
Kvaløy, Ola; Olsen, Trond E.

Working Paper

Balanced Scorecards: A Relational Contract Approach

CESifo Working Paper, No. 8922

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Kvaløy, Ola; Olsen, Trond E. (2021) : Balanced Scorecards: A Relational Contract
Approach, CESifo Working Paper, No. 8922, Center for Economic Studies and Ifo Institute (CESifo),
Munich

This Version is available at:
https://hdl.handle.net/10419/235292

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/235292
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

8922 
2021 
February 2021 

 

Balanced Scorecards: 
A Relational Contract 
Approach 
Ola Kvaløy, Trond E. Olsen 



Impressum: 
 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
https://www.cesifo.org/en/wp 
An electronic version of the paper may be downloaded 
· from the SSRN website: www.SSRN.com 
· from the RePEc website: www.RePEc.org 
· from the CESifo website: https://www.cesifo.org/en/wp 

mailto:office@cesifo.de
https://www.cesifo.org/en/wp
http://www.ssrn.com/
http://www.repec.org/
https://www.cesifo.org/en/wp


CESifo Working Paper No. 8922 
 

 
 
 

Balanced Scorecards: 
A Relational Contract Approach 

 
 

Abstract 
 
Reward systems based on balanced scorecards typically connect pay to an index, i.e. a weighted 
sum of multiple performance measures. We show that such an index contract may indeed be 
optimal if performance measures are non-verifiable so that the contracting parties must rely on 
self-enforcement. Under commonly invoked assumptions (including normally distributed 
measurements), the optimal self-enforcing (relational) contract between a principal and a 
multitasking agent is an index contract where the agent gets a bonus if a weighted sum of per-
formance outcomes on the various tasks (the index) exceeds a hurdle. The weights reflect a trade-
off between distortion and precision for the measures. The efficiency of the contract improves 
with higher precision of the index measure, since this strengthens incentives. Correlations between 
measurements may for this reason be beneficial. For a similar reason, the principal may also want 
to include verifiable performance measures in the relational index contract in order to improve 
incentives. 
Keywords: incentives, performance measures, relational contracts. 
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1 Introduction

Very few jobs can be measured along one single dimension; employees usually

multitask. This creates challenges for incentive providers: If the firm only

rewards a subset of dimensions or tasks, agents will have incentives to exert

efforts only on those tasks that are rewarded, and ignore others. A solution

for the firm is to add more metrics to the compensation scheme, but this

usually implies some form of measurement problem, leading either to more

noise or distortions, or to the use of non-verifiable (subjective) performance

measures.

The latter is often implemented by the use of a balanced scorecard (BSC).

Kaplan and Norton’s (1992, 1996) highly influential concept began with a

premise that exclusive reliance on verifiable financial performance measures

was not suffi cient, as it could distort behavior and promote effort that is not

compatible with long-term value creation. Their main ideas were indebted

to the canonical multitasking models of Holmström and Milgrom (1991) and

Baker (1992). However, their approach was more practical, guiding firms

in how to design performance measurement systems that focus not only on

short-term financial objectives, but also on long-term strategic goals (Kaplan

and Norton, 2001).

While measuring performance is one issue, the question of how to reward

performance is a different one. As noted by Budde (2007), there is a general

understanding that effi cient incentives must be based on multiple perfor-

mance measures, including non-verifiable ones. Still, the implementation is

a matter of controversy. Reward systems based on BSC typically connect

pay to an index, i.e. a weighted sum of multiple performance measures.

However, there is apparently no formal incentive model that actually de-

rives this kind of index contract as an optimal solution in settings with

non-verifiable measures.1 In fact, Kaplan and Norton (1996) were sceptical

to compensation formulas that calculated incentive compensation directly

via a sum of weighted metrics. Rather, they proposed to establish different

bonuses for a whole set of critical performance measures, more in line with

1Banker and Datar (1989) derive conditions under which a contract based on a lin-
ear aggregate of verifiable performance measures is optimal in a standard moral hazard
problem with a risk averse agent.
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the original ideas of Holmström and Milgrom (1991) and Feltham and Xie

(1994).

Despite the large literature following the introduction of BSC (see Hoque,

2014, for a review), and the massive use of scorecards in practice, it ap-

pears that the index contracts that BSC-firms often prescribe lack a formal

contract theoretic justification.2 We take some steps to fill the gap. Our

starting point is that the performance measures are non-verifiable. This

means that the incentive contract cannot be enforced by a third party and

thus needs to be self-enforcing - or what is commonly termed “relational”.

Incentive contracts used by firms, including performance measures based

on balanced scorecards, often include non-verifiable qualitative assessments

of performance (see Ittner et al, 2003, Gibbs et al 2004 and Kaplan and

Gibbons, 2015 ). Moreover, even if some performance measures in principle

are verifiable, the costs and uncertainty of taking the contract to court may

be so high that the parties in practice need to rely on self-enforcement (see

MacLeod, 2007 and references therein).

In the now large literature on self-enforcing relational contracts, relatively

few papers have considered relational contracts with multitasking agents

(prominent papers include Baker, Gibbons and Murphy, 2002; Budde, 2007,

Schottner, 2008; Mukerjee and Vasconcelos, 2011; and Ishihara, 2016). We

on the one hand generalize this literature in some dimensions (to an arbitrary

number of tasks with stochastic measurements that are possibly correlated

and/or distorted), and on the other hand invoke assumptions (notably nor-

mally distributed measurements) that make the model quite tractable.3

We first show that the optimal relational contract between a principal and

a multitasking agent turns out to be an index contract, or what one may

call a balanced scorecard. That is, the agent gets a bonus if a weighted sum

2According to Hoque (2014), among the more than 100 papers published on BCS
theory, only a handful have used principal agent theory to analyze BSC. See also Hesford
et al. (2009) for a review.

3Our paper is indebted to the seminal literature on relational contracts. The concept
of relational contracts was first defined and explored by legal sholars (Macaulay, 1963,
Macneil, 1978), while the formal literature started with Klein and Leffl er (1981). MacLeod
and Malcomson (1989) provides a general treatment of the symmetric information case,
while Levin (2003) generalizes the case of asymmetric information. The relevance of the
relational contract approach to management accounting and performance measurement is
discussed in Glover (2012) and Baldenius et al. (2016).
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of performance outcomes on the various tasks (an index) exceeds a hurdle.

This is in contrast to the optimal contract in e.g. Holmström and Milgrom

(1991), where the agent gets a bonus on each task. The important difference

from Holmström and Milgrom is that we consider a relational contracting

setting where the size of the bonus is limited by the principal’s temptation

to renege (rather than risk considerations). In such a setting the marginal

incentives to exert effort on each task is higher with index contracts than

with bonuses awarded on each task.

The performance measures within a scorecard may well be correlated. We

point out that such correlations will affect the effi ciency of the contract and

we show that the effi ciency of the index contract depends on how correlations

affect the precision of the overall scorecard measure. In particular, an index

contract with non-negative weights on all relevant measures will work even

better if the measures are negatively correlated. The reason is that negative

correlation reduces the variance of the overall performance measure (the

index) in such cases. This is beneficial in our setting not because a more

precise measure reduces risk —since the agent is assumed to be risk neutral

—but because it strengthens, for any given bonus level, the incentives for

the agent to provide effort.4

Besides being affected by noise, performance measures are normally also

to various degrees distorted, implying that incentives on these measures

promote actions that are not perfectly aligned with the firm’s true objective.

Many firms end up with rewarding performance according to such distorted

measures, as long as the performance can be measured precisely. That is,

the firm may prefer distorted, but precise performance measures, rather than

well-aligned, but vague and imprecise measures. They can find support for

this strategy in classic incentive theory where performance measures are

verifiable and contracts are court enforceable (e.g. Datar et al. 2001).

A natural solution to this measurement problem may be to rely on subjec-

tive performance measures that are better aligned with the true objective,

and make the contract self-enforcing. However, as we show in this paper,

even in relational contracts, where there are no requirements regarding ver-

ifiability, and thus presumably greater scope for subjective and well-aligned

4Similar effects appear in Kvaløy and Olsen (2019), which analyzes relational contracts
and correlated performances in a model with multiple agents, but single tasks.
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performance measures, it may still be optimal to let precision weigh more

heavily than alignment in incentive provision.

Our analysis reveals that the optimal weights in the scorecard index reflect

a trade-off between distortion and precision, implying that a measure which

is well aligned with the firm’s true objective may nevertheless get a small

weight in the index if that measure is to a large extent affected by noise and

therefore highly imprecise. Again, this is not due to risk considerations, but

due to incentive effects from the overall precision of the index.

We also consider the case where some measures are verifiable, and some

are not. We show that the principal will include verifiable measures in the

relational index contract in order to strengthen incentives.5 This resembles

balanced scorecards seen in practice, which often include both verifiable

measures such as sales or financial accounting data, and non-verifiable (sub-

jective) measures (see e.g. Kaplan and Norton, 2001 and Ittner et al., 2003).

By including a verifiable measure in the relational contract, the variance of

the performance index may be reduced, which again strengthens incentives.

We also show that the verifiable performance measure is taken into the index

as a benchmark, to which the other performances are compared. Moreover,

the principal will still offer an explicit bonus contract on the verifiable mea-

sure, but this bonus is generally affected by the optimal relational index

contract.6

A paper closely related to ours is Budde (2007), which investigates incentive

effects of a scorecard scheme based on a set of balanced performance mea-

sures under both explicit and relational contracts. The paper is important,

as it shows that BSC-types of contracts can provide undistorted incentives

in settings with no noise and suffi cient congruity/alignment between perfor-

mance measures and the "true" value added. There are, however, important

5Our analysis of this issue presumes short-term explicit (court enforced) contracts.
Watson, Miller and Olsen (2020) presents a general theory for interactions between rela-
tonal and court enforced contracts when the latter are long term and renegotiable, and
show that optimal contracts are then non-stationary. Implications of this for the contract-
ing problems considered in the current paper are left for future research.

6Our model thus complements the influential papers by Baker, Gibbons and Murphy
(1994) and Schmidt and Schnitzer (1995) on the interaction between relational and ex-
plicit contracts. While their results are driven by differences in fallback options created
by the explicit contracts, our results stem from correlation between the tasks and (or)
misalignment between measurements and true values.
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differences which make our paper complementary to Budde’s. First, and un-

like us, Budde assumes at the outset that the available measurement system

is «balanced» , «minimal» and without noise. These somewhat strict as-

sumptions imply, among other things, that from an observation of the mea-

surements one can perfectly deduce the agent’s action. This means that the

action is in essence observable, and simple forcing contracts for the agent are

then feasible (and optimal).7 We do not invoke these restrictive assumptions,

but rather allow for both «unbalanced» and noisy measurements. Actions

can then not be deduced from observations, which means that there is a

real hidden action problem, and the characterization of optimal (relational)

incentive contracts becomes a non-trivial task. This characterization is pre-

cisely the focus of our paper.

The main focus in Budde’s paper is the extent to which a relational contract

can supplement an explicit contract to achieve a first-best allocation, in a

setting where an explicit contract alone cannot do so due to misalignment

between the measures that are verifiable and the true value. The assump-

tions on the total measurement system imply that the first best can always be

achieved if the parties are suffi ciently patient.8 This is generally not the case

under our relaxed —and, we believe more realistic —assumptions. We thus

complement Budde’s analysis by characterizing optimal relational contracts

and second-best allocations under more realistic assumptions about the per-

formance measurement system, especially regarding the measurements’pre-

cision. Interestingly, an index contract —a scorecard —then emerges as the

optimal (relational) contract.

The rest of the paper is organized as follows: In Section 2 we present the

basic model and a preliminary result. In Section 3 we introduce distorted

performance measures and present our main results, which show that an

optimal relational contract takes the form of a BSC (index) contract. The

7The paper allows for noisy observations in settings with verifiable measurements, and
briefly discusses general noisy observations in a final section. The discussion concludes
that "... a subtle tradeoff between the benefits of risk diversification and congruity has
to be considered" and ". . a detailed investigation of this tradeoff requires considerable
analysis", Budde 2007, p 533. We provide such an investigation here.

8The paper characterizes the minimal critical discount factor necessary to achieve the
first-best, and importantly shows that this entails restricting informal incentives to that
part of the first-best action that cannot be induced by a formal contract. Moreover, all
unverifiable measures should be used in the relational contract.
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weights on the measures in the index reflect a trade-off between distortion

and precision. The results rely on some assumptions, including validity of

the "first-order approach"; and we discuss this assumption in two subsec-

tions. The discussion reveals that the approach is not valid if measurements

are very precise, and a characterization of optimal contracts is thus lacking

for such environments. We show that index contracts will nevertheless per-

form well under such conditions, and in fact become asymptotically optimal

when measurement noise vanishes. In Section 4 we extend the model to

include both verifiable and non-verfiable performance measures. Section 5

concludes.

2 Model

First, we present the basic model between a principal and a multitasking

agent. Consider an ongoing economic relationship between a risk neutral

principal and a risk neutral agent. Each period the agent takes an n-

dimensional action a = (a1, ..., an)′, generating a gross value v(a) for the

principal, a private cost c(a) for the agent, and a set of m ≤ n stochastic

performance measurements x = (x1, ..., xm)′. These measurements are ob-

servable, but not verifiable, with joint density, conditional on action f(x, a).

Only the agent observes the action. The gross value v(a) is not observed (as

is the case if this is e.g. expected revenue for the principal, conditional on

the agent’s action). We assume v(a) to be increasing in each ai and concave,

and c(a) to be increasing in a each ai and strictly convex with c(0) = 0 and

gradient vector (marginal costs) ∇c(0) = 0. The total surplus (per period)

in the relationship is v(a)− c(a).

Given observable (but non-verifiable) measurements, the agent is each period

promised a bonus β(x) from the principal. Specifically, the stage game

proceeds as follows: 1. The principal offers the agent a contract consisting

of a fixed payment w and a bonus β(x). 2. If the agent accepts, he chooses

some action a, generating performance measure x. If the agent declines,

nothing happens until the next period. 3. The parties observe performance

x, the principal pays w and chooses whether or not to honor the full contract

and pay the specified bonus. 4. The agent chooses whether or not to accept

the bonus he is offered. 5. The parties decide whether to continue or break

7



off the relationship. Outside options are normalized to zero.

As shown by Levin (2002, 2003), we may assume trigger strategies and sta-

tionary contracts. The parties honor the contract only if both parties hon-

ored the contract in the previous period, and they break off the relationship

and take their respective outside options otherwise. To prevent deviations,

the self-enforced discretionary bonus payments must be bounded above and

below. As is well known, the range of such self-enforceable payments is

defined by the future value of the relationship, hence we have a dynamic

enforceability condition given by

0 ≤ β(x) ≤ δ

1− δ (v(a)− c(a)), all feasible x. (1)

The optimal relational contract maximizes the surplus v(a)−c(a) subject to

this constraint and the agent’s incentive compatibility (IC) constraint. The

latter is

a ∈ arg max
a′

E(β(x)| a′)− c(a′),

with first-order conditions (subscripts denote partials)

0 =
∂

∂ai
E(β(x)| a)− ci(a) =

∫
β(x)fai(x, a)− ci(a), i = 1, ...n.

A standard approach to solve this problem is to replace the global incentive

constraint for the agent with the local first-order conditions. It is well known

that this may or may not be valid, depending on the circumstances (see e.g.

Hwang 2016 and Chi-Olsen 2018). In this paper we will mostly assume that

it is valid, and subsequently state conditions for which this is true. So we

invoke the following:

Assumption A. The first order approach (FOA) is valid.

Unless explicitly noted otherwise, we will take this assumption for granted

in the following. We then have an optimization problem that is linear in the

bonuses β(x). The optimal bonuses will then have a bang-bang structure,

and hence be either maximal or minimal, depending on the outcome x.

Introducing the likelihood ratios

lai(x, a) = fai(x, a)/f(x, a),

8



we obtain the following:

Lemma 1 There is a vector of multipliers µ such that (at the optimal ac-
tion a = a∗) the optimal bonus is maximal for those outcomes x where

Σiµilai(x, a) > 0, and it is zero otherwise, i.e.

β(x) =
δ

1− δ (v(a)− c(a)) if Σiµilai(x, a) > 0,

and β(x) = 0 if Σiµilai(x, a) < 0.

The lemma says that there is an index ỹ(x) = Σiµilai(x, a), with a = a∗

being the optimal action, such that the agent should be paid a bonus if and

only if this index is positive, and the bonus should then be maximal. This

index, which takes the form of a weighted sum of the likelihood ratios for

the various action elements, is in this sense an optimal performance measure

for the agent.

The index is basically a scorecard for the agent’s performance, and since it

is optimal, it is (more or less by definition) balanced. In the following we

will introduce further assumptions to analyze its properties.

3 Scorecards and distorted measures

Following Baker (1992), Feltham-Xie (1994), and the often used modelling

approach in the management accounting literature (e.g. Datar et al. 2001,

Huges et al. 2005, Budde, 2007, 2009), in the remainder of the paper we

will assume that the measurements x are potentially distorted and given by

x = Q′a+ ε, (2)

where Q′ is an m×n matrix of rank m ≤ n, and ε ∼ N(0,Σ) is multinormal

with covariance matrix Σ = [sij ] (i.e. x ∼ N(Q′a,Σ)).9 Let q1, ..., qm be the

column vectors of Q, so we have E(xi| a) = q′ia, i = 1...m. As is common in

9Budde (2007) assumes in addition "balance", which implies that the first-best action
can be implemented by linear bonuses when measurements are verifiable. For the main
results (on relational contracts), measurements are also assumed to be noise free.

9



much of this literature, we assume multinormal noise for tractability The

likelihood ratios for this distribution are linear in x, and this implies that

the optimal performance index Σiµilai(x, a) identified in the previous lemma

is also linear in x. In particular, the vector of likelihood ratios is given by

the gradient ∇a ln f(x; a) = QΣ−1(x − Q′a). Hence, defining vector τ by

τ ′ = µ′QΣ−1, the index can be written as Σiµilai(x, a
∗) = τ ′(x − Q′a∗);

where the expression in accordance with Lemma 1 is evaluated at a = a∗.

So we have:

Proposition 1 In the multinormal case, there is a vector τ and a perfor-
mance index ỹ = Σjτ jxj such that the agent is optimally paid a bonus if and

only if the index exceeds a hurdle (ỹ0). The hurdle is given by the agent’s

expected performance in this setting (ỹ0 = Σjτ jE(xj | a∗)), and the bonus,
when paid, is maximal: β(x) = δ

1−δ (v(a∗)− c(a∗)).

This result parallels Levin’s (2003) characterization of the single-task case,

where the agent optimally gets a bonus if his performance on the single

task exceeds a hurdle. Here, in the multitask case, the principal offers an

index ỹ = Σjτ jxj , i.e. a ’weighted sum’of performance outcomes on the

various tasks, such that the agent gets a bonus if and only if this index

exceeds a hurdle ỹ0. The optimal hurdle is given as the similar weighted

sum of optimal expected performances. Hence, performance xi is compared

to expected performance, given (equilibrium) actions. If the weighted sum of

performances exceeds what is expected, then the agent obtains the bonus.10

Figure 1 below illustrates the structure of the optimal bonus scheme. The

index and its hurdle defines a hyperplane delineating outcomes "above" the

plane from those "below", where the former are rewarded with full and

maximal bonus while the latter yield no bonus at all. This is clearly different

from a structure with separate bonuses and hurdles on each task. Such a

structure is illustrated by the blue lines in the figure. In the two-dimensional

case this structure defines four regions in the space of outcomes; where either

10The characterization given in the proposition relies on our maintained assumption
that the first-order approach is valid. This is not innocous in the multinormal case.
It is known that in such a setting with a single action (n = 1), the approach is not
valid if measurements are very precise, i.e. if the variance of the performance measure is
suffi ciently small. On the other hand, it is valid in that setting if the variance is not too
small; and as we will justify below, this is true also in the present multi-action setting.
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zero, one or two bonuses are paid, respectively. The analysis shows that the

structure defined by the index is better, and in fact optimal.

Figure 1. Structure of the optimal index contract.

Proposition 1 characterizes the type of bonus scheme that will be optimal.

The next step is to characterize the parameters of the scheme, i.e. the

weights τ and the hurdle ỹ0 that will generate optimal actions. To this we

now turn.

Given the index ỹ with hurdle ỹ0, and the bonus β = b being paid for ỹ > ỹ0,

the agent’s performance related payoff is

bPr( ỹ > ỹ0| a)− c(a) = bPr(τ ′x > ỹ0
∣∣ a)− c(a)

Using the normal distribution we find that the agent’s first order conditions

for actions at their equilibrium levels (a = a∗), then satisfy

bφ0
1

σ̃
Qτ = ∇c(a∗) (3)

11



where φ0 = 1/
√

2π is a parameter of the distribution, and σ̃ is the standard

deviation of the performance index:

σ̃ = SD(ỹ) = (τ ′Στ)1/2.

Note that incentives, given by the marginal revenues on the left hand side of

(3), are inversely proportional to the standard deviation σ̃. All else equal, a

more precise performance index (lower σ̃) will thus enhance the effectiveness

of a given bonus in providing incentives to the agent. This indicates that

more precise measurements will be beneficial in this setting, and that this

will occur not because of reduced risk costs (there are none, by assumption)

but because of enhanced incentives. The monetary bonus is constrained by

self enforcement, and other factors that enhance its effectiveness will then

be beneficial. We return to this below.

The optimal bonus paid for qualifying performance is the maximal one, so

b =
δ

1− δ (v(a∗)− c(a∗))

For given action a∗ the elements b and τ of the optimal incentive scheme

will be given by these relations.

On the other hand, optimal actions must maximize the surplus v(a)− c(a)

subject to these conditions. To characterize the associated optimization

program for actions, it is convenient to introduce modified weights in the

performance index, namely a weight vector θ given by

θ = bφ0
1

σ̃
τ

Since θ is just a scaling of τ , i.e. θ = kτ, k > 0, the performance index can

be expressed in terms of θ as y = θ′x, and the agent is then given a bonus

if this index exceeds its expected value y0 = θ′E(x| a∗).

Note from the definitions of θ and σ̃ that θ′Σθ = (bφ0/σ̃)2τ ′Στ = φ20b
2, so

we have: (
θ′Σθ

)1/2
/φ0 = b =

δ

1− δ (v(a∗)− c(a∗)) (4)

12



The optimal action a∗ must thus satisfy (4) and the agent’s first-order con-

dition (3), which now takes the form Qθ = ∇c(a∗). As noted, the optimal
action must solve the problem of maximizing v(a) − c(a) subject to these

constraints. In fact, since the last equality in (4) reflects the dynamic en-

forcement constraint, we can replace it by weak inequality, and thus state

the following result:

Proposition 2 In the multinormal case, the optimal action a∗ solves the
following problem:

max
a,θ

(v(a)− c(a))

subject to Qθ = ∇c(a) and

δ

1− δ (v(a)− c(a)) ≥
(
θ′Σθ

)1/2
/φ0 (5)

The proposition shows that the general problem of finding a payment func-

tion and action can be reduced to the much simpler problem of finding a

vector of weight parameters and an action. The optimal solution yields

action a∗ and associated weight parameters θ∗ for the performance index.

These weights are (from Qθ∗ = ∇c(a∗)) given by

θ∗ = (Q′Q)−1Q′∇c(a∗).

As noted above, the optimal action can be implemented by rewarding the

agent with the largest dynamically enforceable bonus (as given in (4)) if and

only if performance measured by the index y = θ∗′x exceeds its expected

value y0 = θ∗′E(x| a∗).

There are two sources for deviations from the first-best action in this setting,

and they are reflected in the two constraints in the optimization problem.

The first is due to distorted primary measures x, and will be relevant when

the vector of marginal costs at the first-best actions (aFB) cannot be written

as ∇c(aFB) = Qθ, for any θ; i.e. when this vector doesn’t belong to the

space spanned by (the column vectors of) Q.11 Implications of distorted

measures will be discussed below.
11This possibility is precluded in Budde (2007) by the requirement of measurements

being balanced.
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The second source is self-enforcement, which is reflected in the dynamic

enforcement constraint (5). The expression (θ′Σθ)1/2 on the right-hand side

of this constraint represents the standard deviation of the performance index

y = θ′x. It can be written as (ΣiΣjsijθiθj)
1/2, where sij = cov(xi, xj). It is

clear that any variation in Σ that increases this expression will tighten the

constraint, and hence reduce the total surplus. In particular, any increase

of a variance in Σ will have this effect and, provided θ has no negative

elements, any increase of a covariance in Σ will also have this effect. This

substantiates the intuition discussed above about less precise measurements

(larger variances) being detrimental in this setting.

It is also noteworthy that, provided θ has no negative elements, then positive

correlations among elements in the measurement vector x will be detrimen-

tal for the surplus, while negative correlations will be beneficial. This follows

because, all else equal, the former increases and the latter reduces the vari-

ance of the performance index. In the appendix (Appendix B) we present

an example that illustrates these effects.

From the enforcement constraint (5) it may appear that any action a will

satisfy this constraint if the standard deviation of the performance index

on the right hand side is suffi ciently small; and hence that the constraint

becomes irrelevant (non-binding) if measurements are suffi ciently precise.

The result in Proposition 2 builds, however, on the assumption that the first-

order approach is valid; and as we will demonstrate below, this is generally

not the case for suffi ciently precise measurements.

The approach replaces global IC constraints for the agent with a local one,

and is only valid if the action (a∗) derived this way is in fact a global optimum

for him under the given incentive scheme. Observe that, by choosing action

a∗ the agent gets a bonus if the index y = θ∗′x exceeds its expected value,

an event which occurs with probability 1
2 . The agent’s expected revenue is

then b/2, with the bonus b given by (4), and this must strictly exceed the

cost c(a∗) in order for the agent to be willing to choose action a∗. This

is so because by alternatively choosing action a = 0, the agent incurs zero

costs but still obtains the bonus with some (small) positive probability. The
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following condition is thus necessary:

δ

1− δ (v(a∗)− c(a∗)) > 2c(a∗) (6)

If a solution identified by the program in Proposition 2 doesn’t satisfy this

condition, it is not a valid solution. The reason is that the identified action

is not a global optimum for the agent under the associated incentive scheme.

A suffi cient condition will be given below in Section 3.2.

Remarks on relational vs. classical multitasking contracts. It is of
some interest to compare the relational contract in Proposition 2 to the by

now classical Holmstrom-Milgrom (1991) and Feltham-Xie (1994) multitask

contracts for verifiable measurements. In those models the agent is offered

a linear incentive scheme β′x + α, and for E(x| a) = Q′a the IC constraint

takes the form Qβ = ∇c(a). With a risk averse (CARA) agent the total

surplus (in certainty equivalents) is then v(a)− c(a)− r
2β
′Σβ, where the last

term captures risk costs, given by r
2var(β

′x). Letting M = (Q′Q)−1Q′ we

have β = M∇c(a) and surplus

v(a)− c(a)− r

2
(M∇c(a))′Σ(M∇c(a)),

which is to be maximized by choice of a.

In the maximization problem in Proposition 2 we have similarly from the IC

constraint Qθ = ∇c(a) that θ = M∇c(a), and the Lagrangian for the prob-

lem can then be written as (v(a)−c(a))(1+λ)−λ1−δδφ0
((M∇c(a))′Σ(M∇c(a)))1/2,

where λ is the shadow price on the enforcement constraint. Hence the opti-

mal solution maximizes

v(a)− c(a)− ζ
(
(M∇c(a))′Σ(M∇c(a))

)1/2
,

where ζ = λ
1+λ

1−δ
δφ0

can be seen as an (endogenous) cost factor.

There is thus a formal similarity between the models for the two contractual

settings. But the mechanisms behind the trade-offs are different. When

performance measures are verifiable, bonuses can in principle be arbitrarily

large, but are optimally constrained due to the risk costs they generate for

a risk averse agent. More precise measurements lower the risk costs and
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consequently make bonuses in a sense more effective instruments to achieve

higher surplus. With non-verifiable measures, bonuses are constrained by

self-enforcement at the outset, but are more effective in providing incentives

if measurements are more precise. More precise measurements are thus

beneficial in both settings, but for quite different reasons.

3.1 Distortions, alignment and precision.

We now discuss implications of distorted performance measures in the present

setting. Such measures have been studied extensively for the case when these

measures are verifiable, see e.g. Feltham-Xie (1994), Baker (1992), Datar

et al. (2001), Budde (2007); and particularly in settings where value- and

cost-functions are linear and quadratic, respectively:

v(a) = p′a+ v0 and c(a) =
1

2
a′a. (7)

Here ∇c(a) = a and the first-best action, characterized by marginal cost

being equal to marginal value, are given by aFB = p. If we now neglect the

dynamic enforceability constraint (5) in Proposition 2, we are led to maxi-

mize the surplus p′a − a′a/2 subject to a = Qθ. This maximization yields

θ = (Q′Q)−1Q′p and action, here denoted a∗0 given by a
∗
0 = Q(Q′Q)−1Q′p.

The best action, subject only to the agent’s IC constraint a = Qθ, is thus

generally distorted relative to the first-best action.

It may be noted that the solution a∗0 just derived is also the optimal solu-

tion in a setting where the measurements x are verifiable and the agent is

rewarded with a linear incentive scheme β′x+α. This is the setting studied

in several papers on distorted measures, and the literature has introduced

indicators to measure the degree of distortion. One such indicator is the

ratio of second-best to first-best surplus (as in Budde 2007), which for the

the second-best solution just derived (and with v0 = 0) amounts to

a∗′0 a
∗
0

p′p
=
p′Q(Q′Q)−1Q′p

p′p

In particular, when the measure x is one-dimensional, so Q is a vector, say

Q = q ∈ Rn, the ratio is (p′q/ |p| |q|)2 and is thus a measure of the alignment
between vectors p and q. Then the first-best can be attained only if the two
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vectors are perfectly aligned (q = kp, k 6= 0).

In the case of non-verfiable measurements x, which is the case analyzed in

this paper, the solution must also respect the dynamic enforcement con-

straint, represented by (5) in the last proposition. When this constraint

binds, the action a∗0 is generally no longer feasible. Moreover, since the

stochastic properties of the measurements, represented by the covariance

matrix Σ, affect the constraint, they will also affect the solution.

This leads to a trade-off between alignment and precision when it comes to

incentive provision. To highlight the trade-off, suppose there is a measure

which is well aligned with the marginal value vector p, but which is very

imprecise in the sense of having a large variance; and another measure which

is not as well aligned with p, but is quite precise. In a setting with verifiable

measures (and no risk aversion), the optimal solution would then entail

strong incentives on the first measure and weak incentives on the second

one. In particular, if the first measure, say x1, is perfectly aligned with p, all

incentives would be concentrated on this measure, and the second measure,

say x2, would be neglected (by letting the associated bonus θ2 be zero). This

solution, however, would imply a large variance for the performance index,

and hence quite possibly be infeasible under self-enforcement by violating

the constraint (5). The constraint may thus imply weaker incentives on

measures that are well aligned but imprecise, and stronger incentives on

measures that are less well aligned but more precise.

The trade-off emerges very clearly if we consider a limiting case where

some measure (say x2) has a vanishingly small variance. In the limit, with

var(x2) → 0, the first-order conditon for the optimal weight θ2 in the in-

dex is then (p − a)′q2 = 0. (This follows from the surplus being p′a − 1
2a
′a

with12 a = Qθ = Σm
i=1qiθi and all terms containing θ2 becoming zero in the

quadratic form on the right-hand side of the constraint (5).) In this lim-

iting case, it is thus optimal that vector p − a is orthogonal to vector q2,
irrespective of how well aligned the other measures are with p.13

Such a case is illustrated in the figure below, where there are two available

measures, and measure x1 with associated vector q1 is much better aligned
12Recall that Q has columns q1, ...qm.
13This holds as long as the assumptions behind Proposition 2 are valid. A suffi ciently

large variance of the total performance index is suffi cent, see Proposition 4 below.
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with p than measure x2. If now the variance var(x1) is large, the enforcement

constraint forces the weight θ1 to be small, and this weight will then, for

suffi ciently large var(x1), be smaller than the weight θ2 on the relatively

poorly aligned measure represented by vector q2 in the figure.

Figure 2. Illustration of distortion vs.

precision

In this figure the points qi = θiqi, i = 1, 2 represent the components of

vector a = θ1q1 + θ2q2, where θ1, θ2 are now determined by the requirement

that p−a is to be orthogonal to q2, plus the binding enforcement constraint
(5).14 A large var(x1) will force θ1 to be small, and a picture like that in

the figure then emerges: a small weight θ1 (and thus weak incentives) on

the highly aligned but imprecise measure, and a considerably larger weight

θ2 on the very precise but less aligned measure.

It is also worth noting that lower alignment may improve welfare here. If we

keep θ1 fixed in the figure, and then rotate vector q1 counter-clockwise to

become less aligned with p, the dotted line parallel to q2 will shift up, and

vector p−a will become shorter. This increases welfare (due to the identity
p′a− 1

2a
′a = 1

2 |p|
2 − 1

2 |p− a|
2), and since θ1 is kept fixed, the enforcement

constraint will become slack. Higher welfare is then feasible.

In the appendix (Appendix B) we present a numerical example that illus-

14The first requirement implies p′q2 − θ1q′1q2 − θ2q′2q2 = 0. Substituting for θ2 in the
constraint (5) then determines θ1.
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trates the issues discussed above.

Consider now an algebraic analysis. Observe first that for the linear-quadratic

case, the Lagrangean for the optimization problem in Proposition 2 can be

written as (1 + λ)(p′a− 1
2a
′a)− λ1−δδφ0

(θ′Σθ)1/2 with a = Qθ. The first-order

conditions for the optimal θ∗ therefore include

Q′(p−Qθ∗)− λ

1 + λ

1− δ
δφ0

(θ∗′Σθ∗)−1/2Σθ∗ = 0

Say that the enforcement constraint is strictly binding if the multiplier

(shadow cost) λ is non-zero, and thus λ > 0. If we define ψ∗ = λ
1+λ

1−δ
δφ0

(θ∗′Σθ∗)−1/2

we may then state the following result.

Corollary 1 Let v(a) = p′a and c(a) = 1
2a
′a. An optimal solution in Propo-

sition 2 with the enforcement constraint strictly binding then satisfies

θ∗ = (ψ∗Σ +Q′Q)−1Q′p

with ψ∗ > 0.

The trade-off between distortion and precision is captured in this expression

for θ∗, and can be nicely illustrated by considering measurements that are

uncorrelated and for which the associated vectors in Q are orthogonal, i.e.

q′iqj = 0 for all i 6= j. Then the formula yields

θ∗i =
q′ip

ψ∗sii + q′iqi
, i = 1, ...,m

All else equal, a measure with better alignment (larger q′ip) will optimally

have a larger weight in the index; but also, all else equal, so will a measure

with higher precision (smaller variance sii). A highly precise, but not so

well aligned measure may thus get a larger weight than a measure that is

better aligned, but quite imprecise.

Remark. A formally similar trade-off between distortion and precision

arises in multi-tasking models with verifiable measurements and a risk averse

agent, such as Feltham-Xie (1994) or Datar et al. (2001). In fact, the

optimal bonuses in the setting of these papers will be given by a formula

identical to the formula in Corollary 1, except that ψ∗ will be replaced by
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the agent’s coeffi cient of absolute risk aversion (r). This is not surprising

in light of the formal similarity between the two types of models that we

pointed out above. But we should keep in mind that the trade-offs arise from

two very distinct phenomena: the requirements of self-enforcement and the

costs of risk exposure, respectively. Moreover, while comparative statics

results are relatively straightforward in the Feltham-Xie setting, they are

less straightforward here. For example, we cannot conclude directly from

the last displayed formula that θ∗i is decreasing in the variance sii, because

ψ∗ is endogenous and hence also depends on sii.

It turns out that a two-step procedure is fruitful for deriving comparative

statics results. In the first step, consider the problem of finding an index

that implements a given surplus V with minimal variance, i.e. the problem

min θ′Σθ s.t. ∇c(a) = Qθ and v(a)− c(a) ≥ V

Let θ̂(Σ, V ) be the optimal solution andm(Σ, V ) the minimal value. Observe

that for V > v(0) the last constraint here must bind, since otherwise a = 0

and θ = 0 would solve the minimization problem.

Next observe that if (θ∗, a∗) is a solution to the problem in Proposition

2 with the enforcement constraint strictly binding and with surplus V ∗ =

v(a∗)− c(a∗), then we must have

θ∗ = θ̂(Σ, V ∗)

If this was not true, there would be (a, θ) satisfying the two constraints

in the minimization problem and θ′Σθ < θ∗′Σθ∗ . Since the enforcement

constraint in Proposition 2 would then be slack, a higher surplus than V ∗

would be feasible.

From the last formula we now have

∂θ∗i
∂sii

=
∂θ̂i
∂sii

+
∂θ̂i
∂V

∂V ∗

∂sii
(8)

This (Slutsky type) formula shows that the effect on the weight θ∗i in the

optimal index can be decomposed in two effects: first an effect induced

from a change in sii with the value V ∗ held constant; and second an effect
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generated by the change in V ∗ induced by the change in sii.

It turns out that the first effect, i.e. the "own effect" on the weight θ̂i of an

increase in the variance sii, has the opposite sign of θ̂i, and is thus negative if

θ̂i is positive. This follows from the minimal value m(Σ, V ) being concave15

in Σ and the envelope property, which implies

0 ≥ ∂2m

∂s2ii
=

∂

∂sii
θ̂
2

i = 2θ̂i
∂θ̂i
∂sii

Regarding the second effect in the decomposition (8), we know from the

discussion following Proposition 2 that the value V ∗ is decreasing in a vari-

ance sii. We thus have ∂V ∗

∂sii
≤ 0, but it appears that the sign of ∂θ̂i∂V may

depend on the parameters, and hence that the total effect in (8) cannot be

unambigously signed. For the linear-quadratic case with uncorrelated and

orthogonal measurements, however, we can show that ∂θ̂i
∂V has the opposite

sign of ∂θ̂i
∂sii
, which then implies that the two terms representing the two

effects in (8) have equal signs. Thus we have the following result.

Proposition 3 Let v(a) = p′a and c(a) = 1
2a
′a, and assume that the mea-

surements are uncorrelated and that q′iqj = 0 for all i 6= j. An optimal

solution in Proposition 2 with the enforcement constraint strictly binding

then satisfies

θ∗i
∂θ∗i
∂sii

≤ 0, i = 1, ..., n.

The absolute value of the weight θ∗i on measurement xi in the optimal index

will thus be decreasing in the measurement’s variance sii.

The trade-off between distortion and precision that we have analyzed in this

section, implies that scorecards must be constructed to find the best balance

between these effects. Scorecards can be based on non-verifiable measures,

and among those it may be possible to find one that is well aligned with

the principal’s true (marginal) values. This does not mean, however, that

such a measure should be given a large weight in the scorecard index. If

the measure is highly imprecise, a large weight on this measure may make
15Concavity of m follows by observing that if k ∈ (0, 1) and Σ = kΣ1+ (1− k)Σ2, then

θ′Σθ = kθ′Σ1θ + (1− k)θ′Σ2θ, and hence θ′Σθ ≥ km(Σ1, V ) + (1− k)m(Σ2, V ) holds for
any θ that is admissible in the minimization problem.
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the relational contract non-sustainable. Then it will be better to shift more

weight to measures that are more precise, even if they may be less well

aligned with the principal’s true value.

3.2 Validity of the first-order approach

We have throughout assumed FOA to be valid. Here we give suffi cient

conditions for this to be the case.

Let a∗, θ∗ be a solution to the optimization problem in Proposition 2. The

agent then gets a bonus (b) if the index y = x′θ∗ exceeds the hurdle y0 =

E(y| a∗) = a∗′Qθ∗. By construction, a∗ satisfies the first-order conditions

for the agent’s optimization problem. These conditions are given by Qθ∗ =

∇c(a∗). We will find conditions guaranteeing that a∗ is indeed an optimal
choice for the agent. Observe that when the enforcement constraint binds,

the necessary condition (6) implies a lower bound for the standard deviation

of the performance index: (θ∗′Σθ∗)1/2 > 2c(a∗)φ0.

If the agent chooses an action a, the index y has expectation e = E(y| a) =

a′Qθ∗ and variance σ2 = vary = θ∗′Σθ∗. Given our assumptions, the index

y is N(e, σ), and thus has a probability distribution that depends on action

a only via the (one-dimensional) expectation e = E(y| a). The agent’s

expected revenue (bPr(y > y0| a)) then also depends on a only via e. In

light of this, it is natural to consider the action that induces e with minimal

costs for the agent, i.e. action â(e) given by

â(e) = arg min
a
c(a) s.t. a′Qθ∗ = e,

and let C(e) = c(â(e)) be the minimal cost. We can then essentially write

the agent’s payoff as a function u(e) (see the appendix for details), and seek

conditions which guarantee that this function has a unique maximum. This

yields the following result.

Proposition 4 Let a∗, θ∗ be a solution from Proposition 2 with the en-

forcement constraint binding. There is σ∗0 > 0 such that a∗ is an optimal

choice for the agent, and thus the first-order approach is valid, if and only

if θ∗′Σθ∗ ≥ σ∗20 . A suffi cient condition (for strict inequality, θ∗′Σθ∗ > σ∗20 ,)
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is
δ

1− δ (v(a∗)− c(a∗)) ≥ a∗′∇c(a∗)
√
h(a∗)/(2φ0), (9)

where h(a) is a function defined from the cost function c(a), see defnition

(18) in the appendix, and which is identically 1 for a quadratic cost function.

Observe that for a quadratic cost function the expression on the right-hand

side of (9) is c(a∗)/φ0 with 1/φ0 =
√

2π ≈ 2.5. A suffi cient condition for the

approach employed in Proposition 2 to be valid in this case is thus that the

solution entails a cost for the agent that is no larger than 40% of the entire

value of the future relationship.

It can be verified that for suffi ciently imprecise measurements, a solution

from Proposition 2 will indeed, under some regularity conditions, satisfy

condition (9). Specifically, assuming Σ = sΣ0 and lima→0 a′∇c(a)
√
h(a) = 0

we can verify that if s > 0 is suffi ciently large, a solution a∗ will satisfy this

condition when v(0) > 0.16 This is so because a solution a∗ will necessarily

become "small" (approach zero) when measurements become very imprecise

(s→∞), and then (9) will be satisfied under the given assumptions.

3.3 Very precise measurements

We have seen that the first-order approach used to derive Proposition 2

may be invalid if measurements are noisy, but very precise. Specifically,

the action a∗0 that maximizes surplus subject to the constraint ∇c(a) = Qθ

will be a solution to the program in Proposition 2 if measurements are

suffi ciently precise to make the index variance (θ′Σθ) small enough to satisfy

the enforcement constraint. This is true for any δ > 0, but the action a∗0 will

not satisfy the necessary condition (6) for a valid solution if δ is suffi ciently

small. Hence the first order approach is not valid in such a case.

We thus lack a characterization of optimal incentive schemes for settings

with noisy but very precise measurements. On the other hand, the optimal

scheme for an environment with no noise is known (e.g. Budde 2007). In

this subsection we show that if V NF is the optimal surplus in a setting with

16This will also hold for v(0) = 0 if (v(a)− c(a))/a′∇c(a)
√
h(a) is bounded away from

zero when a→ 0.
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no noise, then any surplus value V < V NF can be implemented with an

index contract if the measurements are suffi ciently precise. Index contracts

(scorecards) are in this sense at least approximately optimal for suffi ciently

precise measurements.

Measurements without noise. As a reference case we first consider mea-
surements with no noise, i.e. of the form

x = Q′a.

We have then that an action a can be implemented by some bonus scheme

β(x) if and only if

∇c(a) = Qγ (10)

for some γ ∈ Rm. The condition is necessary because, if a generating

measurement x = Q′a is optimal for the agent, then it must be cost-

minimizing among all actions that generate the same x. So it must solve

minã c(ã) subject to x = Q′ã, and hence satisfy the first-order condition

(10) with Lagrange multiplier γ. Observe that γ is uniquely given by

γ = (Q′Q)−1Q′∇c(a). On the other hand, if a satisfies (10), it is a cost-

minimizing action generating measurement x = Q′a, and will be chosen by

the agent under a bonus scheme with β(x) ≥ c(a) and β(x̃) = 0, x̃ 6= x.

Being discretionary, bonuses must respect a dynamic enforcement constraint.

Since the minimal bonus to implement an action a is its cost c(a), the con-

straint here takes the form

c(a) ≤ δ

1− δ (v(a)− c(a)) (11)

The optimal contract in this setting thus maximizes the surplus v(a)− c(a)

subject to (10) and (11). Let aNF denote the optimal action and V NF the

maximal surplus in this noise-free environment. In the following we will

assume that the enforcement constraint binds and implies a surplus V NF

strictly less than the optimal surplus obtained without the constraint, thus

V NF < V ∗0 = max {v(a)− c(a)| ∇c(a) = Qθ, θ ∈ Rm} .

When the enforcement constraint here binds, we have c(aNF ) = δv(aNF ).

We further have, from (10) that ∇c(aNF ) = Qγ. In the linear-quadratic

case as in (7) with v0 = 0, this yields aNF = Qγ and (by optimization of
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the surplus with respect to γ) γ = k(Q′Q)−1Q′p with k = 2δ when the

enforcement constraint binds, and k = 1 otherwise. The constraint binds

for δ < 1
2 . The optimal surplus is then V

NF = (k − 1
2k
2)p′Q(Q′Q)−1Q′p.

This is a case considered in Budde (2007).

Measurements with noise. Consider again noisy measurements, and

recall that the approach behind Proposition 2 is valid only if the solution

(action a∗) satisfies condition (6). This condition is stricter than condition

(11). This implies that, although noise-free measurements can be seen as a

limiting case of noisy measurements when all variances go to zero, a valid

solution from Proposition 2 can generally not converge to aNF .

It may be noted that Chi and Olsen (2018) have found that for settings

with a univariate action, an index contract derived from the likelihood ratio

is still optimal even when the first-order approach is not valid. The only

required modification is that the threshold for the index must be adjusted,

taking into account not only a local IC constraint for the agent, but also

non-local ones, which will be binding. It is an open question whether a

similar property holds in settings with multivariate actions.

In the setting of this paper, however, we can show that for noisy but suf-

ficiently precise measurements, any surplus V < V NF can be obtained by

means of an index contract. This doesn’t mean that such a contract is op-

timal, but it will at least be approximately optimal for such measurements.

Specifically, we will consider actions that satisfy

2c(a) ≥ δ

1− δ (v(a)− c(a)) > c(a), (12)

plus ∇c(a) = Qθ for some θ ∈ Rn. Such an action will be feasible for

the optimization problem with noise free measurements, but not optimal in

that problem, since the enforcement constraint (11) does not bind. Hence

it generates a surplus V < V NF , but the action a can be chosen such that

V is arbitrarily close to V NF .

The first inequality in (12) implies that the necessary condition (6) for FOA

to be valid is violated, hence a cannot be implemented by the scheme applied

in Proposition 2. Recall that this is a consequence of the scheme being

designed such that, for the desired action the agent’s expected revenue falls
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short of his costs. (The hurdle for the index is set to maximize marginal

incentives, but this implies that the probability to obtain the bonus is 1/2,

and the first inequality in (12) then implies a negative payoff for the agent,

relative to choosing action a = 0.)

It seems intuitive that this problem can be alleviated by modifying the hurdle

so as to make it less demanding for the agent to qualify for the bonus. On

the other hand, such a modification will also negatively affect the agent’s

marginal incentives. It turns out that, if the measurements are suffi ciently

precise, a modification of the hurdle can achieve both goals: suffi ciently

strong incentives and a suffi ciently large payoff for the agent, so that the

desired action can be implemented. This is formally stated as follows.

Proposition 5 Let action a satisfy 2c(a) ≥ δ
1−δ (v(a) − c(a)) > c(a) and

∇c(a) = Qθ, for some θ ∈ Rm. There is σ0 > 0 with the following property:

If Σ satisfies θ′Σθ ≡ σ2 < σ20, then there is a hurdle κ(σ) < E(x′θ| a)

such that the index x′θ with hurdle κ(σ) implements a. Moreover, κ(σ) →
E(x′θ| a) as σ → 0.

Observe that the second condition in this proposition requires that ∇c(a)

belongs to the span of Q and thus can be written ∇c(a) = Qθ. By our

assumptions regarding Q this implies that θ is unique and given by θ =

(Q′Q)−1Q′∇c(a).

Now recall that an action a satisfying the two conditions in the proposition

generates a surplus V smaller than the optimal surplus with no noise (V NF ),

but that a can be chosen such that V is arbitrarily close to V NF . An

immediate consequence of the proposition is then the following:

Corollary 2 Any surplus V < V NF can be obtained by means of an index

contract, provided measurements are suffi ciently precise.

The proposition also implies that if an index contract generates a surplus

V that is close to V NF , and this contract is optimal in the class of index

contracts, then FOA must necessarily be violated, and hence some non-local

incentive constraint must bind.17

17The optimal action yielding surplus V must be close to the action aNF yielding surplus
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This implies that characterizing the optimal (linear) index contract can be

technically challenging in this setting. Of course this applies also for the

overall optimal contract, since it must have non-local incentive constraints

binding as well. (Otherwise it would be characterized by Proposition 2, and

thus be an index contract with only a local constraint binding.) We leave

these issues as topics for future research.

4 Non-verifiable and verifiable measurements

We have so far focused on non-verifiable measurements. But incentive

schemes, at least for top management, will typically also include verifiable

financial performance measures. Consider then a situation where there are

both non-verifiable and verifiable measurements available. To simplify the

exposition we will assume that there is one verifiable measure (x0) in addi-

tion to the non-verifiable measures (x) considered above. The latter depends

stochastically on effort as in (2) and the former is assumed to have a similar

representation:

x0 = q′0a+ ε0,

where q0 ∈ Rn and ε0 is normally distributed noise generally correlated with
the noise variables ε in x. (More precisely, the vector (ε0, ε) is multinormal.)

The agent can now be incentivized by a court enforced (explicit) bonus b0x0
on the verifiable measure and a discretionary (relational) bonus β(x0, x)

depending on the entire measurement vector (x0, x). We consider a case

where only short term explicit contracts are feasible, which allows us to

confine attention to stationary contracts18.

In each period, the agent will now choose action a to maximize E(b0x0 + β(x0, x)| a)−

V NF , and since the latter action by our assumptions satisfies (11) with equality and thus
violates the necessary condition (6) for FOA to be valid, the former action must also
violate this condition.
18Watson, Miller and Olsen (2020) analyse long term renegotiable court-enforced con-

tracts, and show that it will generally be optimal to renegotiate these contracts each period
when in combination with relational contracts.
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c(a), yielding first-order conditions19∫
(b0x0 + β(x0, x))fai(x0, x, a)− ci(a) = 0, i = 1, ..., n.

Returning to the assumption that FOA is valid, the principal then maximizes

the total surplus v(a) − c(a) subject to these constraints and the dynamic

enforcement constraint. We assume as before that the parties separate if the

relational contract is broken. The enforcement constraint is then the same

as (1), just with x now replaced by the entire measurement vector (x0, x).

From the same principles as before it follows that the agent should be

given the discretionary bonus if and only if an index exceeds a hurdle, and

from the normal distribution it follows that this index is linear in the mea-

surements; y = Σm
i=0τ ixi ≡ τ0x0 + τ ′x, and moreover that the hurdle is

y0 = E(Σm
i=0τ ixi| a∗), where a∗ is the equilibrium action. If the magnitude

of the bonus is b, this leads to the following first-order conditions for the

agent at the equilibrium action:

(b0 + b
φ0
σ
τ0)q0 + b

φ0
σ
Qτ = ∇c(a∗)

where now σ2 = varΣm
i=0τ ixi = var(τ0x0 + τ ′x) is the variance of the

performance index in this setting.

As before, it is convenient to introduce modified weights in the index:

θ0 = b
φ0
σ
τ0, θ = b

φ0
σ
τ.

This yields var(Σm
i=0θixi)/φ

2
0 = (b 1σ )2var(Σm

i=0τ ixi) = b2, and implies that

the IC condition and the dynamic enforcement condition can be written as,

respectively; the following relations:

(b0 + θ0)q0 +Qθ = ∇c(a)

δ

1− δ (v(a)− c(a)) ≥ 1

φ0
(var(θ0x0 + θ′x))1/2

The principal maximizes the total surplus v(a)− c(a) subject to these con-

19Here we use f(x0, x, a) to denote the joint density of all measurements, conditional
on action.
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straints.

Since the court-enforced bonus b0 can be chosen freely, while the elements

θ0, θ of the discretionary bonus scheme are constrained by self-enforcement,

we see that θ0 should be chosen so as to minimize the variance appearing in

the enforcement constraint. (If not, then for given θ we could modify b0 and

θ0 so that the IC constraint holds and the enforcement constraint becomes

slack.)

The variance is minimized for θ0 = −cov(x0, θ
′x)/s20, where s

2
0 = var(x0),

and this implies in turn that the performance index takes the form

θ0x0 + θ′x = Σm
i=1θi(xi −

cov(x0, xi)

s20
x0).

This shows that for correlated measurements (cov(x0, xi) 6= 0), performance

on the verifiable measure is taken into the index as a benchmark, to which

the other performances are compared.

The hurdle for the index is the expected value Σm
i=1θi(e

∗
i−

cov(x0,xi)
s20

e∗0), where

e∗i = E(xi| a∗), i = 0, ...,m. Since e∗i + cov(x0,xi)
s20

(x0 − e∗0) is the conditional
expectation of xi, given x0 (and a∗), it follows that we can write the condition

for the index to pass the hurdle as

Σm
i=1θi(xi − E(xi|x0, a∗)) > 0.

Performance xi is thus compared to expected performance, given (equilib-

rium) actions and the outcome on the verifiable measure. If the performance

exceeds what is expected, given this information, then it contributes pos-

itively to making the index exceed the hurdle, and thus for the agent to

obtain the bonus.

By benchmarking the agent’s performance on the non-verifiable measures

to her performance on the verifiable one, the precision of the performance

index can be increased, and thereby the dynamic enforcement constraint can

be relaxed and the surplus increased. The minimized index variance is

min
θ0

var(θ0x0 + θ′x) = var(Σm
i=1θix̃i) = θ′Σ̃θ,
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where x̃i = xi − cov(x0xi)
s20

x0, i = 1, ...,m, and Σ̃ is the covariance matrix for

x̃. We have cov(x̃i, x̃j) = sij−ρ0iρ0j(siisjj)1/2, where ρ0i = corr(x0, xi), i =

1, ...,m are the correlation coeffi cients between the verifiable and the non-

verifiable measures. We see that if all of these have the same sign, then all

elements in the new covariance matrix Σ̃ are reduced relative to the elements

of matrix Σ. Moreover, the stronger these correlations are in such a case,

the smaller are the elements of Σ̃, and the smaller is then the variance θ′Σ̃θ

if all elements of θ are non-negative. This will then relax the enforcement

constraint and increase the surplus. Stronger correlations, either all positive

or all negative, between the verifiable and each non-verifiable measure, will

thus increase the surplus in such a case.

We finally outline an approach to solve for the optimal contract in the setting

considered here, and apply this to the linear-quadratic case. First define

b̃0 = b0 + θ0, so that the IC constraint takes the form b̃0q0 + Qθ = ∇c(a),

and next define

S(θ) = max
b̃0,a
{v(a)− c(a)| b̃0q0 +Qθ = ∇c(a)}.

Then S(0) would be the optimal surplus the parties could achieve if only

the verifiable measure x0 were available. The relational contract allows the

parties to achieve

max
θ
S(θ) s.t.

δ

1− δS(θ) ≥ (θ′Σ̃θ)1/2/φ0

In the linear-quadratic case (v(a) = p′a and c(a) = 1
2a
′a), the IC constraint

is b̃0q0 +Qθ = a, and using this to substitute for a, we find that the surplus

to be maximized in the first step (with respect to b̃0) is

b̃0p
′q0 −

1

2
b̃20q
′
0q0 − b̃0θ′Q′q0 + p′Qθ − 1

2
θ′Q′Qθ

We see that, except if q0 is orthogonal to all the columns of Q, i.e. Q′q0 = 0,

then the optimal bonus b̃0 will depend on θ and hence be different from the

optimal bonus for the verifiable measure alone.
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The optimal value in this step is

S(θ) =
1

2q′0q0
(p′q0 − θ′Q′q0)2 + p′Qθ − 1

2
θ′Q′Qθ

The formula illustrates that, relative to a situation with only non-verifiable

measures, the verifiable one helps by (i) providing incentives that generate

value (the first term in S(θ)), and (ii) by relaxing the enforcement constraint;

partly via the higher value, and partly by allowing for valuable benchmarking

in the performance index. Conversely, relative to a setting with only the

verifiable measure available, the non-verifiable ones generally allow for a

higher surplus to be achieved.

This is illustrated in the figure below for the case of one verifiable (x0) and

one non-verifiable measure (x1), with associated vectors q0 and q1, respec-

tively. If only x0 is available, only action vectors on the line L0 can be

implemented, and the optimal action is then the projection of p on this line,

defined by action a0 = b0q0 such that (p−a0)′q0 = 0. When also x1 is avail-

able, action vectors on a parallel line such as L1 (given by a = θ1q1 + b̃0q0)

can be implemented. This allows for implementation of action vectors with

a smaller distance to p, and hence a larger surplus. The optimality condi-

tion for the bonus b̃0 on the verifiable measure still implies (p − a)′q0 = 0,

and hence that p − a should be orthogonal to q0 (and line L1). The figure
makes clear that, unless q0 and q1 are orthogonal, the bonus b̃0 defining the

component q0 = b̃0q0 of action a will be different from the optimal bonus

when only measure x0 is available. Adding a scorecard with non-verifiable

measures will thus generally require an adjustment of formal incentives in

the agent’s total compensation package.
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Figure 3. Illustration of incentives on verifiable

and non-verifiable measurements.

5 Conclusion

Employees are often evaluated along many dimensions, and at least some of

the performance measures will typically be non-verifiable to a third party.

They may also be misaligned with (distorted from) the true values for the

principal, and be stochastically dependent. The aim of this paper is to

study this environment: Optimal incentives for multitasking agents whose

performance measures are non-verifiable and potentially distorted and cor-

related. We extend and generalize the received literature in some important

dimensions (to an arbitrary number of tasks with stochastic measurements

that are possibly correlated and/or distorted), and we invoke assumptions

(normally distributed measurements) that make the model quite tractable.

We show that under standard assumptions, the optimal relational contract

is an index contract. That is, the agent gets a bonus if a weighted sum of

performance outcomes on the various tasks (an index) exceeds a hurdle. The

weights reflect a trade-off between precision and distortion for the various

measures. The effi ciency of this contract improves with higher precision of

the index measure, since this strengthens incentives. Correlations between

measurements may for this reason be beneficial. For a similar reason, the
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principal may also want to include verifiable performance measures in the

relational index contract in order to improve incentives. These are then

included as benchmarks, to which the other performances are compared.

We point out that for very precise, but still noisy measurements, the stan-

dard first-order approach breaks down, and we show that, although index

contracts may no longer be optimal in such settings, they can be adjusted

to become asymptotically optimal.

The index contracts in our model bear resemblance to key features of the

performance measurement system known as balanced scorecards. Reward

systems based on BSC typically include non-verifiable measures and connect

pay to an index. In that sense, our paper provides a contract theoretic

rationale for the way BSC schemes are implemented. However, while the

scheme we present is a bonus contract with just one threshold (or ’hurdle’),

scorecards in practice often have several thresholds and bonus levels, where

the size of the bonus depends on the score. Future research can extend

the model we present to incorporate e.g. risk aversion or limited liability, in

order to study under which broader conditions the index contract is optimal,

and what kind of index contracts that are optimal under various model

specifications.

References

[1] Baker, George P. 1992. Incentive contracts and performance measure-

ment. Journal of Political Economy 100: 598-614.

[2] Baker, George, Robert Gibbons, and Kevin J. Murphy. 1994. Subjective

performance measures in optimal incentive contracts. The Quarterly

Journal of Economics 109: 1125-1156.

[3] Baker, George, Robert Gibbons and Kevin J. Murphy. 2002. Relational

contracts and the theory of the firm. Quarterly Journal of Economics

117: 39-94.

[4] Baldenius, Tim, Jonathan Glover, and Hao Xue. 2016. Relational con-

tracts with and between agents. Journal of Accounting and Economics

61: 369-390.

33



[5] Banker, R.D. and Datar, S.M., 1989. Sensitivity, precision, and linear

aggregation of signals for performance evaluation. Journal of Account-

ing Research, 27(1), 21-39.

[6] Budde, Jörg. 2007. Performance measure congruity and the balanced

scorecard. Journal of Accounting Research, 45: 515-539.

[7] Budde, Jörg. 2009. Variance analysis and linear contracts in agen-

cies with distorted performance measures. Management Accounting Re-

search, 20: 166 - 176.

[8] Chi, Chang-Koo and Trond E. Olsen. 2018, Relational incentive con-

tracts and performance measurement, Discussion Papers 2018/6, Nor-

wegian School of Economics, Department of Business and Management

Science.

[9] Datar, Srikant, Susan Kulp, and Richard Lambert. 2001. Balancing

performance measures. Journal of Accounting Research 39: 75—92

[10] Feltham, Gerald A. and Jim Xie. 1994. Performance Measure Congruity

and Diversity in Multi-Task Principal/Agent Relations. The Accounting

Review, 69: 429-453.

[11] Gibbons, Robert and Robert S. Kaplan. 2015. Formal Measures in In-

formal Management: Can a Balanced Scorecard Change a Culture?

American Economic Review, 105: 447-51.

[12] Gibbs, Michael, Kenneth A Merchant, Wim A Van der Stede, Mark E

Vargus. 2004. Determinants and Effects of Subjectivity in Incentives.

The Accounting Review, 79, 409-436.

[13] Glover, Jonathan. 2012. Explicit and implicit incentives for multiple

agents. Foundations and Trends in Accounting, 7: 1-71.

[14] Hesford, James W. , Sung-Han (Sam) Lee, Wim A. Van der Stede, S.

Mark Young. 2009. Management Accounting: A Bibliographic Study,

In C. S. Chapman, A. G. Hopwood, M.D. Shields (eds) Handbooks of

Management Accounting Research

[15] Holmström, Bengt, and Paul Milgrom. 1991. Multitask principal-agent

analyses: Incentive contracts, asset ownership, and job design. Journal

of Law, Economics, and Organization, 7: 24-52.

34



[16] Hogue, Zahirul. 2014. 20 years of studies on the balanced scorecard:

Trends, accomplishments, gaps and opportunities for future research.

The British Accounting Review, 46: 33-59.

[17] Huges, John J., Li Zhang, and Jai-Zheng J. Xie. 2005. Production Ex-

ternalities, Congruity of AggregateSignals, and Optimal Task Assign-

ment. Contemporary Accounting Research, 22: 393—408.

[18] Hwang, Sunjoo. 2016. Relational contracts and the first-order approach.

Journal of Mathematical Economics, 63:126-130.

[19] Ishihara, A. 2016. Relational contracting and endogenous formation of

teamwork. RAND Journal of Economics, 48: 335-357.

[20] Ittner, Christopher D., David F. Larcker, Marshall W. Meyer. 2003.

Subjectivity and the Weighting of Performance Measures: Evidence

from a Balanced Scorecard. The Accounting Review, 78: 725-758

[21] Kaplan, Robert S. and Dadid P. Norton. 1992. The Balanced Scorecard:

Measures that drive performance, Harvard Business Review, (January-

February): 71-79.

[22] Kaplan, R. S. and D.P. Norton. 1996. The Balanced Scorecard: Trans-

lating Strategy into Action. Boston: HBS Press.

[23] Kaplan, R. S., and D. P. Norton. 2001. The strategy-focused organi-

zation: How balanced scorecard companies thrive in the new business

environment. Harvard Business Press.

[24] Klein, Benjamin, and Keith Leffl er. 1981. The role of market forces

in assuring contractual performance. Journal of Political Economy 89:

615-41.

[25] Kvaløy, Ola and Trond E. Olsen. 2019. Relational contracts, multiple

agents and correlated outputs. Management Science, 65: 4951-5448.

[26] Levin, Jonathan. 2002. Multilateral contracting and the employment

relationship. Quarterly Journal of Economics 117: 1075-1103.

[27] Levin, Jonathan 2003. Relational incentive contracts. American Eco-

nomic Review 93: 835-57.

35



[28] Miller, David and Joel Watson. 2013. A Theory of disagreement in

repeated games with bargaining. Econometrica 81: 2303-2350.

[29] Macaulay, Stewart. 1963. Non contractual relations in business: A pre-

liminary study. American Sociological Review, XXVIII, 55-67.

[30] MacLeod, W. Bentley, and James Malcomson. 1989. Implicit contracts,

incentive compatibility, and involuntary unemployment. Econometrica

57: 447-80.

[31] MacLeod, W. Bentley. 2007. Reputations, Relationships and Contract
Enforcement. Journal of Economic Literature, 45: 595-628.

[32] Macneil, Ian, 1978, “Contracts: Adjustments of long-term economic re-

lations under classical, neoclassical, and relational contract law. North-

western University Law Review, LCCII, 854-906.

[33] Mukherjee, Arijit and Luis Vasconcelos. 2011. Optimal job design in

the presence of implicit contracts. RAND Journal of Economics, 42:

44-69.

[34] Schmidt, Klaus M., and Monika Schnitzer. 1995. The interaction of

explicit and implicit contracts. Economics Letters, 48: 193-199.

[35] Schottner, Anja. 2008. Relational contracts, multitasking, and job de-

sign. Journal of Law, Economics and Organization, 24: 138-162.

[36] Watson, Joel, David Miller and Trond E. Olsen,. 2020. Relational con-

tracting, negotiation, and external enforcement. American Economic

Review, 110 (7): 2153 - 2197.

APPENDIX A: PROOFS.

Proof of Lemma 1. The lemma follows directly from the Lagrangian for

the problem, which takes the form

L = v(a)−c(a)+Σiµi(
∫
β(x)fai(x, a)−ci(a))+

∫
λ(x)( δ

1−δ (v(a)−c(a))−β(x))

At the optimal action a = a∗, the optimal bonus satisfies

∂L
∂β(x) = Σiµifai(x, a)− λ(x) = 0 if β(x) > 0, ≤ 0 if β(x) = 0
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Hence we have

If Σiµifai(x, a) > 0 then λ(x) > 0 and hence β(x) = δ
1−δ (v(a)− c(a)).

If Σiµifai(x, a) < 0 then ∂L
∂β(x) < 0 and hence β(x) = 0 (implying λ(x) = 0).

Verification of (3). Given that ỹ = τ ′x is nomal with expectation E( ỹ| a)

and variance σ̃2 = τ ′Στ , we have

Pr( ỹ > ỹ0| a) = Pr(
ỹ − E( ỹ| a)

σ̃
>
ỹ0 − E( ỹ| a)

σ̃

∣∣∣∣ a) = 1− Φ(
ỹ0 − E( ỹ| a)

σ̃
)

(13)

where Φ(·) is the standard normal CDF. Since E( ỹ| a) = τ ′Q′a has gradient

∇aE( ỹ| a) = Qτ , we then obtain

∇a Pr( ỹ > ỹ0| a) = φ(
ỹ0 − E( ỹ| a)

σ̃
)
1

σ̃
Qτ

where φ = Φ′ is the standard normal density. This verifies (3), since ỹ0 =

E( ỹ| a∗).

Proof of Proposition 3. We will show that θ̂i ∂θ̂i∂V ≥ 0. Since θ̂i ∂θ̂i∂sii
≤ 0

and ∂V ∗

∂sii
≤ 0, this implies from (8) that θ̂i

∂θ∗i
∂sii
≤ 0, which verifies the formula

in Proposition 3 since θ̂i = θ∗i when V = V ∗.

Consider the Lagrangean for the optimization problem that defines θ̂:

L = −θ′Σθ + λ(p′a− a′a/2− V ), a = Qθ.

The first-order conditions are

(−2Σ− λQ′Q)θ̂ + λQ′p = 0

p′Qθ̂ − 1
2 θ̂
′
Q′Qθ̂ − V = 0

Differentiating this system with respect to V yields[
−2Σ− λQ′Q Q′(p−Qθ̂)
(p−Qθ̂)′Q 0

][
∇V θ̂
∂λ
∂V

]
=

[
0

1

]
(14)

By Cramer’s rule we have
∂θ̂1
∂V

=
1

D
D1
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where D is the determinant of the bordered Hessian in (14), and D1 is

the determinant of the same matrix with the first column replaced by the

column on the right-hand side of (14). The determinant D has the same

sign as (−1)m.

For uncorrelated and orthogonal measurements we have

−2Σ− λQ′Q = diag {d1, ..., dm} , di = −2sii − λq′iqi < 0, i = 1...m.

Using this special structure to compute the determinant D1 (by expansion

along the first column and then the first row), we obtain

D1 = (−1)q′1(p−Qθ̂)d2 · ... · dm,

and thus

θ̂1
∂θ̂1
∂V

=
−1

D
θ̂1q
′
1(p−Qθ̂)d2 · ... · dm

Since each di is negative, their product has the same sign as (−1)m−1, and

hence we see that −d2 · ... · dm/D is positive. Finally, for uncorrelated and

orthogonal measurements we see from the first-order conditions that we have

λq′1(p−Qθ̂) = 2s11θ̂1

For V > 0 we must have λ > 0 since λ = 0 will imply θ̂ = 0 and thus a = 0

and V = 0. Hence we see that θ̂1q′1(p − Qθ̂) = 2s11θ̂
2

1/λ > 0, which now

implies θ̂1 ∂θ̂1∂V ≥ 0. The same argument obviously holds for any i > 1, and

the proof is then complete.

Proof of Proposition 4. For an action a the index y = x′θ∗ has variance

σ2 = θ∗′Σθ∗ and expected value e = E(y| a) = a′Qθ∗. For given e, let C(e)

be the minimal cost for the agent to achieve this expected value, i.e.

C(e) = min
a
c(a) s.t. a′Qθ∗ = e. (15)

From a formula corresponding to (13) we see that the agent’s expected

revenue depends on a only via e = E(y| a), hence consider the payoff

u(e) = b(1− Φ(
y0 − e
σ

))− C(e) =
σ

φ0
(1− Φ(

e∗ − e
σ

))− C(e),
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where we have used b = σ/φ0 and defined e
∗ = a∗′Qθ∗ = y0. Note that for

e = e∗ we have C(e∗) = c(a∗), since a∗ satisfies the first-order condition in

the convex cost-minimization problem. Hence the agent’s payoff from a∗ is

u(e∗), which equals b12 − c(a
∗).

It is clear that if u(e) ≤ u(e∗) for all feasible e, then action a∗ is an optimal

choice for the agent. (If not, there exists an action ã yielding a higher

payoff. This payoff is u(ẽ), where ẽ = ã′Qθ∗, and thus u(ẽ) > u(e∗), a

contradiction.) Observe that

u′(e) = φ(
e∗ − e
σ

)/φ0 − C ′(e),

where φ = Φ′ is the standard normal density.

Since Qθ∗ = ∇c(a∗), the first-order conditions for the cost minimization
problem defining C(e) are

∇c(â) = γ∇c(a∗) and e = â′∇c(a∗), (16)

where â = â(e) is the optimal action and γ is a Lagrange multiplier. Differ-

entiation wrt e yields

H(â)dâ = dγ∇c(a∗) and ∇c(a∗)′dâ = de,

where H(a) = [cij(a)] is the Hessian of the cost function c(a). Hence dâ =

H(â)−1∇c(a∗)dγ and so

dγ

de
= (∇c(a∗)′H(â)−1∇c(a∗))−1 > 0,

where the inequality follows from H being positive definite. From the enve-

lope property we have C ′(e) = γ and so C ′′(e) = dγ
de > 0.

Observe for later use that from conditions (16) we have e = â′∇c(a∗) and
γ = a∗′∇c(â)/(a∗′∇c(a∗)), and hence

η(e) ≡ eC
′′(e)

C ′(e)
= â′∇c(a∗)a

∗′∇c(a∗)
a∗′∇c(â)

1

∇c(a∗)′H(â)−1∇c(a∗) . (17)

Now consider u(e) for e > e∗. Here we have u′(e) < u′(e∗) = 0 since φ( e
∗−e
σ )
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is decreasing and C ′(e) is increasing in e, where the latter property follows

from C ′′(e) = dγ
de ≥ 0. This verifies u(e) < u(e∗) for e > e∗.

Next consider u(e) for e < e∗. We will show that u(e) ≤ u(e∗) for all e ≤ e∗

iff σ ≥ σ∗0. To this end we first state and prove the following claim.

Claim. Let h∗ = supe {1/η(e)| 0 < e ≤ e∗}. If σ ≥ e∗
√
h∗/2 ≡ σm, then

u′(e) ≥ 0 for all e < e∗.

The last statement obviously implies u(e) ≤ u(e∗) for all e < e∗ if σ ≥ σm.

To prove the claim, observe first that u′(0) > 0 = u′(e∗) (since C ′(0) = 0 due

to â(0) = 0 and therefore γ = 0 for e = 0). If u′(e) has no local minimum

in (0, e∗), then u′(e) is non-negative on this interval. So consider a local

minimum, where then u′′(e) = 0. Using φ′(z) = −zφ(z) we have

0 = u′′(e) = −φ′(e
∗ − e
σ

)
1

φ0σ
− C ′′(e) =

e∗ − e
σ

φ(
e∗ − e
σ

)
1

φ0σ
− C ′′(e).

This yields φ( e
∗−e
σ )/φ0 = σ2

e∗−eC
′′(e) and thus, from the definition of the

elasticity η(e) above:

u′(e) = φ(
e∗ − e
σ

)/φ0 − C ′(e) = C ′′(e)(
σ2

e∗ − e −
e

η(e)
)

By the definition of h∗ we have h∗ ≥ 1/η(e) and hence

σ2

e∗ − e −
e

η(e)
≥ σ2

e∗ − e − eh
∗.

The last expression is non-negative if σ2/h∗ ≥ maxe e(e
∗ − e) = (e∗/2)2, i.e.

if σ ≥ e∗
√
h∗/2 ≡ σm. This verifies that u′(e) ≥ 0 for all e ≤ e∗ if σ ≥ σm,

and thus proves the claim.

So we have u′(e) ≥ 0 for all e < e∗ when σ ≥ σm. Let σl be the smallest σ

for which u′(e) ≥ 0 for all e < e∗. (We must have σl > 0 since otherwise the

necessary condition (6) would be violated.) So for σ < σl there is e < e∗

such that u′(e) < 0. Then, since u′(0) > 0 as noted above, u(e) must have a

local maximum at some e0 ∈ (0, e∗). Since both e0 and e∗ are local maxima,
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we have then, for σ < σl

d

dσ
(u(e∗)− u(e0))φ0 = Φ(

e∗ − e0
σ

)− Φ(0)− σΦ′(
e∗ − e0
σ

)
e∗ − e0
σ2

> 0,

where the inequality follows from Φ(z) being strictly concave for z > 0, and

thus Φ(z)− Φ(0)− Φ′(z)z > 0.

Hence, the smaller is σ, the smaller is the payoff difference u(e∗) − u(e0).

Let σ∗0 be the smallest σ for which u(e∗)− u(e0) ≥ 0. By the monotonicity

of u(e∗) − u(e0), we have u(e∗) ≥ u(e0) iff σ ≥ σ∗0. This proves the first

statement in the proposition.

To verify the last statement in the proposition, recall the definition of â(e)

as the cost minimizing action in problem (15) and define

h(a∗) = sup
e

{
a∗′∇c(a)

a′∇c(a∗)
∇c(a∗)′H(a)−1∇c(a∗)

a∗′∇c(a∗)

∣∣∣∣ a = â(e), 0 < e ≤ a∗′∇c(a∗)
}

(18)

From the definition of h∗ in the Claim, the expression for η(e) in (17), and

the fact that e∗ = a∗′Qθ∗ = a∗′∇c(a∗), we then have h∗ = h(a∗).

The suffi cient condition stated in the Claim can thus be written σ ≥ e∗
√
h(a∗)/2.

Since e∗ = a∗′∇c(a∗) and σ = (θ∗′Σθ∗)1/2 it follows from the binding en-

forcement constraint (5) that the suffi cient condition can equivalently be

wrtten as the condition (9) stated in the proposition.

We finally note that for a quadratic cost function c(a) = a′Ka/2 the expres-

sion in (18) yields 20 h(a∗) = 1. This completes the proof.

Remark. The proof uses only two properties of a∗ and θ∗; namely that
they satisfy ∇c(a∗) = Qθ∗ and the binding enforcement constraint (5). Its

conclusions regarding a∗ being implementable (an optimal choice for the

agent) with index x′θ∗ are therefore valid for any a∗ and θ∗ that satisfy

these conditions

Proof of Proposition 5. To take advantage of the notation developed

in the previous proofs, in this proof we will denote the given a and θ by

20For c(a) = (a′Ka)r/2r, r ≥ 1, we find h(a∗) = 2r − 1.
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a∗ and θ∗, respectively. We thus consider a∗ and θ∗ that satisfy 2c(a∗) ≥
δ
1−δ (v(a∗)− c(a∗)) > c(a∗) and ∇c(a∗) = Qθ∗.

We will consider the index y = x′θ∗ with a hurdle κ < E(y| a∗), and with
bonus b paid for qualifying performance (y > κ). The bonus is

b =
δ

1− δ (v(a∗)− c(a∗)).

The proof will show that the hurdle κ can be chosen such that this index

scheme implements a∗, provided the index has a suffi ciently low variance.

By assumption we have c(a∗) < b. Choose ξ0 > 0 and σ0 such that

c(a∗) = (Φ(ξ0)− Φ(−ξ0))b and σ0 = bφ(−ξ0)

The index y = x′θ∗ has variance σ2 = θ∗′Σθ∗, and assume now σ < σ0.

Define ξ > ξ0 by

σ = bφ(−ξ),

and let the hurdle for the index be κ = E(y| a∗)− ξσ = θ∗′Q′a∗ − ξσ.

The agent’s payoff from an action a is then b(1 − Φ(κ−E(y|a)σ )) − c(a) with

gradient b 1σφ(κ−θ
∗′Q′a
σ )Qθ∗ − ∇c(a). It follows that action a∗ satisfies the

first-order condition for an optimum, since we have κ − θ∗′Q′a∗ = −ξσ,
b 1σφ(−ξ) = 1 and Qθ∗ = ∇c(a∗) Since ξ > 0, we can also verify that the

Hessian at a∗ is positive definite, hence action a∗ is a local optimum for the

agent under the given incentive scheme.

It remains to show that a∗ is a global optimum. As in the proof of Propo-

sition 4, it suffi ces to consider the payoff

u(e) = b(1− Φ(
κ− e
σ

))− C(e).

where e is the expected index value (e = E(y| a)), C(e) is the minimal cost

to obtain a given expected value e, see (15); and κ is here the hurdle for

the index. For action a∗ this payoff is u(e∗), where e∗ = E(y| a∗) = θ∗′Q′a∗.

The proof is complete if we show u(e) ≤ u(e∗) for all feasible e.
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First note that by the definition of κ we have κ−e∗
σ = −ξ and so

u(e∗) = b(1− Φ(−ξ))− c(a∗),

where we have used the fact that C(e∗) = c(a∗), by virtue of a∗ being the

cost-minimizing action to generate expectation e∗ = θ∗′Q′a∗.

Next consider e < e∗. Since u′(0) > 0 (by virtue of C ′(0) = 0, see the

previous proof), we have u(e) ≤ u(e∗) for all e ∈ [0, e∗] if u(·) has no
local maximum in the interior of the interval. So suppose u(·) has a local
maximum at some e0 ∈ (0, e∗). Then u′(e0) = 0 and so b 1σφ(κ−e

0

σ ) =

C ′(e0). Since C ′(e0) < C ′(e∗), and e∗ is also a local maximum, we then

have φ(κ−e
0

σ ) < φ(κ−e
∗

σ ). Since φ(·) is symmetric around zero, this implies
κ − e0 > e∗ − κ and hence, by definition of κ = e∗ − ξσ, that κ − e0 > ξσ.

This yields

u(e0) = b(1− Φ(
κ− e0
σ

))− C(e0) ≤ b(1− Φ(ξ)),

and hence

u(e∗)− u(e0) ≥ b(1− Φ(−ξ))− c(a∗)− b(1− Φ(ξ)).

The last expression is increasing in ξ and is (by definition of ξ0) zero for

ξ = ξ0. Hence u(e∗)− u(e0) ≥ 0, since ξ > ξ0. This verifies u(e) ≤ u(e∗) for

all feasible e < e∗.

Now consider e > e∗. As in the proof of Proposition 4, we have u′(e) <

u′(e∗) = 0 when e > e∗ This follows because C ′(e) is increasing (as shown

in the proof of Proposition 4), and because φ(κ−eσ ) is decreasing in e when

e > e∗, since e∗ > κ and thus κ−e < 0. This verifies u(e) < u(e∗) for e > e∗.

We finally verify that κ → E(y| a∗) when σ → 0. From the definition of κ

and ξ we have E(y| a∗) − κ = ξσ = ξφ(−ξ)b, where ξ → ∞ when σ → 0.

The density φ(·) has the property that ξφ(−ξ) → 0 when ξ → ∞, and this
completes the proof.

APPENDIX B: EXAMPLES

Example 1. This example illustrates an application of Proposition 2. Sup-
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pose n = 3 and that we have m = 2 measurements, given by

x1 = a1 + ε1, x2 = k · (a2 + a3) + ε2, k > 0,

Then Q′ has rows (1, 0, 0) and (0, k, k), and we have Q′Q = I (the identity

matrix) if k = 1/
√

2. To simplify the algebra we will invoke this assumption

regarding k. Assume also linear-quadratic value- and cost-functions: v(a) =

p′a and c(a) = a′a/2.

Substituting from the agent’s IC condition a = Qθ into the objective and the

enforcement constraint in Proposition 2, we are led to choose θ to maximize

p′Qθ − 1
2θ
′θ subject to

δ

1− δ (p′Qθ − 1

2
θ′θ) ≥ (θ′Σθ)1/2/φ0

Given our assumptions about the measurements, we have p′Q = (p1, (p2 +

p3)k). To simplify further, assume p1 = (p2 + p3)k and var(ε1) = var(ε2) =

s2, which implies that the objective and the constraint are entirely symmet-

ric in θ1 and θ2. The optimal solution is then also symmetric, i.e. θ1 = θ2,

and the (binding) enforcement constraint for the common value θ1 takes the

form
δ

1− δ (2p1θ1 − θ21) = sθ1(2 + 2ρ)1/2/φ0

where ρ = corr(ε1, ε2). The optimal action is then a∗ = Qθ = (1, k, k)′θ1,

and the associated surplus per period is 2p1θ1 − θ21. We see that a higher
variance (s2) or a higher correlation (ρ) for the observations will reduce θ1
and reduce the surplus.

Given our assumptions about measurements in this example, we can promote

action a1 via incentives on x1, and we can promote the sum a2 + a3 via

incentives on x2. As we have seen, the optimal incentive scheme rewards

the agent with a fixed bonus (b) if performance measured by an index —a

scorecard —θ1x1+θ2x2 exceeds a hurdle. The agent will then clearly choose

a2 = a3, since the marginal revenues on these two action elements are equal.

This will entail a distortion from the first-best if the marginal values of these

two elements for the principal are not equal (p2 6= p3). The first best action

is here aFB = (p1, p2, p3)
′.
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If this were the only distortion, the weight vector θ would be chosen to

maximize the surplus, subject to the IC constraints, which would constrain

actions such that a2 = a3. In our setting the enforcement constraint puts

further bounds on these weights. In this example we have invoked an addi-

tional assumption (p1 = (p2 + p3)k) that ensures equal weights θ1 = θ2 in

the optimal index. The magnitude of this common weight, and therefore the

strength of the agent’s incentives, is bounded by the dynamic enforcement

constraint. And as we have seen, the noise parameters s and ρ have negative

influences in this respect.

Example 2. This example illustrates the trade-off between distortion and
precision discussed in Section 3.1. Assume m = n = 2 and

q1 = p = (1, 1)′ and q2 = (1, 0)′.

Here q1 is perfectly aligned with the true marginal value p. Assume also

that the measurements are uncorrelated with variances

s11 = 16 and s22 = 1.

Measure x1 is thus considerably less precise than measure x2. For a value of

δ to be specified below, we will see that the optimal weight on the perfectly

aligned but imprecise measure x1 is considerably smaller than the optimal

weight on the more precise but also more distorted measure x2. Specifically,

these optimal weights turn out to be θ∗1 = 1
7 and θ

∗
2 = 4

7 .

The figure below illustrates this case. The left-most curve depicts the bind-

ing enforcement constraint, and the other curve is an isoquant for the total

surplus. The optimal weight combination is at the tangency point of the

two curves.
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The specifics of this example are as follows. For given θ the agent will choose

action a = θ1q1 + θ2q2. For the given parameters the surplus p′a − a′a/2
then amounts to

2θ1 − θ21 − θ1θ2 + θ2 − 1
2θ
2
2 ≡ S(θ)

The index θ′x has variance 16θ21 + θ22 , and the enforcement constraint can

be written as

S(θ) ≥ 1−δ
δφ0

(16θ21 + θ22)
1/2.

We find that the tangency condition illustrated in the figure is fullfilled at

θ∗ = (17 ,
4
7) when δ satisfies

1−δ
δφ0

= 6−13/7
4
√
2
, i.e. δ = (6−13/7

4
√
2

1√
2π

+ 1)−1 = 0.773 89.

The value of the optimal surplus can then be computed to be S(θ∗) = 29
49 .

We will next illustrate that a more distorted measure can be advantageous.

Suppose everything is as above, except that measure x1 has vector

q̃1 = (12 ,
1
2

√
7)

This is a vector of the same length as q1 (i.e. q̃′1q̃1 = q′1q1 = 2), but rotated

away from p towards the vertical axis. It is thus more distorted than q1
relative to vector p. Action a = θ1q̃1 + θ2q2 then yields surplus
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S̃(θ) = 1
2(1 +

√
7)θ1 + θ2 − θ21 − 1

2θ
2
2 − 1

2θ1θ2.

We now find that for θ = θ∗ given above we have S̃(θ∗) = 1
14

√
7+ 41

98 > S(θ∗).

An index with the same weights as before thus yields a higher surplus. It will

then be feasible index in the new situation, since it satisfies the enforcement

constraint (with slack). The optimal surplus is therefore stricly higher with

vector q̃1 than with vector q1.
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