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Abstract 
 
We introduce a “smart” cap and trade system that eliminates the welfare costs of asymmetric 
information (“uncertainty”). This cap responds endogenously to technology or macroeconomic 
shocks, relying on the market price of certificates to aggregate information. It allows policy 
makers to modify existing institutions to achieve more efficient emission reductions. The paper 
also shows that the efficient carbon price is more sensitive to technological innovations than 
usually assumed. The lasting impact and slow diffusion of these innovations typically make the 
optimal carbon price a much steeper function of emissions than suggested by the social cost of 
carbon. 
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1 Introduction

Forty countries have implemented either a tax or a cap and trade system to regulate

greenhouse gas emissions and mitigate climate change. The European Emissions Trad-

ing System (ETS) has an annual market value of about 60 billion USD. Following the

Paris Climate Agreement, another 88 countries are currently considering introducing

either a tax or a cap and trade system. These instruments are also used to regulate

other pollutants, and there are many subnational initiatives. The high cost of reducing

greenhouse gas (GHG) emissions, and the potentially enormous costs of failing to deal

with the climate problem, make it important to use efficient policies. The problem

is too big, and the remedy too expensive, to waste effort. Asymmetry of information

between firms and the regulator is central to the policy design problem. We introduce

a “smart cap” that efficiently aggregates information and responds to technological in-

novations or other macroeconomic shocks, thereby reducing the cost of climate change

mitigation.

Cap and trade is currently the most widely used market-based policy to control

GHG emissions. California’s ETS, with a market value of 6 billion USD, is the largest

in the U.S., and China is currently introducing the largest overall. Due largely to

technological and macroeconomic shocks, these policies have resulted in low carbon

prices and modest emission reductions in the European ETS, the Regional Greenhouse

Gas Initiative (RGGI), and California’s carbon market. As a result, these policies miss

low-cost emissions reduction opportunities and undermine the public’s confidence in

market-based regulation. A smart cap endogenously contracts the emission cap.

Our main innovation shows how a policy that endogenously adjusts the emission

cap in response to the certificate price overcomes current policies’ limitations. Under

this smart cap, the regulator auctions or gives away certificates at the beginning of

each compliance period, and simultaneously announces a “redemption function” that

depends on the equilibrium certificate price. The redemption function determines the

number of allowable units of emissions per certificate. The equilibrium certificate

price, and thus the equilibrium aggregate emissions level, responds to technological

innovations or macroeconomic shocks. In contrast, under a standard cap, certificates

are issued in fixed units of emissions and aggregate emissions do not respond to prices

and shocks.

We incorporate a tractable model of innovation and diffusion into a dynamic ana-

lytic model of emissions and climate response. The social cost of carbon (SCC) equals
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the present discounted costs from releasing a ton of carbon dioxide (CO2) today. The

SCC is the stock-pollution analogue of marginal damages in a static model. It is gen-

erally accepted that damages are only moderately convex in the pollution stock, so the

slope of the SCC is small.

The resulting model gives rise to a conceptual insight that is relevant well beyond

the smart cap. It is widely believed that, because the slope of the SCC is small, the

optimal carbon price response to emission fluctuations is also small. We show instead

that the optimal price response is generally much steeper than the SCC. In extreme

cases, the sign of the optimal price response can even reverse the sign of the slope

of the SCC. In knife-edge situations, the standard cap and trade system can be first

best. A technological innovation that reduces current abatement costs also reduces

future costs, thereby reducing future emissions, future damages and today’s SCC. The

resulting positive correlation between marginal abatement costs and the SCC causes

the optimal equilibrium price to respond much more strongly to emission shocks than

the SCC suggests. The slope of the price response function is even steeper if an

innovation in abatement technology is adopted over the course of several compliance

periods. Then, a change in abatement cost during the current compliance period

implies an even higher (persistent) long-term impact on future emissions and the SCC.

Thus, efficient mitigation policies are sensitive to the speed of technology diffusion. A

regression of emissions on green patents suggests moderately slow diffusion that turns

out highly policy-relevant for efficient mitigation policies.

The smart cap’s trading system uses the market to resolve the information aggre-

gation problem discussed in Kwerel (1977), Dasgupta, Hammond & Maskin (1980),

and Boleslavsky & Kelly (2014). The tax analogue of our smart cap is a nonlinear

emission-dependent tax that we refer to as a “smart tax”. In principle, this smart tax

can also solve the problem caused by asymmetric information between firms and the

regulator. However, the smart tax requires an agency to keep track of and publicize

cumulative emissions levels in real time, enabling firms to base their emissions decision

on the equilibrium unit tax. In contrast, with the smart cap, the market aggregates

and reveals information via the certificate price.

The smart cap is a smooth first-best improvement over hybrid trading systems that

add a price floor and ceiling to a standard cap and trade system (Roberts & Spence

1976, Weitzman 1978, Pizer 2002, Hepburn 2006, Fell & Morgenstern 2010, Grüll &

Taschini 2011, Fell, Burtraw, Morgenstern & Palmer 2012). In the hybrid system,
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partly implemented in California, the policy maker commits to buying and selling

certificates to keep the abatement cost within a pre-defined price window, making it

effectively a tax when the price reaches these boundaries. The smart cap smoothly

responds to price changes, eliminating the need for a regulator to buy or sell permits

to maintain the price floor or ceiling.

Many papers discuss emissions regulation with asymmetric information for flow

pollutants, i.e., pollutants that do not cause damages beyond the period in which

they are emitted.1 Requate & Unold (2001) explain how the issuance of options on

emission certificates implements a step function approximation to the marginal damage

curve, resulting in the static smart tax. Newell, Pizer & Zhang (2005) show how

a committed agency can manage allowances to use a standard cap for direct price

control. Taking this idea a step further, Kollenberg & Taschini (2016) show that

an appropriate management of banking reserves can transform a standard cap with

banking and borrowing into a hybrid mechanism that continuously interpolates between

a standard cap and a standard tax. Pizer & Prest (2020) note that with banking and

borrowing, adjustment of the intertemporal exchange rates enables the regulator to

achieve the first best, provided that all uncertainty is resolved in the last period.2

It is widely understood that policies should be conditioned on available information

(Ellerman & Wing 2003, Jotzo & Pezzey 2007, Newell & Pizer 2008, Doda 2016). For

example, Burtraw, Holt, Palmer & Shobe (2020) note that a policy that conditions

the current quota allocation on previous prices increases welfare relative to a standard

cap or tax. The failure of such conditioning is less harmful in a smart cap because

of its automatic adjustment to the price of certificates. We still recommend explicit

conditioning on observables in order to permit tailoring the smart cap to those cost

shocks that are less well observed.

The closest real-world implementation of a self-adjusting cap is the recently enacted

market stability reserve in the EU ETS, which addresses the prevailing oversupply of

allowances and cancels banked permits in a rather complicated fashion. We refer to

1Gerlagh & Heijmans (2020) discuss a mechanism that achieves almost the first best for a particular
type of stock pollutant – one in which stock-related damages arise only in the final period. However,
for most pollutants, including climate change, damages in a period depend on the stock in that period.
This mechanism therefore has limited applicability.

2The intertemporal exchange rate is the number of permits in period t that can be exchanged for
one permit in period t + 1. Pizer and Prest also consider a climate application. Their assumption
that marginal flow damages (and, thus, the SCC) are independent of the stock of atmospheric carbon
assumes away the interaction between stock pollutants and technology shocks that turns a plausibly
small but non-zero marginal damage slope crucial for climate policy.

3
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Perino (2018), Perino & Willner (2016), Kollenberg & Taschini (2016), Fell (2016), and

Silbye & Birch-Sørensen (2019) for detailed discussion and critical assessments. Perino,

Ritz & van Benthem (2020) and Jarke & Perino (2017) show how interacting climate

policies sometimes reinforce and other times offset each other.

Our focus is on achieving efficient regulation of a stock pollutant when there is

asymmetric information and shocks are persistent. As an important byproduct, we

obtain a simple and intuitive criterion for ranking the standard tax and quota, two

second-best policies that do not overcome the problem of asymmetric information.

Weitzman (1974) provided the criterion for ranking these two policies for flow pollu-

tants; a number of papers have extended his results to stock pollutants.3 We provide

a much simpler and more intuitive criterion, showing that (for a stock pollutant) the

choice between a standard tax and cap depends on the relative slopes of marginal

abatement costs and the smart tax – not the SCC. Thus, we obtain an exact and very

simple analog between the tax-quota ranking criteria for a flow versus a stock pollutant.

2 Smart Tax and Smart Cap

Regulators usually set policy without knowing firms’ abatement cost. This asymmetry

of information arises both because firms have genuinely private information and because

they make emissions decisions more frequently than regulators revise policy. In the

latter case, firms condition their decisions on information that is publicly available, but

unknown when the regulator sets the policy. For example, the 2008 recession reduced

firms’ incentives to emit, contributing to the low permit prices in the European carbon

trading system. We emphasize the asymmetry arising from private information; the

second source of asymmetry can be eliminated by announcing future state-contingent

policies that depend on future public information.

The smart cap uses the market to aggregate information and to implement the first-

best emission allocation. We use the one-period (or flow pollution) model to review

a smart tax and introduce the smart cap. Here (by assumption), uncertainty affects

3These papers include Hoel & Karp (2001), Newell & Pizer (2003), and Karp & Zhang (2005).
Fischer & Springborn (2011), and Heutel (2012) use stochastic general equilibrium frameworks to
compare tax versus quantity regulation, emphasizing the effect of business cycles. Our companion
paper Karp & Traeger (2018) discusses further implications for taxes versus quantities when these are
the only feasible policy options. It also relates our findings to Weitzman’s (1974) and Stavins’s (1996)
(static) insights on the role of correlated shocks. Stavins (2020) reviews tax and quantity regulation
in theory and practice.
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abatement costs, but not social damages. We then modify the one-period model to

provide intuition for the dynamic setting. Next, we consider the stability of competitive

equilibria, and we examine the effect of market power.

2.1 A Static Model

A representative firm’s marginal benefit MB(E |θ) from emissions E (equal to its

marginal abatement cost)4 depends on the random variable θ. The marginal social

damage of emissions is MD (E ). We assume that MD (E ) and MB(E |θ) are positive,

continuously differentiable, and that benefits of emissions are concave: MBE(E|θ) < 0.

We define θ so that a larger realization increases the marginal benefit of emissions,

thereby raising abatement costs; for example, a large θ represents lower than expected

green technological progress, or higher than expected economic growth and demand

for fossil fuels.

A regulator distributes Q tradable emission certificates, and announces a “redemp-

tion function”, q (p), where p is the endogenous market price of a certificate. One

certificate allows the firm to emit q(p) units, so the cost to the firm of one unit of

emissions is pE = p

q(p)
. The endogenous “smart cap” is Qq (p), equal to the number of

units of emissions. Firms choose their level of emissions, E , and they trade emission

certificates at price p.

The optimal emission price equals the marginal damage of emissions:

pE = MD (E ) .

A smart tax (a function of E), equal to the right side of this equation, implements

the first best level of emissions. Using the market clearing condition for emission

certificates, E = Qq (p), we obtain an implicit formula for the optimal redemption

function q(p)

p

q (p)
= MD (Q · q (p)) . (1)

Totally differentiating this equation gives the slope of the redemption function

q′ (p) =
1

MD ′(E )E +MD(E )
where E = Qq. (2)

4Abatement A is the difference between business as usual emissions E
BAU and actual emissions

E . Abatement costs are C(A|θ) = C(EBAU −E |θ) = B(EBAU |θ) − B(E|θ). Deriving this equation
w.r.t. emissions implies MC(A|θ) = MB(E |θ).

5



Smart Cap Karp & Traeger

Emissions

MD

p*(E)

MB’

MB’’

Price

Figure 1: Static setting. The optimal carbon tax (smart tax, red) equals the marginal
damage (MD) curve. The three downward sloping lines represent different realizations of the
technology shock, each of which results in a different marginal benefit (MB) curve. The green
arrow identifies the optimal allocation under the high marginal benefits. Under a smart tax
(or a smart cap), this optimal allocation is also the market equilibrium where firms equate
the marginal benefits from emissions with their private cost of emitting another unit.

If marginal damages are flat (MD ′(E ) ≈ 0), the redemption function q(p) is approx-

imately linear in the certificate price, and the optimal smart tax is approximately

constant.5 In this situation, a hybrid cap with a price ceiling and floor might be diffi-

cult to implement because the regulator would have to buy or sell many certificates to

defend the floor or ceiling. The smart cap, in contrast, responds smoothly to shocks.

The redemption function’s slope varies inversely with marginal damages. With low

marginal damages, a higher certificate price generates a large increase in allowable

emissions. With high marginal damages, the same price increase leads to a smaller

increase in emissions. With strictly convex damages, higher emissions are increasingly

costly to society. The term MD ′(E) decreases the redemption function’s slope, leading

to a smaller expansion of a smart cap following an increase in the certificate price.

In the classic prices versus quantities setting (Weitzman 1974) marginal damages

are linear in emissions MD(E ) = a+ bE . The red line in Figure 1 illustrates the smart

tax, coinciding with the MD-curve. Equation (1) becomes a quadratic equation with

positive (because q ≥ 0) root and results in the smart cap

q(p) =
1

2Qb

(

−a+
√

a2 + 4Qbp
)

,

5More generally, the redemption function q(p) is linear in the certificate price if and only if the
damage function satisfies a0 + aE + c lnE, implying marginal damages MD(E) = a + c

E
. Damages

are increasing and concave for c > 0. Damages are convex but start out falling and only increase for
E > c

a
for c > 0.
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with slope

q′(p) =
1

a+ 2bE
where E = Qq(p).

The slope of the marginal damage function, MD ′(E) = b, is a measure of the damage

convexity. Following the discussion above (or using L’Hospital’s Rule) we find a linear

redemption function q(p) → p

a
as b → 0. The smart cap becomes inversely proportional

to the (then constant) marginal damages a. Another interesting case arises as we rotate

the marginal damage curve counterclockwise around some point (E∗, p∗), increasing b

and making offsetting changes in a. As b → ∞ the smart cap approaches the constant

cap E∗.

We obtain the (optimal) equilibrium emission from the representative firm’s op-

timality conditions. This firm sets its marginal benefit from emissions equal to the

emission price MB(E, θ) = pE ⇔ MB(Qq(p), θ) = p

q(p)
. If marginal benefit is linear,

MB(E |θ) = θ − f E , the firm’s optimality condition is 6

θ − f E =
p

q (p)
⇒ E = q(p)Q =

θ − a

b+ f
.

The redemption function q(p) depends only on the certificate price; but the equilibrium

price, and thus the equilibrium value of the redemption function, depends on the

realization of the technology shock. The equilibrium cap is directly proportional to the

net benefit θ − a of the first unit of emissions, and inversely proportional to the sum

of the slopes of marginal costs and damages.

The representative firm formulation, where marginal benefits of emissions depend on

the aggregate technology shock, conceals an important advantage of a smart cap over a

smart tax. Individual firms have little knowledge of the mitigation technologies in other

sectors, and thus are unable to predict aggregate emission levels. They therefore cannot

predict the equilibrium value of the end-of-period smart tax. In contrast, the cap and

trade market aggregates information governing technology and expected emission levels

across firms. This market helps firms to form the correct price expectations, enabling

them to take optimal emissions decisions.

We continue to use the representative firm model for exposition. However, be-

cause of the importance of firm heterogeneity in motivating the smart cap, we briefly

consider the model with a continuum of firms, with mass normalized to unity. Firm

6The firm’s first order condition implies fQq2−θq+p = 0. The smart cap satisfies bQq2+aq−p = 0.
For p > 0, these two equations imply qQ = (θ − a)/(f + b).

7
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i’s technology realization in state of the world s is θs(i), with marginal benefits from

emissions MBi(E i |θs(i)). Facing the emission price pE (the same for every firm), the

firm’s optimal emission level is E i(θs(i); p
E) = MB−1

i (pE|θs(i)). The aggregate emis-

sions level is E (θs; p
E) =

∫

i
E i(θs(i); p

E)di =
∫

i
MB−1

i (pE|θs(i))di. Then, we can define

the representative firm’s (aggregate) marginal benefit curve MB(pE|θs(i)) by solving

(for pE) the implicit equation E (θs; p
E) = Ē for all relevant emission Ē and shock θs

levels. The solution is usually at least locally well-defined, and in our leading example

of linear-quadratic benefits it implies globally the linear-quadratic representative firm

model.7

2.2 Dynamic Insights

Climate change is a dynamic problem. As emissions accumulate in the atmosphere,

marginal damages likely increase. Here, optimal policy depends on the shadow cost of

the pollution stock, called the social cost of carbon (SCC) in the climate setting.

With persistent technology shocks, today’s innovation affects future abatement

costs, altering future emissions levels. Consequently, today’s technology shock affects

the future marginal damages arising from today’s emissions. Thus, the SCC depends on

both today’s realization of the technology shock and on current emissions, E. We write

the SCC as SCC(E|θ), a function of emissions, conditional on the shock realization.

As with marginal damages, we assume that SCC(E|θ) is continuously differentiable in

both arguments. Here, to explain the basic insight as simply as possible, we take the

function SCC(E|θ) as exogenous; Section 3 derives this function from primitives.

We denote the smart tax as SCC *(E), and obtain its formula using the optimality

condition

MB(E|θ) = SCC (E|θ) ∀θ.

We denote the optimal emissions level as a function of the shock by E∗(θ), and its

inverse by E∗−1(E). The smart tax is a function of emissions but not the shock

SCC *(E) ≡ SCC (E|E∗−1(E)) ∀E ∈ {E|∃θ s.th. E = E∗(θ)}.

7Here, E (θs; p
E) =

∫

i

θs(i)−pE

fi
di =

∫

i

θs(i)
fi

di − pE
∫

i
1
fi
di. Defining f ≡

(

∫

i
1
fi
di
)

−1

and θs ≡

f
∫

i

θs(i)
fi

di we obtain E (θs; p
E) = θs−pE

f
and MB(E |θs) = θs − f E .

8
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By construction, a market equilibrium that satisfies MB(E|θ) = SCC *(E) delivers the

first best emissions level at the optimal carbon price.

Proposition 1 compares the slope of the smart tax and the slope of the SCC for an

arbitrary realization of the shock. Both of these slopes are evaluated at E∗(θ). The

cases correspond to the relative responsiveness of marginal benefits versus marginal

damages (SCC) to a realization of the shock. We introduce the notation MB θ for
∂MB(E |θ)

∂θ
, E given, and similarly SCC θ for ∂SCC(E |θ)

∂θ
.

Proposition 1 The slope of the smart tax satisfies

SCC *
E =

MB θ

MB θ − SCC θ

SCCE +
− SCC θ

MB θ − SCC θ

MBE, (3)

where all functions are evaluated for the same shock realizations θ and emission levels

E∗(θ). Assuming MBE < 0 and SCCE,MBθ > 0 we find

(i) 0 < SCC θ < MB θ ⇒ SCC *
E > SCCE

(ii) SCC θ = MB θ ⇒ SCC *
E = +∞

(iii) MB θ < SCC θ ⇒ SCC *
E < 0 (< SCCE)

(iv) SCC θ = 0 ⇒ SCC *
E = SCCE (as in the static setting)

(v) SCC θ < 0 ⇒ SCC *
E < SCCE ( SCC *

E can be negative).

Figure 2 illustrates the proposition. The solid curves labeled MB and MD show the

marginal benefits and the social cost from emitting, given the expected technology

level θ. If the realization of θ equals its expected value, the intersection of these

curves identifies the optimal emission level. The dashed curves correspond to a lower

realization of θ, implying cheaper than expected abatement, e.g., due to an unexpected

innovation in green technology. The figure assumes that the shock also reduces future

abatement costs, thereby reducing future emissions. Under the assumption of convex

damages, the lower future emissions reduce the future marginal damages associated

with today’s emissions. Thus, the technology shock causes the SCC to shift down to

the dashed curve.

In Figure 2, the optimal allocation for the low realization of θ lies to the lower left of

the expected allocation. This graphical feature corresponds to case (i) of Proposition

1, where the marginal benefits respond more strongly to the technology shock than do

9
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Emissions

MD = Social Cost of Carbon

Price

•

•

Figure 2: Dynamic setting. The optimal carbon tax (smart tax, red) as a function of the
emissions level. The MD curve depicts the marginal damages from emissions, here the social
cost of carbon. Black solid lines depict the expected MD and MB curves. Dashed lines
depict the case of a better than expected technological innovation. As in the static setting,
the innovation shifts down the marginal benefits from emissions curve (abatement cost). In
contrast to the static setting, the technological innovation now also shifts down the MD curve:
better technology in the future reduces future emissions and, thereby, reduces the marginal
damage caused by today’s emissions. The smart tax no longer coincides with (any of) the
MD curve.

(expected future) marginal damages. As a consequence, the slope of the smart tax is

positive and larger than the slope of marginal damages (SCC).

Figure 3 represents cases (ii) and (iii) of Proposition 1. If the technological innova-

tion shifts the MD curve and the MB curve by the same amount (MB θ = SCC θ), then

the smart tax is vertical (left graph). In this case, cap and trade is optimal regardless

of the relative slopes of the MB and the MD curves. If the technological innovation

shifts the MD curve even more that it shifts the MB curve (MB θ < SCC θ), then the

slope of the smart tax is negative. In this case, it is optimal to emit more under a lower

tax despite the better abatement technology, because the climate change problem has

become substantially less bad.

The fourth case in Proposition 1 is analogous to the static case. Here, the SCC

curve does not respond to the technological innovation, and it directly gives the smart

tax. The fifth case describes the scenario where a shock increases abatement costs but

reduces marginal damages. Here the slope of the smart tax is smaller than the slope

of the MD curve (and possibly negative).

Our quantitative analysis in the next sections identifies case (i) of Proposition 1

and Figure 2 as the most likely (or at least “base”) scenario in the case of climate

10
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Emissions

MD = SCC

Price

MB

Emissions

MD = SCC

Price

MB

Figure 3: Dynamic setting, analogous to Figure 2. The optimal carbon tax (smart tax, red)
as a function of the emissions level. If the MD curves shifts down as much as the MB curve,
the smart tax is vertical and a standard cap and trade system is first best (left). If the MD
curves shifts more that the MB curve, the smart tax falls with emissions (right). Here, a low
emission price signals sufficiently large falls in future abatement costs that it is optimal to
increase current emissions.

change. Here, the SCC ’s response to the technology shock is smaller than that of the

MB curve and the slope of the smart tax is positive, finite, and steeper than that of

the SCC curve.

We replace MD with SCC * in equation (2) to relate the slopes of the smart cap

and the smart tax.

q′(p) =
1

SCC *
E E + SCC *

⇔ SCC∗
E =

pE

E

(

1

εq,p
− 1

)

(4)

The right side uses the definition of the redemption function’s elasticity w.r.t. the

certificate price, εq,p(p) = dq

dp

p

q
. For cases (i) and (iv) of Proposition 1, the left side

of equivalence (4) implies that the smart cap expands with the certificate price. Case

(ii) implies a standard cap, one that does not respond to the price. Case (iii) implies

a negatively sloped smart tax, and case (v) implies a potentially negatively sloped

smart tax. The left side of equivalence (4) shows that a downward sloping smart tax

is consistent with a smart cap that increases in the certificate price, provided that

the optimal carbon price is sufficiently high. The right side of the equivalence (4)

rephrases these cases using the redemption function’s elasticity w.r.t. certificate price.

A positively sloped inelastic redemption function, εq,p(p) ∈ (0, 1), corresponds to a

positively sloped smart tax. Both a positively sloped elastic redemption function and

a negatively sloped redemption function correspond to a negatively sloped smart tax.
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2.3 Stability and Market Power

This section discusses stability of the competitive equilibrium and market power. Here

we assume existence of the smart tax and cap, a subject taken up in section 3. We also

assume that the smart cap is defined (only) on the domain of prices for which there

exists some technology realization such that the smart cap induces a socially optimal

allocation; and we assume MB θ 6= SCC θ. We exclude the case of a vertical smart cap

in order to obtain a continuously differentiable redemption function.

Under the Walrasian auctioneer, a market equilibrium (p∗, E∗) is locally stable if

excess demand is strictly positive below p∗ and strictly negative above p∗ in some neigh-

borhood of the equilibrium. It is globally stable if this condition on excess demands

holds for arbitrary deviations of the price.

Proposition 2 (i) A smart tax decentralizes the socially optimal emissions level as

a locally stable competitive equilibrium if and only if

(a) SCC∗
E

(

E
(

pE
))

≥ 0, or

(b) SCC∗
E

(

E
(

pE
))

< MBE(E
(

pE
)

; θ),

evaluated at the equilibrium.8 It is globally stable if everywhere one of conditions (a)

or (b) is met.

(ii) A smart cap decentralizes the socially optimal emisisons level as a locally

stable competitive equilibrium if and only if

MBE E ∗ +MB

SCC *
E E ∗+ SCC *

< 1. (5)

at the equilibrium emission level E ∗. If MB(E, θ) is strictly monotonic in the technol-

ogy level θ (for any given emission level E), then, a smart cap satisfying condition (5)

at every social optimum is globally stable if ǫq,p(p) 6= 1 for all p.

Under a positively sloped smart tax, both equilibria are stable. If the smart tax is

negatively sloped, it is stable if and only if it is steeper (more negative) than the

marginal benefit curve. For our dynamic linear quadratic model in section 3 these

conditions are always met. In case (b), the smart cap is stable if and only if it has a

negative slope.

8We are ignoring the case where SCC∗

E

(

E
(

pE
))

= MBE(E
(

pE
)

; θ) at the equilibrium point but

SCC∗

E

(

E
(

pE
))

< MBE(E
(

pE
)

; θ) holds everywhere in the neighborhood. This case is also stable
by our definition.
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We now consider market power. If the smart cap/tax applies to a single sector, firms

might be able to exercise market power. We consider the extreme case of a monopsony

facing a smart cap as the simplest illustration of the implications of market power.9

For the next proposition, we define ǫE,pE = dE
dpE

pE

E
, the elasticity of emissions in

tons of carbon w.r.t. the emissions price; this elasticity is distinct from the elasticity

of the redemption function ǫq,p defined earlier.

Proposition 3 (i) Consider a monopsonist that faces a smart cap q(p). If this monop-

sony problem is concave with an interior solution, the monopsonist’s marginal benefits

from emissions satisfy

MB(E) =
pE

ǫq,p
= pE

1 + ǫE,pE

ǫE,pE
. (6)

(ii) Facing the smart cap designed to support the optimal (interior) outcome under

competition, a monopsonist increases profits by emitting (weakly) less than the optimal

(competitive) amount if SCC∗
E ≥ 0, and by emitting more than the optimal amount if

SCC∗
E < 0.

(iii) The policy maker can induce the monopsony to emit at the optimal level using

a smart cap qm(p) that solves the following ODE

qm′(p) =
1

SCC *(Qqm (p))
> 0, (7)

provided that this ODE has a solution that generates a strictly concave optimization

problem. The monopsony’s second order condition is locally satisfied in any equilibrium

if and only if MBE(E
∗(θ); θ) < SCC∗

E(E
∗(θ)) for all θ.

Equation (6) is a familiar result. It states that a monopsony chooses the optimal

level of an input, here emissions, by setting the marginal benefit of the input equal

to the marginal outlay. If the smart cap was designed for a competitive market, the

monopsony emits less than the competitive level if and only if the slope of the smart

tax is positive. In this case, the slope of the smart cap is also positive (equation 4).

We can compare the optimal redemption functions under monopsony and compe-

tition by comparing the ODEs that the two function satisfy, equations (4) and (7).

We illustrate this procedure using the case SCC∗
E ≥ 0. Here, the redemption func-

tion designed to counter market power is steeper than the redemption function under

9We do not consider a monopsony who faces a smart tax because this case is standard: the smart
tax is the inverse supply of emissions.
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competition. For a given change in the price of certificates, the smart cap expands

and contracts more strongly to offset market power. Why? Here the monopsony exer-

cises market power by reducing emissions in order to lower the certificate price. The

regulator discourages this behavior by making it more expensive, in terms of reduced

emissions, for the monopsony to achieve a given reduction in the certificate price.

For example, suppose that the range of optimal emissions is [EL, EH ], with corre-

sponding domain of the competitive certificate price [pL, pH ]. If we choose the boundary

condition for the monopsony redemption function to satisfy q−1(E
L

Q
) ≤ pL, then the

redemption function under monopsony lies below and is flatter, in the (E, p) plane,

than the redemption function under competition. For every realization of the shock,

the monopsony emits at the optimal level but pays a lower price.

3 The Dynamic Model

This section uses a dynamic version of Weitzman’s (1974) familiar static linear-quadratic

model. The full-information SCC increases with emissions, but the smart tax might

either increase or decrease in emissions. The smart tax implements the full-information

(first best) level of emissions as a unique stable competitive equilibrium. The stability

condition under the smart cap is more delicate. The smart tax provides an extremely

simple way of expressing the welfare ranking of the standard tax and quota, one that

exactly parallels Weitzman’s ranking for the static model. We also examine certificate

trading across periods and quantify the smart cap and smart tax.

3.1 Model and Analytic Results

We measure the pollution stock St at the beginning of period t by its deviation from

the zero-cost level (e.g., the pre-industrial level of GHG). The stock of pollution at the

end of the period is

St+1 = δSt + Et,

where the parameter δ, 0 < δ ≤ 1, measures the pollutant’s persistence.

At the beginning of period t, the policy maker and all firms know the value of the

random variable θt−1. Firms, but not the policy maker, then observe the innovation

εt ∼ iid (0, σ2). We move straight to the model of the representative firm because

14
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the market for certificates aggregates the individual shocks as described at the end of

section 2.1. Thus, we have the equation of motion

θt = ρθt−1 + εt,

with shock (or technology) persistence 0 < ρ ≤ 1.10 The realization of εt alters the

marginal benefit of emissions, via a change in technology affecting emissions intensity,

or a change in economic activity affecting emissions demand.

Only a fraction, 0 < α ≤ 1, of this innovation is embodied in the current period, so

firms in period t operate with technology level

θ̂t = ρθt−1 + αεt.

We can interpret α as a share of firms adopting the new technology in the current

period, as in the literature on technology diffusion (Rogers 1995). More generally, a

higher α represents a quicker response of firms to the shock.

The benefits from emissions (or abatement costs) depend linearly on the technology

level,

B
(

Et, θ̂t, t
)

=
(

ht + θ̂t

)

Et −
f

2
E2

t ,

so the marginal benefits of emissions are ∂B
∂E

= ht+ θ̂t− fEt, with f > 0. Hereafter, we

assume that the marginal benefits at zero emissions, ht + θ̂t, and the full-information

(first best) level of emissions are both positive with probability one. Flow damages are

quadratic in the pollution stock

D (St) =
b

2
S2
t ,

with b > 0. The policy maker with discount factor 0 < β < 1 maximizes

Et

∞
∑

s=t

βs−t

((

hs + θ̂s −
1

2
fEs

)

Es −
1

2
bS2

s

)

.

The policy maker is aware that future optimal emission policies depend on the future

realizations of the state variables.

To derive the smart tax and cap, we first solve the full information optimum,

where the social cost of carbon, SCC, is a linear function of the stock of carbon and

10For ρ = 0 the social cost of carbon is independent of θt−1, and the separation implies similar
results as in the static model. We ignore the empirically less relevant case ρ < 0.
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the technology level (see equation 21 in Appendix C). An additional unit of emissions

produces an additional unit of the next-period stock, so the derivative of the SCC w.r.t.

current emissions is the same as the derivative w.r.t. next-period stock. This derivative

is positive because damages are convex. The full information SCC depends on the

innovation εt. The smart tax, SCC∗, in contrast, is independent of this innovation.

Proposition 4 (i) The smart tax is

SCC∗
t = A0St + A1θt−1 + γEt + at. (8)

(ii) The smart tax’s emissions’ slope, γ, can take either sign. There exists α∗ ∈

(0, β) such that for α > α∗

γ =
∂SCC∗

t

∂Et

>
∂SCCt

∂Et

> 0, (9)

and for α < α∗

γ =
∂SCC∗

t

∂Et

< 0 and
∂SCCt

∂Et

> 0. (10)

For α = α∗, the slope of the smart tax is infinite, and a conventional cap and trade

achieves the first best emission allocation. As α passes through α∗ (from below), the

slope of the smart tax switches from −∞ to +∞, and for α > α∗ the slope of the smart

tax decreases continuously in α.

(iii) The smart tax supports the optimal level of emissions as a globally stable com-

petitive equilibrium for all α ∈ (0, 1], i.e., for both positive and negative γ.

Proposition 4 shows that our dynamic model can produce cases i− iii of Proposition

1.11 For α ≈ 1, a positive shock ε causes a larger increase in the marginal benefit of

emissions than in the social cost of carbon (MBε > SCCε) and the smart tax is steeper

than the SCC (case i in Proposition 1). In this case, a positive shock increases the

optimal emissions level. For α small, a shock has little effect on the present period’s

marginal benefit of emissions, but a non-negligible effect on the SCC. In this case, the

smart tax has a negative slope (case iii in Proposition 1). Here, a positive shock lowers

the optimal level of emisisons. Finally, if α = α∗, the shock equally affects marginal

11The proof gives the formula for α∗ and for the functions A0, A1, γ and at; at depends on time
because of the trend ht.The functions A0 and A1, like γ, switch signs at α∗.
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benefits and damages from emissions, and a conventional cap and trade-system achieves

the first best emission allocation (case ii in Proposition 1).

The proposition also shows that a negatively sloped smart tax requires α < 1;

here the technological innovation is observed but not fully implemented in the current

period. Only then does the market price carry sufficient information to affect future

marginal damages from emissions more than present marginal benefits. Regardless of

the value of α, the smart tax implements the social optimum as a stable competitive

equilibrium.

We now consider the smart cap. To simplify notation, we define Ât ≡ A0St +

A1θt−1+at, thereby collecting all of the time-dependent variables in the formula for the

smart tax, apart from the current emissions level, Et. With this definition, the smart

tax is SCC∗
t = Ât + γEt. We follow the same logic as in Section 2.1. The firm’s price

of a unit of emissions is pEt = pt
qt(pt)

. We construct the smart cap so that it implements

the optimal level of emissions, i.e., we set pt
qt(pt)

= Ât + γEt. The subscript on qt serves

as a reminder that the redemption function depends on time via the function Ât. We

have

Proposition 5 If γ ≥ 0, the redemption function

q+t (pt) =
1

2γQ

(

−Ât +

√

Ât

2
+ 4γQpt

)

implements the first-best emission level as a stable competitive equilibrium. This re-

demption function increases in the price of certificates.

If γ < 0 the redemption function

q−t =
1

−2γQ

(

Ât +

√

Â2
t + 4γQp

)

implements the first-best emissions level as a stable competitive equilibrium on the do-

main pt ∈ [0, Ât
2

−4γQ
], with the range of emissions Et ∈ [ Ât

−2γ
, Ât

−γ
]. Here, the redemption

function decreases in the certificate price.

Consistent with Proposition 2 for the general case, the smart cap is stable and increases

with the certificate price when the smart tax increases. Proposition 5 gives the precise

form of the optimal smart cap. For γ < 0, where the smart tax decreases, the set of

emissions levels supported by the smart cap equals the set where SCC∗ > 0. This is

the range satisfying the local stability inequality (5).
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The market response to either the smart tax or the smart cap enables the regulator

to recover one piece of hidden information. Optimal policy depends on the persistence

of this shock, measured by ρ, and the speed at which firms respond to the shock,

measured by α. We can interpret the shock as being related either to technology or to

the business cycle. A technology shock tends to be genuinely asymmetric information.

Firms’ response to the policy reveals the hidden technology shock. The macro shock

is unknown when the regulator announces the smart tax or smart cap, but observed

by both firms and the regulator during the compliance period. Therefore, the policy

can be conditioned on the macro shock. If the macro shock is iid, we do not need to

modify the model presented above. More plausibly, if expectations of the macro shock

depend on information such as current and lagged macro conditions, those variables

become part of the information set. The full information SCC and both the smart tax

and the smart cap then depend on those variables, but the structure of the policy does

not change.

A famous result, due to Weitzman (1974), states that in the linear-quadratic model

with additive shocks and a flow pollutant, the standard tax welfare-dominates the

standard quota if and only if the slope of marginal damages is less than the slope of

marginal abatement costs (equal to the slope of marginal benefit of emissions). The

literature reviewed in Footnote 3 studies the more complicated welfare comparison

between the standard tax and quota for a stock pollutant. The smart tax provides a

novel and intuitive link between the models with flow and stock pollutants. Section

2.1 notes that the marginal damage function coincides with the smart tax for a flow

pollutant. Thus, for a flow pollutant we can restate Weitzman’s result as “For a flow

pollutant, taxes welfare-dominate quotas if and only if the slope of the smart tax is less

than the slope of marginal abatement costs”. The same comparison holds with stock

pollutants:

Proposition 6 With stock pollutants, (standard) taxes welfare-dominate (standard)

quotas if and only if the slope of the smart tax, γ, is less than the slope of the marginal

abatement cost, f .

3.2 Inter-period trading and optimality

At least eight cap and trade programs, including California’s Low Emission Vehicle Pro-

gram, the EPA’s SO2 and NOX programs, and the EU’s Emissions Trading Scheme,

18



Smart Cap Karp & Traeger

allow intertemporal banking of permits (Holland & Moore 2013). Intertermporal trad-

ing can smooth carbon price fluctuations triggered by technology or growth shocks,

potentially increasing welfare. A smart cap does not require intertemporal trading,

because emissions respond to shocks optimally by construction. Intertemporal trading

may nevertheless be relevant if the commitment phase is long or if the institutional

framework does not permit conditioning the smart cap on macroeconomic indices.

We assume that the regulator allows interperiod trading within a commitment phase

lasting T periods. For example, each period might last for one year and a commitment

phase may be a decade (T = 10). Firms can trade certificates across the T periods;

the certificate cap, Q, applies to the entire commitment phase. Later commitment

phases might have a different number of periods, but we assume that: policy is set

optimally in the future; the horizon is infinite; and the certificates of the current

phase cannot be used in later phases. In the model above firms do not have to make

intertemporal decisions. Keeping with this setting, we assume the existence of a risk

neutral arbitrageur whose actions make firms indifferent about the timing of emissions

and certificate purchases.

To avoid the need for double-subscripts, we consider the case of the first T -period

commitment phase, with the initial period set at t = 1. The smart cap’s redemption

function in period t, qt(pt), determines the exchange ratio qt between certificates and

carbon dioxide emitted in period t. For Et emissions in period t, the representative

firm has to deliver Et

qt
certificates at the end of the commitment phase. Market clearing

requires
∑T

t=1
Et

qt
= Q, where Q is the total number of certificates for this commitment

phase. Focusing on the fundamental issues of inter-period trading, we assume that

innovations are immediately adopted: α = 1 ⇒ θ̂t = θt.

Proposition 7 There exists a sequence of redemption functions q
p1,...,pt−1

t (pt), t ∈

{1, ..., T}, and an allocation of certificates Q(p1, ..., pT−1) supporting the optimal emis-

sions trajectory as a decentralized intertemporal equilibrium.

The aggregate number of certificates for this commitment phase depends on the se-

quence of certificate prices within that phase. If the aggregate number Q was fixed,

the certificates remaining at the beginning of period T would be stochastic. However,

a given redemption function qT achieves the first best allocation only for a specific

number of certificates. Therefore, the aggregate number of certificates has to depend

on the earlier prices in order to guarantee that the number of certificates remaining in
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period T , together with the redemption function in that period, support the optimal

emissions level.

Under banking and borrowing – in both a standard and a smart cap – intertemporal

arbitrage implies that the price of certificates has to rise at the rate of interest. An

emissions price growing at the rate of interest is generally not optimal, which is an

issue for standard emission trading schemes. Proposition 7’s period-dependence of

the redemption function, i.e., the exchange ratio between emissions and certificates,

decouples the price increase of emissions from the intertemporal arbitrage condition to

achieve first best.12

Proposition 7 conditions the redemption functions on the certificate price in earlier

periods. Such conditioning allows the mechanism to incorporate the carbon stock

fluctuations resulting from the sequence of technology shocks over the course of a

commitment phase. Over a fairly short commitment phase, e.g. a decade, the stock

of carbon is likely to vary much less than the technology variable. Then, it seems

reasonable to neglect a conditioning of the redemption functions on the earlier period’s

price realizations.

3.3 Quantification

We use our results to study global climate change. As the introduction notes, many

countries are either planning to use or currently using taxes or cap and trade systems

to reduce their CO2 emissions. We quantify the smart tax and cap for the case of

global cooperation.

Output, Abatement, and Emissions. Global world output in 2020 is 130 trillion

USD using purchasing power parity weights (IMF 2020). We use Nordhaus & Sztorc’s

(2013) DICE model to estimate the 2020 marginal abatement cost slope as f = 2.5 ∗

10−9 USD

tCO2
2 . Much of our analysis depends only on the slopes of the marginal abatement

cost and marginal damage curves. The absolute levels of the social cost of carbon also

depends on h = 101USD
tCO2

, the intercept of marginal abatement costs. We assume that

this intercept falls exogenously by 1% per year.13 This calibration implies a business

12In a standard cap and trade system with deterministic technological change (Kling & Rubin 1997)
or uncertainty about abatement costs (Yates & Cronshaw 2001) it is not optimal that the emissions
prices grows at the consumption discount factor. The stock pollutant creates additional reasons for the
optimal expected marginal abatement cost to vary over time. In these circumstances, the literature
suggests using certificate discount factors. Our redemption function qt(pt) already decouples certificate
prices from absolute emissions and incorporates such discount factors.

13These values derive from the optimized DICE 2013 run for the year 2020. We set the expected
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as usual emission level of EBAU = 40GtCO2 , implying that we abate a few percent of

BAU emissions in 2020.

Technology diffusion. We obtain an estimate (or guesstimate) of the technology

diffusion parameter α by regressing US CO2 emissions in 1995-2010 against (stocks and

flows of) green patents on. We assume a 5 year commitment periods and ρ = 1, i.e., no

decay of innovations (patents). We restrict attention to “major” green patents, those

registered in all three major patent offices, United States, Europe, and Japan. We

summarize details in Appendix A.14 Our preferred estimate lies slightly above α ≈ 1/4;

about one quarter of the long-run impact of the innovation shocks occur within the

current commitment phase. Other relevant innovations, which are not being patented,

might be adopted faster leading to a somewhat higher overall adoption share α. We

present results for α ∈ {0.25, 0.5, 1}.

Climate. We use the model of transient climate response to cumulative emissions

(TCRE) to calibrate climate dynamics. Recent climate modeling shows that aver-

age global atmospheric temperature can be well-approximated as a linear function of

cumulative historic emissions. The consensus report IPCC (2013) states that the pro-

portionality factor between cumulative emissions and temperature, TCRE, is likely in

the range between 0.8◦C and 2.5◦C for each 1000 GtC (1012 tons of carbon). We use

the mid-value TCRE, 1.65 ∗ 10−15 ◦C
GtC

.15 Our state variable, St, is cumulative historic

emissions, which are proportional to temperature; the persistence factor is δ = 1.

We briefly comment on the intuition of the TCRE model. In the actual climate

system, most carbon dioxide emissions are eventually removed from the atmosphere,

but each emission unit has a cumulative impact on temperature over time through

its greenhouse effect. Scientific models of climate change find that the removal of

carbon from the atmosphere and the delayed warming response to an increase in carbon

concentrations approximately cancel each other, making cumulative historic emissions

a good proxy for temperature.

value of the technology shock in the present period to zero, thereby making the calibration results
independent of α and ρ.

14Our preferred estimate is α = 0.28. Extending the time series of our estimation further back to
1990 renders the time series nonstationary and delivers the slightly higher estimate α = 0.34. Going
back to 1985, the coefficients lose significance and the coefficent on new patents has the wrong sign.
Controlling for oil prices and allowing for a break in the quadratic trend does not regain significance,
but reasonable coeffient estimates that imply α = 0.27. Controlling for oil prices and introducing a
flexible break point in the trend does not affect the estimates of the shorter time series.

15The TCRE is usually expressed w.r.t. tons of carbon (C), which is how we cite it here. However,
our other values follow the convention expressing the SCC in USD per ton of carbon dioxide (CO2).
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Damages. DICE assumes no damages at the pre-industrial temperature level and

global damages of approximately 1% of world output at a 2◦C warming (Nordhaus &

Sztorc 2013). Our baseline calibration of the damage function uses this assumptions,

producing bbase = 1.3 ∗ 10−13 USD
tCO2

2

. We also introduce a “concerned” scenario that

assumes today’s damage from global warming is zero, but a 3◦C warming causes a loss

of 5% of world output. This scenario implies a more convex damage function with

bconcerned = 6.6 ∗ 10−13 USD

tCO2
2 . We can also interpret this scenario as reflecting concern

about tipping points.

Expected optimal SCC. We test our calibration by calculating the implied op-

timal carbon tax under the expected technology realization. At the optimal emission

allocation, the smart tax equals the SCC by construction. For an annual rate of pure

time preference (rptp) of 1.5% (β = 0.985) we obtain an optimal carbon tax of 26USD
tCO2

.

This tax is a little higher than in DICE, which has recently been discovered to ex-

aggerate the temperature delay in warming (a feature we avoid by using the TCRE

model). Reducing the rptp to 0.5% (β = 0.995), the median response of Drupp, Free-

man, Groom & Nesje’s (2018) expert survey, approximately doubles this tax (55USD
tCO2

).

These values suggest that the model calibration is reasonable. The corresponding op-

timal emission levels are Eopt = 29GtCO2 for β = 0.985, and Eopt = 18GtCO2 for

β = 0.995. Under the 1.5% rptp, the concerned scenario using the more convex damage

function increases the tax only mildly to 30USD
tCO2

.16

Results Base Calibration. Figure 4 presents the smart tax and cap assuming a

five-year commitment period and immediate adoption of the new innovation (α = 1).

The left panel graphs the smart tax as well as the SCC and the marginal benefits

from emissions under the expected technology realization. By construction, all the

lines intersect at the expected price and emission levels. For other realizations of

technology, the equilibrium moves along the smart tax. We observe that (i) the smart

tax is substantially steeper than the SCC curve and (ii) the (absolute of the) MB-

curve’s slope is greater than the slope of the smart tax. By Proposition 6, taxes are

preferred over quantities in this baseline scenario with α = 1.

The smart cap shown on the right of Figure 4 eliminates the welfare loss of a tax. To

make it easy to compare the smart tax and the smart cap, we depict the overall (global)

cap in GtCO2. We set the number of certificates, Q, equal to the optimal emission level

16The concerned scenario reduces current damages but increases the damages resulting from a higher
level of global warming. The optimal expected carbon tax assumes optimal future mitigation policy
and, thus, temperature is unlikely to reach high levels.
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Figure 4: Calibrated Smart Tax and Cap. Left: SCC and marginal benefits of emissions (MB)
under the expected technology realization as well as smart tax (independent of technology
realization). Right: Smart Cap, which is the redemption function times expected emissions.

under the expected technology realization. With this choice, the certificate price under

the expected technology realization coincides with the smart tax of 26USD
tCO2

. Greener

than expected technological progress, causing a downward shift in the demand for

emissions (the MB curve), leads to a lower certificate price and a contraction of the

smart cap. Similarly, less green technological progress increases the certificate price

and expands the smart cap. The redemption function’s graph is identical to that of

the smart cap once we change the scale on the vertical axis from aggregate emissions

to the emission level per certificate.

Figure 5 varies the speed of firms’ technology adoption, with the solid graphs repli-

cating those of Figure 4, where α = 1. The dashed graph uses our preferred estimate

α ≈ 0.25, where only one quarter of firms adopt the new technology innovations within

the 5-year commitment period. The reduced speed of adoption substantially increases

the slope of the smart tax and flattens the slope of the smart cap, which graphs emis-

sions over price rather than price over emissions. We note that the slope of the dashed

smart tax exceeds that of the MB-curve (depicted in Figure 4); thus, by Proposition 6

quantities dominate taxes for α = 0.25. The dash-dotted line of α = 0.5, assuming

that half of the firms adopt the new innovation during the 5-year commitment period.

This value represents that less fundamental non-patented innovations might also be

adopted more quickly, increasing α. For α = 0.5, the smart tax and the MB-curve

have almost the same slope; here, the welfare difference between a tax and a standard

cap is close to zero.

Concerned Scenario. Figure 6 presents the results for the concerned scenario,
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Figure 5: Variations of speed of technology adoption. Immediate full adoption (α = 1),
half of firms adopt during a 5-year commitment period (α = .5), one quarter of firms adopts
during a 5-year committeemen period (α = .25). Left: Smart tax. Depicted SCC assumes
expected technology realization. Right: Smart Cap.

where damages are more convex (initially lower and then higher). The smart tax and

the SCC under the expected technology realization are higher than in the baseline.

They increase substantially faster for lower than expected technological progress, be-

cause the resulting higher future emissions increase damages more strongly with more

convex damages. Similarly, higher than expected green progress reduces the equilib-

rium prices more strongly; here, a reduction in the future CO2 stock implies a stronger

reduction of future damages than in the baseline. The smart cap, a function of the

certificate price, shows the same qualitative features as a function of the certificate

price. Reducing the speed of technology adoption, α, rotates the smart tax graph

counter-clockwise (making it steeper) and the smart cap graph clockwise (making it

less steep). For α / 0.4, the smart tax and cap have negative slopes (see as well right

graph in Figure 7).

In particular, our estimate α ≈ 0.25 implies a decreasing smart tax and cap. Here,

a higher than expected green technological progress not only lowers the cost of abate-

ment, but also reduces long-term damages sufficiently that it is optimal to respond

with both a price reduction and an emissions increase (moving down on the smart

tax graph and up on the smart cap graph). The planner knows that most of the im-

proved technology will be adopted in the next period, lowering future emissions and

the marginal damage associated with current emissions. Similarly, less green progress

increases the emissions price and, given the damage convexity, urges us to cut more

emissions.
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Figure 6: Concerned scenario. Smart tax (left) and smart cap (right) assuming a higher
damage convexity. The different curves correspond to immediate full adoption (α = 1), half
of firms adopting (α = .5), and one quarter of firms adopting during a 5-year commitment
period (α = .25).

Given the novelty of the finding, it merits discussing another variation of the in-

tuition. Lower than expected green progress is bad news for both firms and the en-

vironment. In the baseline scenario (or, here, for α ≥ 0.4), the optimal policy uses

the environment to smooth shocks to the firms; if abatement turns out to be very

expensive, we allow firms to emit more. However, if damages are sufficiently convex

and α is low, the future environmental damage implied by the lack of green progress

is too costly to tolerate such smoothing at the expense of the environment. Instead of

using costs to the environment as a substitute for costs to the firms, the policy maker

now treats them as complements. Under bad news we increase the unit price and cut

emissions. Conversely, under good news, we lower the price and permit firms to emit

more.

Reduction of Time Preference. The left graph in Figure 7 reduces the rate of

pure time preference from an annual 1.5% to 0.5% in the base scenario. The implica-

tions are qualitatively similar to those observed in the previous variation with more

convex damages. Here, the policy maker pays more attention to future damages. As

a result, the SCC under the expected realization increases substantially and the smart

tax rotates counter-clockwise for any speed of technology adoption. An adoption share

of α = 0.5 during the 5-year commitment period makes the smart tax vertical and

the smart cap horizontal (not shown). Under these assumptions, the smart cap cor-

responds with the classical cap and the ordinary cap and trade system reaches first

best.
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Figure 7: Left: Smart tax under the baseline calibration but with a reduced rate of pure
time preference (0.5% instead of 1.5%). The share α of immediate adopters varies in three
discrete steps from one to one quarter. Right: Slope of the smart tax. The share α of
immediate technology adopters varies continuously along the horizontal axis and the three
curves correspond to the different scenarios.

Slope over Adoption Share. The right panel of Figure 7 plots the slopes of the

smart tax over the “speed of adoption”, i.e., the share of firms that adopt α within the

5-year commitment period. Starting from the right, we observe that the smart tax is

most sensitive to emissions under the reduced discount rate and more sensitive in the

concerned scenario than in the baseline. This difference in slope (sensitivity) increases

as we reduce the share α. The vertical lines identify the values of α at which the slope

of the smart cap flips sign: α ≈ 0.5 for the rate of pure time preference of 0.5% (green

dashed), α just below 0.4% for the concerned scenario (red dash-dotted), and in the

base scenario the adoption share within the commitment period would have to fall all

the way to α = 0.14 (half or our preferred estimate) to turn a standard cap first best.

4 Practical Implementation of a Smart Cap

This section discusses the practical implementation of the smart cap and some easily

implemented compromises to improve efficiency in pre-existing cap and trade systems.

In the real world, (i) business cycles have a major impact on emissions and certificate

prices, (ii) information is revealed continuously over the course of a commitment phase

and certificates are traded continuously and (iii) political institutions tend to favor

simplicity and minimal change. While the smart cap can help with point (i), we

repeat that it is better to deal with this issue by explicitly conditioning the (smart or

standard) cap on GDP or alternative business cycle indicators. Thus, this section is

26



Smart Cap Karp & Traeger

mostly concerned with points (ii) and (iii). That said, much or this discussion also

applies to cost shocks generated by business cycles or other sources of price shocks.

Section 3.2 explains how a sequence of announced redemption functions can achieve

or improve efficiency when shocks and trading occur repeatedly during a commitment

period. For example, we can choose annual (or monthly) compliance periods with

annual (or monthly) redemption functions. Proposition 7 would motivate a dense se-

quence of redemption functions that respond directly to preceding price realizations.

As we noted, this conditioning enables the smart cap to respond to the small fluc-

tuations of the CO2 stock during a commitment period, but these are unimportant

during a five-year period. Thus, we recommend an annual redemption function using

a weighted average of carbon prices over the course of the year. Certificates will be

traded throughout the year and beyond as certificate delivery is usually required only

a few months after the end of the period.17 The annual redemption functions would

be announced for a 5 year commitment period, changing primarily to reflect expected

technological progress and economic growth.

The smart cap’s certificates are not in units of CO2. Similar trading is already

common in fishery regulation. The smart cap’s certificates correspond to individual

fishing quotas, giving their owner claim to a share of the total allowable catch (here:

emission level). In regulating fisheries, the regulator sets the total allowable catch

period by period. In the smart cap, the total emission level is determined endogenously

to address the asymmetric information problem. Both markets trade shares of a pie of

varying size. The firm’s burden in forming expectations about future emission prices

is higher than in the standard cap, but it is present in both. A specialized arbitrageur

can reduce this burden by selling claims in units of CO2 to the firms. We note that

expectation formation under the current market stability reserve in the EU ETS is

also very complicated; there, estimates over future carbon prices diverge substantially

(Perino 2018, Silbye & Birch-Sørensen 2019).18

If a market for flexible certificates is not politically acceptable, there are more con-

servative approaches that can incorporate much of the smart cap’s efficiency gain while

17As in the standard cap, non-compliance is subject to monitoring and fines. Given the slightly more
sophisticated market clearing conditions, one could consider convex fines, increasing non-linearly in the
certificate gap. In case market clearing fails, one could permit firms to submit next period certificates,
which can be discounted resembling a fine.

18Most emissions trading systems with banking and borrowing, including the EU ETS, are unclear
about the terminal conditions that are important in determining the certificate price. This ambiguity
complicates firms’ long-term planning. Because the smart cap does not require banking, it reduces
this source of uncertainty.
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keeping certificates labeled in units of CO2. In a first simplified alternative, the regu-

lator can make the current period’s cap a function of last period’s closing (or average)

price. The redemption function would expand or contract aggregate emissions with

a short delay. Including banking and/or borrowing – perhaps with some discounting

of previous period’s certificates – could help to incorporate future adjustments into

the present period’s expectations and actions. In a second alternative, the regulator

can use existing auction systems to implement a simple analogue of the smart cap’s

redemption function during each auction. Auctions in the EU ETS and other cap and

trade systems require firms to submit demand functions, permitting the auctioneer to

determine the equilibrium price and settle the certificate distribution. Such an auc-

tion can readily match demand with the redemption function or smart tax rather than

a fixed amount of certificates. Here, the redemption function essentially becomes an

offer curve. A third alternative, using an even smaller change to existing markets,

makes the number of certificates auctioned at a given date depend on the price of the

previous auction(s). Then, auctions would provide fixed quantities. However, expec-

tations would already respond immediately to the (slightly) lagged quantity response;

e.g., auctions in the ETS usually take place every two weeks. We emphasize that such

offer curves or delayed response functions should rely on the smart tax rather than

the marginal damages or the SCC curve. The disadvantage of this approach is that

previously sold certificates do not respond to price signals, requiring that new auctions

respond more strongly and possibly limiting their leverage. However, any of these ap-

proaches can provide substantial efficiency improvements while keeping the system as

close as possible to existing forms of the standard cap. We also note that all of these

suggestions are quantity-based regulation, and thus can be implemented and changed

by simple majority in the EU ETS; in contrast, a carbon tax (price instrument) requires

unanimous approval.

Policy groups and lobbyists strongly influence policy. Environmental organizations

and citizen groups that favor strong climate policy have little tolerance for the low, and

much lower-than-expected, carbon prices that emerged in many carbon trading systems

during the past decade. Firms are afraid that unforeseen shocks can cause certificate

prices to increase steeply above expected levels. Here, the smart cap provides a natu-

ral compromise – at least under the assumption of an increasing redemption function.

If abatement turns out to be cheaper, the policy instrument automatically ramps up

reduction efforts and prevents the price from falling too much. If the certificate price
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threatens to “go through the roof” in a standard cap, the smart cap would expand,

lowering the pressure on firms. Hence, a smart cap is not only a more efficient policy

instrument, but it also promises to ease political compromises across different interest

groups. Outside of the economic discipline, cap and trade systems, including hybrid

system, are criticized for eliminating the moral incentive to reduce emissions: if an en-

vironmentally conscientious actor felt compelled to reduce emissions for non-pecuniary

reasons, cost-minimizing actors would crowd out those reductions and eliminate the

non-pecuniary incentive.19 In contrast, the smart cap rewards morally-motivated emis-

sions reductions by increasing the emissions price and reducing aggregate emissions.

5 Discussion

We introduce a new cap and trade system that efficiently controls stock pollution under

asymmetric information about firms’ abatement technologies. The prime application is

the mitigation of climate change. To date, cap and trade-systems are the main market-

based approach for the regulation of greenhouse gas emissions. Recent years have

exposed major inefficiencies in standard cap and trade systems’ response to cost shocks.

The smart cap’s ability to endogenously respond to shocks by optimally relaxing or

tightening the cap reduces the cost of greenhouse gas mitigation. The smart cap is

also more efficient than a standard tax, while building on existing institutions and

maintaining the political advantages of established cap and trade systems.

Climate change is a stock pollution problem. The literature has repeatedly pointed

out that the SCC as a function of emissions is relatively flat. In many settings, the

SCC curve is the stock analogue of the marginal damage curve for a flow pollutant.

Therefore, building on Weitzman’s (1974) reasoning for a flow pollutant, a common

conjecture is that optimal emission prices should respond relatively little to shocks,

whereas CO2 emissions should be very responsive. If this conjecture were correct,

the optimal smart cap would be very elastic. It would be similar to a standard tax,

which would unambiguously dominate the standard cap and trade. We explain why

this intuitive argument is wrong for the case of climate change. The SCC’s slope

w.r.t. emissions does not represent the optimal equilibrium price change. A shock

to the abatement technology has a persistent impact on the emission flow, thereby

19Jarke & Perino (2017) explain that under incomplete coverage of the cap, inter-sectoral leakage
can translate individual effort into an overall emission reduction. Yet, they also show that it can lead
to an overall emissions increase under different circumstances.
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changing the future emission stock and future marginal damages. As a result, lower

than expected green technological progress implies not only higher current marginal

abatement costs for firms, but also a higher SCC. Permitting firms to increase emissions

under an unfavorable realization of the technology shock also comes at an increased

cost to the environment. As a result, optimal emissions (the smart cap) should be less

elastic than the slope of the SCC suggests.

We present a simple general model as well as a linear-quadratic quantitative dy-

namic integrated assessment model of climate change. We show that the share of

firms adopting technological innovations within a given commitment period crucially

determines the optimal responsiveness of emissions to changes in the market price of

certificates. If a smaller share of firms adopts new innovations immediately, then ob-

served shocks in the certificate market have stronger persistent implications for future

adopted technology, emissions, and for social costs. A smaller share of adoption within

a commitment period flattens the smart cap and steepens the optimal price response

to emissions. We call that price response to emissions the smart tax. It is the optimal

non-linear emissions tax, i.e. it is society’s inverse supply function for emissions. We

show that this smart tax, rather than the SCC, permits extending Weitzman’s (1974)

intuitive reasoning from a flow pollutant to a stock pollutant. A standard tax dom-

inates a standard cap and trade if and only if marginal abatement costs are steeper

than the smart tax curve.

In most circumstances, including our baseline calibration, a policy maker uses emis-

sion levels to smooth the cost shocks to firms, resulting in an upward sloping relation

between emission price and emission level, i.e., upward sloping smart tax and cap. We

characterize stability of equilibria and show that, whenever the smart tax is upwards

sloping, a monopsony would use the market power to reduce emissions. However, the

smart tax and cap might slope downwards if, e.g., damages are more convex or we re-

duce the pure rate of time preference from 1.5% to a recent (median) expert suggestion

of 0.5%. Then, an unfavorable technology realization increases the SCC sufficiently

that emissions have to be reduced even under a higher marginal abatement cost; the

optimal price-emission relationship turns negative.

Current mitigation levels are rarely optimal. However, the smart cap enables society

to abate more at a lower cost. In addition, a smart cap allows the regulator to balance

carbon price and emission targets. Several sectors argue that the risk of a high carbon

price hurts their economic competitiveness. Consumers and environmental interest
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groups fear that a low carbon price leaves cheap abatement options on the table.

The smart cap equips the regulator with a compromise: if abatement turns out to be

cheap, we abate more, but if it turns out to be expensive, we abate less. Thus, we

believe that the smart cap is not only more efficient as a policy instrument, but also

helpful in reaching a compromise across different lobbies. The smart cap’s ability to

endogenously contract also addresses a criticism that non-economists frequently raise

against the classical cap. If an individual or a firm reduces their emissions out of a

moral obligation, these reduction would be perfectly crowded out by other emission

sources. With a positively sloped smart cap, those actions would still be rewarded,

even if not to the full extent.

The time horizon of setting and revising caps or taxes is historically long, around

5-10 years. Often these adjustments track international negotiations, which have

proven even more inert. On these time horizons uncertainties about green technolog-

ical progress, economic growth, and global convergence become even more important.

To date, climate negotiations have focused entirely on quantity targets. Our paper’s

insights also emphasize the relevance of a “smart cap” negotiation, i.e., policy makers

should agree to do more if mitigation turns out cheaper than expected, and less if it

turns out more expensive. This approach to negotiations is more efficient, and likely

politically more palatable at the same time.

A large literature discusses distributional impact and political economy aspects of

pollution regulation. In many aspects, the smart cap is a combination of a standard

cap and trade system and a tax. As with a standard cap, many of the arguments

favoring the auctioning of certificates as compared to their grandfathering also apply

to the smart cap. We leave a detailed discussion of these interesting and important

aspects to future research.
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Grüll, G. & Taschini, L. (2011), ‘Cap-and-trade properties under different hy-

brid scheme designs’, Journal of Environmental Economics and Management

61(1), 107–118.

32



Smart Cap Karp & Traeger

Hepburn, C. (2006), ‘Regulation by Prices, Quantities, or Both: A Review of Instru-

ment Choice’, Oxford Review of Economic Policy 22(2), 226–247.

Heutel, G. (2012), ‘How should environmental policy respond to business cycles? opti-

mal policy under persistent productivity shocks’, Review of Economic Dynamics

15, 244–264.

Hoel, M. & Karp, L. (2001), ‘Taxes and quotas for a stock pollutant with multiplicative

uncertainty’, Journal of Public Economics 82, 91–114.

Holland, S. & Moore, M. (2013), ‘Market design in cap and trade programs: permit

validity and compliance timing’, Journal of Environmental Economics and Man-

agement 66(3), 671–87.

IMF (2020), ‘World Economic Outlook Database. International Monetary Fund. Oc-

tober 2020’.

IPCC (2013), Climate Change 2013: The Physical Science Basis, Cambridge University

Press, Cambridge.

Jarke, J. & Perino, G. (2017), ‘Do renewable energy policies reduce carbon emissions?

On caps and inter-industry leakage’, Journal of Environmental Economics and

Management 84, 102–124.

Jotzo, F. & Pezzey, J. C. (2007), ‘Optimal intensity targets for greenhouse gas emissions

trading under uncertainty’, Environmental and Resource Economics 38, 259–284.

Karp, L. & Traeger, C. (2018), ‘Prices versus quantities reassessed’, CESifo Working

Paper (7331).

Karp, L. & Zhang, J. (2005), ‘Regulation of stock externalities with correlated abate-

ment costs’, Environmental and Resource Economics 32, 273–299.

Kling, C. & Rubin, J. (1997), ‘Bankable permits for the control of environmental

pollution’, Journal of Public Economics 64, 101–115.

Kollenberg, S. & Taschini, L. (2016), ‘Emissionstradingsystemswithcapadjustments’,

Journal of Environmental Economics and Management 80, 20–36.

33



Smart Cap Karp & Traeger

Kwerel, E. (1977), ‘To tell the truth: Imperfect information and optimal pollution

control’, The Review of Economic Studies 44(3), 595–601.

Newell, R. G. & Pizer, W. A. (2003), ‘Regulating stock externalities under uncertainty’,

Journal of Environmental Economics and Management 45, 416–432.

Newell, R. G. & Pizer, W. A. (2008), ‘Indexed regulation’, Journal of Environmental

Economics and Management 56, 221–233.

Newell, R., Pizer, W. & Zhang, J. (2005), ‘Managing permit markets to stabilize prices’,

Environmental and Resource Economics 31, 133–157.

Nordhaus, W. & Sztorc, P. (2013), DICE2013R:Introduction and User’s Manual, dice-

model.net.

Perino, G. (2018), ‘New EU ETS Phase 4 rules temporarily puncture waterbed’, Nature

Climate Change 8, 260–271.

Perino, G., Ritz, R. & van Benthem, A. (2020), ‘Overlapping climate policies’, NBER

Working Paper 25643 .

Perino, G. & Willner, M. (2016), ‘Procrastinating reform: The impact of the market

stability reserve on the eu ets’, Journal of Environmental Economics and Man-

agement 80, 37–52.

Pizer, W. A. (2002), ‘Combining price and quantity controls to mitigate global climate

change’, Journal of Public Economics 85, 409–434.

Pizer, W. A. & Prest, B. C. (2020), ‘Prices versus quantities with policy updating’,

Journal of the Association of Environmental and Resource Economists 7(3), 483–

518.

Requate, T. & Unold, W. (2001), ‘Pollution control by options trading’, Economic

Letters 73, 353–358.

Roberts, M. J. & Spence, M. (1976), ‘Effluent charges and licences uncer uncertainty’,

Journal of Public Economics 5, 193–208.

Rogers, E. (1995), Diffusion Innovations, Free Press.

34



Smart Cap Karp & Traeger

Silbye, F. & Birch-Sørensen, P. (2019), ‘National climate policies and the european

emissions trading system’, Nordic Economic Policy Review 1, 63–106.

Stavins, R. (1996), ‘Correlated uncertainty and policy instrument choice’, Journal of

Environmental Economics and Management 30(2), 218–232.

Stavins, R. N. (2020), ‘The future of u.s. carbon-pricing policy’, Environmental and

Energy Policy and the Economy 1, 8–64.

Weitzman, M. L. (1974), ‘Prices versus quantities’, Review of Economic Studies

41, 477–491.

Weitzman, M. L. (1978), ‘Optimal rewards for economic regulation’, American Eco-

nomic Review 68(4), 683–691.

World Bank (2014), ‘CO2 emissions (in kt)’. Retrieved 04/05/2020.

https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?end=2016&start=

1960&view=chart

World Bank (2019), ‘GDP (Current LCU)’. Retrieved 04/08/2020.

https://data.worldbank.org/indicator/NY.GDP.MKTP.CN?end=2011&start=

1960

Yates, A. & Cronshaw, M. (2001), ‘Pollution permit markets with intertemporal trading

and asymmetric information’, Journal of Environmental Economics and Manage-

ment 42, 104–118.

35



Smart Cap Karp & Traeger

Appendix

A Calibration Details for Technology Adoption

Share α

Method and Estimation Equation. The present section derives a crude estimate

of our parameter α, the adoption share of an innovations during a commitment period.

As in section 3.3, we assume commitment periods of 5 years and that technology is

fully persistent. We use green patents as a proxy for our technology stock. New patents

over the course of a commitment period represent the innovations (expected trend plus

shock). To identify α, we regress business as usual emissions on patents in the period

preceding serious CO2 regulation. Business as usual emissions in our model are

Et =
1

f
(ht + θt−1 + αǫt) .

We assume that the adoption share αt applies equally to the deviation from the trend

as to the expected patent trend, i.e., ht = h̄t−1 + α∆t and h̄t = h̄t−1 + ∆t. Our

identification assumes that the technology stock is linear in the amount of green patents

h̄t−1 + θt−1 = γ1 + γ2Pt−1 with γ1 ∈ R and γ2 ∈ R+. Then, our estimation equation

becomes

Et =
γ2
f

(Pt−1 + α(Pt − Pt−1)) + γ3 (11)

with γ3 ∈ R. Translated into an empirical model controlling for a time trend and GDP,

and using an annual time step, the estimation takes the form

t
∑

τ=t−4

Emissionsτ = µ0 + µ1 Trendt + µ2

t
∑

τ=t−4

Gdpτ

+ µ3

t
∑

τ=t−4

New green patentsτ + µ4

t−5
∑

τ=0

New green patentsτ +
t
∑

τ=t−4

ζt.

If follows from equation (11) that we obtain the adoption share α as the ratio of the

regression coefficients on new patents and the stock of patents before the beginning of

the commitment period, µ4

µ3
=

γ2
f
α

γ2
f

= α. Our base scenario controls only for GDP and

uses a quadratic trend, our more sophisticated estimation scenario also controls for oil

prices and allows for a break-point in the trend (more below). We assume that the
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estimation error ζT is i.i.d. and ζt ∼ N(0, σ2). By construction, the observations have

serially correlated errors for the adjacent 5 years. Therefore, we use the Newey-West

estimator with five lags, which is robust to the serial correlation between errors up to

five periods.

Data. We use the PATSTAT database of the (European Patent Office 2020). We

use green patents as identified by the classification code Y02E.20 As is common in the

literature, we only consider major patents, i.e., patents that are registered at all of the

three major patent offices, the United States, Europe, and Japan. We use the earliest

filing date of the patent as the time of innovation. We obtain data on emissions and

other controls variables from World Bank (2014, 2019) and British Petroleum (2020).

Even if short, we consider the period from 1995 to 2010 for our preferred estimates.

After 2010, implementations of the Kyoto protocol would interfere with our assumption

of business as usual emissions. Before 1995, detrending the variables becomes difficult.

In particular, the 1980s have seen a strong change in the growth of green patents and

starting before 1995 we are not able to render the time series stationary. Table 1 gives

an overview of the data for our preferred estimation period, 1995 to 2010.

20We use a patent if the Y02E classification is part of their classification codes.
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Table 1: Descritive Statistics

Mean Std. Dev.

CO2 emissions1 (Yearly) 5452829 275448.5

Early period2 5329343 265499.1

Late period3 5622621 193621.5

Total green patents5 (Yearly) 5083.632 3329.472

Early period 2776.273 1115.06

Late period 8256.25 2619.059

Gross Domestic Product 4 (Yearly) 1.08× 1013 2.88× 1012

Early period 8.67× 1012 1.54× 1012

Late period 1.36× 1013 1.28× 1012

Oil Price6 (Yearly) 37.63731 25.74642

Early period 19.77602 4.594336

Late period 62.19659 21.99409

1 Measured in kilotons of carbon dioxide mass per year.
2The early period runs from 1995 to 2002.
3The late period runs from 2002 to 2010.
4Measured in US dollars (at current prices). For a given year.
5Green patents registered at all the leading patent offices (in the United States, Europe, and Japan) in a year.
6 Measured in US dollars (at nominal prices). Average over a year.

Results. Table 2 presents the result of our base estimation, which only controls

for GDP and uses a quadratic time trend Trendt = β0t + β1t
2. We find an estimate

of α = 0.28 for our preferred estimation period. Going back to 1990, our time series

are no longer stationary but we still obtain significant regression coefficients. The

estimate increases to α = 0.34. Once we enter the 1980s, one of our coefficients

uses statistical significance and the sign is off (market in red). Table 3 tries to get

a handle on (some of the) issue controlling for the somewhat volatile oil prices and

allowing for a break-point in the quadratic trend.21 The table leaves the estimate of

α = 0.28 in our preferred period unchanged. Starting in 1990, it slightly reduces the

estimate to α = 0.34. The coefficient on new patents in the time series starting in 1985

remains statistically insignificant, but it changes both sign and magnitude to a more

21The regression includes a linear-quadratic spline with one break-point

β1 × T imet + β2 × T ime2t + β3 × T imet ×Dummyt + β4 × (T ime2)×Dummyt

where the dummy-variable specifies the breaking point, which we choose to minimize the sum of
squared residuals in the regression.

38



Smart Cap Karp & Traeger

reasonable values, delivering α = 0.27. Based on these results, we take α ≈ 0.25 as

our low estimate of the share of adoption during a 5 year period, and we also present

the results for a somewhat larger α = 0.5. These values bound our estimates. We pick

a somewhat high upper value because non-patented innovation might be implemented

somewhat faster, increasing the overall adoption share of green innovation relative to

our green-patents-based adoption share.

Table 2: Base Estimate of Adoption Share α

1995-2010 1990-2010 1985-2010
∑t−5

τ=0 New green patentsτ

Coefficient1 -175.02 -221.49 -195.93

Standard Error2 9.17 8.19 17.26

P − V alue 0.00*** 0.00*** 0.00***
∑t

τ=t−4New green patentsτ

Coefficient3 -48.35 -74.16 29.57

Standard Error2 19.14 21.26 31.04

P − V alue 0.03** 0.00*** 0.35

0.28 0.34 -0.15

Significance levels are * for 0.1, ** for 0.05 and *** for 0.01
1 Read the unit of measurement for the coefficient as ”Kilotons of Carbon Dioxide Mass per New Green Patent”.
2 Read the unit of measurement for the standard error as ”Kilotons of Carbon Dioxide Mass”.
3 Read the unit of measurement for the coefficient as ”Kilotons of Carbon Dioxide Mass per New Green Patent in

Stock of Green Patents”.
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Table 3: Estimate of Adoption Share α Controlling Additionally for Oil Prices and

Allowing for a Break-Point in the Quadratic Trend

1995-2010 1990-2010 1985-2010
∑t−5

τ=0 New green patentsτ

Coefficient1 -175.74 -185.66 -89.46

Standard Error2 26.13 15.45 24.44

P − V alue 0.00*** 0.00*** 0.00***
∑t

τ=t−4New green patentsτ

Coefficient3 -48.48 -63.45 -26.20

Standard Error2 20.57 23.11 22.38

P − V alue 0.04*** 0.02** 0.06

α-coefficient 0.28 0.34 0.27

Significance levels are * for 0.1, ** for 0.05 and *** for 0.01
1 Read the unit of measurement for the coefficient as ”Kilotons of Carbon Dioxide Mass per New Green Patent”.
2 Read the unit of measurement for the standard error as ”Kilotons of Carbon Dioxide Mass”.
3 Read the unit of measurement for the coefficient as ”Kilotons of Carbon Dioxide Mass per New Green Patent in

Stock of Green Patents”.
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B Proofs for Section 2

Proof of Proposition 1. For all shock levels θ the first best emission level satisfies

SCC (E, θ) = MB(E, θ)

⇒ SCCE(E, θ)dE + SCC θ(E, θ)dθ = MBE(E, θ)dE +MB θ(E, θ)dθ (12)

⇒
dE

dθ
=

MBθ(E, θ)− SCC θ(E, θ)

SCCE(E, θ)−MBE(E, θ)

and therefore

SCC *
E(E) = SCCE(E, θ) + SCC θ(E, θ)

dθ

dǫ

= SCCE(E, θ) + SCC θ(E, θ)
SCCE(E, θ)−MBE(E, θ)

MBθ(E, θ)− SCC θ(E, θ)
(13)

=
SCCE (MBθ − SCC θ) + SCC θ (SCCE −MBE)

MB θ − SCC θ

=
MB θ

MB θ − SCC θ

SCCE +
− SCC θ

MB θ − SCC θ

MBE . (14)

We assume SCCE > MBE < 0, and MB θ > 0. We characterize the five cases of

Proposition 1 one by one. i) If 0 < SCC θ < MB θ then both numerator and denominator

of the fraction in equation (13) are positive and the second summand in the equation

is adding a positive amount to SCCE so that SCC *
E > SCCE. ii) If SCC θ = MB θ

then the right hand side of equation (13) goes to infinity indicating SCC *
E = +∞.

More precisely, before dividing by the term converging to zero, equation (12) cannot

be satisfied for SCC θ = MB θ in general, but only holds for a particular emission

level, which is the optimal cap. iii) If MB θ < SCC θ then the denominator of the

two fractions in equation (14) is negative. Thus, the sign of SCC *
E is negative if and

only if SCC θ MBE −MB θ SCCE < 0 ⇔ SCC θ

MBθ
> SCCE

MBE
, which is satisfied because by

assumption SCC θ

MBθ
> 1 > SCCE

MBE
. iv) If SCC θ = 0 then SCC *

E = SCCE. v) If SCC θ < 0

then equation (14) is a standard weighted mean between SCCE andMB(E) and, hence,

smaller than SCCE.

Proof of Proposition 2. Local stability is equivalent to a negative slope of excess

demand evaluated at the equilibrium.

(i) The inverse supply of emissions is pE,supply = SCC∗ (E) and the inverse demand

is pE,demand = MB(E; θ). If SCC∗
E

(

E
(

pE
))

= 0, the slope of excess demand equals the

41



Smart Cap Karp & Traeger

slope of the demand for emissions, which is negative by concavity of marginal benefits.

In the case where SCC∗
E

(

E
(

pE
))

is nonzero, denoting X
(

pE; θ
)

) as excess demand,

the slope of excess demand equals22

∂X
(

pE; θ
)

∂pE
=

SCC∗
E

(

E
(

pE
))

−MBE(E
(

pE
)

; θ)

MBE(E (pE) ; θ)SCC∗
E (E (pE))

. (15)

Local stability is equivalent to the right side of (15) being negative. By concavity of

benefits, MBE(E
(

pE
)

; θ) < 0 is negative.

Sufficiency of (a) and (b): If SCC∗
E

(

E
(

pE
))

> 0 the slope of excess demand is

negative and we conclude that local stability holds. As explained above, local stability

also holds in the case where SCC∗
E

(

E
(

pE
))

= 0, because there the inverse supply

function is vertical. Thus, case (a) implies local stability. If SCC∗
E

(

E
(

pE
))

< 0 the

slope of excess demand is negative and, thus, case (b) also implies local stability. If

either (a) or (b) holds everywhere, then excess demand is positive for prices below

the equilibrium prices and negative for higher prices, implying global stability and

uniqueness.

Necessity of (a) and (b): Local stability implies a downward sloping excess demand.

This condition is met if SCC∗
E

(

E
(

pE
))

= 0, where the inverse supply is vertical. For

SCC∗
E

(

E
(

pE
))

6= 0, local stability implies that the right side of equation (15) is

negative, which is equivalent to

SCC∗
E

(

E
(

pE
))

> MBE(E
(

pE
)

; θ) and SCC∗
E

(

E
(

pE
))

> 0

or

SCC∗
E

(

E
(

pE
))

< MBE(E
(

pE
)

; θ) and SCC∗
E

(

E
(

pE
))

< 0

⇔

SCC∗
E

(

E
(

pE
))

> 0 or SCC∗
E

(

E
(

pE
))

< MBE(E
(

pE
)

; θ),

which implies cases (a) or (b).

(ii) We first establish continuous differentiability of the smart cap’s redemption

function q(p). By equation (3), continuous differentiability of MB and SCC together

with our assumption MB θ 6= SCC θ , implies continuous differentiability of SCC *.

Given continuous differentiability (and thus continuity) of SCC *, equation (4) implies

continuous differentiability of the redemption function.

22The slope of demand is one over the slope of inverse demand and analogously for supply, so that
∂X(pE ;θ)

∂pE = 1
MBE(E(pE);θ)

− 1
SCC∗

E
(E(pE))

.
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Under the smart cap, the supply of certificates is fixed at Q, and thus independent of

the certificate price. We first prove the statement regarding local stability. Suppressing

the argument θ, the competitive inverse demand for certificates, Qc, satisfies p =

MB (Qcq (p)) q (p), so the slope of industry demand satisfies

dp = MBE (Qcq (p)) [q (p) dQc +Qcq′dp] q (p) +MB (Qcq (p)) q′ (p) dp

⇒ [1−MBE (Qcq (p))Qcq′q (p)−MB (Qcq (p)) q′ (p)] dp

= MBE (Qcq (p)) [q (p)]2 dQc

⇒
dQc

dp
=

1− [MBEQ
cq (p) +MB] q′ (p)

[q (p)]2 MBE

. (16)

The denominator of this expression is negative, so the slope of industry demand, and

thus the slope of excess demand, is negative if and only if the numerator is positive. At

the equilibrium price p = p∗, the equilibrium requirement that supply equals demand

implies Q = Qc. By construction, the equilibrium price supports the optimal level of

emissions, E∗, so in equilibrium Qcq (p∗) = E∗. Using this equality in equation (16)

yields

dQc

dp
< 0 ⇔ 1− [MBE E ∗ +MB] q′(p) > 0.

Using the left side of equation 4 we obtain the condition for local stability

1 >
MBEE

∗ +MB

SCC *
E E + SCC *

stated in the proposition as equation (5).

We proceed to show global stability of the smart cap under the assumption that

ǫq,p(p) 6= 1 for all p. This assumption implies that p

q(p)
is strictly monotonic as

d

dp

p

q(p)
=

q(p)− pq′(p)

q(p)2
=

q(p)
(

1− p

q
q′(p)

)

q(p)2
=

1− εq,p
q(p)

6= 0

and we established above continuous differentiabiliy of the smart cap (implying conti-

nuity also of εq,p). As a result, the relation between p and pE = p

q(p)
is one to one. The

assumption that condition (5) holds implies that the slope of excess demand is negative

in the neighborhood of any socially optimal equilibrium. Thus, it suffices to show that

excess demand does not cross zero again outside of a socially optimal equilibrium. By

equation (16) continuous differentiability of redemption function and marginal benefits
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implies continuity of excess demand. Thus, it suffices to show that excess demand does

not equal zero outside of a socially optimal equilibrium ( because crossing implies an

intersection).

Assume that some certificate price p̄ implies a zero excess demand for some tech-

nology realization θ̄. Market clearing implies that MB
(

Ē; θ̄
)

= p̄

q(p̄)
for some emissions

level Ē. We have assumed that the smart cap is defined (only) on the domain of prices

for which there exists a technology shock such that the price induces a social optimum.

We denote by θ∗ the technology level that induces the social optimum for the certificate

price p̄. Market clearing in the social optimum under technology realization θ∗ implies

that MB
(

E∗; θ∗
)

= p̄

q(p̄)
for some emissions level E∗. Moreover, because the relation

between p and pE = p

q(p)
is one to one and because of market clearing under both p̄

and θ̄ and under p̄ and θ∗ we find that Ē = q(p̄)Qc = E∗. It follows that

MB
(

q(p̄)Qc; θ̄
)

= MB
(

Ē; θ̄
)

=
p̄

q(p̄)
= MB

(

E∗; θ∗
)

= MB
(

q(p̄)Qc; θ∗
)

.

BecauseMB
(

E; θ
)

is strictly monotonic in θ it follows fromMB
(

q(p̄)Qc; θ̄
)

= MB
(

q(p̄)Qc; θ∗
)

that θ̄ = θ∗. Therefore, the arbitrary market clearing equilibrium with zero excess de-

mand we started with, characterized by p̄ and θ̄, is a social optimum; the only zeros of

excess demand are the socially optimal market equilibria where excess demand slopes

correctly by our assumption that condition (5) holds.

Proof of Proposition 3. We use a general redemption function, q (p). To distinguish

this function from the smart cap for the competitive industry, we denote the latter as

qc (p) in this appendix. Given that Qm = Q, the monopsony chooses p:

max
p≥0

[B (Qq (p) ; θ)−Qp] .

The first order condition at an interior point is

MB (Qq (p) ; θ) q′ = 1 ⇒ MB (Qq (p) ; θ) =
1

q′
=

p

q

q′ p
q

=
pE

εq,p
, (17)

implying the first equality in equation (6). To establish the second equality, we dif-

ferentiate the definition pE = p

q
and simplify, to obtaindpE

dp
= q−pq′

q2
. The equilibrium
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condition qQ = E implies

Qq′ =
dE

dpE
dpE

dp
⇒ q′

p

q
=

dE

dpE
dpE

dp
pE

1

Q
⇒

εq,p =
dE

dpE
pE

E

E

Q

dpE

dp
= εE,pE

(

q
q − pq′

q2

)

= εE,pE

(

1−
pq′

q

)

= εE,pE (1− εq,p) ⇒ εq,p =
εE,pE

(

1 + εE,pE

) .

(ii) Now we examine the case where q (p) = qc (p), the smart cap for the competitive

industry. Using equation (17), we find that the monopsony’s marginal increase in profits

resulting from a change in certificate price is MB (Qqc (p) ; θ)
εqc,p
pE

Q − Q. Evaluating

this derivative at the competitive equilibrium (where MB = pE), the monopsony’s

marginal benefits of a change in the price equal (εqc,pc − 1)Q, where the superindex c

denotes the price in the competitive equilibrium. Thus, the monopsony benefits from

raising the certificate price above the competitive level if and only if εqc,pc ≥ 1.

By definition of the elasticity, εqc,pc and q′(p) have the same sign. Therefore, the

monopsony wants to raise the certificate price above the competitive level if and only

if it wants to increase emissions above the competive (socially optimal) level. The

inequality εqc,pc ≥ 1 (using equation (4)) is equivalent to SCC∗
E ≤ 0. Given that this

relations is “if and only if”, the monopsony benefits from reducing emissions below the

competitive level if and only SCC∗
E ≥ 0.23 These actions strictly increase or reduce

emissions if the inequalities are strict and the competitive equilibrium is interior.

(iii) Here we consider the case where the redemption function induces the monop-

sony to emit at the socially optimal level. The monopsony’s first order condition,

equation (17), implies q′ = 1
MB(Qq(p);θ)

and the condition for social optimality requires

MB (E; θ) = SCC∗ (E). Thus, the optimizing monopolist will emit at the socially

optimal level if MB (Qq (p) ; θ) = 1
q′
= SCC∗ (E). Consequently, a smart cap satisfy-

ing equation (7) induces the social optimum if the monopsony’s first order conditions

correctly characterize the optimum.

23If εqc,pc < 0 then: the monopsony’s marginal benefit of a higher price is negative; SCC∗

E < 0;
and in addition q′ < 0. In this case, the monopsony wants to lower the price below the competitive
level as a means of increasing emissions. Here also we have SCC∗

E < 0 and the monopsony wants to
increase emissions above the competitive level.

45



Smart Cap Karp & Traeger

The monopsony’s second order condition is

MB (Qqm; θ)
d2qm (p)

dp2
+MBE (Qqm; θ)Q

(

dqm (p)

dp

)2

≤ 0 (18)

We now show that this equation is locally satisfied in the neighborhood of an equilib-

rium if and only if MBE(E; θ) < SCC∗
E. Differentiating equation (7) gives

d2qm (p)

dp2
= −

SCC∗
E ·Qdqm(p)

dp

(SCC∗)2
= −

SCC∗
E ·Q

(SCC∗)3

Substituting this expression into equation (18) gives

(

MBE −MB
SCC∗

E

SCC∗

)

Q

(SCC∗)2
= (MBE − SCC∗

E)
Q

(SCC∗)2
(19)

where the last equality uses MB (Qq (p) ; θ) = 1
q′

= SCC∗ (E). The right side of

equation (19) is negative if and only if MBE(E; θ) < SCC∗
E. There may exist a family

of solutions to equation (7) because the boundary condition is unspecified.

C Proofs for Section 3

We first obtain the solution to the full-information problem where the regulator ob-

serves εt and chooses emissions directly. This solution provides the full-information

SCCt (St−1, Et, θt−1, εt) and the full-information value function. We use SCCt (·) to

construct the smart tax, Proposition 4, which we then use to construct the smart cap,

Proposition 5.

We choose a unit of time to be one year, and we use the parameter φ to denote

the number of years in a compliance period. This formulation enables us to change

the length of a period without recalibrating the model. We assume that (i) emissions

are constant during a period (equal to φ years), (ii) the change in the stock occurs

at the end of the period, and (iii) the payoff flow is not discounted within a period.

Thus, for example, St+1 = δSt + Etφ, where Et equals annual emissions during period

t. The parameter δ depends on φ. With the annual persistence level δ̂, we set δ = δ̂φ.

We make an analogous adjustment in the discount factor, β, and the serial correlation

parameters, ρ. The shock evolves according to θt = ρθt−1+εt. We measure the pollution

stock in gigatons (Gt) of CO2 and payoffs in giga dollars (G$). The marginal benefit
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of emissions (equal to the marginal abatment cost) is measured in G$
GtCO2

= $
tCO2

.

The flow payoff during a period lasting φ years is

(

(ht + ρθt−1 + αεt) xt −
1

2
fx2

t −
1

2
bS

2

t

)

φ.

We use jt (St, θt−1, εt) to denote the value function, i.e. the value of the program under

full information and optimal emissions. The full-information optimization problem is

jt (St, θt−1, εt) =

max{xs}
∞

s=t
E{εj}

∞

j=t+1

∑∞
s=0 β

s
(

(ht + ρθt−1 + αεt) xt+s −
1
2
fx2

t −
1
2
bS

2

t+s

)

φ.
(20)

The value function, jt (St, θt−1, εt), depends on the current state variable, (St, θt−1, εt),

and on calendar time via the time dependence of ht. The value function is quadratic

in the state variable. The social cost of carbon is defined as the expectation, over the

next period shock, of the present value of the cost of beginning the next period with

one additional unit of the pollution stock: SCCt = β Eεt+1

∂jt(St+1,θt,,εt+1)
∂St+1

. We have

Lemma 1 The social cost of carbon and the optimal emissions rule are linear functions

of the information state, St, θt−1, and εt. The coefficients of these linear functions

are constant; the intercepts depend on the trajectory of the exogenous demand shifter,

{ht+s}
∞
s=0.

(i) The social cost of carbon is

SCCt = β (−v1,t+1 + λ (δSt + φEt) + µ (ρθt−1 + εt)) . (21)

Using the definition

̟ ≡ f

(

1− βδ2 − β
b

f
φ2

)

, (22)

the constant coefficients are

λ =
1

2βφ

(

−̟ +
√

̟2 + 4βφ2bf
)

> 0 (23)

and

µ = ρβδφ
λ

f (1− ρβδ) + βφλ
; 1 > µ > 0. (24)
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The time-varying intercept, v1,t, is the solution to the difference equation

v1,t = β
δ (fν1,t+1 − λφht)

f + βλφ
⇒ v1,t = −

βδφλ

f + βφλ

∞
∑

j=0

(

βδf

f + βφλ

)j

ht+j. (25)

A sufficient condition for existence of v1,t is that the elements of the sequence {ht+j}
∞
j=0

are finite. We assume that ht = ηth0 falls at a constant rate (η < 1). Then

ν1,t = −
λβδhtφ

f (1− βηδ) + βφλ
< 0 (given h > 0). (26)

(ii) The full information optimal emissions rule is

Et = Z0t +Hεt + z1St + z2θt−1 (27)

with
Z0t =

ht+βv1,t+1

(f+βφλ)
, H = α−βµ

f+βφλ

z1 =
−βλδ

f+βφλ
< 0 and z2 = ρ 1−βµ

f+βφλ
> 0

(28)

Comments on the Lemma. The slope, w.r.t. the pollution stock, of the SCC is

βλ; the coefficient βµ shifts the intercept of the SCC in response to the technology level

that the next period inherits, θt. The optimal level of emissions is a decreasing function

of the current stock of pollution and an increasing function of the lagged technology

level, θt−1. An increase in θt−1 increases the current marginal benefit of an additional

unit of emissions; i.e., it increases the marginal cost of abatement, thereby increasing

the demand for emissions.

The optimal level of emissions might increase or decrease with the current shock,

εt. A positive technology shock (for example) raises both the current demand for

emissions and (with ρ > 0) future demand. For α close to 1 the increase in current

demand is large relative to the increase in future demand. Here, H > 0: optimal

emissions increase with the technology shock. In contrast, for small α, a positive shock

raises the current demand for emissions relatively little compared to the rise in future

demand. The anticipation of the higher future demand causes the regulator to reduce

current emissions in response to a positive shock: H < 0.

Note that µ does not depend on α. For the knife-edge case α − βφµ = 0, the

optimal level of emissions is independent of the current technology shock, although

it still depends on St and θt−1. For this knife-edge case, the feedback quota under
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asymmetric information is first-best.

Sketch of Proof of Lemma 1. The proof is straightforward but tedious, so we

only sketch the steps here, relegating the details to Referees’ Appendix D. We refer

to the value function conditional on the current technology shock, jt (St, θt−1, εt) as

the ex post value function, and its expectation Jt (St, θt−1) ≡ Eεtjt (St, θt−1, εt) as the

ex ante-value function. It is well known that for the linear-quadratic control problem

with additive errors, jt (St, θt−1, εt) is a linear-quadratic function. Therefore, J (St, θt)

is also linear-quadratic.

The dynamic programming equation under full information is

jt (St, θt−1, εt) =

maxE[
(

(ht + ρθt−1 + αεt)E − 1
2
fE2 − 1

2
bS

2

t

)

φ

+β Eεt+1
jt+1 (St+1, θt, εt+1)] =

maxE[
(

(ht + ρθt−1 + αεt)E − 1
2
fE2 − 1

2
bS

2

t

)

φ

+βJt+1 (St+1, θt)].

(29)

We replace Jt+1 (St+1, θt) with a linear-quadratic trial solution in the last line of equa-

tion 29 and perform the optimization, writing the full information decision rule as a

function of (St, θt−1, εt) and of the parameters of the trial solution. The SCC is simply

β ∂Jt+1(St+1,θt)
∂St+1

. This derivative depends on (St, θt−1, εt) and on the emissions level, E.

Because Jt+1 (St+1, θt) is a quadratic function, ∂Jt+1(St+1,θt)
∂St+1

is a linear function of

the state, (St+1, θt), as shown in equation 21, and the optimal decision rule is a linear

function of the state, as shown in equation 27. Performing the optimization in equation

29 we obtain the optimal decision rule in terms of the coefficients of the ex ante value

function. We then substitute this decision rule into the dynamic programming equation

and take expectations, replacing Eεt jt (St, θt−1, εt), with Jt (St, θt−1). We then equate

coefficients of terms that are independent of (St+1, θt), linear in (St+1, θt) and quadratic

in (St+1, θt), thereby obtaining the formulae for the coefficients (equations 22, 23, 24

and 25)

Proof of Proposition 4. Part i. For H 6= 0, we invert the full-information emissions
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rule, equation 27, to write the shock as a function of the optimal level of emissions

εt =
Et − (Z0t + z1St + z2θt−1)

H
. (30)

We want to obtain the formulae for the coefficients of the smart tax, a linear function

of the observables at time t, St, θt−1, and Et:

A0St + A1θt−1 + γEt + αt.

If firms set their marginal benefit of emissions (per year) equal to this tax, the equilib-

rium condition is

ht + ρθt−1 + αεt − fEt = A0St + A1θt−1 + γEt + αt. (31)

By construction, SCC∗ = SCC evaluated at the optimal level of emissions. Using

equation 30 to eliminate εt from the left side of equation 31, and collecting terms, we

write the left side of equation 31 as

−α
z1
H
St +

(

ρ− α
z2
H

)

θt−1 +
( α

H
− f

)

Et + ht − α
Z0t

H
(32)

Substituting the definitions of z1, z2, and Z0t in equation 28 into expression 32 and

then equating coefficients with the right side of equation 31 produces the formula for

the coefficients of the smart tax:

A0 =
αβλδ

α−βµ
and A1 = −ρβµ 1−α

α−βµ

γ = β αλφ+µf

α−βµ
and at = −β µht+αν1,t+1

α−βµ

(33)

contained in Proposition 4.

For H = 0 the optimal emissions level is independent of the current shock, εt. As

α → βµ the smart tax becomes steeper. In the limit

Part ii. Using the inequalities in equations 23 and 24, the numerators of A0 and γ are

strictly positive, and for ρ > 0 the numerator of A1 is weakly negative. Therefore the

signs of these coefficients depend on the sign of the denominator, α−βµ. By equation

24, µ is independent of α, so there exists α∗ = βµ with (for ρ > 0) 0 < α∗ < β < 1.

For α < α∗ A0 < 0, γ < 0 and A1 > 0. These inequalities are reversed for α∗ < α. At
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α = βµ the smart tax is a vertical line, i.e. a correspondence, not a function.

Part iii The argument for this claim parallels the proof of Proposition 2, so we do

not repeat it.

Proof of Proposition 5. Using the definition of Ât we write the smart tax as

SCC∗
t = Ât + γEt. The firm’s price of a unit of emissions is pE = p

qt(p)
. We define the

smart cap using p

qt(p)
= Ât+ γE. Inserting the market clearing condition, E = Qqt (p),

gives
p

qt (p)
= Ât + γQqt (p) . (34)

The assumption that the first best level of emissions is non-negative implies qt (p) ≥ 0.

Simplifying equation 34, gives the quadratic equation Âtqt (p)+ γQq2t (p)− p = 0. The

two roots are

q+ =
1

2γQ

(

−Ât +

√

Â2
t + 4γQp

)

,

q− =
1

2γQ

(

−Ât −

√

Â2
t + 4γQp

)

.

For γ > 0 and p ≥ 0, the correct root is q+. We can exclude the other root because

q− ≤ 0; however, emissions are always positive. The slope of the smart cap is

dq+

dp
=

1
√

Â2
t + 4γQp

> 0.

From equation 5 in Proposition 2, we know that the smart cap supports the socially

optimal level of emissions as a stable competitive equilibrium when γ = SCC∗
E > 0.

This smart cap is an increasing function of the certificate price.

Proposition 4 shows that the smart tax is stable even for γ < 0. Therefore, condition

(b) in Part i of Proposition 2 holds when γ < 0. In this case, from Part ii of Proposition

2, the smart cap supports the optimal outcome as a stable competitive equilibrium if

and only if the slope of the smart cap is negative (i.e. where the denominator of

equation equation 5 is negative).

Thus, for γ < 0 the smart cap equals the negative root, given by q−; the derivative

of this root w.r.t. the certificate price is negative. For γ < 0, this root is defined

only for p ≤ − Ât
2

4γQ
. At this supremum, the redemption function is q− = − Ât

(2γQ
, and

emissions equal E = − Ât

2γ
. At the infimum price, p = 0, the value of the negative
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root is q− = − Ât

γQ
; here, emissions equal − Ât

γ
. In summary, q− is a decreasing function

of p defined for p ∈ [0, Ât
2

−4γQ
]. Over this domain, the smart tax is positive and the

marginal outlay curve corresponding to that inverse supply function is negative. The

corresponding range of emissions is E ∈ (− Ât

2γ
,− Ât

γ
).

Proof of Proposition 6. Karp and Traeger (2019) show that taxes welfare-dominate

quotas if and only if λ
f
< 1

β
− 2µ

α
, i.e. if and only if

λ < f

(

1

β
−

2µ

α

)

=
f

αβ
(α− 2βµ) . (35)

The proof of Proposition 4 provides the formula for the slope of the smart tax, γ =

β αλ+µf

α−βµ
. From Lemma 1 we have λ > 0 and (for ρ > 0, as we assume) µ > 0. Therefore,

if α − βµ < 0 the slope of the smart tax is negative, and thus less than f , which is

positive. In this case, α − 2βµ < 0 so inequality 35 is never satisfied. Thus, for

α− βµ < 0 the slope of the smart tax is less than f and quotas dominate taxes.

For α− βµ > 0, where γ > 0, we have

γ < f ⇔ β αλ+µf

α−βµ
− f = α β

α−βµ
λ+

(

β µ

α−βµ
− 1
)

f < 0 ⇔

λ < α−βµ

αβ

(

1− β µ

α−βµ

)

f = f

αβ
(α− 2βµ) ,

reproducing inequality 35.

Proof of Proposition 7. Permitting trade of certificates across periods introduces

two changes to the original smart cap construction; (i) we have a joint constraint on the

certificate number and (ii) we have to respect the arbitrage opportunity for certificates.

Our proof proceeds in 4 steps. In step 1 we establish two observations repeatedly used

in the proof. The first observation shows that we can rescale the certificate price

without changing the physical emission allocation. The second observation shows that

there is a unique relation between the technology realization and the certificate price.

Step 2 constructs redemption functions that satisfy a no-arbitrage condition for the

two-period case. Step 3 uses the two-period case as the basis for an inductive proof

extending the construction to an arbitrary number of periods. Steps 2 and 3 construct

certificate allocations in each period that achieve optimal emissions in all periods and

states of the world. Step 4 defines the aggregate certificate supply and shows that the

constructed market allocations indeed form an equilibrium.
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Notation: We denote the periods of a given trading phase by t = 1, ..., T . We let

q∗t (·) and Q∗
t denote a period t redemption function and certificate allocation that yield

an optimal emission level in the standard smart cap, where emission certificates are

valid only in a given period.

Step 1: Two observations.

Observation 1 : We can rescale a (one-period) smart cap by λ > 0 as λ ∗ pt, λ ∗ qt

and Qt

λ
without changing the physical allocation and price of emissions. As a result,

by rescaling the number of certificates (and the redemption function accordingly), we

can set the certificate price to any desired level while maintaining optimality. This

observation will help us in satisfying the no-arbitrage equation; for all periods t ∈

{1, ..., T − 1} and in every state of the world (θt−1, St) no-arbitrage requires

pt(θt) = β Et[pt+1|θt] ∀θt, (36)

Expectations are taken w.r.t. θt+1 conditional on θt, i.e., they are expectations w.r.t.

ǫt+1. We note that the conditional next-period expectations also depend on St+1, but

given a particular mechanism, St+1 is a direct consequence of the technology realization

in θt that we already conditioned upon.

Observation 2 : Any redemption function achieving the first best allocation has

to imply that the certificate price pt responds in a strictly monotonic manner to the

realization of the technology level θt. From equations (21) and (24), the full information

SCC and thus the optimal emissions price, pEt , is a strictly increasing function of the

shock. Differentiating both sides of the definition pEt = pt
qt(pt)

yields

p′t(θt)
qt(pt(θt))− pt(θt)q

′
t(pt(θt))

qt(pT (θt))2
=

dpEt (θt)

dθt
6= 0. (37)

Given that emissions are strictly positive by assumption (qt > 0), a necessary condition

for satisfying inequality (37) is p′t(θt) 6= 0.

Step 2: Two-period construction & inductive basis.

We start with the first period redemption function q∗1(·). We assume that the equilib-

rium allocation of certificates in the first period is Q∗
1, ensuring an optimal emission

allocation. Each realization of the technology shock implies the optimal certificate price

p1(θ1). By Observation 2, this relation is strictly monotonic and, thus, invertible. We

denote the inverse relationship by the function f1 so that θ1 = f1(p1). The realization

of θ1 also affects the emissions in period 1 and, thus, S2. As a result, period 2 starts
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out with the state variables θ1 = f1(p1) and S2(θ1) = S2(f1(p1)). We denote the latter

relationship by S2 = g1(p1).

For each realization of θ1 we have to satisfy the no-arbitrage equation (36) between

periods 1 and 2. By Observation 1, we can rescale the period 2 certificate price p2 to

any desired level by rescaling q∗2(·) and Q∗
2 accordingly. Thus, for every θ1 = f1(p1) and

S2 = g1(p1) we can define qp12 (·) and Q2(p1), such that the equilibrium price expectation

in period 2 satisfies the no-arbitrage equation (36) between periods 1 and 2. Again, at

this point we merely assume that the equilibrium certificate allocation will indeed be

Q2(p1) and return to this assumption in step 4.

Summary and basis of the inductive proof. For t = 1 we have established (i)

the existence of redemption functions q
p1,...,pt−1

t = q1 and qp1,...,ptt+1 = qp12 satisfying

the no-arbitrage condition (36) under the assumption that equilibrium certificate al-

locations are Qt(p1, ..., pt−1) = Q∗
1 and Qt+1(p1, ..., pt) = Q2(p1), and (ii) the exis-

tence of functions f
p1,...,pt−1

t (pt) and g
p1,...,pt−1

t (pt) such that θt = f
p1,...,pt−1

t (pt) and

St+1 = g
p1,...,pt−1

t (pt). These functions are conditioned on the first period stock vari-

ables, which we suppress, as well as the certificate price realizations of the preceding

trading periods.

Step 3: Inductive step – extension to arbitrary number of periods.

We now construct a period t+ 2 redemption function satisfying the no-arbitrage con-

dition (36) between periods t + 1 and t + 2 as well as functions f p1,...,pt
t+1 and gp1,...,ptt+1

expressing the states as a realization of past shocks. Given the stock levels θt and

St+1, we employ Observation 2 just as we did for the first period to derive functions

f ∗
t+1 and g∗t+1 such that θt+1 = f ∗

t+1(pt+1) and St+2 = g∗t+1(pt+1). Incorporating stock

dependence, we condition these functions explicitly on the states θt and St+1 at the

beginning of period t + 1, which we can express as functions of the historic price re-

alizations by the induction hypothesis. Thus, we obtain the desired functions f p1,...,pt
t+1

and gp1,...,ptt+1 needed for our induction step.24

We (continue to) assume given certificate allocations in period t+2, proving they are

part of an intertemporal equilibrium in step 4. Given θt+1 and St+2 we can rescale the

period t+2 certificate price pt+2 to any desired level by rescaling q∗t+2(·) andQ∗
t+2 accord-

ingly (Observation 1). Using this observation, we rescale (for each realization of pt+1

and corresponding realizations of θt+1 = f p1,...,pt
t+1 (pt+1) and St+2 = gp1,...,ptt+1 (pt+1)) the

24In detail, making the conditionality of the functions f∗

t+1 explicit we have θt+1 =
f∗

t+1(pt+1; θt, St+1) and define fp1,...,pt

t+1 (pt+1) = f∗

t+1(pt+1; f
p1,...,pt−1

t (pt), g
p1,...,pt−1

t (pt)) and similarly
for gp1,...,pt

t+1 .
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certificate price pt+2 such that pt+1(θt+1) = β Et+1[pt+2|θt+1], thereby satisfying the no-

arbitrage equation (36) between periods t+1 and t+2.25 Recognizing that the relation

is conditional on the states θt+1 and St+2, which we expressed as functions of the historic

price shocks, we write the resulting smart cap function as q
p1,...,pt+1

t+2 (pt+2) and define

the corresponding certificate levels for the period t+ 2 allocation as Qt+2(p1, ..., pt+1).

Thereby we completed the inductive step. We are done in period T − 1 as there is no

further arbitrage opportunity in period T .

Step 4: Certificate allocation.

We now return to the point that we have only one certificate constraint for all periods

in the trading phase. We let the aggregate emission certificate level supplied to the

market be

Q(p1, ..., pT ) =
T
∑

t=1

Qt(p1, ..., pt−1) , (38)

which the decision maker announces at the beginning of the first period. By construc-

tion, the certificate allocation using Qt(p1, ..., pt−1) certificates in period t is feasible.

Again by construction, such a certificate allocation assigning the use of Qt(p1, ..., pt−1)

certificates to period t implies optimal emission levels in all periods and every state

of the world. We are left to show that this certificate allocation is also a market

equilibrium.

By construction of the individual redemption functions, for any price sequence

p1, ..., pT , firms request Qt(p1, ..., pt−1) certificates in period t at the corresponding price

pt in every state of the world (θt, St). By our rescaling of the individual redemption

functions, the no-arbitrage equation (36) is satisfied in every period and state of world.

By definition of the certificate supply (38) the certificate market clears.

25As remarked in Observation 1, conditioning on θt+1 simultaneously conditions on St+2. As re-
marked in Observation 2, pt+1 and θt+1 are strictly monotonic transformations and we can exchange
pt+1 and θt+1 as the conditioning variables.
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D Detailed Steps Solving the Linear-Quadratic Model

Details for Proof of Lemma 1. We define

Yt =

(

St

θt−1

)

, Q =

(

−b 0

0 0

)

, A =

(

δ 0

0 ρ

)

,

W =
(

0 ρ
)

, B =

(

φ

0

)

, D =

(

0

1

)

.

(39)

With these definitions, we write the equation of motion as

Yt+1 = AYt + BEt +Dεt

and the period payoff as

(

(ht + αεt)E −
1

2
fE2 +

1

2
Y ′
tQYt +WYtE

)

φ.

Our trial solution for the ex ante value functions is

Jt (St, θt−1) = V0t + V ′
1tYt +

1

2
Y ′
t V2Yt (40)

with the scalar V0t and

V1t =

(

v1t

v2t

)

and V2 = −

(

λ µ

µ τ

)

. (41)

With this notation, we rewrite the right side of the dynamic programming equation 29

as
maxE[

(

(ht + αεt)E − 1
2
fE2 + 1

2
Y ′
tQYt +WYtE

)

φ+

β(V0,t+1 + V ′
1,t+1 (AYt + BE +Dεt)

+1
2
(AYt + BE +Dεt)

′ V2 (AYt + BE +Dεt))].

(42)

The marginal benefit of an additional unit of emissions in each of the next φ years is

(ht + αεt − fE +WYt)φ = (ht − fE + ρθt−1 + αεt)φ.
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An additional unit of annual emissions increases the next-period stock by φ units.

The present discounted value of the future stream of marginal cost arising from an

additional unit of emissions in each of the next φ years is the negative of

β
(

V ′
1,t+1B + B′V2 (AYt +Dεt) + B′V2BE

)

=

−βφ (−v1,t+1 + µ (ρθt−1 + εt) + λ (δSt + φE)) .

Therefore, the present discounted value of the future stream of marginal cost arising

from a single additional unit of emissions, the SCCt, is equals

SCCt = β (−v1,t+1 + µ (ρθt−1 + εt) + λ (δSt + φE)) ,

as in equation 21.

The first order condition equates the marginal benefit from one additional unit of

carbon to its marginal cost:

(ht − fE + ρθt−1 + αεt) = β (−v1,t+1 + µ (ρθt−1 + εt) + λ (δSt + φE))

Solving for E gives the optimal emissions rule

E = Z0t +Hεt + ZYt

with the definitions

Z0t =
ht+βv1,t+1

f+βλφ
, H = α−βµ

f+βλφ

Z =
(

z1 z2

)

=
(

−βλδ

f+βλφ
ρ 1−βµ

f+βλφ

)

,

(43)

as in equations 27 and 28. Below we confirm the second order condition for maximiza-

tion, f + βλφ > 0.

Next we obtain the formulae for the coefficients of the linear-quadratic function

Vt (Yt). We first use the decision rule 27 to eliminate E from the right side of the DPE,
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equation 29. The maximized DPE is

jt (St, θt−1, εt) =

[(ht + αεt) (Z0t +Hεt + ZYt)−
1
2
f (Z0t +Hεt + ZYt)

′ (Z0t +Hεt + ZYt)

+1
2
Y ′
tQYt +WYt (Z0t +Hεt + ZYt)]φ

+β[V0,t+1 + V ′
1,t+1 (AYt +B (Z0t +Hεt + ZYt) +Dεt)

+1
2
(AYt +B (Z0t +Hεt + ZYt) +Dεt)

′ V2 (AYt + B (Z0t +Hεt + ZYt) +Dεt)].

Now we take expectations w.r.t. εt of both sides of (the maximized) DPE, using E ε = 0,

E ε2 = σ2 and the definition Jt (St, θt−1) ≡ Eεt jt (St, θt−1, εt). Collecting terms, the

result is

V0t + V ′
1tYt +

1
2
Y ′
t V2Yt =

(

htZ0t −
1
2
fZ2

0t

)

φ+ β
(

V0t+1 + V ′
1,t+1BZ0t +

1
2
Z2

0tB
′V2B

)

+1
2

(

(2αH − fH2)φ+ β
(

(D + BH)′ V2 (D +BH)
))

σ2

+
(

(htZ − fZ0tZ + Z0tW )φ+ β
(

V ′
1t+1 (A+ BZ) + Z0tB

′V2 (A+ BZ)
))

Yt+

1
2
Y ′
t

(

(Q− fZ ′Z +W ′Z + Z ′W )φ+ β (A+ BZ)′ V2 (A+ BZ)
)

Yt

(44)

To obtain the formulae for the parameters of V2 we equate coefficients of the terms

that are quadratic in Yt, resulting in

V2 =
(

(Q− fZ ′Z +W ′Z + Z ′W )φ+ β (A+ BZ)′ V2 (A+ BZ)
)

.

Using the definition of Z in equation 43 and of V2 in equation 41 and then carrying

out the matrix multiplication produces

−

(

λ µ

µ τ

)

=

(

K1 K2

K2 K3

)

(45)
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with the definitions

K1 = − 1
f+βλφ

(fβλδ2 + bβλφ2 + bfφ)

K2 = −βδ ρ

f+βλφ
(fµ+ λφ)

K3 = − ρ2

f+βλφ
(−φβ2µ2 + λτφβ2 + 2φβµ+ fτβ − φ) .

Comparing the 1,1 elements on both sides gives the relation

λ =
1

f + βλφ

(

fβλδ2 + bβλφ2 + bfφ
)

.

This equation has a positive and a negative root. Using the definition of ̟ in equation

22 gives the positive root in equation 23. For large St the value function must be neg-

ative; therefore it must be the case that −λ < 0. Therefore, f + βλφ > 0, establishing

the second order condition for optimality.

Comparing the 1,2 elements on the left and right side of equation 45 implies

µ = βδ
ρ

f + βλφ
(fµ+ λφ) .

The solution to this equation produces equation 24. We now establish the inequality

1 > µ > 0. Because ρβδ < 1 and λ > 0, both the numerator and the denominator of

µ are positive; thus, µ > 0. We also have

µ < 1 ⇔ ρβδφλ < f + βφλ− ρβδf ⇔ λβφ (ρδ − 1) < f (1− ρβδ) .

The last equality holds, because the left side is negative and the right side is positive.

To obtain the formulae for the parameters of V1t we equate coefficients of Yt on the

two sides of equation 44 to obtain

V ′
1t = (htZ − fZ0tZ + Z0tW )φ+ β

(

V ′
1t+1 (A+ BZ) + Z0tB

′V2 (A+ BZ)
)

.

We require only the first element of this vector. Equating the 1,1 elements on both

sides, we obtain the difference equation 25, repeated here

ν1t = β
δ (fν1,t+1 − λφht)

f + βλφ
.
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By inspection βδf

f+βλφ
< 1. Therefore, a sufficient condition for the solution ν1t to exist,

i.e. for the infinite sum in equation 25 to be bounded, is that ht is bounded for all t.

Then we obtain

v1,t = β
δ (fν1,t+1 − λφht)

f + βλφ
⇒ v1,t = −

βδφλ

f + βφλ

∞
∑

j=0

(

βδf

f + βφλ

)j

ht+j. (46)

Our quantitative analysis assumes that ht+j = ηjht falls at a constant rate (η < 1).

Then

v1,t = −
βδφλ

f + βφλ
ht

∞
∑

j=0

(

η
βδf

f + βφλ

)j

= −
βδφλ

f + βφλ
ht

1

1− ηβδf

f+βφλ

= −
βδφλht

f + βφλ− ηβδf

= −
λβδhφ

f (1− βδη) + βφλ
< 0

given h > 0.
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