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Abstract 
 
This paper examines the implications of pricing errors and factors that are not strong for the Fama-
MacBeth two-pass estimator of risk premia and its asymptotic distribution when T is fixed with n 
→ ∞, and when both n and T → ∞, jointly. While the literature just distinguishes strong and weak 
factors we allow for degrees of strength using a recently developed measure. Our theoretical 
results have important practical implications for empirical asset pricing. Pricing errors and factor 
strength matter for consistent estimation of risk premia and subsequent inference, thus an estimate 
of factor strength is required before attempting to estimate risk. Finally, using a recently developed 
procedure we provide rolling estimates of factor strengths for the five Fama-French factors, and 
show that only the market factor can be viewed as strong. 
JEL-Codes: C380, G120. 
Keywords: factor strength, pricing errors, risk premia, Fama and MacBeth two-pass estimators, 
Fama-French factors, panel R2. 
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1 Introduction

There is a large literature in finance which estimates the risk premia associated with observed
risk factors using a two-pass estimation procedure introduced in Fama andMacBeth (1973). The
first pass estimates the factor loading, βik, of factor, fkt, for the security i over the time period
t = 1, 2, ..., T, by running least squares regressions of returns on each security rit, i = 1, 2, ..., n,
using K observed factors fkt, k = 1, 2, ..., K. The second pass runs a pure cross-section regres-
sion of time averages of security returns on the estimated factor loadings to price the factors
and obtain estimates of their risk premia, λk. The asymptotic properties of this procedure have
been investigated by Shanken (1992), Shanken and Zhou (2007), Kan, Robotti and Shanken
(2013), and Bai and Zhou (2015), among others. The survey paper by Jagannathan, Skoulakis
& Wang (2010) provides further references.
This literature implicitly assumes that (a) all the risk factors used are strong, in that they are

pervasive, influencing almost all securities, (b) there are no pricing errors, (c) the parameters
of interest are what Shanken (1992, p6) calls the "ex post" risk premia, which differ from the
actual risk premia due to a bias caused by the difference between the means of risk factors and
their expected (population) values.
This paper examines the consequences of relaxing the above three restrictions, individually

and in combination, for estimation of risk premia and their asymptotic distribution, under
different values of n and T and their relative expansion rates. Different issues are involved in
the second pass estimation of risk premia from the first pass estimation of factor loadings. We
first focus on the second pass and look at the effect of non-strong factors and pricing errors on
risk premia estimation with known, rather than estimated, factor loadings, βik. We then move
to the more realistic case where βik are estimated.
The possibility of weak factors has been discussed in the econometrics literature by Chudik,

Pesaran and Tosseti (2011), Onatski (2012), and Kleibergen (2009). Connor and Korajczyk
(2019) construct a test statistic for empirically distinguishing strong from semi-strong factors
using marginal R squared. Anatolyev and Mikusheva (2020), discussed further below, consider
models with strong as well as weak factors in asset pricing, but do not allow for pricing errors
or semi-strong factors, and focus on estimation of ex post risk premia.1

Unlike the existing literature we do not just distinguish between weak and strong factors,
but allow for different degrees of strength. The strength of factor fkt, is measured by the
exponent αk

n∑
i=1

β2
ik = 	 (nαk) , (1)

where βik is the loading of fkt on the ith security, and 	 (nαk) denotes the exact rate at which∑n
i=1 β

2
ik rises with n. Factor k is strong if αk = 1, semi-strong if 1 < αk < 0.5, and weak if

αk ≤ 0.5. 2

Our theoretical results establish explicit links between the precision with which risk premia
can be estimated and the strength of the underlying factors. In turn, the factor strengths can
be estimated, as proposed by Bailey, Kapetanios and Pesaran (2021), from the proportion of
securities with statistically significant factor loadings, allowing for multiple testing. Whereas a

1There is also an emerging literature on unobserved factors that allow for weak as well as strong factors. See,
for example, Lettau and Pelger (2020a, 2020b) and Section 4 of Bailey et al. (2021). But for the identification
of risk premia, which is the focus of the present paper, the factors must be observed.

2The 	 (.) notation in (1) should not be confused with the standard big O notation, O(.).
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strong factor with αk = 1 has non-zero loadings for almost all securities, a factor with αk = 1/2
has non-zero loadings for

√
n of the n securities, and the share of non-zero loadings tends to zero

quite fast as n increases. This means that even with known βik a large number of loadings used
in the second pass regression could be zero, making estimation of the risk premia imprecise.
For instance, with n = 400 and αk = 1/2, only about 20 securities will have non zero loadings.
As n→∞, the rank of the variance covariance matrix of the loadings is given by the number
of strong factors.
For identification of risk premia, λk, we also need a suffi cient degree of heterogeneity across

the loadings as n→∞, such that
n∑
i=1

(
βik − β̄k

)2
= 	 (nαk) , (2)

where β̄k = n−1
∑n

i=1 βik. This is not necessarily implied by (1).
Pricing errors, denoted by ηi for security i, are likely to be important in practice. In his

theoretical derivation of Arbitrage Pricing Theory (APT), Ross (1976) assumed pricing errors
to be square summable, namely

∑n
i=1 η

2
i <∞. We use the weaker condition
n∑
i=1

|ηi| = O (nαη) , (3)

with the exponent αη measuring the pervasiveness of the pricing errors.
If the strength of factor k is αk and the pervasiveness of the pricing errors is αη, when factor

loadings are known, we need αk > αη for consistent estimation of risk premia. The associated
convergence rate is n−(αk−αη)/2, which can be very slow if αk − αη is small, requiring n to be
very large to get accurate estimates of λk.3 Similarly, even if there are no pricing errors, when
αk is small the number of non zero βik rises slowly with n.
Our results have important practical implications for Fama-MacBeth type procedures. To

accommodate non-zero pricing errors n has to be large even when the first pass factor loadings
are known. The need for large n was highlighted by Roll (1977). This argues against the
practice of using a small number of constructed portfolios in the second pass regressions and we
use individual securities in our derivations and empirical work. Chordia and Subrahmanyam
(1998) emphasize the problems for inference created by using portfolios and, more recently,
Ang, Liu and Schwarz (2020) show that creating portfolios to reduce estimation error in the
factor loadings does not necessarily lead to smaller estimation errors of the factor risk premia.
While n needs to be large, the number of time periods, T, is inevitably small because of the

possible instability of factor loadings over time, hence the nearly universal practice in finance
is to use regressions estimated over relatively short rolling windows (5 to 10 years). As noted
above, in the second pass as n → ∞, the rank of the covariance matrix of the true loadings
is given by the number of strong factors. So if there are any factors that are not strong, the
population covariance matrix of factor loadings will become rank deficient and the estimator
of the risk premia will not be defined. However, when the loadings are estimated with T small
relative to n, the two-pass estimator of the risk premia is still defined because it uses the sample
covariance matrix of the estimated loadings.

3In the case examined in the literature where αk = 1, αη = 0, and factor loadings are known, one gets the
usual n−1/2 rate.
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As is well known, for a fixed T, the two pass-estimator of the risk premium is biased because
of sampling error in the first stage estimates of βik. This is usually dealt with using the Shanken
(1992) small T bias correction. The bias correction works by shifting the covariance matrix of
the estimated loadings back to the covariance of the true loadings. But the correction made to
eliminate the bias renders the limiting distribution of the bias-corrected estimator (for a finite
T and as n → ∞) ill-conditioned, unless all the factors under consideration are strong. In
short, the Shanken bias-corrected estimators of expost risk premia are defined for small n, but
its limit as n→∞ exist if and only if all the factors under consideration are strong.
When both n and T are suffi ciently large such that as n, T →∞, n/T → κ, with 0 < κ <∞,

and there are no pricing errors, the two-pass estimator of the risk premium associated to factor
fkt converges to the "ex post" risk premium at the rate of n−αk/2T−1/2, and the ex post risk
premia of all factors, whether strong or not, can be consistently estimated and tested. However,
this is not true for the actual risk premia, which is the primary object of interest. When there
are no pricing errors, the two-pass estimator of risk premia converges to its true value at the
T−1/2 rate and does not depend on the factor strengths, αk. In the more realistic case where
there are pricing errors then the two-pass estimator converges to its true value at the rate of
n−

1
2

(αk−αη), which, as noted above, can be quite slow. Furthermore, although risk premia may
be identified with very large n, it is not possible to carry out inference on the weak or even
semi-strong factors. In the presence of pricing errors the asymptotic distribution of the two-pass
estimator of risk premia is non-degenerate only in the case of strong factors, with the influence
of remaining factors waning as n and T →∞.
A central question in this literature is the ability of factors to explain returns. We show

that asymptotically the pooled R-squared of the panel regression of returns on factors is only
determined by strong factors. In the limit as n → ∞, factors with αk < 1 do not contribute
to explanation of returns. The effects of weak or semi-strong factors on the fit of the return
regressions will vanish eventually.
As an empirical application we estimate factor strength for the five Fama and French (2015)

factors. We compute 10-year rolling estimates for all the five factors over the period September
1989 to May 2018, a total of 345 rolling estimates for each factor. The factor strengths are very
precisely estimated, with the stronger the factor the more precisely its strength is estimated.
As might be expected, the market factor is strong, with a strength always very close to one and
a time average over the 345 rolling estimates of 0.99. The estimated strengths for the other
four factors are much lower, generally below 0.8, with the average of their strengths over the
rolling windows never exceeding 0.75.
Our theoretical analysis suggests that in practice it is important to measure the strength

of the factors and to focus on estimation of risk premia for strong factors. Semi-strong or
weak factors can be included, to reduce cross section dependence, so long as the strength of
the weakest factor, αmin, exceed 2αη. However, use of risk factors that are not strong poses
important new challenges, since there are likely to be many weak or even semi-strong potential
factors in what has been labelled a "factor zoo". Harvey and Liu (2019) list over 400 factors
suggested by early 2019 in the literature. Fama and French (2019) discuss the issue of choosing
factors while Jensen, Kelly and Pedersen (2021) argue that the large number of factors can be
clustered into fewer themes.
The rest of the paper is organized as follows: Section 2 sets up the multi-factor model

allowing for differing factor strengths and the APT restrictions. Section 3 considers the esti-
mation of risk premia with known factor loadings. Section 4 introduces the two pass estimator.
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Section 5 considers the asymptotic properties of the two-pass estimator with a fixed T and
large n. Section 6 examines the asymptotic properties of the two-pass estimator when both n
and T are large, under different pricing error scenarios. Section 7 examines the effect of factor
strength on the explanatory power of the regressions explaining returns. Section 8 presents the
rolling estimates of factor strength for the five Fama-French factors. Section 9 provides some
concluding remarks. Detailed mathematical proofs are relegated to the Appendix.
Notations: Generic positive finite constants are denoted by C when large, and c when

small. They can take different values at different instances. →p denotes convergence in prob-
ability as n, T → ∞. λmax (A) and λmin (A) denote the maximum and minimum eigenval-
ues of matrix A. A > 0 denotes that A is a positive definite matrix. ‖A‖ = λ

1/2
max(A′A),

‖A‖F = [Tr(A′A)]1/2, ‖A‖p = (E ‖A‖p)1/p, for p ≥ 2 denote spectral, Frobenius, and `p
norm of matrix A, respectively. If {fn}∞n=1 is any real sequence and {gn}

∞
n=1 is a sequences

of positive real numbers, then fn = O(gn), if there exists C such that |fn| /gn ≤ C for all n.
fn = o(gn) if fn/gn → 0 as n → ∞. Similarly, fn = Op(gn) if fn/gn is stochastically bounded,
and fn = op(gn), if fn/gn →p 0, where →pdenotes convergence in probability. If {fn}∞n=1 and
{gn}∞n=1 are both positive sequences of real numbers, then fn = 	 (gn) if there exists n0 ≥ 1
such that infn≥n0 (fn/gn) ≥ C, and supn≥n0 (fn/gn) ≤ C.

2 Return regressions, APT and factor strengths

2.1 A multi-factor model of returns

Following the literature, we assume that returns on security i in period t, rit, are generated by
the following linear multi-factor model

rit − rf = ai +
K∑
k=1

βikfkt + uit, for i = 1, 2, ..., n, t = 1, 2, ..., T, (4)

where rf is the risk free rate, assumed to be fixed; ai is the return-specific effect; fkt, k =
1, 2, ..., K are the K common factors with associated factor loadings, βik; and uit are the idio-
syncratic components of asset returns. The model can be written more compactly as

rit − rf = ai + β
′

ift + uit, (5)

where βi = (βi1, βi2, ..., βiK)′, and ft = (f1t, f2t, ..., fKt)
′.

We make the following standard assumptions about ft and uit (the drivers of asset returns):

Assumption 1 (Common factors) (a) The K× 1 vector of risk factors, ft, follows the general
linear process

ft = µf +
∞∑
`=0

Ψ`vt−`, (6)

where
∥∥µf∥∥ < C, vt ∼ IID(0, IK), and Ψ` are K × K exponentially decaying matrices such

that ‖Ψ`‖ < Cρ` for some C > 0 and 0 < ρ < 1. (b) The T ×K data matrix F = (f1, f2, ..., fT )′

is full column rank and and there exists T0 such that for all T > T0, Σ̂f = T−1F′MTF is a

positive definite matrix, Σ̂f →p Σf = E (ft − µf ) (ft − µf )′ > 0, and
∥∥∥Σ̂−1

f

∥∥∥ = Op (1).
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Assumption 2 (Idiosyncratic errors) The errors {uit, i = 1, 2, ..., n; t = 1, 2, ..., T} are seri-
ally independent across t, with zero means, E(uit) = 0, and constant covariances, E(uitujt) =
σij, such that 0 < c < σii < C <∞,

(a) : sup
j

n∑
i=1

|σij| < C, (7)

and

(b): n−1

n∑
i=1

n∑
j=1

Cov
(
u2
it, u

2
jt

)
< C. (8)

(c) The errors, uit are distributed independently of the factors fk,t′, for all i, t, t′ and k =
1, 2, ..., K, and their associated loadings βik.

Assumption 3 The dependence between loadings, factors and errors is such that

n−1/2

n∑
i=1

β′i

[
T−1/2

T∑
t=1

(
ft − f̄T

)
uit

]
= Op(1).

Remark 1 Under Assumption 1 E (ft) = µf , and V ar(ft) = Σf =
∑∞

`=0 Ψ`Ψ
′
`. Also ‖Σf‖ ≤∑∞

`=0 ‖Ψ`‖2 and it follows from part (a) of Assumption 1 that ‖Σf‖ < C, for some C.

Remark 2 Let Vu = E (u◦tu
′
◦t) = (σij), where u◦t = (u1t, u2t, ..., unt)

′, then condition (7) also
ensures that

λmax (Vu) ≤ ‖Vu‖1 = sup
j

n∑
i=1

|E (uitujt)| < C.

Condition (7) is in line with the assumptions of the approximate factor models used in the APT
literature that require λmax (Vu) < C. Condition (8) is needed to establish probability limits in
Lemma A.1 of the Appendix.

Remark 3 Part (a) of Assumption 2 is standard in the literature and allows for errors to be
weakly cross correlated. It rules out serial correlation, but can be relaxed to allow for a limited
degree of serial correlation when both n and T are large. But it is required if T is fixed and n
large.

2.2 Arbitrage pricing theory (APT) restrictions

The main result of the APT can be summarized in the following cross section return regression
where (population) return of security i is related to its factor loadings

E (rit) = λ0 + β
′

iλ+ ηi, (9)

where λ is the K × 1 vector of factor risk prices (or risk premia), and ηi is the pricing error of
the ith security, assumed to satisfy the APT condition (18) of Ross (1976), namely

n∑
i=1

η2
i < C. (10)
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To impose the APT restrictions on the statistical model, first using (5) and (6) we note that

E (rit) = rf + ai + β
′

iE (ft) + E (uit) = rf + ai + β
′

iµf . (11)

Therefore, for APT restrictions (9) to hold we must have

rf + ai + β
′

iµf = λ0 + λ′βi + ηi, for all i

which in turn requires that

λ=µf , and ai + rf = λ0 + ηi, for all i. (12)

Also, since E (rit) is unobserved, it is typically replaced by its sample mean, r̄iT = T−1
∑T

t=1 rit,
which, using (5), is given by

r̄iT = rf + ai + β
′

if̄T + ūiT .

Imposing the APT restrictions (12) yields:

r̄iT = λ0 + λ′βi + ηi + ζiT , (13)

where
ζiT =

[
f̄T − E (ft)

]′
βi + ūiT . (14)

But under Assumptions 1 and 2 it also follows that

ūiT =
1√
T

(
T−1/2

T∑
t=1

uit

)
= Op

(
T−1/2

)
,

f̄T − E (ft) =
1√
T

(
T−1/2

T∑
t=1

[ft − E(ft)]

)
= Op

(
T−1/2

)
.

Hence, under standard assumptions made in the literature, the use of time averages allows the
sampling errors in ζiT to tend to zero at the rate of T−1/2, while the pricing errors, ηi, remain.
Specifically,

r̄iT = λ0 + λ′βi + ηi +Op

(
T−1/2

)
. (15)

Also, r̄iT →p E (rit) = µi = λ0 + λ′βi + ηi, hence APT restrictions only hold in the limit with
T →∞. Therefore, one might expect pricing errors, ηi, to play an important role even for large
samples or where the factor loadings, βi are treated as known. A formal account is provided
below.

2.3 Factor strengths

From the perspective of risk diversification, APT also rules out the possibility of a fully diver-
sified portfolio. This means that there must exist at least one strong factor, otherwise it would
be possible to construct a portfolio whose risk vanishes as n → ∞. To see this using (5) a
portfolio constructed as a simple average of the returns, r̄◦t = n−1

∑n
i=1 rit, is given by

r̄◦t − rf = ā+β̄
′

nft + ū◦t,

6



and under Assumption 2 (that errors are weakly cross correlated) we have

r̄◦t = rf + ā+ β̄
′

nft +Op

(
n−1/2

)
,

where β̄n = n−1
∑n

i=1 βi = (β̄n1, β̄n2, ..., β̄nK)′. Full diversification occurs if β̄n → 0, as n→∞.
To avoid this outcome, factor loadings should be such that β̄k = 	p (1), for some k.
Also for estimation of λ, using (15), it is commonly assumed that the covariance matrix of

factor loadings defined by

Σββ = plimn→∞

[
n−1

n∑
i=1

(
βi − β̄n

) (
βi − β̄n

)′]
,

is positive definite. For Σββ to be positive definite it is necessary that all the K risk factors
under consideration are strong in the sense that

plimn→∞

[
n−1

n∑
i=1

(
βik − β̄k

)2

]
> 0, for k = 1, 2, ..., K. (16)

However, such an assumption is quite restrictive and is unlikely to be satisfied for many risk
factors being considered in the literature. BKP (2021) propose a method for estimating factor
strength and show that, apart from the market factor, only a handful of 144 factors considered
by Feng et al. (2020) in the literature come close to being strong. More importantly, factor
strengths vary over time in addition to the familiar variation over time in the factor loadings.
BKP (2021) define the strength of factor, fkt, in terms of the number of its non-zero factor

loadings. For a factor to be strong almost all of its n loadings must differ from zero. Given our
focus on estimation of risk premia, we adopt the following definition which directly relates to
Σββ. (see also Chudik et al. (2011))

Definition 1 (Factor strengths) The strength of factor fkt is measured by its degree of perva-
siveness as defined by the exponent α

k
in

n∑
i=1

β2
ik = 	(nαk), (17)

and 0 < αk ≤ 1. We refer to {αk, k = 1, 2, ..., K} as factor strengths. Factor fkt is said to be
strong if αk = 1, semi-strong if 1 > αk > 1/2, and weak if 0 ≤ αk ≤ 1/2.

In the above definition 	 (nαk) denotes the rate at which additional securities add to the
factor’s strength and αk can be viewed as a logarithmic expansion rate in terms of n and relates
to the proportion of non-zero factor loadings. It is also clear that Σββ is positive definite if
and only if αk = 1 for all k = 1, 2, ..., K. Condition (17) applies irrespective of whether the
loadings, βik, are viewed as deterministic or stochastic. Under the latter condition (17) can be
written as

n−αk
n∑
i=1

E
(
β2
ik

)
> c > 0,

which we write more compactly as
∑n

i=1 β
2
ik = 	p(nαk).
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3 Estimation of risk premia with known factor loadings

To highlight the importance of pricing errors and factor strengths for estimation of risk premia,
we begin with the case where the factor loadings, βik, and their strength, αk, k = 1, 2, ...K, are
known. We also assume that E(rit) = µi is known. We make the following assumption about
the loadings. Throughout we assume K is fixed as n and T →∞.

Assumption 4 (Factor loadings) The factor loadings βik for i = 1, 2, ..., n and k = 1, 2, ..., K
are (a) either deterministic such that supik |βik| < C, or stochastically bounded such that
supikE (β2

ik) < C, and for k = 1, 2, ..., K

n∑
i=1

β2
ik = 	p(nαk). (18)

(b)The n×K matrix of factor loadings, Bn = (β◦1,β◦2, ...,β◦K), where β◦k = (β1k, β2k, ..., βnk)
′

satisfy

0 < c < λmin
(
D−1
n B′nMnBnD

−1
n

)
< λmax

(
D−1
n B′nMnBnD

−1
n

)
< C <∞, (19)

for some small and large positive constants, c and C, where Mn = In − n−1τ nτ
′
n, τ n =

(1, 1, ..., 1)′, and Dn is the n× n diagonal matrix

Dn = Diag(nα1/2, nα2/2, ...., nαK/2). (20)

Assumption 5 (Pricing errors) (a) The pricing errors, ηi, for i = 1, 2, ..., n are deterministic
such that supi |ηi| < C, and satisfy

n∑
i=1

|ηi| = O (nαη) , (21)

where αη ≥ 0 denotes its degree of pervasiveness. (b) The pricing errors, ηi, are stochastic such
that

n∑
i=1

E |ηi| = O (nαη) , (22)

and are distributed independently of the factor loadings, βjk.

Remark 4 Under Assumption 4

D−1
n B′nMnBnD

−1
n →p Σββ(α) > 0, (23)

whereΣββ(α) is a k×k symmetric positive definite matrix which is a function of α= (α1, α2, ..., αK)′.
This follows from (19) since for any non-zero n× 1 vector c,

c′D−1
n B′nMnBnD

−1
n c ≥ (c′c)λmin

(
D−1
n B′nMnBnD

−1
n

)
> 0.

In the standard case where the factors are all strong (αk = 1 for all k), the above limit reduces
to n−1B′nMnBn →p Σββ(τK) = Σββ > 0.

8



Remark 5 The exponent parameter, αη, of the pricing condition in (21), can be viewed as
the degree to which pricing errors are pervasive in large economies (as n → ∞). Letting
ηn = (η1, η2, ..., ηn)′ we have

n∑
i=1

η2
i = ‖ηn‖2 ≤ ‖ηn‖∞ ‖ηn‖1 = supj |ηj|

(
n∑
i=1

|ηi|
)
,

and under Assumption (5) it also follows that

‖ηn‖
2 =

n∑
i=1

η2
i = O (nαη) . (24)

Remark 6 Whilst (21) implies (24), the reverse does not follow. By allowing for αη > 0 we
are relaxing the Ross’s boundedness condition that requires setting αη = 0.

Remark 7 Parts (a) and (b) of Assumption 5 differ in whether the pricing errors and factor
loadings are correlated, and as we shall see this can play an important role for the analysis of
risk premia.

Consider the APT equations (9), denote the expected returns on asset i by µi = E(rit), and
stack the equations for i = 1, 2, ..., n, to obtain:

µn = λ0τ n + Bnλ+ ηn, (25)

where Bn is the n× k matrix of factor loadings, µn = (µ1, µ2, ..., µn)′, ηn = (η1, η2, ..., ηn)′ and
λ0 is treated as an unknown constant. Under this setting and assuming Bn is known, λ can be
estimated by least squares

λ̂n = (B′nMnBn)
−1

B′nMnµn. (26)

To establish the asymptotic properties of λ̂n as n → ∞, when the factors have different
strengths, we need to standardize the factor loadings using the diagonal matrix Dn, defined by
(20). For any given n, λ̂n can be written equivalently as

Dnλ̂n =
(
D−1
n B′nMnBnD

−1
n

)−1
D−1
n B′nMnµn,

which upon using (25) yields

Dn

(
λ̂n − λ

)
=
(
D−1
n B′nMnBnD

−1
n

)−1
D−1
n B′nMnηn. (27)

First, note that4∥∥∥(D−1
n B′nMnBnD

−1
n

)−1
∥∥∥ = λmax

[(
D−1
n B′nMnBnD

−1
n

)−1
]

=
1

λmin (D−1
n B′nMnBnD−1

n )
,

and since under Assumption 4 λmin (D−1
n B′nMnBnD

−1
n ) > c > 0, then it follows that∥∥∥(D−1

n B′nMnBnD
−1
n

)−1
∥∥∥ < C <∞. (28)

4Recall that ‖A‖ = λ
1/2
max(A′A) denotes the spectral norm of A, and when A is symmetric then ‖A‖ =

λmax(A).
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If there are no pricing errors, and ηi = 0 for all i, it is clear from (27) that λ̂n = λ; there are no
remaining uncertainties and estimates of risk premia do not depend on factor strengths. But
it is unrealistic to assume no pricing errors. To take them into account write the second term
of (27) as

D−1
n B′nMnηn =

[(
β◦1 − τ nβ̄1

)′
ηn

nα1/2
,

(
β◦2 − τnβ̄2

)′
ηn

nα2/2
, ...,

(
β◦K − τnβ̄K

)′
ηn

nαK/2

]′
. (29)

where β̄k = n−1τ ′nβ◦k, and note that that k
th element of D−1

n B′nMnηn can be written as

πk,n = n−αk/2
n∑
i=1

(
βik − β̄k

)
ηi. (30)

The probability order of πk,n critically depends on the nature and the degree of pervasiveness
of the pricing errors, ηi. By Cauchy—Schwarz inequality

|πk,n| ≤
[
n−αk

n∑
i=1

(
βik − β̄k

)2

]1/2( n∑
i=1

η2
i

)1/2

,

and under Assumption 4, n−αk
∑n

i=1

(
βik − β̄k

)2
= 	(1). Also using (24), implied by part (a)

of Assumption 5, we have
∑n

i=1 η
2
i = O (nαη), and hence |πk,n| = Op

(
nαη/2

)
. Given that K is

fixed, overall we have
D−1
n B

′
nMnηn = Op

(
nαη/2

)
. (32)

But when part (b) of Assumption 5 holds, the effects of pricing errors on risk premia estimates
will be much less pronounced. This is achieved by conditioning on the pricing errors and then
exploiting their independence from the factor loadings, namely by noting that5

E (|πk,n| |ηi ) ≤ n−αk/2
n∑
i=1

E
∣∣βik − β̄k∣∣ |ηi| ≤ [supikE ∣∣βik − β̄k∣∣]n−αk/2 n∑

i=1

|ηi| = Op

(
nαη−αk/2

)
.

and hence
D−1
n B

′
nMnηn = Op

(
nαη−αmin/2

)
, (33)

where αmin = min(α1, α2, ..., αK). Using this result together with (28) in (27) we now have

Dn

(
λ̂n − λ

)
= Op

(
nαη/2

)
under part (a) of Assumption 5, andDn

(
λ̂n − λ

)
= Op

(
nαη−αmin/2

)
,

under part (b) of Assumption 5. For the risk premia of the kth factor, these two results can be
written equivalently as

λ̂kn − λk = Op

(
n−(αk−αη2 )

)
, under part (a) of Assumption 5, (34)

λ̂kn − λk = Op

(
n−(αk+αmin2

−αη)
)
, under part (b) of Assumption 5, (35)

5Note that under Assumption 4

E
∣∣βik − β̄k∣∣ < E |βik|+ E

∣∣β̄k∣∣ < C.
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The convergence rate of λ̂kn to its true value, λk, is governed by both αk as well as αη and
αmin. If only part (a) of the pricing error assumption holds, then for λ̂kn →p λk it is required
that αη < αk, for all k, which follows if αη < αmin = min(α1, α2, ..., αK). This condition
weakens to αη < 1, if all the factors are strong (i.e. when αk = 1). If in addition the factor
loadings and pricing errors are independently distributed (as in part b of Assumption 5), then
for λ̂kn →p λk it is required that αη < (αk + αmin) /2. Finally, λ̂kn →p λk faster under part
b since αk+αmin

2
− αη > αk−αη

2
, when αη < αmin. These results show that for identification of

risk premia it is essential that the strength of the pricing error is less than the strength of the
weakest factor.
The equilibrium pricing condition of Ross (1976), given by (10), is satisfied if αη = 0. It is

clear that for λk to be
√
n-consistent we must have both αk = 1 and αη = 0, satisfied. More

pervasive pricing errors and/or weaker factors combine to reduce the rate of convergence of λ̂kn
to λk. The above result also establishes that the risk premia associated with a factor whose
strength is close to αη is poorly identified at best. Even in the unlikely case of known factor
loadings the rate at which λ̂kn converges to λk can be painfully slow in the case of factors with
strength close to αη. For example, when only part a of Assumption 5 holds with αη = 1/4
(representing a moderate degree of pricing errors), identification of λk with strength αk = 3/4
implies a convergence rate of n−1/4 which is very slow and requires a very large number of
securities for a reasonably accurate estimation and inference.
We now consider how the above results are affected once we allow for estimation uncertainty

(often referred as measurement errors) in the factor loadings in the more realistic case where
Bn is estimated using a sample T observations on rit, for t = 1, 2, ..., T .

4 Two-pass estimator of risk premia

In practice the factor loadings are unknown when the Fama and MacBeth (1973, FM) two-pass
estimation procedure is used. In addition, the second pass regression uses average returns,
riT , that do not coincide with true mean returns E(rit), when T is small. As noted in the
introduction, the use of portfolio returns and their associated β′s in the second pass does not
alleviate the small T bias and in some settings could even accentuate it.
We now derive finite T large n asymptotic properties of the two-pass estimators of risk

premia when one or more of the risk factors are not strong, namely when αmin < 1, where
αmin = min(α1, α2, ..., αK). The first pass of FM estimator estimates βik by running ordinary
least squares (OLS) regressions of the individual (excess) returns, {rit ; i = 1, 2, ..., n} on an
intercept and the same common factors, ft, over the time periods t = 1, 2, ..., T . These individual
regressions can be written as

ri◦ = aiτ T + Fβi + ui◦, for i = 1, 2, ..., n, (36)

where ri◦ = (ri1, ri2, ..., riT )′, F = (f1, f2, ..., fT )′, and ui◦ = (ui1, ui2, ..., uiT )′. True values of the
factor risk prices (or risk premia), λ, are defined by the cross section regressions (CSR)

E (rit) = λ0 + β′iλ+ ηi, for i = 1, 2, ..., n, (37)

where ηi is the pricing error. It is also convenient to combine the individual return regressions
as

r◦t = an +Bnft + u◦t, for t = 1, 2, ..., T, (38)
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where r◦t = (r1t, r2t, ...., rnt)
′ is an n× 1 vector of excess returns on individual securities during

period t, an = (a1,a2, ...,an)′, Bn = (β◦1,β◦2, ...,β◦K), β◦k = (β1k, β2k, ..., βnk)
′, and u◦t =

(u1t, u2t, ...., unt)
′.

The two-pass estimator is given by

λ̂nT =
(
B̂′nTMnB̂nT

)−1

B̂′nTMnr̄n, (39)

whereMn = In−n−1τ nτ
′
n as defined above, B̂nT = (β̂1,T , β̂2,T , ..., β̂n,T )′, r̄n = (r̄1◦, r̄2◦, ..., r̄n◦)

′ ,

r̄iT = T−1
∑T

t=1 rit,
β̂i,T = (F′MTF)

−1
F′MT ri◦, (40)

F = (f1, f2, ..., fT )′, MT = IT − T−1τ Tτ
′
T , and ri◦ = (ri1, ri2, ..., riT )′. Under (36), β̂i,T =

βi + (F′MTF)−1 F′MTui◦, and hence

B̂nT = Bn + UnTGT , (41)

where UnT = (u1◦,u2◦, ...,un◦)
′, and GT = MTF (F′MTF)−1. Also, averaging the return

equations (36) over t for each i, we have

r̄iT = ai + β′if̄T + ūiT , and E (r̄i) = ai + β′iE
(
f̄T
)
, (42)

where f̄T = T−1
∑T

t=1 ft, and ūiT = T−1
∑T

t=1 uit. Hence, using the above results together with
the APT condition given by (37), we have

r̄n = λ0τ n +Bn (λ+dfT ) + ūn+ηn (43)

= µn +BndfT + ūn

where ūn = (ū1◦, ū2◦, ..., ūn◦)
′

µn = λ0τ n + Bnλ+ ηn, (44)

and

dfT = f̄T − E
(
f̄T
)

= T−1

T∑
t=1

[ft − E(ft)] , (45)

ū = (ū1◦, ū2◦, ..., ūn◦)
′ , and ηn is the n× 1 vector of pricing errors. Relations (41) and (43) can

now be used in (39) to derive the asymptotic properties of λ̂n.

5 Asymptotic properties of two-pass estimator in the
case of short T and large npanels

As is well known when T is finite the two-pass estimator is biased due the errors in estimation
of factor loadings that do not vanish. In our case the derivations are further complicated since
we also allow for some of the factors not to be strong. Even if only one of the factors is not
strong, namely if αmin < 1, then limn→∞ (n−1B′nMnBn) = Σββ will be rank deficient. It is
easily seen that the rank Σββ will be equal to the number of strong factors. In the extreme case
where none of the factors are strong we have Σββ = 0. Interestingly enough, even in this case
the two-pass estimator tends to a finite limit so long as T is fixed as n → ∞. The following
theorem provides the main asymptotic result when T is short.
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Theorem 1 (Small T bias of two-pass estimator of risk premia) Consider the multi-factor lin-
ear return model (38) and the associated risk premia, λ, defined by (37), and suppose that As-
sumptions 1, 2, 4 and part (a) of Assumption 5, hold such that αη < αmin = min(α1, α2, ..., αk).
Suppose further that λ is estimated by Fama-MacBeth two-pass estimator based on individual
excess returns, rit, and the factors, ft, for i = 1, 2, ..., n, and t = 1, 2, ..., T . Then for any fixed
T > K + 1 we have (as n→∞)

λ̂nT−λ→p

[
Σββ +

σ2

T

(
F′MTF

T

)−1
]−1(

ΣββdfT −
σ2

T

(
F′MTF

T

)−1

λ

)
. (46)

where λ̂n is defined by (39) and

dfT = T−1

T∑
t=1

[ft − E(ft)] , Σββ = lim
n→∞

(
B′nMnBn

n

)
, and σ2 = lim

n→∞

1

n

n∑
i=1

σ2
i > 0. (47)

The proof is provided in sub-section A.3.1 of the Appendix.
It is clear that the probability limit of λ̂nT exists even if Σββ is rank deficient. As an

example, consider a two-factor case where only one of the factors is strong, namely α1 = 1 and
α2 < 1. In this case

B′nMnBn

n
=

(
n−1

∑n
i=1(βi1 − β̄1)2 n−1

∑n
i=1(βi1 − β̄1)(βi2 − β̄2)

n−1
∑n

i=1(βi1 − β̄1)(βi2 − β̄2) n−1
∑n

i=1(βi2 − β̄2)2

)

=

 	 (1) 	
(
n
α2−1
2

)
	
(
n
α2−1
2

)
	 (nα2−1)

→p Σββ =

(
σ2
β1

0
0 0

)
,

where σ2
β1

= limn→∞ n
−1
∑n

i=1(βi1 − β̄1)2 > 0. Let AT = σ2

T

(
F′MTF

T

)−1

= (aij,T ), and dfT =

1
T

∑T
t=1 [ft − E(ft)] = (dfT,1, dfT,2)′, then using (46) and after some algebra we obtain

λ̂nT =

(
λ̂1,nT

λ̂2,nT

)
→p

 a22,T σ2β1
(λ1+dfT,1)

|AT |+a22,T σ2β1
−a12,T σ2β1 (λ1+dfT,1)

|AT |+a22,T σ2β1

 .

For a finite T the estimate of risk premia of the weak factor, λ̂2,nT tends to −a12,Tσ
2
β1

(λ1 +

dfT,1)/
(
|AT |+ a22,Tσ

2
β1

)
which is proportional to λ1, and does not converges to λ2 even if we

consider suffi ciently large T . In fact the ratio λ̂2,nT/λ̂1,nT →p −a12,T/a22,T which reduces to
Cov(f2t, f1t)/V ar(f1t) for T suffi ciently large. In effect the risk premia estimated for the weak
factor represent an spill over effect from the strong factor via the correlation of the underlying
risk factors. In the special case where the two risk factors are uncorrelated λ̂2,nT → 0.
In the extreme case where none of the factors are strong Σββ = 0 and we have

λ̂nT−λ→p

[
σ2

T

(
F′MTF

T

)−1
]−1(

−σ
2

T

(
F′MTF

T

)−1

λ

)
= −λ,

and we have λ̂nT →p 0, irrespective of the true values of the risk premia!

13



5.1 Shanken bias-corrected two-pass estimator

The small T bias of the two-pass estimator of λ has been a source of concern in the empirical
literature. As can be seen from (46) and (47) the bias of λ̂n is due to terms that involve dT
and σ2. Following Shanken (1992), σ2 can be consistently estimated (for a fixed T > k+ 1) by6

̂̄σ2

nT =

∑T
t=1

∑n
i=1 û

2
it

n(T − k − 1)
, (48)

where ûit = rit−âiT − β̂
′
i,T ft, and âiT and β̂i,T are the OLS estimators of ai and βi. Using this

result the bias-corrected version of the two-pass estimator is given by:

λ̃n =

[
B̂′nTMnB̂nT

n
− T−1̂̄σ2

nT

(
F′MTF

T

)−1
]−1(

B̂′nTMnr̄n
n

)
. (49)

To obtain the probability limit of λ̃n, we first note that since ̂̄σ2

nT →p σ
2, and n−1B̂′nTMnB̂nT →p

Σββ + σ2

T

(
F′MTF

T

)−1

, then

B̂′nTMnB̂nT

n
− T−1̂̄σ2

nT

(
F′MTF

T

)−1

→p Σββ, (50)

and the probability limit of λ̃n exists if Σββ is full rank, which requires all the K factors to
be strong. Note that the kth diagonal element of Σββ is given by plimn→∞n

−1
∑n

i=1(βik − β̄k)2,
which tends to zero if αk < 1.
Supposing that αk = 1 for all k, then for a fixed T > K + 1 and as n → ∞, we have (as

required)
λ̃n →p λ

∗
T = λ+ dfT , (51)

where dT is defined by (45). Shanken refers to λ
∗
T as "ex-post" risk premia to be distinguished

from λ, referred to as "ex ante" risk premia. See also section 3.7 of Jagannathan et al. (2010).

Remark 8 In short, bias-correction of two-pass estimator is not innocuous, and pre-supposes
that all the included factors are strong. The inclusion of a factor whose strength is below unity
can lead to ill-defined bias-corrected estimates if a suffi ciently large number of securities is
considered. Ironically, this deficiency of two-pass bias-corrected estimators starts to show up
only when n is suffi ciently large and one or more of the factors is not strong.

6 Asymptotic properties of the two-pass estimator when
both n and T are large

It is clear that the large n asymptotic distribution of the two-pass estimators, whether bias-
corrected or not, is not correctly centred when T is small. Furthermore, as argued above the
validity of the bias-corrected two-pass estimator requires all the risk factors under consideration
to be strong. Here we consider the asymptotic distribution of the two-pass estimator (without

6A simple proof of n consistency of of ̂̄σ2nT for σ2 is provided in sub-section A.3.2 of the Appendix.
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bias correction) when both n and T are large, whilst at the same time allowing for the possibility
that one or more of the risk factors are not strong. Accordingly, we consider the following scaled
version of the two-pass estimator given (39):

Dnλ̂nT = S−1
nTqnt, (52)

where
SnT = D−1

n B̂′nTMnB̂nTD−1
n , qnT =

(
D−1
n B̂′nTMnr̄n

)
,

and Dn is the K ×K diagonal matrix defined by (20). Write SnT as

SnT = D−1
n

(
B̂nT −BnT + BnT

)′
Mn

(
B̂nT −BnT + BnT

)
D−1
n ,

and recall from (41) that B̂nT − Bn = UnTGT , where UnT = (u1◦,u2◦, ...,un◦)
′, and GT =

MTF (F′MTF)−1. Then we have

SnT = D−1
n B′nMnBnD

−1
n + D−1

n G′TU′nTMnBnD
−1
n

+ D−1
n B′nMnUnTGTD−1

n + D−1
n G′TU′nTMnUnTGTD−1

n .

Similarly, using (43) we also have

qnT =
[(

D−1
n B′nMnBnD

−1
n

)
+
(
D−1
n G′TU′nTMnBnD

−1
n

)]
Dnλ

∗
T

+D−1
n B′nMnηn + D−1

n G′TU′nTMnηn
+ D−1

n B′nMnū + D−1
n G′TU′nTMnūn.

To derive the probability order of the two-pass estimator we need the following results estab-
lished in Lemma A.3:

D−1
n G′TU′nTMnBnD

−1
n = Op

(
T−1/2n−amin/2

)
, (53)

D−1
n B′nMnun = Op

(
T−1/2

)
, (54)

D−1
n G′TU′nTMnūn = Op

(
n(1−αmin)/2

T 3/2

)
+Op

(
n−1−αmin/2

)
, (55)

D−1
n G′TU′nTMnηn =

(√
n

T

)
Op

[
n−(αmin−αη)/2

]
, (56)

D−1
n G′T (U′nTMnUnT ) GTD−1

n = Op

(
n1−αmin

T

)
. (57)

Using the above results we have

SnT = D−1
n B′nMnBnD

−1
n +Op

(
T−1/2n−amin/2

)
+Op

(
n1−αmin

T

)
, (58)

and

qnT =
[(

D−1
n B′nMnBnD

−1
n

)
+Op

(
T−1/2n−amin/2

)]
Dnλ

∗
T (59)

+ D−1
n B′nMnηn + D−1

n B′nMnun +Op

(
n(1−αmin)/2

T 3/2

)
+Op

(
n−1−αmin/2

)
+

(√
n

T

)
Op

[
n−(αmin−αη)/2

]
.
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Also by Assumption 4,D−1
n B′nMnBnD

−1
n →p Σββ(α) > 0, as n, T →∞, whereα= (α1, α2, ..., αK)′.

Hence it follows that as n and T →∞, and SnT → Σββ(α) > 0, and overall we have

Dn

(
λ̂nT − λ∗T

)
= Σ−1

ββ (α)D−1
n B′nMnηn + Σ−1

ββ (α)D−1
n B′nMnun (60)

+Op

(
n−1−αmin/2

)
+Op

(
n(1−αmin)/2

T 3/2

)
+

(√
n

T

)
Op

(
n−(αmin−αη)/2

)
,

where

λ∗T = λ+ dfT = λ+
1

T

T∑
t=1

[ft − E(ft)] . (61)

6.1 Asymptotic distribution of two-pass estimator under zero pric-
ing errors

The asymptotic distribution of two-pass estimator critically depends on assumptions made
about the pricing errors, ηn. In the case where pricing errors are ignored the expression for
Dn

(
λ̂nT − λ∗T

)
reduces to

Dn

(
λ̂nT − λ∗T

)
= Σ−1

ββ (α)D−1
n B′nMnun +Op

(
n(1−αmin)/2

T 3/2

)
+Op

(
n−1−αmin/2

)
= op(1).

where op(1) here refers to an amalgam of terms that tend to 0 in probability. To obtain a
non-degenerate distribution we need scale up both sides by

√
T which yields

√
TDn

(
λ̂nT − λ∗T

)
= Σ−1

ββ (α)D−1
n B′nMn

(√
Tun

)
+Op

( √
T

n1+αmin/2

)
+Op

(
n(1−αmin)/2

T

)
.

(62)
The last two Op(.) terms tend to zero as n, T → ∞, so long as n/T → κ where c < κ < C.
Also note that∥∥Σ−1

ββ (α)D−1
n B′nMn

∥∥ = λ1/2
max

[
Σ−1
ββ (α)D−1

n B′nMnBnD
−1
n Σ−1

ββ (α)
]
→pλ

1/2
max

[
Σ−1
ββ (α)

]
< C,

and hence
T 1/2nαk/2

(
λ̂k,nT − λ∗kT

)
= Op(1), for k = 1, 2, ..., K. (63)

This is a generalization of the second part of Theorem 1 in Anatolyev and Mikusheva (2020).
They use a drifting parameter model similar to that used for weak instruments in which the
loadings, βik, of the weak factor drift to zero at rate

√
T to model the near degenerate rank.

Since they also assume n grows with T, this is equivalent to
√
n and corresponds to the special

case of our models with αk = 0.5. They only consider strong (αk = 1) and weak (αk = 1/2)
factors, though they also have other terms that come from missing factors.
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Under our assumptions and in absence of any pricing errors we obtain

√
TDn

(
λ̂nT − λ∗T

)
→d N

(
0,Σ−1

ββ (α)Hββ(α)Σ−1
ββ (α)

)
, (64)

where
Hββ(α) = plimn,T→∞

(
D−1
n B′nMnVuMnBnD

−1
n

)
, and Vu = (σij). (65)

The above result holds for different degrees of factor strength and reduces to familiar results
when αk = 1, namely √

nT
(
λ̂nT − λ∗T

)
→d N

(
0,Σ−1

ββHββΣ
−1
ββ

)
,

where Hββ = plimn,T→∞ (n−1B′nMnVuMnBn).
A consistent estimator of the asymptotic variance of λ̂nT − λ∗T is also given by

V̂ ar
(
λ̂nT − λ∗T

)
= T−1

(
B̂′nTMnB̂nT

)−1 (
B̂′nMnṼuMnB̂n

)(
B̂′nTMnB̂nT

)−1

, (66)

where Ṽu = (σ̃ij) represents a consistent estimator of Vu. Since Vu is assumed to be row
(column) bounded, it can be consistently estimated using the various thresholding procedures
advanced in the statistical literature. See, for example, Bickel and Levina (2008a, 2008b) and
Cai and Liu (2011). Here we suggest the threshold estimator proposed by Bailey, Pesaran and
Smith (2019, BPS), which does not require cross-validation and is shown to have desirable small
sample properties. Accordingly, we propose the following threshold estimator

σ̃ii = σ̂ii

σ̃ij = σ̂ij1
[
|ρ̂ij| > T−1/2cα(n)

]
, i = 1, 2, . . . , n− 1, j = i+ 1, . . . , n, (67)

where

σ̂ij =
1

T

T∑
t=1

ûitûjt, ρ̂ij =
σ̂ij√
σ̂iiσ̂jj

, ûit = rit − âi,T − β̂
′
i,T ft, (68)

and cp(n) = Φ−1
(
1− p

2nδ

)
, is a normal critical value function, p is the the nominal size of

testing of σij = 0, (i 6= j) and δ is chosen to take account of the n(n− 1)/2 multiple tests being
carried out. Monte Carlo experiments carried out by BPS suggest setting δ = 2. The variance
estimator given by (66) does not require a knowledge of the factor strength and applies to risk

factors of differing degrees. It can be shown that
∥∥∥Ṽu −Vu

∥∥∥ = Op

(
ln(n)√
T

)
.

As it stands the asymptotic distribution in (64) is very encouraging, but it is important to

note that the fast
√
nakT convergence rate obtained for

(
λ̂k,nT − λ∗kT

)
does not carry over to

the risk premia, λk, which is the primary object of interest. To this end, using (61) in (62) we
observe that

√
TDn

(
λ̂nT − λ

)
= Dn

(
1√
T

T∑
t=1

[ft − E(ft)]

)
+ Σ−1

ββ (α)D−1
n B′nMn

(√
Tun

)
(69)

+Op

( √
T

n1+αmin/2

)
+Op

(
n(1−αmin)/2

T

)
,
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where under Assumption 1 we have 1√
T

∑T
t=1 [ft − E(ft)] = Op(1). Now that the distribution

of the two-pass estimator is centered correctly around λ, the first term on the right hand side
of (69) is unbounded in n, and will eventually dominate the remaining terms. To avoid this
outcome we need to multiply both sides of (69) by D−1

n to obtain

√
T
(
λ̂nT − λ

)
=

1√
T

T∑
t=1

[ft − E(ft)] + D−1
n Σ−1

ββ (α)D−1
n B′nMn

(√
Tun

)
+ op(1), (70)

where ∥∥∥D−1
n Σ−1

ββ (α)D−1
n B′nMn

(√
Tun

)∥∥∥ ≤ ∥∥D−1
n

∥∥∥∥∥Σ−1
ββ (α)D−1

n B′nMn

(√
Tun

)∥∥∥
= Op

(
n−αk/2

)
,

and hence we end up with

√
T
(
λ̂nT − λ

)
=

1√
T

T∑
t=1

[ft − E(ft)] + op(1).

Interestingly enough, when pricing errors are ignored the asymptotic distribution of the two-pass
estimator around λ is not affected by factor strengths and is primarily governed by the distribu-
tion of the risk factors around their means. The asymptotic distribution of T−1/2

∑T
t=1 [ft − E(ft)]

can be obtained using standard results from covariance stationary multivariate time series lit-
erature. Also see Theorem 2 below.

6.2 Asymptotic distribution of two-pass estimator allowing for pric-
ing errors

In the more realistic case where there are pricing errors, using (60) and noting thatD−1
n B′nMnun =

Op

(
T−1/2

)
, we have

Dn

(
λ̂nT − λ∗T

)
= Σ−1

ββ (α)D−1
n B′nMnηn + op(1), (71)

assuming αmin > αη, and if n/T → κ < C as n, T →∞. The probability order ofD−1
n B′nMnηn,

is given by (32) and (33), depending on whether part (a) or part (b) of the pricing error
Assumption 5 is met. The weaker part (a) allows consistent estimation of the risk premia, λk,

but at the rather slow rate of n−(αk−αη2 ), assuming αmin > αη and if n and T → ∞ such that
n/T converges to a finite constant (inclusive of zero). The convergence of λ̂nT to λ is ensured
since under Assumption 1 we have dft = Op

(
T−1/2

)
. However, the asymptotic distribution

of λ̂nT − λ∗T will be dominated by the pricing error, unless stronger conditions in part (b) of
Assumption 5 is made. Under part (b) of Assumption 5 we have (using (33))

Dn

(
λ̂nT − λ∗T

)
= Op

(
nαη−αmin/2

)
+ op(1), (72)

and the effects of the pricing errors on the asymptotic distribution of the two-pass estimator of
risk premia vanish if αη < αmin/2. By definition (see (61) we have

Dn

(
λ̂nT − λ∗T

)
= Dn

(
λ̂nT − λ

)
− T−1Dn

T∑
t=1

[ft − E(ft)] ,
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which in conjunction with (72) yields

Dn

(
λ̂nT − λ

)
= T−1Dn

T∑
t=1

[ft − E(ft)] + op(1).

Hence, for the two-step estimator of the kth risk premia we have

nαk/2
(
λ̂k,nT − λk

)
=

(√
nak

T

)[
1√
T

T∑
t=1

[fkt − E(fkt)]

]
+ op(1). (73)

Therefore, under joint n and T asymptotic λ̂k,nT is correctly centred but its limiting distribution
depends on the strength of its underlying risk factor. When αk < 1, then nak

T
→ 0 as n and

T → ∞ and we end up with a degenerate distribution for λ̂k,nT . Only for strong factors with
αk = 1 the asymptotic distribution is non-degenerate, and can be written as

n1/2
(
λ̂k,nT − λk

)
=

(√
n

T

)[
1√
T

T∑
t=1

[fkt − E(fkt)]

]
+ op(1),

or equivalently (after post multiplication by
√
T/n)

√
T
(
λ̂k,nT − λk

)
=

[
1√
T

T∑
t=1

[fkt − E(fkt)]

]
+ op(1).

The following theorem gives the asymptotic distribution for the case where a subset of Ks

factors, denoted by fst, are strong.

Theorem 2 Consider the multi-factor linear return model (38) and the associated risk premia,
λ, defined by (37), and suppose that Ks of K factors are strong, and the remaining K − Ks

factors are weak, such that α= (τ ′Ks , αKs+1, αKs+2, ...., αK)′, where τKs is a Ks × 1 of ones,
and αk < 1 for k = Ks + 1, Ks + 2, ...., K. Further suppose that Assumptions 1, 2, 4, and part
(b) of Assumption 5 hold, and αη < amin/2, where αmin = min(αKs+1, αKs+2, ...., αK). Denote
the strong factors by fst and let Vs(p) = E

[
(fst − µsf ) (fs,t−p − µsf )′

]
, such that the long run

covariance matrix defined by

Vs= Vs(0) +
∞∑
p=1

(Vs(p) + V′s(p)) , (74)

is positive definite. Denote the two-pass estimator of the risk premia associated to the Ks strong
factors by λ̂s,nT , and further suppose that n and T →∞ such that n/T → κ, with 0 < κ < C.
Then √

T
(
λ̂s,nT − λs

)
→d N(0,Vs). (75)

The proof of this theorem follows directly from (73) and the application of standard re-
sults from stationary time series processes applied to T−1/2

∑T
t=1 [fst − E(fst)]. Also Vs can be

consistently estimated by

V̂s = V̂s(0)+

m∑
p=1

b(p,m)
(
V̂s(p) + V̂′s(p)

)
,
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where V̂s(p) = T−1
∑T

t=p+1

(
fst − f̄sT

) (
fs,t−p − f̄sT

)′
, f̄sT = T−1

∑T
t=1 fst, b(p,m) is the kernel

or lag window, and m is the bandwidth. This is a standard HAC estimator where the kernel
and bandwidth must be chosen carefully to ensure that m/T tends to zero at a suffi ciently fast
rate, and V̂s is invertible.

7 Asymptotic properties of pooled R squared

A common procedure to judge the effectiveness of a factor model is to look at the fit, measured
by R2, of regressions explaining returns. There are a number of ways this can be done. One
possibility is to use the average the R2 of the first pass regression. Fama and French (2015p12)
report average R2 for the 5 factor model for various ways of constructing portfolios. But
averages are sensitive to outliers. Another possibility is the R2 of the second pass Fama-
MacBeth regression. Kleibergen and Zhan (2015) consider the large sample distributions of this
R2 when the observed proxy factors are weakly correlated with the true unobserved factors.
This implies an unexplained factor structure in the first pass residuals; a large estimation error
in the estimated beta’s; and possibly large spurious values of the second pass R2. A third
possibility is the pooled R2 which we consider.
Consider first stage regressions of returns rit on a vector of K factors ft, for securities

i = 1, 2, ..., n and time periods t = 1, 2, ..., T

rit = ai + β′ift + uit

average these over time, where r̄iT =
∑T

t=1 rit and ūiT =
∑T

t=1 uit :

r̄iT = ai + β′if̄T + ūiT .

The pooled R squared is then given by

PR2 = 1− (nT )−1∑T
t=1

∑n
i=1 u

2
it

(nT )−1∑T
t=1

∑n
i=1 (rit − r̄iT )2

.

Under our assumptions, as shown in Appendix A.3.3, it follows that (for both n and T large)

PR2
nT =

n−1
∑n

i=1 β
′
iΣfTβi/σ̄

2
n + op(1)

1 + n−1
∑n

i=1 β
′
iΣfTβi/σ̄

2
n + op(1)

.

Hence, the order of PR2
nT is governed by the pooled signal-to-noise ratio defined by

s2
nT =

n−1
∑n

i=1 β
′
iΣfTβi

σ̄2
n

,

and has the same expansion rate as
∑K

k=1 (n−1
∑n

i=1 β
2
ik). Therefore, the limit of PR

2
nT is

dominated by the strongest factor. For example, in the case where only one of the factors is
strong, say f1t, then α1 = 1 and αk < 1 for k = 2, 3, ...K, and we have

PR2
nT →

(
V ar(f1t)

σ̄2n

)
[n−1limn→∞

∑n
i=1 β

2
i1]

1 +
(
V ar(f1t)

σ̄2n

)
[n−1limn→∞

∑n
i=1 β

2
i1]

> 0.
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where by assumption n−1limn→∞
∑n

i=1 β
2
i1 > 0. This finding is in line with the result of The-

orem 2 that only risk premia of strong factors can be identified. The effects of factors with
strength below unity will vanish eventually. Therefore, the use of semi-strong or weak fac-
tors in estimation of risk premia can be justified only by appeal to market ineffi ciency that
might prevail when the number of available securities is not suffi ciently large and the effects of
semi-strong factors do not vanish and could be contributing to the pooled R2.

8 Empirical evidence on the strength of the Fama-French
5 risk factors

The earlier sections demonstrated the importance of knowing the strength of the factors both
for assessing the relative importance of pricing errors and for the convergence properties of the
estimators of the risk premia in terms of n and T . This section uses the procedure suggested by
Bailey, Kapetanios and Pesaran (2021, BKP) to estimate the strength of the five factors sug-
gested by Fama and French (2015), which have been used extensively in the finance literature.
We first provide a brief overview of the BKP estimation method.

8.1 Estimation Procedure

BKP propose estimating the strength of a factor from the proportion of the n securities in
which the factor loading is significant in the first pass time-series regression. Denote by tik
the t-statistic of the estimated loading of factor k for security i and consider the proportion of
regressions where the estimated factor loadings, βik, is statistically significant:

π̂k =

∑n
i=1 1 [|tik| > cp(n)]

n
, (76)

where 1 (A) = 1 if A > 0, and zero otherwise. To control for the multiple testing problem, the

critical value function, cp(n) = Φ−1
(
1− p

2nc

)
= 	

(√
ln(n)

)
, is used, where Φ−1(·) denotes the

inverse cumulative distribution function of the standard normal distribution, p is the nominal
size of the multiple tests, and c is a small positive constant that controls the overall size of
the multiple tests and ensures the consistency of the estimator of αk. BKP use c = 0.25 and
p = 0.1.Monte Carlo results indicate that the estimates of factor strength do not seem to be very
sensitive to the choice of c, and even less so to the choice of p. Note that limn→∞c

2
p(n)/ln(n) =

2c, and does not depend on p.
The estimator of the strength of factor k, is given by

α̂k = 1 + ln(π̂k)/ln(n). (77)

BKP derive its asymptotic distribution and give analytical expressions for its asymptotic stan-
dard errors for values of αk in the range 1/2 < αk < 1. The confidence intervals become quite
narrow as αk gets closer to unity. When αk = 1, the distribution of α̂k tends to its true value
of 1, at an exponential rate, a convergence rate they label as ultra consistency.
The relationship between αk and πk in (77) can be used to examine the association between

αk and the amount of information in the sample about the factor. With n = 400 securities the
condition αk < 1/2 implies that the factor loading is non-zero in around 20 out of 400 securities.
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The fact that around 380 out of the 400 beta estimates are zero in the second pass regression
makes it clear that factors with αk < 1/2 cannot be distinguished from the idiosyncratic errors.
In comparison, in the case of a factor with strength αk = 0.9, it will have non-zero loadings
in around 220 of the 400 securities under consideration. As αk approaches unity, almost all
securities will be affected by the factor.
Factor strength is determined by the number as well as the size of non-zero loadings, βi.

While BKP focus on the number of non zero factors, other papers assume that

βi = βin = δi/n
(1−α)/2 (78)

with δi > c > 0 for all i. See, for example, Kleibergen (2009) and Onatski (2012) who consider
the above specification with α = 1/2. This specification requires all factor loadings to decline at
the same rate with n, when α < 1. But uniformly declining values for βin, as n increases, make
little empirical sense and there does not seem to be any suggestions in the literature on how to
estimate α under (78). The BKP procedure, of using the number of non-zero factor loadings
to determine factor strength, is empirically more sensible and easier to implement than (78).

8.2 The strength of the Fama-French factors

Our empirical application uses the BKP procedure to obtain rolling estimates of the strength
of the five Fama and French (2015) factors, FF5. The loadings are obtained from regressions
in which all five factors are included. We use all stocks in the S&P 500 portfolio that have at
least 10 years of return history, for each month from September 1989 to May 2018. The list is
updated monthly and includes at least 400 stocks, with an average number of 442 stocks. This
procedure avoids the possible survivorship bias caused by the changing composition of S&P 500
portfolio.
The data for the FF5 factors are taken from Kenneth French’s web pages.7 The factors

are: market, size, value, profitability, and investment. The market factor, the excess market
return, differs from the average of the roughly 400 stocks we consider. In particular, it is value
weighted and has a much wider coverage. It includes all CRSP firms incorporated in the US
and listed on the NYSE, AMEX, or NASDAQ that have data for that month. The risk free
rate is the one-month Treasury bill rate.
In addition to the market factor, the original three Fama and French (1993) factors included

a size factor, SMB, small minus big measured as the return on a diversified portfolio of small
stocks minus the return on a diversified portfolio of big stocks, and a value factor, HML, high
minus low measured as the return on a portfolio of high book to market stocks minus the return
on a low portfolio. To these three, Fama and French (2015) added a profitability factor, RMW
measured as the difference between the returns on portfolios of stocks with robust and weak
profitability, and an investment factor, CMA measured as the difference between portfolios of
low and high investment firms, which they call conservative and aggressive.
The time series regressions are of the form:

rit − rft = ai +
5∑

k=1

βikfkt + uit, (79)

7The FF factors are obtained from https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
Excess returns on individual securities were originally compiled by Takashi Yamagata and extended to May
2018 by Natalia Bailey. For further details see Appendix C of Pesaran and Yamagata (2018).
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where the excess return for each stock, i = 1, 2, ...n, is regressed on a constant and the five
factors over rolling ten year samples, τ = 1, 2, ..., 345, where τ denotes the last month of the
ten year rolling sample from September 1989 to May 2018. The t statistics for the hypotheses
βik = 0 are then used to calculate (76) and (77).
Figure 1 plots the 10 year rolling estimates, α̂τk, for k = Mkt, SMB, HML, RMW, and

CMA. The market factor always has a strength that is either one or very close to it, with little
variation over time. The other four factors are much weaker with a great deal of variation
over time. The time average of the rolling estimates of the strength of five factors in order of
strength are 0.994 for the market factor, 0.725 for SMB, 0.739 for HML, 0.722 for RMW, and
0.622 for CMA. The lowest value for the strength of the market factor is 0.982 in August 2001,
the highest value for the strength of any other factor is 0.821 for RMW in October 2001.
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Figure 1: Rolling estimates of factor strength for the five
Fama-French factors
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Figure 2: Rolling estimates of factor strength for the market factor
with its 95 percent error band

The time profile of the rolling estimates of factor strengths together with their 95 per
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cent standard error bands are given in Figures 2-6. As can be seen, the error band for the
market factor is very tight indeed, such that in many instances the upper and lower bounds
almost coincide, reflecting the ultra-consistency property of the estimator when its true value
is close to unity. The error bands for other factors are wider given that they are weaker in
strength, nevertheless they are still reasonably tight. This suggest that the factor strengths
are estimated fairly precisely, and their variations cannot be attributed to sampling variation
alone. The results also suggest that the importance of the additional four factors is subject
to substantial structural change, which adds another dimension to risk analysis. For instance
the lowest strength for any factor is for CMA in January 2011 at 0.54, with a 95% confidence
interval between 0.51 and 0.57; a small interval compared to its time variation. In general,
higher values of strength are associated with smaller confidence intervals.
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Figure 3: Rolling estimates of factor strength for
the SMB factor with its 95 percent error band
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Figure 4 Rolling estimates of factor strength for
the HML factor with its 95 percent error band
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Figure 5: Rolling estimates of factor strength for
the RMW factor with its 95 percent error band
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Figure 6: Rolling estimates of factor strength for
the CMA factor with its 95 percent error band

BKP follow a similar procedure but use a different first pass regression. Different first
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pass regressions will produce different proportions of significant coeffi cients and thus different
estimates of factor strength.8 Whereas we use all five factors in the first pass regression, they
used just two factors in each first pass regression. These were the market factor and one other
factor taken in turn from the 145 factors considered by Feng et al. (2020). The estimates
they obtain are very similar. BKP also find that the market factor is the only strong factor,
never falling below 0.95 in strength, while none of the other 144 factors considered has strength
exceeding 0.95. After the market factor, with a time averaged strength of 0.99, the next
strongest factor is leverage, which has a time averaged strength of 0.827.

9 Concluding remarks

The Fama-MacBeth two-pass estimator has been routinely applied to multi-factor models to
estimate risk premia. This literature typically assumes that all the risk factors under consid-
eration are strong, and that there are no pricing errors. In this paper we extend the analysis
by considering risk factors that are not strong, whilst at the same time allowing for a less re-
strictive degree of pricing errors than the bounded condition assumed by Ross in his theoretical
derivations of APT.
The main message of our analysis for empirical asset pricing is that pricing errors and factor

strength matter for consistent estimation of risk premia and subsequent inference, thus an
estimate of factor strength is required before attempting to estimate risk premia by the two
pass method. The method advanced by BKP (2021) can be used to estimate factor strengths,
which then allows investigators to focus their analysis on the strong factors, whilst including
additional semi-strong factors to reduce residual cross-correlations. It is possible to allow for a
moderate degree of pricing error so long as the risk factors under consideration are suffi ciently
strong.
The theoretical analysis highlights the importance for the estimation of risk premia of having

panels with suffi ciently large n and T . This is likely to pose important challenges in practice,
since factor loadings are likely to be subject to a significant degree of time variation. We
have assumed K the number of possible factors is given and have not discussed how one selects
factors, but given our results it is clear that factor selection and measurement of factor strength
need to be done jointly.

8However, the Monte Carlo experiment 4 in BKP suggests that the estimates of αk for strong factors will
remain close to unity irrespective of the model specification.
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A Mathematical Appendix

A.1 Introduction

We first state and establish a number of lemmas and provide a proof of Theorem 1 in the paper.

A.2 Statement of lemmas and their proofs

Lemma A.1 Consider the errors {uit, i = 1, 2, ..., n; t = 1, 2, ..., T} in the factor model defined
by (38), and suppose that Assumption 2 holds. Then for any t and t′ (as n→∞)

an,tt′ =
1

n

n∑
i=1

uituit′ = Op

(
n−1/2

)
, for t 6= t′, (A.1)

bn,t =
1

n

n∑
i=1

(
u2
it − σ2

i

)
→p 0, for t = t′, (A.2)

cn,t =
1

n

n∑
i=1

(uitui◦ −
1

T
σ2
i )→p 0, (A.3)

and

V ar(cn,t) =
1

T 2

[
1

n2

n∑
i=1

n∑
j=1

Cov(u2
it, u

2
jt)

]
= O

(
n−1T−2

)
, (A.4)

where σ2
i = E(u2

it), and ui◦ = T−1
∑T

t=1 uit.

Proof. Since {uit} is serially uncorrelated then E(uituit′) = 0 for t 6= t′ and E (an,tt′) = 0 if
t 6= t′. Also

V ar(an,tt′) =
1

n2

n∑
j=1

n∑
i=1

E (uituit′ujtujt′)

=
1

n2

n∑
j=1

n∑
i=1

E (uitujt)E (uit′ujt′)

=
1

n2

n∑
j=1

n∑
i=1

σ2
ij ≤

1

n2

n∑
j=1

(
n∑
i=1

|σij|
)2

.

Since by Assumption 2, supj
∑n

i=1 |σij| < C, then

V ar(an,tt′) ≤
1

n
sup
j

n∑
i=1

|σij| = O
(
n−1
)
,

which establishes (A.1). Similarly, since E (u2
it − σ2

i ) = 0, then E(bn,t) = 0 and

V ar (bn,t) =
1

n2

n∑
i=1

n∑
j=1

Cov(u2
it, u

2
jt),
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which tends to zero by part (b) of Assumption 2, and result (A.2) is established. To prove
(A.5) set zit = uitui◦ − 1

T
σ2
i , and note that uitui◦ = 1

T

∑T
s=1 uituis, and given that {uit} is

serially uncorrelated then E(zit) = 0 and we have E(cn,t) = 0. Also

V ar(cn,t) =
1

n2

n∑
i=1

n∑
j=1

Cov(zit, zjt) (A.5)

and
Cov(zit, zjt) = E(uitujtui◦uj◦)−

1

T 2
σ2
i σ

2
j .

Further

E (uitujtui◦uj◦) =
1

T 2
E

(
uitujt

T∑
s=1

T∑
s′=1

uisujs′

)
,

and since {uit} is serially uncorrelated, then E (uitujtui◦uj◦) = 1
T 2
E(u2

itu
2
jt), which yields

Cov(zit, zjt) =
1

T 2

[
E(u2

itu
2
jt)−

1

T 2
σ2
i σ

2
j

]
=

1

T 2
Cov(u2

itu
2
jt).

Using this result in (A.5) we have

V ar(cn,t) =
1

T 2

[
1

n2

n∑
i=1

n∑
j=1

Cov(u2
it, u

2
jt)

]
.

Therefore, under part (b) of Assumption (2), it follows that V ar(cn,t) = O (n−1T−2), as re-
quired. Result (A.3) also follows by Markov inequality.

Lemma A.2 Consider the n×T error matrixUnT = (u1◦,u2◦, ...,un◦)
′ , where ui◦ = (ui1, ui2, ..., uiT )′ ,and

the n × 1 vector of pricing errors ηn = (η1, η2, ..., ηn)′, and suppose that Assumptions 2 and 5
hold, with αη < 1/2. Then for a fixed T and as n→∞ we have

U′nTMnUnT

n
→p σ

2IT , (A.6)

U′nTMnu

n
→p

σ2

T
τ T , (A.7)

U′nTMnηn
n

→p 0 (A.8)

where Mn = In − 1
n
τ nτ

′
n, u = (u1◦, u2◦, ..., un◦)

′, ui◦ = T−1
∑T

t=1 uit, σ
2 = limn→∞

1
n

∑n
i=1 σ

2
i ,

and τ n and τ T are, respectively, n× 1 and T × 1 vectors of ones.

Proof. To establish (A.6) note that

n−1U′nTMnUnT = n−1U′nTUnT −
(

U′nTτ n
n

)(
τ ′nUnT

n

)
and n−1U′nTUnT = n−1

∑n
i=1 ui◦u

′
i◦, where ui◦u

′
i◦ = (uituit′), for t, t′ = 1, 2, ...T . We first note

that the tth element of n−1U′τ n is given by u◦t = n−1
∑n

i=1 uit and under Assumption (2),
u◦t →p 0, and we have

n−1U′τ n →p 0. (A.9)

A2



Also, by results (A.1) and (A.2) of lemma A.1, it follows that n−1U′nTUnT→p σ
2IT , and in

conjunction with (A.9) yields (A.6) as required. To establish (A.7) note that

n−1U′nTMnū = n−1U′nT ū−
(

U′nTτ n
n

)(
τ ′nUnT

n

)
, (A.10)

where n−1U′nT ū = (φ1,n, φ2,n, ..., φT,n)′, with φt,n = 1
n

∑n
i=1 uitūiT , which can be written equiv-

alently as

φt,n =
1

n

n∑
i=1

(uitūiT −
1

T
σ2
i ) +

1

T
σ̄2
n,

where σ̄2
n = 1

n

∑n
i=1 σ

2
i . Hence, by result (A.3) of Lemma A.1, φt,n →p

1
T
σ̄2, which in turn

establishes that n−1U′nT ū →p
1
T
σ̄2τ T . Also by (A.9) the second term of (A.10) tends to zero

in probability and (A.7) follows. Finally to establish (A.8), note that∥∥∥∥U′nTMnηn
n

∥∥∥∥ ≤ ∥∥∥∥U′nTMn√
n

∥∥∥∥∥∥∥∥ ηn√n
∥∥∥∥ = λ1/2

max

(
U′nTMnUnT

n

)(
η′nηn
n

) 1
2

.

Also using (A.6) it follows that λ1/2
max

(
U′nTMnUnT

n

)
→p σ

2 < C, and by part (a) of Assumption

5 n−1η′nηn = O (nαη−1), and as required
∥∥∥U′nTMnηn

n

∥∥∥→p 0, if αη < 1/2.

Lemma A.3 Consider the n×T error matrixUnT = (u1◦,u2◦, ...,un◦)
′ , where ui◦ = (ui1, ui2, ..., uiT )′ ,

the n × k matrix of factor loadings, Bn = (β◦1,β◦2, ...,β◦K), where β◦k = (β1k, β2k, ..., βnk)
′,

the n × 1 vector of pricing errors ηn = (η1, η2, ..., ηn)′, with a pervasiveness coeffi cient, αη,
Dn = diag(nα1/2, nα2/2, ...., nαK/2), αmin = min(α1, α2, ..., αK), GT = MTF (F′MTF)−1, Mn =
In − 1

n
τ nτ

′
n, u = (u1◦, u2◦, ..., un◦)

′, ui◦ = T−1
∑T

t=1 uit, and τ n and τ T are, respectively, n× 1
and T × 1 vectors of one. Suppose that Assumptions 1, 2 and 4 hold. Then

D−1
n B′nMnu = Op

(
T−1/2

)
, (A.11)

D−1
n G′TU′nTMnūn = Op

(
n(1−αmin)/2

T 3/2

)
+Op

(
n−1−αmin/2

)
. (A.12)

D−1
n G′TU′nTMnηn =

(√
n

T

)
Op

[
n−(αmin−αη)/2

]
, (A.13)

D−1
n G′TU′nTMnBnD

−1
n = Op

(
T−1/2n−amin/2

)
(A.14)

D−1
n G′T (U′nTMnUnT ) GTD−1

n = Op

(
n1−αmin

T

)
. (A.15)

Proof. To establish (A.11), noting that

u′MnBnD
−1
n =

[
ū′
(
β◦1 − τnβ̄1

)
D−1
n , ū′

(
β◦2 − τnβ̄2

)
D−1
n , ..., ū′

(
β◦K − τnβ̄K

)
D−1
n

]
,

then it follows that the kth element ofD−1
n B′nMnu is given by ck,nT = n−αk/2

∑n
i=1

(
βik − β̄k

)
ūiT ,

and we have E (ck,nT ) = 0, and

V ar (ck,nT ) = n−αk
n∑
i=1

n∑
i=1

(
βik − β̄k

) (
βjk − β̄k

)
E (ui◦uj◦) ,

A3



with E (ui◦uj◦) = T−1σij. Hence (recalling that Vu = (σij))

V ar (cnT,k) = T−1n−αk
n∑
i=1

n∑
i=1

σij
(
βik − β̄k

) (
βjk − β̄k

)
= T−1n−αk

(
β◦k − τnβ̄k

)′
Vu

(
β◦k − τnβ̄k

)
≤ T−1n−αk

(
β◦k − τnβ̄k

)′ (
β◦k − τnβ̄k

)
λmax (Vu) .

But under Assumptions (1) and (2) λmax (Vu) < C, and
(
β◦k − τnβ̄k

)′ (
β◦k − τnβ̄k

)
= 	 (nαk),

and overall V ar (cnT,k) = O (T−1). Thus byMarkov inequality it follows that cnT,k = Op

(
T−1/2

)
,

for k = 1, 2, ..., K, and result (A.11) follows. Similarly, to establish (A.12) using G′T =

(T−1F′MTF)
−1
T−1F′MT we note that

D−1
n G′TU′nTMnū = D−1

n

(
T−1F′MTF

)−1 (
T−1F′MTU′nTMnū

)
. (A.16)

By assumption T−1F′MTF is a positive definite matrix and ‖D−1
n ‖ = λmax(D

−1
n ) = n−αmin/2,

where αmin = min(α1, α2, ..., αK). Also

T−1F′MTU′nTMnū =
1

T
F′MTU′nT ū− F′MT

(
U′nTτ n
T

)(
τ ′nUnT

n

)
,

= qa,nT − qb,nT (A.17)

Further n−1U′nT ū = (φ1,n, φ2,n, ..., φT,n)′ , where

φt,n =
1

n

n∑
i=1

uitūiT = cn,t +
1

T
σ̄2
n,

cn,t = n−1
∑n

i=1 zit, zit = uitui◦ − 1
T
σ2
i , and σ̄

2
n = 1

n

∑n
i=1 σ

2
i . Then the k

th element of qanT can
be written as

qak,nT =
(n
T

) T∑
t=1

(fkt − f̄k)φtn =
(n
T

) T∑
t=1

(fkt − f̄k)
(
cn,t +

1

T
σ̄2
n

)

=
(n
T

) T∑
t=1

(fkt − f̄k)cn,t.

Under Assumption 2 E(zit) = 0, and cn,t and (fkt− f̄k) are independently distributed (since uit
and fkt are independently distributed). Then E

(
qak,nT

)
= 0 and since uit are serially uncorre-

lated we also have

V ar
(
qak,nT |fk◦

)
=
(n
T

)2
T∑
t=1

(fkt − f̄k)2V ar (cn,t) ,

and using result (A.4) in Lemma A.1 we have

V ar
(
qak,nT |fk◦

)
=

(
n2

T

){
T−1

T∑
t=1

(fkt − f̄k)2 1

T 2

[
1

n2

n∑
i=1

n∑
j=1

Cov(u2
it, u

2
jt)

]}
.
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However, under part b of Assumption 2 1
n

∑n
i=1

∑n
j=1Cov(u2

it, u
2
jt) < C, and it follows that

(recall that T−1
∑T

t=1(fkt − f̄k)2 < C)

V ar
(
qak,nT |fk◦

)
≤ C

(
n2

T

)(
1

nT 2

){
T−1

T∑
t=1

(fkt − f̄k)2

}
= O

( n
T 3

)
. (A.18)

Hence qak,nT = Op

( √
n

T 3/2

)
, and since K is fixed establishes that

qanT = Op

( √
n

T 3/2

)
. (A.19)

Consider now the second term of (A.17) and note that∥∥qbnT∥∥ ≤ ∥∥∥∥F′MTU′nTτ n
T

∥∥∥∥∥∥∥∥τ ′nUnT

n

∥∥∥∥ , (A.20)

where 1
n
τ ′nUnT = (ū◦1, ū◦2, ..., ū◦T ), and

∥∥∥∥τ ′nUnT

n

∥∥∥∥ =

(
T∑
t=1

ū2
◦t

)1/2

= Op

(√
T

n

)
. (A.21)

Also the kth element of T−1F′MTU′nTτ n is given by

sk,nT = T−1

T∑
t=1

(fkt − f̄k)ū◦t,

Since ū◦t is serially uncorrelated and distributed independently of fkt′ for all t and t′, it then
follows that E (sk,nT ) = 0, and

V ar (sk,nT |fk◦ ) = T−2

T∑
t=1

(fkt − f̄k)2E
(
ū2
◦t
)

= T−1

(
T−1

T∑
t=1

(fkt − f̄k)2

)(
n−2

n∑
i=1

n∑
j=1

σij

)
.

But under Assumption 2, n−1
∑n

i=1

∑n
j=1 |σij| < C, and under Assumption 1, T−1

∑T
t=1E

[
(fkt − f̄k)2

]
<

C, overall V ar (sk,nT ) = O
(

1
nT

)
, which establishes that sk,nT = Op

(
n−1/2T−1/2

)
, and hence

T−1F′MTU′nTτ n = Op

(
n−1/2T−1/2

)
considering that K is fixed. Now using this result and

(A.21) in (A.20), now yields qbnT = Op (n−1). Using this result together with (A.19) in (A.17)
we have

T−1F′MTU′nTMnū =Op

( √
n

T 3/2

)
+Op

(
n−1
)
,

which if used in (A.16) establishes (A.12). Consider now (A.13) and note that

D−1
n G′TU′nTMnηn = T−1D−1

n

(
T−1F′MTF

)−1
(F′MTU′nTMnηn) , (A.22)

and as established already
∥∥∥D−1

n (T−1F′MTF)
−1
∥∥∥ = Op

(
n−αmin/2

)
. Also

‖F′MTU′nTMnηn‖2 ≤ ‖F′MTU′nT‖2 ‖Mnηn‖2 ,
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where ‖F′MTU′nT‖2 =
[
E ‖F′MTU′nT‖

2]1/2 and ‖Mnηn‖2 =
[
E ‖Mnηn‖

2]1/2. Consider the
first term and note that its (k, i) element of F′MTU′nT is given by

∑T
t=1(fkt − f̄k)uit. Then

‖F′MTU′nT‖
2 ≤ ‖F′MTU′nT‖

2
F ≤

K∑
k=1

n∑
i=1

(
T∑
t=1

(fkt − f̄k)uit

)2

=
K∑
k=1

n∑
i=1

T∑
t=1

T∑
t′=1

(fkt − f̄k)(fkt′ − f̄k)uituit′ ,

and since uit are serially correlated we have (note that K is fixed)

E ‖F′MTU′nT‖
2 ≤

K∑
k=1

n∑
i=1

T∑
t=1

(fkt−f̄k)2σ2
i = nTK

(
T−1K−1

K∑
k=1

T∑
t=1

(fkt − f̄k)2

)(
n−1

n∑
i=1

σ2
i

)
= O (nT ) .

Also

E ‖Mnηn‖
2 =

n∑
i=1

E (ηi − η̄)2 ≤
n∑
i=1

E
(
η2
i

)
= O (nαη) .

Hence
‖F′MTU′nTMnηn‖ ≤ O

(
nαη/2

)
Op

(√
nT
)

Using this result in (A.22) now yields

D−1
n G′TU′nTMnηn = T−1Op

(
n−αmin/2

)
O
(
nαη/2

)
Op

(√
nT
)

=

(√
n

T

)
Op

[
n−(αmin−αη)/2

]
,

as required by (A.13). To establish (A.14) using G′T = (T−1F′MTF)
−1
T−1F′MT we note that

D−1
n G′TU′nTMnBnD

−1
n = T−1D−1

n

(
T−1F′MTF

)−1
F′MTU′nTMnBnD

−1
n . (A.23)

Since (T−1F′MTF)
−1 is bounded (by assumption), we focus on theK×K matrixF′MTU′nTMnBnD

−1
n

and note that its (k, k′) element is given by

pnT (k, k′) =
n∑
i=1

T∑
t=1

(fkt − f̄k)
(
βik′ − β̄k′
nαk′/2

)
uit.

SinceK is fixed to obtain the probability order of F′MTU′nTMnBnD
−1
n it is suffi cient to consider

the probability order of pnT (k, k′) for given k, k′ = 1, 2, ..., K. To this end we note that since
uit is distribute independently of fkt′ and βjk for all i, j, tand t′, then E [pnT (k, k′)] = 0 and
(conditional on βik fkt) we have

V ar [pnT (k, k′)] =
n∑
i=1

n∑
j=1

T∑
t=1

T∑
t′=1

E (uitujt′) (fkt − f̄k)(fkt′ − f̄k)
(
βik′ − β̄k′
nαk′/2

)(
βjk′ − β̄k′
nαk′/2

)

=

n∑
i=1

n∑
j=1

T∑
t=1

σij(fkt − f̄k)2

(
βik′ − β̄k′
nαk′/2

)(
βjk′ − β̄k′
nαk′/2

)

= T

[
T−1

T∑
t=1

(fkt − f̄k)2

]
n∑
i=1

n∑
j=1

σij

(
βik′ − β̄k′
nαk′/2

)(
βjk′ − β̄k′
nαk′/2

)
. (A.24)
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But T−1
∑T

t=1(fkt − f̄k)2 < C, and
n∑
i=1

n∑
j=1

σij

(
βik − β̄k
nαk/2

)(
βjk − β̄k
nαk/2

)
= δ′k,nVuδk,n,

where δk =
[(

β1k−β̄k
nαk/2

)
,
(
β2k−β̄k
nαk/2

)
, ...,

(
βnk−β̄k
nαk/2

)]′
, andVu = (σij). Also δ′kVuδk ≤ (δ′kδk)λmax (Vu) ,

and under Assumptions 2 and 1, λmax (Vu) < C and

δ′kδk = n−αk
n∑
i=1

(
βik − β̄k

)2
< C.

Using this result in (A.24) it now follows that that V ar [pnT (k, k′)] = O (T ), and sinceE [pnT (k, k′)] =

0, then pnT (k, k′) = Op

(√
T
)
. From this it also follows that F′MTU′nTMnBnD

−1
n = Op

(√
T
)
,

which if used in (A.23) yields D−1
n G′TU′nTMnBnD

−1
n = Op

(
T−1/2n−amin/2

)
as required by

(A.14). Consider now (A.15) and replacing GT in terms of F we have

D−1
n G′T (U′nTMnUnT ) GTD−1

n

= T−2D−1
n

(
T−1F′MTF

)−1
F′MT (U′nTMnUnT ) MTF′

(
T−1F′MTF

)−1
D−1
n .

Let A = F′MTU′nTMn= [anT (k, i)], and note that

anT (k, i) =
T∑
t=1

(fkt − f̄k) (uit − ūiT ) .

Then F′MTU′nTMnUnTMTF = AA′ = [snT (k, k′)], where

snT (k, k′) =
n∑
i=1

anT (k, i) anT (k′, i)

=
n∑
i=1

T∑
t=1

T∑
t′=1

(fkt − f̄k)(fk′t′ − f̄k′) (uit − ūiT ) (uit′ − ūiT )

E [snT (k, k′) |F ] =
n∑
i=1

T∑
t=1

(fkt − f̄k)(fk′t − f̄k′)E (uit − ūiT )2

= n

(
1− 1

T

)(
n−1

n∑
i=1

σ2
i

)
T∑
t=1

(fkt − f̄k)(fk′t − f̄k′).

Hence
E (F′MTU′nTMnUnTMTF |F) = n (T − 1) σ̄2

n

(
T−1F′MTF

)
,

and

T−2D−1
n

(
T−1F′MTF

)−1
F′MT (U′nTMnUnT ) MTF′

(
T−1F′MTF

)−1
D−1
n

= n (T − 1) σ̄2
nT
−2D−1

n

(
T−1F′MTF

)−1 (
T−1F′MTF

) (
T−1F′MTF

)−1
D−1
n

= n (T − 1) σ̄2
nT
−2D−1

n

(
T−1F′MTF

)−1
D−1
n

= Op

(n
T
n−αmin

)
,

as required.
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A.3 Proof of theorems and related results

A.3.1 Proof of Theorem 1

Consider the two-pass estimator of λ defined by (39), and to simplify notations, write it as

λ̂nT =

(
B̂′MnB̂nT

n

)−1(
B̂′nTMnr̄

n

)
, (A.25)

where B̂nT = (β̂1, β̂2, ..., β̂n)′, r̄ = (r̄1, r̄2, ..., r̄n)′, r̄i = T−1
∑T

t=1 rit,

β̂i = (F′MTF)−1F′MT ri◦, (A.26)

and ri◦ = (ri1, ri2, ..., riT )′. Under the factor model (38)

ri◦ = αiτ T + Fβi + ui◦, (A.27)

where ui◦ = (ui1, ui2, ..., uiT )′, and hence

β̂i = βi + (F′MTF)−1F′MTui◦. (A.28)

Stacking these results over i yields:

B̂nT = Bn+UnTGT (A.29)

where UnT= (u1◦,u2◦, ...,un◦)
′, and

GT = MTF(F′MTF)−1 (A.30)

Also using result (43) in the paper we have (in terms of the simplified notations used here)

r̄ =λ0τ n + Bnλ
∗
T + ū+η (A.31)

where
λ∗T = λ+ dT , and dfT = f̄T − E

(
f̄T
)
. (A.32)

and ū = (ū1◦, ū2◦, ..., ūn◦)
′. To derive the asymptotic limit of λ̂nT as n → ∞, when T is fixed,

we first consider the probability limits of n−1
(
B̂′nTMnB̂nT

)
and n−1

(
B̂′nTMnr̄

)
. Using (41)

and (A.31) we have

n−1
(
B̂′nTMnB̂nT

)
= n−1 (B′nMnBn) + n−1 (G′TU′nT 6MnBn)

+ n−1 (B′nMnUnTGT ) + n−1 (G′TU′nT 6MnUnTGT ) ,

n−1
(
B̂′nTMnr̄

)
= n−1 (B′nMnBn)λ∗T + n−1 (G′TU′nT 6MnBn)λ∗T

+ n−1 (B′nMnū) + n−1 (B′nMnηn)

+ n−1 (G′TU′nTMnū) + n−1 (G′TU′nTMnηn) .
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Now using the results in Lemma A.2, under Assumptions 2 and 1 we have

n−1
(
B̂′nTMnB̂nT

)
→p Σββ + σ̄2G′TGT ,

n−1
(
B̂′nTMnr̄

)
→p Σββλ

∗
T +

σ̄2

T
G′Tτ T .

But using (A.30) we also have

G′TGT =
1

T

(
F′MTF

T

)−1

, (A.33)

and G′Tτ T = 0. Hence

n−1
(
B̂′nTMnB̂nT

)
→p Σββ +

σ̄2

T

(
FMTF

T

)−1

,

n−1
(
B̂′nTMnr̄

)
→p Σββλ

∗
T .

When T is fixed, by Assumption 1, σ̄
2

T

(
FMTF
T

)−1
is a positive definite matrix and by Assumption

4 Σββ is a semi-positive definite (could be zero), then for a fixed T the probability limit of
n−1B̂′nTMnB̂nT is non-singular and using (A.25) by the Slutsky Theorem we have

λ̂n →p

[
Σββ +

σ̄2

T

(
FMTF

T

)−1
]−1

Σββλ
∗
T ,

which in view of (A.32) can be written equivalently in the form stated in Theorem 1.

A.3.2 Proof of n consistency of ̂̄σ2

nT for σ̄
2

Consider the expression for ̂̄σ2

nT given by (48) and note that under (36) we have

ûit = αi − α̂iT −
(
β̂i,T − βi

)′
ft + uit,

and since ûit are OLS residuals then for each i, we also have T−1
∑T

t=1 ûit = 0. Using this result

ûit = uit − ūi −
(
β̂i,T − βi

)′ (
ft − f̄T

)
, for i = 1, 2, ..., n,

and stacking over i now yields ût = ut − ū−
(
B̂nT−Bn

) (
ft − f̄T

)
. Hence

T−1n−1

T∑
t=1

n∑
i=1

û2
it = T−1

T∑
t=1

n−1û′tût

= T−1

T∑
t=1

n−1 (ut − ū)′ (ut − ū)

+ T−1

T∑
t=1

(
ft − f̄T

)′
n−1

(
B̂nT−Bn

)′ (
B̂nT−Bn

) (
ft − f̄T

)
− 2T−1

T∑
t=1

n−1 (ut − ū)′
(
B̂nT−Bn

) (
ft − f̄T

)
= anT + bnT + cnT (A.34)
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Consider each of the three terms in the above expression in turn. For the first term we have

anT =

∑T
t=1

∑n
i=1 u

2
it

nT
−
∑n

i=1 ū
2
i

n
.

Under Assumption 2 uit and ūi are weakly cross correlated and for each t, n−1
∑n

i=1 u
2
it →p

limn→∞n
−1
∑n

i=1 E (u2
it) = limn→∞n

−1
∑n

i=1 σ
2
i = σ̄2. Similarly, n−1

∑n
i=1 ū

2
i →p T

−1σ̄2, and
(for a fixed T and as n→∞)

anT →p

(
1− 1

T

)
σ̄2. (A.35)

Now using (A.29)

bnT = T−1

T∑
t=1

(
ft − f̄T

)′
G′T

(
U′nTUnT

n

)
GT

(
ft − f̄T

)
,

and in view of (A.6) we have (as n→∞)

bnT →p σ̄
2T−1

T∑
t=1

(
ft − f̄T

)′
G′TGT

(
ft − f̄T

)
= σ̄2Tr

[
G′TGTT

−1

T∑
t=1

(
ft − f̄T

) (
ft − f̄T

)′]

= σ̄2Tr

[
G′TGT

(
F′MTF

T

)]
.

But by (A.33) G′TGT = 1
T

(
F′MTF

T

)−1

, and it follows that

bnT →p
k

T
σ̄2. (A.36)

Finally, again using (A.29)

cnT = −2T−1

T∑
t=1

n−1 (ut − ū)′UnTGT

(
ft − f̄T

)
= −2Tr

[
n−1UnTGTT

−1

T∑
t=1

(
ft − f̄T

)
u′t

]
,

and noting that

T−1

T∑
t=1

(
ft − f̄T

)
u′t = T−1

T∑
t=1

ftu
′
t − f̄T ū′,

T−1

T∑
t=1

ftu
′
t = T−1F′U′nT

we haveσ
2

T
τ T

cnT = −2T−1Tr
[
GTF′

(
n−1U′nTUnT

)]
+ 2Tr

[
GT f̄T

(
n−1ū′UnT

)]
.

Now using (A.6) and ( A.7) it follows that

cnT →p −2σ̄2T−1Tr (GTF′) + 2Tr

[
GT f̄T

σ2

T
τ ′T

]
= −2σ̄2T−1Tr (F′GT ) + 2σ̄2T−1Tr

[
f̄Tτ

′
TGT

]
.
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But using (A.30) it is readily seen that F′GT = Ik and τ ′TGT = 0, and therefore

cnT →p −
2k

T
σ̄2. (A.37)

Now using (A.35), (A.36) and (A.37) in (A.34)

T−1n−1

T∑
t=1

n∑
i=1

û2
it →p

(
1− 1

T

)
σ̄2 +

k

T
σ̄2 − 2k

T
σ̄2 =

(
T − k − 1

T

)
σ̄2,

which establishes

̂̄σ2

nT =

∑T
t=1

∑n
i=1 û

2
it

n(T − k − 1)
=
n−1T−1

∑T
t=1

∑n
i=1 û

2
it

T−1(T − k − 1)
→p σ̄

2,

as required.

Lemma A.4 Under Assumptions 2, 1 and 4

cnT =
1√
nT

n∑
i=1

T∑
t=1

β′i
(
ft − f̄T

)
uit = Op (1) .

Proof. Since by assumption βi, uit and ft are distributed independently and uit is serially
uncorrelated with zero means then E (cnT ) = 0, and it is suffi cient to show that V ar (cnT ) < C.
Let Bn = (β1,β2, ...,βn)′, and note that

V ar (cnT |Bn ) =
1

nT

n∑
i=1

n∑
j=1

T∑
t=1

T∑
t′=1

β′iE
[(

ft − f̄T
)
uitujt′

(
ft′ − f̄T

)′]
βj

=
1

n

n∑
i=1

n∑
j=1

σijβ
′
iE

[
1

T

T∑
t=1

(
ft − f̄T

) (
ft − f̄T

)′]
βj

=
1

n

n∑
i=1

n∑
j=1

σijβ
′
iΣfβj

Hence

|V ar (cnT |Bn )| ≤ ‖Σf‖
1

n

n∑
i=1

n∑
j=1

|σij| ‖βi‖
∥∥βj∥∥

≤ ‖Σf‖ (supi ‖βi‖)
1

n

n∑
i=1

n∑
j=1

|σij|

≤ ‖Σf‖ (supi ‖βi‖) supi
n∑
j=1

|σij| .

Since K = dim(βi) is fixed, then ‖Σf‖ (supi ‖βi‖) < C, given that by assumption supij |βij| <
C and ‖Σf‖ < C. Also under Assumption 2 uit is weakly cross-correlated and we have
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supi
∑n

j=1 |σij| < C. Hence, overall ‖V ar (cnT |Bn )‖ < C which establishes the desired re-
sult for any given values of factor loadings. When βi are treated as random variables then
V ar (cnT ) = E [V ar (cnT |Bn )], since E (cnT |Bn ) = 0. In this case

V ar (cnT ) = E [V ar (cnT |Bn )] =
1

n

n∑
i=1

n∑
j=1

σijTr
[
ΣfE

(
βjβ

′
i

)]
,

and

|V ar (cnT )| ≤ supij
∥∥Tr [ΣfE

(
βjβ

′
i

)]∥∥ supi n∑
j=1

|σij| .

and the desired result follows since supikE(β2
ik) < C, noting that Σf is bounded and by as-

sumption if supi
∑n

j=1 |σij| < C.

A.3.3 Properties of pooled R squared

Lemma A.5 Consider the factor model

rit = ai +
K∑
k=1

βikfkt + uit = ai + β′ift + uit, for i = 1, 2, ..., n; t = 1, 2, ..., T, (A.38)

and consider the following pooled measure of fit for known values of factor loadings, βi:

PR2 = 1− (nT )−1∑n
i=1

∑T
t=1 (uit − ūiT )2

(nT )−1∑n
i=1

∑T
t=1 (rit − r̄iT )2

, (A.39)

where r̄iT = T−1
∑T

t=1 rit, and ūiT = T−1
∑T

t=1 uit. Then under Under Assumptions 2, 1 and 4
we have

PR2
nT =

K∑
k=1

	
(
nαk−1

)
+Op(n

−1/2T−1/2) +Op(T
−1/2). (A.40)

where αk is the strength of factor ftk.

Proof. Averaging (A.38) over t and forming deviations of rit from its time average, r̄iT , we
have

rit − r̄iT = uit − ūiT + β′i
(
ft − f̄T

)
.

Using this result we have

(nT )−1
n∑
i=1

T∑
t=1

(rit − r̄iT )2 = (nT )−1
n∑
i=1

T∑
t=1

(uit − ūiT )2

+ n−1

n∑
i=1

β′iΣfTβi

− 2 (nT )−1
n∑
i=1

T∑
t=1

(uit − ūiT )β′i
(
ft − f̄T

)
,
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where

ΣfT = T−1

T∑
t=1

(
ft − f̄T

) (
ft − f̄T

)′
But

(nT )−1
n∑
i=1

T∑
t=1

(uit − ūiT )β′i
(
ft − f̄T

)
= (nT )−1

n∑
i=1

β′i

T∑
t=1

(
ft − f̄T

)
(uit − ūiT )

= (nT )−1
n∑
i=1

β′i

T∑
t=1

(
ft − f̄T

)
uit − (nT )−1

n∑
i=1

β′i

T∑
t=1

(
ft − f̄T

)
ūiT

= (nT )−1
n∑
i=1

β′i

T∑
t=1

(
ft − f̄T

)
uit − (nT )−1

n∑
i=1

ūiTβ
′
i

T∑
t=1

(
ft − f̄T

)
= (nT )−1

n∑
i=1

β′i

T∑
t=1

(
ft − f̄T

)
uit = cnT .

Now using Lemma A.4 we have

(nT )−1
n∑
i=1

T∑
t=1

(rit − r̄iT )2 = (nT )−1
n∑
i=1

T∑
t=1

(uit − ūiT )2

+ n−1

n∑
i=1

β′iΣfTβi +Op

(
n−1/2T−/12

)
.

Also since under Assumption 2, uit are serially uncorrelated we have

T−1

T∑
t=1

(uit − ūiT )2 = σ2
i +Op(T

−1/2),

and

(nT )−1
n∑
i=1

T∑
t=1

(uit − ūiT )2 = σ̄2
n +Op(T

−1/2),

with σ̄2
n > 0. Using the above results in (A.39) we now have

PR2
nT =

n−1
∑n

i=1 β
′
iΣfTβi/σ̄

2
n +Op(n

−1/2T−1/2) +Op(T
−1/2)

1 + n−1
∑n

i=1 β
′
iΣfTβi/σ̄

2
n +Op(n−1/2T−1/2) +Op(T−1/2)

. (A.41)

Hence, the order of PR2
nT is governed by the pooled signal-to-noise ratio defined by

s2
nT =

n−1
∑n

i=1 β
′
iΣfTβi

σ̄2
n

.

However, under Assumption 1

λmin(ΣfT )
n−1

∑n
i=1 β

′
iβi

σ̄2
n

≤ s2
nT ≤ λmax(ΣfT )

n−1
∑n

i=1 β
′
iβi

σ̄2
n

, (A.42)
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where c < λmin(ΣfT ) < λmax(ΣfT ) < C. Hence

c

(
n−1

∑n
i=1 β

′
iβi

σ̄2
n

)
≤ s2

nT ≤ C

(
n−1

∑n
i=1 β

′
iβi

σ̄2
n

)
,

and it must be that

s2
nT = 	

(
n−1

n∑
i=1

β′iβi

)
= 	

[
K∑
k=1

(
n−1

n∑
i=1

β2
ik

)]
.

Also, under Assumption 4 n−1
∑n

i=1 β
2
ik = 	 (nαk−1). Hence

s2
nT =

K∑
k=1

	
(
nαk−1

)
,

which in view of (A.41) now yields (A.40), as desired.
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