

r,a
i′,i′,tdi

′ = 0. Then,

ζ
a,(1−τW )
i,t = φi,tζ̃

a,(1−τW )
i,t

(
1 + ζa,ri,t φi,t

1
ri,t

∫
i′
δr,ai′,tdi

′
)
< φi,tζ̃

a,(1−τW )
i,t

and

ζ
aR,(1−τW )
i,t =

(
1 + ε1+r,a

i,t

)
ζ
a,(1−τW )
i,t +

1 + ζa,1+r
i,t

1 + ri,t

∫
i′
δr,ai′,tζ

a,(1−τW )
i′,t di′ <

(
1 + ε1+r,a

i,t

)
φi,tζ̃

a,(1−τW )
i,t .

Therefore, in this general equilibrium specification, wealth reacts less elastically to tax reforms
relative to the partial equilibrium setting.

Taking stock of all general equilibrium externalities, the optimal tax rate is defined by the
optimality condition

∫
i
gi,t

[
−
(
1 + ζ

aR,(1−τW )
i,t

)
aR,i,t + yL,i,t

yL,t

1− ζaR,(1−τW ) τW
1−τW

1− ζyL,(1−τW ) τL
1−τL

aR,t −
ai,t+1

1− τW

(
1 +

∫
i′
γ1+r,a
i,i′,t+1ζ

a,(1−τW )
i′,t+1 di′

)]
di = 0.

which can be written as

− ainitial
(
1 + ζ̂aR,(1−τW )

)
+

1− ζaR,(1−τW ) τW
1−τW

1− ζyL,(1−τW ) τL
1−τL

yL −
1

1− τW
afinal

(
1 + γ̂1+r,(1−τW )

)
= 0 (28)

55



using the notation from above and defining γ̂1+r,(1−τW ) ≡
∫
i

(
1 + ζa,1+r

i,t

) (∫
i′ γ

1+r,a
i,i′,t+1ζ

a,(1−τW )
i′,t+1 di′

)
gi,t

ai,t+1
aR,t

di/∫
i gi,t

ai,t+1
aR,t

di.
Note that γ̂1+r,(1−τW ) < 0. Thus, the general equilibrium spillovers do not only indirectly

enter the cost-benefit analysis through the downward-adjusted aggregate elasticities ζaR,(1−τW ) and
ζ̂aR,(1−τW ) (Proposition 1 (e)), but also directly through γ̂1+r,(1−τW ). The latter term accounts for
a first-order spillover effect on final wealth that reduces the aggregate costs of taxing wealth. This
effect adds to the reduction in aggregate elasticities. To sum up, I state Proposition 3.

Proposition 3 (Optimal capital tax in general equilibrium). The optimal capital tax in the long-
run steady-state general equilibrium is

τGEW =
1− ainitial

yL

(
1− ζyL,(1−τW ) τL

1−τL

) (
1 + ζ̂aR,(1−τW ) + afinal

ainitial

(
1 + γ̂1+r,(1−τW )

))
1 + ζaR,(1−τW ) − ainitial

yL

(
1− eL τL

1−τL

) (
1 + ζ̂aR,(1−τW )

) . (29)

for a given labor income tax τL.

Proof. Appendix D.2.

Comparative statics. To establish the comparative statics of optimal capital taxation, as in
Part (e) of Proposition 1, I follow the reasoning in Section C.2. I introduce (a small amount
of) general equilibrium effects into the partial equilibrium economy with scale dependence that is
otherwise observationally equivalent. I fix the labor supply elasticity (ζyL,(1−τL)), the distribution
of labor income (yL), labor taxes (τL), and the social marginal welfare weights (gi,t). Suppose
that the individual wealth elasticities do not correlate with the marginal welfare weights such that
ζ̂aR,(1−τW ) = ζaR,(1−τW ), and hold the above-described elasticities of returns (εr,ai and ε1+r,a

i ) and
savings (ζa,ri and ζ̃a,(1−τW )

i,t ) constant. Moreover, I omit any distributional effects on the aggregate
wealth elasticity (ζaR,(1−τW )). Let the amount of scale dependence and general equilibrium forces
be small (ζr,ai,t ≈ 0 and δr,ai,t ≈ 0).
To compare the wealth tax in partial equilibrium, τPEW , to the one in general equilibrium, τGEW , I ap-
proximate the endogenous distributional variables on the right-hand side of Equation (29). Again,
a higher capital tax (e.g., τGEW > τPEW ) reduces aggregate wealth (e.g., aR,t

(
τGEW

)
< aR,t

(
τPEW

)
)

aR,t
(
τGEW

)
= aR,t

(
τPEW

) [
1 + τPEW − τGEW

1− τPEW
ζaR,(1−τW )

]
+ o

(
τGEW − τPEW

)
. (30)

However, under the assumptions mentioned above, there are no first-order effects on initial and final
wealth inequality: ainitial

(
τGEW

)
= ainitial

(
τPEW

)
+o

(
τGEW − τPEW

)
and afinal

(
τGEW

)
= afinal

(
τPEW

)
+
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o
(
τGEW − τPEW

)
. Accordingly, only the adjustment in the aggregate wealth elasticity, ζaR,(1−τW ), and

the general equilibrium externality, γ̂1+r,(1−τW ), affect the optimal capital tax rate. To sum up,
when general equilibrium forces and scale dependence are small, the optimal capital tax is higher
in general equilibrium compared to the self-confirming tax in an (in terms of ainitial and afinal)
observationally equivalent partial equilibrium economy.18 This result is intuitive given the presence
of trickle up.

C.4 Uncertainty

In this section, I consider the Barro-Becker dynastic model extension in Piketty and Saez (2013),
which allows for uncertainty in the rates of return ri,t. In this framework, individuals do not
only care about their well-being, but also about the one of their children. As before, the gov-
ernment chooses a linear, deterministic tax system (τL,t, τW,t, Et). Household i in period t opti-
mally chooses (li,t, ai,t+1, ei,t) to maximize Ui,t = ui,t (c, l, e) + βEt [Ui,t+1], where β < 1, subject to
ci,t + ai,t+1 = (1− τW,t) aR,i,t + (1− τL,t) yL,i,t +Et. For any ai,t+1 ≥ 0, the Euler equation reads as
∂ui,t(·)
∂ci,t

ai,t+1 = β (1− τW,t+1)Et
[
aR,i,t+1

∂ui,t+1
∂ci,t+1

]
. In the beginning of period t+ 1, stochastic returns

have realized so that one can summarize the set of Euler equations as afinalt+1 = β (1− τW,t+1) ainitialt+1

with the definitions from the deterministic version of the model ainitialt+1 ≡
∫
i gi,0

aR,i,t+1
aR,t+1

di and
afinalt+1 ≡

∫
i gi,0

ai,t+1
aR,t+1

di and Pareto weights {Γ0,i}i∈[0,1].
Suppose that the economy features an ergodic equilibrium with long-run variables independent

from initial values. Let tax policies as well as individual choices converge. In the following, I
consider the utilitarian (Γ0,i = 1) optimal long-run policy in the ergodic steady-state equilibrium.
Suppose, without loss of generality, that this equilibrium is reached in period 0. The government
chooses (τL, τW , E) to maximize the steady-state discounted expected social welfare

SWF∞ ≡
∞∑
t=0

βtE [ui,t ((1− τW ) aR,i,t + (1− τL) yL,i,t + E − ai,t+1, li,t)] (31)

subject to τWaR,t + τLyL,t = E. The optimal tax system can be described by the optimality
18Using similar approximations, one may evaluate the impact of a small change in the amount of general equilib-

rium forces.

57



condition

dSWF∞ = 0 = E
[
∂ui,0 (·)
∂ci,0

(1− τW ) daR,i,0

]
− E

[
∂ui,0 (·)
∂ci,0

aR,i,0dτW

]

−
∞∑
t=0

βt+1E
[
∂ui,t+1 (·)
∂ci,t+1

aR,i,tdτW

]
−
∞∑
t=0

βtE
[
∂ui,t (·)
∂ci,t

yL,i,tdτL

]

which, using the individual’s first-order conditions and budget neutrality of the tax reform and
defining ζaR,(1−τW )

i ≡ dlog(aR,i,0)
dlog(1−τW ) , simplifies to

0 =−
∞∑
t=0

βtE
[
∂ui,0 (·)
∂ci,0

aR,i,0
(
1 + ζ

aR,(1−τW )
i

)]

−
∞∑
t=0

βtE

∂ui,t (·)
∂ci,t

ai,t+1
1− τW

+ ∂ui,t (·)
∂ci,t

aR,t

(
1− ζaR,(1−τW ) τW

1−τW

)
(
1− ζyL,(1−τW ) τL

1−τL

) yL,i,t
yL,t

 (32)

Since the economy is in the ergodic steady state, the optimal tax formula reads as

τW =
1− (1−β)ainitial

yL

(
1− ζyL,(1−τW ) τL

1−τL

) (
1 + ζ̂aR,(1−τW ) + afinal

(1−β)ainitial
)

1 + ζaR,(1−τW ) − (1−β)ainitial
yL

(
1− ζyL,(1−τW ) τL

1−τL

) (
1 + ζ̂aR,(1−τW )

) (33)

with the only difference to Proposition 2 that ainitial is weighted by (1− β) to account for the fact
that one discounts the costs of taxing future generations. Altogether, including uncertainty into
the economy does not alter the implications of endogenous return inequality.

D Proofs of Section C

D.1 Optimal Linear Wealth Taxation in Partial Equilibrium

Elasticities. In the presence of scale dependence, the elasticity of initial wealth before and after
interest can be derived as

ζ
a,(1−τW )
i,t = dlog (ai,t)

dlog (1− τW ) |E,ri,t + dlog (ai,t)
dlog (ri,t)

dlog [ri,t (ai,t)]
dlog (ai,t)

dlog (ai,t)
dlog (1− τW ) |E = φi,tζ̃

a,(1−τW )
i,t (34)

and
ζ
aR,(1−τW )
i,t = dlog [1 + ri,t (ai,t)]

dlog (1− τW ) + ζ
a,(1−τW )
i,t =

(
1 + ε1+r,a

i,t

)
ζ
a,(1−τW )
i,t , (35)

respectively.
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Optimal capital tax in steady state. Budget neutrality of the tax reform implies

dτWaR,t + τWdaR,t = −dτLyL,t − τLdyL,t

⇐⇒ dτWaR,t

(
1− 1− τW

aR,t

daR,t
d (1− τW )

τW
1− τW

)
= −dτLyL,t

(
1− 1− τL

yL,t

dyL,t
d (1− τL)

τL
1− τL

)
,

which simplifies to Equation (19).
To obtain Equation (20), plug the households’ first-order conditions ∂Ui,t(·)

∂ci,t
= ∂Ui,t(·)

∂ai,t+1

(1−τW,t+1)aR,i,t+1

ai,t+1

and Equation (19) into

dSWF =
∫
i
Γi,t

∂Ui,t
∂ci,t

[(1− τW ) daR,i,t − aR,i,tdτW − wi,tli,tdτL] di−
∫
i
Γi,t

∂Ui,t
∂ai,t+1

aR,i,t+1dτWdi

=
∫
i
gi,t

[
1− τW
aR,i,t

daR,i,t
dτW

aR,i,tdτW − aR,i,tdτW + yL,i,t
yL,t

1− ζaR,(1−τW ) τW
1−τW

1− ζyL,(1−τL) τL
1−τL

aR,tdτW −
ai,t+1

1− τW
dτW

]
di,

and set this expression equal to zero. Equation (21) follows from

0 =
∫
i
gi,t

[
−
(
1 + ζ

aR,(1−τW )
i,t

)
aR,i,tdτW + yL,i,t

yL,t

1− ζaR,(1−τW ) τW
1−τW

1− ζyL,(1−τL) τL
1−τL

aR,tdτW −
ai,t+1

1− τW
dτW

]
di

= −
∫
i
gi,t

aR,i,t
aR,t

di

1 +
∫
i gi,tζ

aR,(1−τW )
i,t

aR,i,t
aR,t

di∫
i gi,t

aR,i,t
aR,t

di

+
1− ζaR,(1−τW ) τW

1−τW
1− ζyL,(1−τL) τL

1−τL

∫
i
gi,t

yL,i,t
yL,t

di− 1
1− τW

∫
i

gi,tai,t+1
aR,t

di.

Rearrange this equation to get the optimal wealth tax in Proposition 2.

Comparative statics. Now, I approximate individual and aggregate variables in in the presence
of scale dependence (and evaluated at optimal tax rate) around the values that would emerge
without scale dependence. Memorizing that the elasticities account for the presence of scale de-
pendence, household wealth is approximately given by

aR,i,t (τW ) = aR,i,t (τ̃W ) + (τW − τ̃W ) daR,i,t
dτW

+ o (τW − τ̃W )

= aR,i,t (τ̃W )
[
1 + τ̃W − τW

1− τ̃W
ζ
aR,(1−τW )
i,t

]
+ o (τW − τ̃W ) .

Integrate out to get Equation (23)

aR,t (τW ) = aR,t (τ̃W ) + τ̃W − τW
1− τ̃W

∫
i
ζ
aR,(1−τW )
i,t aR,i,t (τ̃W ) di+ o (τW − τ̃W ) .

Plug Equation (23) and
∫
i
gi,tai,t (τW ) di =

∫
i
gi,tai,t (τ̃W ) di+ τ̃W − τW

1− τ̃W

∫
i
gi,tζ

a,(1−τW )
i,t ai,t (τ̃W ) di+ o (τW − τ̃W )
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into

afinal (τW ) =
∫
i gi,tai,t (τW ) di
aR,t (τW ) = aR,t (τ̃W )

aR,t (τW )

[
afinal (τ̃W ) + τ̃W − τW

1− τ̃W

∫
i
gi,tζ

a,(1−τW )
i,t

ai,t (τ̃W )
aR,t (τ̃W )di

]
+ o (τW − τ̃W )

= afinal (τ̃W ) 1
1 + τ̃W−τW

1−τ̃W ζaR,(1−τW )

[
1 + τ̃W − τW

1− τ̃W
ζ̂a,(1−τW )

]
+ o (τW − τ̃W ) ,

where I use the definition of ζ̂a,(1−τW ) ≡
∫
i ζ

a,(1−τW )
i,t gi,t

ai,t
aR,t

di/
∫
i gi,t

ai,t
aR,t

di. Assuming that the savings
elasticities are uncorrelated with the marginal welfare weights ζ̂a,(1−τW ) = ζa,(1−τW ), Equation (24)
follows.

Proceed along the same lines, to obtain Equation (25)

ainitial (τW ) =
∫
i gi,taR,i,t (τW ) di

aR,t (τW ) = ainitial (τ̃W ) aR,t (τ̃W )
aR,t (τW )

[
1 + τ̃W − τW

1− τ̃W
ζ̂aR,(1−τW )

]
+ o (τW − τ̃W ) .

Then, ainitial (τW ) = ainitial (τ̃W ) + o (τW − τ̃W ), for ζ̂aR,(1−τW ) = ζaR,(1−τW ).

Dynamic efficiency. Plug the households’ first order conditions and Equation (19) into dSWF =
0 to get

0 =
∞∑
t=T

βt
∫
i
Γi,t

∂Ui,t
∂ci,t

[(1− τW ) daR,i,t − aR,i,tdτW − yL,i,tdτL] di−
∞∑

t=T−1
βt
∫
i
Γi,t

∂Ui,t
∂ai,t+1

aR,i,t+1dτWdi

=−
∞∑
t=T

βt
∫
i
gi,t

aR,i,t
aR,t

(
1 + ζ

aR,(1−τW )
i,t

)
+ yL,i,t

yL

1− ζaR,(1−τW )
t

τW
1−τW

1− ζyL,(1−τW )
t

τL
1−τL

 di− 1
1− τW

∞∑
t=T−1

βt
∫
i
gi,t

ai,t+1
aR,t

di

and use the definitions of the distributional parameters to show Equation (27).

D.2 Optimal Linear Wealth Taxation in General Equilibrium

Elasticities. The general equilibrium savings elasticity is given by

ζ
a,(1−τW )
i,t = dlog (ai,t)

dlog (1− τW ) |E,ri,t + ζa,ri,t ε
r,a
i,t ζ

a,(1−τW )
i,t + ζa,ri,t

∫
i′
γr,ai,i′,tζ

a,(1−τW )
i′,t di′

= φi,tζ̃
a,(1−τW )
i,t + 1

ri,t
φi,tζ

a,r
i,t

∫
i′
δr,ai′ ζ

a,(1−τW )
i′,t di′,
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using the multiplicatively separable cross-return elasticities γr,ai,i′,t = 1
ri,t
δr,ai′ . One can simplify the

second term on the right-hand side to
∫
i′
δr,ai′ ζ

a,(1−τW )
i′,t di′ =

∫
i′
δr,ai′,tφi′,tζ̃

a,(1−τW )
i′,t di′ +

∫
i′
δr,ai′,tφi′,tζ

a,r
i′,t

1
ri′,t

di′
∫
i′′
δr,ai′′,tζ̃

a,(1−τW )
i′′,t di′′

= 1
1−

∫
i′ δ

r,a
i′,tφi′,tζ

a,r
i′,t

1
ri′,t

di′
∫
i′′

∫
i′
δr,ai′,tφi′,tζ̃

a,(1−τW )
i′,t di′.

The wealth elasticity can be derived as

ζ
aR,(1−τW )
i,t =

(
1 + ε1+r,a

i,t

)
ζ
a,(1−τW )
i,t +

∫
i′

dlog (ai,t (1 + ri,t (ai,t)))
dlog (1 + ri,t)

dlog [1 + ri,t (·)]
dlog

(
ai′,t

) dlog
(
ai′,t

)
dlog (1− τW ) |E di

′

=
(
1 + ε1+r,a

i,t

)
ζ
a,(1−τW )
i,t +

(
1 + ζa,1+r

i,t

) ∫
i′
γ1+r,a
i,i′,t ζ

a,(1−τW )
i′,t di′.

Under the assumption that ζ̃a,(1−τW )
i,t , ζa,ri,t , and εr,ai,t are constant and cross-return elasticities

average out
∫
i′ γ

r,a
i′,i′,tdi

′ = 0, these expressions simplify to

ζ
a,(1−τW )
i,t = φi,tζ̃

a,(1−τW )
i,t

(
1 + 1

ri,t
φi,tζ

a,r
i,t

∫
i′
δr,ai′ di

′
)
< φi,tζ̃

a,(1−τW )
i,t (36)

and

ζ
aR,(1−τW )
i,t =

(
1 + ε1+r,a

i,t

)
ζ
a,(1−τW )
i,t +

1 + ζa,1+r
i,t

1 + ri,t
φi,tζ̃

a,(1−τW )
i,t

∫
i′
δr,ai′,tdi

′ <
(
1 + ε1+r,a

i,t

)
φi,tζ̃

a,(1−τW )
i,t (37)

since
∫
i′ δ

r,a
i′ di

′ < 0 for
∫
i′ γ

r,a
i′,i′,tdi

′ = COV
(

1
ri′,t

, δr,ai′

)
︸ ︷︷ ︸

>0

+
∫
i′ δ

r,a
i′ di

′ ·
∫
i′

1
ri′,t

di′︸ ︷︷ ︸
>0

= 0.

Optimal capital tax in steady state. Observe that there are inter-household welfare external-
ities from the endogeneity of each household’s return rate in other households’ savings

∂Ui,t
∂ai,t+1

aR,i,t+1

∫
i′

dlog [ai,t (1 + ri,t (ai,t))]
dlog (1 + ri,t)

dlog [1 + ri,t (·)]
dlog

(
ai′,t

) dlog
(
ai′,t

)
dlog (1− τW ) |E di

′

= ai,t+1
1− τW

∂Ui,t (·)
∂ci,t

(
1 + ζa,1+r

i,t

) ∫
i′
γ1+r,a
i,i′,t ζ

a,(1−τW )
i′,t di′.

Insert this equation and, as before, the households’ first-order conditions and Equation (19) into

dSWF =
∫
i
Γi,t

∂Ui,t
∂ci,t

[(1− τW ) daR,i,t − aR,i,tdτW − wi,tli,tdτL] di−
∫
i
Γi,t

∂Ui,t
∂ai,t+1

aR,i,tdτWdi

+
∫
i
Γi,t

∂Ui,t
∂ai,t+1

aR,i,t+1

∫
i′

dlog [ai,t (1 + ri,t (ai,t))]
dlog (1 + ri,t)

dlog [1 + ri,t (·)]
dlog

(
ai′,t

) dlog
(
ai′,t

)
dlog (1− τW ) |E di

′di.
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Set this expression equal to zero and use the definitions of the distributional parameters to get
Equation (28). Equation (29) follows from rearranging Equation (28).

Comparative statics. As in the partial equilibrium, approximate household savings and wealth
in general equilibrium as

ai,t
(
τGEW

)
= ai,t

(
τPEW

)
+ τPEW − τGEW

1− τPEW
ai,t

(
τPEW

)
ζ
a,(1−τW )
i,t + o

(
τGEW − τPEW

)

and
aR,i,t

(
τGEW

)
= aPER,i,t

(
τPEW

)
+ τPEW − τGEW

1− τPEW
aR,i,t

(
τPEW

)
ζ
aR,(1−τW )
i,t + o

(
τGEW − τPEW

)
,

where, again, the elasticities are evaluated in general equilibrium. Integrate out the second ex-
pression to get Equation (30).

Moreover, initial wealth can be written as

ainitial
(
τGE

)
=

∫
i gi,taR,i,t

(
τPE

)
di+ τPEW −τGEW

1−τPEW

∫
i gi,taR,i,t

(
τPE

)
ζ
aR,(1−τW )
i,t di∫

i aR,i,t (τPE) di+ τPEW −τGEW
1−τPEW

∫
i aR,i,t (τPE) ζaR,(1−τW )

i,t di
+ o

(
τGEW − τPEW

)

= ainitial
(
τPE

) 1 + τPEW −τGEW
1−τPEW

ζ̂aR,(1−τW )

+ τPEW −τGEW
1−τPEW

ζaR,(1−τ)
+ o

(
τGEW − τPEW

)
.

Therefore, for ζ̂aR,(1−τW ) = ζaR,(1−τW ), ainitial
(
τGE

)
= ainitial

(
τPE

)
+ o

(
τGEW − τPEW

)
. Similarly,

final wealth

afinal
(
τGE

)
=

∫
i gi,tai,t

(
τPE

)
di+ τPEW −τGEW

1−τPEW

∫
i gi,tai,t

(
τPE

)
ζ
a,(1−τW )
i,t di∫

i aR,i,t (τPE) di+ τPEW −τGEW
1−τPEW

∫
i aR,i,t (τPE) ζaR,(1−τW )

i,t di
+ o

(
τGEW − τPEW

)

= afinal
(
τPE

) 1 + τPEW −τGEW
1−τPEW

ζ̂a,(1−τW )

1 + τPEW −τGEW
1−τPEW

ζaR,(1−τ)
+ o

(
τGEW − τPEW

)

simplifies to ainitial
(
τGE

)
= ainitial

(
τPE

)
+ o

(
τGEW − τPEW

)
for εr,ai,t ≈ 0 and δr,ai,t ≈ 0.

E The Financial Market

In this section, I develop a general equilibrium financial market model, which serves as a microfoun-
dation for the endogenous formation of return inequality described earlier. Recall that households
work in the first period and can transfer resources into the next period by saving parts of their
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labor income. In the following setting, the returns on savings form on a financial market with
imperfect information. For a given amount of savings, households choose their optimal investment
portfolio and can acquire information about the stochastic returns on the financial market. This
setting gives rise to inequality in the returns to investment. As high-income individuals decide to
save more than low-income individuals, they have an incentive to acquire more financial knowledge,
which allows them to generate higher (risk-adjusted) returns.

As standard in generational models (e.g., Piketty and Saez (2013)), I subdivide the investment
period into h = 1, ..., H + 1 subperiods. For instance, for H = 30, the working life has a duration
of 30 years. In the following environment, this means that, during their working life, households
repeatedly interact on the financial market. In particular, they can adjust their portfolio and their
financial knowledge. Between subperiods, there is no time discounting.

E.1 Environment

I model the financial market in each subperiod h as in Peress (2004) version of the Grossman and
Stiglitz (1980) economy. The general equilibrium model features individuals, who differ in their
initial wealth, ai,h, which depends on initial savings ai,1 and returns realized before h, a financial
market with public and private signals about stochastic returns, and endogenous inequality in
investment returns. The main goal is to justify the reduced form of investment returns as a
function of initial savings r

(
ai, {aj}j∈[0,1]

)
. Whenever I drop the subperiod index h, I refer to the

first subperiod (h = 1).

Payoff structure. In subperiod h, household i ∈ [0, 1] invests ai,h on a financial market. As
in Grossman and Stiglitz (1980), there are two assets: one risk-free asset (bond) and one risky
asset (stock). In each subperiod h, households purchase a costly private signal about the stock’s
payoff and observe a public signal (price). After that, they decide on how much to invest in
the risky and the risk-free asset. In this class of models, there exists no closed-form solution for
the rational expectations equilibrium in settings that go beyond constant absolute risk aversion
(CARA) utilities. In these models, this issue is also present when one considers redistributive
taxation. Therefore, I adopt the idea by Peress (2004) who scales the economy with a parameter
z. For a small z, one can approximately solve the model in closed form for arbitrary preferences
and nonlinear taxes.19

In each subperiod, there is a risk-free asset in infinitely elastic supply that delivers a return
19This procedure is similar to the time increment dt in continuous-time models.
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of rfhz. The risky asset has an endogenous price Ph and a random payoff Πh that is log-normally
distributed with mean bhz and variance σ2z, where log (Πh) ≡ πhz. The mean payoff is normally
distributed bh ∼ N (E (b) , σ2

b ). In other words, in each subperiod, nature draws a stochastic
fundamental of the economy that drives stock returns. For simplicity, I assume that the draws of
bh are uncorrelated over time.

Define rpi,hz as the realized investment return of household i in subperiod h. For a small z (e.g.,
z = 1/H), rpi,hz is small so that one can neglect nonlinearities as follows. The compound rate of
return can be approximated by Ri ≡

(
1 + rpi,1z

)
· ... ·

(
1 + rpi,Hz

)
− 1 = ∑H

h=1 r
p
i,hz + o (z). Capital

income reads as Riai,1 = ∑H
h=1 ai,hr

p
i,hz+ o (z). Therefore, when z = 1/H, the investment return ri

denotes the average return. Consider the setting in Section C, where the government taxes final
wealth linearly according to τW .20

Information structure. As standard in the literature, assume that there are noise traders who
have access to other investment technologies, such as human capital, or make random errors in their
forecast of payoffs. The existence of noise traders prevents the full revelation of private information
via the publicly-observed price and, as a result, a fully efficient financial market. Otherwise,
nobody would have an incentive to purchase the private signal in the first place (Grossman-Stiglitz
paradox). Accordingly, the net supply of risky assets, θh, is random. Assume that the net supply is
normally distributed, θh ∼ N (E (θ) , σ2

θ), and independent from payoffs. This technicality ensures
that the equilibrium price is a noisy signal about the fundamentals of the economy.

Households can acquire financial knowledge, for example, by conducting research, obtaining
financial education, or employing financial advisers. In particular, they observe a noisy private
signal si,h = bh +ϑi,h with ϑi,h ∼ N

(
0, 1

xi,h

)
and can purchase a signal precision of xi,h ∈ R+ ∪{0}

at cost v (xi,h) z, measured in monetary units, where v (·) is increasing, convex, twice continuously
differentiable and v (0) = 0. That is, information acquisition becomes more and more costly. This
assumption is in line with the idea that households obtain pieces of information, and each extra
piece correlates with the previous ones. Nonetheless, this model gives rise to increasing returns to
information acquisition. Moreover, assume that private signals are uncorrelated across households
and that households cannot resell their information. As in reality, agency problems may constrain
information resale or sharing.21

20Analyzing a nonlinear capital gains tax, Tk (·), with Tk (0) = 0, T ′k (0) = 0, and T ′′k (0) = 0, leads to the same
conclusions (see Appendix F.4). Therefore, the financial market, described here, also microfounds the formation of
returns in the analysis of nonlinear taxes in Section G. Similarly, one can consider a linear capital gains tax as in
Section 2.

21Observe the implicit assumption that knowledge fully depreciates intertemporally. Any departure from this
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Timing. The timing of each subperiod is as follows. For a given amount of savings, households
purchase financial knowledge xi,h. Then, they observe the private and the public price signal.
Households form rational expectations about the payoff of the risky asset given the observed
signals and decide how much of their savings to invest in the risky asset. Formally, an investor
i chooses a share of stocks, ςi,h, and a bond share, (1− ςi,h), given her expectation Ei,h (·|Fi,h)
conditional on the information set Fi,h where Fi,h = {si,h, Ph}, if a signal has been acquired, and
Fi,h = {Ph}, else. Finally, payoffs realize.

Household problem. Given the portfolio choice ςi,h, the return of the portfolio reads as

rpi,hz = ςi,h
Πh − Ph
Ph

+ (1− ςi,h) rfhz (38)

per unit of savings ai,h−1. At the end of the subperiod household i’s wealth is the portfolio’s gross
return net of costs of information acquisition

ai,h = ai,h−1
(
1 + rpi,h−1z

)
− v (xi,h−1) z.

I assume that the costs of information acquisition are monetary, realize at the end, and are de-
ductible from the base of the capital tax.

Due to the model approximation used here, the main result that the portfolio return increases
with wealth, derived in the next section, is robust to various permutations of these assumptions on
the information costs. In particular, it does not matter when the monetary costs accrue. Moreover,
when the costs of information acquisition are non-monetary, the key results will carry over with a
minor constraint on the shape of the cost function.

Final wealth, ai,H+1, can be recursively written as

ai,H+1 = ai,1

(
1 +

H∑
h=1

rpi,hz

)
−

H∑
h=1

v (xi,h) z + o (z) .

I assume that utility from final, after-tax wealth, ai,t+1, is linearly separable and isoelastic u
(
ai,t+1

)
=

a1−ρ
i,t+1−1
1−ρ . Then, this utility is approximately given by u [(1− τW ) (ai,1 (1 +Ri)− v (Xi))] + o (z)

where Ri ≡
∑H
h=1 r

p
i,hz and v (Xi) ≡

∑H
h=1 v (xi,h) z. This justifies the preference structure in the

dynamic economy of Section C.
It remains to show that ri,h = r

(
ai,h, {aj,h}j∈[0,1]

)
. Firstly, note that utility from final wealth

assumption would, just as non-convex cost functions, strengthens the main results.
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can also be written as

H · u
[
(1− τW )

(
ai,1

(
1 + rpi,1z

)
− v (xi,1) z

)]
+ o (1) (39)

Hence, for a given distribution of initial wealth, ai,1, the repeated financial market interaction in
subperiod h is up to a constant fully static.22 Therefore, in the following, I drop time indices
in individual and aggregate variables for notational convenience. Accordingly, in each subperiod,
households maximize their expected utility

max
x

Ei
(
max
ς

Ei (u [(1− τW ) (ai (1 + rpi z)− v (xi) z)] |Fi)
)

(40)

The set of optimal choices by household i on the financial market reads as {ςi, xi} which will be
functions of initial savings. Moreover, denote the p.d.f. of savings as g (ai) and the c.d.f. as G (ai),
respectively.

A side-effect of the model approximation is that one can rewrite the stochastic period utility
in deterministic units

Ei (u [(1− τW ) (ai (1 + rpi z)− v (xi) z)]) = u [(1− τW ) (ai (1 + E (rpi z))− v (xi) z)]

+ 1
2u
′′ [(1− τW ) ai] (1− τW )2 V (airpi z) + o (z) .

To get this expression, approximate the expected utility around the mean portfolio return. Thus,
second-period utility features a deterministic mean-variance trade-off in the spirit of Markowitz
(1952, 1959). Households trade off endogenous ex ante risk and returns. I derive these measures
in the following. Therefore, the tax analysis with deterministic returns is sufficient.

Aggregate variables. Denote the risk tolerance of a household, who invests ai, as the inverse
coefficient of absolute risk aversion ψ (ai) ≡ −u′(ai)

u′′(ai) . With the specified utility function, ψ (ai) =
ai/ρ. In principle, ψ′ (ai) > 0 would be sufficient to obtain scale dependence.

Moreover, dropping the time index on the aggregate variables, define the aggregate risk-taking
by T ≡

∫
i Tidi ≡

∫
i ψ (ai) di, the aggregate noisiness by N ≡

∫
iNidi ≡

∫
i

ψ(ai)
h0(I)+xidi, and the

aggregate informativeness of the price by I ≡
∫
i Iidi ≡ 1

σ2

∫
i
xiψ(ai)
h0(I)+xidi, where h0 (I) ≡ 1

σ2
b

+ I2

σ2
θ

measures the precision of the public signal. Therefore, the variable T aggregates risk tolerance
or risk-taking of all households. N summarizes the noisiness (inverse precision) of the prior, the

22Incorporating dynamic aspects, e.g., the accumulation of wealth and the resulting spread in the wealth distri-
bution, would only strengthen the main result that wealthier households obtain higher rates of return than poorer
ones.
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stock price, and the private signals of households, whereas I measures the total signal precision
relative to the total precision. Both N and I are weighted by the risk tolerance. The definition
of these three variables will prove convenient when deriving the equilibrium of the economy. Now,
one can define the rational expectations equilibrium of the financial market.

Rational expectations equilibrium. Define a rational expectations equilibrium as the set of
choices {ςi, xi}, the stock’s price as a function of Π and θ and the informativeness I such that

(1) households optimally choose their portfolio and signal precision

ςi = ς (Si, xi, ai;P, I) ≡ argmax
ς

Ei (u [(1− τW ) (ai (1 + rpi z)− v (xi) z)] |Fi) (41)

and
xi = x (ai; I) ≡ argmax

x
Ei
[
max
ς

Ei (u [(1− τW ) (ai (1 + rpi z)− v (xi) z)] |Fi)
]
, (42)

(2) P clears the stock market ∫
i

ςiai
P
di = θ, (43)

and
(3) the implied informativeness of the price is consistent with observed choices of individual

information precision
I = 1

σ2

∫
i

x (ai; I)ψ (ai)
h0 (I) + x (ai; I)di. (44)

E.2 The Equilibrium

In the following, I show that, in the approximated Grossman and Stiglitz (1980) economy, in-
vestment returns and their distribution depend on capital justifying the reduced form assumption
on the capital gains functional in the sections before. I solve the model by backward induction.
First, one shows that there exists a log-linear rational expectations equilibrium and derive portfolio
choices and the equilibrium stock price. Then, to demonstrate that the amount of information
acquisition, xi, increases in the portfolio size, ai, one characterizes the demand for information by
the first-order condition

v′ (xi) = 1
2ρaiS

′ (xi; I) , (45)

where S (xi; I) is the expected squared Sharpe ratio of an investor. Wealthy investors purchase
more information than poorer ones. There exists a threshold value a∗i (I) below which nobody
obtains information. There is a congestion effect. The threshold wealth a∗i (I) is increasing in
I. Hence, a rise in the aggregate informativeness lowers the number of investors who choose to
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purchase information.
Furthermore, note that information is a strategic substitute. That is, x (ai; I) is a decreasing

function of I. The higher the informativeness of the public signal (price), the lower is the need for
acquiring private information. In other words, the information acquisition by all investors imposes
an externality on an individual investor via the equilibrium price. Investors do not internalize
this externality. Finally, it can be shown that there exists a unique scalar for I and, thus, for N .
Therefore, the log-linear equilibrium is unique.

E.2.1 Portfolio Returns and Sharpe Ratio

Now, I present the implications of information acquisition for portfolio returns. As we have seen,
wealthier investors acquire more information, even though each extra piece of information becomes
more and more costly. Does this information advantage help investors to generate higher rates of
return? To answer this question, define the excess return of investor i’s portfolio rpei z ≡ rpi z− rfz.

Lemma 1 (Returns, variance, and Sharpe ratio). The expected excess return, its variance, and
the Sharpe ratio are increasing in xi which rises in ai:

E (rpei z) = E (rpi z)− r
fz = 1

ρ
S
(
ai, {aj}j∈[0,1]

)
z + o (z) , (46)

V (rpei z) = V (rpi z) = 1
ρ2S

(
ai, {aj}j∈[0,1]

)
z + o (z) , (47)

and
E (rpei z)√
V (rpei z)

=
√
S
(
ai, {aj}j∈[0,1]

)
z + o (1) . (48)

Proof. See Appendix F.2.

Lemma 1 reveals how the portfolio returns (and its risk) relate to the individual’s signal preci-
sion xi, portfolio sizes ai, and the relative risk aversion 1/ρ. Both the expected excess return and
its standard deviation are declining in the relative risk aversion. Moreover, these variables increase
in the degree of individual information that rises in the portfolio size. Hence, wealthier investors
obtain higher returns and are willing to take more risk relative to poorer households. Moreover,
returns depend on aggregate information.

To sum up, an individual’s demand for stocks and information, as well as her (risk-adjusted)
return, depend on her amount of investment and, through the equilibrium price, on others’ invest-
ments. Households become richer because they are rich. As a result, the final wealth distribution
is more unequal than the initial one. This insight originates from Arrow (1987).

68



Moreover, an investor’s return does not directly depend on her capital tax. This feature de-
rives from the linear approximation of the economy and the CRRA utility function. Altogether,
this financial market interaction justifies the reduced form assumption on the endogenous return
inequality in Section C and G, ri

(
ai, {aj}j∈[0,1]

)
.

E.2.2 An Example

Suppose, for simplicity, that E (θ) = 0 and v (xi) = κxi. Due to the linearity of costs, the rents
from private signal extraction are constant conditional on a given amount of investment. A higher
degree of public information reduces one-to-one the demand for private information. Moreover, let
a0 > a∗i (I). Then, the elasticity of the return (in a given subperiod) with respect to the amount
of investment is positive

ε
E(rpz),a
i ≡ ∂log [E (rpi z)]

∂log (ai)
=

√
ρκ/ (2σ2ai)

S
(
ai, {aj}j∈[0,1]

)
/ρ+ rf

> 0.

Also, note that the expected return is concave in the amount of investment. Therefore, own-return
elasticity decreases with ai.

The cross-return elasticity reads as

γ
E(rpz),a
i,i′ ≡ ∂log [E (rpi z)]

∂log (ai′)
=

∑
A∈{T ,N ,I}

∂log [E (rpi z)]
∂A

∂Ai′
∂log (ai′)

.

One can show that by the linearity of the cost function it is multiplicatively separable. That is,
γ
E(rpz),a
i,i′ = 1

E(rpi z)
δ
E(rpz),a
i′ .

Observe that the cross-return elasticity carries risk and information externalities. Investors are
rewarded for risk that they are willing to take on the stock market. The variability of the price
measures this risk: V (log (P )) = V (pξξ) where ξ is the public signal and pξ is the responsiveness
of the price to the public signal. Two channels affect the amount of this aggregate risk and, as a
result, individual returns.

Firstly, a rise in aggregate information, I, lowers the variance of ξ and, therefore, lowers
portfolio returns. Secondly, the sensitivity of the stock price to the price signal, pξ, is determined
in general equilibrium. As the aggregate noisiness, N , declines, the equilibrium stock price becomes
more sensitive to the price signal so that pξ increases. Similarly, a rise in risk tolerance, T , increases
the demand for stocks intensifying the relation between the price and the public signal. Hence, a
rise in T (a reduction in N ) increases the variability of the public signal.
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Altogether, a rise in portfolio size ai′ (and, therefore, in information xi′) has opposing effects
on the return of household i. For simplicity, let σ2 = σ2

b = σ2
θ = 1. Then, one can show that

δ
E(rpz),a
i′ ≥ 0 for ai′ ≤ ã and δE(rpz),a

i′ < 0 for ai′ > ã. Whereas an investor’s marginal contribution
to risk is constant, contributions to information are nonlinear in the amount of investment. For
instance, the impact of wealthy investors on information is larger than the one of poorer investors
(i.e., ∂2Ii′

∂a2
i′
> 0). They contribute marginally more to the level of aggregate information, which

reduces uncertainty and, hence, the idiosyncratic reward for risk (E (rpi z)).
Consequently, this setting features trickle-up. Consider a tax cut on the wealth of the rich.

As a reaction, wealthy investors increase their portfolio size which allows them to generate higher
rates of return because they acquire more information (εE(rpz),a

i > 0). At the same time, the level
of aggregate information increases. As a consequence, the value of private information decreases.
The reward for the small amount of private information, that poorer households acquire, declines
(δE(rpz),a
i′ < 0). Therefore, the tax cut shifts capital income from the bottom to the top.
Of course, this observation holds when all households, even the poor, invest in financial knowl-

edge (i.e., a0 > a∗i (I)). Suppose that ai = a∗i (I) for some i ∈ (0, 1). Then, the poor, who do
not invest in information, may benefit from a tax cut for the rich, as they only rely on public
information. In this situation, only the middle class suffers from a loss in their rents from private
information acquisition.

E.3 Extensions

In this section, I extend the financial market model by considering two practically relevant mod-
ifications of the financial market model. First, I consider career effects. In the second extension,
I deal with type dependence. Throughout this section, suppose the assumptions from the exam-
ple hold. That is, let E (θ) = 0, σ2 = σ2

b = σ2
θ = 1, and v (xi) = κxi. Moreover, assume that

a0 > a∗i (I).

E.3.1 Career Effects

Wealthy households may not only obtain high financial knowledge since their portfolios are sizable
but also because of the professional network they build during their career. In other words, as they
earn a high income and, as a result, become wealthy, they gain access to specialist knowledge about
financial markets either because they work in the finance industry or they get to know financial
experts. This channel additionally boosts their portfolio returns.
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To formalize this, let v (xi, yi) where ∂2v(xi,yi)
∂y2
i

> 0 and ∂v(xi,yi)
∂xi∂yi

< 0. The marginal costs of
purchasing information decrease with an individual’s income yi. Then, the Sharpe ratio

S
(
ai, li, {aj}j∈[0,1] , {lj}j∈[0,1]

)

and, accordingly, the expected rate of return, as well as its variance, increase with an individual’s
labor supply.23 As labor supply increases with i, this force amplifies the main feature of the model
of endogenous return inequality. Put differently, εE(rpz),l

i ≡ ∂log[E(rpi z)]
∂log(li) > 0. In general equilibrium,

γ
E(rpz),l
i,i′ ≡ ∂log[E(rpi z)]

∂log(li′ )
6= 0.

E.3.2 Type Dependence

As noted in the literature on inequality (e.g., Benhabib, Bisin, and Zhu (2011)), type dependence
explains the thick tail in the distribution of wealth observed in many countries. Applied to the
financial market setting, this refers to a situation where the rich are also talented in investing their
money.

The easiest way to incorporate type dependence is to let κi vary by type. That is, suppose
κi is decreasing in the index i. Thus, there is heterogeneity not only in hourly wages, but also
in the marginal costs of information acquisition. Accordingly, an investor’s Sharpe ratio Si (·) is
indexed by i. The presence of cost heterogeneity amplifies the inequality in returns. The reasoning
is as follows. Wealthy, talented investors acquire more financial knowledge than without type
dependence, as it is cheaper for them. Therefore, they earn higher returns. In turn, the incentives
to save rise such that their portfolio increases in size. Because of scale dependence, this further
boosts their returns.

Moreover, the distribution of own-return elasticities is affected. To see this, compare own-return

semi-elasticities of household i and j where i > j: E(rpi z)εE(rpz),a
i

E(rpj z)εE(rpz),a
j

=
√

aj
ai

√
κi
κj
. There are two effects

that compress the distribution of own-return semi-elasticities. Firstly,
√

κi
κj
< 1. Secondly, type

dependence leads to more return inequality which boosts wealth inequality. Thus,
√

aj
ai

is lower in
the presence of type dependence. The effect on the distribution of own-return elasticities is even
larger ε

E(rpz),a
i

ε
E(rpz),a
j

= E(rpj z)
E(rpi z)

√
aj
ai

√
κi
κj

because return inequality, E(rpj z)
E(rpi z)

, directly enters the expression.
Therefore, the presence of type dependence compresses the distribution of own-return elasticities.

In general equilibrium, the distribution of cross-return semi-elasticities is unaffected by type
23 ∂v(xi,yi)

∂xi∂yi
< 0 implies by the second fundamental theorem of calculus that ∂v(xi,yi)

∂yi
6= 0. Therefore, the labor

supply elasticities are modified by an additional marginal effect on information costs.
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dependence, whereas the effect on the distribution of cross-return elasticities depends on the effects

on return inequality
γ
E(rpz),a
i,i′

γ
E(rpz),a
j,i′

= E(rpj z)
E(rpi z)

. If type dependence triggers a rise in return inequality, the
distribution of cross-return elasticities will flatten.

F Proofs of Section E

F.1 Approximations

I show, by induction, that the statement P (H) : ΠH
h=1

(
1 + rpi,hz

)
= 1 + ∑H

h=1 r
p
i,hz + o (z) holds

for any H ≥ 1. The base case, P (1), is trivially fulfilled. For the inductive step, let P (k) hold.
Then, P (k + 1) is also true since

Πk
h=1

(
1 + rpi,hz

)
·
(
1 + rpi,k+1z

)
=
(

1 +
k∑

h=1
rpi,hz + o (z)

)(
1 + rpi,k+1z

)

= 1 +
k∑

h=1
rpi,hz +

(
1 +

k∑
h=1

rpi,hz

)
rpi,k+1z + o (z) = 1 +

k+1∑
h=1

rpi,hz + o (z) .

Using this expression, period-h wealth can be written as

ai,h = ai,h−1
(
1 + rpi,h−1z

)
− v (xi,h−1) z =

[
ai,h−2

(
1 + rpi,h−2z

)
− v (xi,h−2) z

] (
1 + rpi,h−1z

)
− v (xi,h−1) z

= ai,h−2
(
1 + rpi,h−1z + rpi,h−2z

)
− v (xi,h−2) z − v (xi,h−1) z + o (z) = ...

= ai,1

1 +
h−1∑
j=1

rpi,h−jz

− h−1∑
j=1

v (xi,h−j) z + o (z) = ai

(
1 +

h−1∑
s=1

rpi,sz

)
−
h−1∑
s=1

v (xi,s) z + o (z)

for any h = 1, ..., H + 1. Capital income is given by

Riai,1 =
H∑
h=1

ai,1r
p
i,hz + o (z) =

H∑
h=1

ai,hr
p
i,hz +

H∑
h=1

(ai,1 − ai,h) rpi,hz + o (z) =
H∑
h=1

ai,hr
p
i,hz + o (z) .

Defining the overall information effort as xi ≡
∑H
h=1 xi,hz, the information costs can be approxi-

mated by

v (Xi) ≡ v
(

H∑
h=1

xi,hz

)
≡ v (xi,1z, ..., xi,Hz) = v (0, ..., 0) +

H∑
h=1

∂v (0, ..., 0)
∂xi,h

(xi,hz − 0) + o (z)

= v′ (0)xi,1z + ...+ v′ (0)xi,Hz + o (z) =
H∑
h=1

(v (xi,h) z − v (0)) + o (z) =
H∑
h=1

v (xi,h) z + o (z)
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Therefore, one can rewrite the utility from final wealth as

u (ai,H+1) = u

[
(1− τW )

(
ai,1

(
1 +

H∑
h=1

rpi,hz

)
−

H∑
h=1

v (xi,h) z
)]

+ o (z)

= u [(1− τW ) (ai,1 (1 +Ri)− v (Xi))] + o (z) ,

which justifies the preference structure in Section C. Alternatively, one can express the utility from
final wealth as

u (ai,H+1) = u

(
ai,1 +

H∑
h=1

∆ah

)
+ o (z) = u (∆a1, ...,∆aH) + o (z) = u (0, ..., 0) +

H∑
h=1

∂u (0, ..., 0)
∂∆ah

∆ah + o (z)

= u (ai,1) +
H∑
h=1

(u (ai,1 + ∆ah)− u (ai,1)) + o (z) =
H∑
h=1

u
(
ai,1

(
1 + rpi,hz

)
− v (xi,h) z

)
+ o (1) ,

where I defined ∆ah ≡ ai,1r
p
i,hz − v (xi,h) z. By the simplifying assumption that knowledge fully

depreciates intertemporally, Equation (39) follows.
As I will show later, any moment higher than the return variance is negligible. Accordingly,

expected period-utility can be approximated around the utiltity from expected wealth as follows

Ei
(
u
[
(1− τW )

(
ai,1

(
1 + rpi,1z

)
− v (xi,1) z

)])
= Ei

(
u
[
(1− τW )

(
ai,1

(
1 + E

(
rpi,1z

))
− v (xi,1) z

)])
+ (1− τW )Ei

(
u′
[
(1− τW )

(
ai,1

(
1 + E

(
rpi,1z

))
− v (xi,1) z

)] [
ai,1r

p
i,1z − ai,1E

(
rpi,1z

)])
+1

2 (1− τW )2 Ei
(
u′′
[
(1− τW )

(
ai,1

(
1 + E

(
rpi,1z

))
− v (xi,1) z

)] [
ai,1r

p
i,1z − ai,1E

(
rpi,1z

)]2)
+ o (z)

= u
[
(1− τW )

(
ai,1

(
1 + E

(
rpi,1z

))
− v (xi,1) z

)]
+ 1

2u
′′ [(1− τW ) ai,1] (1− τW )2 V

(
ai,1r

p
i,1z
)

+ o (z) .

F.2 The Financial Market Equilibrium and Linear Taxation

Equilibrium price, existence, and demand for stocks. In the following, I characterize the
financial market equilibrium in subperiod 1 (and, therefore, for each subperiod h). Therefore, I
completely drop time indices in this section. I start with portfolio choices and derive the equilibrium
stock price. Lemma 2 summarizes the results.

Lemma 2 (Existence of equilibrium, equilibrium price, and portfolio choice). Assume z is small.
Then, there exists a log-linear rational expectations equilibrium. The equilibrium price is linear in
ξ ≡ b− 1

I θ

log (P ) = pz =
(
p0 + pξξ − rf

)
z + o (z) (49)

where p0 ≡ N
T

[
E(b)
σ2
b

+ IE(θ)
σ2
θ

]
+ 1

2σ
2 and pξ ≡ 1 − N

T σ2
b
. The optimal investment in the risky asset is
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given by
ςi = 1

ρσ
√
z
λi + o (1) (50)

where λi ≡
√
z
σ

[
1

h0(I)+xi

(
E(b)
σ2
b

+ IE(θ)
σ2
θ

+ I2

σ2
θ
ξ + xisi

)
+ 1

2σ
2 − p− rf

]
is the investor’s Sharpe ratio.

The proof of Lemma 2 involves three steps. Conjecturing the log-linear equilibrium price
(Equation (49)), determine the conditional variance and expectation of payoffs (step 1), derive the
optimal portfolio (step 2), and determine the equilibrium price using the stock market clearing
confirming the price conjecture (step 3).

Step 1: By the law of total conditional variance and expectation, the conditional variance of
payoff and the conditional expected payoff read as

Vi (πz|Fi) = Ei (Vi (πz|b,Fi) |Fi) + Vi (Ei (πz|b,Fi) |Fi)

= Ei (Vi (πz|b) |Fi) + Vi (bz|Fi) = σ2z + o (z)

and, using b ≡ ξ + 1
I θ in Lemma 2,

Ei (πz|Fi) = Ei (Ei (πz|b,Fi) |Fi) = Ei (bz|Fi)

= 1
h0 (I) + xi

[
1
σ2
b

E (b) + I
σ2
θ

E (θ) + I
2

σ2
θ

ξ + xisi

]
z + o (z) .

Step 2: In the following, I approximate the household’s Euler equation

0 = Ei
[
u′
(

(1− τW )
(
ai

(
1 + ςi

Π− P
P

+ (1− ςi) rfz
)
− v (xi) z

))(Π− P
P

− rfz
)
|Fi
]

= u′ ((1− τW ) ai)Ei
[(Π− P

P
− rfz

)
|Fi
]

+ (1− τW ) aiςiu′′ ((1− τW ) ai)Ei

[(Π− P
P

− rfz
)2
|Fi

]
+ o (z) (51)

that determines the optimal portfolio choice. Note that

Ei
[(Π− P

P
− rfz

)
|Fi
]

= Ei
[(
exp (πz)− exp (pz)

exp (pz) − rfz
)
|Fi
]

= Ei

[(
1 + πz + 1

2 (πz)2 + o
(
z2)− 1− pz − 1

2 (pz)2 − o
(
z2)

1 + pz + o (z)

)
|Fi

]
− rfz

= Ei (πz|Fi) + 1
2Ei

[(
(πz)2 − (pz)2

)
|Fi
]
− pz − rfz + o (z)

= Ei (bz|Fi) + 1
2σ

2z − pz − rfz + o (z) (52)
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and

Ei

[(Π− P
P

− rfz
)2
|Fi

]
= Ei

[(
πz + 1

2 (πz)2 − pz − 1
2 (pz)2 − rfz

)2
|Fi

]
+ o (z)

= Ei
[
(πz)2 |Fi

]
+ o (z) = σ2z + o (z) . (53)

Plug these expressions and the conjectured equilibrium price into Equation (51). To get Equation
(50), rearrange the resulting expression and observe that −u′((1−τW )ai)

(1−τW )aiu′′((1−τW )ai) = 1
ρ
.

Step 3: Plug Equation (50) and the definitions of the aggregate variables into the stock market
clearing condition (Equation (41)) to get

θ = 1
σ2

[(
1
σ2
b

E (b) + I
σ2
θ

E (θ) + I
2

σ2
θ

(
b− 1
I
θ

))
N + bσ2I + T

(1
2σ

2 − p− rf
)]

+ o (1) .

Rearrange to conclude that Equation (49) is fulfilled.

Demand for information and equilibrium uniqueness. In Lemma 3, I characterize the
demand for information and confirm the uniqueness of the equilibrium.

Lemma 3 (Demand for information, equilibrium informativeness, and uniqueness of equilibrium).
Assume z is small. There exists a threshold wealth a∗i (I) ≡ 2ρv′ (0)σ2h0 (I)2, above which there
is positive information acquisition, xi, that increases in ai according to the first-order condition

v′ (xi) = ai
2ρS

′ (xi; I) , (54)

where S (xi; I,N , T ) z = Ei (λ2
i ) is expected squared Sharpe ratio of an investor. S (xi; I,N , T ) is

increasing and concave in the precision of the private signal xi. Therefore, the informativeness of
the price can be written as

I = 1
ρσ2

∫ a1

a∗i (I)

aixi (ai; I)
h0 (I) + xi (ai; I)dG (ai) . (55)

There exists a unique log-linear equilibrium.

To proof Lemma 3, observe that a households expected squared Sharpe ratio is given by

S (xi,1; I) z ≡ Ei
(
λ2
i

)
= Vi (λi) + Ei (λi)2

= − z

σ2
1

h0 (I) + xi
+ z

σ2

[
σ2
θ

I2 p
2
ξ + σ2

b (1− pξ)2 + E (θ)2

I2

(
1− h0 (I) N

T

)2
]
. (56)
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Similar to above, one approximates

Ei [u (·) |Fi] = u ((1− τW ) ai) + (1− τW )u′ ((1− τW ) ai)

·
[
aiςi

(
Ei (πz|Fi) + 1

2Vi (πz|Fi)− pz − rfz
)

+ air
fz − v (xi) z

]
+ 1

2 (1− τW )2 u′′ ((1− τW ) ai) a2
i ς

2
i Vi (πz|Fi) + o (z)

to obtain a non-stochastic expression for

Ei [u (·)] = u ((1− τW ) ai) + (1− τW )u′ ((1− τW ) ai) z
(
ai
2ρ

Ei
(
λ2
i

)
z

+ air
f − v (xi)

)
+ o (z)

Then, optimize over signal precision xi. The first-order condition

v′ (xi) = 1
2ρaiS

′ (xi; I) = ai
2ρσ2

(
1
σ2
b

+ I
2

σ2
θ

+ xi

)−2

is sufficient by the second-order condition

∂2Ei (u (·))
∂x2

i

= 1
2ρaiS

′′ (xi; I)− v′′ (xi) < 0

and, hence, characterizes the unique solution to the household information acquisition problem.
By the implicit function theorem, information acquisition rises with wealth

dxi
dai
∝ ∂2Ei (u (·))

∂xi∂ai
= 1

2ρS
′ (xi; I) > 0

and a∗i (I) ≡ 2ρv′ (0)σ2S (0; I)−1 = 2ρv′ (0)σ2h0 (I)2 is the threshold wealth level above which
there is information acquisition. Denote i∗ as the respective threshold household. Again, use the
implicit function theorem to show that

dxi
dI
∝ ∂2Ei (u (·))

∂xi∂I
= ∂S ′ (xi; I)

∂I
= − 2ai

ρσ2
(

1
σ2
b

+ I2

σ2
θ

+ xi

)3
I
σ2
θ

< 0.

Finally, one needs to show that the equilibrium information I is uniquely determined for a given
distribution of wealth. Define

∑
(I) ≡ I − 1

ρσ2

∫ 1

i∗

aixi (ai; I)
h0 (I) + xi (ai; I)di.
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One can demonstrate that the differential of this expression is positive

d
∑

(I)
dI

= 1− 1
ρσ2

∫ 1

i∗

h0 (I) dxi(ai;I)
dI − xi (ai; I) dh0(I)

dI
(h0 (I) + xi (ai; I))2 di > 0.

Moreover, ∑ (0) ≤ 0, since xi (ai; 0) ≥ 0, and ∑ (∞) ≥ 0, as xi (ai;∞) = 0. By the continuity of∑ (I), there is a unique I such that ∑ (I) = 0. Therefore, N and T are also uniquely defined.

Returns, variance, and Sharpe ratio. Lastly, I derive the key moments of return rates con-
ditional on the amount of investment. Excess portfolio returns are given by rpei z ≡ rpi z − rfz =
ςi
(

Π−P
P
− rfz

)
. Using Equations (52) and (53) and the definition in Equation (56), by the law of

total expectation, expected returns read as

E (rpei z) = E
[
E
(
ςi

(Π− P
P

− rfz
)
|Fi
)]

= E
[( 1
ρσ
√
z
λi + o (1)

)(
Ei (bz|Fi) + 1

2σ
2z − pz − rfz + o (z)

)]
= 1
ρ
E
(
λ2
i

)
+ o (z) = 1

ρ
S
(
ai, {aj}j∈[0,1]

)
z + o (z)

and the return variance is given by

V (rpei z) = V (rpi z) = E
[
(rpei z)

2
]
− E (rpei z)

2 = E
[
(rpei z)

2
]

= E
[
ς2
i E
((Π− P

P
− rfz

)2
|Fi

)]
= E

[( 1
ρσ
√
z
λi + o (1)

)2 (
σ2z + o (z)

)]

= 1
ρ2E

(
λ2
i

)
+ o (z) = 1

ρ2S
(
ai, {aj}j∈[0,1]

)
z + o (z) ,

which shows Equations (46) and (47). Equation (48) follows from dividing (46) by the square root
of (47). Observe that both E (rpei z) and V (rpei z), rise in ai because E (λ2

i ) is an increasing function
of xi.

F.3 An Example

Own-return elasticity. Let E (θ) = 0, v (xi) = κxi, and a0 > a∗i (I). Then, Equation (45) that
pins down the demand for information, simplifies to h0 (I) + xi =

√
ai

2ρκσ2 . By Equations (46) and
(56)

E (rpei z) = − z

ρσ2
1

h0 (I) + xi
+ z

ρσ2

[
σ2
θ

I2 p
2
ξ + σ2

b (1− pξ)2
]

+ o (z)

= − z

ρσ

√
2ρκ
ai

+ z

ρσ2

σ2
θ

I2

(
1− N
T σ2

b

)2

+ σ2
b

(
N
T σ2

b

)2
+ o (z) .
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The return function is increasing and concave in ai:
dE(rpi z)
dai

= z
σ

√
κ

2ρa3
i
> 0 and d2E(rpi z)

da2
i

=
−3

2
z
σ

√
κ

2ρa5
i
< 0. Consequently, the own-return elasticity elasticity in a given period is

ε
E(rpz),a
i ≡ ai

E (rpi z)
dE (rpi z)
dai

= 1
E (rpi z)

z

σ

√
κ

2ρai
=

√
κ/ (2ρσ2ai)

S
(
ai, {aj}j∈[0,1]

)
/ρ+ rf

. (57)

Since ∂S(ai,{aj}j∈[0,1])
∂ai

> 0 and ∂
√
κ/(2ρσ2ai)
∂ai

< 0, the own-return elasticity decreases in ai.

Cross-return elasticity. It is more tedious to derive the cross-return elasticity. I focus on the
case, where σ2 = σ2

b = σ2
θ = 1. In the following, I show that

γ
E(rpz),a
i,i′ ≡ ai′

E (rpi z)
dE (rpi z)
dai′

= ai′

E (rpi z)

(
∂E (rpi z)
∂T

∂Ti′
∂ai′

+ ∂E (rpi z)
∂N

∂Ni′
∂ai′

+ ∂E (rpi z)
∂I

∂Ii′
∂ai′

)
≡ 1

E (rpi z)
δ
E(rpz),a
i′ ,

where δE(rpz),a
i′ is decreasing in ai′ and δE(rpz),a

i′ ≥ 0 for ai′ ≤ ã. Then, δE(rpz),a
i′ < 0 for ai′ > ã trivially

follows by the continuity of the return function. Recall the definitions of the aggregate variables
I ≡

∫
i′ Ii′di′, N ≡

∫
i′ Ni′di′, and T ≡

∫
i′ Ti′di. For the given parametrization, ∂Ni′

∂ai′
=
√
κ/ (2ai′ρ)

and ∂Ti′
∂ai′

= 1/ρ,. Use I = T − h0 (I)N to show that

∂Ii′
∂ai′

=
∂Ti′
∂ai′
− h0 (I) ∂Ni′∂ai′

1 + 2IN = 1/ρ−
(
1 + I2)√κ/ (2ai′ρ)

1 + 2IN .

Since

∂E (rpi z)
∂pξ

= 2z
ρσ2

[
σ2
θ

I2 pξ + σ2
bpξ − σ2

b

]
= 2z
ρσ2

σ2
θ

I2

[
1− N
T σ2

b

+ I
2

σ2
θ

N
T

]

= 2z
ρσ2

σ2
θ

I2

[
1− h0 (I) N

T

]
= 2z
ρσ2

σ2
θ

I2
I
T

= 2z
ρIT

,

∂E (rpi z)
∂N

= ∂E (rpi z)
∂pξ

∂pξ
∂N

= − 2z
ρIT 2

and
∂E (rpi z)
∂T

= ∂E (rpi z)
∂pξ

∂pξ
∂T

= 2z
ρIT 2

N
T
.

Furthermore, ∂E(rpi z)
∂I = − 2z

ρI3

(
1− N

T σ2
b

)2
. Collecting all terms, the cross-return semi-elasticity in
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a subperiod can be written as

δ
E(rpz),a
i′ = ai′

2z
ρI

( 1
T 2
N
T
· ∂Ti

′

∂ai′
− 1
T 2 ·

∂Ni′
∂ai′

− 1
I2
∂Ii′
∂ai′

)
= ai′

2z
ρI

[(
1
T 2
N
T
− (1−N/T )2

I2 (1 + 2IN )

)
· ∂Ti

′

∂ai′
+
(

(1−N/T )2

I2 (1 + 2IN )
(
1 + I2

)
− 1
T 2

)
· ∂Ni

′

∂ai′

]

= 2zai′
ρT 2I3 (1 + 2IN )

[
ΩT ·

1
ρ

+ ΩN ·
√
κ/ (2ai′ρ)

]
, (58)

where

ΩT ≡ I2 (1 + 2IN ) N
T
− T 2 (1−N/T )2

= −I2
[
(1 + 2IN )

( I
T

+ I2N
T

)
+ I2N 2

]
< 0

and

ΩN ≡ T 2 (1−N/T )2
(
1 + I2

)
− I2 (1 + 2IN )

= I4
[
(1 + IN )2 +N 2

]
> 0.

This semi-elasticity declines with ai′

∂δ
E(rpz),a
i′

∂ai′
= 2z
ρT 2I3 (1 + 2IN )

[
ΩT ·

1
ρ

+ 1
2ΩN ·

√
κ/ (2ai′ρ)

]
< 0.

To show that
[
ΩT · 1

ρ
+ 1

2ΩN ·
√
κ/ (2ai′ρ)

]
< 0, first, rearrange

4
√
ai′/ (2κρ)

[
(1 + 2IN )

( I
T

+ I2N
T

)
+ I2N 2

]
> I2

[
(1 + IN )2 +N 2

]
.

Since, ai′ > a∗i (I) ∀i′,
√

ai′
2ρκ > (1 + I2) ∀i′. Therefore,

4
√
ai′

2ρκ

[
(1 + 2IN )

( I
T

+ I2N
T

)
+ I2N 2

]
> 4

(
1 + I2

) [
(1 + 2IN )

( I
T

+ I2N
T

)
+ I2N 2

]
= 4 (1 + 2IN ) I

T
+ 3I2N 2 + 3I2 + 8I3N + 3I4N 2 − 2I3N 2

+ I2
[
(1 + IN )2 +N 2

]
> I2

[
(1 + IN )2 +N 2

]
,

where the last inequality follows from the fact that 3I4N 2 > 2I3N 2 for I ≥ 1 and 3I2N 2 > 2I3N 2

for I < 1. Finally, define ã : ΩN ·
√
κ/ (2ãρ) = −ΩT · 1

ρ
. By the continuity of the cross-return

semi-elasticity, δE(rpz),a
i′ ≥ 0 for all ai′ ≤ ã and δE(rpz),a

i′ < 0 for all ai′ > ã.
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F.4 The Financial Market Equilibrium and Nonlinear Taxation

In this section, I shortly demonstrate that the financial market also microfounds scale depen-
dence when there is a nonlinear capital gains tax, Tk (·), instead of a linear wealth tax. Assume
that Tk (0) = T ′′k (0) = 0. For a nonlinear capital gains tax, it does not matter whether or not
information costs are deductible from the tax base.

The reasoning is the same as before (Appendix F.2). Again, the repeated financial market
interaction is static such that households optimize

max
x

Ei
(
max
ς

Ei (u [ai (1 + rpi z)− Tk (airpi z)− v (xi) z] |Fi)
)

in each period. There exists a log-linear rational expectations equilibrium equilibrium in which
the price and the optimal investment in the risky asset can be derived

log (P ) = pz =
(
p0 + pξξ − rf

)
z + o (z)

and
ςi = 1

ρσ
√
z

1
1− T ′k (0)λi + o (1) ,

using the same approximations as before. Similarly, the demand for information and the equilib-
rium information read as

v′ (xi) = ai
2ρ
(
1 + T ′k (0)

)
S ′ (xi; I)

and
I = 1

ρσ2
1

1− T ′k (0)

∫ a1

a∗i (I)

aixi (ai; I)
h0 (I) + xi (ai; I)dG (ai) ,

where a∗i (I) ≡ 2v′ (0) ρσ2h0 (I)2 / (1 + T ′k (0)) denotes the threshold wealth. The equilibrium is,
again, unique.

Taking stock of equilibrium choices, expected returns and the variance of returns are given by

E (rpei z) = E (rpi z)− r
fz = 1

ρ

1
1− T ′k (0)S

(
ai, {aj}j∈[0,1]

)

and
V (rpei z) = V (rpi z) = 1

ρ

1
1− T ′k (0)E (rpei z) ,

respectively. For T ′k (0) = 0, all expressions coincide with those in Appendix F.2.
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G A Life-Cycle Economy

In this section, I develop a standard two-period life-cycle framework, as introduced by Farhi and
Werning (2010), for studying nonlinear capital taxation when there is scale dependence. Using
this framework, I study the nonlinear tax incidence and optimal taxation in partial and in general
equilibrium. Moreover, I deal with the presence of other policies. Firstly, I consider a subsidy on
the costs of information acquisition (financial advisory). Secondly, I study a financial education
program.

G.1 Environment

In the following, I describe the economic environment. The objective is to provide an accessible
setting that reveals the main insights about the nonlinear taxation of capital gains. As in Mirrlees
(1971), the economy is populated by a continuum of households i ∈ [0, 1]. The only source
of heterogeneity is the productivity of labor. Agent i’s earnings ability wi ∈ R+ is distributed
according to a c.d.f. F and a p.d.f. f . Without loss of generality, one can order household indices
such that wages increase in i. Then, one may interpret i as the household’s position in the pre-tax
wage distribution.

Time is discrete, and there are two periods t = 0, 1. In the first period, households supply labor,
consume and save. In the second period, they consume their savings. Therefore, the first period
may be interpreted as an individual’s working life with duration H, whereas, in the second period,
she is retired. Individuals may take efforts to increase their returns on investment. The resulting
return function increases in the amount of savings. In Section E, I show how this relationship
emerges in a financial market setting with optimal portfolio choice and information acquisition.
This setting gives rise to inequality in the returns to investment. In the financial market, high-
income individuals decide to save more and acquire more information than low-income individuals.
This information advantage allows them to generate higher (risk-adjusted) returns than households
from lower parts of the income and wealth distribution.

Preferences and technology. Households have Greenwood, Hercowitz, and Huffman (1988)
preferences

u (li, ai, ei;wi) ≡ u0 (ci,0 − v0 (li)) + βu1 (ci,1 − v1 (xi)) , (59)

where β ∈ (0, 1] denotes the households’ discount factor, ut (·) is a concave and increasing period
utility, and vt (·) denotes the convex and increasing disutility from effort. A household of type i
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can transfer resources across periods by saving assets ai. In the first (working) period, households
supply labor li > 0 and earn after-tax income yi − Tl (yi), where Tl (·) denotes the government’s
nonlinear tax on labor income yi ≡ wili. To increase the returns on the investment of assets
ai, a household can take effort xi > 0. Assume that the costs of this effort accrue in the sec-
ond (retirement) period. Capital gains are, for the moment, given by the reduced form relation
r̃i
(
ei, {ej}j∈[0,1]

)
≡ ri > 0 where r (·) is increasing and concave in its first argument. A straightfor-

ward interpretation is that households acquire financial knowledge by employing financial advisers
to raise the rate of return on their investment. In partial equilibrium, an individual’s investment
return only depends on her own effort choice, whereas, in general equilibrium, an individual’s
investment returns may depend on choices by everyone else. In Section E, I microfound this rea-
soning. Capital gains, aR,i ≡ riai, are taxed nonlinearly according to Tk (·). In Section C, I assume
that households can deduct effort costs v1 (·) from the tax base. For completeness, in this section,
I consider the situation in which these costs are not deductible. One can show that Lemma 1 in
Section E ( dri

dai
> 0) holds in this economy (for Tk (0) = 0, T ′k (0) = 0, and T ′′k (0) = 0) irrespective

of this deductibility. Let all functions be twice continuously differentiable in their arguments.

Monotonicity. Define the local rate of tax progressivity as pt (y) ≡ −∂log[1−T ′t (y)]
∂log(y) = yT ′′t (y)

1−T ′t (y) for
t ∈ {l, k}. Observe that the usual monotonicity conditions will hold if labor and capital taxes are
not too progressive (pl (yl) < 1 and pk (aR,i) < 1). That is, effort choices, as well as savings, and,
hence, labor and capital income are increasing in the index i. Intuitively, the higher an individual’s
hourly wage, the more she will work, and the more resources she can transfer to the retirement
period. Moreover, an individual’s incentives to take efforts to increase her capital gains rise with
her position in the pre-tax wage distribution. Due to the one-to-one mapping between wages and
incomes, one may write returns as a function of savings, r̃i

(
ei, {ej}j∈[0,1]

)
= ri

(
ai, {aj}j∈[0,1]

)
. I

will make use of this formulation later on.

Household problem. In the working period, households consume their after-tax labor income
net of savings

ci,0 + ai ≤ wili − Tl (wili) . (60)

In the retirement period, their consumption is given by their final after-tax wealth

ci,1 ≤ ai (1 + ri)− Tk (riai) . (61)

Let Ui (Tl, Tk) denote household i’s indirect utility from optimally choosing savings, ai, and effort
levels, {li, xi}, to maximize Equation (59) subject to Equations (60) and (61). As standard, suppose
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the household problem is convex. With a slight abuse of notation, let li and ai denote household
i’s Marshallian (uncompensated) labor supply and savings functionals. The first-order conditions
of the household maximization problem define these functionals implicitly.

Government problem. For simplicity, suppose that households and the government face the
same discount factor. Then, the government’s budget constraint reads as

R (Tl, Tk) ≡
∫ 1

0
Tl (wili) di+ β

∫ 1

0
Tk (riai) di ≥ Ē. (62)

The government has a utilitarian objective function. Consequently, it chooses a tax system {Tl, Tk}
to maximize

G (Tl, Tk) ≡
∫ 1

0
Γi Ui (Tl, Tk) di (63)

subject to Equation (62), where Γi denotes household i’s Pareto weight with
∫ 1
0 Γidi = 1. Denote

λ as the marginal value of public funds and gi,t ≡ (1/λ)Γiu′t (ci,t − vt (·)) as the marginal social
welfare weight.

G.2 Incidence of Nonlinear Tax Reforms

In this section, I study the impact of a small reform of an arbitrary (potentially suboptimal) tax
scheme, e.g., the US tax code, on labor supply and savings by households, as well as on government
revenues and social welfare. Technically, I derive the impact of perturbing an arbitrary tax schedule
Tt, where t ∈ {l, k}, (e.g., the capital gains tax) on the optimal choices by an agent i and aggregate
variables in partial and general equilibrium. In other words, I reform the initial tax schedule by
T̂t and analyze the effects on optimal choices. As a by-product, I obtain the optimal tax scheme
when the aggregate marginal benefits are equal to the marginal costs.

Gateaux derivatives. To formalize this idea, define the Gateaux derivative of the functional
F : C (R+,R)→ R at Tt in the direction T̂t by

F̂
(
Tt, T̂t

)
≡ lim

µ→0

d

dµ
F
(
Tt + µT̂t

)
.

Accordingly, perturb the system of first-order conditions by µT̂t and denote l̂i
(
Tt, T̂t

)
and âi

(
Tt, T̂t

)
the Gateaux derivative of labor supply and savings in the direction T̂t. Similarly, perturb Equations
(62) and (63) to obtain the incidence on tax revenues, R̂

(
Tt, T̂t

)
, and social welfare, Ĝ

(
Tt, T̂t

)
.

Elasticities. Denote Ii,0 ≡ yiT
′
l (yi)−Tl (yi) and Ii,1 ≡ aR,iT

′
k (aR,i)−Tk (aR,i) as the virtual income

of individual i in period 0 and period 1, respectively. Define ζa,(1−T ′t)
i (ηa,Iti ) as the compensated
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elasticity of household i’s savings with respect to the retention rate of the tax in period t (the
income effect parameter of savings with respect to income in period t) along the nonlinear budget
line. The elasticities of labor supply are defined accordingly. Again, let ζ̃ and η̃ indicate the
elasticities at a fixed rate of return that, without scale dependence, coincide with the observed
elasticities. Given the GHH preferences, labor supply is independent of the capital gains tax
scheme (ζ l,(1−T ′k)

i = ηl,I2
i = 0). Moreover, let ζa,ri be the elasticity of savings with respect to the

rate of return.24

The novelty of this paper to let an individual’s rate of return vary with her savings and, in
general equilibrium, with the savings of others. As before, define the own-return elasticity as
εr,ai ≡

∂log[ri(·)]
∂log(ai) . It measures the impact of one’s wealth on her rate of return, thus, accounting

for scale dependence originating, for example, from the variable acquisition of financial knowledge
as in Section E. For all i′ ∈ [0, 1] the cross-return elasticity γr,ai,i′ ≡

∂log[ri(·)]
∂log(ai′ )

captures any kind
of complementarity between households’ wealth and its return. In the example of Section E, it
contains inter-household spillovers from financial knowledge and risk-taking. The cross-return
elasticity quantifies in reduced form the impact of the portfolio size of household i′ in the returns
of household i. In partial equilibrium, it is equal to zero for all i, i′.

Incidence on savings. In the following, I characterize the nonlinear incidence of capital gains tax
reforms on savings for a given labor tax. One may write, as an intermediate step, the percentage
change of savings in reaction to a capital gains tax reform as

âi
(
Tk, T̂k

)
ai

= − ζ̃a,(1−T ′k)
i︸ ︷︷ ︸
>0

T̂ ′k (aR,i)
1− T ′k (aR,i)

− η̃a,I2
i︸ ︷︷ ︸
≤0

T̂k (aR,i)
aR,i

(
1− T ′k (aR,i)

) + ζa,ri︸︷︷︸
>0

r̂i
(
Tk, T̂k

)
ri

. (64)

The first two terms describe the standard positive income and negative substitution effect. As the
last term reveals, an inequality multiplier effect from the adjustment in the rate of return, now,
augments the reaction of savings.

In the following, I show how to use estimates on the elasticity of returns. The partial equilibrium
return adjustment in response to the tax reform is proportional to the reaction of the portfolio size

r̂i
(
Tk, T̂k

)PE
ri

= εr,ai
âi
(
Tk, T̂k

)PE
ai

. (65)

24Similar to ζ̃a,(1−T ′k)
i and η̃a,Iki , the definition of ζa,ri involves a correction factor that accounts for behavioral

effects along the nonlinear budget line 1
1+pk(aR,i)ζ̃

a,(1−τk)
i

, where ζ̃a,(1−τk)
i is the compensated savings elasticity along

the linear budget line.

84



In general equilibrium, one needs to account for all kinds of spillovers

r̂i
(
Tk, T̂k

)GE
ri

= εr,ai
âi
(
Tk, T̂k

)GE
ai

+
∫
i′
γr,ai,i′

âi′
(
Tk, T̂k

)GE
ai′

di′. (66)

Thus, in both cases, one needs to upward adjust income and substitution effects of savings by an
inequality multiplier effect φi ≡ 1

1−ζa,ri εr,ai
> 1. As the adjustment in savings depends on the shape

of the tax reform, the government can directly redistribute the return inequality.
In general equilibrium, there are also cross-return effects. Therefore, combining Equations (64)

and (66), the incidence on savings is given by a Fredholm integral equation of the second kind that
can be solved using a standard resolvent formalism. The first lemma characterizes the incidence
of a reform of the capital gains tax in closed form.

Lemma 4 (Incidence on savings). Consider a small reform of an arbitrary capital gains tax
scheme in the direction T̂k. Define φi ≡ 1

1−ζa,ri εr,ai
. In partial equilibrium, the first-order change in

the optimal savings is given by

âi
(
Tk, T̂k

)PE
ai

= −φiζ̃
a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

− φiη̃a,I2
i

T̂k (aR,i)
aR,i

(
1− T ′k (aR,i)

) . (67)

Let
∫
i′
∫
i

∣∣∣φiζa,ri γr,ai,i′
∣∣∣2 didi′ < 1. Then, the general equilibrium adjustment is given by

âi
(
Tk, T̂k

)GE
ai

= −φiζ̃
a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

− φiη̃a,I2
i

T̂k (aR,i)
aR,i

(
1− T ′k (aR,i)

)
− φiζa,ri

∫
i′
φi′Ri,i′

[
ζ̃
a,(1−T ′k)
i′

T̂ ′k
(
aR,i′

)
1− T ′k

(
aR,i′

) + η̃a,I2
i′

T̂k
(
aR,i′

)
aR,i′

(
1− T ′k

(
aR,i′

))] di′, (68)

where for every i, i′ ∈ [0, 1] the resolvent is given by Ri,i′ ≡
∑∞
n=1K

(n)
i,i′ with K

(1)
i,i′ = γr,ai,i′ and, for

n ≥ 2, K(n)
i,i′ =

∫
i′′ K

(n−1)
i,i′′ φi′′ζ

a,r
i′′ γ

r,a
i′′,i′di

′′.

Proof. Appendix H.2.

Lemma 4 describes the reaction of savings to a small change in the capital gains tax in terms
of sufficient statistics (Chetty (2009)). All these sufficient statistics are, in principle, observable by
the econometrician and serve as primitives of the model. Nonetheless, these objects are endogenous
variables evaluated at a given tax scheme and equilibrium concept.

Incidence on savings in partial equilibrium. As usual, a change in an individual’s capital
gains tax induces an income effect and a substitution effect on savings. A rise in the marginal
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capital gains tax reduces the incentive to transfer resources across periods (substitution effect). At
the same time, the household feels poorer in the second period and, therefore, saves more (income
effect).

Relative to the case of exogenous capital gains (φi = 1), these two effects need to be adjusted
upwards by an inequality multiplier effect φi > 1 accounting for the endogeneity of returns, which is
the main difference of this paper from the existing literature. Tax reforms generate novel inequality
multiplier effects. Consider the partial equilibrium economy without income effects and suppose,
for instance, that individual i faces a reduction in the marginal capital gains tax. Due to the
substitution effect, she will save more. However, the scale dependence leads to an adjustment in
her investment returns.

In the financial market example, considered in Section 3, the altered amount of savings triggers
the following chain of reactions. Because the individual saves more, she invests a higher absolute
amount on the stock market. The larger portfolio raises the incentives to acquire costly information
about the fundamentals of the economy that drive the stocks’ payoffs. As the individual makes
more informed decisions on the financial market, her returns rise. Since her returns on investment
become larger relative to before, the payoffs from investment and, therefore, savings increase. The
higher amount of savings feeds back into the optimal knowledge acquisition and, in turn, boosts
returns. This loop continues infinitely.

The term φi captures this infinite sequence of adjustments. To see this, rewrite φi = 1
1−ζa,ri εr,ai

=∑∞
n=0 (ζa,ri εr,ai )n. Therefore, one can interpret the endogeneity of portfolio returns as an amplifi-

cation force. It multiplies the standard income and substitution effect. As a result, I establish a
version of Proposition 1 (b): savings, just as capital income, react more elastic to reforms of the
capital gains tax

φiζ̃
a,(1−T ′k)
i > ζ̃

a,(1−T ′k)
i and

∣∣∣φiη̃a,I2
i

∣∣∣ ≥ ∣∣∣η̃a,I2
i

∣∣∣ .
Incidence on savings in general equilibrium. In general equilibrium, a household’s rate of
return is a function of everyone’s decisions. Therefore, in addition to the described inequality
multiplier effects, cross-return effects come into play, which I characterize in closed form in Lemma
4. The additional term aggregates the partial-equilibrium reactions by households across the skill
distribution. They are weighted by the resolvent of the integral equation and account for an infinite
sequence of return adjustments due to the general equilibrium spillovers. In the financial market
example, they come from the endogeneity of stock prices, which aggregate individuals’ information
acquisition and risk-taking. For instance, a decrease in the tax rate of the rich makes them
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acquire relatively more financial knowledge and alter their portfolio composition. As a result, the
equilibrium price adjusts, which also affects households from the bottom of the wealth distribution,
given that they participate in the stock market. However, their altered behavior feeds, in turn,
back into the equilibrium price so that the rich modify their choices again.

The resolvent formalism captures this infinite sequence of reactions. The resolvent is the sum
of iterated kernels. The first kernel, K(1)

i,i′ , describes the impact of savings by household i′ on the
returns of i. The second kernel K(2)

i,i′ =
∫
i′′ γ

r,a
i,i′′φi′′ζ

a,r
i′′ γ

r,a
i′′,i′di

′ accounts for the effect of savings by i′

on the returns and, therefore, savings of households i′′ which, in turn, affect the decision making
of household i. For n = 3 the formula describes the impact of household i′ on households i′′ who
affect i′′′. The latter, then, influence the returns generated by household i. Observe that this
reasoning is in its spirit similar to Sachs et al. (2020) who study general equilibrium reactions of
wages and labor supply in response to a reform of the labor income tax schedule.

Whether or not the presence of general equilibrium adjustments amplifies savings responses
depends on the sign and magnitude of γr,ai,i′ along the wealth distribution. Suppose, for instance,
that γr,ai,i′ > 0 for all i′ ∈ [0, 1]. That is, there is a positive complementarity between a household’s
return on investment and others’ investment. Then, general equilibrium forces further amplify
income and substitution effects.

Conversely, suppose households live in a small open economy. Then, they have access to
an international financial market, where they interact with other, larger investors or institutions
whose decisions are affected by other margins and policies. Thus, the marginal impact of the
former households on prices becomes small such that γr,ai,i′ → 0.

Incidence on return inequality. One may decompose the incidence on returns in closed form

r̂i
(
Tk, T̂k

)GE
ri

= −φiεr,ai ζ̃
a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

− φiεr,ai η̃a,I2
i

T̂k (aR,i)
aR,i

(
1− T ′k (aR,i)

) + φiCEi, (69)

where CEi ≡ −
∫
i′ φi′Ri,i′

[
ζ̃
a,(1−T ′k)
i′

T̂ ′k(aR,i′)
1−T ′

k(aR,i′)
+ η̃a,I2

i′
T̂k(aR,i′)

aR,i′(1−T ′
k(aR,i′))

]
di′ summarizes the cross effects.

Therefore, the return inequality directly depends on the underlying tax code and how the policy-
maker wishes to reform it.

One may measure the inequality in returns by their variance, V (ri). The effect of a tax reform
on return inequality is, then, given by V̂ (ri) = Ê (r2

i )− Ê (ri)2. For simplicity, suppose that there
are no income and general equilibrium effects and that the other elasticities are constant along the
wealth distribution. Let the tax rate be linear. Then, one can write the impact of a tax reform on
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the return inequality as

dV (ri) = −2V (ri) (φ− 1) ζ̃
a,(1−T ′k)
ζa,r

dτk
1− τk

.

Put differently, the elasticity of return inequality with respect to the capital gains tax

ζV(r),(1−τk) ≡ − ∂log [V (ri)]
∂log (1− τk)

= −2εr,aζa,(1−T ′k)
1− εr,aζa,r

is negative for εr,a > 0. Therefore, a rise in the linear tax rate (more redistribution) compresses
the distribution of returns and, hence, reduces the inequality in returns. One can also show that
mitigating the return inequality goes along with the cost of lowering mean returns. This is, again,
Proposition 1 (d).

Incidence on utilities. Having derived the incidence on savings and returns, we can now study
the effects on utilities. In partial equilibrium, this simply reads as

Ûi
(
Tk, T̂k

)PE
= −λgi,1 (β/Γi) T̂k (aR,i) (70)

which is a straightforward application of the envelope theorem. In general equilibrium, one needs
to keep track of the spillovers, or cross-effects, from others’ decisions. That is,

Ûi
(
Tk, T̂k

)GE
= −λgi,1 (β/Γi) T̂k (aR,i) + λgi,1 (β/Γi) aR,i

(
1− T ′k (aR,i)

)
(1 + ζa,ri )CEi. (71)

For any equilibrium concept, a rise in the tax liability mechanically reduces the utility of a
household. By the envelope theorem, there is no first-order effect due to a change in savings and
effort choices. In general equilibrium, due to the endogeneity of portfolio returns, one needs to
add the impact of others’ decisions on individual investment returns. Not surprisingly, an increase
in the rate of return raises the utility of a household. Whether or not returns rise, depends, as
described, on the distribution of cross-return elasticities.

Incidence on government revenues and social welfare. Now, one can bring together all
parts of the incidence analysis to study the change in social welfare and government revenues in
response to the reform of the capital gains tax.

Lemma 5 (Incidence on revenues and welfare). Let
∫
i′
∫
i

∣∣∣φiζa,ri γr,ai,i′
∣∣∣2 didi′ < 1. Denote EQ ∈

{PE,GE} as the equilibrium concept. Then, the first-order change in social welfare in response
to a small reform in Tk reads as

Ĝ
(
Tk, T̂k

)EQ
=
∫
i
Γi Ûi

(
Tk, T̂k

)EQ
di. (72)
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The first-order change in government revenues is given by

R̂
(
Tk, T̂k

)EQ
= β

∫
i
T̂k (aR,i) di+ β

∫
i
T ′k (aR,i) aR,i

 r̂i
(
Tk, T̂k

)EQ
ri

+
âi
(
Tk, T̂k

)EQ
ai

 di. (73)

Proof. Appendix H.2.

I start with the impact on revenues. Observe that there are three types of effects: mechanical,
behavioral, and return effects. The mechanical and behavioral effects are standard. The first one
measures the direct impact of reforming the tax scheme on revenue collection, holding the tax
base fixed. The second one regards the change in household behavior in response to a tax reform.
In general equilibrium, this adjustment of behavior carries the spillover effects mentioned above.
The return on investment adjusts due to changes in an individual’s investment size and, in general
equilibrium, others’ amount of investment.

The effects on welfare are similar. By the envelope theorem, there are no first-order behavioral
effects. However, households suffer from a rise in the overall tax liability (mechanical effect).
Furthermore, the general equilibrium adjustment of returns imposes uninternalized externalities
on individuals. In other words, since an individual’s rate of return depends on everyone’s choices,
one needs to add this additional impact on individual utilities from the behavior of others. In the
aggregate, these effects add to the standard mechanical effect on social welfare.

G.3 Optimal Nonlinear Taxation

In this section, I describe the optimal nonlinear capital gains tax for a given labor tax. This
procedure is similar to Section C, where I explicitly address the interdependence of labor and
capital taxes.

Having studied the nonlinear incidence of arbitrary capital gains tax reforms on government
revenues and social welfare, I obtain, as a special case, the optimal capital gains tax by equating
the sum of first-order effects equal to zero (see, for example, Saez (2001)). At the optimal tax
scheme, there are no first-order effects from reforming the tax scheme in the direction of T̂k:

1
λ
Ĝ
(
Tk, T̂k

)EQ
+ R̂

(
Tk, T̂k

)EQ
= 0. (74)

In other words, one cannot find a revenue-neutral tax reform that raises social welfare. Denote
h (aR,i) as the pdf and H (aR,i) as the cdf of capital income aR,i.
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Optimal taxation in partial equilibrium. As a benchmark, I consider the optimal nonlin-
ear tax scheme in partial equilibrium. That is, let γr,ai,i′ = 0 for all i, i′ ∈ [0, 1]. Proposition 4
characterizes the optimal nonlinear capital gains tax.

Proposition 4 (Optimal nonlinear capital gains tax in partial equilibrium). The optimal nonlinear
capital gains tax on capital gains in partial equilibrium is almost everywhere given by

T ′k (aR,i)PE

1− T ′k (aR,i)PE
= 1

ζ
aR,(1−T ′

k)
i

1−H (aR,i)
aR,ih (aR,i)

∫ ∞
aR,i

(
1− gi′′,1

)
exp

− ∫ aR,i′′′

aR,i

ηaR,Tki′

ζ
aR,(1−T ′

k)
i′

daR,i′

aR,i′

 dH
(
aR,i′′

)
1−H (aR,i)

,

(75)

where ζaR,(1−T ′k)
i ≡ Φiζ̃

a,(1−T ′k)
i , ηaR,Tki ≡ Φiη̃a,Tki , Φi ≡ (1 + εr,ai )φi, and φi ≡ 1

1−ζa,ri εr,ai
.

Proof. Appendix H.3.

The optimal marginal tax rate on capital gains in partial equilibrium is a version of the Diamond
(1998) ABC-formula with income effects (as in Saez (2001)). It expresses the optimal tax wedge
on capital gains in terms of behavioral and income effects, the hazard ration of the capital gains
distribution, and the marginal social welfare weights above aR,i.

Therefore, I obtain Proposition 1 (a). Whether or not rates of return are endogenous, the
optimal capital gains tax is described by the observed income and behavioral effects and the
observed capital income distribution. Nonetheless, the formation of rates of return directly affects
these sufficient statistics.

Observe that Φi upwards adjusts the elasticities. Holding the elasticities ζ̃a,(1−T ′k)
i and η̃a,Tki

fixed, under scale dependence (εr,ai > 0 and Φi > 1), the compensated elasticity of capital gains is
larger

ζ
aR,(1−T ′k)
i > ζ̃

aR,(1−T ′k)
i = ζ̃

a,(1−T ′k)
i

than under type dependence only. The income effect does not alter the optimal capital tax since

ζ
aR,(1−T ′k)
i /ηaR,Tki = ζ̃

a,(1−T ′k)
i /η̃a,Tki .

Accordingly, the adjustment of elasticities provides a force for a lower capital gains tax under
scale dependence. Simultaneously, scale dependence may increase the observed capital income
inequality measured by the hazard ratio 1−H(aR,i)

aR,ih(aR,i) , which calls for higher taxes. To establish Part
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(c) of Proposition 1, I express Equation (75) in terms of primitives:

T ′k (aR (wi))PE

1− T ′k (aR (wi))PE
= ζ̃

a,(1−T ′l )
i

ζ̃
a,(1−T ′

k)
i

1− F (wi)
wif (wi)

∫ w1

wi

(
1− gwi′′ ,1

)
exp

− ∫ wi′′

wi

η̃a,Tkwi′

ζ̃
a,(1−T ′

k)
wi′

dwi′

wi′

 dF (wi′′)
1− F (wi)

.

(76)

Therefore, when investment rates are endogenously determined (scale dependence), the capital
gains tax is ceteris paribus the same as the one with exogenous, type-dependent returns on in-
vestment holding all the primitives of the economy fixed. The upward adjustment in the savings
elasticity just offsets the rise in observed inequality.

To further illustrate the implications for redistribution, suppose the capital gains tax is ap-
proximately linear “at the top”, e.g., for the top 1% in the wealth distribution. Assume that the
elasticities converge to the values ζaR,(1−T ′k) = Φζ̃a,(1−T ′k) and that there are no income effects η̃ = 0.
Suppose that, under type dependence, capital gains in this top bracket are Pareto distributed with
parameter ãk > 1. Under scale dependence, the Pareto parameter is given by ak = ãk/Φ. Then,
the linear top tax rate reads as

τ topk = 1− ḡk
1− ḡk + akζ

aR,(1−T ′
k)

where ḡk is the limiting value of the social welfare weight. Therefore, I also obtain the neutrality
result at the top: This rise in capital income inequality that scale dependence triggers and the
adjustment in the elasticity cancel out (akζaR,(1−T ′k) = ζ̃a,(1−T ′k)ãk). This neutrality result provides
a potential justification for why capital gains taxes (e.g., in the US) have not increased despite the
drastic rise in capital income inequality.

Whereas the Pareto parameter of the capital income distribution is (relatively) easy to observe,
the degree to which portfolio returns are scale-dependent and, accordingly, the size of the correct
adjustment of the capital gains elasticity is not. Therefore, I demonstrate the effects of observing
the elasticity incorrectly given that scale dependence shapes the capital income distribution. I
consider the revenue-maximizing capital tax at the top in the following simple calibration. Note
that one can reinterpret this tax as the upper bound on the set of Pareto-efficient tax rates (see
Werning (2007)). Following Saez and Stantcheva (2018), let ak = 1.4. Set the elasticity of savings
with respect to the rate of return equal to 0.5.

In the Left Panel of Figure 10, I compare the adjusted and unadjusted capital gains elasticities
for different combinations of

(
εr,a, ζ̃a,(1−T ′k)

)
. The red line indicates the capital gains elasticity as
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Figure 10: Left Panel: Uncorrected (red) and Corrected (blue) Capital Income Elasticities; Right
Panel: Rawlsian Tax Rate at the Top with Uncorrected (red) and Corrected (blue)
Elasticities (ak = 1.4, ζa,r = 0.5, ηa,I2 = 0)

a function of ζ̃a,(1−T ′k) without incorporating scale dependence, εr,a = 0 (45 degree line). The blue
lines depict the correctly adjusted capital gains elasticities under scale dependence as a function
of ζ̃a,(1−T ′k) for different values of εr,a. Two things are noteworthy. Firstly, the larger the scale
dependence, the greater is the difference between the blue and the red line. Similarly, the difference
between the adjusted and the unadjusted elasticity is increasing in the value of ζ̃a,(1−T ′k). Therefore,
the higher is the underlying savings elasticity at a given return or the higher the amount of scale
dependence, the more the unadjusted elasticity differs from the adjusted one.

Accordingly, the downward adjustment in the optimal capital gains tax at the top is rising
in the amount of size dependence and the value of the underlying savings elasticity (Right Panel
of Figure 10). The adjustment is sizable. Therefore, there can be a considerable discrepancy
between the optimal tax rate and capital tax set by a policymaker, who ignores the presence
of scale dependence and mistakenly assumes that only type dependence generates the observed
capital income inequality.

Optimal taxation in general equilibrium. In the following, I characterize the optimal revenue-
maximizing nonlinear taxation of capital gains in general equilibrium. For simplicity, abstract
from income effects. Moreover, let cross-return elasticities be multiplicatively separable, as in the
example of the financial market (Section E.2.2). That is, γr,ai,i′ = 1

ri
δr,ai′ , where δ

r,a
i′ decreases in i′

and δr,ai′ > 0 (δr,ai′ < 0) for small ai′ (large ai′). Then, Proposition 5 describes the optimal capital
tax.
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Proposition 5 (Optimal nonlinear capital gains tax in general equilibrium). The optimal revenue-
maximizing nonlinear capital gains tax on capital gains in general equilibrium is almost everywhere
given by

T ′k (aR,i)GE

1− T ′k (aR,i)GE
= 1

ζ
aR,(1−T ′

k)
i

1−H (aR,i)
aR,ih (aR,i)

− δr,ai
ri (1 + εr,ai ) (1 + Ψ)

×
∫
R+

1 +
(
1 + ζr,ai′

)
ζa,ri′

ζ
aR,(1−T ′

k)
i′

1−H
(
aR,i′

)
aR,i′h

(
aR,i′

) ai′
[
1− T ′k

(
aR,i′

)GE]
ai
[
1− T ′k (aR,i)GE

] dH (
aR,i′

)
, (77)

where ζaR,(1−T ′k)
i ≡ Φiζ̃

a,(1−T ′k)
i , Φi ≡ (1 + εr,ai )φi, φi ≡ 1

1−ζa,ri εr,ai
, and Ψ ≡

∫
R+

1
1+εr,a

i′

1
ri′
δr,ai′ dH

(
aR,i′

)
.

Proof. Appendix H.3.

The optimal tax in general equilibrium adds an additional term on the right-hand side to the partial
equilibrium tax (Equation (75)). Observe that the second factor of this extra term is positive (for
0 < T ′k (aR,i′) < 1 for all aR,i′). Therefore, the sign of −δr,ai

ri(1+εr,ai )(1+Ψ)
determines how to adjust the

tax rate in general equilibrium. As in Section C, suppose that cross-return elasticities cancel out∫
i γ

r,a
i,i di = 0 and let εr,ai be constant such that Ψ = 0. Then, the sign of the adjustment depends

on the one of −δr,ai .
As a benchmark, consider a politician who sets a tax scheme, T ′k (aR,i), wrongly assuming that

there are no general equilibrium effects for a given initial tax code.25 Then, one can write the
general equilibrium tax rate as

T ′k (aR,i)GE

1− T ′k (aR,i)GE
=

T
′
k (aR,i) |TGE

k

1− T ′k (aR,i) |TGE
k

− δr,ai
ri (1 + εr,ai ) (1 + Ψ)

×
∫
R+

[
1 +

(
1 + εr,ai′

)
ζa,ri′

] T
′
k (aR,i) |TGE

k

1− T ′k (aR,i) |TGE
k

ai′
[
1− T ′k

(
aR,i′

)GE]
ai
[
1− T ′k (aR,i)GE

] dH (
aR,i′

)

Therefore, cross-effects provide a force for higher capital taxes at the top (δr,ai < 0 for large ai)
and lower taxes at the bottom making the tax code ceteris paribus more progressive than in the
self-confirming policy equilibrium (Proposition 1 (e)).

25This notion includes the self-confirming policy equilibrium, proposed by Rothschild and Scheuer (2013, 2016),
where a planner implements a tax scheme that generates a capital income distribution for which this tax schedule
is optimal, T ′k (aR,i) |Tk .
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G.4 Other Policies

In the following, I study the interaction with other policies. Consider the partial equilibrium. I
distinguish two different policies. In the first case, the government reduces κ for everyone, and, in
the second one, it provides a minimum level of financial information. In both cases, the government
optimally chooses P to maximize G (Tl, Tk) subject to R (Tl, Tk) ≥ Ē + βC (P) where βC (P) is
an increasing and convex cost function. The optimal P is implicitly defined by

d

dP

[ 1
λ
G (Tl, Tk) +R (Tl, Tk)

]
= βC ′ (P) . (78)

Using the approximations described in Section E, the first-order condition simplifies to

d

dP

∫
i
(Γi/λ)

[
u0 (·) + βHu1 [E (·)] + 1

2βHu
′′
1 (ai)V (airpi z)

]
di+ o (z)︸ ︷︷ ︸

≡WEP

+ d

dP

∫
i
βHTk [aiE (rpi z)] di+ o (z)︸ ︷︷ ︸

≡REP

= βC ′ (P) . (79)

The optimal policy, therefore, trades off first-order revenue and welfare effects. In the following, I
describe the first-order condition for each policy in more detail.

Cost subsidy. In the first case, the government lowers the marginal costs of all investors (P =
∆κ < 0). This policy could take the form of a subsidy on financial advisory costs. By the envelope
theorem, the first-order welfare impact reduces to the positive effect of cost savings

WEκ = 1
κ
βH

∫
i
gi,1 (E (·))xizdi, (80)

whereas the revenue differential includes behavioral effects

REκ = 1
κ
βH

∫
i

T ′k [E (airpi z)]
1− T ′k [E (airpi z)]

(1 + εr,ai ) ηa,I2
i v (xi) zdi

− 1
κ
βH

∫
i
T ′k [E (airpi z)] aiE (rpi z) (1 + ζa,ri ) ζE(rpz),κ

i di (81)

with an income effect ηa,I2
i ≤ 0 and the elasticity of the return rate with respect to marginal

information costs ζE(rpz),κ
i ≡ ∂log[E(rpi z)]

∂log(κ) < 0.
On the one hand, the reduction in κ induces a positive impact on capital incomes. Since the

acquisition of information becomes relatively cheaper, households acquire more financial knowl-
edge, which allows them to generate higher rates of return. As returns rise, households also save
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more.
On the other hand, the first term characterizes a negative income effect. Households feel

wealthier due to the decline in information costs. As a result, they save less such that capital
incomes diminish.

Financial education. In the second case, the government provides a minimum level of financial
knowledge as a public good (P = x). This policy refers to a situation where the government
offers a compulsory finance course to all high school students for free. Formally, the government
ensures that xi ≥ x for all i ∈ [0, 1]. Then, the costs of information acquisition read as v (xi) =
κz ·max {0, xi − x}. Observe that there is a threshold household, i, with wealth level, ai, below
which households only rely on the education program. They do not acquire any private information
beyond x and obtain the same rate of return E

(
rpi z

)
. Households above i are not affected in their

decision making.
The first-order welfare change features two effects

WEx = 1
x
βHζ

E(rpz),x
i

∫ i

0
E [gi,1 (·)] dlog [E (u′1 (·))]

dlog
[
E
(
rpi z
)] di+ 1

x
βHv (x) z

∫ 1

i
gi,1 [E (·)] di+ o (z) (82)

with ζE(rpz),x
i ≡

∂log

[
E
(
rpi z

)]
∂log(x) > 0. The first one describes the positive impact on utility for house-

holds below i who experience a rise in their rate of return as the government increases x (dx > 0).
The second effect is a mechanical cost-saving effect on households above i.

The revenue effect

REx = 1
x
βH

∫ i

0
T ′k [E (airpi z)] aiE (rpi z) (1 + ζa,ri ) ζE(rpz),x

i di

+ 1
x
βH

∫
i

T ′k [E (airpi z)]
1− T ′k [E (airpi z)]

aiE (rpi z) (1 + εr,ai ) ηa,I2
i v (x) zdi+ o (z) (83)

characterizes income effects for all households and the effects of x on the capital incomes of house-
holds below i. A rise in the minimum level of financial knowledge allows these households to obtain
higher rates of return. Moreover, they save more as returns increase.

Which of the two policies the government should undertake, depends on the magnitude of
the revenue and welfare effects. In particular, one needs to know about the size of the policy
elasticities ζE(rpz),κ

i and ζ
E(rpz),x
i . These describe the responsiveness of individual returns with

respect to a reduction in information costs and a rise in the minimum education provision by the
government, respectively.
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The impact of the policy also interacts with the tax code. Two identical societies that only vary
in their redistributive preference may, therefore, deem very distinct policies desirable. Similarly,
this is the case when they solely differ in the way how returns are formed (i.e., the importance of
scale dependence relative to type dependence). Moreover, the marginal costs of policy implemen-
tation, C ′ (P), depend on the respective policy P and other parameters, such as the efficiency of
a country’s educational system.

H Proofs of Section G

H.1 Preliminaries

Household choices. For the specified GHH preferences, the households’ first-order conditions
are given by

[li] : 0 = wi
(
1− T ′l (wili)

)
− v′0 (li)

[ai] : 0 =
[
1 + ri

(
1− T ′k (riai)

)]
βu′1 (·)− u′0 (·) (84)

[ei] : 0 = ai
(
1− T ′k (riai)

)
r′i (ei)− v′1 (ei) ,

where the optimal labor supply decisions can be decoupled from the savings and information effort
choices. Let the second-order conditions hold. That is,

∂2u (li, ai, ei;wi)
∂l2i

= −w2
i T
′′
l (wili)− v′′0 (li) < 0

and the Hessian H =

 ∂2u(li,ai,ei;wi)
∂a2
i

∂2u(li,ai,ei;wi)
∂ai∂ei

∂2u(li,ai,ei;wi)
∂ai∂ei

∂2u(li,ai,ei;wi)
∂e2
i

 is negative definite.

Monotonicity. Now, I describe the relationship between optimal choices and pre-tax wages. A
household’s labor supply increases with the wage rate

dli
dwi

= −∂
2u (li, ai, ei;wi) / (∂li∂wi)
∂2u (li, ai, ei;wi) /∂l2i

= 1− T ′l (wili)− wiliT ′′l (wili)
w2
i T
′′
l (wili) + v′′0 (li)

= li
wi

1− pl (yi)
v′′0 (li)
v′0(li) li + pl (yi)

> 0,

where I use the definition of the local rate of tax progressivity pt (y) ≡ yT ′′t (y)
1−T ′t (y) for t ∈ {l, k} and

the assumption that pl (yi) < 1. Since dyi
dwi

= wi
dli
dwi

+ li, labor earnings also rise with the wage rate.
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Savings and effort choices depend on wi according to
 dai/dwi

dei/dwi

 = −H−1

 −u′′0 (·) li (1− T ′l (wili))

0


= 1
det (H)

 ∂2u(li,ai,ei;wi)
∂e2
i

−∂2u(li,ai,ei;wi)
∂ai∂ei

−∂2u(li,ai,ei;wi)
∂ai∂ei

∂2u(li,ai,ei;wi)
∂a2
i


 u′′0 (·) li (1− T ′l (wili))

0



= u′′0 (·) li (1− T ′l (wili))
det (H)

 ∂2u(li,ai,ei;wi)
∂e2
i

−∂2u(li,ai,ei;wi)
∂ai∂ei

 .
Observe that by the second-order conditions det (H) > 0 and ∂2u(li,ai,ei;wi)

∂e2
i

< 0. Moreover, for
pk (riai) < 1,

∂2u (li, ai, ei;wi)
∂ai∂ei

= β
(
1− T ′k (aR,i)

)
(1− pk (aR,i)) r′i (ei) > 0.

Altogether, due to the concavity of u0 (·), dai
dwi

> 0 and dei
dwi

> 0. Consequently, capital income rises
in the pre-tax wage daR,i

dwi
= air

′ (ei) dei
dwi

+ ri
dai
dwi

> 0.

H.2 Incidence of Nonlinear Tax Reforms

Incidence on savings in partial equilibrium. To derive the incidence on savings in partial
equilibrium, plug Equation (65) into (64)

âi
(
Tk, T̂k

)PE
ai

= −ζ̃a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

− η̃a,I2
i

T̂k (aR,i)
aR,i

(
1− T ′k (aR,i)

) + ζa,ri εr,ai
âi
(
Tk, T̂k

)PE
ai

Rearrange this expression to obtain Equation (67) in Lemma 4.

Incidence on savings in general equilibrium. To derive Equation (68) in Lemma 4, insert
Equation (66) into (64) and rearrange

âi
(
Tk, T̂k

)GE
ai

= −φiζ̃
a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

− φiη̃a,I2
i

T̂k (aR,i)
aR,i

(
1− T ′k (aR,i)

) + φiζ
a,r
i

∫
i′
γr,ai,i′

âi′
(
Tk, T̂k

)GE
ai′

di′

This expression is a Fredholm integral equation of the second kind. Suppose that
∫
i′
∫
i

∣∣∣φiζa,ri γr,ai,i′
∣∣∣2 didi′ <

1. Then, by Theorem 2.3.1 in Zemyan (2012), the unique solution to this expression is given by
Equation (68).
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Incidence on return inequality. In partial equilibrium, the effect on returns can be written as

r̂i
(
Tk, T̂k

)PE
ri

= −φiεr,ai ζ̃
a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

− φiεr,ai η̃a,I2
i

T̂k (aR,i)
aR,i

(
1− T ′k (aR,i)

) ,
where I use Equations (65) and (67). Using the fact that

∫
i′
γr,ai,i′

âi′
(
Tk, T̂k

)GE
ai′

di′ = −
∫
i′
φi′Ri,i′

[
ζ̃
a,(1−T ′k)
i′

T̂ ′k
(
aR,i′

)
1− T ′k

(
aR,i′

) + η̃a,I2
i′

T̂k
(
aR,i′

)
aR,i′

(
1− T ′k

(
aR,i′

))] di′ ≡ CEi,
the general equilibrium incidence on returns reads as

r̂i
(
Tk, T̂k

)GE
ri

= −φiεr,ai ζ̃
a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

− φiεr,ai η̃a,I2
i

T̂k (aR,i)
aR,i

(
1− T ′k (aR,i)

) + φiCEi

Incidence on utilities. The partial equilibrium incidence on household utilities is standard. In
general equilibrium, one needs to account for cross-return effects that come from the dependence
of each household’s return rate on the savings of all other households

Ûi
(
Tk, T̂k

)GE
=− λgi,1 (β/Γi) T̂k (aR,i) + λgi,1 (β/Γi) aR,i

(
1− T ′k (aR,i)

) ∫
i′
γr,ai,i′

âi′
(
Tk, T̂k

)GE
ai′

di′

+ λgi,1 (β/Γi) aR,i
(
1− T ′k (aR,i)

)
ζa,ri

∫
i′
γr,ai,i′

âi′
(
Tk, T̂k

)GE
ai′

di′

=− λgi,1 (β/Γi) T̂k (aR,i) + λgi,1 (β/Γi) aR,i
(
1− T ′k (aR,i)

)
(1 + ζa,ri )CEi

Incidence on revenues and welfare. Equation (72) is standard. Perturb Equation (62)

R̂
(
Tk, T̂k

)EQ
= β

∫
i
T̂k (aR,i) di+ β

∫
i
T ′k (aR,i)

[
air̂i

(
Tk, T̂k

)EQ
+ riâi

(
Tk, T̂k

)EQ]
di

and rearrange to get (73).
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H.3 Optimal Nonlinear Taxation

Optimal taxation in partial equilibrium. Setting the sum of first-order welfare and revenue
effects equal to zero, the optimal nonlinear capital gains tax is characterized by

∫
aR,i

[
1− gi,1 − (1 + εr,ai )φiη̃a,I2

i

T ′k (aR,i)
1− T ′k (aR,i)

]
T̂k (aR,i) dH (aR,i)

=
∫
aR,i

aR,i (1 + εr,ai )φiζ̃
a,(1−T ′k)
i

T ′k (aR,i)
1− T ′k (aR,i)

T̂ ′k (aR,i) dH (aR,i) .

Integrate the first term by parts and apply the fundamental theorem of calculus of variations to
get

T ′k (aR,i)
1− T ′k (aR,i)

= 1

(1 + εr,ai )φiζ̃
a,(1−T ′

k)
i

1−H (aR,i)
aR,ih (aR,i)

∫ ∞
aR,i

[
1− gi′,1 −

(
1 + εr,ai′

)
φi′ η̃

a,I2
i′

T ′k
(
aR,i′

)
1− T ′k

(
aR,i′

)] dH
(
aR,i′

)
1−H (aR,i)

.

This expression is a first-order linear differential equation. Use standard techniques (see Saez
(2001)) to obtain Equation (75).

To express (75) in terms of the pre-tax wage distribution, change the variables in the integration

T ′k (aR (wi))
1− T ′k (aR (wi))

= 1

ζ
aR,(1−T ′

k)
i

1− F (wi)
aR,ih (aR,i)

∫ w1

wi

(
1− gwi′′ ,1

)
exp

− ∫ wi′′

wi

η̃a,Tkwi′

ζ̃
a,(1−T ′

k)
wi′

dwi′

wi′

 dF (wi′′)
1− F (wi)

.

(85)

Since F (wi) = H (aR (wi)),

f (wi)wi = aR (wi)h (aR (wi))
daR (wi)
dwi

wi
aR (wi)

. (86)

The elasticity of capital income with respect to the wage rate is given by

daR (wi)
dwi

wi
aR (wi)

= (1 + εr,ai ) da

dwi

wi
a

= (1 + εr,ai ) da

d
(
1− T ′l (wili)

) 1− T ′l (wili)
a

= (1 + εr,ai ) ζ̃a,(1−T ′l )
i

+ (1 + εr,ai ) ζa,ri εr,ai
da (wi)

d
(
1− T ′l (wili)

) 1− T ′l (wili)
a (wi)

= (1 + εr,ai )φiζ̃
a,(1−T ′l )
i (87)

where the second and fourth equality follow from the fact that

da

d
(
1− T ′l (wili)

) 1− T ′l (wili)
a

= u′′0 (·)wili (1− T ′l (wili))
aidet (H)

∂2u (li, ai, ei;wi)
∂e2

i

= da

dwi

wi
a
.

Plug Equations (86) and (87) into (85), to get Equation (76).

Optimal taxation in general equilibrium. First, note that, in the absence of income effects
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and for γr,ai,i′ = 1
ri
δr,ai′ , the incidence on savings can be written as

âi
(
Tk, T̂k

)
ai

= −φiζ̃
a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

+ ζa,ri
1
ri

∫
i′
δr,ai′

âi′
(
Tk, T̂k

)
ai′

di′

= −φiζ̃
a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

− ζa,ri
1
ri

1
1−

∫
i ζ
a,r
i

1
ri
δr,ai di

∫
i
δr,ai φiζ̃

a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

di,

noting that

∫
i′
δr,ai′

âi′
(
Tk, T̂k

)
ai′

di′ = −
∫
i
δr,ai φiζ̃

a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

di+
∫
i
δr,ai ζa,ri

1
ri
di

∫
i′
δr,ai′

âi′
(
Tk, T̂k

)
ai′

di′

= − 1
1−

∫
i ζ
a,r
i

1
ri
δr,ai di

∫
i
δr,ai φiζ̃

a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

di.

By the latter expression, the response of capital income reads as

âi
(
Tk, T̂k

)
ai

+
r̂i
(
Tk, T̂k

)
ri

= (1 + εr,ai )
âi
(
Tk, T̂k

)
ai

+ 1
ri

∫
i′
δr,ai′

âi′
(
Tk, T̂k

)
ai′

di′

= − (1 + εr,ai )φiζ̃
a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

− [1 + (1 + εr,ai ) ζa,ri ] 1
ri

∫
i′
δr,ai′

âi′
(
Tk, T̂k

)
ai′

di′

and the incidence on utility is given by

Ûi
(
Tk, T̂k

)
= −λgi,1 (β/Γi) T̂k (aR,i) + λgi,1 (β/Γi) aR,i

(
1− T ′k (aR,i)

) 1 + ζa,ri
ri

∫
i′
δr,ai′

âi′
(
Tk, T̂k

)GE
ai′

di′.

Again, impose that there is no first-order effect on the social planner’s objective function,
1
λ Ûi

(
Tk, T̂k

)GE
+ R̂

(
Tk, T̂k

)GE
= 0, to characterize the optimal capital gains tax

∫
i
(1− gi,1) T̂k (aR,i) di =

∫
i
gi,1aR,i

[
1− T ′k (aR,i)

] 1 + ζa,ri
ri

di
1

1−
∫
i ζ
a,r
i

1
ri
δr,ai di

∫
i
δr,ai φiζ̃

a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

di

+
∫
i
T ′k (aR,i) aR,i

[
(1 + εr,ai )φiζ̃

a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

+ [1 + (1 + εr,ai ) ζa,ri ] 1
ri

1
1−

∫
i′ ζ

a,r
i′

1
ri′
δr,ai′ di

′

∫
i′
δr,ai′ φi′ ζ̃

a,(1−T ′k)
i′

T̂ ′k
(
aR,i′

)
1− T ′k

(
aR,i′

)di′
 di
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if and only if

∫
i
(1− gi,1) T̂k (aR,i) di =

∫
i
T ′k (aR,i) aR,i (1 + εr,ai )φiζ̃

a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

di

+
∫
i
ai
{
gi,1

[
1− T ′k (aR,i)

]
(1 + ζa,ri ) + T ′k (aR,i) [1 + (1 + εr,ai ) ζa,ri ]

}
di

× 1
1−

∫
i ζ
a,r
i

1
ri
δr,ai di

∫
i
δr,ai φiζ̃

a,(1−T ′k)
i

T̂ ′k (aR,i)
1− T ′k (aR,i)

di.

In this setting, the easiest way to derive an expression for the optimal capital gains tax is to
consider the Saez (2001) perturbation: T̂k (aR,i) = 1aR,i≥aR,i∗ and T̂ ′k (aR,i) = δaR,i∗ (aR,i), where
δaR,i∗ (aR,i) is the Dirac delta function. Then, under revenue maximization (gi,1 = 0), the previous
expression simplifies to

T ′k (aR,i∗)
1− T ′k (aR,i∗)

= 1

(1 + ζr,ai∗ )φi∗ ζ̃
a,(1−T ′

k)
i∗

1−H (aR,i∗)
aR,i∗h (aR,i∗)

−
∫
aR,i

aiT
′
k (aR,i) [1 + (1 + εr,ai ) ζa,ri ] dH (aR,i)
1−

∫
aR,i

ζa,ri
1
ri
δr,ai dH (aR,i)

1
ri∗
δr,ai∗

1 + εr,ai∗

1
ai∗
(
1− T ′k (aR,i∗)

) ,
where I expressed all the variables in terms of observables. Rearrange and integrate out to get
∫
aR,i

[1 + (1 + εr,ai ) ζa,ri ] ai (1− T ′k (aR,i))

(1 + εr,ai∗ )φi∗ ζ̃
a,(1−T ′

k)
i∗

1−H (aR,i)
aR,ih (aR,i)

dH (aR,i)

=

∫
aR,i

1+(1+εr,ai )ζa,ri
1+εr,ai

1
ri
δr,ai dH (aR,i) + 1−

∫
aR,i

ζa,ri
1
ri
δr,ai dH (aR,i)

1−
∫
aR,i

ζa,ri
1
ri
δr,ai dH (aR,i)

∫
aR,i

aiT
′
k (aR,i) [1 + (1 + ζr,ai ) ζa,ri ] dH (aR,i)

=
[
1 +

∫
aR,i

1
1 + εr,ai

1
ri
δr,ai dH (aR,i)

] ∫
aR,i

aiT
′
k (aR,i) [1 + (1 + εr,ai ) ζa,ri ] dH (aR,i)
1−

∫
aR,i

ζa,ri
1
ri
δr,ai dH (aR,i)

.

Altogether, one can write the optimal nonlinear capital gains tax as

T ′k (aR,i)
1− T ′k (aR,i)

= 1

(1 + εr,ai )φiζ̃
a,(1−T ′

k)
i

1−H (aR,i)
aR,ih (aR,i)

−
1
ri
δr,ai

1 + εr,ai +
∫
a′R,i

1+εr,ai
1+εr,a

i′

1
ri′
δr,ai′ dH

(
aR,i′

)
×
∫
aR,i′

1 +
(
1 + εr,ai′

)
ζa,ri′(

1 + εr,ai′
)
φi′ ζ̃

a,(1−T ′
k)

i′

1−H
(
aR,i′

)
aR,i′h

(
aR,i′

) ai′ (1− T ′k (aR,i′))
ai
(
1− T ′k (aR,i)

) dH (
aR,i′

)
,

which concludes the proof of Equation (77).
To compare this capital gains tax to the one in the self-confirming policy equilibrium, note that

in the latter case
T
′
k (aR,i) |TGE

k

1− T ′k (aR,i) |TGE
k

= 1

ζ
aR,(1−T ′

k)
i

1−H (aR,i)
aR,ih (aR,i)
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and insert this expression into (77).

H.4 Other Policies

Preliminaries. In line with the financial market in Section E, second-period expected utility,
which the policy P affects, is given by

H · Ei (u1 [ai (1 + rpi z)− Tk (airpi z)− v (xi) z]) = H · u1 [ai (1 + E (rpi z))− Tk (aiE (rpi z))− v (xi) z]

+H · 1
2u
′′
1 (ai)V (airpi z) + o (z) .

Therefore, the impact of policy P on welfare can be written as

WEP ≡
d

dP
1
λ
G (Tl, Tk) = d

dP

∫
i
(Γi/λ)

[
u0 (·) + βHu1 [E (·)] + 1

2βHu
′′
1 (ai)V (airpi z)

]
di+ o (z) .

A household’s tax liability can be approximated by

Tk (Riai) = Tk (airi,1z + ...+ airi,Hz) + o (z) ≡ Tk (airi,1z, ..., airi,Hz) + o (z) =
H∑
h=1

T ′k (0) airi,hz + o (z)

= Tk (airi,1z)− Tk (0) + ...+ Tk (airi,Hz)− Tk (0) + o (z) =
H∑
h=1

Tk (airi,hz) + o (z)

Using this expression, the first-order effect on revenues reads as

REP ≡
d

dP
R (Tl, Tk) = d

dP

∫
i
βE (Tk [Riai]) di = d

dP

∫
i
β

H∑
h=1

Tk
[
aiE

(
rpi,hz

)]
di+ o (z)

+ d

dP

∫
i
β

H∑
h=1

T ′k

[
aiE

(
rpi,hz

)]
E
[
air

p
i,hz − aiE

(
rpi,hz

)]
di

+ 1
2
d

dP

∫
i
β

H∑
h=1

T ′′k

[
aiE

(
rpi,hz

)]
E
[(
air

p
i,hz − aiE

(
rpi,hz

))2
]
di+ o (z)

= d

dP

∫
i
β

H∑
h=1

Tk
[
aiE

(
rpi,hz

)]
di+ o (z) = d

dP

∫
i
βHTk [aiE (rpi z)] di+ o (z)

since, in partial equilibrium,

E
(
rpi,hz

)
= 1
ρ
S (ai,h) z + rfz + o (z) = 1

ρ
S
(
aiΠh

s=1

(
1 + rpi,hz

))
z + rfz + o (z)

= 1
ρ
S
(
ai + ai

h∑
s=1

rpi,hz

)
z + rfz + o (z) = 1

ρ
S (ai) z + rfz + o (z) = E (rpi z) .
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Cost subsidy. For a cost subsidy, P = ∆κ < 0, the first-order welfare effect can be written as in
Equation (80)

WEκ =
∫
i
(Γi/λ)βHu′1 [E (·)]xizdi ≡

1
κ
βH

∫
i
gi,1 (E (·)) v (xi) zdi+ o (z)

and, defining the elasticity of returns with respect to marginal information costs ζE(rpz),κ
i ≡

∂log[E(rpi z)]
∂log(κ) < 0, the effect on government revenue is given by Equation (81)

REκ = − d

dκ

∫
i
βHTk [aiE (rpi z)] di+ o (z) = −1

κ
βH

∫
i
T ′k [E (airpi z)] aiE (rpi z)

×
[
(1 + εr,ai ) ηa,I2

i

−xiz
E (rpi z)

(
1− T ′k (aiE (rpi z))

) κ
ai

+ (1 + ζa,ri ) ζE(rpz),κ
i

]
di+ o (z)

= 1
κ
βH

∫
i

T ′k [E (airpi z)]
1− T ′k [E (airpi z)]

(1 + εr,ai ) ηa,I2
i v (xi) zdi

− 1
κ
βH

∫
i
T ′k [E (airpi z)] aiE (rpi z) (1 + ζa,ri ) ζE(rpz),κ

i di+ o (z) .

Financial education. When the government provides a minimal level of financial knowledge, x,
for free, such that the information cost reads as v (xi) = κz ·max {0, xi − x}, there is a threshold
household, below which households do not acquire additional information and obtain the same
return rate

xi =
√

ai
σρκ

− 1− I ≤ x ⇐⇒ ai ≤ σρκ (x+ 1 + I)2 ≡ ai.

Define the elasticity of returns with respect to the minimal information provided by the government

as ζE(rpz),x
i ≡

dlog

[
E
(
rpi z

)]
dlog(x) > 0. The effect of raising x (dx > 0) on welfare consists of a rise in

return rates of households below i and a cost reduction for households above i

WEx = 1
x
βHζ

E(rpz),x
i

∫ i

0
(Γi/λ)

[
u′1 [E (·)] ai

(
1− T ′k

[
E
(
air

p
i z
)])

+ 1
2u
′′
1 (ai) a2

i

]
E
(
rpi z
)
di+ o (z)

+ 1
x
βHv (x) z

∫ 1

i
(Γi/λ)u′1 [ai (1 + E (rpi z))− Tk (aiE (rpi z))− κ (xi − x) z] di+ o (z)

= 1
x
βHζ

E(rpz),x
i

∫ i

0
E [gi,1 (·)] dlog [E (u′1 (·))]

dlog
[
E
(
rpi z
)] di+ 1

x
βHv (x) z

∫ 1

i
gi,1 [E (·)] di+ o (z) ,
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which shows Equation (82). The first-order revenue effect (Equation (83))

REx = 1
x
βH

∫ i

0
T ′k [E (airpi z)] aiE (rpi z) (1 + ζa,ri ) ζE(rpz),x

i di

+ 1
x
βH

∫
i
T ′k [E (airpi z)] aiE (rpi z) (1 + εr,ai ) ∂ai

∂I2

∂I2
∂x

x

ai
di+ o (z)

= 1
x
βH

∫ i

0
T ′k [E (airpi z)] aiE (rpi z) (1 + ζa,ri ) ζE(rpz),x

i di

+ 1
x
βH

∫
i

T ′k [E (airpi z)]
1− T ′k [E (airpi z)]

aiE (rpi z) (1 + εr,ai ) ηa,I2
i v (x) zdi+ o (z)

collects the effects on the capital income of households below i and income effects for all households.
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