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Abstract
We characterize voting procedures according to the social choice correspondence they
implement when voters cast ballots strategically, applying iteratively undominated
strategies. In elections with three candidates, the Borda Rule is the unique positional
scoring rule that satisfies unanimity (U) (i.e., elects a candidate whenever it is unani-
mously preferred) and ismajoritarian after eliminating a worst candidate (MEW)(i.e.,
if there is a unanimously disliked candidate, the majority-preferred among the other
two is elected). In a larger class of rules, Approval Voting is characterized by a sin-
gle axiom that implies both U and MEW but is weaker than Condorcet-consistency
(CON)—it is the only direct mechanism scoring rule that is majoritarian after elim-
inating a Pareto-dominated candidate (MEPD)(i.e., if there is a Pareto-dominated
candidate, the majority-preferred among the other two is elected); among all finite
scoring rules that satisfy MEPD, Approval Voting is the most decisive. However, it
fails a desirable monotonicity property: a candidate that is elected for some prefer-
ence profile, may lose the election once she gains further in popularity. In contrast,
the Borda Rule is the unique direct mechanism scoring rule that satisfies U, MEW
and monotonicity (MON). There exists no direct mechanism scoring rule that satisfies
both MEPD and MON and no finite scoring rule satisfying CON.
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162 C. Basteck

1 Introduction

Majority rule is often considered the hallmark of democratic decision making and has
been axiomatised byMay (1952) for the two-candidate case. It is however unclear how
it should be adapted to situations involving more than two candidates. First, with at
least three candidates, it is often unclearwho should be considered ‘majority-preferred’
even when voters’ true preferences are known, say because a Condorcet-winner may
fail to exist. Second, voting procedures that take a majority of voters’ preferences
into account—and are hence non-dictatorial—are necessarily manipulable. For voting
procedures that always yield a unique winner, this was first shown by Gibbard (1973)
and Satterthwaite (1975) and allowing for ties does not resolve the problem, see e.g.
Gärdenfors (1976), Barberà et al. (2001) or Ching and Zhou (2002). Strategic voting
may then drive a wedge between reported and true preferences of voters and sever the
link between election outcomes and voters’ preferences.

In this paper,we identify voting procedures that (i) ensure the election of a ‘majority-
preferred’ among three candidates for preferences profiles where such a candidate can
be clearly identified, despite the fact that (ii) voters may cast their ballots strategically,
potentially misrepresenting their preferences. Hence, rather than analysing either the
preference aggregation properties of a voting rule (implicitly assuming sincere voting)
or the extent of a voting rule’s manipulability1 (without checking for the effect that
manipulations have on the eventual election outcomes) in isolation, we analyse both
issues jointly to see how severe the inescapable problem of strategic misrepresentation
of preferences is with respect to giving rise to undesirable election outcomes.

With respect to (i), we will consider various axioms. For example, at the very least,
if all voters agree that one of three candidates is the least preferred, the majority-
preferred among the other two should be elected. More ambitiously, we may ask that
whenever there are two Pareto-efficient alternatives, the majority-preferred among the
two should be chosen. Yet more demanding, wemay stipulate that a Condorcet-winner
is chosen whenever it exists. Alongside these requirements we will consider familiar
unanimity and monotonicity axioms.2

With respect to (ii), we will assume that voters only use iteratively undominated
strategies. That is, we rely on iterative elimination of (weakly) dominated strategies
as our solution concept. The concept has a long tradition in the theory of voting where
it was introduced by Farquharson (1969) under the name of sophisticated voting. It is
particularly well suited to model strategic behaviour in elections where the number of
voters is large relative to the number of available alternatives, as under these conditions
voters typically find themselves in a position where they are not pivotal. As a result
any strategy is a best response and the alternative solution concept of rationalizability
has no bite. In particular, under many intuitive voting procedures, if all voters vote

1 Analysis in this vein includes checking for the number of preference profiles that allow for profitable
manipulations (Kelly 1993; Lepelley and Merlin 2001), studying the size of potential gains from manipula-
tions (Campbell and Kelly 2009) or identifying non-manipulable (sub)domains (Barbie et al. 2006; Sanver
2009).
2 May (1952) also invokes monotonicity, referring to it as positive responsiveness, in his characterisation
of the majority rule.
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‘in favour’ of some arbitrary alternative, this alternative is elected and no individual
is pivotal. But then any alternative may be chosen in (some) Nash-equilibrium.

As the set of voting procedures under consideration, we will consider scoring rules,
i.e., voting procedures where each voter awards scores to candidates and the candi-
date with the highest aggregate score wins the election. In the class of all neutral and
anonymous voting procedures, scoring rules are the only procedures that satisfy rein-
forcement3 and overwhelming majority,4 see (Myerson 1995). They include prominent
rules such as ‘classical’ positional scoring rules, for example the (Anti-)Plurality Rule
or the Borda Rule, other rules with a similarly small strategy space such as Approval
Voting and rules with an arbitrarily large strategy space such as Evaluative Voting and
Cumulative Voting.

Within this class of voting procedures, we are able to derive three main character-
isation results. First, in the subset of positional scoring rules, the Borda Rule is the
unique voting procedure that satisfies unanimity (U) (i.e., uniquely selects an alter-
native whenever it is unanimously preferred) and is majoritarian after eliminating
a worst alternative (MEW) (i.e., if there is a unanimously disliked alternative, the
majority-preferred among the other two alternatives is uniquely selected).

Second, in the class of direct mechanism scoring rules (including, e.g., all positional
scoring rules and Approval Voting), the Borda Rule is the unique voting procedure
implementing a social choice correspondence that satisfies U, MEW and monotonicity
(MON)(i.e., an alternative that is uniquely selected for some preference profile should
still be uniquely selected when every voter ranks this alternative weakly higher).

Third, in the class of all finite scoring rules (i.e., scoring rules with arbitrarily
but finitely many admissible ballots) extensions of Approval Voting are the only vot-
ing procedures that are majoritarian after eliminating a Pareto-dominated alternative
(MEPD) (i.e., if there is a Pareto-dominated alternative, the majority-preferred alterna-
tive among the other two is uniquely selected) – and Approval Voting is characterized
not only as the simplest such rule but also as the most decisive.

As a novel voting paradox, we find that Approval Voting violates MON and MON*

(i.e., an alternative that is included in the solution for some preference profile should
still be included for a preference profilewhere every voter ranks this alternativeweakly
higher). More generally, no finite scoring rule will satisfy both MON* and MEPD,
nor does there exist a finite scoring rule that is Condorcet-consistent. The fact that
the familiar notion of Condorcet-consistency (CON) is unachievable in conjunction
with strategic voting underlines the importance of the criteria MEW and MEPD which
both weaken CON just enough so as to allow for possibility results. Finally, as an
intermediate product for our characterization, we delineate those preference profiles
for which Borda Rule voting games are dominance-solvable.

Three papers most closely related to this work are (Dhillon and Lockwood 2004),
(Buenrostro et al. 2013) and (Courtin and Núñez 2017) who all identify conditions
for preferences profiles under which particular scoring rules yield a unique solution

3 If ballots are evaluated for separate districts and the same alternative is chosen in each, then in a joint
district, i.e., for the joined ballot profile, this alternative is chosen as well.
4 If some group of voters, or rather the ballots that they cast, are replicated sufficiently often, an election
outcome at the resulting ballot profile has to be a possible outcome (possibly tied) at the profile where only
ballots of the replicated group are considered.
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164 C. Basteck

in iteratively undominated strategies. Dhillon and Lockwood (2004) consider Plural-
ity Rule voting games with an arbitrary number of alternatives and provide sufficient
as well as necessary conditions. They find that if the preference profile is such that
the game is dominance-solvable, then there exists a Condorcet-winner. Moreover,
if their sufficient condition for dominance-solvability is satisfied, the unique out-
come is the Condorcet-winner.5 Buenrostro et al. (2013) consider “general scoring
rules” and provide sufficient conditions. They show that if their sufficient conditions
for dominance-solvability are satisfied, the unique outcome is a Condorcet-winner.
Courtin and Núñez (2017) consider Approval Voting, provide sufficient as well as
necessary conditions for dominance-solvability, and show that under their sufficient
conditions, the unique outcome is a Condorcet-winner.

In contrast to these previous works, we also consider weaker notions of majoritar-
ianism besides Condorcet-consistency and identify scoring rules that uniquely elect
such ‘majority preferred candidates’whenever they exist – rather than narrowing down
the set of preference profiles in advance by additional sufficient criteria.

Myerson (2002) considers scoring rules in Poisson voting games. He finds that,
in equilibrium, Approval Voting ensures the election of a majority-preferred among
two Pareto-efficient candidates as the size of the electorate goes to infinity. Using
iterative elimination of dominated strategies as solution concept, we confirm the find-
ing for finite electorates. More importantly, we show that Approval Voting can be
characterized by this advantageous preference aggregation property – it is the unique
direct mechanism scoring rule and the most decisive among all finite scoring rules that
satisfies this property.

The paper is organised as follows. Section 2 defines voting games and their solution
by iterative elimination of dominated strategies. Section 3 defines normative criteria
for social choice correspondences. Section 4 characterizes scoring rules with respect
to the social choice correspondences that they implement. Section 5 concludes.

2 Technicalities

2.1 Candidates and voters

Throughout the paper, we consider a set of three candidates (or alternatives) A =
{a, b, c} and a finite set of voters I with generic element i . Each voter’s preferences
are assumed to be given by a strict linear order �i on A. In consequence, there are six
distinct sets of voters, characterized by their preferences, that we denote Ixyz = {i ∈
I |x, y, z ∈ A, x �i y �i z}. A preference profile is denoted as �I = (�i )i∈I .

2.2 Scoring rules

Scoring rules allow each voter i to cast a ballot vi = (va
i , vb

i , vc
i ) from the same set

of admissible ballots Vi = V ⊂ R
3. We assume that ballots are neutral with respect

5 They conjecture that whenever the game is dominance-solvable, the unique outcome is the Condorcet-
winner.
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Characterising scoring rules by their solution… 165

to a relabelling of candidates; formally, for any admissible ballot vi = (k, l, m) ∈ V ,
each permutation of vi is also an admissible ballot. A ballot is called an abstention if
it takes the form vi = (k, k, k).

Using Cartesian products, we define V 0 = ∏
i∈I Vi and V 0−i = ∏

j �=i V j . We refer

to v ∈ V 0 as a ballot profile and denote the associated score of some candidate x as
vx = ∑

i∈I vx
i . For an opposing ballot profile v−i ∈ V 0−i we define vx

−i = ∑
j �=i vx

j .
A candidate wins the election if her score is higher than any other candidate’s score.

To deal with ties, we rely on the report of a tiebreaker, labelled t , who has to choose a
strict linear order � on A, where▷ denotes the set of such orders. Then, for given v

and �, candidate x wins the election whenever she has a weakly higher score than all
other candidates and, in case of a tie, is ranked first according to �. Formally, x wins
if and only if

∀y �= x : (1) vx ≥ vy ; and (2) vx = vy 	⇒ x � y,

so that there is a unique winner for any ballot profile v and tiebreaker report �. Since
voters’ identities affect neither candidates’ scores nor the way in which ties are broken,
the procedure is (voter-)anonymous.

Importantly, the set of possible reports by the indifferent tiebreaker is not narrowed
down by iterative elimination of weakly dominated strategies.6 Moreover, a voter may
rule out a strategy in the process of iterative elimination, only if it leads toweaklyworse
outcomes under every possible tiebreaker report � ∈▷. Hence, our modelling choice
makes voters more cautious in ruling out particular strategies than if we assumed a
fixed deterministic tiebreaker, say a � b � c, a property that may be seen as befitting
the cautious nature in which the iterative elimination of weakly dominated strategies
proceeds in general. In addition, by fixing a particular tiebreaker we would forego
neutrality as candidates would no longer be treated symmetrically.

If instead we would refrain from breaking ties in a deterministic manner, outcomes
would either be set-valued or take the form of a lottery over alternatives. For the
former, one would then have to amend voters preferences so as to include preferences
over sets of (tied) candidates. Here the following Gärdenfors extension (Sanver and
Zwicker 2012) is among the best known:7 given a strict linear order � on A, define
for all nonempty A′, A′′ ⊆ A

A′ �G A′′ : ⇐⇒ A′ �= A′′ and ∀x ∈ A′\A′′, y ∈ A′′ : x � y

and ∀x ∈ A′, y ∈ A′′\A′ : x � y.

6 If one objects to the introduction of an additional player, one could alternatively break ties by amultiplayer
version of “matching pennies”: ask each voter to report a number ti ∈ {0, 1, .., 5}, set t = ∑

ti mod 6 and
let each possible outcome t = {0, 1, ..., 5} correspond to one of the 6 possible linear orders � ∈ ▷. For
our purposes, the two approaches are equivalent, as a voters’ set of possible reports ti would likewise not
be reduced by (iterative) elimination of weakly dominated strategies. However anonymity would then be
satisfied for all players (rather than ‘only’ for voters).
7 It formalizes the “sure-thing principle” of Gärdenfors (1976); see also Gärdenfors (1979).
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166 C. Basteck

In our setting where preferences over candidates are strict, this approach is equivalent
to the one persued by Brams and Fishburn (1978).8 For another equivalent extension
see Ching and Zhou (2002, Lemma 1).9 Importantly, if we would define a strategy to
be weakly dominated whenever it yields the same or a worse (according to �G) set
of candidates against any opposing voter strategy profile, this would be equivalent to
our approach of invoking an indifferent tiebreaker, since one can show that one set of
(tied) candidates is preferred to another according to �G if and only if it yields the
same or a better outcome for any possible tiebreaker �.

Finally, if instead we allowed outcomes to be lotteries over alternatives by spec-
ifying a random tie-breaking procedure and associated voters with von Neumann -
Morgenstern utility functions to evaluate such lotteries, not only would this increase
the amount of preference information required in the analysis, but also create a tech-
nical difficulty: “transference of decisionmaker indifference” (Marx and Swinkels
1997) would not be guaranteed.10 As a result, the solution in iteratively undominated
strategies could depend on the order in which dominated strategies are eliminated, see
Example 4 in the Appendix. By contrast, our approach ensures order independence,
see Sect. 2.5.

Among the most prominent scoring rules are so called positional scoring rules,11

i.e., rules that let voters rank candidates and assign scores based on that ranking –
the highest score to the top-ranked, the lowest score to the last-ranked candidate.
Formally, the set of voters’ admissible ballots V can be taken to be all permutation of
(1, s, 0), where s ∈ [0, 1] is a fixed parameter that characterizes the rule. The most
notable positional scoring rules are the Plurality Rule, corresponding to s = 0, the
Antiplurality Rule (s = 1) and the Borda Rule (s = 1

2 ).
Note that positional scoring rules are direct mechanisms, in that a voter’s prefer-

ences over candidates can be mapped naturally to a particular strategy. To see which
normative properties can be satisfied without having to resort to more complex mech-
anisms, we will analyse these ‘classical’ scoring rules along with other scoring rules
that can be interpreted as direct mechanism, i.e., where the size of voters’ strategy
space is bounded by the number of voters’ types. Formally, a scoring rule as described
above is a direct mechanism scoring rule if, after the removal of abstentions,12 we
have |V | ≤ 6.

Beyond positional scoring rules, direct mechanism scoring rules may allow voters
to either vote for one candidate or split their vote between two – we refer to such
rules as vote-splitting scoring rules. Formally, V then consists of all permutations of
(s, s, 0) and (1 − s, 0, 0), s ∈ [0, 1]. If s = 1

3 , voters have a fixed budget of points
that they may award to a single candidate or split in two. Setting s = 1

2 corresponds to

8 For a strict linear order on A their extension R satisfies A′ R A′′ ⇐⇒ A′ = A′′orA′ �G A′′.
9 They consider A′ preferred over A′′ iff it yields weakly higher expected utility for every subjective
probability measure used to randomly break ties and for every von Neumann - Morgenstern utility function
consistent with preferences. For strict preferences, this holds iff A′ = A′′ or A′ �G A′′.
10 Voter i may be indifferent between b and a tie of a and c, while others’ preferences are strict.
11 In fact, they are frequently referred to simply as scoring rules (Moulin 1991; Lepelley and Merlin 2001;
Baharad and Nitzan 2005, 2007), as scoring methods (Young 1995), or as ‘classical’ scoring rules (Dietrich
2014).
12 Since abstentions are dominated strategies, removing them will not affect our analysis.
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Approval Voting. Note that s = 1 is equivalent to the Antiplurality Rule, while s = 0
corresponds to the Plurality Rule. Hence, both Approval Voting and the Borda Rule
can be thought of as ‘half-way’ between the Plurality and Antiplurality Rule. Our first
result will show that positional and vote-splitting scoring rules are essentially the only
direct mechanism scoring rules.

Finally, we will further broaden the scope of our analysis and consider all finite
scoring rules, i.e., rules for which |V | ∈ N, to see what can and cannot be achieved
by allowing for more complex rules. In a slight abuse of notation, we will at times
identify a scoring rule and the set of admissible ballots and denote both by V .

2.3 Voting games

Together, the set of candidates, voters’ preferences, a scoring rule and a tiebreaker–
assumed to be indifferent between candidates–give rise to a complete information
voting game Γ (�I , V 0) with a set of players I ∪ {t}. In each game Γ (�I , V 0), a
strategy profile (v, �) ∈ V 0 ×▷ determines a unique outcome g(v, �) ∈ A.

We will also consider restricted games Γ (�I , V ′), where each voter’s strategies are
restricted to some set V ′

i ⊆ V and the space of ballot profiles is denoted V ′ = ∏
i∈I V ′

i .
Accordingly, the space of opponents’ ballot profiles is denotedV ′−i = ∏

j �=i V ′
j .Where

all voters i ∈ Ixyz have the same (restricted) strategy set, we denote it V ′
xyz = V ′

i .

2.4 Iteratively undominated strategies

In particular, we will focus on restricted games where weakly dominated strategies
have been removed.

Definition 1 A strategy vi ∈ V ′
i is weakly dominated in Γ (�I , V ′) if there exists

ṽi ∈ V ′
i such that for all v−i ∈ V ′−i , � ∈▷

g(ṽi , v−i , �) �i g(vi , v−i , �) or g(ṽi , v−i , �) = g(vi , v−i , �)

with g(ṽi , v−i , �) �i g(vi , v−i , �) for at least one v−i ∈ V ′−i and � ∈▷.

Strategies � ∈ ▷ are never dominated, as the tiebreaker is assumed to be indif-
ferent between all outcomes g(v, �) ∈ A. Hence, in iteratively removing dominated
strategies, we can focus on voters i ∈ I . First, define the set of undominated strategies
as V 1

i = V \{vi ∈ V |vi is weakly dominated in Γ (�I , V 0)}.
Next, move to the iterative elimination of dominated strategies and define

V m+1
i = V m

i \{vi ∈ V m
i |vi is weakly dominated in Γ (�I , V m)}, for m ∈ N.

Since �i is acyclic, V m+1
i contains at least one strategy, undominated in Γ (�I , V m).

Also, as V is finite, there exists some m, such that no further restrictions are possible;
V m = V m , for all m ≥ m. This leads us to the following solution of a voting game.
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168 C. Basteck

Definition 2 For a voting gameΓ (�I , V 0)we define its solution in iteratively undom-
inated strategies as the set of possible outcomes after iteratively eliminating all weakly
dominated strategies, and denote it as

S(�I , V ) = {x ∈ A|∃v ∈ V m : ∀y ∈ A : vx ≥ vy}.

We say that V implements the social choice correspondence S(·, V ) that maps pref-
erence profiles onto subsets of A.

2.5 Order independence and elimination of redundant strategies

In specifying the solution concept above, we followed Moulin (1979) in that we elim-
inated all weakly dominated strategies when moving from V m to V m+1.13 This raises
the question, whether a different order of elimination, where only some dominated
strategies are removed at each step, might yield a different solution.

Fortunately, Marx and Swinkels (1997) assure us that this is not the case. More
precisely, their Theorem 1 ensures that once we reach a restricted game Γ (�I , V ′)
such that no further strategy can be eliminated based on weak dominance, Γ (�I , V ′)
will be equivalent to Γ (�I , V m) up to the elimination of redundant strategies14 and
the renaming of strategies. In particular, the set of possible outcomes of both games
will be the same.

This is because, in our voting games, the elimination of dominated strategies satis-
fieswhatMarx and Swinkels (1997) call “transference of decisionmaker indifference”:
whenever a voter i , for a given opposing strategy profile, is indifferent between out-
comes g(vi , v−i , �) and g(ṽi , v−i , �), then so is every other player. This is of course
satisfied, as i will only be indifferent if both outcomes coincide.15

Moreover, whether in the process of iterative elimination, we at some point choose
to eliminate one of multiple redundant undominated strategies, will be of no effect;
the game Γ (�I , V ′) that we reach eventually will be equivalent to Γ (�I , V m) up to
the elimination of redundant strategies and the renaming of strategies.

To see this, suppose that in the gameΓ (�I , V m) there are two redundant but undom-
inated strategies vi , ṽi ∈ V m

i , of which we choose to eliminate only ṽi when moving
to the next restricted game. If ṽi could at some step be instrumental in eliminating
another strategy v j based on weak dominance, the remaining strategy vi will suffice
to eliminate v j . If vi was eliminated based on weak dominance before it becomes
instrumental in eliminating v j , ṽi would have been eliminated as well.

13 Farquharson (1969) invokes the same solution, referring to it as “sophisticated voting.”
14 A strategy ṽi is redundant to vi in Γ (�I , W ), W ⊆ V 0, iff, for any opposing strategy profile (v−i , �) ∈
W−i ×▷, they lead to the same outcome g(ṽi , v−i , �) = g(vi , v−i , �) ∈ A (see Definition 5 in Marx
and Swinkels 1997).
15 Indifference of the tiebreaker does not transfer to indifference of other voters. However, this is unprob-
lematic, as transference is only required to hold for players whose strategies are eliminated (see Definition
2 in Marx and Swinkels 1997).
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3 Axioms

We want to compare and characterize scoring rules according to the social choice cor-
respondences that they implement. In particular, we ask for which preference profiles
the induced voting games have a unique solution – and which outcomes are selected
in that case. A minimal and prominent requirement is unanimity.

Definition 3 A scoring rule V is said to satisfy Unanimity (U), if for any preference
profile �I such that I = Ixyz ∪ Ixzy , we have S(�I , V ) = {x}.

Where there is no universal agreement, we have to weigh some voters’ preferences
against others’, to choose between alternatives. In the case of two alternatives, fairness
and efficiency force us to accept simple majority as guiding principle,16 but adapting
this principle to accommodate more alternatives is not immediate.

However, if one of three alternatives is unanimously agreed to be the worst, one
may argue that there are only two relevant alternatives, so that a decision should again
be made by simple majority. We formalize this idea as follows.

Definition 4 Consider any preference profile�I where z is unanimously considered to
be the worst candidate, i.e., I = Ixyz ∪ Iyxz . A scoring rule V is said to beMajoritarian
after Eliminating a Worst Alternative (MEW), if |Ixyz| > |Iyxz | implies S(�I , V ) =
{x}.

Where the choice between two competing candidates, or parties offering alternative
policies, would followmajority rule, our axiom requires that the introduction of a third,
universally disliked alternative should not affect the outcome of the vote. Hence, it
limits parties’ incentives to strategically distort the set of alternatives.

A similar situation arises when one of three alternatives is unanimously agreed to be
worse than some other alternative. For example, one of two candidates with identical
policy positionsmay bemore corrupt than the other, as considered byMyerson (2002).
Again, one might hope that the Pareto-dominated candidate is disregarded and the
decision between the remaining two made by simple majority.

Definition 5 Consider any preference profile�I such z is Pareto-dominated by x , i.e.,
I = Ixyz ∪ Ixzy ∪ Iyxz . A scoring rule V is said to be Majoritarian after Eliminating a
Pareto–Dominated Alternative (MEPD), if |Ixyz |+|Ixzy | > |Iyxz | implies S(�I , V ) =
{x}, while |Ixyz| + |Ixzy | < |Iyxz | implies S(�I , V ) = {y}.

The formal definition reveals whatmight be a controversial property ofMEPD: some
alternative y might be chosen by the social choice correspondence S(·, V ) based on
its majority support over another alternative x , even though it may only be x that,
according to MEPD, forces us to eliminate z, based on Pareto-dominance.

In defence ofMEPD, observe that it unifies both preceding axioms, i.e., implies both
MEW and U. Moreover, it is implied by another, well known requirement, formulated
by Condorcet, according to which an alternative should be chosen whenever it is
majority-preferred over any other alternative.17

16 May (1952) provides an axiomatisation of the Majority Rule. His symmetry axioms can be seen as an
embodiment of fairness, while positive responsiveness may be seen as a requirement of efficiency.
17 Of course, such an alternative may fail to exist if pairwise comparisons yield a cycle, see Condorcet
(1785), p. lxi.
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Fig. 1 Logical relations between
intra-profile axioms

CON MEPD

U

MEW

Definition 6 A scoring rule V is Condorcet-consistent (CON), if S(�I , V ) = {x}
whenever x is a Condorcet-winner for preference profile �I , i.e., whenever

|Ixyz| + |Ixzy | + |Iyxz | > |Iyzx | + |Izxy | + |Izyx | and

|Ixyz | + |Ixzy | + |Izxy | > |Izyx | + |Iyxz | + |Iyzx |.

To see that CON implies MEPD, observe that whenever y is supported by a majority
against x , and x Pareto dominates z, y will also be supported by a majority against z
and should therefore be chosen according to CON.18

Another way of seeing the connection between our three axioms that formalize
the idea of majoritarianism is the following. With three candidates, the existence
of a Condorcet-winner implies the existence of a (weak) Condorcet-loser, i.e., of a
candidate that is not majority-preferred over either of the other two. Hence, we can
equivalently define CON as ensuring the election of the majority preferred Candidate
after the elimination of a Condorcet-loser—rather than the elimination of a Pareto-
dominated candidate as underMEPD or a universally least-preferred candidate as under
MEW.

Figure 1 presents the logical relations between the axioms described so far. Note
that they are all intra-profile axioms, i.e., they all concern the behaviour of a social
choice correspondence within given preference profiles.

Our final axioms concerns its behaviour across profiles. For that, consider an arbi-
trary profile �I = (�i )i∈I . For any x ∈ A, another profile �′

I = (�′
i )i∈I is said to be

an x-monotonic transformation of �I , iff

∀ i ∈ I , y, z �= x : x �i y 	⇒ x �′
i y, x �i z 	⇒ x �′

i z, and

y �i z ⇐⇒ y �′
i z,

i.e., such that x is more popular under �′
I , while the ordering of y and z remains

unchanged. If x is the unique solution under �I , it should remain so under �′
I .

Definition 7 A scoring rule V is said to satisfy Monotonicity (MON), if for any pref-
erence profile �I and an x-monotonic transformation �′

I we have

{x} = S(�I , V ) 	⇒ {x} = S(�′
I , V ).

Alternatively one may require, that if x was included in the solution for �I , it
should remain so for �′

I .

18 If instead x is majority-preferred over y, and Pareto-dominates z, x is all the more easily recognized as
Condorcet-winner and should hence be chosen according to CON.
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Fig. 2 Logical relations between
cross-profile, monotonicity
axioms

sMON

MON

MON*

wMON

Definition 8 A scoring rule V is said to satisfy Monotonicity* (MON*), if for any
preference profile �I and an x-monotonic transformation �′

I we have

x ∈ S(�I , V ) 	⇒ x ∈ S(�′
I , V ).

Note that both notions are logically independent—while MON rests on a stronger
premise, MON* has a weaker implication. Both are implied by the following stronger
notion resembling “positive responsiveness” by which May characterized majority
rule in the two alternative setting (May 1952).19

Definition 9 A scoring rule V is said to satisfy strong Monotonicity (sMON), if for any
preference profile �I and an x-monotonic transformation �′

I we have

x ∈ S(�I , V ) 	⇒ {x} = S(�′
I , V ).

Finally, all of the above imply the following weak notion of monotonicity.

Definition 10 A scoring rule V is said to satisfy weak Monotonicity (wMON), if for
any preference profile �I and an x-monotonic transformation �′

I we have

{x} = S(�I , V ) 	⇒ x ∈ S(�′
I , V ).

Monotonicity properties may be particularly important where candidates are
engaged in electoral competition, i.e., where they can choose a policy platform and
thereby affect their position in voters’ rankings of candidates. A violation of MON or
MON*would create perverse incentives for candidates—a candidate may then increase
her chance of election by adjusting her platform only to hurt some group within the
electorate, moving her down in that groups’ rankings of candidates (while leaving
everyone’s ranking of the other candidates unchanged). For example, under a viola-
tion ofMON, the candidate may be uniquely selected only after the change in platform,
i.e., after she has lost in popularity.

4 Results

We first analyse positional scoring rules alongside all other direct mechanism scoring
ruleswherewe are in particular able to axiomatise theBordaRule andApprovalVoting.
We thenmove on to general finite scoring rules to whichwe are able to generalise some

19 In the two alternative setting,MON andMON* can be shown to be equivalent. May’s “positive respon-
siveness”, resp. sMON, strengthens the axioms, essentially demanding that whenever two alternatives are
reasonable choices in light of a group’s preferences, that ‘tie’ should be broken by even the smallest increase
in popularity of either.
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of our results, in particular our impossibility results. Finally, we extend our analysis
further and discuss selected alternative voting procedures.

4.1 Direct mechanism scoring rules

Our first result maps out the class of such rules by showing that positional and vote-
splitting scoring rules are essentially the only directmechanism scoring rules (cases (1)
and (2)); the only other rules are slight variations of the Plurality (3) and Antiplurality
Rule (4).

Lemma 1 For any direct mechanism scoring rule V one of four cases applies: Up to
elimination of abstensions and a normalization of ballots, the set of admissible ballots
V consists of

all permutations of (1, s, 0), for some fixed s ∈ [0, 1]. (1)

all permutations of (s, s, 0) and (1 − s, 0, 0), for some fixed s ∈ (0, 1). (2)

all permutations of (1, 0, 0) and (s, 0, 0), for some fixed s ∈ (0, 1). (3)

all permutations of (1, 1, 0) and (s, s, 0), for some fixed s ∈ (0, 1). (4)

The intuition behindLemma1 is straightforward. SupposeV contains an admissible
ballot w with three distinct entries. Since V is neutral with respect to a relabelling of
candidates, the corresponding 6 permutations ofw are all included in, and exhaust, V .
Normalizing then yields case (1). If V contains a ballot w with two identical entries,
it also contains all 3 of its permutations. This leaves room for another ballot w′ which
can have only 3 permutations itself, i.e., must contain two identical entries as well.
Normalizing w and w′, as well as their permutations yields one of the cases (2)-(4).
A slightly more formal proof is found in the Appendix.

Having delineated the set of direct mechanisms under consideration, we now turn
to their strategic analysis by iterative elimination of weakly dominated strategies. For
that we will make use of the following useful fact.

Fact 1 In approval voting games, the set of undominated strategies for voter i ∈ Ixyz

consists of all ballots vi ∈ V for which vx
i = 1/2 and vz

i = 0, i.e., where she approves
of her most but not of her least preferred candidate (Brams and Fishburn 1978). In
positional scoring rule voting games, undominated strategies of i ∈ Ixyz are all ballots
vi ∈ V for which vx

i ≥ s ≥ vz
i , i.e., that award a weakly higher score to her most than

to her least preferred candidate (Buenrostro et al. 2013, Proposition 1).

Using Fact 1, we will show that the Borda Rule occupies a particularly prominent
position within the class of direct mechanism scoring rules. For that, we first delineate
its solution in iteratively dominated strategies.

Theorem 1 Consider a Borda Rule voting game Γ (�I , V 0). A candidate x ∈ A is the
unique solution, i.e., S(�I , V ) = {x}, if and only if we can label candidates so that
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one of the following three conditions is satisfied: |selectfont

|Ixyz | > |Ixzy | + |Iyxz | + 2|Iyzx | + 2|Izxy | + 2|Izyx |, (1)

or |Ixyz | > |Ixzy | + |Iyxz | + 2|Iyzx | + 2|Izxy | + 2|Izyx | − 1 and |Izxy | > |Iyxz |, (2)

or |Ixyz | > |Ixzy | + |Iyxz | + 2|Iyzx | + 2|Izxy | + 2|Izyx | − 2 and |Ixzy | > 0. (3)

Otherwise, no candidate can be excluded as a winner, i.e., S(�I , V ) = A.

The proof for the if part is similar in all three cases. We first show that either y
or z can be ruled out as an element of S(�I , V ), as after a few rounds of eliminating
dominated strategies we have vx > vy or vx > vz . Then, the choice comes down to x
and one other remaining candidate, and x wins, as it is majority supported. We present
the proof for case (1) here, and relegate cases (2) and (3) to the Appendix.

Assume (1) holds. After eliminating dominated strategies, Fact 1 implies

min
v∈V 1

vx − vz = 1/2|Ixyz | − 1/2|Ixzy | − 1/2|Iyxz | − |Iyzx | − |Izxy | − |Izyx | > 0,

so that z is ruled out as an outcome. Then, in the game Γ (�I , V 1), for any voter i who
prefers x over y, vi = (vx

i , v
y
i , vz

i ) = (1, 0, 1
2 ) is a dominant strategy as it maximizes

the impact that i has on vx −vy . Eliminating all other strategies of i (be they dominated
by or redundant to vi ), we find that x is the unique outcome for all remaining strategy
profiles v, as by condition (1)

vx ≥ |Ixyz | + |Ixzy | + |Izxy | > |Iyxz | + |Iyzx | + |Izyx | ≥ vy .

This proves the if part for case (1); see Appendix for cases (2) and (3).
For an intuition behind the only if part, observe that using undominated strategies,

a voter i ∈ Ixyz will always award a higher score to x than to z, a voter in Izyx a higher
score to z than to x , while other voters may award a higher score to either. Hence,
unless Ixyz or Izyx are too large relative to the other groups, we can construct a profile
where x and z have the same score. Further, if (1)–(3) are violated under every labelling
of candidates, so that no group is particularly large relative to the other groups, we
are able to construct profiles of undominated strategies for which not only two but all
three candidates are tied and thus any outcome is possible. Moreover, the fact that at
such a profile a voter’s most preferred candidate is a possible outcome often ensures
that her current strategy survives further elimination of dominated strategies.20 As the
construction of such strategy profiles requires a large number of case distinctions, the
proof is relegated to the appendix.

In terms of our axioms, Theorem 1 has an immediate corollary.

Corollary 1 The Borda Rule satisfies both U and MEW.

Proof Assume that a is unanimously preferred, i.e., I = Iabc ∪ Iacb. Without loss of
generality, we can assume |Iabc| ≥ |Iacb|. If |Iabc| > |Iacb|, a is the unique solution by
Theorem 1, condition (1). If |Iabc| = |Iacb|, then |Iacb| > 0 and condition (3) holds.

20 See Claim 1 in the Proof of Theorem 1.
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Assume on the other hand that c is unanimously considered the worst alternative,
i.e., I = Iabc ∪ Ibac, and that a is majority preferred over b, i.e., |Iabc| > |Ibac|. Then
a is the unique solution by Theorem 1, condition (1). ��

Corollary 1 overlaps with results in Buenrostro et al. (2013) who provide sufficient
conditions for scoring rule voting games to be dominance solvable, i.e., have a unique
solution in iteratively undominated strategies. The corollary extends beyond their
Theorems 1 and 2, in that it includes the case I = Iabc ∪ Iacb, |Iabc| = |Iacb|, i.e.,
implies that a unanimously preferred candidate a is the unique solution even if the
electorate is split in half. What might be more remarkable though, is the exceptional
role among positional scoring rules that Corollary 1 grants to the Borda Rule:

Theorem 2 The Borda Rule is the unique positional scoring rule that satisfies U and
MEW. In particular, positional scoring rules with s < 1

2 violate U, while positional
scoring rules with s > 1

2 violate MEW.

The proof can be found in theAppendix. For an intuition behind Theorem 2, assume
that s < 1/2 and that alternative a is unanimously preferred. If the electorate is split
in half between the groups Iabc and Iacb and every voter supports their second best
alternative by awarding it a score of one, a receives an average score of at most s < 1/2

while b and c will be tiedwith an average score of 1/2. For a large electorate, an individ-
ual who deviates and supports a would then hand the election to their least preferred
candidate. Hence, for each voter, supporting their second best alternative is the best
response and survives the iterative elimination ofweakly dominated strategies—which
establishes both b and c as element of the solution S(�I , V ).

Similarly, assume that s > 1/2 and everyone agrees that c is the worst alternative.
If the groups Iabc and Ibac are almost of same size, it is possible that a and b receive
almost the same score so that a single voter is pivotal. In such a situation, awarding a
score of s to the least preferred alternative c—and a score of zero to the second best
alternative—may be the best response, as it tips the election in favour of the most
preferred alternative. Yet, if awarding a score of s to c is not dominated and hence
cannot be ruled out, c may win with an average score of s > 1/2 while a and b have
an average score of about 1/2.

In light of Theorem 2, it is natural to ask whether there exist other direct mechanism
scoring rules, beyond the Borda Rule, that simultaneously satisfy U and MEW. The
most prominent direct mechanism scoring rule not covered by Theorem 2 is Approval
Voting, for which Courtin and Núñez (2017) provide necessary-and-sufficient condi-
tions for the associated voting games to be dominance solvable, i.e., to have a unique
solution in iteratively undominated strategies:21

Fact 2 Let Γ (�I , V 0) be an Approval voting game and let S(�I , AV ) denote its
solution. It is unique, i.e., S(�I , AV ) = {x}, x ∈ A, if and only if we can label

21 For the sake of completeness and since our the formal treatment of ties is different from Courtin and
Núñez (2017), we reproduce their result in the appendix.
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candidates so that both of the following two conditions are satisfied:

|Ixyz | > |Iyzx | + |Izxy | + |Izyx | or |Iyxz | > |Ixzy | + |Izxy | + |Izyx | (1)

and |Ixyz | + |Ixzy | + |Izxy | > |Izyx | + |Iyxz | + |Iyzx |. (2)

The first condition rules out some z as an outcome, as either x or y have a strictly higher
score in undominated strategies; the second demands that x is majority-preferred over
y. If only (1) is satisfied while the electorate is split, one half preferring x over y, the
other y over x , then S(�I , AV ) = {x, y}. If (1) is not satisfied under any labelling of
candidates, then S(�I , AV ) = A.

Fact 2 reveals that Approval Voting satisfied wMON—if initially z could be ruled
out based on the condition (1) and x was majority preferred over y, so that x was the
unique solution, then either the same holds after x gains in popularity, or no candidate
is ruled out based on (1), so that any candidate, including x , may win.

Moreover, AV satisfies not only U and MEW but even the stronger, unifying axiom
of being majoritarian after eliminating a Pareto-dominated candidate. As we will see,
it is the only direct mechanism scoring rule that satisfies it.

Theorem 3 Approval Voting is the unique direct mechanism scoring rule that satisfies
MEPD. In particular, vote-splitting scoring rules with s < 1

2 and scoring rules where
V consists of all permutations of (1, 0, 0) and (s, 0, 0), s ∈ (0, 1), violate U, while
vote-splitting scoring rules with s > 1

2 and scoring rules where V consists of all
permutations of (1, 1, 0) and (s, s, 0), s ∈ (0, 1), violate MEW.

The fact that the Borda Rule, while satisfying U and MEW, fails to satisfy MEPD,
follows from Theorem 1. For example, consider a preference profile �I where I =
Iabc ∪ Iacb ∪ Ibac and |Iabc| = |Iacb| = |Ibac| = n ≥ 2. Then MEPD requires a to be
the unique solution, while by Theorem 1 we have S(�I , V ) = A. All other positional
scoring rules violate either U or MEW and hence also MEPD, see Theorem 2.

To see that Approval Voting satisfies MEPD, consider a preference profile where a
Pareto-dominates c, i.e., where I = Iabc ∪ Iacb ∪ Ibac. After eliminating dominated
strategies, each voter awards a weakly higher score to a than to c (Fact 1), so that for
any v ∈ V 1, we have va ≥ vc.

Moreover, if there exists a voter i ∈ Iabc, she votes either (1/2, 1/2, 0) or (1/2, 0, 0),
ensuring that va > vc and ruling out outcome c after one round of elimination. In
the next step, each voter awards a score of 1/2 to her preferred among the remaining
candidates a and b, and a score of zero to the other. Hence the majority-preferred
candidate wins after two rounds of elimination of dominated strategies.

If on the other hand |Iabc| = 0, so that I = Iacb ∪ Ibac, we have to consider two
cases. First consider |Iacb| > |Ibac|, i.e., a is majority-preferred over b. Then, for any
v ∈ V 1, we have va ≥ |Iacb|

2 >
|Ibac|
2 = vb so that b is ruled out as an outcome. In

the next step, no voter approves of c, so that a is the only outcome after two rounds
of elimination.

Finally, if I = Iacb ∪ Ibac and |Ibac| > |Iacb|, we know that for any v ∈ V 1,
vb = |Ibac|

2 >
|Iacb|
2 ≥ vc, so that c is ruled out as an outcome. In the next step, no

voter i ∈ Ibac approves of a, so that the majority-preferred candidate b wins.
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It remains to show that no other vote-splitting scoring rule, and no directmechanism
scoring rules of type (3) or (4) in Lemma 1, satisfies MEPD. For that, the reader is
referred to the Appendix.

We are now left with only two direct mechanism scoring rules that satisfy U and
MEW, namely the Borda Rule and Approval Voting where only the latter satisfies the
even stronger axiomMEPD.With respect to ourmonotonicity axioms, Approval Voting
satisfies wMON but fails both stronger notions of monotonicity,MON andMON*, as can
be seen in the following example.

Example 1 Consider a preference profile �I where I = Iabc ∪ Ibac ∪ Icab and

|Iabc| = 2, |Ibac| = 4, |Icab| = 3.

After eliminating dominated strategies, it is clear that b will have a score of at least
|Ibac|
2 = 2, while the score of c is equal to |Icab|

2 < 2 (see Fact 1). This reduces
the game further, to an election between a and b, which a wins with a score of
va = |Iabc|+|Icab|

2 = 5
2 > 2 = |Ibac|

2 = vb. Hence we have S(�′
I , V ) = {a} as the

unique solution in iteratively undominated strategies.
But if a increases in popularity, so that we now have �′

I with I = I ′
abc ∪ I ′

bac ∪ I ′
cab

and |I ′
abc| = |I ′

bac| = |I ′
cab| = 3, a three-way tie at a score of 3

2 is possible if each
voter approves of their most-preferred candidate only. As this makes the election of
any voter’s most-preferred candidate a possible outcome and since also approving
of the second-most-preferred candidate rules out that possibility for any tiebreaker,
approving of the most-preferred candidate only is an undominated strategy for each
voter. Hence, we have S(�′

I , V ) = A.
Since the Condorcet-winner a is no longer the only possible outcome after increas-

ing in popularity, we see that Approval Voting violates CON andMON. Moreover, note
that as we move in the other direction, from �′

I to �I , it is b that is increasing in
popularity and that is no longer included as a possible outcome under �I . Hence,
Approval Voting also violates MON*.

Example 1 not only presents a novel paradox for Approval Voting but yields two
impossibility results.

Corollary 2 No social choice correspondence that satisfies both MEPD and either MON

or MON* can be implemented by a direct mechanism scoring rule.

Corollary 3 No social choice correspondence that satisfies CON can be implemented
by a direct mechanism scoring rule.

Both impossibility results are immediate implications of Theorem 3 and Example1.
Example 1 documents a violation of MON and MON* but also of CON by Approval
Voting, while Theorem 3 establishes that all other direct mechanism scoring rules
violateMEPD and hence alsoCON. Note that even for positional scoring rules, Corollary
3 is not implied by the well known fact that these classical rules violate Condorcet-
consistency under sincere voting.

In contrast to Approval Voting, the Borda Rule satisfies at least one of our stronger
notions of monotonicity—and is in fact partially characterized by it:
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Theorem 4 The Borda Rule is the unique direct mechanism scoring rule that satisfies
U, MEW and MON.

Proof In light of Theorems 2 and 3 as well as Example 1, it remains to show that
the Borda Rule satisfies MON. For that, assume some candidate, say a, is the unique
solution in Γ (�I , V 0). Then we know from Theorem 1 that, up to relabelling of
candidates b and c, at least one of three conditions is satisfied:

|Iabc| > |Iacb| + |Ibac| + 2|Ibca | + 2|Icab| + 2|Icba |, (1)

or |Iabc| > |Iacb| + |Ibac| + 2|Ibca | + 2|Icab| + 2|Icba | − 1 and |Icab| > |Ibac|, (2)

or |Iabc| > |Iacb| + |Ibac| + 2|Ibca | + 2|Icab| + 2|Icba | − 2 and |Iacb| > 0. (3)

As we move to an a-monotonic transformation of �I , this

• weakly increase |Iabc|,
• weakly decrease |Iacb| + |Ibac| + 2|Ibca | + 2|Icab| + 2|Icba |,
• and weakly relaxes the inequality |Iacb| > 0.

Hence, if initially conditions (1) or condition (3) were satisfied, they continue to
hold, so that a is still the unique solution. If initially only condition (2) was satisfied,
the inequality |Icab| > |Ibac| could cease to hold when moving to an a-monotonic
transformation of �I as |Ibac| increase (some i moves from Ibca to Ibac), or as |Icab|
shrinks (some i moves from Icab to Iacb). But then in both cases (1) is satisfied, as
|Iacb| + |Ibac| + 2|Ibca | + 2|Icab| + 2|Icba | decreases. Hence, a remains the unique
solution so that MON is satisfied. ��

That the Borda Rule, in contrast to Approval Voting, satisfies at least one notion
of monotonicity, MON, raises the question of whether it also satisfies the other, MON*.
Unfortunately, the following example shows that it does not.

Example 2 Consider a preference profile�I where I = Iabc ∪ Iacb ∪ Ibac and |Iabc| =
|Iacb| = |Ibac| = 2. Then for any labelling of candidates we have

|Ixyz | ≤ |Ixzy | + |Iyxz | + |Iyzx | + |Izxy | + |Izyx | − 2

≤ |Ixzy | + |Iyxz | + 2|Iyzx | + 2|Izxy | + 2|Izyx | − 2

so that by Theorem 1 we have S(�I , V ) = A.22 But if b increases in popularity, so
that we now have �′

I with |I ′
abc| = 3, |I ′

acb| = 1 and |I ′
bac| = 2, then condition (3) of

Theorem 1 is satisfied (for x = a, y = b and z = c) and S(�′
I , V ) = {a}. Hence b is

no longer included after increasing in popularity, a violation of MON*.

Example 2 yields an impossibility result for direct mechanism scoring rules.

Corollary 4 No social choice correspondence that satisfies U, MEW, and MON* can be
implemented by a direct mechanism scoring rule.

This follows from the fact that U andMEW narrow the set of rules down to the Borda
Rule and Approval Voting, neither of which satisfies MON*.

22 See case 3.1 in the Proof of Theorem 1 to see explicitly how the process of iterative elimination of
strategies comes to a halt before any alternative can be excluded.
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4.2 Finite scoring rules

Let us now consider finite scoring rules, i.e., scoring rules where the number of admis-
sible ballots can be any natural number, |V | ∈ N. Two well known examples are
Evaluative Voting, where every voter i assigns an individual score vx

i ∈ {0, 1, . . . , m}
to each candidate x , and Cumulative Voting, differing from Evaluative Voting in that
there is a total budget of m points that may, or must, be distributed among candidates.
To avoid trivial cases, we assume that V contains at least one non-abstention ballot
and assume without loss of generality that ballots are normalized such that (i) on every
ballot, the lowest score awarded to some candidate is zero,23 and (ii) the highest score
awarded to some candidate on some ballot is one.24

Hence, under this normalization, every finite scoring rule allows to cast ballots
w ∈ V that are, up to permutations, of the form (kw, lw, 0) with 1 ≥ kw ≥ lw ≥
0 and where kw = 1 for at least one w ∈ V . Approval Voting corresponds to a
set of admissible ballots V that consists of (1, 0, 0) and (1, 1, 0) as well as their
permutations.25 Intuitively, by casting ballot (1, 0, 0), a voter provides the strongest
support to one candidate (against the two others) that is conceivable under any finite
scoring rule, while by casting ballot (1, 1, 0) a voter raises the strongest possible
opposition against one candidate. We refer to a finite scoring rule where V includes
both these ‘extreme’ ballots as an Extended Approval Voting Rule.

Definition 11 A finite scoring rule V is said to be an Extended Approval Voting Rule
(EAV-rule), if {(1, 0, 0), (1, 1, 0)} ⊂ V .

A prime example of anExtendedApprovalVotingRule is EvaluativeVoting; Cumu-
lative Voting on the other hand does not fall within this class, as it allows a voter to
assign the highest possible score to one candidate only when all other candidates
receive a score of zero. As we will see, EAV-rules will share a number of interesting
properties by virtue of all sharing the extremal ballots of Approval Voting.26 For one,
they all engender sincere voting:

Lemma 2 Let V be an EAV-rule and consider the induced voting game Γ (�I , V 0).
Then for any voter i , any undominated strategy vi ∈ V 1

i is either a sincere strategy
(i.e., assigns weakly higher scores to more preferred candidates) or redundant to a
sincere strategy in Γ (�I , V 0).

Proof Without loss of generality, let us assume that i’s preferences are a �i b �i c.
For vi ∈ V such that va

i < vb
i , we claim that vi is dominated by, or redundant

23 Otherwise, for each vi ∈ V , take u = minx∈Avx
i and replace vi by v′

i = (va
i − u, vb

i − u, vc
i − u).

24 Otherwise, set u = maxx∈A,vi ∈V vx
i and replace each vi by v′

i = (
va

i
u ,

vb
i
u ,

vc
i

u ).
25 This differs from the normalization in Sect. 4.1 where Approval Voting allowed for ballots (1/2, 0, 0)
and (1/2, 1/2, 0).
26 Núñez and Laslier (2014) compare the sets of equilibria of different voting rules with common extremal
ballots (in large electorate Poisson voting games) defining extremal ballots as those non-abstention ballots
that cannot be derived as a strict convex combination of other admissible ballots. On can show that, by this
definition, all EAV rules that allow for abstention have the same extremal ballots—namely (1,0,0), (1,1,0)
as well as permutations thereof—and are hence strategically equivalent in the setting of Núñez and Laslier
(2014) (see their Theorem 1).
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to, ṽi = (1, 1, 0). To see this, note that for any v−i and ṽ = (ṽi , v−i ) we have
ṽa − ṽb > va − vb and ṽb − ṽc ≥ vb − vc. Hence, if under v we had a as a possible
winner (possibly tied and depending on �), then under ṽ it is the unique winner. If b
was the unique winner under v, ṽ still rules out c but may yield a as possible outcome;
if under v we had a tie of b and c and we have a different outcome under ṽ, then
either c is ruled out, or a becomes a possible outcome (or both); if c was the unique
winner, ṽ can only yield a weakly better outcome – in all cases, and for any �, ṽ yields
a weakly better outcome for voter i . Hence, vi is either weakly dominated by ṽi , or, if
it yields the same outcome against any v−i and �, is redundant to it. In the same way,
one shows that any vi with vb

i < vc
i is dominated by, or redundant to, ṽi = (1, 0, 0). ��

Using Lemma 2, it is straightforward to show that all EAV-rules satisfy MEPD. In
fact the converse holds as well—the axiom characterizes the set of EAV-rules:

Theorem 5 A finite scoring rule satisfies MEPD if and only if it is an EAV-rule.

The if part rests onLemma2.Without loss of generality, assumeV 1 contains sincere
strategies only (otherwise, eliminate all redundant insincere strategies and arrive at
Ṽ 1 for which this is the case). Then in undominated strategies, every voter awards
a weakly lower score to a Pareto-dominated candidate, say c, than to the candidate
dominating it, say a. Moreover, if there exists a voter i ∈ Iabc, she awards a strictly
higher score to a than to c, ruling out the election of c. Hence, in the next step, each
voter awards a score of 1 to her preferred candidate among a and b, and a score of
zero to the other, so that the majority-preferred candidate wins.

If there is no voter i ∈ Iabc then I = Iacb ∪ Ibac. A voter i ∈ Iacb in Γ (�I , V 1)

awards a weakly higher score to a than to c. Among those strategies that award the
same score to a and c, vi = (1, 0, 1) dominates (or is redundant to) any other, as it
maximizes the score difference between a, c and the least preferred candidate b. If
instead i ∈ Iacb awards a strictly higher score to a than to c, this rules of the election
of c—so that among these strategies, vi = (1, 0, 0) dominates (or is redundant to) any
other. Hence, after removing dominated (and possibly redundant) strategies from V 1

i ,
all i ∈ Iacb award a score of 1 to a and a score of 0 to b. Now, if |Iacb| > |Ibac|, this
implies va − vb ≥ |Iacb| − |Ibac| > 0 which rules out b as an outcome. In the next
step, each voter assigns a score of 1 to a and a score of 0 to c so that a is the unique
winner.

Finally, if instead I = Iacb ∪ Ibac and |Iacb| < |Ibac|, consider a voter i ∈ Ibac.
Among those strategies that assign the same score to a and c, namely zero, vi =
(0, 1, 0) is dominant and if all i ∈ Iabc follow that strategy then b is elected uniquely.
If instead at least one voter i ∈ Ibac assigns a positive score to a, then this again rules
out the election of c. Hence, c may never be elected in Γ (�I , V 1), so that all i ∈ Ibac

will, after eliminating dominated (and possibly redundant) strategies from V 1
i choose

vi = (0, 1, 0)—which elects b.
For the only if part, we have to show that any non-EAV-rule V fails MEPD. Recall

that by our normalization, each admissible ballot assigns a score of zero to some
candidate and some ballot assigns a score of one to some candidate. Define

s = min{s |(1, s, 0) ∈ V )} and s̄ = max{s |(1, s, 0) ∈ V )}.
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Since V is not an EAV-rule, s > 0 or s̄ < 1. We first consider s + s̄ < 1 with
s and s̄ rational. We will show that for some preference profile I = Iabc ∪ Ibca

with |Iabc| < |Ibca| the iterative elimination of dominated strategies cannot narrow
down the set of strategies beyond V ′′

abc = {(s̄, 1, 0), (1, 0, s), (1, s, 0)} and V ′′
bca =

{(0, s̄, 1), (0, 1, s̄), (s, 1, 0)} so that in particular the Pareto-dominated candidate c
may win the election.

For that, consider |Iabc| = n1 + n2 + n3 and |Ibca| = m + n1 + n2 + n3 for some
m, n1, n2, n3 ∈ N and 0 < m ≤ n2 + n3. Construct v as follows.

• m of Iabc choose vi = (1, 0, s)
• n1 of Iabc choose vi = (s̄, 1, 0)
• n2 + n3 − m of Iabc choose vi = (1, s, 0)
• m of Ibca choose vi = (s, 1, 0)
• n1 of Ibca choose vi = (0, 1, s̄)
• n2 + n3 of Ibca choose (0, s̄, 1)

Then va = vc = m · s + n1 · s̄ + n2 + n3, vb = m(1 − s) + 2n1 + (n2 + n3)(s + s̄)
and hence

va,c − vb = −m (1 − 2s)
︸ ︷︷ ︸

>0

−n1 (2 − s̄)
︸ ︷︷ ︸

>0

+(n2 + n3) (1 − s − s̄)
︸ ︷︷ ︸

>0

.

Since s, s̄ ∈ Q, we can find m, n1, n2, n3 > M , for any given M , such that−m(1−
2s) + n2(1 − s − s̄) = 0 and −n1(2 − s̄) + n3(1 − s − s̄) = 0. Moreover, n3 can
be chosen large enough (together with n1) such that n2 + n3 > m. Denote the set of
tuples (m, n1, n2, n3) ∈ N

4 such that these conditions are satisfied as P M .
At any v with (m, n1, n2, n3) ∈ P M , all three candidates are tied. Hence a would

be elected for a � b, c while a switch away from vi = (1, s, 0) ∈ V ′′
abc to some other

strategy precludes the election of a. Thus, vi = (1, s, 0) ∈ V ′′
abc is undominated

in any game Γ (�I , V ′), V ′′ ⊆ V ′ ⊆ V 1. In the same way, (1, 0, s) ∈ V ′′
abc and

(s, 1, 0) ∈ V ′′
bca are seen to be undominated in any such game Γ (�I , V ′). Moreover,

(0, 1, s̄) ∈ V ′′
bca is undominated as a deviation that reduced the score difference of a

and b would again rule out the election of the most-preferred candidate, while a switch
to some other strategy (0, 1, s), s < s̄, would change the outcome from c to a given
c � a � b.

To see how (s̄, 1, 0) ∈ V ′′
abc may likewise be undominated as long as the strategies

used in the construction of v are present, construct ṽ from v by letting k of Iabc switch
from (1, s, 0) to (s̄, 1, 0) and l of Ibca from (0, 1, s̄) to (0, s̄, 1). Then ṽb − ṽc =
k(1− s)− l2(1− s̄). With s and s̄ rational, we can find k and l such that ṽb − ṽc = 0.
Moreover, choosing k and l large enough, we have ṽc − ṽa > 2 and setting M > k, l
ensure that for v ∈ P M , the construction of ṽ is well defined. Then a voter i ∈ Iabc

who at ṽ uses strategy vi = (s̄, 1, 0) would preclude the election of b, and make c the
unique winner if they deviated to any other strategy.

To see how (0, s̄, 1) ∈ V ′′
bca may likewise be undominated, construct v̂ from v by

letting k′ of Iabc shift from (s̄, 1, 0) to (1, s, 0) and k′ of Ibca shift from (0, 1, s̄) to
(0, s̄, 1). Then a and c are still tied and v̂c − v̂b = k′(3− s −2s̄). With k′ large enough
v̂c − v̂b > 2 and setting M > k′ ensure that for v ∈ P M , the construction of ṽ is well
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defined. Then a voter i ∈ Ibca who at v̂ uses strategy vi = (0, s̄, 1) would preclude
the election of c, and make a the unique winner, if they deviated to any other strategy.

Hence, for a preference profile I = Iabc ∪ Ibca with |Iabc| = n1 + n2 + n3,
|Ibca| = m + n1 + n2 + n3 such that (m, n1, n2, n3) ∈ P M , M > k, l, k′, no strategy
used in the construction of v can be eliminated while the others are present. Thus
they jointly survive the process of iterative elimination and c is never eliminated as an
outcome, violating MEPD. For the remaining cases s + s̄ > 1 and s + s̄ = 1 see the
Appendix. There we also generalize the above argument and allow s, s to be irrational,
which forces us to consider near-ties and necessitates further case distinctions.

A natural next question, in light of Theorem 5 and the violations of monotonicity
and CON by Approval Voting documented in Example 1, is whether any EAV-rule is
monotonic or satisfies not only MEPD but even CON. The following example provides
a negative answer.

Example 3 Consider an EAV-rule V and a preference profile �I where, I = Iabc ∪
Ibac ∪ Ibca ∪ Icba and |Iabc| = m +1, |Ibac| = 1, |Ibca | = m and |Icba | = 1. Then b is
the Condorcet winner, majority-preferred over a (m +2 > m +1) and c (2m +2 > 1).
Nonetheless, it is not the unique solution—in fact, all candidates may be tied as voters
use iteratively undominated strategies. To see that, assume voters in Iabc approve only
of a (i.e., assign a score of 1 to a and of zero to b and c), the voter in Ibac approves
only of b, voters in Ibca approve of both b and c (i.e., assign a score of 1 to each)
while the voter in Icba approves only of c. Then all candidates have a score of m + 1.
For those voters approving only of their most preferred candidate, any other strategy
would rule out its election; voters in Ibca would make a the unique winner if they
assigned a lower score to both b and c and they would change the three-way-tie to a
tie of b and a if they assigned a lower score to c—in all cases such a deviation could
be harmful for some tiebreaker �. Hence, none of the strategies are dominated so that
the set of possible winners cannot be narrowed down to eliminate a or c.27

Now, suppose a gains in popularity so that we now have a preference profile �′
I

where I = I ′
abc ∪ I ′

bac ∪ I ′
cba and |I ′

abc| = m +1, |I ′
bac| = m +1, and |I ′

cba | = 1. Since
by Lemma 2 voting is sincere under any EAV, each voter awards a positive score (at
least some ε, depending on V ) to her most-preferred alternative and a score of zero
to her least preferred. Then c receives a score of at most 1 while for m large enough
a and b receive a larger score. This rules out c and hence, in the next step, makes it
dominant for all i ∈ I ′

abc ∪ I ′
bac to only approve of their most preferred candidate and

for i ∈ I ′
cba to also approve of b. Hence, for m large enough, the Condorcet winner b

is the unique winner with a score of m + 2 against a with a score of m + 1.

The example yields two impossibility results regarding implementation in itera-
tively undominated strategies.

Corollary 5 No social choice correspondence that satisfies both MEPD and MON* can
be implemented by a finite mechanism scoring rule.

Corollary 6 No social choice correspondence that satisfies CON can be implemented
by a finite mechanism scoring rule.

27 Besides winning in a three-way tie, a may also beat the Condorcet winner outright at other profiles that
survive under iterative elimination.
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Both are immediate implications of Theorem 5 and Example 3. The example shows
that any EAV-rule will violate MON* and CON, while Theorem 5 establishes that all
other finite scoring rules violate MEPD and hence also CON.

Both impossibility results partially mirror, or in fact imply, our impossibility results
for direct mechanism scoring rules, Corollaries 2 and 3. Whether not only MEPD and
MON* but alsoMEPD andMON are incompatible for all finite rules remains, is a question
for which we only have a partial answer: (i) non-EAV-rules violateMEPD (Theorem 5)
while for (ii) EAV-ruleswhere V consists of ballots of the form (1, s, 0)with s ∈ [0, 1],
the same two preference profiles used in Example 1 give rise to a violation ofMON. In
particular, this showsMEPD andMON to be incompatible in the class of ‘simple scoring
rules’ covered by Goertz and Maniquet (2011) or in the larger class of ‘(A,B)-scoring
rules’ covered in Myerson (2002). However, it is an open question whether the same
impossibility persist for all EAV-rules, in particular when V may include admissible
ballots (p, q, 0) awarding in total scores of less than 1, i.e., p + q < 1.

While we cannot rule out for now that enlarging the set of admissible ballots beyond
those of Approval Voting may allow us to satisfyMON, the following result shows that,
even if possible, this may only be achieved by increasing outcomemultiplicity, thereby
reducing the number of preference profiles at whichMON has any bite.28 To be precise,
consider the following definition.

Definition 12 Given two scoring rules V and V ′, we say that V is more decisive than
V ′ if for any preference profile �I we have S(�I , V ) ⊆ S(�I , V ′).

A voting procedure is used precisely to narrow down the set of possible alterna-
tives; hence arguably, it should narrow down the set as far as possible, subject to,
e.g., anonymity, neutrality or other normative criteria which ensure that particularly
desirable alternatives are included in the solution.29 In this respect Approval Voting
goes farthest among all finite scoring rules satisfying MEPD—it is more decisive than
any other.

Put differently, it narrows down the set of possible outcomes to those that are
included under every such rule. If one insists on MEPD, and thus selects an EAV-rule,
Approval Voting is the most innocuous choice—it never yields an outcome that would
not also have been a possible outcome under any other such rule.

Theorem 6 Among all finite scoring rules satisfyingMEPD, Approval Voting is the most
decisive: for any profile �I and any EAV-rule V , we have S(�I , AV ) ⊆ S(�I , V ).

Proof Consider any preference profile �I and any EAV-rule V . For any z ∈ A, let
M(z) denote the number of voters for whom z is the most, and SM(z) the number of
those for whom it is the second-most preferred candidate. Recall conditions (1) and
(2) of Fact 2, Sect. 4.1, describing S(�I , AV ). Moreover, recall that we can restrict
attention to sincere strategies in determining S(�I , V ) (Lemma 2).

28 For example, a rule that yields S(·, V ) = A at every preference profile would trivially satisfyMON, but
hardly make for an appealing voting procedure.
29 Gärdenfors (1976), even as he extends the analysis of Gibbard (1973) and Satterthwaite (1975) to non-
resolute social choice correspondences, warns that those correspondences that are insufficiently decisive
may be of little practical interest.
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Case (i): Condition (1) is violated, i.e., there are no x, y ∈ A such that M(x) >

M(y) + SM(y). Then S(�I , AV ) = A. To see that S(�I , V ) = A, let M(x) ≥
M(y), M(z) and consider a ballot profile where scores of either 1 or 0 are assigned as
follows: (i) x is approved of by all M(x) voters in Ixyz ∪ Ixzy , (ii) y is approved of by
all M(y) voters in Iyxz ∪ Iyzx and by M(x)− M(y) ≤ SM(y) voters in Ixyz ∪ Izyx , and
(iii) z is approved of by all M(z) voters in Izxy ∪ Izyx and by M(x) − M(z) ≤ SM(z)
voters in Ixzy ∪ Iyzx . This yields a three-way tie with vx = vy = vz = M(x). For
voters approving of their most-preferred candidate only, any deviation would rule out
its election, so would be worse for some tiebreaker �. For voters approving of their two
most-preferred candidates, any deviation would rule out the election of one of them
while preserving the least preferred as possible outcome—a worse reply for some �.
Hence the ballot profile just constructed survives under iterative elimination.

Case (ii): Condition (1), but not (2), is satisfied, i.e., we can label candidates such
that M(x) > M(z) + SM(z) but no majority prefers x or y over the other. Then
S(�I , AV ) = {x, y}. To see that {x, y} ⊆ S(�I , V ), consider ballots that assign a
score of 1 to a voter’s preferred candidate among x and y and a score of 0 to the other.
For any V n

i , denote the subset of such ballots as V̂ n
i . Since V is an EAV-rule, V̂ 1

i is

non-empty. For the induction step, take Γ (�I , V n); at any ballot profile v ∈ V̂ n , we
have vx = vy ≥ M(x) > M(z) + SM(z) ≥ vz . Thus, deviating and assigning a
lower score to the preferred candidate among x and y, or a higher score to the other,
would be a worse reply for each voter. Hence, no strategy outside of V̂ n

i dominates any

strategy within. But then some strategy within V̂ n
i survives elimination of dominated

strategies and is included in V n+1
i . We thus find, by induction, that a tie of x and y

survives under iterative elimination of dominated strategies.
Case (iii)(a): Condition (1) and (2) are satisfied, in that we can label candidates so

that M(x) > M(z)+ SM(z) and a majority prefers x over y. Then S(�I , AV ) = {x}.
Wewant to show that x ∈ S(�I , V ), i.e., survives as a possible outcome inΓ (�I , V m̄).

Suppose vi = (vx
i , v

y
i , vz

i ) = (1, 0, 0) survives and is included in V k
xyz for all

k ≤ m̄. Then at any profile v ∈ V k where all i ∈ Ixyz choose vi = (1, 0, 0), we have
vx > vz (since M(x) > M(z)+SM(z) is equivalent to |Ixyz | > |Izxy |+|Izyx |+|Iyzx |
and since by Lemma 2we can assumew.l.o.g. that voters in Ixzy ∪ Iyxz award a weakly
higher score to x than to z). For k = 1, assuming that all i ∈ Ixyz choose vi = (1, 0, 0)
and rule out z, any voter j ∈ Ixzy finds v j = (1, 0, 0) to be a best reply, given that it
maximizes their impact on vx − vy . Likewise, any voter j ∈ Izxy finds v′

j = (1, 0, 1)
to be a best reply. If all choose j ∈ Ixzy ∪ Izxy choose v j , resp. v′

j , then vx > vy given
that x is majority preferred over y. Hence, x wins the election.

Moreover, any strategy dominating v j or v′
j (possibly at some Γ (�I , V k) with

k > 1) has likewise to be a best reply against any profile v ∈ V k ⊂ V 1 where
vi = (1, 0, 0) for all i ∈ Ixyz , so lead to the same outcome. Hence, even if v j or v′

j
are eventually eliminated, the surviving strategies dominating them preserve x as an
outcome when used by all j ∈ Ixzy ∪ Izxy while all i ∈ Ixyz use vi = (1, 0, 0).

Finally, if vi = (1, 0, 0) is dominated by v∗
i for i ∈ Ixyz in Γ (�I , V k), k ≥ 1,

then v∗
i must likewise rule out z as an outcome in Γ (�I , V k) if all i ∈ Ixyz choose

it. Moreover, at any profile v ∈ V k , once z is ruled out, vi is a best response for
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Ixyz as maximizes the score difference vx − vy . Thus, for any opposing strategy
profile v−xyz = (v j ) j∈I\Ixyz whether all i ∈ Ixyz choose v∗

i or whether all choose
vi = (1, 0, 0) yields the same outcome. Hence, even if vi is eliminated, the strategy
v∗

i dominating it allows for the same argument involving voters Ixzy ∪ Izxy above and so

preserves x as an outcome in allΓ (�I , V k′
), k′ ≥ k, as long as v∗

i is present. Induction
over the sequence of strategies that iteratively dominate vi = (1, 0, 0) completes the
argument.

Case (iii)(b): Condition (1) and (2) are satisfied, in that we can label candidates so
that M(y) > M(z)+ SM(z) and a majority prefers x over y. Then S(�I , AV ) = {x}.
Wewant to show that x ∈ S(�I , V ), i.e., survives as a possible outcome inΓ (�I , V m̄).

Analogous to (iii)(a), as long as vi = (vx
i , v

y
i , vz

i ) = (0, 1, 0) is included in V k
yxz ,

any profile where all i ∈ Iyxz choose vi rules out z, which makes (1, 0, 0) a best
reply for all j ∈ Ixyz ∪ Ixzy and (1, 0, 1) a best reply for j ∈ Izxy , at least as long as
these strategies have not been eliminated. If these strategies are used, x wins as voters
Ixyz ∪ Ixzy ∪ Izxy constitute the majority. Even if these strategies should eventually be
eliminated, the strategies dominating them have to likewise be a best response in the
restricted game and hence yield outcome x . Finally, again analogously to (iii)(a), if
vi = (0, 1, 0) is dominated by v∗

i in some restricted game, a profile where all i ∈ Iyxz

use v∗
i instead of vi has to yield the same outcome in the restricted game—and hence

allows for the same argument concerning voters in Ixyz ∪ Ixzy ∪ Izxy . Induction over
strategies iteratively dominating vi concludes. ��

One might think that adding to the set of admissible ballots, as we do when we
move from AV to any other EAV-rule, would in general lead to a larger solution as
there are potentially more strategies that need to be ruled out to narrow down the set
of possible outcomes. However this simple intuition is wrong—for example, AV is
itself an extension of the Plurality rule and yet satisfies U while the latter may fail to
narrow down the solution to a unanimously preferred candidate.

Last, observe that Cumulative Voting suffers from the same defect as Plurality rule–
voters who all agree on their most preferred candidate a but are split on the ranking
of b and c, may assign their whole budget in support of the ‘lesser evil’ which yields
a tie between b and c and hence a violation of U.

4.3 Binary voting trees

By focussing our analysis on scoring rules,we have in particular restricted our attention
to voting rules that are neutral with respect to candidates.30 If we are willing to give
up neutrality, majority-voting along a binary tree (with pre-determined tie-breaks at
each node) offers a well known class of procedures that satisfy CON, i.e., ensure that
a (strict) Condorcet-winner will be elected when voters use iteratively undominated
strategies.

However they may exhibit violations of monotonicity. Moulin (1986) documents
such a violation in a setup with 4 candidates for trees where multiple terminal nodes

30 Myerson (1995) shows that these are the only (candidate-)neutral and (voter-)anonymous rules that
satisfy reinforcement and overwhelming majority (for joined and replicated ballot profiles).
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b c

Fig. 3 Two binary voting tree. Ties broken to the right

arrive at the same voting outcome. In his example there are no broken ties, but if we
allow for (pre-determined) tie-breaking then monotonicity31 may already be violated
for three candidate, as the following minimal example demonstrates.

Consider the voting tree on the left hand side of Fig. 3 and suppose I = Iacb ∪ Ibac ∪
Ibca ∪ Icba with |Iacb| = |Icba| = 2 and |Ibac| = |Ibca | = 1. Then a is the unique
solution in iteratively undominated strategies: eliminating dominated strategies lets
voters vote sincerely at node 3 which gives a tie of a and c, broken in favour of c. In
turn, this makes it dominant for the majority Iacb ∪ Icba to vote against b at node 2.
But then the choice at node 1 is between c and a for which the use of undominated
strategies yields a tie between a and c, broken in favour of a.

However if a’s popularity increases slightly as one voter moves from Ibca to Ibac,
so that we now have a Condorcet cycle in which a is majority-preferred over c, then
a would be elected at node 3. This makes it dominant for the majority Ibac ∪ Icba to
vote for b at node 2. The same majority would then also vote against a at node 1 so
that b is the winner after a’s increase in popularity.

Nonetheless, there are binary voting trees that not only satisfy CON but also ensure
monotonicity. Consider the tree on the right hand side of Fig. 3.

For c to be the outcome at some profile �I , it must enjoy weak majority support
over both b and a—but then this is still the case at any c-monotonic transformation of
�I and c remains the election outcome after gaining popularity.

For b to be the outcome at some profile �I , more than half of all voters need to
prefer it over c and at least half the voters over a. Again, it will then remain the election
outcome at any b-monotonic transformation of �I .

At all remaining profiles �I , a is the election outcome. Since an a-monotonic
transformation cannot lead b or c to gain majority support (weak or strong) over a and
since it also does not affect voter’s preferences over the pair b and c, the outcome will
not change, neither to b nor to c—a remains the election outcome.

31 For pre-determined tie-braking the solution is single-valued at every profile and ourmonotonicity axioms
collapse into one.
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5 Summary and concluding remarks

Within the class of scoring rules we were are able to characterize voting procedures
using a small number of intuitive axioms that are based on the idea of majoritarian-
ism, extending it to situations with three candidates, and monotonicity. In particular,
Approval Voting and the Borda Rule stand out as optimal voting procedures with
respect to our axioms.

For the subset of direct mechanism scoring rules, i.e., rules that are at most as
complex as classical positional scoring rules, the Borda Rule is the only rule that both
ensures a minimal degree of majoritarianism (as embodied by unanimity, U, and, in
the presence of a unanimously agreed worst alternative,MEW) as well as monotonicity
(MON).

Within the larger class of all finite scoring rules, we identify extensions of Approval
Voting as precisely the class of rules that satisfies a slightly stronger notion of majori-
tarianism,MEPD (i.e., elect the majority preferred among, at most, two Pareto-efficient
alternatives), and show that Approval Voting is not only the simplest rule within that
class, but also the most decisive. Moreover, while Approval Voting satisfies weak
monotonicity, no scoring rule that likewise satisfies MEPD will satisfy the stronger
monotonicity notionMON*. In addition, we show that strengthening our majoritarian-
ism notion further by requiring Condorcet-consistency leads to an impossibility – no
finite scoring rule satisfies CON.

The analysis raises a number of open questions. Are there scoring rules that satisfy
strong monotonicity (sMON) or at least MON* together with arguably the most basic
notions of majoritarianism in the presence of three canddiate, U and MEW? For direct
mechanisms, Corollary 4 provides a negative answer—but what about general (finite)
scoring rules? Is it possibles for a scoring rule to simultaneously satisfy MEPD and
MON? Do there exists anonymous and neutral rules that satisfy CON, or are we forced
to forego neutrality as when voting on a binary tree?

For elections involving more than three candidates, one may ask whether our
axioms, MEPD or MEW, can be extended so as to yield analogous characterisations
of Approval Voting and the Borda Rule. For example, one might extent MEPD to the
case ofn ≥ 4 alternatives by requiring thatwhenever there are only twoPareto-efficient
alternatives, the majority-preferred among the two should be elected. However, even
Approval Voting would violate this generalisation of MEPD.32 Do there exist scoring
rules or, more generally, anonymous and neutral rules that satisfies it?

We hope that questions such as these will stimulate future research.

32 Example available upon request.
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Appendix

Example 4 Consider two voters, i and j with preferences a �i b �i c and c �i a �i b,
who elect a candidate via Borda Rule voting. Ties are broken uniformly at random
and i is indifferent between b, a tie of a and c, as well as a three-way tie. Similarly,
j is indifferent between a, a tie of b and c, and a three-way tie. After eliminat-
ing dominated strategies (where one assigns a higher score to the least- than to the
most-preferred candidate), the reduced game has the following representation.

(va
j , v

b
j , v

c
j ) (va

i , vb
i , vc

i )

(1, 1
2 , 0) (1, 0, 1

2 ) ( 12 , 1, 0)

(1, 0, 1
2 ) a a a

( 12 , 0, 1) a tie: a, c tie: a, b, c
(0, 1

2 , 1) tie: a, b, c c b

Note that for i , vi = (1, 1
2 , 0)weakly dominates the other two remaining strategies.

If we first eliminate (1, 0, 1
2 ), then for voter j we find that v j = (0, 1

2 , 1) is dominated
(by (1, 0, 1

2 )). Eliminating v j and finally also ( 12 , 1, 0) for voter i , we arrive at a as
the only remaining outcome.

If instead we begin by eliminating voter i’s strategy ( 12 , 1, 0), then for voter j we
have v j = (0, 1

2 , 1) as a strategy that dominates the other two. Eliminating both before
finally eliminating (1, 0, 1

2 ) as voter i’s strategy, we are left with a three-way tie as the
only remaining outcome—which is strictly worse from i’s perspective.

Proof of Lemma 1 Consider a ballot w = (k, l, m) ∈ V and assume w.l.o.g. that
k ≥ l ≥ m. Since V is assumed to be neutral, it also includes all permutations of w.

If k > l > m, the 6 permutations exhaust V ; normalizing all ballots in V , replacing
k by k′ = k−m

k−m = 1, l by l ′ = l−m
k−m ∈ (0, 1) and m by m′ = m−m

k−m = 0, yields case (1).
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188 C. Basteck

If two entries of w coincide, V contains 3 permutations of w. If those are the
only elements of V , normalizing ballots as before again yields case (1). If V contains
another non-abstention ballotw′ = (p, q, r), then twoof its three entriesmust coincide
- otherwise the permutations of w and w′ would exceed |V | ≤ 6.

W.l.o.g assume p ≥ q ≥ r . If k = l > m and p > q = r , normalizing each
permutation ofw by subtracting m and each permutation ofw′ by subtracting r before
dividing all scores by k−m+ p−r yields k′ = l ′ = k−m

k−m+p−r ,m
′ = 0, p′ = p−r

k−m+p−r
and q ′ = r ′ = 0, which corresponds to case (2).

If k > l = m and p > q = r , assume w.l.o.g. that k − m ≥ p − r . Normalizing
each permutation of w by subtracting m and each permutation of w′ by subtracting r
before dividing all scores by k − m yields k′ = 1, l ′ = m′ = 0, p′ = p−r

k−m ≤ 1 and
q ′ = r ′ = 0, which corresponds to case (3).

If k = l > m and p = q > r , assume w.l.o.g. that k − m ≥ p − r . Normalizing
each permutation of w by subtracting m and each permutation of w′ by subtracting r
before dividing all scores by k − m yields k′ = l ′ = 1, m′ = 0, p′ = q ′ = p−r

k−m ≤ 1
and r ′ = 0, which corresponds to case (4). ��

Proof of Theorem 1 First, consider the if part for the remaining cases (2) and (3). In
particular, assume (2) holds for some labelling of candidates, so that w.l.o.g.

min
v∈V 1

va − vc = 1/2|Iabc| − 1/2|Iacb|
−1/2|Ibac| − |Ibca | − |Icab| − |Icba| ≥ 0 and |Icab| > |Ibac|.

Then, for any i ∈ Iabc in Γ (�I , V 1), ballot vi = (va
i , vb

i , vc
i ) = (1, 1/2, 0) is a weakly

better reply than ṽi = (1/2, 1, 0) against any v−i ∈ V 1−i :

(i) if for ṽ = (ṽi , v−i ), ṽb >ṽa ≥ ṽc, then for v = (vi , v−i ), we have va >vc,
(ii) if for ṽ = (ṽi , v−i ), ṽa ≥ ṽb, ṽc, then for v = (vi , v−i ), we have va > vb, vc.

Hence, ṽi is either dominated by vi = (1, 1/2, 0), or is redundant to it. Eliminating
ṽi and moving to the restricted game, Γ (�I , V ′), where V ′

abc = V 1
abc\{(1/2, 1, 0)} =

{(1, 0, 1/2), (1, 1/2, 0)} and V ′
j = V 1

j for all j /∈ Iabc we find that

min
v∈V ′v

a − vb = 1/2|Iabc| + 1/2|Iacb| − |Ibac| − |Ibca | − 1/2|Icab| − |Icba|
= 1/2|Iabc| − 1/2|Iacb| − 1/2|Ibac| − |Ibca| − |Icab| − |Icba |

︸ ︷︷ ︸
≥0

−1/2|Ibac| + 1/2|Icab|︸ ︷︷ ︸
>0

+|Iacb| > 0,

which rules out b as an outcome of Γ (�I , V ′). But then, in the game Γ (�I , V ′),
for any voter i who prefers a over c, vi = (1, 1/2, 0) is a best reply as it maximizes
i’s impact on va − vc. Eliminating dominated or redundant strategies and moving to
Γ (�I , V ′′), where V ′′

i = {(1, 1/2, 0)} for all i ∈ Iabc ∪ Iacb ∪ Ibac and V ′′
j = V ′

j = V 1
j
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for all j ∈ Ibca ∪ Icab ∪ Icba , we find that for all v ∈ V ′′

va ≥ |Iabc| + |Iacb| + |Ibac| > 2|Iacb| + 2|Ibac| + 2|Ibca | + 2|Icab| + 2|Icba| − 1

≥ |Ibca | + |Icab| + |Icba | ≥ vc,

where the strict inequality follows from directly from condition (2), while the next
weak inequality follows from the fact that |Icab| > |Ibac| ≥ 0. Hence, a is the unique
outcome after iteratively eliminating dominated strategies from Γ (�I , V 0).
Finally, assume condition (3) holds for some labelling of candidates, so that w.l.o.g.

min
v∈V 1

va − vc = 1/2|Iabc| − 1/2|Iacb| − 1/2|Ibac| − |Ibca |
−|Icab| − |Icba | ≥ −1/2 and |Iacb| > 0.

Then, for any i ∈ Iacb in Γ (�I , V 1), ballot vi = (va
i , vb

i , vc
i ) = (1, 0, 1/2) is a weakly

better reply than ṽi = (1/2, 0, 1) against any v−i ∈ V 1−i :

(i) if for ṽ = (ṽi , v−i ), ṽa ≥ ṽb, then for v = (vi , v−i ), we have va > vb, vc,
(ii) if for ṽ = (ṽi , v−i ), ṽb > ṽa, ṽc, then vi can only improve the outcome,
(iii) if for ṽ = (ṽi , v−i ), ṽc ≥ ṽb > ṽa , then ṽc = ṽa + 1/2. Hence ṽb = ṽc and

2(ṽa + ṽb + ṽc) = 6ṽa + 2. However, as each voter awards scores that sum to
3
2 , 2(ṽ

a + ṽb + ṽc) would have to be divisible by three - a contradiction.

Hence, ṽi is either dominated by vi = (1, 0, 1/2), or is redundant to it. Eliminating
ṽi and moving to the restricted game, Γ (�I , V ′), where V ′

acb = V 1
acb\{( 12 , 0, 1)} =

{(1, 0, 1
2 ), (1,

1
2 , 0)} and V ′

j = V 1
j for all j /∈ Iacb, condition (3) yields

min
v∈V ′ v

a − vc

= 1/2|Iabc| + 1/2|Iacb| − 1/2|Ibac| − |Ibca | − |Icab| − |Icba|
= 1/2|Iabc| − 1/2|Iacb| − 1/2|Ibac| − |Ibca | − |Icab| − |Icba| + 1

︸ ︷︷ ︸
>0

−1 + |Iacb|︸ ︷︷ ︸
≥0

> 0,

which rules out c as an outcome of Γ (�I , V ′). But then, in the game Γ (�I , V ′), for
any voter i who prefers a over b, vi = (1, 0, 1/2) is a best reply as it maximizes i’s
impact on va − vb. Eliminating strategies dominated by (or redundant to) vi for these
voters, we arrive at Γ (�I , V ′′), where V ′′

i = {(1, 0, 1/2)} for all i ∈ Iabc ∪ Iacb ∪ Icab

and V ′′
i = V ′

i = V 1
i for all i ∈ Ibac ∪ Ibca ∪ Icba , so that for all v ∈ V ′′

va ≥ |Iabc| + |Iacb| + |Icab| > 2|Iacb|︸ ︷︷ ︸
≥2

+|Ibac| + 2|Ibca | + 3|Icab| + 2|Icba| − 2

≥ |Ibac| + |Ibca | + |Icba| ≥ vb

by condition (3). Hence, a is the unique outcome after iteratively eliminating domi-
nated strategies from Γ (�I , V 0). This ends the proof of the if part of Theorem 1.
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190 C. Basteck

Next, consider the only if part. We will show that as conditions (1)–(3) are violated,
each election outcome is possible under some ballot profile, where each voter chooses
a strategy that is iteratively undominated. For that we make use of the following facts.

��
Claim 1 Consider a ballot profile v such that vx = vy = vz and some voter i ∈ Ixyz

such that vx
i = 1. Then vi is undominated in any game Γ (�I , V ′) where v ∈ V ′ ⊆ V 1.

Proof. Consider the case vi = (vx
i , v

y
i , vz

i ) = (1, 1/2, 0). If x � y, z, then i’s most
preferred outcome x is realized. In contrast, a switch to ṽi = (1/2, 1, 0) would yield
outcome y, a switch to ṽi = (1, 0, 1/2) would yield z. Hence vi = (1, 1/2, 0) is
undominated.

If vi = (vx
i , v

y
i , vz

i ) = (1, 0, 1/2) and x � y, z outcome x is realized, while a
switch to ṽi = (1/2, 1, 0) or ṽi = (1, 1/2, 0) would yield y. Hence vi = (1, 0, 1/2) is
undominated.

Claim 1♦

Claim 2 Consider a ballot profile v such that vx = 1/2|I | − 1/2, vy = 1/2|I | + 1/2, and
vz = 1/2|I | and some voter i ∈ Ixyz such that vi = (vx

i , v
y
i , vz

i ) = (1/2, 1, 0). Then vi

is undominated in any game Γ (�I , V ′) where v ∈ V ′ ⊆ V 1.

Proof. Profile v leads to the election of i’s second most preferred alternative, indepen-
dent of �. If i switches to any other undominated strategy, i.e., (1, 1/2, 0), (1, 0, 1/2) ∈
V 1

i , then her least preferred alternative z would be elected for z � x, y. Hence,
vi = (1/2, 1, 0) is undominated in any game Γ (�I , V ′) where v ∈ V ′ ⊆ V 1. Claim
2♦

To fix notation and without loss of generality, let us assume that |Iabc| ≥ |Iacb| and
|Iabc|+|Iacb| ≥ |Ibac|+|Ibca | ≥ |Icab|+|Icba |. Since, by assumption, (1) is violated,
we have

|Iabc| ≤ |Iacb| + |Ibac| + 2|Ibca | + 2|Icab| + 2|Icba |.

Case 1: |Iabc| = |Iacb| + |Ibac| + 2|Ibca | + 2|Icab| + 2|Icba |
Since by assumption conditions (2) and (3) are violated, we have |Icab| ≤ |Ibac|

and |Iacb| = 0. If |Ibca| + |Icab| + |Icba| = 0, so that |Iabc| = |Ibac|, consider a
ballot profile v where all i ∈ Iabc chose (1, 0, 1/2) ∈ V 1

abc while all i ∈ Ibac chose
(0, 1, 1/2) ∈ V 1

bac. Then va = vb = vc, by Claim 1 both strategies are undominated
in any game Γ (�I , V ′) where v ∈ V ′ ⊆ V 1, and hence no outcome can be ruled out
via iterated elimination of dominated strategies.

Next, consider |Ibca | + |Icab| + |Icba | > 0 and construct two strategy profiles as
follows:
Profile v ∈ V 1:

• Let all i ∈ Iabc choose vi = (1, 0, 1/2),
• Let all i ∈ Ibac choose vi = (0, 1, 1/2),
• Let all i ∈ Ibca ∪ Icab ∪ Icba choose vi = (0, 1/2, 1).
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Characterising scoring rules by their solution… 191

Then,

va − vc = 1/2|Iabc| −1/2|Ibac| − |Ibca | − |Icab| − |Icba |
︸ ︷︷ ︸

−1/2|Iabc|
= 0,

while

va − vb = |Iabc| − |Ibac| − 1/2|Ibca| − 1/2|Icab| − 1/2|Icba|
= 3/2|Ibca | + 3/2|Icab| + 3/2|Icba | ≥ 3/2,

so that both a and c are possible outcomes, depending on �. If c � a, then c is elected
while any unilateral deviation to some ṽi ∈ V 1

i by some i ∈ Ibca ∪ Icab ∪ Icba would
yield outcome a. Hence, for i ∈ Ibca ∪ Icab∪ Icba , (0, 1/2, 1) is the unique best response
and thus undominated in any game Γ (�I , V ′) where v ∈ V ′ ⊆ V 1.
Profile v̂ ∈ V 1:

• Let |Ibac| − |Icab| of Iabc chose v̂i = (1, 0, 1/2)
• Let the remaining 2|Ibca| + 3|Icab| + 2|Icba| > 0 voters of Iabc choose v̂i =

(1, 1/2, 0)
• Let all i ∈ Icab choose v̂i = (0, 1/2, 1),
• Let all i ∈ Ibac ∪ Ibca ∪ Icba chooses v̂i = (0, 1, 1/2).

Then,

|v̂a | − |v̂b| = 1/2|Iabc| + 1/2(|Ibac| − |Icab|) − 1/2|Icab| − |Ibac| − |Ibca| − |Icba |
= 1/2|Iabc| −1/2|Ibac| − |Ibca | − |Icab| − |Icba|

︸ ︷︷ ︸
=1/2|Iabc|

= 0,

while

|v̂a | − |v̂c| = |Iabc| − 1/2(|Ibac| − |Icab|) − |Icab| − 1/2|Ibac| − 1/2|Ibca| − 1/2|Icba |
= |Iabc| − |Ibac| − 1/2|Ibca | − 1/2|Icab| − 1/2|Icba |
= 3/2|Ibca | + 3/2|Icab| + 3/2|Icba| ≥ 3/2,

so that both a and b are possible outcomes, depending on �. If b � a, then b is elected
while any unilateral deviation to some ṽi ∈ V 1

i by some i ∈ Ibac ∪ Ibca ∪ Icba would
yield outcome a. Hence, for i ∈ Ibac∪ Ibca ∪ Icba , (0, 1, 1/2) is the unique best response
and thus undominated in any game Γ (�I , V ′) where v̂ ∈ V ′ ⊆ V 1.

Hence, for i ∈ I\Iabc, no strategy used in v, v̂ is dominated in any game Γ (�I , V ′)
where v, v̂ ∈ V ′ ⊆ V 1. It remains to check that for i ∈ Iabc, (1, 0, 1/2) and (1, 1/2, 0)
are likewise undominated.

For that, consider profile vwhere some i ∈ Iabc chooses vi = (1, 0, 1/2) and assume
that c � b, a, so that c is elected. A switch by i to (1/2, 1, 0) would also yield c, as
we would still have va = vc and va > vb. On the other hand, a switch to (1, 1/2, 0)
would yield a. Hence, for i ∈ Iabc, (1, 1/2, 0) is the unique best response and thus
undominated in any game Γ (�I , V ′) where v, v̂ ∈ V ′ ⊆ V 1.
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192 C. Basteck

Similarly, consider profile v̂ where some i ∈ Iabc chooses v̂i = (1, 1/2, 0) and
assume that b � a, c, so that b is elected. A switch to (1/2, 1, 0) would still yield b, as
we would now have v̂b > v̂a and v̂a > v̂c. On the other hand, a switch to (1, 0, 1/2)
would yield a. Hence, for i ∈ Iabc, (1, 0, 1/2) is the unique best response and thus
undominated in any game Γ (�I , V ′) where v, v̂ ∈ V ′ ⊆ V 1.

Case 2: |Iabc| = |Iacb| + |Ibac| + |Ibca | + |Icab| + |Icba| + n with 0 < n < |Ibca | +
|Icab| + |Icba |.

Wewill show that iterative elimination of dominated strategies cannot narrow down
the set of strategies beyond V ′′

abc = V 1
abc, V ′′

acb = {(1/2, 0, 1)}, V ′′
bac = {(0, 1, 1/2)},

V ′′
bca, V ′′

cab, V ′′
cba = {(0, 1/2, 1)} and that V ′′ allows for the election of any candidate.

Let us construct v ∈ V ′′ as follows:

• |Iacb| + n of Iabc choose vi = (1/2, 1, 0)
• |Ibac| + n of Iabc choose vi = (1, 0, 1/2)
• |Ibca | + |Icab| + |Icba| − n of Iabc choose vi = (1, 1/2, 0)
• All i ∈ Iacb choose vi = (1/2, 0, 1)
• All i ∈ Ibac choose vi = (0, 1, 1/2)
• All i ∈ Ibca ∪ Icab ∪ Icba choose vi = (0, 1/2, 1)

Then, va = vb = vc and any candidates may win. By Claim 1 (1, 0, 1/2), (1, 1/2, 0) ∈
V ′′

abc, (0, 1, 1/2) ∈ V ′′
bac and (0, 1/2, 1) ∈ V ′′

cab, V ′′
cba are undominated in any game

Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1.
To see that (1/2, 1, 0) ∈ V ′′

abc is undominated, let some j ∈ Iabc who chooses
v j = (1, 1/2, 0) switch to ṽ j = (1/2, 1, 0). Then ṽa = 1/2|I | − 1/2, ṽb = 1/2|I | + 1/2,
and ṽc = 1/2|I |, so that by Claim 2 (1/2, 1, 0) ∈ V ′′

abc is undominated in any game
Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1.

To see that (1/2, 0, 1) ∈ V ′′
acb is undominated, note that |Iacb| > 0 implies n ≤

|Ibca| + |Icab| + |Icba | − 2 as condition (3) is violated by assumption. Then there
exist j, l ∈ Iabc who play v j,l = (1, 1/2, 0). Let them switch to ṽ j = (1, 0, 1/2)
and ṽl = (1/2, 1, 0). Then ṽa = 1/2|I | − 1/2, ṽb = 1/2|I |, and ṽc = 1/2|I | + 1/2,
so that by Claim 2 (1/2, 0, 1) ∈ V ′′

acb is undominated in any game Γ (�I , V ′) where
V ′′ ⊆ V ′ ⊆ V 1.

Finally, to see that (0, 1/2, 1) ∈ V ′′
bca is undominated, let some j ∈ Iabc switch from

v j = (1/2, 1, 0) to ṽ j = (1, 0, 1/2). Then ṽa = ṽc = 1/2|I | + 1/2 and ṽb = 1/2|I | − 1,
so that c may win. Any deviation by i to (1/2, 1, 0), (0, 1, 1/2) ∈ V 1

bca would elect
candidate a instead. Hence (0, 1/2, 1) ∈ V ′′

bca is undominated in any game Γ (�I , V ′)
where V ′′ ⊆ V ′ ⊆ V 1.

For the remainder, we write |Ia | := |Iabc| + |Iacb| and define |Ib| and |Ic| accord-
ingly.

Case 3: |Iabc| = |Iacb| + |Ibac| + |Ibca | + |Icab| + |Icba | − n with n ≥ 0 and
|Ia | > |Ib| + |Ic|.

Then |Iacb| > n
2 ≥ 0 and, as condition (3) is violated by assumption,

|Iacb| ≤ |Iabc| = |Iacb| + |Ibac| + |Ibca| + |Icab| + |Icba |
−n ≤ |Iacb| + |Ibac| + 2|Ibca | + 2|Icab| + 2|Icba | − 2
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which implies |Ib| + |Ic| ≥ n and |Ibca | + |Ic| + n ≥ 2. We will consider five
exhaustive sub-cases: (i) n is even, (ii) n is odd and |Ibca |+ |Ic| ≥ 2, (iii) n ≥ 3 is odd
and |Ibac| ≥ 2, (iv) n = 1, |Ibca|+|Ic| = 1 and |Ibac| ≥ 1, (v) n = 1, |Ibca|+|Ic| = 1
and |Ibac| = 0.

Case 3.1: Let n be even.
Wewill show that iterative elimination of dominated strategies cannot narrow down

the set of strategies beyond V ′′
abc = V 1

abc, V ′′
acb = {(1/2, 0, 1), (1, 0, 1/2)}, V ′′

bac =
{(0, 1, 1/2)}, V ′′

bca = {(0, 1/2, 1), (0, 1, 1/2)} and V ′′
cab, V ′′

cba = {(0, 1/2, 1)}, and that
V ′′ allows for the election of any candidate.

Let us construct v ∈ V ′′ as follows:

• |Iacb| − n
2 = 1/2(|Ia | − |Ib| − |Ic|) of Iabc choose vi = (1/2, 1, 0)

• |Iacb| − n
2 = 1/2(|Ia | − |Ib| − |Ic|) of Iacb choose vi = (1/2, 0, 1)

• |Ibac| of Ia choose vi = (1, 0, 1/2)
• |Ibac| of Ibac choose vi = (0, 1, 1/2)
• |Ibca | + |Ic| of Ia choose vi = (1, 1/2, 0)
• |Ibca | + |Ic| of Ibca ∪ Icab ∪ Icba choose vi = (0, 1/2, 1)

Then, va = vb = vc so that any candidate may win the election. By Claim 1,
(0, 1, 1/2) ∈ V ′′

bac and (0, 1/2, 1) ∈ V ′′
cab, V ′′

cba are undominated in any gameΓ (�I , V ′)
where V ′′ ⊆ V ′ ⊆ V 1—trivially if |Ibac|, |Ic| = 0.

To see that (1, 1/2, 0) ∈ V ′′
abc is likewise undominated, note that this follows from

Claim 1 if |Ibca | + |Ic| > 0 (so that one can let some i ∈ Iabc choose (1, 1/2, 0) at
v). If instead |Ibca | + |Ic| = 0 then, as n ≥ 2, there is some i ∈ Iabc who chooses
vi = (1/2, 1, 0) which may elect c—only a switch to ṽi = (1, 1/2, 0) rules out c.

To see that (1, 0, 1/2) ∈ V ′′
abc is undominated, note that this follows from Claim 1

if |Ibac| > 0 (so that one can let some i ∈ Iabc chooses (1, 0, 1/2)) at v). If instead
|Ibac| = 0 then, as |Ib| ≥ |Ic|, we know that |Ibca | ≥ 1. Consider v constructed such
that some i ∈ Iabc chooses vi = (1, 1/2, 0) and let her switch to ṽi = (1, 0, 1/2) while
some j ∈ Ibca switches from v j = (0, 1/2, 1) to ṽ j = (0, 1, 1/2). Then ṽa = ṽb = ṽc

and by Claim 1, (1, 0, 1/2) ∈ V ′′
abc is undominated in any game Γ (�I , V ′) where

V ′′ ⊆ V ′ ⊆ V 1.
To see that (1/2, 1, 0) ∈ V ′′

abc is undominated, first consider |Ibca | + |Ic| > 0
and v constructed such that j ∈ Iabc chooses v j = (1, 1/2, 0). Letting j switch
to ṽ j = (1/2, 1, 0) gives ṽa = 1/2|I | − 1/2, ṽb = 1/2|I | + 1/2 and ṽc = 1/2|I | so
that by Claim 2, (1/2, 1, 0) ∈ V ′′

abc is undominated in any game Γ (�I , V ′) where
V ′′ ⊆ V ′ ⊆ V 1. If instead |Ibca | + |Ic| = 0, then n, |Ibac| ≥ 2, so that v may
be constructed such that some j ∈ Iabc and k ∈ Iacb choose v j , vk = (1, 0, 1/2).
Letting them switch to ṽ j = (1, 1/2, 0) and ṽk = (1/2, 0, 1) gives ṽa = 1/2|I | − 1/2,
ṽb = 1/2|I |+ 1/2 and ṽc = 1/2|I | so that by Claim 2, (1/2, 1, 0) ∈ V ′′

abc is undominated
as before.

To see that (1, 0, 1/2) ∈ V ′′
acb is undominated, consider i ∈ Iacb who chooses

vi = (1/2, 0, 1) which may elect b. Only a switch to ṽi = (1, 0, 1/2) rules it out.
To see that (1/2, 0, 1) ∈ V ′′

acb is undominated, first consider |Ibca| + |Ic| ≥ 2 and
v constructed such that j ∈ Iabc and k ∈ Iabc ∪ Iacb choose v j , vk = (1, 1/2, 0).
Letting them switch to ṽ j = (1/2, 1, 0) and ṽk = (1, 0, 1/2) gives ṽa = 1/2|I | − 1/2,
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ṽb = 1/2|I | and ṽc = 1/2|I | + 1/2 so that by Claim 2 (1/2, 0, 1) ∈ V ′′
abc is undominated

in any game Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1. If instead |Ibca | + |Ic| ≤ 1, then
n ≥ 1, so n ≥ 2, so |Ibac| > 0. Hence, we may construct v such that some i ∈ Iacb

chooses vi = (1, 0, 1/2). Letting her switch to ṽi = (1/2, 0, 1) gives ṽa = 1/2|I | − 1/2,
ṽb = 1/2|I | and ṽc = 1/2|I | + 1/2 so that by Claim 2 (1/2, 0, 1) ∈ V ′′

abc is undominated
as before.

To see that (0, 1/2, 1), (0, 1, 1/2) ∈ V ′′
bca are undominated, note that this is vacuously

true if |Ibca | = 0. Assume instead that |Ibca | ≥ 1 and construct v such that some j ∈
Iabc chooses v j = (1, 1/2, 0). Letting j switch to ṽ j = (1, 0, 1/2) gives ṽa = 1/2|I |,
ṽb = 1/2|I | − 1/2 and ṽc = 1/2|I | + 1/2 so that by Claim 2, (0, 1/2, 1) ∈ V ′′

bca is
undominated in any game Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1. Moreover, letting in
addition i ∈ Ibca switch to v̂i = (0, 1, 1/2) gives |v̂a | = |v̂b| = |v̂c| so that by Claim
1, (0, 1, 1/2) ∈ V ′′

bca is likewise undominated.

Case 3.2: Let n be odd, |Ibca | + |Ic| ≥ 2.
Wewill show that iterative elimination of dominated strategies cannot narrow down

the set of strategies beyond V ′′
abc = V 1

abc, V ′′
acb = V 1

acb, V ′′
bac = {(0, 1, 1/2)} and

V ′′
bca, V ′′

cab, V ′′
cba = {(0, 1/2, 1)}, and that V ′′ allows for the election of any candidate.

First, let us construct v ∈ V ′′ as follows:

• |Iacb| − n
2 + 1/2 = 1/2(|Ia | − |Ib| − |Ic|) + 1/2 of Iabc choose vi = (1/2, 1, 0)

• |Iacb| − n
2 − 1/2 = 1/2(|Ia | − |Ib| − |Ic|) − 1/2 of Iacb choose vi = (1/2, 0, 1)

• |Ibac| + 1 of Ia choose vi = (1, 0, 1/2)
• |Ibac| of Ibac choose vi = (0, 1, 1/2)
• |Ibca | + |Ic| − 1 of Ia choose vi = (1, 1/2, 0)
• |Ibca | + |Ic| of Ibca ∪ Icab ∪ Icba choose vi = (0, 1/2, 1)

Then va = vb = vc and any candidate may win. By Claim 1, (0, 1, 1/2) ∈ V ′′
bac

and (0, 1, 1/2) ∈ V ′′
cab, V ′′

cba are undominated in any game Γ (�I , V ′) where V ′′ ⊆
V ′ ⊆ V 1—the latter holds trivially if |Ic| = 0. Moreover, by assigning i ∈ Iabc or
j ∈ Iacb to choose (1, 1/2, 0) or (1, 0, 1/2) in the construction of v, Claim 1 implies
that (1, 1/2, 0), (1, 0, 1/2) ∈ V ′′

abc, V ′′
acb are undominated.

Note that |Iabc| > |Iacb| − n
2 + 1/2 as n ≥ 1 and |Iabc| ≥ |Iacb|—if we had n = 1

and |Iabc| = |Iacb|, then |Ib| + |Ic| = 1, contradicting |Ibca | + |Ic| ≥ 2. Hence, we
may construct v with some i ∈ Iabc choosing a strategy other than (1/2, 1, 0).

To see that (1/2, 1, 0) ∈ V ′′
abc is undominated, construct v such that some i ∈ Iabc ⊆

Ia chooses vi = (1, 1/2, 0). Letting i switch to ṽi = (1/2, 1, 0) gives ṽa = 1/2|I | − 1/2,
ṽb = 1/2|I |+ 1/2 and ṽc = 1/2|I | so that by Claim 2, (1/2, 1, 0) ∈ V ′′

abc is undominated
in any game Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1.

To see that (1/2, 0, 1) ∈ V ′′
acb is undominated, construct v such that some i ∈ Iacb

chooses vi = (1, 0, 1/2). Letting i switch to ṽi = (1/2, 0, 1) gives ṽa = 1/2|I | − 1/2,
ṽb = 1/2|I | and ṽc = 1/2|I |+ 1/2 so that by Claim 2, (1/2, 0, 1) ∈ V ′′

acb is undominated
in any game Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1.

To see that (0, 1/2, 1) ∈ V ′′
bca is undominated, construct v such that some j ∈ Iabc

chooses v j = (1, 1/2, 0). Letting j switch to ṽ j = (1, 0, 1/2) gives ṽa = 1/2|I |,
ṽb = 1/2|I | − 1/2 and ṽc = 1/2|I | + 1/2 so that by Claim 2, (0, 1/2, 1) ∈ V ′′

bca is
undominated in any game Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1.
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Case 3.3: Let n ≥ 3 be odd and |Ibac| ≥ 2.
Wewill show that iterative elimination of dominated strategies cannot narrow down

the set of strategies beyond V ′′
abc = V 1

abc, V ′′
acb = V 1

acb, V ′′
bac = {(0, 1, 1/2)} and

V ′′
bca, V ′′

cab, V ′′
cba = {(0, 1/2, 1)}, and that V ′′ allows for the election of any candidate.

First, let us construct v ∈ V ′′ as follows:

• |Iacb| − n
2 − 1/2 = 1/2(|Ia | − |Ib| − |Ic|) − 1/2 of Iabc choose vi = (1/2, 1, 0)

• |Iacb| − n
2 + 1/2 = 1/2(|Ia | − |Ib| − |Ic|) + 1/2 of Iacb choose vi = (1/2, 0, 1)

• |Ibac| − 1 of Ia choose vi = (1, 0, 1/2)
• |Ibac| of Ibac choose vi = (0, 1, 1/2)
• |Ibca | + |Ic| + 1 of Ia choose vi = (1, 1/2, 0)
• |Ibca | + |Ic| of Ibca ∪ Icab ∪ Icba choose vi = (0, 1/2, 1)

Then va = vb = vc and any candidate may win. By Claim 1, we know that
(0, 1, 1/2) ∈ V ′′

bac and (0, 1/2, 1) ∈ V ′′
cab, V ′′

cba are undominated in any gameΓ (�I , V ′)
where V ′′ ⊆ V ′ ⊆ V 1—the latter holds trivially if |Ic| = 0. Moreover, by assigning
i ∈ Iabc or j ∈ Iacb to choose (1, 1/2, 0) or (1, 0, 1/2) in the construction of v, Claim
1 implies that (1, 1/2, 0), (1, 0, 1/2) ∈ V ′′

abc, V ′′
acb are undominated.

To see that (1/2, 1, 0) ∈ V ′′
abc is undominated, construct v such that some i ∈ Iabc ⊆

Ia chooses vi = (1, 1/2, 0). Letting i switch to ṽ j = (1/2, 1, 0) gives ṽa = 1/2|I |− 1/2,
ṽb = 1/2|I |+ 1/2 and ṽc = 1/2|I | so that by Claim 2, (1/2, 1, 0) ∈ V ′′

abc is undominated
in any game Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1.

To see that (1/2, 0, 1) ∈ V ′′
acb is undominated, construct v such that some i ∈ Iacb ⊆

Ia chooses vi = (1, 0, 1/2). Letting i switch to ṽi = (1/2, 0, 1) gives ṽa = 1/2|I | − 1/2,
ṽb = 1/2|I | and ṽc = 1/2|I |+ 1/2 so that by Claim 2, (1/2, 0, 1) ∈ V ′′

acb is undominated
in any game Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1.

To see that (0, 1/2, 1) ∈ V ′′
bca is undominated (in case |Ibca | > 0), construct v such

that some j ∈ Iabc chooses v j = (1, 1/2, 0). Letting j switch to ṽ j = (1, 0, 1/2) gives
ṽa = 1/2|I |, ṽb = 1/2|I |−1/2 and ṽc = 1/2|I |+1/2 so that byClaim 2, (0, 1/2, 1) ∈ V ′′

bca
is undominated in any game Γ (�I , V ′) where v ∈ V ′ ⊆ V 1.

Case 3.4: Let n = 1, |Ibca | + |Ic| = 1 and |Ibac| ≥ 1.
We will show that iterative elimination of dominated strategies cannot narrow

down the set of strategies beyond V ′′
abc = V 1

abc, V ′′
acb = {(1/2, 0, 1)}, V ′′

bac =
{(1/2, 1, 0), (0, 1, 1/2)} and V ′′

bca, V ′′
cab, V ′′

cba = {(0, 1/2, 1)}, and that V ′′ allows for
the election of any candidate.

First, let us construct v ∈ V ′′ as follows:

• |Iacb| of Iabc choose vi = (1/2, 1, 0)
• |Iacb| of Iacb choose vi = (1/2, 0, 1)
• |Ibac| of Iabc choose vi = (1, 0, 1/2)
• one of of Ibac choose vi = (1/2, 1, 0)
• remainder of Ibac chooses vi = (0, 1, 1/2)
• |Ibca | + |Ic| = 1 of Ibca ∪ Icab ∪ Icba choose vi = (0, 1/2, 1)

Then va = vb = vc and any candidate may win. By Claim 1, (1, 0, 1/2) ∈ V ′′
abc,

(1/2, 1, 0) ∈ V ′′
bac and (0, 1, 1/2) ∈ V ′′

cab, V ′′
cba are undominated in any gameΓ (�I , V ′)

where V ′′ ⊆ V ′ ⊆ V 1.
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To see that (1/2, 1, 0) ∈ V ′′
abc is undominated, let j ∈ Iabc switch from v j =

(1, 0, 1/2) to ṽ j = (1, 1/2, 0) and k ∈ Ibac switch from vk = (1/2, 1, 0) to ṽk =
(0, 1, 1/2). Then ṽa = 1/2|I | − 1/2, ṽb = 1/2|I | + 1/2 and ṽc = 1/2|I | so that by Claim
2, (1/2, 1, 0) ∈ V ′′

abc is undominated in any game Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1.
To see that (1, 1/2, 0) ∈ V ′′

abc is undominated, consider i ∈ Iabc who chooses
vi = (1/2, 1, 0). A switch to ṽi = (1, 1/2, 0) elects a for sure (rather than having it tied
with b and c), while a switch to (1, 0, 1/2) may elect c, as a and c would be tied.

To see that (1/2, 0, 1) ∈ V ′′
acb is undominated, let j ∈ Ibac switch from v j =

(1/2, 1, 0) to ṽ j = (0, 1, 1/2). Then ṽa = 1/2|I |− 1/2, ṽb = 1/2|I | and ṽc = 1/2|I |+ 1/2

so that by Claim 2, (1/2, 0, 1) ∈ V ′′
acb is undominated in any game Γ (�I , V ′) where

V ′′ ⊆ V ′ ⊆ V 1.
To see that (0, 1, 1/2) ∈ V ′′

bac is undominated, let some i ∈ Ibac switch from
vi = (1/2, 1, 0) to ṽi = (0, 1, 1/2), j ∈ Iabc from v j = (1, 0, 1/2) to ṽ j = (1, 1/2, 0)
and k ∈ Iabc from vk = (1/2, 1, 0) to ṽk = (1, 1/2, 0). Then ṽa = ṽb = ṽc = 1/2|I |
so that by Claim 1, (0, 1, 1/2) ∈ V ′′

bac is undominated in any game Γ (�I , V ′) where
V ′′ ⊆ V ′ ⊆ V 1.

To see that (0, 1/2, 1) ∈ Ibca is undominated, let some j ∈ Iabc switch from
v j = (1/2, 1, 0) to ṽ j = (1, 1/2, 0) and some k ∈ Ibac from vk = (1/2, 1, 0) to
ṽk = (0, 1, 1/2). Then ṽa = 1/2|I |, ṽb = 1/2|I | − 1/2 and ṽc = 1/2|I | + 1/2 so
that by Claim 2, (0, 1/2, 1) ∈ Ibca is undominated in any game Γ (�I , V ′) where
V ′′ ⊆ V ′ ⊆ V 1.

Case 3.5: Let n = 1, |Ibca | + |Ic| = 1 and |Ibac| = 0.
First not that our standing assumption |Ib| ≥ |Ic| implies |Ibca| = 1 and |Ic| = 0.

Moreover, |Iabc| = |Iacb| + |Ibac| + |Ibca | + |Icab| + |Icba | − n = |Iacb|. We will
show that iterative elimination of dominated strategies cannot narrow down the set of
strategies beyond V ′′

abc = {(1, 1/2, 0), (1/2, 1, 0)}, V ′′
acb = {(1, 0, 1/2), (1/2, 0, 1)} and

V ′′
bca = {(0, 1, 1/2), (0, 1/2, 1)}, and that V ′′ allows for the election of any candidate.
First, let us construct v ∈ V ′′ as follows:

• |Iabc| − 1 of Iabc choose vi = (1/2, 1, 0)
• |Iacb| of Iacb choose vi = (1/2, 0, 1)
• one of Iabc choose vi = (1, 1/2, 0)
• one of Ibca choose vi = (0, 1, 1/2)

Then va = vb = vc and any candidate may win. By Claim 1, (1, 1/2, 0) ∈ V ′′
abc and

(0, 1, 1/2) ∈ V ′′
bca are undominated in any game Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1.

Next, let j ∈ Iabc switch from v j = (1, 1/2, 0) to ṽ j = (1/2, 1, 0). Then ṽa =
1/2|I | − 1/2, ṽb = 1/2|I | + 1/2 and ṽc = 1/2|I | and by Claim 2, (1/2, 1, 0) ∈ V ′′

abc is
undominated in any game Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1.

To see that (1/2, 0, 1) ∈ V ′′
acb is undominated, consider v and let i ∈ Iabc switch

from vi = (1, 1/2, 0) to ṽi = (1/2, 1, 0), j ∈ Ibca from v j = (0, 1, 1/2) to ṽ j =
(0, 1/2, 1). Then ṽa = 1/2|I | − 1/2, ṽb = 1/2|I | and ṽc = 1/2|I | + 1/2 and by Claim 2,
(1/2, 0, 1) ∈ V ′′

acb is undominated in any game Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1.
To see that (1, 0, 1/2) ∈ V ′′

acb is undominated, consider v and let i ∈ Iacb switch from
vi = (1/2, 0, 1) to ṽi = (1, 0, 1/2), j ∈ Iabc from v j = (1, 1/2, 0) to ṽ j = (1/2, 1, 0) and
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k ∈ Ibca from vk = (0, 1, 1/2) to ṽk = (0, 1/2, 1). Then ṽa = ṽb = ṽc and by Claim
1, (1, 0, 1/2) ∈ V ′′

acb is undominated in any game Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1.
To see that (0, 1/2, 1) ∈ V ′′

bca is undominated, consider v and let i ∈ Ibca switch
from vi = (0, 1, 1/2) to ṽi = (0, 1/2, 1). Then ṽa = 1/2|I |, ṽb = 1/2|I | − 1/2 and
ṽc = 1/2|I | + 1/2 and by Claim 2, (0, 1/2, 1) ∈ V ′′

bca is undominated in any game
Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1.

Case 4: |Iabc| = |Iacb| + |Ibac| + |Ibca | + |Icab| + |Icba | − n with n ≥ 0 and
|Ia | ≤ |Ib| + |Ic|.

First, consider |Ic| = 0 so that |Ia | = |Ib|. If all i ∈ Ia choose vi = (1, 0, 1/2) and
all i ∈ Ib choose vi = (0, 1, 1/2) then va = vb = vc, any candidate may win, and,
by Claim 1, all strategies used in v are undominated in any game Γ (�I , V ′) where
v ∈ V ′ ⊆ V 1.

Finally, consider |Ic| ≥ 1 and construct v as follows.

• |Ib| + |Ic| − |Ia | of Ia choose vi = (1, 1/2, 0)
• |Ib| + |Ic| − |Ia | of Ib choose vi = (0, 1, 1/2)
• |Ib| + |Ic| − |Ia | of Ic choose vi = (1/2, 0, 1)
• |Ia | − |Ic| of Ia choose vi = (1, 0, 1/2)
• |Ia | − |Ic| of Ib choose vi = (0, 1, 1/2)
• |Ia | − |Ib| of Ia choose vi = (1, 1/2, 0)
• |Ia | − |Ib| of Ic choose vi = (0, 1/2, 1)

Then, va = vb = vc and any candidate may win. Further, by Claim 1, all strategies
used at v are undominated in any game Γ (�I , V ′)where v ∈ V ′ ⊆ V 1, hence survive
iterative elimination of dominated strategies. This completes the Proof of Theorem 1.

��
Proof of Theorem 2 We first consider positional scoring rules with s < 1

2 and show
that for any fixed s, there exist preference profiles with I = Iabc ∪ Iacb, where b or c
may still be elected after iterated elimination of dominated strategies.

Let |Iabc| = |Iacb| = n with n > 1−s
1−2s . We will show that the strategies

vi = (s, 1, 0) ∈ Vabc and v j = (s, 0, 1) ∈ Vacb survive the iterative elimination
of dominated strategies.

Consider Γ (�I , V 1) and a strategy profile v where all i ∈ Iabc chose vi = (s, 1, 0)
while all j ∈ Iacb chose v j = (s, 0, 1). Then vb = vc = n and vc −va = n(1−2s) >

1− s > 0 and either b or c is elected, depending on �. If some i ∈ Iabc would switch
to a different strategy, ṽi = (1, s, 0), (1, 0, s) ∈ V 1

abc, c would win as it now has a
higher score than b and the gap vc − va has been narrowed by at most 1 − s.

Hence, vi = (s, 1, 0) is undominated and included in V 2
abc. A symmetric argument

applies to j ∈ Iacb for whom v j = (s, 0, 1) ∈ V 2
acb. By induction, vi and v j , and

hence outcomes b and c, are never eliminated. This concludes the proof for the case
s < 1

2 .
Next, we consider Antiplurality, i.e., s = 1. Assume all voters agree on the ranking

a �i b �i c, so that V 1
i = {(1, 1, 0), (1, 0, 1)}. If in Γ (�I , V 1) all voters j �= i chose

v j = (1, 1, 0), then i can ensure the election of a by casting the ballot vi = (1, 0, 1),
whereas v′

i = (1, 1, 0) would elect b for b � a. In the same way, if all j �= i cast ballot
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v j = (1, 0, 1) and c �a, i’s unique best reply is vi = (1, 1, 0). Hence, neither strategy
is dominated and a may fail to be elected.

Last, consider the case s ∈ ( 12 , 1). Assume I = Iabc ∪ Ibac and |Iabc| = n + 1 >

n = |Ibac| with n sufficiently large, so that in particular

n >
1 − s

2s − 1
and n >

1

2(1 − s)
. (��)

Wewill show that the strategies (1, s, 0), (1, 0, s) ∈ V 1
abc and (s, 1, 0), (0, 1, s) ∈ V 1

bac
survive under iterative elimination so that c remains a possible outcome: if all i ∈ Iabc

vote vi = (1, 0, s) while all j ∈ Ibac vote v j = (0, 1, s), candidates scores are

va = n + 1, vb = n, vc = (2n + 1)s

and (��) ensures that vc > va, vb.
Towards a proof by induction, recall that the sets of undominated strategies are

V 1
abc = {(1, s, 0), (1, 0, s), (s, 1, 0)} and V 1

bac = {(s, 1, 0), (0, 1, s), (1, s, 0)}.

For the inductive step, we show that for arbitrary m ≥ 1,

{(1, s, 0), (1, 0, s)} ⊆ V m
abc and {(s, 1, 0), (0, 1, s)} ⊆ V m

bac

implies {(1, s, 0), (1, 0, s)} ⊆ V m+1
abc and {(s, 1, 0), (0, 1, s)} ⊆ V m+1

bac .

Part 1: (1, s, 0) ∈ V m+1
abc

Consider the situation where all i ∈ Ibac choose vi = (0, 1, s). If all j ∈ Iabc choose
v j = (1, 0, s), c is elected since (2n + 1)s > n + 1. If instead all j ∈ Iabc choose
v′

j = (1, s, 0), b wins. Hence, (1, s, 0) is not dominated by (1, 0, s).
Next, assume that (s, 1, 0) ∈ V m

abc and consider the situation where all i ∈ Ibac

choose vi = (s, 1, 0). If all j ∈ Iabc choose v j = (s, 1, 0), b is elected. If instead all
j ∈ Iabc choose v′

j = (1, s, 0), a wins. Hence, (1, s, 0) is not dominated by (s, 1, 0).

We conclude that (1, s, 0) ∈ V m+1
abc .

Part 2: (1, 0, s) ∈ V m+1
abc

Consider the situation where n − 1 voters i ∈ Ibac choose vi = (s, 1, 0) and one
j ∈ Ibac chooses v j = (0, 1, s). If all k ∈ Iabc choose vk = (1, 0, s), a is elected, as
va > n(1+ s) > vb, vc. If instead all k ∈ Iabc choose v′

k = (1, s, 0) or v′
k = (s, 1, 0),

b is elected. Hence, vk = (1, 0, s) ∈ V m+1
abc .

Part 3: (0, 1, s) ∈ V m+1
bac

Consider the situation where all i ∈ Iabc choose vi = (1, s, 0). If all j ∈ Ibac choose
v j = (0, 1, s), b is elected, as vb > n(1 + s) > va, vc. If instead all j ∈ Ibac choose
v′

j = (s, 1, 0) or v′
j = (1, s, 0), a is elected. Hence, v j = (0, 1, s) ∈ V m+1

bac .

Part 4: (s, 1, 0) ∈ V m+1
bac
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i ∈ Iabc choose vi = (1, 0, s). If all j ∈ Ibac choose v j = (0, 1, s), c is elected.
If instead all j ∈ Ibac choose v′

j = (s, 1, 0), a wins. Hence, v j = (s, 1, 0) is not
dominated by (0, 1, s). If (1, s, 0)∉V m

bac, this completes the proof.
If (1, s, 0) ∈ V m

bac, consider the situation where all i ∈ Iabc choose vi = (1, s, 0)
and one j ∈ Ibac chooses (0, 1, s). If all n − 1 remaining voters k ∈ Ibac choose
vk = (1, s, 0), a is elected as by (��), va = 2n > 2ns + 1 = vb. If instead the
remaining k ∈ Ibac choose v′

k = (s, 1, 0), b is elected as by s > 1
2 , v

b = n +ns + s >

n+ns+(1−s) = va . Hence, vk = (s, 1, 0) is not dominated by (1, s, 0).We conclude
that (s, 1, 0) ∈ V m+1

bac . ��
Proof of Fact 2 Suppose (1) is satisfied. Then inΓ (�I , V 1), where each voter approves
of their most but not of their least preferred candidate, z receives a lower score than
either x or y and is thus ruled out as an outcome. This makes it a dominated (or
redundant) strategy inΓ (�I , V 1) to also approve of the less preferred candidate among
the two remaining, x and y. Removing these strategies, we find that the majority-
preferred among the two is the unique outcome. If instead the electorate is split, with
equally many voters preferring x over y as y over x , no further restriction of outcomes
beyond {x, y} can be achieved: voters in Ixyz ∪ Izxy and Iyxz ∪ Izyx are already left
with a single strategy while for voters i ∈ Ixzy ∪ Iyzx , their two remaining strategies
(they may or may not approve of z) are redundant.

Suppose instead that (1) is not satisfied under any labelling of candidates. Assuming
that x is the candidate who is most preferred for most voters, i.e., |Ixyz | + |Ixzy | ≥
|Iyxz | + |Iyzx | and |Ixyz| + |Ixzy | ≥ |Izxy | + |Izyx |, construct a profile v as follows:
(i) only voters for whom x is the most preferred approve of x , (ii) voters for whom y
is the most preferred candidate approve of it together with some voters for whom y is
the second most preferred, namely together with |Ixyz |+ |Ixzy |− |Iyxz |− |Iyzx | voters
from Ixyz ∪ Izyx—if there were not enough voters Ixyz ∪ Izyx to make this possible,
then (1) would have been satisfied. In the same way, let (iii) all voters i ∈ Izxy + Izyx

as well as |Ixyz | + |Ixzy | − |Izxy | + |Izyx | voters from Ixzy ∪ Iyzx approve of z.

Then we have a three-way tie with vx = vy = vz = |Ixyz |+|Ixzy |
2 . For a voter who

approves of only her most-preferred candidate at that profile a deviation rules out
its election, so is a worse reply for some �. For a voter who also approves of her
second-most-preferred candidate, a deviation rules out its election while preserving
her least-preferred candidate as a possible outcome. Again, this is a worse reply for
some �—it may change the outcome from b to c. Hence, the strategies used are
(iteratively) undominated and no outcome can be ruled out. ��
Proof of Theorem 3 Let us first analyse scoring rules where V consist of all permuta-
tions of (1, 1, 0) and (s, s, 0). For that, consider a preference profile where all voters
share the same preferences, I = Iabc. ��
Claim 3 For all i , if V m

i includes at least one of the two ballots (1, 0, 1) or (s, 0, s) as
well at least one of the two ballots (1, 1, 0) or (s, s, 0) then after eliminating dominated
strategies in the game Γ (�I , V m), V m+1

i will contain at least one of the two ballots
(1, 0, 1) or (s, 0, s) as well at least one of the two ballots (1, 1, 0) or (s, s, 0).

Proof. In the game Γ (�I , V m), let v be a ballot profile where all voters choose
(1, 0, 1) or (s, 0, s) so that va = vc > vb and c is elected if c � a. If some voter i

123



200 C. Basteck

switches to ṽi = (1, 1, 0) or ṽi = (s, s, 0), the outcome is a. If instead she switches to
(0, 1, 1) or (0, s, s), provided these are still included in V m

i , the outcome is c. Hence,
at least one of the ballots (1, 1, 0), (s, s, 0) is undominated and included in V m+1

i .
Analogously, let v be a profile where all voters choose (1, 1, 0) or (s, s, 0) so that

va = vb > vc and b is elected if b � a. If some voter i switches to ṽi = (1, 0, 1) or
ṽi = (s, 0, s), the outcome is a. If instead she switches to (0, 1, 1) or (0, s, s), the
outcome is b. Hence, at least one of the ballots (1, 0, 1), (s, 0, s) is undominated and
included in V m+1

i . Claim 3♦
Since initially they are included in the set of admissible ballots, at least one of

(1, 1, 0) and (s, s, 0) survives under iterative elimination of dominated strategies. But
then b cannot be excluded as an outcome, so that MEW (as well as U) is violated.

Next, let us analyse scoring rules where V consist of all permutations of (1, 0, 0)
and (s, 0, 0). For s = 1, we know by Theorem 2 that the Plurality rule violates U. For
s < 1, consider a preference profile where I = Iabc ∪ Iacb and |Iabc| = |Iacb| ≥ 2.

Claim 4 If (0, 1, 0) ∈ V m
abc and (0, 0, 1) ∈ V m

acb, then both strategies are undominated
in the game Γ (�I , V m) and hence (0, 1, 0) ∈ V m+1

abc , (0, 0, 1) ∈ V m+1
acb .

Proof. In the game Γ (�I , V m), let v be the ballot profile where all voters i ∈ Iabc

choose (0, 1, 0), all j ∈ Iacb choose (0, 0, 1). Then vb = vc ≥ 2 > 0 = va and b � c
yields outcome b. If any i ∈ Iabc deviates, c wins. Thus, vi = (0, 1, 0) is undominated
and included in V m+1

abc . Analogously, (0, 0, 1) is included in V m+1
acb . Claim 4♦

By induction, (0, 1, 0) ∈ Vabc and (0, 0, 1) ∈ Vacb survive under iterative elimina-
tion of dominated strategies. Then U is violated as b and c cannot be excluded.

Now, let us consider vote-splitting scoring rules, i.e., where V consists of all per-
mutations of (s, s, 0) and (1 − s, 0, 0). We want to show that such a rule violates
U if s < 1/2. For that, consider a preference profile where I = Iabc ∪ Iacb and
|Iabc| = |Iacb| ≥ 2.

Claim 5 If (0, 1 − s, 0) ∈ V m
abc and (0, 0, 1 − s) ∈ V m

acb, then both strategies are
undominated in the game Γ (�I , V m) and hence (0, 1− s, 0) ∈ V m+1

abc , (0, 0, 1− s) ∈
V m+1

acb .

Proof. In the game Γ (�I , V m), let v be the ballot profile where all voters i ∈ Iabc

choose (0, 1 − s, 0), all j ∈ Iacb choose (0, 0, 1 − s). Then vb = vc > va and
b � c yields outcome b. If any i ∈ Iabc deviates, c wins. Thus, vi = (0, 1 − s, 0) is
undominated and included in V m+1

abc . Analogously, (0, 0, 1 − s) is included in V m+1
acb .

Claim 5♦
By induction, (0, 1 − s, 0) ∈ Vabc and (0, 0, 1 − s) ∈ Vacb survive under iterative

elimination of dominated strategies. Then U is violated as b and c cannot be excluded.
Finally, we want to show that a vote-splitting scoring rule violates MEW if s > 1/2.

For s = 1, we know from Theorem 2 that the Antiplurality Rule violates MEW. For
s ∈ (1/2, 1), consider a preference profile where I = Iabc ∪ Ibac, |Iabc| = n + 1,
|Ibac| = n and n sufficiently large, n > 1

(1−s)(2s−1) . We will show that strategies
(s, s, 0), (s, 0, s), (1 − s, 0, 0) ∈ V m

abc and (0, s, s), (0, 1 − s, 0) ∈ V m
bac are undomi-

nated in Γ (�I , V m) and hence included in V m+1
abc and V m+1

bac respectively.
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(i) For i ∈ Iabc, (s, s, 0) is undominated in Γ (�I , V m).
Consider a profile v where

• i votes vi = (s, s, 0)
• one j ∈ Iabc votes v j = (s, 0, s)
• remaining n − 1 of Iabc vote v j = (1 − s, 0, 0)
• all n of Ibac vote v j = (0, s, s)

Then vb = vc = s(n + 1) and va = 2s + (1 − s)(n − 1), so that

va − vb = −sn + 3s + n − 1 − sn − s = (1 − n)(2s − 1) < 0

and b is elected for b � c. A switch by i to any other ballot ṽi ∈ V would never raise
the score of a and would either reduce the score of b or increase the score of c, thereby
changing the outcome to c. Hence (s, s, 0) is undominated.

(ii) For i ∈ Iabc, (s, 0, s) is undominated.
Consider a ballot profile v where

• i votes vi = (s, 0, s)
• n of Iabc vote v j = (1 − s, 0, 0)

• n −
⌊

s
2s−1

⌋
of Ibac vote v j = (0, 1 − s, 0)33

•
⌊

s
2s−1

⌋
of Ibac vote v j = (0, s, s)

Then

va − vb = s − (2s − 1)

⌊
s

2s − 1

⌋

∈ [0, 2s − 1).

Moreover, va −vc = n(1− s)− s
⌊

s
2s−1

⌋
> 1

2s−1 − s2
2s−1 > 0 so that and a is elected

for a�b. A switch by i to ballot (1−s, 0, 0)would change the score difference va −vb

by −s + (1− s) = 1− 2s so that b overtakes a. As any other ballot would change the
difference va − vb even more in b’s favour, we conclude that (s, 0, s) is undominated.

(iii) For i ∈ Iabc, (1 − s, 0, 0) is not dominated by (s, 0, s) or (0, 0, 1 − s).
Let v be the ballot profile where all i ∈ Iabc vote vi = (1 − s, 0, 0), all j ∈ Ibac

vote v j = (0, s, s). Then vb = vc = sn is larger than va = (1−s)(1+n) as s > 1−s
and n is large. Then for b � c, b wins while a switch by i to (s, 0, s) or (0, 0, 1 − s)
yields c.

(iv) For i ∈ Iabc, (1−s, 0, 0) is not dominated by (s, s, 0), (0, s, s) or (0, 1−s, 0).
Let v be the ballot profile where all j ∈ Iabc vote v j = (1 − s, 0, 0), all j ∈ Ibac

vote v j = (0, 1 − s, 0). Then va − vb = 1 − s, vc = 0 and a is elected. A switch by
i to (s, s, 0) would yield va = vb, so that for b � a, a would no longer be elected. A
switch by i to (0, s, s) or (0, 1 − s, 0) would likewise yield outcome b.

(v) For i ∈ Ibac, (0, s, s) is undominated.
Let v be a ballot profile where one j ∈ Iabc votes v j = (s, s, 0), n of Iabc vote

v j = (1− s, 0, 0) and all j ∈ Ibac vote v j = (0, 1 − s, 0). Then va = vb and vc = 0

33 �x� denotes the largest integer weakly smaller than x ; �x� the smallest weakly larger integer.
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so that for a � b, a is elected. For i ∈ Ibac, only a switch to (0, s, s) would increase
the difference vb − va and hence yield outcome b.

(vi) For i ∈ Ibac, (0, 1− s, 0) is not dominated by (s, s, 0) (while (s, s, 0) ∈ V m
bac).

If (s, s, 0) ∈ V m
bac, consider the ballot profile v where every voter chooses (s, s, 0).

Then if a � b, candidate a is elected. A switch by i to (0, 1 − s, 0) yields outcome b.
(vii) For i ∈ Ibac, (0, 1 − s, 0) is not dominated by (1 − s, 0, 0), (0, 0, 1 − s),

(0, s, s) or (s, 0, s).
Consider a ballot profile v where

• One j ∈ Iabc votes (s, 0, s),
• n of Iabc vote (1 − s, 0, 0),

•
⌈

s
1−s

⌉
> 1 of Ibac vote (0, 1 − s, 0),

• n −
⌈

s
1−s

⌉
of Ibac vote (0, s, s).

Then

vb − vc = (1 − s)

⌈
s

1 − s

⌉

− s ∈ [0, 1 − s)

and

va − vc = n(1 − 2s) + s

⌈
s

1 − s

⌉

< − 1

1 − s
+ s

(
s

1 − s
+ 1

)

= s − 1

1 − s
< 0

so the b is elected for b�c. If i ∈ Ibac switches from (0, 1−s, 0) to either (1−s, 0, 0),
(0, 0, 1− s), (0, s, s) or (s, 0, s), she reduces the payoff difference vb − vc by at least
1 − s, so that c’s score is now higher than b’s, ruling out b as an outcome.

Together, (i)-(vii) establish by induction that (s, s, 0) ∈ Vabc and (0, s, s) ∈ Vbac

are iteratively undominated. Thus b remains a possible outcome, violating MEW. ��
Proof of Theorem 5 Wewill now complete the proof for the only if part, i.e., show that
any non-EAV-rule V fails MEPD. Recall our definitions

s = min{s |(1, s, 0) ∈ V )} and s̄ = max{s |(1, s, 0) ∈ V )}.

As V is a non-EAV-rule, s > 0 or s̄ < 0. Section 4.2 considered the case s + s̄ < 1
under the assumption s, s̄ ∈ Q. To deal with irrational s or s̄, we will make use of the
following facts. ��
Claim 6 Let x, y ∈ R

+. Then for any ε > 0, there exist infinitely many p, q ∈ N such
that 0 ≤ px − qy < ε. In particular, for any ε and any M there are infinitely many
p, q > M that satisfy the inequality. Similarly, there are (infinitely many) p, q such
that −ε < px − qy ≤ 0.

To see this, rewrite the inequality as 0 ≤ p −q y
x < ε

x . For
y
x ∈ Q the claim follows

immediately. If instead y
x is irrational, it follows from the fact that for any r ∈ R\Q

the set S := {qr − �qr� | q ∈ N} is dense in [0, 1]—one can then find (infinitely
many) q such that q y

x − �q y
x � ∈ (1 − ε

x , 1] and set p = �q y
x � + 1.
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Claim 7 Let x, y ∈ R
+ and x

y /∈ Q. Then for any ε > 0, there exist infinitely many
p, q ∈ N such that ε ≤ px − qy < 2ε. In particular, for any ε and any M there are
infinitely many p, q > M that satisfy the inequality.

Rewrite the inequality as ε
x ≤ p − q y

x < 2ε
x . Then it follows from the fact that for

any r ∈ R\Q the set S := {qr − �qr� | q ∈ N} is dense in [0, 1]—one can then find
(infinitely many) q such that q y

x − �q y
x � ∈ (1 − 2ε

x , 1 − ε
x ] and set p = �q y

x � + 1.
As a final preparatory observation, note that since V is finite, there is a minimal

distance in assigned scores, i.e., there exists δ > 0 such that for any two ballots and
any candidate for whom they differ in their assigned score, they differ by at least δ.

Case 1: s + s̄ < 1, with s or s̄ in R\Q. We will show that iterative elimination
of dominated strategies cannot narrow down the set of strategies beyond V ′′

abc =
{(s̄, 1, 0), (1, 0, s), (1, s, 0)} and V ′′

bca = {(0, s̄, 1), (0, 1, s̄), (s, 1, 0)}.
For that, consider |Iabc| = n1 + n2 + n3 and |Ibca| = m + n1 + n2 + n3 for some

m, n1, n2, n3 ∈ N and 0 < m ≤ n2 + n3 to be determined later. By MEPD, b should
be the unique winner for m > 0. Now, construct v as follows.

• m of Iabc choose vi = (1, 0, s)
• n1 of Iabc choose vi = (s̄, 1, 0)
• n2 + n3 − m of Iabc choose vi = (1, s, 0)
• m of Ibca choose vi = (s, 1, 0)
• n1 of Ibca choose vi = (0, 1, s̄)
• n2 + n3 of Ibca choose (0, s̄, 1)

Then va = vc = m · s + n1 · s̄ + n2 + n3, vb = m(1 − s) + 2n1 + (n2 + n3)(s + s̄)
and hence

va,c − vb = −m (1 − 2s)
︸ ︷︷ ︸

>0

−n1 (2 − s̄)
︸ ︷︷ ︸

>0

+(n2 + n3) (1 − s − s̄)
︸ ︷︷ ︸

>0

.

By Claim 6 we find m, n1, n2, n3 > M , for any given M , such that −m(1− 2s) +
n2(1−s− s̄) ∈ [0, δ

4 ) and−n1(2− s̄)+n3(1−s− s̄) ∈ [0, δ
4 ). Then va,c−vb ∈ [0, δ

2 ).
Moreover, n3 can be chosen large enough (together with n1) so that n2+n3−m > M .
Denote the set of tuples (m, n1, n2, n3) ∈ N

4 for whom these conditions are satisfied
as P M .

Now construct the following additional profiles ṽ, v̂ from v with (m, n1, n2, n3) ∈
P M by letting some voters switch to different strategies. By choosing M large enough
we can ensure that each construction will be well defined, i.e., that the number of
voters initially using a strategy at v is larger than the number of voters who switch
away from that strategy in the construction.

If 1−s
1−s̄ is irrational, construct ṽ from v by letting, k of Iabc switch from (1, s, 0)

to (s̄, 1, 0) and l of Ibca from (0, 1, s̄) to (0, s̄, 1). Then ṽb − ṽc = vb − vc + k(1 −
s) − l2(1 − s̄) and ṽc − ṽa = (k + l)(1 − s̄). By Claim 7, we can find k, l such that
k(1− s) − l2(1− s̄) ∈ [ δ

2 , δ) so that ṽ
b − ṽc ∈ (0, δ). Moreover, choosing k, l large,

we have ṽc − ṽa > 2.
If instead 1−s

1−s̄ ∈ Q but 1+s
1−s̄ /∈ Q, construct ṽ from v by letting, k of Iabc switch

from (1, 0, s) to (s̄, 1, 0) and l of Ibca from (0, 1, s̄) to (0, s̄, 1). Then ṽb − ṽc =
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vb − vc + k(1 + s) − l2(1 − s̄) and ṽc − ṽa = k(1 − s − s̄) + l(1 − s̄). By Claim
7, we can find k, l such that k(1 + s) − l2(1 − s̄) ∈ [ δ

2 , δ) so that ṽb − ṽc ∈ (0, δ).
Moreover, choosing k, l large, we have ṽc − ṽa > 2.

If instead 1−s
1−s̄ ∈ Q and 1+s

1−s̄ ∈ Q, then 1
1−s̄ ∈ Q, hence s̄ ∈ Q and hence also

s ∈ Q—a case we have already dealt with in Sect. 4.2.
Construct v̂ from v by letting k′ voters of Iabc switch from (s̄, 1, 0) to (1, s, 0) and

k′ of Ibca switch from (0, 1, s̄) to (0, s̄, 1). Then a and c are still tied, but v̂a,c − v̂b =
va,c − vb + k′(3 − s − 2s̄), so that for k′ large, v̂a,c − v̂b > 2.

To see that (1, s, 0) ∈ V ′′
abc is undominated in any game Γ (�I , V ′) with v ∈

V ′ ⊆ V 1, consider a voter who uses that strategy in v. A move to any other strategy
would either decrease the score of a by at least δ or increase the score of b or c by at
least δ. Either way, a would no longer be the outcome for a � b, c. In the same way,
(1, 0, s) ∈ V ′′

abc is seen to be undominated as a move away from it (at v) would rule
out outcome a. Also, (s̄, 1, 0) ∈ V ′′

abc is not dominated by any strategy (s, 1, 0), s < s̄.
To see that (s̄, 1, 0) ∈ V ′′

abc is not dominated by any other strategy, consider a voter
who uses that strategy in ṽ. Here b is the unique outcome, but a lower score of b or a
higher score for c (by at least δ) would make c the unique outcome.

To see that (0, 1, s̄) ∈ V ′′
bca is likewise undominated, consider a voter who uses

it at ṽ. Here b is the unique outcome. Any strategy that reduces the score difference
between b and c makes c the unique winner. Moreover, it cannot be dominated by a
strategy that weakly increases the score difference – it would then either reduce the
score of c or increase the score of a, so that in both cases a voter using that strategy
instead of (0, 1, s̄) would make a the unique outcome at v̂.

To see that (s, 1, 0) ∈ V ′′
bca is likewise undominated, consider a voter who uses it

at ṽ. Here b is the unique outcome and any other strategy that decreases the score of b
or increases the score of c would make c the unique winner. Also, a strategy (s, 1, 0)
that assigned a higher score to a would make a the unique outcome at v̂.

To see that (0, s̄, 1) ∈ V ′′
bca is likewise undominated, consider a voter who uses it

at v̂. Here c may win but any other strategy that decreases the score of c or increases
the score of a would make a the unique winner. Also, a strategy (0, s, 1) that assigned
a lower score to b (by at least δ) would rule out b at ṽ.

Case 2: s + s̄ > 1. We will show that iterative elimination of dominated strategies
cannot narrow down the set of strategies beyond V ′′

abc = {(s̄, 1, 0), (1, 0, s), (1, s, 0)}
and V ′′

bca = {(0, s̄, 1), (0, 1, s̄), (s, 1, 0)}.
For that, consider |Iabc| = m + n1 + n2 + n3 and |Ibca | = n1 + n2 + n3 for some

m, n1, n2, n3 ∈ N and 0 < m ≤ n1 + n2 to be determined later. By MEPD, a should
be the unique winner for m > 0. Now, construct v as follows.

• m of Iabc choose vi = (s̄, 1, 0)
• n1 + n2 of Iabc choose vi = (1, 0, s)
• n3 of Iabc choose vi = (1, s, 0)
• m of Ibca choose vi = (0, s̄, 1)
• n1 + n2 − m of Ibca choose vi = (0, 1, s̄)
• n3 of Ibca choose vi = (s, 1, 0)
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Then va = vb = m · s̄ + n1 + n2 + n3(1+ s), vc = m(1− s̄) + (n1 + n2)(s + s̄) and
hence

va,b − vc = m (2s̄ − 1)
︸ ︷︷ ︸

>0

−(n1 + n2) (s + s̄ − 1)
︸ ︷︷ ︸

>0

+n3 (1 + s)
︸ ︷︷ ︸

>0

.

By Claim 6, for any M , there are m, n1, n2, n3 > M such that m(2s̄ − 1) − n1(s +
s̄ − 1) ∈ [0, δ

4 ) and −n2(s + s̄ − 1) + n3(1 + s) ∈ [0, δ
4 ), so that v

a,b − vc ∈ [0, δ
2 ).

Moreover, n2 may be chosen large enough (together with n3) such that n1 + n2 > m.
Denote the set of tuples (m, n1, n2, n3) ∈ N

4 such that these conditions are satisfied
as P M .

At any profile v, with (m, n1, n2, n3) ∈ P M , there is either a tie between a and b
(with c within δ

2 -distance) or a tie involving all three candidates. Letting some voters
in Ibca switch from (s, 1, 0) to (0, s̄, 1) changes the election outcome to c. It remains
to show that the strategies used in the construction of v are iteratively undominated.

To see that, vi = (1, 0, s) ∈ V ′′
abc is undominated in any game Γ (�I , V ′) where

v ∈ V ′ ⊆ V 1, observe that any other strategy would either decrease the score of a
or increase the score of b or c by at least δ. Hence, any deviation from vi = (1, 0, s)
would preclude the election of a and hence be worse for i ∈ Iabc (for a � b, c). In the
same way, (1, s, 0) ∈ V ′′

abc and (0, 1, s̄), (s, 1, 0) ∈ V ′′
bca are seen to be undominated

in any game Γ (�I , V ′) where v ∈ V ′ ⊆ V 1 as any deviation by a voter would rule
out the election of their most preferred candidate.

To see that (s̄, 1, 0) ∈ V ′′
abc is undominated, construct ṽ from v by letting k of Iabc

switch from (1, 0, s) to (s̄, 1, 0) and l from Ibca switch from (s, 1, 0) to (0, s̄, 1). Then

ṽb − ṽa = k(2 − s̄) + l(s + s̄ − 1) and

ṽb − ṽc = vb − vc + k(1 + s) − l(2 − s̄).

By Claim 6, we can find k and l such that k(1+ s)− l(2− s̄) ∈ [0, δ
2 ) and, with k and

l large, k(2 − s̄) + l(s + s̄ − 1) > 2.
For such a pair k, l, set M̃ = max{k, l}. Then for any profile vwith (m, n1, n2, n3) ∈

P M̃ , ṽ is well defined as n1 + n2 > M̃ ≥ k and n3 > M̃ ≥ l. Moreover, at ṽ,

ṽb − ṽb > 2 and ṽb − ṽc ∈ [0, δ)

so that b is either the unique outcome or tiedwith c. If a voter i ∈ Iabc, who at ṽ chooses
(s̄, 1, 0), would deviate to any other strategy in V 1, it would either increase the score
of c or reduce the score of b by at least δ (strategies (s, 1, 0) with s < s̄ are dominated
and hence not in V 1

abc). Such a deviation would hence make c the unique winner—thus
(s̄, 1, 0) ∈ V ′′

abc is undominated in any game Γ (�I , V ′) where v ∈ V ′ ⊆ V 1.
To see that (0, s̄, 1) ∈ V ′′

bca is undominated, consider first s̄ = 1. Then (0, s̄, 1) =
(0, 1, s̄) ∈ V ′′

bca for which we have already seen that it is undominated as long as a
profile v with (m, n1, n2, n3) ∈ P M is included in V ′ ⊆ V 1.
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Now, consider s̄ < 1. If 1+s
1−s̄ /∈ Q construct v̂ from v by letting k′ of Iabc switch

from (s̄, 1, 0) to (1, s, 0) and l ′ of Ibca switch from (s, 1, 0) to (0, s̄, 1). Then

v̂c − v̂b = vc − vb + k′(1 − s) + l ′(2 − s̄) and

v̂c − v̂a = vc − va − k′(1 − s̄) + l ′(1 + s).

By Claim 7 we can find k′ and l ′ such that −k′(1 − s̄) + l ′(1 + s) ∈ [ δ
2 , δ) and,

with k′ and l ′ large, v̂c − v̂b > 2.
For such a pair k′, l ′, set M̂ = max{k′, l ′, M̃}. Then for any profile v with

(m, n1, n2, n3) ∈ P M̂ ⊆ P M̃ , v̂ is well defined as m > M̂ ≥ k′ and n3 > M̂ ≥ l ′.
Moreover, at v̂,

v̂c − v̂b > 2 and v̂c − v̂a ∈ (0, δ)

so that c is the unique outcome. If a voter i ∈ Ibca , who at v̂ chooses (0, s̄, 1), would
deviate to any other strategy in V 1, it would either decrease the score of c or increase
the score of a by at least δ (strategies (0, s, 1) with s < s̄ are undominated and hence
not in V 1

bca). Such a deviation would hence make a the unique winner—which shows
that (0, s̄, 1) ∈ V ′′

bca is undominated in any game Γ (�I , V ′) where v ∈ V ′ ⊆ V 1.

If instead 1+s
1−s̄ ∈ Q but s

1−s̄ /∈ Q construct v̂ from v by letting k′ of Iabc switch
from (s̄, 1, 0) to (1, s, 0) and l ′ of Iabc switch from (1, s, 0) to (1, 0, s). Then

v̂c − v̂b = vc − vb + k′(1 − s) + l ′2s and

v̂c − v̂a = vc − va − k′(1 − s̄) + l ′s

By Claim 7 we can again find k′ and l ′ such that −k′(1 − s̄) + l ′s ∈ [ δ
2 , δ) and,

with k′ and l ′ large, v̂c − v̂b > 2 and complete the proof as before.
Finally, if both 1+s

1−s̄ ,
s

1−s̄ ∈ Q, then also 1
1−s̄ ∈ Q. But then s̄ ∈ Q and thus also

s ∈ Q. Then, we can find v ∈ P M̃ such that va = vb = vc. Construct v̂ from v by
letting, as before, k′ of Iabc switch from (s̄, 1, 0) to (1, s, 0) and l ′ of Ibca switch from
(s, 1, 0) to (0, s̄, 1). Then

v̂c − v̂b = k′(1 − s) + l ′(2 − s̄) and v̂c − v̂a = −k′(1 − s̄) + l ′(1 + s).

Moreover, k′ and l ′ may be chosen such that v̂c − v̂a = 0 and v̂c − v̂b > 2 and we
can complete the proof as before.

Case 3: s + s̄ = 1. Once more, we will show that iterative elimination of
dominated strategies cannot narrow down the set of strategies beyond V ′′

abc =
{(s̄, 1, 0), (1, 0, s), (1, s, 0)} and V ′′

bca = {(0, s̄, 1), (0, 1, s̄), (s, 1, 0)}.
Let |Iabc| = m + n1 + n2 and |Ibca | = n1 + n2. Depending on s and s̄ we will

choose m even or odd, but small, i.e., m ∈ {1, 2}; n1 and n2 will be chosen sufficiently
large so that each of the following three ballot profiles is well defined. First, at v,

• m + 1 + 2p of Iabc choose (s̄, 1, 0)
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• n1 − 1 − p of Iabc choose (1, 0, s)
• n2 − p of Iabc choose (1, s, 0)
• 1 of Ibca chooses (s, 1, 0)
• n1 − 1 − q of Ibca choose (0, 1, s̄)
• n2 + q of Ibca choose (0, s̄, 1)

Then vb − vc = m + 2 + 2p − q2(1 − s̄) and vc − va = −ms − 1 + p(−2s̄ −
s + 2) + q(1− s̄) = −s̄(m + 1) + s(p + q). By Claim 6, we can find infinitely many
(m + 2 + 2p), q such that vb − vc ∈ [0, δ). Moreover, choosing m ∈ {1, 2} and p, q
sufficiently large yields vc − va > 2.

Next, write n for the sum n1 + n2 and construct ṽ as follows:

• n + m − u of Iabc choose (1, s, 0)
• u of Iabc choose (1, 0, s)
• n − w of Ibca choose (0, s̄, 1)
• w of Ibca choose (s, 1, 0)

Then ṽa − ṽc = (m + w) − (u − w)s and ṽa − ṽb = m(1 − s) + us and by Claim
6 we can find infinitely many u, w, for any m given by the construction of v above,
such that ṽa − ṽc ∈ [0, δ). Moreover, choosing u large enough yields va − vb > 2.
Analogously, for any given m, we may choose u, w such that ṽc − ṽa ∈ [0, δ).

Finally, at v̂

• m of Iabc choose (s̄, 1, 0)
• m + 1 of Iabc choose (1, 0, s)
• n − m − 1 of Iabc choose (1, s, 0)
• m of Ibca choose (0, s̄, 1)
• 1 of Ibca choose (0, 1, s̄)
• n − m − 1 of Ibca choose (s, 1, 0)

Then v̂a = v̂b = m(s̄ − s) + n(1 + s) − s and v̂c = m(1 + s) + 1. Hence v̂a = v̂b

and, for n large enough, v̂a,b − v̂c > 2.
For all constructions to be well defined, set m ∈ {1, 2} as required in the derivation

of a (near) tie at v and n large enough to simultaneously satisfy all implicit lower
bounds in the construction of the different profiles.

We are now ready to sum up: the exact tie of a and b at v̂ shows (1, 0, s) ∈ V ′′
abc to

be undominated in any game Γ (�I , V ′) where V ′′ ⊆ V ′ ⊆ V 1: at v̂, a is a possible
outcome but a deviation by a voter who uses (1, 0, s) in v̂ to another ballot in V 1

abc
rules out a. Similarly, (1, s, 0) ∈ V ′′

abc is not dominated by any strategy in V 1
abc.

To see that (s̄, 1, 0) ∈ V ′′
abc is undominated in any game Γ (�I , V ′) where V ′′ ⊆

V ′ ⊆ V 1, consider the near tie of b and c at v—any deviation within V 1
abc would lower

the score of b or increase the score of c by at least δ andwould hencemake c the unique
outcome. In the same way, v demonstrates that (s, 1, 0) ∈ Vbca is undominated.

To see that (0, 1, s̄) is not dominatedby anyballot that yields a lower score difference
between b and a consider the exact tie of a and b at v̂. To see that it is not dominated
by any ballot that yields a lower score difference between c and a, consider the near tie
of c and a (c with a weakly higher score than a) at ṽ. In the same way, (0, s̄, 1) ∈ V ′′

bca
is seen to not be dominated by any strategy in V 1

bca . ��
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