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Abstract 
 
Tipping of a natural system, entailing a loss of ecosystem services, may be prevented by stable 
partial cooperation. The presence of tipping points reverses the grim story that a high level of 
cooperation is hard to achieve and leaves large possible gains of cooperation. We investigate a 
tipping game with constant emissions and a piecewise linear response, and the well-known lake 
system with concave-convex dynamics and time-dependent emissions. Tipping back, leading to a 
gain in services, can also be induced by stable partial cooperation, but is harder to achieve. A 
physically reversible natural system may prove to be socially irreversible. 
JEL-Codes: C700, Q200. 
Keywords: tipping points, multiple Nash equilibria, stable partial cooperation, ecological systems. 
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1. Introduction 

Tipping points are observed in a variety of natural systems. At some point, a small increase in one 

of the inputs may have substantial consequences, as the natural system will shift to another domain 

of attraction with a big loss of ecosystem services (Scheffer et al., 2001, Biggs et al., 2012). If this 

happens, it is very difficult (hysteresis) or even impossible (irreversibility) to restore the original 

conditions of the natural system. A well-known example is the lake system, where at some point 

a small increase in phosphorus loading shifts the lake to a bad state, with a big loss of ecosystem 

services (Carpenter and Cottingham, 1997, Scheffer, 1997). A second example is the coral-reef 

system, where at some point a small increase in the temperature of the ocean shifts the coral reef 

to a bad state, with a big loss of coral and fish (Hughes et al., 2003). It is expected that the climate 

system has tipping points as well (Lenton and Ciscar, 2013). 

Economic activities yield benefits but also release emissions on natural systems. At a tipping point, 

a marginal increase in economic activities, and thus in emissions, leads to a very large increase in 

costs, i.e. a sudden big loss of ecosystem services. The presence of tipping points is therefore a 

threat, but it may also have a positive effect. Barrett (2013) has shown that if it is optimal to avoid 

tipping, a Nash equilibrium may exist that avoids tipping as well, because the incentive to deviate 

is suppressed by the consequences of tipping. If such a Nash equilibrium exists, the game changes 

from prisoners’ dilemma to coordination game. In a model of using a resource with a tipping point, 

Diekert (2017) has also considered the question when the first best of staying at the threshold can 

be sustained as a Nash equilibrium. That paper investigates experimentation beyond the safe point, 

in case the threshold is uncertain. However, if such a Nash equilibrium does not exist, the question 
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is up to which level cooperation is needed to avoid tipping, and whether this partial cooperation is 

stable or not. 

The basic idea is to use the two-stage membership game developed in cartel theory (d’Aspremont 

et al, 1983) and in the theory on international environmental agreements (Hoel, 1992, Carraro and 

Siniscalco, 1993, Barrett, 1994). In the first stage a coalition is formed, and in the second stage a 

Nash equilibrium results between the coalition and the individual outsiders. Depending on the size 

of the coalition, this Nash equilibrium may avoid tipping in case the Nash equilibrium between the 

individual economic agents does not avoid tipping. However, the coalition has to be stable in the 

sense that there is no incentive in the first stage to leave or to join the coalition. Stability is achieved 

if the incentive to cooperate is at least as large as the incentive to free ride. This paper shows that 

the possibility of tipping increases the incentive to cooperate and decreases the incentive to free 

ride, so that the size of the stable coalition becomes larger. It follows that partial cooperation often 

avoids tipping and the ensuing big loss of ecosystem services. Moreover, this paper shows that if 

it requires a large coalition to avoid tipping, and stability is lost because the incentive to free ride 

becomes too strong, the welfare loss of tipping is small. It follows that the usual grim story in the 

literature on two-stage membership games, namely that the size of the stable coalition is small and 

leaves large possible gains of cooperation, is reversed in the presence of tipping points. 

The literature on managing systems in the presence of tipping points is rapidly increasing. Partly 

this literature focusses on models with concave-convex dynamics (e.g., Brock and Starrett, 2003, 

Mäler et al., 2003, Wagener, 2003, Crépin, 2007, Kossioris et al., 2008, Heijdra and Heijnen, 2013, 

Heijnen and Wagener, 2013). Another part of this literature considers hazard-rate models with an 

event probability of a structural change (e.g., Polasky et al., 2011, Lemoine and Traeger, 2014, Cai 

et al., 2015, van der Ploeg and de Zeeuw, 2018). This paper mainly builds on Mäler et al. (2003) 
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who compare cooperation and non-cooperation between the users of a lake. They show that two 

Nash equilibria exist, one close to the full-cooperative outcome and one where the lake has tipped. 

Welfare in the good Nash equilibrium is only slightly lower than in the full-cooperative outcome, 

but welfare drops considerably in the bad Nash equilibrium. It depends on the initial conditions of 

the lake which Nash equilibrium results. This paper focusses on the situation that the good Nash 

equilibrium fails to exist, because one user has an incentive to deviate despite the consequence of 

tipping. Barrett (2013) considers this possibility as well, but we ask the question whether in such 

a case stable partial cooperation can prevent tipping of the lake. Moreover, our model also allows 

analyzing the question whether stable partial cooperation can induce tipping back after tipping has 

occurred. This paper shows that it is generally harder to achieve this than to prevent tipping. This 

gives another reason to stay away from a tipping point, because it may not be possible to sustain a 

level of cooperation that is needed to tip back. 

In order to clarify the mechanisms, the results are first derived in a relatively simple tipping-point 

model, with constant emissions and a piecewise linear response function with an upper and a lower 

threshold. This paper shows when it is first best to avoid tipping and when this can be sustained in 

a Nash equilibrium. In case it cannot be sustained in a Nash equilibrium, this paper shows when 

stable partial cooperation avoids tipping. When tipping has occurred but the system is physically 

reversible, the same results are presented in analyzing the issue of tipping back to the good state 

of the system. In the sequel, this paper analyzes the same questions in the well-known lake system, 

with concave-convex dynamics and time-dependent emissions. The lake system can be seen as a 

metaphor for many natural systems with tipping points. This analysis requires advanced numerical 

methods, but the pattern of the results is the same as for the relatively simple model. 
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The most interesting result is that tipping from the good to the bad conditions of the lake may be 

avoided by stable partial cooperation and if not, the remaining gains of cooperation are small. In 

case tipping has occurred earlier, tipping back from the bad to the good conditions of the lake may 

also be induced by stable partial cooperation, but this is generally harder to achieve. It follows that 

even if it is physically possible to tip back, it may often not be socially possible. This implies that 

the full socio-ecological system has more complicated properties than the underlying ecological 

system. In an ecological system with tipping points, it is costly to tip back, because the level of 

emissions has to be reduced substantially, but it may still be possible. In this case, the ecological 

system has hysteresis but is reversible. However, the socio-ecological system may be irreversible, 

because the level of cooperation that is needed to induce the system to tip back is not stable. For 

this level of cooperation, the incentive to free ride is too strong. It follows that in this case tipping 

becomes socially irreversible. 

Section 2 analyses the relatively simple tipping game and presents the full-cooperative outcome, 

the Nash equilibria, and the results on coalition formation, with a short note on uncertainty about 

the location of the threshold. Section 3 analyses the lake game, and Section 4 concludes. 

 

2. The tipping game 

A well-known example of a model with a tipping point is the lake system. The dynamics of the 

lake is well described by a concave-convex response function to phosphorus loadings (e.g., Brock 

and Starrett, 2003, Mäler et al., 2003). In case of sufficient curvature of this response function, a 

threshold occurs so that increasing the phosphorus loadings above this threshold tips the lake into 

a domain of attraction with a different equilibrium, and with lower ecological services. It may be 
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possible to tip the system back at a low threshold to the original domain of attraction by decreasing 

the phosphorus loadings substantially, but the tip may also be irreversible. 

The following piecewise linear model is a simple way of representing the characteristics of a model 

with a tipping point. Suppose that an ecological system is affected by the emissions  

of n economic agents. The dynamics of the stock of pollutants s (e.g., the stock of phosphorus in 

the water of the lake or the stock of greenhouse gases in the atmosphere) is given by 

       (1) 

where  denotes the level of the stock where tipping occurs, E the total level of emissions, and b 

the shift in the equilibrium at a tipping point. Figure 1a shows the dynamics of the system for the 

initial stock  and for different fixed levels of total emissions E. Figure 1b shows the same 

for a high initial stock . We fix the high tipping point  at  and the low tipping point 

 at . Note that for , tipping becomes irreversible, because emissions cannot 

be negative. A small increase in total emissions above  shifts the equilibrium from  

to just above , and the higher stock s implies a big loss in ecosystem services. Furthermore, 

a substantial decrease of total emissions below  is needed to shift the equilibrium back 

from  to  (if this is possible, i.e. if ). 
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(a): Adverse tipping                                           (b): Favourable tipping 

Figure 1. Tipping dynamics 

Emissions result from economic activities that yield benefits. For example, phosphorus loadings 

result from agricultural activities, and greenhouse gas emissions result from the use of cheap fossil 

fuels. On the other hand, the stock of pollutants represents costs in the form of a loss of ecosystem 

services. Welfare indicators for this trade-off are given by 

         (2) 

where c is a preference parameter that weighs the benefits and the costs. The logarithmic utility is 

convenient in the analysis below, because it implies that collective optimization is independent of 

the number of economic agents (e.g., Brock and Starrett, 2003, Mäler et al., 2003). By assuming 

fixed levels of total emissions E, we can focus the analysis on the steady states that can arise as 

shown by Figure 1. We will relax this assumption in Section 3 where we analyze the lake system. 

The question is how the presence of a tipping point affects the cooperative and non-cooperative 

outcomes. 
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2.1 The full-cooperative outcome 

When the n economic agents (such as users of the ecological services of the lake or countries in a 

negotiation on climate change) cooperate, they maximize the sum of the welfare indicators given 

in (2). The Lagrangian becomes 

        (3) 

Since the slope of  is 1, the first-order condition yields 

        (4) 

The first-order condition is a hyperbola in Figure 1a that moves up if c decreases. It passes through 

the high tipping point  for . For , it is optimal to stay below the 

tipping point. However, for  two possibilities arise. It is either optimal to stay at the tipping 

point or to tip and to optimize in the other domain of attraction. It is clear that a value of c exists 

such that the welfare in the tipping point is the same as the welfare for this value of c in the optimal 

point in the other domain of attraction. The tipping point lies on the iso-welfare curve w that is 

tangent to the line  in this optimal point: see Figure 2. If we denote this value of c as 

, for  it is optimal to let tipping occur, because the costs of tipping are very low. Hence, the 

tipping point is optimal for . 
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Figure 2. Indifference between tipping and non-tipping if c = ĉ. 

This critical level  for the preference parameter c, above which it is optimal to stay at or below 

the tipping point , depends on the physical parameter b that indicates the size of the shift 

in the equilibrium stock s. The first-order condition in the other domain of attraction yields 

        (5) 

The welfare levels in this point and in the tipping point have to be equal, implying 

        (6) 

From (5) and (6) it follows that the critical level  is given by 

       (7) 

As an example, we take . It follows that , so that . This implies that 

for  the tipping point is the optimal solution, and for  it is optimal to choose 

E below the tipping point. The properties of the function  from (7) are given in the following 

proposition: this is a special case of Proposition 2 in the next section, whose proof is given in 

Appendix B. 
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Proposition 1. The critical level  is continuously differentiable, and satisfies , 

 for ,  for ,  and . 

 

2.2 Nash equilibria 

In a non-cooperative Nash equilibrium, each economic agent i maximizes the welfare indicator 

given in (2). The Lagrangians become 

       (8) 

Since the slope of  is 1, the first-order conditions determining the candidate symmetric Nash 

equilibria yield 

        (9) 

This is again a hyperbola in Figure 1a, that moves up if c decreases. It passes through the high 

tipping point  for . It is clear that for , the intersection point below 

the tipping point is the only Nash equilibrium. However, for  it is possible that two Nash 

equilibria exist, namely the tipping point and the intersection point of the hyperbola and the line 
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first-order condition for the best response of this economic agent yields 
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It is again clear that a value  of c exists such that for this value, the welfare in the tipping point 

is the same as in the optimal point in the other domain of attraction. Figure 2a applies again, but 

now specifically to the welfare of a deviator. For , the best response is to let tipping occur. It 

follows that only for  the tipping point is a Nash equilibrium. The critical level  for 

the preference parameter c, above which the tipping point  becomes a Nash equilibrium, 

depends again on the parameter b but also on the number of economic agents n. The first-order 

condition in the other domain of attraction yields 

      (11) 

The welfare levels for the deviator in this point and in the tipping point have to be equal, implying 

         (12) 

From (11) and (12) it follows that the critical level  is given by 

      (13) 
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tipping point. Note that for  the critical level , so that the areas where the 
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point. The general properties of the function  from (13) are given in the following 
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proposition (with a proof in Appendix B). Note that Proposition 2 implies Proposition 1, because 

. 

Proposition 2. The critical level  is continuously differentiable, and satisfies  

 for , ,  for ,  

and . 

 

If the size b of the shift in the stock at the tip is large enough, so that a range in c exists where the 

tipping point is both optimal and a Nash equilibrium, we can formulate the findings as follows. 

 

Proposition 3. Depending on the parameter b that indicates the size of the shift in the equilibrium 

stock s in case of tipping, and on the number of economic agents n, critical values  and  

exist for the preference parameter c such that in case : 

- for  the high tipping point  is optimal but not a Nash equilibrium, 

- for  the high tipping point  is optimal and also a Nash equilibrium, 

- for  the high tipping point  is a Nash equilibrium but not optimal.  

 

Barrett (2013), who also considers a model that features a tipping point, similarly finds a range of 

parameter values where the tipping point is optimal. This range can be split in a range where the 

tipping point is also a Nash equilibrium and a smaller range where it is not. He concludes that often 

tipping can be prevented by coordination on the appropriate Nash equilibrium, and that sometimes 

cooperation is needed. His model is different from ours in several aspects. Countries decide on 

abatement or emission reduction. The important parameters are the level of total abatement that 
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prevents tipping and a fixed loss when tipping occurs. In our model, the economic agents decide 

on emissions. They still optimize when tipping occurs. The costs of tipping have two parameters: 

a system parameter that indicates the size of the shift and a preference parameter that weighs costs 

and benefits. In our model, we have a range of parameter values where tipping is prevented in a 

Nash equilibrium but where the tipping point is not optimal. Our model can also consider tipping 

back to the original domain of attraction, as we will analyze below. In Section 3, we extend our 

model to the lake system, the metaphor for ecological systems with tipping points. 

The central contribution of our paper is to investigate the option of stable partial cooperation in 

the presence of a tipping point. Barrett (2013) does not consider this, but we show in Appendix A 

how it works out in his model. Using a two-stage membership game, we show there that the size 

of the stable coalition is larger than in the absence of a tipping point. Furthermore, in a large part 

of the range of parameter values where cooperation is needed, stable partial cooperation prevents 

tipping. Only when the loss of tipping is small, the cooperation that is needed is not stable anymore. 

In the next section, we will develop and generalize this result for our model. 

 

2.3 Coalition formation 

Proposition 3 states that for , the high tipping point  is optimal and also 

a Nash equilibrium, but for  it is not a Nash equilibrium anymore, although it is 

still optimal. The question is whether stable partial cooperation can support the tipping point in 

this last range. As usual in the theory on international environmental agreements, we employ the 

two-stage membership game (Hoel, 1992, Carraro and Siniscalco, 1993, Barrett, 1994). In the first 

stage, the economic agents decide whether or not to become a signatory to the agreement. In the 

second stage, the coalition and the individual outsiders choose the emission levels. Suppose that a 
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coalition of size  forms in the first stage. The welfare indicators in the second stage 

become 

       (14) 

and the Lagrangians become 

       (15) 

Since the slope of  is 1, the first-order conditions determining the candidate Nash equilibria 

between the coalition of size  and the  individual outsiders yield 

     (16) 

Condition (16) is the same as condition (9), but for  economic agents. For these welfare 

indicators, the coalition effectively operates as one individual economic agent. This is convenient 

for the analysis but not essential for the outcomes. It follows that increasing the size of the coalition 

implies decreasing the number of economic agents in the second stage. This means that the range 

 where the high tipping point  is optimal but not a Nash equilibrium can 

be covered by partial cooperation. Using (13) in the previous section, it follows immediately that 

the tipping point is a Nash equilibrium between a coalition of size  and  individual outsiders 

in the range , where  is given by 

   (17) 
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Moving to the first stage of the two-stage game, the question is how many economic agents will 

join the coalition. The subgame-perfect Nash equilibrium requires at this stage that a member of 

the coalition does not want to leave the coalition, and that an outsider does not want to join the 

coalition. This depends, of course, on the outcome in the second stage. The subgame-perfect Nash 

equilibrium yields the stable coalition. We only have to check the internal stability of a coalition 

of size , that is, we have to check if the welfare of a member of the coalition of size  is at least 

as large as the welfare of an outsider to the coalition of size . This may especially be the case 

if the coalition of size  cannot prevent tipping. Therefore, suppose that c lies in the range 

      (18) 

This means that the tipping point is a Nash equilibrium in case the coalition has size , but it is 

not a Nash equilibrium in case the coalition has size . It follows that tipping will occur when 

a coalition member leaves the coalition, so that in the second stage the outcome will be as a Nash 

equilibrium for  economic agents in the other domain of attraction. Thus, the condition 

for internal stability of a coalition of size  becomes 

      (19) 

As an example, we again take  and . Suppose that the size of the coalition is . 

In order to find the range (18), we solve (17) for  and . This yields  

and , respectively. Now we can check the condition for internal stability (19). 

For any , the equality in (19) yields  and the inequality can be checked. 

In this case, condition (19) does not hold. Suppose that the size of the coalition is . In order 

to find the range (18), we solve (17) for . This yields . Now we can check 

the condition for internal stability (19). For any , the condition (19) holds. 
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It follows that the coalition of size  prevents tipping and is stable in the corresponding range 

for c as given by (18), but the coalition of size  is not stable. In the same way, it is easy to 

show that the coalitions of size  prevent tipping and are stable in the corresponding range 

for c as given by (18), but the coalitions of size  are not stable. 

 

Figure 3. Stable non-tipping coalitions. 

It is straightforward to extend the analysis to smaller b for which the area where the tipping point 

is both optimal and a Nash equilibrium is empty. In Figure 3 we present the results for , 

, and . For  it is optimal to stay below the tipping point (see Section 2.1). 

The curve  indicates the level of c below which it is not optimal to prevent tipping. The area 

where the high tipping point  is a Nash equilibrium is split into an area where the tipping 

point is optimal and an area where it is not optimal. In between are the areas located where a Nash 

equilibrium between a coalition of size  and  outsiders prevents tipping. Coalitions up to 

size  are stable, and the coalition of size  is stable if  is sufficiently small. In the white 

area, larger coalitions are needed to prevent tipping, but these coalitions are not stable. Figure 3 is 

similar to Figure 2 in Barrett (2013), but that figure only has an area with Nash equilibria and a 

wedge between that area and the equivalent of . Barrett (2013) concludes that coordination 
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on a Nash equilibrium prevents tipping in that area, but that in the wedge cooperation is required. 

He uses this for the design of experimental work (e.g., Barrett and Dannenberg, 2012). We show 

that coordination on a Nash equilibrium between a stable coalition and outsiders prevents tipping 

in a large part of the wedge, as can be seen in Figure 3. 

Note that the size of the stable coalition is much larger than what is usually found in the literature 

on international environmental agreements. The two-stage membership game actually balances the 

incentive to cooperate and the incentive to free ride. In the regular setting, the incentive to free ride 

apparently dominates. However, if tipping can occur, the incentive to free ride decreases, so that 

the size of the stable coalition becomes larger. Figure 3 shows that when the cost parameter c 

decreases, and the tipping point is not a Nash equilibrium anymore, it is better to form a coalition 

of size . This prevents tipping, and this coalition is also stable. When the cost parameter c 

decreases further, a larger coalition is needed to prevent tipping. This process continues until the 

coalition becomes large, so that the incentive to free ride becomes strong, and the coalition is not 

stable anymore. However, when stability is lost, the costs of tipping are low (c and b are small), 

so that the gains of cooperation are low. In general, we arrive at the following proposition (with a 

proof in Appendix B). 

 

Proposition 4. The range , where it is optimal to prevent tipping but not tipping 

is not a Nash equilibrium, can be split in the ranges  

where a Nash equilibrium between the coalition of size  and  outsiders prevents tipping. 

Moreover, a size  exists, such that the coalitions of size  are stable. For large values of 

, the size  is limited from above by the largest integer that satisfies . For  
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the coalition of size  is not stable, but in that case the costs of tipping are low, so that the gains 

of cooperation are low. 

 

In the example for , the largest integer that satisfies  is . Indeed, Figure 

3 shows that in the range , the size of the largest stable coalition is  or . For 

larger b, the size of the largest stable coalition can become , but a larger stable coalition is 

not possible. For , the largest integer that satisfies  is . This shows 

that the largest stable coalition is close but not equal to the grand coalition. Our model also allows 

to investigate tipping back to the original domain of attraction. This is the topic of next section. 

 

2.4 The inverse tipping game 

Suppose that tipping has unfortunately occurred, but that tipping back to the original domain of 

attraction is possible, because  (see Figure 1b). We assume that tipping back actually occurs 

when we reach the low tipping point , so that the point  results. The 

first-order condition given by (4) cuts the point  for , so that it will be 

optimal to choose E below the low tipping point for . The question is when it is 

optimal to induce tipping back and if so, when tipping back can be realized in a Nash equilibrium 

or by stable partial cooperation. We call this the inverse tipping game. 

The analysis runs parallel to that given above. Because we assume that tipping back occurs in the 

low tipping point , the welfare becomes . It follows that the critical 

level , above which it is optimal to move down to the low tipping point , is given by 

      (20) 
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As an example, we take . It follows that , so that . This implies that 

for  tipping back is the optimal solution. This critical level is higher than the one we 

found in (7). Figure 2 applies again, but the iso-welfare curve w cuts the line  in the point 

 instead of in the point , and is tangent to the line  for a lower s: see 

Figure 4. For c in between these critical levels, it is optimal to prevent tipping, but it is not optimal 

to induce tipping back. It follows that it is generally harder to get out of the bad domain of attraction 

than to avoid getting in there. 

 

Figure 4. Indifference between tipping and non-tipping at c = .  

The critical level , above which it is a Nash equilibrium to induce tipping back at the low 

tipping point , is given by 

    (21) 

As an example, we take again , and . It follows that  so that . 

This implies that for  it is optimal to tip back and this is also a Nash equilibrium, and 

for  it is optimal to tip back but this is not a Nash equilibrium. 
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In the same way as in the previous section, the solution of (21) for  economic agents yields 

the critical level  for the existence of a Nash equilibrium between a coalition of size 

 and  outsiders. Furthermore, the condition for internal stability becomes 

     (22) 

Suppose that the size of the coalition is . Solving (21) for 2 and for 3 economic agents yields 

 and , respectively. For any , the condition 

for internal stability (22) does not hold, so that the coalition of size  is not stable. Suppose 

that the size of the coalition is . Solving (21) for 4 economic agents yields  

For any , the condition for internal stability (22) holds now. It follows that the 

coalition of size  induces tipping back and is stable. In the same way, it is easy to show that 

the coalitions of size  induce tipping back and are stable in the corresponding range for 

c, but the coalition of size  is not stable. 

 

Figure 5. Stable tipping coalitions 

In Figure 5, we present the results for ,  and . Above the dashed curve, 

it is optimal to move below the tipping point. The curve  indicates the level of c below which 
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it is not optimal to induce tipping back. The area where tipping back at the tipping point  

is a Nash equilibrium is split into an area where this is also optimal and an area where it is optimal 

to move below the low tipping point. In between are the areas located where tipping back is a Nash 

equilibrium between a coalition of size  and  outsiders. In the white area, larger coalitions 

are needed to induce tipping back, but these coalitions are not stable. 

The results are similar to the results for the tipping game in Section 2.3. The main difference is 

that it generally requires a higher cost parameter c to make it beneficial to tip back. However, it 

turns out that the stable coalition can be a bit larger. We have assumed that the system is physically 

reversible, and we find that it is optimal to induce the system to tip back in the area above the line 

. However, we also find that at some point, the level of cooperation that is required to achieve 

this may not be stable anymore. This means that in such a case, tipping is physically reversible but 

socially irreversible, because the level of cooperation that is needed breaks down. In general, we 

arrive at the following proposition. Its proof, given in in Appendix B, relies on showing that the 

tipping game and the inverse tipping game are equivalent. 

 

Proposition 5. The range , where it is optimal to induce tipping back but this is 

not a Nash equilibrium, can be split in the ranges  

where a Nash equilibrium between a coalition of size  and  outsiders induces tipping back. 

Moreover, a size  exists, such that the coalitions of size  are stable. The size  is 

limited from above by the largest integer that satisfies . For  the coalition of 

size  is not stable, but in that case the costs of not tipping back are low, so that the gains of 

cooperation are low. However, the original tipping is socially irreversible in that case. 
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2.5 Uncertainty 

In the previous sections, we have assumed that the location of the high tipping point  is 

known. This is a reasonable assumption for the lake system, because it has been studied extensively 

(Carpenter, 2003), but in other cases the threshold is quite uncertain. For example, Rockström et 

al. (2009) indicate nine so-called planetary boundaries, such as the climate tipping point, but each 

of those have a zone of uncertainty. This implies that we have to consider that the tipping point is 

located between a lower bound  and an upper bound , where this zone of uncertainty has a 

probability distribution. As the lower bound, we take . For a uniform distribution function, 

the uncertainty changes the response function into a certainty-equivalent, continuous, piecewise 

linear function, given by 

        (23) 

 

 

Figure 6. Certainty-equivalent response function. 
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Figure 6 depicts the new situation. The analysis in Sections 2.1 - 2.2 remains the same if the iso-

welfare curves through the point  that are tangent to the line  lie above the middle 

segment of (23). Comparing the slope of the lowest iso-welfare curve w in the point  in Section 

2.2 with the slope of the middle segment of (23) yields an upper limit for . This implies that if 

the zone of uncertainty is sufficiently small, so that  does not exceed this upper limit for b and 

, the point  is still optimal and also a Nash equilibrium for , according 

to Proposition 3. The analysis becomes more complicated in case the zone of uncertainty is larger 

or if a different probability distribution is considered. However, we expect our main point to hold 

up: even in the presence of some uncertainty, whatever its precise nature, it is possible to 

coordinate on a Nash equilibrium that is close to the optimal outcome. We leave a full analysis of 

the modalities under which this coordination breaks down to a future paper. Instead, in the next 

section we show that our results carry over in a straightforward manner to a more realistic model 

that shares basic characteristics with our tipping game model. 

 

3. The lake game 

In the previous sections, we assumed constant emissions  and could therefore focus 

on a steady-state analysis. This was the simplest representation of the typical tipping-point model. 

In the sequel, we will extend the analysis to a real and fully dynamical model. We will analyze the 

well-known lake model (Carpenter et al., 1999, Brock and Starrett, 2003, Mäler et al., 2003, and 

Wagener, 2003) which can be seen as the metaphor for ecological systems with tipping points. The 

response function in the lake model is not a piecewise linear function with a shift at the threshold 

but a concave-convex function. The dynamics of the accumulated stock of phosphorus s in the 

water of the lake is given by 
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       (24) 

where E denotes the total level of phosphorus loadings on the lake, and b a parameter that differs 

across lakes. The non-linear term in (24) is called a Holling type III functional response, and it is 

typical for many ecological models with tipping points. In this case, it represents the release of 

phosphorus from the bottom of the lake in case of an increase in the stock s. It is easy to show that 

for , the curve  has similar tipping points (at the local maximum and at the 

local minimum of ) as the simple model in Section 2. Note that in this model, tipping becomes 

physically irreversible for . 

Phosphorus loadings result from agricultural activities that yield benefits. On the other hand, an 

increase in the stock of phosphorus causes a loss of ecosystem services, such as clean water, fish 

and leisure. Infinite-horizon discounted welfare indicators for this trade-off are given by 

        (25) 

where c is again a preference parameter that weighs the benefits and the costs, and r denotes the 

discount rate. 

The problem (24) - (25) is an extension of the simple tipping-point problem (1) - (2). In the simple 

problem, the economic agents choose fixed emissions  but in this extended problem, 

the economic agents choose time paths for the phosphorus loadings  The problem 

(24) - (25) is a so-called differential game (Basar and Olsder, 1982). The choice of these time paths 

means that we will search for so-called open-loop solutions. It is well known that different types 

of Nash equilibria arise depending on the available information and on commitment. If emissions 
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 are only a function of time and the initial stock , the open-loop Nash equilibrium 

results (Mäler et al., 2003, for the lake game). However, if emissions  are a function 

of time and the observed current level of the stock , the feedback Nash equilibrium results (see 

Kossioris et al., 2008, and Dockner and Wagener, 2014, for the lake game). In this paper, we add 

the two-stage membership game for coalition formation. As first step, we consider only one round 

of coalition formation in which the economic agents commit to a path of emissions, leading to the 

open-loop Nash equilibrium. The question is again how the presence of a tipping point affects the 

cooperative and non-cooperative outcomes. 

 

3.1 The full-cooperative outcome and Nash equilibria 

When the n users of the lake cooperate, they maximize the sum of the welfare indicators given in 

(25), subject to the dynamics of the system given in (24). The Hamiltonian becomes 

        (26) 

which yields the necessary conditions 

          (27) 

       (28) 
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Figure 7. Phase diagram 

Figure 7 shows the phase diagram of this modified Hamiltonian system (24) and (28). The isocline 

of (28) cuts the isocline of (24) in one or three steady states (Brock and Starrett, 2003). If there are 

three steady states, the middle one is unstable and the other two are saddle-point stable. The low 

steady state is indicated by , and the high steady state by . Wagener (2003) shows 

that a value  of c exists such that for , starting from a low initial stock , it is optimal to 

let the system converge to the steady state with a low stock of phosphorus. For , it is optimal 

to let the system tip and converge to the steady state with the high stock of phosphorus. As in 

Section 2.1, this critical value  depends on the parameter b, but it also depends on the discount 

rate r and the initial stock . 

For a symmetric non-cooperative Nash equilibrium, the Hamiltonians become 

       (29) 

which yields the necessary conditions for the candidate Nash equilibria 

          (30) 
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The phase diagram of this modified Hamiltonian system (24) and (31) is the same as the one for 

the full-cooperative outcome. The only difference is that the parameter c in (28) changes into  

in (31). Mäler et al. (2003) show that for , ,  and , the full-cooperative 

outcome has one steady state in the low-phosphorus area, whereas two Nash equilibria exist, one 

with a steady state in the low-phosphorus area and one with a steady state in the high- phosphorus 

area. The good Nash equilibrium is close to the full-cooperative outcome, so that the welfare loss 

is low. However, if the users of the lake cannot reach the “good” Nash equilibrium and are stuck 

in the “bad” Nash equilibrium (Grass et al., 2017), the welfare loss is substantial. With two users, 

only full cooperation will get the users out of the bad state. We extend this analysis by investigating 

the existence of Nash equilibria and the possibilities of stable partial cooperation in general. 

 

Figure 8. Trajectories: candidate Nash equilibria (solid), one-player deviation (dotted). 

Analogous to the analysis in Section 2, we first check whether the candidate Nash equilibrium in 

the low-phosphorus area of the lake, with the steady state denoted by , is indeed a Nash 

equilibrium. We take as initial stock . Figure 8 shows the trajectories of the candidate Nash 

equilibria to the low-phosphorus steady state  and to the high-phosphorus steady state 

. The necessary conditions for the best response of an individual user i become 

       (32) 
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together with (24), where the other users employ their Nash equilibrium strategies. The dashed 

curve in Figure 8 shows the resulting trajectory towards the steady state . By comparing the 

welfare of individual user i on this trajectory with the welfare on the Nash equilibrium trajectory 

towards the steady state , it can be shown that a critical value  exists, so that for  

there is no incentive to deviate, so that  is indeed the steady state of a Nash equilibrium. 

For c below this critical value, the only Nash equilibrium is the one with the trajectory leading to 

the high-phosphorus steady state . It should be noted that the critical value  depends on 

the parameters b, n, r and , and that the calculations require advanced numerical methods, but 

the pattern of the results will be clear. 

 

3.2 Coalition formation 

Suppose that a coalition of size  forms in the first stage. The respective Hamiltonians for 

a non-cooperative Nash equilibrium between the coalition and the  individual outsiders in 

the second stage become 

       (33) 

which yields the necessary conditions 

      (34) 
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      (35) 

Condition (35) is the same as condition (31), but for  users of the lake. For these welfare 

indicators, the coalition effectively operates as one individual user. 

The analysis requires a substantial numerical effort but it is basically the same as in Section 2. As 

an example, we take , ,  and . For , it is optimal to converge 

to a low-phosphorus steady state . However, if the users of the lake do not cooperate, the 

low-phosphorus steady state  of this candidate Nash equilibrium proves not to be a Nash 

equilibrium for . It follows that for , the lake system will tip in the 

absence of cooperation, but it will remain in the low-phosphorus region when the users of the lake 

form a coalition. The welfare implications are substantial. For example, if , the users of the 

lake can coordinate on a Nash equilibrium with a low-phosphorus steady state , and the 

individual welfare becomes , just below the optimal welfare . In this case, 

the lake system does not tip, and the gains of cooperation are very small. However, if , the 

users of the lake end up in the Nash equilibrium with the high-phosphorus steady state , 

and the individual welfare drops to , whereas the optimal welfare is . In this 

case, the lake system tips in the absence of cooperation, and the gains of cooperation are large, i.e. 

almost 17%. 

The question is whether stable partial cooperation can prevent tipping of the lake, and a large loss 

of welfare, in case the candidate Nash equilibrium with the low-phosphorus steady state  

proves not to be a Nash equilibrium. The analysis is the same as in Section 2.3. A larger coalition 

effectively means a smaller number of users of the lake, so that tipping can be prevented for smaller 

values of c, until it is not optimal to prevent tipping anymore. However, an increasing size of the 
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coalition also increases the free-rider benefits, so that the coalition may lose stability at some point. 

The result is again that it is possible to prevent tipping of the lake for a large range of values of c, 

with a large stable coalition, but not for all values of c for which it is optimal to prevent tipping. If 

a very large coalition is needed, the coalition is not stable anymore. 

        

                                   (a) b = 0.60                                                        (b) b = 0.52 

Figure 9. Stable dynamic non-tipping coalitions. 

Because it is very complicated to present the results for the lake game in the  parameter space 

as in Figure 4, we present the results only for  and . Figure 9a and Figure 9b show 

these results for , ,  and . The pattern is the same as in Figure 3. 

In Figure 9a, for , coordination on the Nash equilibrium with the low-phosphorus steady 

state is feasible. For , a coalition of size  prevents tipping of the lake, and it is 

stable. Lowering the cost parameter c further, step by step a larger coalition is needed to prevent 

tipping of the lake, and these coalitions are stable up to . Lowering c further below , at 

first coalitions of size  and  are needed to prevent tipping, but these coalitions are not 

stable, and then it is not optimal anymore to prevent tipping of the lake. It follows that for  

the old grim story in the literature on international environmental agreements reappears: the stable 

coalitions are very small. In this specific case, for  a stable coalition of size  

results, but for  stable partial cooperation is not possible. The most important result is that 
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for  stable partial cooperation prevents tipping of the lake. Furthermore, when this 

is not possible anymore, because the free-rider incentive becomes too strong, the cost parameter c 

is low, so that the costs of tipping are low. Figure 9b, with , has the same pattern again. 

The most important difference is that coordination on a Nash equilibrium to prevent tipping of the 

lake is sufficient now in a larger range of values of the cost parameter c. The reason is that a smaller 

value of b means that the shift in the stock s is larger and the incentive to deviate in the candidate 

Nash equilibrium is smaller. 

 

3.3 The inverse lake game 

Suppose that tipping has unfortunately occurred, but that tipping back to the original domain of 

attraction is possible, because . We assume that tipping back actually occurs when 

we reach the low tipping point. We present the results for , with , ,  

and . Figure 10 shows these results. The pattern is the same as in Figures 9a/b. The 

main difference is that the value of the cost parameter c, below which partial cooperation is needed 

to induce tipping back, is much larger, i.e. . This indicates that the costs of the loss of 

ecosystem services have to be relatively high in order to be able to induce tipping back in a Nash 

equilibrium. Furthermore, the value for c, below which partial cooperation is not stable anymore, 

is larger as well, i.e. . The size of the largest stable coalition is now . If it is still 

optimal to induce tipping back, but a coalition of size  is needed in order to achieve this, 

this coalition is not stable. It follows that the lake system is physically reversible but socially 

irreversible in this case. 
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Figure 10. Stable dynamic tipping coalitions. 

It is interesting to note that Figure 10 shows that for  and , for example, it requires a 

coalition of size  to get out of the high-phosphorus region but after tipping back to the low-

phosphorus area, no coalition is needed to prevent tipping, as Figure 9 shows. This means that a 

substantial effort is needed to push the system from “brown” (green in case of the lake) to “green” 

(blue in case of the lake) environmental conditions, but then it is relatively easy to keep the system 

in a good state. This result is similar to the result in Acemoglu et al. (2012) where they show that 

only temporary policies are needed to redirect innovation toward clean inputs for production. A 

more sophisticated dynamical analysis to show this in our model is left for further research. 

 

4. Conclusion 

Tipping points are observed in a variety of natural systems. When a natural system tips, it shifts to 

another domain of attraction, which usually yields a substantial loss of ecosystem services. Tipping 

occurs when accumulated emissions from economic activities cross a threshold. Full cooperation 

of the economic agents keeps the natural system in a good condition, unless a low value is attached 

to the loss of ecosystem services. Non-cooperative behavior may avoid crossing the threshold as 

well, if the incentive to deviate is suppressed by the loss of ecosystem services. If it is not possible 

0 1 2 3 4 5 6 7
0

2

4

6

8

10

�

��
��

��
��
��
	

��
���

�

0.6b = 2c =

8k =



33 
 

to coordinate on a Nash equilibrium that avoids tipping but full cooperation would avoid tipping, 

the problem is that full cooperation may not be stable in the sense that the incentive to free ride is 

stronger than the incentive to cooperate. In such a case, the question is to what extent stable partial 

cooperation can solve the problem. 

This paper first presents a relatively simple tipping-point model, with constant emissions and a 

piecewise linear response function with a shift at the threshold. In this model, it is relatively easy 

to derive the results. It is shown that stable partial cooperation indeed prevents tipping in a large 

range of parameter values and if this is not possible, the costs of tipping are low. It is also shown 

that in case tipping has occurred, stable partial cooperation can induce tipping back to the favorable 

conditions of the natural system, but again not in all cases where it is optimal to do so. This means 

that it may happen that tipping is physically reversible but socially irreversible, because the level 

of cooperation that is needed for tipping back may at some point not be stable anymore. Moreover, 

in general a larger level of cooperation is needed to induce tipping back than to prevent tipping. 

This paper also analyses the same questions for the lake system, a well-known realistic model with 

a tipping point that can be seen as a metaphor for many natural systems with tipping points. The 

lake model has a concave-convex response function, and we allow time-dependent phosphorus 

loadings on the lake. The analysis uses advanced numerical methods, but the results are basically 

the same. An important policy conclusion is that when the users of the lake are trapped in a non-

cooperative Nash equilibrium with a low level of ecosystem services, stable partial cooperation 

may get these users out of the pollution trap. Moreover, when the lake is in a good condition but 

it is not possible to coordinate on a Nash equilibrium that prevents the lake from tipping, stable 

partial cooperation may provide a solution. Again, a higher level of cooperation is needed to induce 

tipping back than to prevent tipping. 
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The usual grim story in the literature on international environmental agreements is that the size of 

the stable coalition is very small, especially when the possible gains of cooperation are large. In 

the presence of a tipping point, this story is reversed. This paper shows that the size of the stable 

coalition can be large, in order to prevent the large loss of tipping or to induce the large gain of 

tipping back. Moreover, when the size of the coalition cannot be increased anymore, because the 

incentive to free ride becomes too strong, the cost of losing ecosystem services is relatively low, 

so that there is not so much to gain from cooperation anyway. 

In relation with environmental degradation, two wicked problems stand out: tipping points and the 

tragedy of the commons. In essence, the tragedy of the commons means that the incentive to free 

ride undermines the cooperation in managing the common good. An interesting conclusion of this 

paper is that the presence of a tipping point actually helps in sustaining cooperation, up to a certain 

point. One wicked problem is partly solved by the existence of another wicked problem. 
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Appendix A: the Barrett (2013) model 

If the maximal amount of emissions is fixed, abatements are foregone emissions. Although in our 

model the maximal amount of emissions is not fixed, our model is close to the abatement model. 

This Appendix shows that also in his context, partial coalitions may obtain better outcomes.  

Tipping, or crossing a threshold, induces a structural change in the dynamics of the climate system 

with a significant loss of welfare. Therefore, it can be collectively optimal to reduce total emissions 

more than in the absence of a tipping point, in order to prevent tipping. Moreover, it can also be 

the mutual best response of individual countries to prevent tipping in a Nash equilibrium, although 

it is to be expected that the loss of welfare must be higher in this case. In case the loss of welfare 

is not sufficiently high for this, stable partial cooperation solves most of the problem. 

Barrett (2013) uses a simple game where n countries choose abatement levels  with 

cost functions  and benefit functions , where  denotes total abatement. 

Without loss of generality, the parameters can be normalized to . It is easy to see that the 

full-cooperative solution is  with total abatement , and net benefits  

, 1,2,..., ,ia i n=
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for each country. The Nash equilibrium is  with total abatement , and net 

benefits  for each country. 

If the total abatement  is not sufficiently high and stays below the critical level denoted by , 

the climate system tips which yields a loss  for each country. It follows that the benefit functions 

become , if , and , if . If the countries cooperate, they choose 

in the absence of a tipping point total abatement equal to . If , they will continue to do 

so, because tipping will not occur. However, if , tipping will occur, so that the net benefits 

become  for each country. The countries can consider now to abate up to the critical level 

, in order to prevent tipping and the loss  to each country. Because of symmetry, each country 

abates . It is better for the countries collectively to abate up to the critical level , if the 

net benefits for each country are higher than in case they let tipping occur, i.e. 

   or      (A1) 

          (A2) 

If the countries do not cooperate, they choose total abatement equal to  in the Nash equilibrium, 

in the absence of a tipping point. If , the Nash equilibrium does not change, because tipping 

will not occur. However, if , tipping will occur, so that the net benefits become  

for each country. The question now is whether  can be a Nash equilibrium, 

so that a Nash equilibrium prevents tipping. This requires that an individual country does not have 

an incentive to deviate, in case the other countries choose the abatement level . If a country 
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deviates, it chooses the abatement level  (with costs ) and accepts the loss , because 

tipping will occur. It is better for a country not to deviate if 

   or     (A3) 

          (A4) 

The right-hand side of (A4) is larger than the right-hand side of (A2) above. This is intuitively 

clear, because it requires a larger loss l to suppress free riding than to induce the countries to avoid 

tipping when they cooperate. 

The important conclusion is that if condition (A4) holds, it is not only collectively optimal to 

choose  and avoid tipping but this is also a Nash equilibrium. For values of 

 where condition (A2) holds but condition (A4) does not hold, it is collectively optimal to avoid 

tipping, but this cannot be achieved in a Nash equilibrium. If  is a Nash 

equilibrium, in most cases  remains a Nash equilibrium, because it is too costly 

for an individual country to increase abatement up to  by itself. If the game has two Nash 

equilibria, it becomes a coordination game. It is clear that if it is collectively optimal to choose 

 and if both Nash equilibria exist, it is better for the countries to coordinate 

on the Nash equilibrium  than on the other Nash equilibrium. It follows that 

if condition (A4) holds, the cooperative outcome and the best non-cooperative Nash equilibrium 

coincide. It is best for an individual country to choose , if the other countries do the 

same, and the outcome is collectively optimal. For a sufficiently large loss  of tipping, a tipping 

point in the climate system allows the countries to coordinate on a non-cooperative Nash 
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equilibrium with the same outcome as when they would cooperate. The question remains if stable 

partial cooperation can improve the situation in the range of  where it is optimal to prevent tipping 

but where this cannot be realized in a Nash equilibrium, i.e. 

        (A5) 

If a coalition of size  forms, the first question is whether a Nash equilibrium exists between 

the coalition and the  outsiders, with total abatement equal to the critical level . Note that 

the situation is asymmetric now, with coalition members and outsiders. Denote the contribution of 

a coalition member to the critical abatement level by , and the contribution of an outsider by 

. Given the contributions of the outsiders, the coalition has the choice to collectively abate  

and let tipping occur, with the costs  and the loss  to each coalition member, or to contribute 

each the abatement level . It is better for the coalition to contribute, if the net benefits for each 

member are higher than in case they let tipping occur, i.e. 

   or     (A6) 

       (A7) 

Similarly, given the contribution of the coalition and the other  outsiders, an outsider has 

the choice to abate  and let tipping occur, with the costs  and the loss , or to contribute the 

abatement level . It is better for the outsider to contribute, if the net benefits are higher than in 

case the outsider let tipping occur, i.e. 

   or    (A8) 

      (A9) 
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Finally, the total abatement of the coalition of size  and the  outsiders must meet the critical 

abatement level , i.e. 

         (A10) 

It is easy to show that condition (A7) and condition (A9) coincide, if 

          (A11) 

Combining conditions (A10) and (A11) yields a Nash equilibrium between the coalition of size  

and the  outsiders, given by 

      (A12) 

under the condition on the loss , given by 

         (A13) 

It is clear that for , (A13) reduces to (A2), and for  or , (A13) reduces to (A4). 

This shows that if  decreases in (A5) from the level that is needed to prevent tipping in a Nash 

equilibrium to the level for which the prevention of tipping is still optimal, increasing the size  

of the coalition prevents tipping. Specifically, if 

    (A14) 

a coalition of at least size  is needed to be able to prevent tipping in a Nash equilibrium between 

the coalition and the outsiders. Equations (A12) yield the abatement levels of coalition members 

and outsiders. However, the second question remains, i.e. whether this partial cooperation is stable. 

A coalition of size  is internally stable if a member of the coalition does not have an incentive 

to become an outsider to the coalition of size . A coalition of size  is externally stable 
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if an outsider does not have an incentive to join the coalition and increase the size of the coalition 

to  . In the absence of a tipping point, a coalition of size  is internally stable if 

     (A15) 

and externally stable if 

     (A16) 

This implies that only the coalitions of size 2 and size 3 are stable in this case. 

For  satisfying condition (A14), leaving the coalition means that tipping cannot be avoided. The 

remaining coalition will then choose  and the outsiders will choose , inducing the loss  

for each country because tipping will occur. It follows that a coalition member does not have an 

incentive to leave the coalition, if the net benefits as a member of the coalition of size  are larger 

than the net benefits as an outsider to the coalition of size , i.e. 

       (A17) 

where  is the contribution of a member of the coalition of size  to the critical level . 

 

Proposition A1: if condition (A14) on the tipping loss  holds, so that a Nash equilibrium between 

the coalition of size  and the  outsiders prevents tipping, this coalition is internally stable 

if 

       (A18) 

where  denotes the lower bound of the tipping loss  in (A14). 

Proof: 

Using (A12) and (A14), the condition for internal stability (A17) holds if 
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      (A19) 

Using , condition (A19) can be rewritten as 

    (A20) 

which yields 

       (A21) 

The second term between brackets on the right-hand side of condition (A21) is the square root of 

twice the lower bound of the tipping loss  in (A14). Q.E.D. 

 

Comparing conditions (A18) and (A15), it follows that the size of coalition that is internally stable 

can be much larger if tipping is possible. It is immediately clear that the coalitions of size 2 and 

size 3 are internally stable, and that the coalition of size n is not internally stable if . Note 

that if  increases, the left-hand side of (A18) increases and the right-hand side decreases, so that 

at some point internal stability is lost. For example, if  and , condition (A18) still 

holds for , but it does not hold anymore for . This implies that for  (i.e., 

inequalities (A14), ), the coalition of size  prevents tipping and is internally stable. 

However, for  (i.e., inequalities (A14), ), increasing the size of the coalition 

to  prevents tipping, but it is not internally stable anymore. At some point, the incentive to 

free ride dominates the incentive to prevent tipping, because of the high level of cooperation and 

the low level of tipping costs . The coalition of size  is also externally stable, because it is 
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not beneficial for an outsider to join the coalition and contribute a higher level of abatement to the 

critical level  as a member of the coalition of size  than as an outsider to the coalition of 

size  (see (A12)). It follows that the size of the stable coalition is  in this case. 

Inequalities (A5) show values of the tipping loss  for which it is collectively optimal to prevent 

tipping but for which this cannot be sustained in a Nash equilibrium. In our example, this range is 

. For , a Nash equilibrium prevents tipping, and for , it is better to let 

tipping occur. Stable partial cooperation covers a large part of this range, i.e. , with 

coalitions up to size . In the range , partial cooperation with larger coalitions 

can prevent tipping, but these coalitions are not internally stable. However, the good news is that 

in this case, the tipping loss  is small. 

 

Appendix B: Proofs 

Proof Proposition 2. From (13) we have 

           (B1) 

with 

      (B2) 

For ,  has a unique solution , so that . 

For , , if , and , if . For  ( ), 

        (B3) 

Hence, for ,  has a unique solution . 
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       (B4) 

so that 

     (B5) 

Similarly, the implicit function theorem yields 

      (B6) 

so that 

    (B7) 

The properties of in Proposition 2 follow immediately. 

 

Proof Proposition 4. The critical level  is determined by the system (17) of equations 

in . Omitting upper bars for convenience, and introducing  as parameter, 

the system (17) can be rewritten as the system of equations 
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    (B10) 

in . 

Starting with the system of equations (B8), the positive root of the quadratic equation in  is 

    (B11) 

Furthermore, 

   (B12) 

Using (B8) and (B11), it follows that 
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and using (B8) and (B12), it follows that, 
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in  is 
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In order to combine the requirements that the coalition of size  prevents tipping and is internally 

stable, the solution sets (B13, B14) and (B16, B17) for  and  have to be consistent. For small 

values of  or equivalently, for large values of , which correspond to large values of  and , 

we can ignore the lower-order terms. First, we claim the relationship  between  

and , and consider the difference , using (B14) and (B17): 

    (B18) 

We search for  such that . We can focus on  such that the second term of the right-

hand side of (B18) is 0. For small , we can approximate  by . It follows that 

      (B19) 

and thus 

       (B20) 

Finally, we consider the difference , using (B13), (B16) and (B20): 

      (B21) 

It follows that for small values of , , if , and , if . 

Therefore, if  is the largest integer that satisfies , a coalition of size  is the 

largest coalition that prevents tipping and is internally stable. 
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Proof Proposition 5. The Lagrangian for the best response of an economic agent in the inverse 

tipping game is 

       (B22) 

With the transformation , , , , , 

this Lagrangian changes into 

      (B23) 

where the response function  tips at . This is the same Lagrangian as the one for 

the best response of an economic agent in the tipping game, except for the constant . It 

follows that the two problems are equivalent. 

The internal stability conditions are equivalent as well. The inverse tipping game has the condition 

       

 (B24) 

With the transformation above, this condition becomes 

        (B25) 

which is the condition for the tipping game. 

It follows that proposition 4 proves proposition 5. The parameter transformation  and 

 maps the regions of the inverse tipping game in Figure 5 into the regions of the tipping 

game in Figure 3. 
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