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This paper explores how firms that lack expertise in machine learning (ML) can leverage the so-called AI

Flywheel effect. This effect designates a virtuous cycle by which, as an ML product is adopted and new user

data are fed back to the algorithm, the product improves, enabling further adoptions. However, managing

this feedback loop is difficult, especially when the algorithm is contracted out. Indeed, the additional data

that the AI Flywheel effect generates may change the provider’s incentives to improve the algorithm over

time. We formalize this problem in a simple two-period moral hazard framework that captures the main

dynamics among ML, data acquisition, pricing, and contracting. We find that the firm’s decisions crucially

depend on how the amount of data on which the machine is trained interacts with the provider’s effort. If

this effort has a more (less) significant impact on accuracy for larger volumes of data, the firm underprices

(overprices) the product. Interestingly, these distortions sometimes improve social welfare, which accounts

for the customer surplus and profits of both the firm and provider. Further, the interaction between incentive

issues and the positive externalities of the AI Flywheel effect has important implications for the firm’s data

collection strategy. In particular, the firm can boost its profit by increasing the product’s capacity to acquire

usage data only up to a certain level. If the product collects too much data per user, the firm’s profit may

actually decrease, i.e., more data is not necessarily better. As a result, the firm should consider reducing its

product’s data acquisition capacity when its initial dataset to train the algorithm is large enough.

Key words : Data, Machine Learning, Data Product, Pricing, Incentives, Contracting

1 Introduction

To train ML algorithms, companies often deploy their artificial intelligence (AI)-based products

early and collect usage data from their first customers. As new data are fed back to the algorithm,

the technology improves, enabling further adoptions and thus the acquisition of additional data.

This virtuous feedback loop, sometimes referred to as the AI Flywheel effect in the popular press
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(Trautman 2018), compounds the economic effect by which quality increases demand, according

to the statistics principle whereby data improves accuracy.

The AI Flywheel effect has many applications, from voice recognition systems (Sarikaya 2019)

to self-driving vehicles (Miller 2016), and even explains how certain web search engines ended up

dominating the market. Nonetheless, this virtuous cycle is perhaps most useful for smaller teams

or novel and specialized applications for which data are scarce. The founders of the startup Blue

River Technology famously established their first dataset manually to train an AI system that

would distinguish weeds from crops, a crucial step to optimize pesticide sprays in farming (Ng

2018, Trautman 2018). This yielded an algorithm with low performance, but with its adoption by

early users, the company could leverage the effects and significantly improve the algorithm. The

company was sold in 2017 for more than $300 million (Golden 2017).

However, despite its apparent simplicity, the AI Flywheel effect is difficult to implement, espe-

cially among the small organizations that would most benefit from it. First, a firm makes choices

and, in particular, pricing decisions that affect demand alongside accuracy and hence interfere

with the virtuous cycle. More specifically, the AI Flywheel effect introduces an additional tradeoff

between improving the accuracy of algorithms and maximizing revenue, which the firm needs to

consider when setting its pricing strategy.

Second, and perhaps more importantly, many firms lack the expertise to develop ML algorithms.

Indeed, the economy has experienced a significant shortage of skilled data scientists, which par-

ticularly affects startups and small organizations (Nicolaus Henke et al. 2016). This shortage has

given rise to a striving outsourcing industry (Research Nester Pvt. Ltd 2019), and many startups

have achieved success by outsourcing their technology (examples include Skype, Opera, and Slack,

to name a few; see Cengiz 2015).

However, relying on outsourcing gives rise to incentive issues, which may impair accuracy and

thus again interfere with the AI Flywheel effect. For example, a provider may shirk by applying

standard third-party software that may be suboptimal for the task or may expose the firm to

threats (Kendra et al. 2019, Bursztein 2018). If these algorithms are not developed with care, they

only learn surface statistical regularities, which affects their ability to generalize and thus their

accuracy (Jo and Bengio 2017). More generally, the provider may have an incentive to wait for

more usage data before exerting any effort to improve the algorithm. In fact, incentive issues such

as these may not disappear if the firm does not outsource the algorithm but instead employs an

expert. Indeed, the details of ML algorithms and their outputs notoriously suffer from a lack of

explainability (Lipton 2016, Ribeiro et al. 2016), rendering the expert’s efforts to improve accuracy

difficult to observe and contract on.
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Third, the amount of data to which the provider has access for training the algorithm may

exacerbate the incentive issues. For instance, research in AI has suggested that accuracy depends

less on the specifics of the algorithm and more on the data on which it is trained as data volume

increases (Banko and Brill 2001, Halevy et al. 2009). In this case, the provider’s effort to develop the

machine matters more when data are scarce, that is, in the early stages of the AI Flywheel effect.

Hence, the intensity of the incentive issues may change over time as the feedback loop between

accuracy and usage data unfolds.

The goal of this paper is to shed light on how firms that lack expertise in ML can leverage and

optimize the AI Flywheel effect. In this context, we seek to understand how the need to mitigate the

incentive issues created by outsourcing the algorithm affect the firm’s pricing and data collection

strategies. To that end, we formalize the problem in a simple two-period moral hazard framework,

which captures the previous three features: the accuracy vs. revenue tradeoff, the incentive issues,

and the impact of data on the intensity of these issues. In particular, we draw on the ML literature

to represent how the accuracy of an algorithm depends on the amount of data on which it is

trained.

Our analysis reveals that the firm’s decisions crucially depend on how the amount of data on

which the machine is trained interacts with the provider’s effort. Specifically, if the provider’s effort

has a more significant impact on accuracy for larger volumes of data, the firm underprices the

product in order to acquire more data from the market, retrain the algorithm, and generate more

revenues in the future. By contrast, the firm overprices and collects less data if the provider’s

effort is most impactful when data are scarce. These effects also affect social welfare and customer

surplus, which improve (deteriorate) when the impact of the provider’s effort on accuracy increases

(decreases) with more data.

More importantly, the interaction between the positive externalities of the AI Flywheel effect

and the incentive issues can alter the firm’s data collection strategy. In particular, a key and specific

design choice for data products is the amount of data that the product can collect on its user,

which we refer to as the data acquisition capacity in the following (Spencer 1990, Kos et al. 2012).

The firm can increase this amount by relying on third-party services in the case of mobile and

web applications (Deshpande 2019) or increasing the capacity of embedded sensors in the case of

physical products (McGrath and Scanaill 2013). This, in turn, should provide the firm with more

data overall to improve its algorithm and ultimately increase profits.

We find, however, that increasing the product’s data acquisition capacity sometimes reduces

the total amount of data collected by the firm. This happens when the provider’s effort has a

less significant impact on accuracy for larger volumes of data. In this case, increasing the data

acquisition capacity does boost profit, but up to a certain point. If the product collects too much
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data per user, the profit may actually decrease. In other words, more data is not necessarily better.

This further implies that the firm should consider reducing the product’s data acquisition capacity

once its initial dataset to train an algorithm is large enough.

These findings are overall robust to a variety of settings. We show that they hold in a competitive

provider market or when the firm let the provider shirk in the beginning of the algorithm’s training

process (i.e., in the first period of our setup). The firm may also be able to withhold a portion of

the collected data from the provider. In this case, the firm needs to decide how much data to share,

in addition to its data collection and pricing strategies. In this setting, we show that improving

the acquisition capacity too much does not bring any additional benefit when the data impact is

decreasing.

Taken together, these results characterize how the interaction between the incentive issues and

the positive adoption externalities of the AI Flywheel effect significantly affects the firm’s pricing

and data collection strategies. One key driver of these effects is the impact of data on the provider’s

effort when training the algorithm.

After reviewing the literature in Section 2 and presenting the model in Section 3, in Section 4

we characterize the deviations from first best arising from incentive issues . We then analyze the

impact of improving the product’s data acquisition capacity on the firm’s data collection strategy

and its profit in Section 5. We explore the robustness of our findings in Section 6 and discuss their

managerial implications along with future research directions in Section 7.

2 Literature Review

The advent of the digital economy has recently generated new research on data privacy and markets

in both management science and economics. This new stream of research explores the impact of

data leakage in platform business models (Acemoglu et al. 2019), the issue of selling data (Bimpikis

et al. 2019, Mehta et al. 2019), and the effect of collecting data on privacy and price discrimination

(Loertscher and Marx 2019). By contrast, our work focuses on the outsourcing of ML algorithms

that make use of this data, which creates incentive issues that dynamically interact with the amount

of available data. More generally, our study is the first in this stream of research to explore the

problem of managing the AI Flywheel effect.

Our work is also related to the large literature on dynamic pricing with learning. Of particular

interest is the recent stream of research on new experience goods and quality learning. Yu et al.

(2015), for instance, study the dynamic pricing of new experience goods in the presence of two-sided

learning (learning about quality via consumer reviews). In their setting, the pricing decision affects

both revenue and the flow of information. They show that consumer-generated quality information

may decrease the firm’s profit and even consumer surplus. Feldman et al. (2018) also analyze the
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pricing and quality design of new experience goods for consumers who are social learners. They

characterize the deviation of the firm’s optimal policy from a setting without social learning. In

these setups, quality is a decision variable that is set ex ante, and learning concerns either the firm

learning about the consumers or the consumers learning about quality. By contrast, accuracy is

dynamically improved in our setting and learning concerns the training of the algorithm, that is,

the enhancement of quality. In addition, we consider moral hazard issues, which is not the focus of

this stream of research.

Another related stream of the literature studies the positive network effects (or positive adoption

externalities) that customers derive from the consumption of the same product by others (see Katz

and Shapiro 1994 and Shy 2011 for a general review). In particular, this literature considers the

dynamic monopoly pricing of durable goods with network effects that are close to our first-best

benchmark (see for instance Cabral et al. 1999, Bensaid and Lesne 1996, Gabszewicz and Garcia

2008). In these studies, customers are strategic and long-lived and thus have incentives to postpone

their purchases in order to benefit from the network effects generated by others’ consumption. This

induces the firm to decrease the price in the first period.

Our work differs from this stream of research for two reasons. First, we explore whether a firm

should strengthen the network effects, which corresponds to improving the data acquisition capacity

in our setup. Although the acquisition capacity is a natural design choice in our setting, firms

cannot easily affect the intensity of the network effects in the aforementioned literature. Second,

these studies are not concerned with incentive issues on the provider side. In our setup, however,

the amount of collected data interacts with both the positive adoption externalities of the AI

Flywheel effect and the incentive issues that developing the product brings about.

From a more technical point of view, our model is a dynamic moral hazard problem with binary

effort choices and binary outcomes. Different versions of this problem have been studied, especially

in the sales force management literature. Schöttner (2016) analyzes a multi-period setting with

different sales probabilities in each period when the firm can obtain only aggregate information on

sales. Despite being different across periods, the sales probabilities are taken as constant. Kräkel and

Schöttner (2016) consider a two-period model with binary effort choices and analyze the optimal

contracts. They also study a case where the second-period sales opportunity randomly depends on

the outcome of the first period with exogenous probabilities. Schmitz (2005, 2013) explore similar

settings, where the probabilities of success are assumed to change across periods.

In addition, although these papers explore various configurations of the uncertainty structure,

the probability of observing a favorable outcome in their models is fixed (Schöttner 2016) or

exogenously depends on the outcome in the first period (Kräkel and Schöttner 2016, Schmitz 2005,

2013). By contrast, these probabilities are fully endogenous in our setup.
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In this stream of research, Dai and Jerath (2013, 2019) study a slightly more general dynamic

moral hazard problem with binary effort choices and three possible outcomes. A key aspect of

this model, which is also discussed in de Véricourt and Gromb (2018, 2019) for more general

distributions of outcomes, is that the firm’s capacity decision interacts with the moral hazard

problem. Indeed, in Dai and Jerath (2013), de Véricourt and Gromb (2018), Dai and Jerath (2019),

and de Véricourt and Gromb (2019), a low capacity level may censor high demand realizations,

which exacerbates the incentive issue. More generally, deviations from the first-best setting are

observed in other contexts as well, (see, e.g., Alles et al. 1995 for over/understocking decisions in

just-in-time production systems). Indeed, a common theme of the moral hazard literature is that it

is attractive for the principal to take actions that mitigate incentive issues and the unobservability

of the agent’s effort in particular.

Our work considers a different type of interaction between the firm’s decision (pricing in our case)

and the moral hazard problem through a monotonic property of the data impact ratio. Moreover,

ours is the first to articulate this theme in the context of data analytics. Specifically, the AI

Flywheel effect endogenously interacts with incentive issues, and both are affected by data. Thus,

the firm’s ability to leverage the AI Flywheel effect is constrained by the incentive misalignment

between the firm and the provider.

Our work also contributes to the rich operations management literature in entrepreneurship, as

our setup is particularly relevant for cash-constrained firms with a lack of technical skills. The

points of focus in this literature widely range from investment timing (Swinney et al. 2011) and

financial capabilities (Tanrısever et al. 2012) to complementary technologies (Anderson Jr and

Parker 2013). By contrast, we provide insight on how cash-constrained firms can leverage a business

model based on the AI Flywheel effect.

Finally, a key feature of our problem is the effect of the amount of data collected by the firm on

the algorithm’s accuracy. The ML literature often represents this link between data and accuracy

with a learning curve (see, e.g. Perlich et al. 2003, Gu et al. 2001, Leite and Brazdil 2005, Figueroa

et al. 2012). These curves are commonly estimated with increasing concave exponential or power

functions (see, for instance, Table 1 in Viering and Loog 2021 for a list of references). In our setup,

we draw on this literature to represent a learning curve as a (non-parametric) increasing concave

mapping.

3 Model Description

We model the problem of managing the AI Flywheel effect in an elementary two-period moral

hazard framework. In our setup, the firm (the principal) outsources the development and training

of the algorithm to a provider (the agent) at the beginning of each period. The resulting accuracy
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of the algorithm depends on both the provider’s effort and the size of the available dataset. Given

this accuracy level, the firm markets the product to users with heterogeneous accuracy and price

sensitivities. At the end of each period, demand is realized, which determines the profit and the

additional generated data for that period.

3.1 Data, Accuracy, and Revenue

At the beginning of period t= 1,2, the size of the available dataset to train the algorithm is equal

to dt−1. In particular, d0 denotes the size of the firm’s initial dataset. In each period t, the provider

can either exert effort e=w at cost κ> 0 or shirk e= s at no cost. We denote by αt the resulting

algorithm’s accuracy, which can be either high or low with αt ∈ {αh, α`}, where αh >α`.
1

Given the data size dt−1 and effort e, the probability of high accuracy (αt = αh) is equal to

πe(dt−1) with πw(dt−1)>πs(dt−1).2 Consistent with the ML literature (see Section 2), we refer to πe :

[dmin, dmax]→ [0,1) for e∈ {s,w} as learning curves and assume that they are twice-differentiable,

increasing concave functions with a continuous second-order derivative. In other words, the accu-

racy of ML models increases with data, but the marginal effect of additional data is decreasing

(see Banko and Brill 2001, for instance). The further lower bound dmin > 0 is the minimum size

required for the development of a functioning ML model, and dmax <∞ is the largest possible total

data size on which the algorithm can be trained.

Given accuracy αt, the firm then prices and markets the product. The market in period t cor-

responds to a continuum of buyers of total mass normalized to one, a common framework in the

pricing literature (e.g., Aflaki et al. 2019, Feldman et al. 2018, Yu et al. 2015). Each buyer has a

private accuracy sensitivity v that is drawn from the standard uniform distribution with c.d.f. F ,

p.d.f. f , support [0,1], and a virtual value function φ(v) = v− F̄ (v)/f(v), where F̄ (·) = 1− F (·).

Hereafter, we use the notation x̄ to denote 1−x for an arbitrary term x. A buyer with sensitivity

v purchases the product with accuracy α and price p if αv− p≥ 0. Given the accuracy-price pair

(p,α), demand is equal to F̄ (p/α), which yields revenue pF̄ (p/α).3 Equivalently, the firm may

1 Accuracy in our setup designates the overall accuracy, which includes both “Sensitivity” and “Speci-
ficity”, i.e., Accuracy = Sensitivity × # of positives/(# of positives + # of negatives) + Specificity ×
# of negatives/(# of positives + # of negatives) (see Tharwat 2020, Sokolova et al. 2006). This metric is typically used
to measure the performance of ML algorithms (see, e.g., Ferri et al. 2009, Blagec et al. 2020).

2 We choose a non-parametric representation of these learning curves because our focus is on the effect of data
collection on accuracy and we want to tease out which fundamental properties of these functions drive our results.
This, however, implies that closed-form solutions cannot be obtained and that our results are all derived from implicit
functions.

3 Note that buyers can learn the accuracy via word of mouth and other network effects as is typical for digital products,
which gives rise to a diffusion process in the market (see, e.g., Campbell 2013). To keep the model tractable, we have
abstracted away from these dynamics and assume instead that this process is fast enough so that most buyers learn
the accuracy before purchase.
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choose demand quantity q instead of price p, with p= αF−1 (q̄) and, hence, pF̄ (p/α) = qαF−1 (q̄),

where F−1 is the inverse of the c.d.f. F .

A key attribute of data-enhanced products is the amount of data that the product can collect

on its user. The firm may increase this amount by relying on third-party services in the case of

mobile and web applications (Deshpande 2019) or increasing the capacity of embedded sensors in

the case of physical products (McGrath and Scanaill 2013). We refer to this quantity as the data

acquisition capacity ν > 0 in the following, which corresponds to the expected amount of data the

firm collects per user.

Given demand q, therefore, the total amount of collected data δ in the period is equal to δ= νq.

Thus, at the end of period t = 1,2 the size of the available dataset is equal to dt = δt + dt−1.

Further, the firm’s revenue can be expressed in terms of acquisition capacity ν, collected data δ, and

accuracy α. Specifically, we define this revenue as Rν(δ,α) with Rν(δ,α), αδ/νF−1 ((1− δ/ν)).

Thus, decreasing price increases demand and hence the amount of collected data but may also

decrease revenue Rν . In this sense, our model captures the tradeoff associated with the AI Flywheel

effect between maximizing revenue and collecting additional data. In addition, parameters (d0, ν)

characterize the potential strength of the AI Flywheel effect in our setup. Indeed, we have d1 =

νq+d0; hence, data size d0 specifies the firm’s starting point in the virtuous cycle, while acquisition

capacity ν influences the speed at which the firm can leverage this cycle.

Figure 1 depicts the timing of the events corresponding to our setup.

Period 1a – Initial Algorithm Development. The firm starts with an initial dataset of size d0.

Based on this dataset, the provider chooses effort e ∈ {s,w} to develop a first version of an ML

algorithm. The algorithm’s accuracy α1 is then realized according to probability πe(d0).

Period 1b – Pricing and Data Collection. Given accuracy α1, the firm prices and markets the

product. The firm collects δ1 such that the total size of the dataset becomes d1 = d0 + δ1 and

generates revenue Rν(δ1, α1).

Period 2a – Algorithm retraining and improvement. If α1 = α`, the provider retrains the algo-

rithm with an augmented dataset of size d1. (Otherwise, the maximum possible accuracy level αh is

achieved, and the firm does not need the provider to improve accuracy further.)4 The provider again

chooses effort e to retrain the algorithm, which yields accuracy α2 according to probability πe(d1).

The probability of achieving high accuracy αh increases in this period, that is, πe(d1) > πe(d0),

because of the dataset increase d1 ≥ d0, and since more data improves accuracy, i.e., πe(·) for

e∈ {s,w} are increasing functions.

4 Our model and results easily extend to the case where accuracy is cumulative, that is, in situations where accuracy
can be further improved when α1 = αh.
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Figure 1 Sequence of events

Data: d0

Algorithm Development

(Contract)

Accuracy: α1

Pricing and
Data Collection

Data: d1 = d0 + δ1

Algorithm Retraining

(Contract)

Accuracy: α2

Pricing

Period 1a Period 1b Period 2a Period 2b

Period 2b – Pricing. Finally, given accuracy α2, the firm prices and markets the product, which

determines δ2 and generates revenue Rν(δ2, α2).

At the end of the time horizon, the firm has no further incentive to retrain the algorithm using

additional data δ2, which also means that d1 corresponds to the size of the largest dataset on which

the algorithm is ultimately trained. The maximum possible size of this dataset is then equal to

dmax = νmax + d0 (recall that the market size is normalized to one), where νmax is the maximum

acquisition capacity.

Taken together, our setup captures the AI Flywheel effect: more data at the end of Period 1,

d1, leads to a higher probability πe(d1) of achieving high accuracy αh in Period 2 (for any effort

e ∈ {s,w}), which in turn leads to more demand in Period 2 in expectation (given fixed p2). The

firm may foster or suppress this effect by adjusting its pricing strategy.

3.2 The Data Impact

Thus far, we have ignored the incentive issues that outsourcing the development of the algorithm

creates. In particular, the accuracy level depends on the available data and the provider’s effort.

Thus, the availability of data may interact with the intensity of the moral hazard problem that the

firm faces in each period. To characterize this interaction between effort and data, we introduce

the notion of the data impact, which we denote by ρ(d). The data impact maps dataset size d to

the normalized effect of shirking on the probability of high accuracy, that is,

ρ(d),
πw(d)−πs(d)

πw(d)
. (1)

We further assume that 1/ρ(d) is convex in d, which essentially requires data impact ρ(·) not to

be too convex. This technical restriction is milder than log-concavity and hence concavity.

Overall, when data impact ρ(d) is constant in d, the effect of shirking on accuracy is independent

of the data size on which the algorithm is trained. However, when the data impact increases

(decreases) in d, exerting effort increases the probability of high accuracy more (less) with more

data.

Many corroborative evidence supports the assumption that the data impact is decreasing in a

variety of practical settings. Specifically, empirical evidence demonstrates that the difference in
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accuracy between sophisticated ML algorithms (which require more effort to develop and train)

and more crude ones decreases with the amount of data on which they are trained (Banko and Brill

2001; Halevy et al. 2009). Practitioners have also recognized this phenomenon; see, for example,

Gutierrez (2016).5

Yet, certain circumstances may justify the assumption of increasing data impact. This is the

case, for instance, when biases in the training data sets are of particular concern. The impact of

these biases is typically more pronounced for larger datasets.6 In this case, the effort to improve

the algorithm has a bigger impact with more data. In addition, deep learning algorithms seem to

outperform very basic statistical models (such as logistic regressions) to a greater magnitude when

datasets are larger (see Hackathorn 2018, for instance). Thus, the data impact should increase

when the firm does not have the skills to run nor check these more basic methods and hence cannot

detect this form of shirking.

Finally, the monotonicity of the data impact is related to the monotone likelihood ratio property

(MLRP), which is commonly assumed in the moral hazard literature. In our setup, the MLRP

property corresponds to πw(d)/πs(d) ≥ π̄w(d)/π̄s(d) for a given d and holds for all d since effort

always improves accuracy πw(d)>πs(d) (see Dai and Jerath 2019, for instance). Loosely speaking,

the property guarantees that high accuracy is more indicative of high effort ex post. The mono-

tonicity of the data impact determines the magnitude of this effect ex ante for the amount of

available data to train the algorithm.

3.3 Contracts

The firm faces a moral hazard problem in each period and has commitment power across periods.

Thus, the firm needs to offer a single contract that determines the provider’s payments in the first

period along with the expected payoff in the second period through the total amount of collected

data δ1 and the second period payments (we consider the noncommitment case in Section 6.2).

Accuracy realizations αt, t= 1,2, are contractable, but effort is not. In particular, the product

may track (ex-post) accuracy once it is distributed, or the firm can always hold some data to test

the accuracy. Alternatively, the firm may contract on revenues, which is equivalent to contracting

on accuracy in our setup.

By contrast, ML algorithms are notoriously difficult to explain to non-experts (Lipton 2016,

Ribeiro et al. 2016), rendering the expert’s efforts to improve accuracy difficult to observe and

5 For instance, the following quote is from a data scientist at The Trade Desk: “The bigger the training set, the better
the model. But less obviously, and more importantly, the difference between a fancy algorithm and a simple one
decreases with more data.” Gutierrez (2016).

6 A well-known example is Microsoft’s AI-based chatbot in Twitter, which resulted in unintended tweets as the size
of the dataset feeding the algorithm increased, see Vincent (2016).
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contract on (Gromb and Martimort 2007). Thus, the contract’s payments in each period depend

on the public history and are contingent upon the accuracy realizations.7 Specifically, the history

in Period 1a decreases to d0, and the first contract consists of payments x1`(d0) and x1h(d0) that

are made if α1 = α` and α1 = αh, respectively. Given realization α1, the firm collects additional

data, which yields size d1 at the end of the period. The history in Period 2a is then (d1, α1), and the

second contract consists of payments x2`(d1, α1) and x2h(d1, α1), which again correspond to high

and low accuracy levels, respectively.8 The provider is further protected by its limited liability;

thus, x1`, x1h, x2` and x2h are all non-negative.

3.4 The Firm’s Problem

The firm’s problem is to maximize the total expected profit, which is the expected revenue net of

payments over both periods, subject to incentive compatibility constraints.

We assume that the optimal price neither covers nor excludes the entire market (see Section EC.1

of the e-companion for formal conditions) and that the firm prefers the provider to exert effort in

both periods, which holds if κ≤ κ̄ and ν ≤ ν̄ for positive thresholds κ̄ and ν̄ (see Section EC.3 of

the e-companion for the existence of these thresholds).9 These assumptions are made for the sake of

simplicity; see, for instance, Laffont and Martimort (2009), and Feldman et al. (2018), Choudhary

et al. (2005), respectively.

We formulate this problem via backward induction starting from the second period (see Figure

1). We then denote by J2b(α2) the firm’s optimal expected profit in Period 2b given accuracy α2,

such that

J2b(α2) = max
δ2∈[0,ν]

Rν(δ2, α2) . (2)

The firm chooses the amount of collected data (or equivalently the price) so as to maximize the

expected revenue in the current period. As there is no continuation, we refer to this problem as the

myopic problem. In particular, size d1 does not play any role in this problem, which corresponds to

situations where both the AI Flywheel effect and the moral hazard problem are absent. We denote

by δM the value of δ2 that solves Problem (2).10

7 In our setup, the accuracy realization affects the demand per Section 3. Thus, the contract’s payments can equiva-
lently be contingent upon the demand.

8 Recall that these last payments are only meaningful when α1 = α`, as no contract is required in the second period
when α1 = αh.

9 Threshold ν̄ can be infinite depending on the problem parameters; see Proposition EC.5 in Section EC.3 of the
e-companion.

10 Alternatively, δ2 can be carried to Problem (6) as a decision variable. However, its optimal value δM remains the
same because δ2 does not intervene with the other decision variables in Problem (6).
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Similarly, we denote by J2a(α1, d1) the firm’s expected continuation profit in Period 2a, given

payments x2h, x2`, and accuracy α1 and data size d1, such that

J2a(α`, d1) = πw(d1)[J2b(αh)−x2h] + π̄w(d1)[J2b(α`)−x2`] (3)

J2a(αh, d1) = J2b(αh). (4)

When α1 = α`, the firm needs to set payments such that the provider has enough incentives to

exert effort, as will be formalized by incentive constraint (9). These payments are then deduced

from the firm’s expected revenues in Period 2a. Here, data size d1 affects the chance of improving

accuracy in the next period via probabilities πe(·), e ∈ {w,s}. When α1 = αh, recall that the firm

does not need nor pay the provider.

Moving to the first period, we denote by J1b(α1, d0, δ1) the firm’s expected continuation profit in

Period 1b given accuracy α1, data size d0, and collected data δ1, such that

J1b(α1, d0, δ1) =Rν(δ1, α1) +J2a

(
α1, d0 + δ1

)
for α1 ∈ {αh, α`}. (5)

When α1 = α`, the choice of data δ1 (or equivalently the price) affects current revenues directly

and future ones indirectly by increasing the dataset size to d0 + δ1.

We are now ready to define the overall firm’s problem. Given initial data size d0, we denote by

J1a(d0) the optimal total expected profit in Period 1a, such that

J1a(d0) = max
x1h,x1`≥0
x2h,x2`≥0
δ1h,δ1`∈[0,ν]

πw(d0)[J1b(αh, d0, δ1h)−x1h] + π̄w(d0)[J1b(α`, d0, δ1`)−x1`] (6)

s.t.

πw(d0)x1h + π̄w(d0) [x1` +Jp(d0)]−κ≥ πs(d0)x1h + π̄s(d0) [x1` +Jp(d0)] (7)

Jp(d0) = πw (d0 + δ1`)x2h + π̄w (d0 + δ1`)x2`−κ (8)

Jp(d0)≥ πs(d0 + δ1`)x2h + π̄s(d0 + δ1`)x2` . (9)

The firm needs to provide incentive to the provider for both periods. The expected payments that

the contract of the second period brings about affect the provider’s incentives in the first period.

Specifically, Jp(·) in (7) corresponds to the provider’s expected continuation profit, which is equal

to the expected optimal payments in the second period net of the effort cost; see (8). A key aspect

of our setup is that the distribution of these future payments, πw(d1), depends on the choice of

δ1` since d1 = d0 + δ1`. Thus, the choice of δ1` (or equivalently price) not only makes the tradeoff

between present and future revenues as in (5) but also determines the intensity of the incentive

issue.

We next show that the optimal data sizes solving Problem (6) and hence the corresponding

optimal payments are unique.
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Proposition 1. The optimal solution to Problem (6) is unique such that δ1h = δM and δ1` = δ∗,

where δ∗ is the unique optimal solution of

max
δ∈[0,ν]

π̄w(d0) [Rν(δ,α`) +πw(d0 + δ)(αh−α`)τ ]− κ

ρ(d0 + δ)
.

(The proof of Proposition 1 alongside the proofs of selected results are provided in the appendix.

All other proofs are in the e-companion.) If the first version of the algorithm is already highly

accurate (α1 = αh), no further improvement is necessary, and the firm does not need to deviate

from the myopic price. We refer to δ∗ as the optimal solution δ1` of Problem (6) and to p∗ as the

price that yields data size δ∗ (see Section 3.1).

This proposition further reveals how the main effects captured by our model endogenously deter-

mine data collection size δ∗. Indeed, deviating δ away from δM decreases the firm’s current period

revenue Rν(δ,α`). However, increasing δ always boosts the positive externalities of the AI Flywheel

effect (πw(d0 + δ)(αh−α`)τ). Moreover, additional data may exacerbate or mitigate the incentive

issues and associated agency cost κ/ρ(d0 + δ) depending on the monotonicity of the data impact.

The choice of δ∗ essentially balances these different tradeoffs simultaneously.

4 Impact of Incentive Issues

We first analyze the impact of incentive issues on the optimal decisions of the firm along with

the social welfare and consumer surplus for a fixed pair of d0 and ν. To do so, we introduce a

comparison benchmark, the first-best setting, where the firm does not face any incentive issues.

4.1 First-Best Benchmark

In the first-best setting, the firm has the capability to develop the algorithm and does not face

any incentive issues. The first-best problem then corresponds to Problem (6) without incentive

constraints (7) and (9) except that the firm directly incurs cost κ. Specifically, the problem without

incentive issues, denoted by JFB
1a(d0), is obtained by setting payments to κ (i.e., x1h = x1` = x2h =

x2` = κ) and removing incentive constraints (7) and (9) in Problem (6). The following proposition

characterizes the firm’s optimal decision at first-best.

Proposition 2. The optimal solution to JFB
1a(d0) is unique such that δ1h = δM and δ1` = δFB where

δFB is the unique solution maxδ∈[0,ν]Rν(δ,α`) +πw(d0 + δ)(αh−α`)τ , and δFB > δM.

We denote by δFB the optimal value of δ1` maximizing JFB
1a(d0). We also refer to pFB as the

corresponding price that yields data size δFB. If the firm succeeds in developing the initial algorithm

with high accuracy (α1 = αh), no further improvement is necessary, and the firm charges the optimal

myopic price pM, inducing δM over the remaining time horizon. If this accuracy is low (α1 = α`),
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however, the firm faces a tradeoff between maximizing revenues in the current period or acquiring

additional data to leverage the AI Flywheel effect. In this case, the firm underprices with pFB < pM

and forfeits the optimal myopic revenue to collect more data, that is, δFB > δM, increasing the

probability of high accuracy and hence expected profit in the next period.

To the extent that we consider a dynamic model, these distortions away from the myopic decision

(δFB > δM) are to be expected. They occur in many different settings, such as in inventory problems

(see Heese and Swaminathan 2010, for example), but are especially present in problems of pricing

under positive adoption externalities (see Section 2).

Finally, the firm’s pricing and data collection decisions pFB and δFB determine the social welfare

and customer surplus at first best, which we denote by W FB and CFB, respectively. Customer surplus

CFB is the total valuations net of the product price of all customers who make a purchase. Social

welfare W FB is then the sum of customer surplus CFB and the firm’s profit net of effort cost κ.

4.2 Overpricing, Underpricing, and Optimal Data Collection

To alleviate the moral hazard issue, the firm may need to incur costly deviations away from first-

best decisions. The next result shows that the monotonicity of data impact ρ(·) is sufficient to

determine when the firm overprices and when it underprices.

Theorem 1. We have

1. if ρ(·) is constant, then δ∗ = δFB,

2. if ρ(·) is strictly increasing, then δ∗ > δFB,

3. if ρ(·) is strictly decreasing, then δ∗ < δFB.

Theorem 1 shows that the monotonicity of the data impact induces the firm to deviate from

first best in different directions. In essence, as the availability of data increases, the performances

of a naive and a specialized algorithm are improved differently, which then affects returns to effort

in the contract. To compensate this issue, the firm may need to incur costly deviations away from

the first-best decisions. In this sense, the increase/decrease (with respect to δFB) in collected data

characterized by Theorem 1 resembles deviations from first best found in other contexts (such as

over/understocking decisions in, e.g., Alles et al. 1995, Dai and Jerath 2013, 2019 and de Véricourt

and Gromb 2018, 2019).

Overall, Theorem 1 defines three distinct regimes. First, when the relative impact of shirking is

independent of the dataset size (ρ is constant), then no deviation from first best is required.

However, if the data impact is increasing, the net effect of shirking increases faster than the

probability of high accuracy. In this case, high accuracy is more indicative of efforts at higher data

volumes, and the rent is decreasing in data size δ. Thus, the firm underprices with p∗ < pFB in order
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to collect more data with δ∗ > δFB. In this sense, the incentive issues induce the firm to leverage

the AI Flywheel effect even more. In particular, the expected revenue in the first period is lower

than first best due to incentive issues, but the expected revenues in the second period are higher

since, with more data, the probability of high accuracy increases.

Finally, if the data impact is decreasing, high accuracy is less indicative of efforts at higher data

levels, and the rent is increasing in data size δ. Thus, the firm overprices with p∗ > pFB so as to collect

less data with δ∗ < δFB. The firm’s expected revenues in the last period decrease compared to first

best since the probability of high accuracy is lower. The revenues in the first period, however, might

actually increase compared to first best. This situation happens, for instance, when pM > p∗ > pFB.

Overall, the incentive issues prevent the firm from fully leveraging the AI Flywheel effect in this

regime.

4.3 Social Welfare and Customer Surplus

Theorem 1 uncovers effects that have further implications for social welfare and customer surplus

in the presence of incentive issues, which we denote by W ∗ and C∗, respectively. In this case, the

social welfare corresponds to the sum of the firm’s profit, customer surplus C∗, and the provider’s

profit.11

We next characterize how the incentive issues affect the social welfare and customer surplus. In

fact, the following result indicates that incentive issues may increase these benefits.

Theorem 2. We have

1. if ρ(·) is constant, then W ∗ =W FB and C∗ =CFB,

2. if ρ(·) is strictly increasing, then W ∗ >W FB, and C∗ >CFB

3. if ρ(·) is strictly decreasing, then W ∗ <W FB, and C∗ <CFB.

In other words, the firm’s distortion from the first-best benchmark to mitigate the effects of incen-

tive issues improves the social welfare and the customer surplus when the data impact is increasing.

By contrast, this distortion hurts the social welfare when the data impact is decreasing.

This result stems from the distortions characterized in Theorem 1 and the fact that the social

benefits are monotone in the firm’s data collection decision at equilibrium (see Lemma 3 in

Appendix B). That a higher δ∗ should improve the social benefits at equilibrium is not obvious a

priori. In particular, a larger data collection corresponds to a higher expected accuracy in the next

period. This, however, also increases the expected equilibrium price in Period 2b (see Lemma 1 in

Appendix A). Our result shows that the latter effect is dominated by the former, and thus both

the social welfare and the customer surplus increase with data collection δ∗.

11 This definition of the social welfare also corresponds to the sum of customer surplus and the firm’s profit net of
effort cost κ, which is provided in Section 4.1. Indeed, the transfers between the firm and the provider cancel each
other out.
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5 Impact of the Data Acquisition Capacity

One key product attribute that firms commonly seek to improve is the amount of data that the

product collects on its user. In our setup, this corresponds to increasing data acquisition capacity

ν. In the following, we explore how this improvement affects the firm’s data collection strategy and

expected profit. The main finding of this analysis is that data acquisition capacity ν can have a

non-monotonic impact on the firm’s profit.

5.1 Optimal Data Collection

Without incentive issues, a higher data acquisition capacity induces the firm to collect even more

data under the AI Flywheel effect, as seen in the next result.

Proposition 3. The first-best data size δFB is increasing in data acquisition capacity ν.

If the firm considers designing a product that acquires more data per user, the firm collects in

aggregate even more data (δFB is nondecreasing in ν). Recall that δ = νq and thus increasing ν

provides an opportunity to increase data size δ to improve the algorithm in the next period while

maintaining quantity q and hence revenues in the current period.

The need to mitigate incentive issues, however, sometimes reverses this effect and pushes the

firm to collect less data when the product’s data acquisition capacity is higher. The next theorem,

one of our main results, formalizes this finding.

Theorem 3. We have the following:

1. If ρ(·) is strictly increasing, δ∗ is strictly increasing in ν.

2. If ρ(·) is strictly decreasing, a unique threshold ν̂ exists such that δ∗ is strictly increasing in ν

if ν ≤ ν̂ and is strictly decreasing otherwise.

Thus, increasing the data acquisition capacity induces the firm to collect more data overall when

the data impact is also increasing, i.e., when more data mitigates the incentive issues. Intriguingly,

this effect may continue to hold when the data impact is decreasing, i.e., when more data actually

exacerbates the incentive issues. This happens as long as the data acquisition capacity is not too

large (ν ≤ ν̂). When the data acquisition capacity becomes large (ν > ν̂), acquiring more data per

user actually induces the firm to collect less data overall (see Proposition EC.6 in Section EC.3 of

the e-companion for general conditions ensuring ν̂ < ν̄).

More specifically, when the acquisition capacity increases, the firm has an incentive to collect

more data to benefit more from the AI Flywheel effect, as discussed in the first-best benchmark

(see Proposition 3). When the data impact is increasing, collecting more data also reduces the

intensity of the moral hazard problem and hence the agency costs in the next period. Both effects

are aligned in this case, and the firm increases δ∗ as a result. By contrast, collecting more data
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intensifies the moral hazard problem in the next period when the data impact is decreasing. The

firm then faces a tradeoff between leveraging the AI Flywheel effect or reducing future agency

costs. When the acquisition capacity is small, the amount of collected data δ= νq remains small for

any quantity q, which yields low agency costs. As the acquisition capacity increases, boosting the

AI Flywheel effect dominates the increases in agency costs, and data size δ∗ increases as a result.

When the acquisition capacity becomes large enough (i.e., when ν > ν̂), however, the agency costs

dominates the revenues due to the AI Flywheel effect. The firm then focuses on reducing these

agency costs by decreasing δ∗.

Note finally that the data collection strategies characterized in Theorem 3 do not fully determine

the firm’s pricing decisions. When the firm collects less data even though it improves its data

acquisition capacity, the firm charges a higher price p∗ so as to decrease q∗ with δ∗ = νq∗. However,

when the firm collects more data as the acquisition capacity increases, the firm may either increase

or decrease p∗ depending on the problem parameters (and the third-order behavior of the learning

curves in particular). This is because an increase in δ∗ = νq∗ does not require q∗ to increase when

ν increases.

5.2 The Firm’s Profit

To the extent that acquisition capacity ν determines the firm’s data collection strategy per Theo-

rem 3, improving this capability ultimately affects the firm’s profit. The next result – one of the

main findings of the paper – characterizes this effect.

Theorem 4. We have:

1. If ρ(·) is strictly increasing, the expected profit of the firm is strictly increasing in ν.

2. If ρ(·) is strictly decreasing, a unique threshold ν̃ exists such that the expected profit is strictly

increasing in ν if ν ≤ ν̃ and is strictly decreasing otherwise. Further, threshold d̃ > 0 exists

such that the profit is strictly decreasing (i.e., ν̃ = 0) if d0 ≥ d̃.

Thus, when the data impact is increasing, the firm’s profit is higher when the product can acquire

more data on its user. In fact, this effect continues to hold even when more data exacerbates the

incentive issues, as long as the data acquisition capacity is not too large (ν ≤ ν̃).

However, if the data acquisition capacity is large enough (ν > ν̃), boosting the product’s capacity

to collect data may actually hurt the firm’s profit. Indeed, the second part of Theorem 4 states

that the profit has a unique maximum in ν. For certain problem parameters (and learning curves

in particular), this maximum is sometimes achieved at ν̃ = ν̄. We provide general conditions for

ν̃ < ν̄ in the e-companion (see Proposition EC.6 in Section EC.3). These conditions hold when

πw(d)−πs(d) is decreasing in d and converges to 0 as d approaches infinity (see Proposition EC.3
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in Section EC.2 of the e-companion), a property that the learning curves used in the ML literature

typically satisfy (see Section EC.2 of the e-companion for specific examples).

Three main components of our model jointly shape the impact of the data acquisition capacity on

the firm’s profit: the AI Flywheel effect, pricing for revenue, and incentive issues. To better leverage

the AI Flywheel effect, the firm needs to collect more data. Therefore, optimal data collection δ∗

deviates from myopic data collection δM, and the optimal price p∗ deviates from the myopic price pM

(see Section 4.2), which hurts revenues in the first period. Improving the data acquisition capacity

ν makes it possible for the firm to push the price toward the myopic one, thus boosting revenues

in the current period without affecting the amount of data collected to retrain the algorithm in

the next period. This positive effect continues to hold for larger values of the acquisition capacity

when the data impact is increasing (per the first item of Theorem 4).

When the data impact is decreasing, however, the previous positive effect holds until the acqui-

sition capacity hits threshold ν̃, which is exactly the value at which the firm charges the myopic

price (p∗ = pM). In this case, the firm has maximized the revenue it can collect from pricing in the

first period. Increasing the data acquisition capacity further exacerbates the incentive issues in the

second one. In addition, the marginal contribution to the accuracy of the additional collected data

is decreasing (recall that πw is increasing but concave). Thus, exceeding ν̃ generates no additional

revenue in the current period, while the improvements in accuracy and hence revenues in the sec-

ond one are offset by the increase in agency costs. The firm’s profit decreases as a result. Figure 2a

Figure 2 Effect of the product’s data acquisition capacity on the firm’s profit when more data exacerbate the

incentive issues
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Note. Probabilities generating this example are πw(d) = 1− 1/
√
d, πs(d) = πw(d)(1− 1/(d+ 1)) and the data impact

is ρ(d) = 1/(1 + d), which is decreasing. The value of d̃u 10.

illustrates this last point and depicts the effect of ν on the firm’s expected profit J1a when the data
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impact is decreasing. The figure shows that the data acquisition capacity ν has a unimodal effect

on profit. Threshold ν̂ corresponds to the straight black line in Figure 2a, with ν̃ u 15.

This unimodal relationship between the data acquisition capacity and the firm’s profit has further

implications for the role of initial data size d0. Indeed, when the initial dataset of the firm is large

enough, increasing the product’s acquisition capacity always hurts profits when the data impact

is decreasing. Because the initial dataset is large, the firm needs to rely less on the AI Flywheel

effect to collect data for the second period. The firm nonetheless charges a price above the myopic

one to mitigate the incentive issues. If the data acquisition capacity improves, the incentive issues

intensify, and the firm increases the price away from the myopic one, which decreases revenues.

Figure 2b depicts an example of a sufficiently large initial dataset (d0 ≥ d̃u 10) and shows that the

firm’s profit strictly decreases in the data acquisition capacity.

6 Extensions

In this section, we explore the robustness of our results – and Theorem 4 in particular – in a variety

of settings that extend our basic setup. We consider next different setups where the firm withholds

data, offers short-term contracts or lets the provider shirk.

6.1 Withholding Data

In some instances, the firm may be able to withhold a portion of the collected data from the

provider.12 In this case, the firm needs to decide how much data to share, which in turn affects the

incentive issues.

When data impact ρ is increasing, more data mitigates the incentive issues and boosts the AI

Flywheel effect. Hence, the firm has no incentive to withhold data from the provider. By contrast,

more data exacerbates the incentive issues when the data impact is decreasing. As a result, the

firm may still collect data δ to boost its current sales revenues but only share λδ, for some λ∈ [0,1],

to reduce the agency costs. This, however, also hurts the AI Flywheel effect, and the firm needs to

jointly optimize over δ and λ to make these tradeoffs.

Thus, withholding data may change our findings and in particular the effect of ν on the firm’s

profit. The next result, however, shows that a weaker version of Theorem 4 holds in this setting.

Theorem 5. Assume the firm can withhold a portion of its collected data. We have:

1. If ρ is increasing, the expected profit of the firm is increasing in ν.

12 Note that most ML service providers are also Cloud Service Providers (CSP). Indeed, user data from digital
products are typically collected and stored in the cloud by CSPs, which take advantage of this to offer AI services
(see, e.g., MSV 2018). This makes it hard for their clients to withhold data.
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2. If ρ is decreasing, a unique threshold νw exists such that the expected profit is increasing in

ν if ν ≤ νw and is constant otherwise. Further, threshold dw > 0 exists such that the profit is

constant (i.e., νw = 0) if d0 ≥ dw.

This results first shows that Theorem 4 continues to hold with data withholding when ρ increases.

By contrast, if ρ decreases, boosting the data acquisition capacity above a threshold does not

improve the firm’s profit. This is because withholding data decreases the agency costs, which

compensates for the decrease in profit characterized in Theorem 4. Figure 3 illustrates this finding,

with νw u 15. Because improving the acquisition capacity is not free in general, the overall insight

of Section 5.2 continues to hold in this setting.

Figure 3 Effect of the product’s data acquisition capacity on the firm’s profit when more data exacerbate the

incentive issues and the firm can withhold data from the provider
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Note. Probabilities generating this example are πw(d) = 1−1/
√
d, πs(d) = πw(d)(1−1/(d+ 1)), and the data impact

is ρ(d) = 1/(1 + d), which is decreasing. The size of the initial dataset is d0 = 5< dw u 10.

6.2 Competitive Provider Market and Short-term Contracting

In our basic setup, the firm offers a long-term contract with a unique provider. When the market

of providers is competitive, however, the firm is better off terminating the contract when accuracy

is low in the first period and hiring a new provider for the second one. Indeed, the threat of firing

the provider reduces the information rent. Nonetheless, the firm’s pricing and data collection in

this first period continue to influence the incentive issues with the next provider. We find that all

our results hold in this setting as well (see Section EC.4 of the e-companion for the formal results).

The only difference is the distortions away from first best, which are milder in this case due to

the termination threat (see Lemma EC.2 in the e-companion). Note also that re-contracting with

the same provider in the second period is suboptimal for the firm because the termination threat
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disappears. If the firm contracts with a single provider over both periods, it prefers a long-term

contract to short-term ones. Indeed, with short-term contracts, the firm adjusts its data collection

strategy to maximize the continuation profit without accounting for the agency costs of the first

period. In this case, the effect of the acquisition capacity in Theorem 4 holds for the continuation

profit (see Section EC.5 of the e-companion).

6.3 Allowing Shirking

We have considered thus far situations where the provider works in both periods. In other con-

texts, it may be preferable for the firm to let the provider shirk. This may in turn change the

effect characterized in Theorem 4. Indeed, we show in the e-companion (see Proposition EC.14

in Section EC.7) that when the provider shirks in the second period, the profit always increases

in the acquisition capacity. This is because the collected data in the first period do not interact

with incentive issues in the second one. In this sense, the problem becomes analogous to our first-

best benchmark, albeit with a milder AI Flywheel effect since πs(d)< πw(d). However, when the

provider shirks in the first period but works in the second one, the amount of data collected in the

first period affects the agency costs across periods. In this case, we show that all of our findings

hold (see Proposition EC.15 in Section EC.7 of the e-companion).

7 Conclusion

This paper proposes a simple dynamic framework to study how firms that outsource the devel-

opment of their ML algorithm can leverage the AI Flywheel effect. Our setup accounts for the

three main features of this problem: i) the tradeoff between improving the algorithms’ accuracy

and maximizing revenues due to the AI Flywheel effect, ii) the need to manage the incentive issues

that outsourcing the algorithm brings about, and iii) the interaction between the amount of data

on which the algorithm is trained and the efficacy of the provider’s effort. We further introduce

the notion of data impact as a framework to represent the interaction between data and effort.

Taken together, our results identify three different regimes which depend on the nature of the

data impact. These regimes determine whether the firm overprices or underprices, and regulate the

impact of the data acquisition capacity on the firm’s profit and decisions. In particular, when the

data impact decreases, we find that improving the capacity to acquire user data may hurt profits

and induce the firm to actually collect less data overall. These regimes have further implications

for society. Notably, incentive issues improve social welfare when the data impact is increasing.

Improving a product’s capacity to acquire usage data is a key design choice in practice but can

be costly and at times challenging (e.g., Boonstra et al. 2018). As such, our insights on when a

firm should seek to improve this acquisition capacity address an important managerial problem.
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In essence, the acquisition capacity determines the strength of the positive adoption externalities

of the AI Flywheel effect in our setup. In the context of classical products, this corresponds to

the intensity of the customer social network or how fast information circulates in the market

(Shy 2011), which the firm cannot easily influence. Nonetheless, the stronger the network effect in

classical adoption settings, the better off the firm typically is (Gabszewicz and Garcia 2008). To

some extent, this remains true for data products. In our setup, entrepreneurs who seek to leverage

the AI Flywheel effect should indeed consider enhancing the data collection capability of their

products, but only up to a certain level. Allowing a data product to collect too much usage data

may sometimes damage the firm’s profits.

Our results further provide predictions that future work can empirically test. In particular, given

that the existing literature points to the importance of collecting a large amount of data over

improving algorithms (Banko and Brill 2001, Halevy et al. 2009), we expect the data impact to

decrease in many practical contexts. Our work thus provides theoretical support for the hypothesis

that firms set higher prices for a new AI product when the product’s algorithm is outsourced (per

Theorem 1). In addition, we predict that a significant increase in the product’s capacity to generate

usage data induces firms to collect less data to improve the algorithm, which hurts their profits

(per Theorem 3 and Theorem 4, respectively).

From a technical perspective, our model can be extended in a variety of ways. For instance,

exploring how information asymmetry regarding the provider’s skill interacts with the AI Flywheel

effect constitutes a fruitful future research direction. Similarly, future research could explore our

setup with a longer time horizon. Another interesting direction of future research is to explore in

more detail when and in which of the two periods shirking is optimal. In this case, an intriguing

question is whether the firm should incentivize high effort or instead focus on increasing demand

in the first period.

More generally, we believe that our work opens up more fundamental research directions and

questions for the management of data-driven business models. Specifically, our paper considers a

problem in which the provision of data interacts with incentive issues. Indeed, the key aspect of

our setup is that the principal can regulate the intensity of the moral hazard problem she faces by

controlling (through pricing in our setting) the data to which the agent has access. We believe that

this interaction between data and incentives is present in many other contexts than the outsourcing

of the AI Flywheel effect.

Overall, our results provide the first insights on how firms can leverage the AI Flywheel effect.

In addition, ours is the first paper to consider the problem of contracting ML algorithms. Given

the shortage of data scientists and the growing outsourcing industry in this domain, we expect the

issue to gain importance in the coming years.
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Appendix

A. Optimal Decisions of the Firm

We characterize the optimal decisions of the firm when it needs to outsource the development

of the algorithm. These decisions correspond to the amount of collected data δ1`, δ1h (and the

corresponding price p1`, p1h) as well as all payments x1`, x1h, x2`, and x2h in J1a.

The optimization problem of J1a in (6) corresponds to maximizing the expected profit, that is,

the total revenue net of the payments motivating the provider to exert effort. This problem can be

solved in three steps. Starting from Period 2b, we initially consider the myopic problem J2b, whose

solution is characterized in Lemma 1. Next, fixing the amount of collected data δ1` and δ1h, we

characterize the corresponding payments. The following lemma (Lemma 2) provides the optimal

payments that motivate the exertion of effort for given δ1`, δ1h. Finally, we characterize the optimal

amount of collected data that maximizes the total expected profit of the firm.

Specifically, the firm’s problem in Period 2b corresponds to the myopic problem in (2). Straight-

forward calculations then lead to the following result.

Lemma 1. Given accuracy α2 and dataset size d1, the optimal collected data size δM and

expected profit J2b(α2) are equal to δM = νF̄ (φ−1(0)) and J2b(α2) = α2τ , respectively, where τ ,

φ−1(0)F̄ (φ−1(0)) and φ−1(·) is the inverse of virtual value function φ(·).

The proof of Lemma 1 is provided alongside selected proofs in Appendix B. The corresponding

myopic price that yields data size δM is then equal to, per Section 3, pM = α2φ
−1(0), and quantity τ

is equal to pM(δM/ν)/α2, which is the marginal revenue per unit of accuracy under optimal myopic

pricing. Note that δM does not depend on accuracy, but the optimal price pM and profit J2b do.

Lemma 2. Fix δ1` and δ1h in (6); then the corresponding optimal payments are x1`(δ1`) =

x2`(δ1`) = 0, and

x1h(δ1`) =
κ

πw(d0)−πs(d0)
+

(
κ

ρ(d0 + δ1`)
−κ
)

and x2h(δ1`) =
κ

πw(d0 + δ1`)−πs(d0 + δ1`)
.

The firm’s total expected payment to the provider is then given by κ/ρ(d0) +κ/ρ(d0 + δ1`).

In the first period, the firm needs to account for the provider’s future expected profits contrary

to the payments in Period 2. Specifically, the optimal payment x1h(δ1`) corresponds to i) the bonus

payment taken at d0 augmented by ii) the provider’s rent of the second period net of effort cost

because, in our setup, the firm cannot easily replace the provider across periods. In this sense, the

second term of x1h(δ1`) captures the cost due to the scarcity of AI service providers in the market.

In both periods, the ex-post payments to the provider depend on the amount of data δ1`. Because
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there is no need for further improvement after a high accuracy αh in the first period, payments

depend only on δ1`.

MLRP ensures that under the optimal contract, realizations of higher value (αh in our setup)

are more rewarded (x2h > x2l). Thus, MLRP concerns the ex-post payments to the provider. By

contrast, Lemma 2 shows that data impact ρ(·) determines the ex-ante provider’s rent κ[1/ρ(d0) +

1/ρ(d0 + δ1`)].

B. Proof of Results

Proof of Lemma 1. Recall the definition Rν(δ,α) = αδ/νF−1 ((1− δ/ν)) in Section 3. F is the

c.d.f. of the standard uniform distribution. Therefore, it can be verified that Rν(δ,α) is concave in

δ, and the following first-order condition is sufficient for optimality.

1

ν
F−1

(
1− δ

ν

)
− δ

ν2

1

f
(
F−1

(
1− δ

ν

)) = 0 . (10)

Let ξ = F−1
(
1− δ

ν

)
; hence δ/ν = F̄ (ξ). We first multiply both sides of the equality by ν and then

use this new notation ξ. Using the definition of the virtual value function φ, we have φ(ξ) = 0 .

Because the virtual value function of the uniform distribution is increasing and crosses 0 at 1/2,

we conclude that the unique optimal solution δM to Problem (2) is equal to νF̄ (φ−1(0)). Evaluating

the objective function at the optimal solution and using the fact that τ = φ−1(0)F̄ (φ−1(0)), we

conclude that J2b(α2) = α2τ .

Proof of Lemma 2. Using Lemma 1 and fixing δ1` and δ1h, we obtain the following problem

where we only optimize over the payments xi` and xih for i= 1,2.

min
x1h,x1`≥0
x2h,x2`≥0

πw(d0)x1h + π̄w(d0)
[
πw(d0 + δ1`)x2h + π̄w(d0 + δ1`)x2` +x1`

]
(11)

s.t. πw(d0)x1h + π̄w(d0) [x1` +Jp(d0)]−κ≥ πs(d0)x1h + π̄s(d0) [x1` +Jp(d0)] (12)

πw(d0 + δ1`)x2h + π̄w(d0 + δ1`)x2`−κ≥ πs(d0 + δ1`)x2h + π̄s(d0 + δ1`)x2` (13)

Jp(d0) = πw (d0 + δ1`)x2h + π̄w (d0 + δ1`)x2`−κ. (14)

To solve this problem, we first consider a subproblem where we optimize over only x1h and x1` for

a fixed pair of x2h and x2` that satisfy (13). Since δ1` is also fixed, we obtain a constant for Jp(d0).

Thus, the subproblem corresponds to minimizing the expected payments in the first period while

satisfying the incentive constraint (12), which is given by

min
x1h,x1`≥0

πw(d0)x1h + π̄w(d0)x1` (15)

s.t. πw(d0)x1h + π̄w(d0) [x1` +Jp(d0)]−κ≥ πs(d0)x1h + π̄s(d0) [x1` +Jp(d0)] (16)

Following Proposition 4.2 in Laffont and Martimort (2009, p. 157), we obtain the optimal solution

to the subproblem as x̃∗1` = 0 and x̃∗1h = κ/[πw(d0)−πs(d0)]+Jp(d0) . Note that this optimal solution
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x̃∗1h and x̃∗1` are for fixed values of x2` and x2h. Thus, we now optimize over x2` and x2h by

incorporating the values of x̃∗1` and x̃∗1h into Problem (11). Arranging terms, we obtain

min
x2h,x2`≥0

πw (d0 + δ1`)x2h + π̄w (d0 + δ1`)x2` +
κ

ρ(d0)
−πw(d0)κ (17)

s.t. πw(d0 + δ1`)x2h + π̄w(d0 + δ1`)x2`−κ≥ πs(d0 + δ1`)x2h + π̄s(d0 + δ1`)x2` .

Invoking the same proposition from Laffont and Martimort (2009) one more time, we obtain the

optimal solution as x2`(δ1`) = 0 and x2h(δ1`) = κ/[πw(d0 + δ1`)−πs(d0 + δ1`)]. Evaluating x̃∗1h using

x2h(δ1`) and x2`(δ1`), we find x1h(δ1`) = κ/[πw(d0)−πs(d0)] + κ/ρ(d0 + δ1`)− κ and x1`(δ1`) = 0.

The total expected payment follows from using the values of the optimal solution xih and xi` for

i= 1,2, and we conclude the proof. Q.E.D.

Proof of Proposition 1. Using Lemma 1 and the optimal payments derived in Lemma 2, we

reformulate Problem (6) as a problem where we only maximize over δ1` and δ1h.

J1a(d0) = max
δ1h,δ1`∈[0,ν]

πw(d0)

[
Rν(δ1h, αh) +Rν(δ

M, αh)− κ

ρ(d0 + δ1`)
+κ

]
− κ

ρ(d0)
(18)

+π̄w(d0)

[
Rν(δ1`, α`) +πw(d0 + δ1`)Rν(δ

M, αh) + π̄w(d0 + δ1`)Rν(δ
M, α`)−

κ

ρ(d0 + δ1`)

]
.

Note that we can separate the optimization problem above into maximizing over δ1h and δ1`. If we

maximize over δ1h, we obtain the myopic problem for which the unique optimal solution is given

by Lemma 1 as δ1h = δM. Thus, we finally obtain

J1a(d0) = πw(d0) [2Rν(δ
M, αh) +κ]− κ

ρ(d0)
(19)

+ max
δ∈[0,ν]

π̄w(d0) [Rν(δ,α`) +πw(d0 + δ)Rν(δ
M, αh) + π̄w(d0 + δ)Rν(δ

M, α`)]−
κ

ρ(d0 + δ)
.

= πw(d0) [2Rν(δ
M, αh) +κ]− κ

ρ(d0)
+ π̄w(d0)τα`

+ max
δ∈[0,ν]

π̄w(d0) [Rν(δ,α`) +πw(d0 + δ)τ(αh−α`)]−
κ

ρ(d0 + δ)
.

The second equality follows from the fact that Rν(δ
M, αi) = ταi for i ∈ {h, `} (see

Lemma 1). Here, the uniqueness of δ = δ∗ follows because the objective function

π̄w(d0) [Rν(δ,α`) +πw(d0 + δ)τ(αh−α`)]− κ/ρ(d0 + δ) is concave and continuous in δ and [0, ν] is

a compact interval. Q.E.D.

Proof of Proposition 2. After removing incentive compatibility constraints and setting all pay-

ments to κ in Problem (6), we use Lemma 1 and obtain the following optimization problem

JFB
1a(d0) = max

δ1h,δ1`∈[0,ν]
πw(d0)[Rν(δ1h, αh) +Rν(δ

M, αh)−κ] + π̄w(d0)
[
Rν(δ1`, α`) (20)

+πw(d0 + δ1`)Rν(δ
M, αh) + π̄w(d0 + δ1`)Rν(δ

M, α`)− 2κ
]
.
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Isolating δ1h and using Lemma 1 again, we obtain δ1h = δM. The remaining optimization problem is

JFB
1a(d0) = πw(d0)[2Rν(δ

M, αh)−κ] + π̄w(d0)(τα`− 2κ) (21)

+π̄w(d0)

{
max
δ∈[0,ν]

Rν(δ,α`) +πw(d0 + δ)τ(αh−α`)
}
.

Because πw, Rν are concave and d0 + δ is a linear function of δ, the objective function inside curly

brackets is concave in δ. This implies that the optimal solution δ= δFB is unique.

We next prove δFB > δM. Recall that δM is the unique optimal solution to maxδ∈[0,ν]Rν(δ,α`),

Rν(δ,α`) is concave (see Lemma 1), and πw(d0 + δ) is increasing in δ. The marginal revenue for

Rν(δ,α`) at δ= δM is 0 while π′w(d0 + δM) is positive. Therefore, it follows that[∂Rν(δ,α`)
∂δ

+
∂πw(d0 + δ)(αh−α`)τ

∂δ

]
|δ=δM > 0 .

Note that the objective function in (21) is concave in δ1` and increasing when evaluated at δ1` = δM.

Therefore, it follows that δFB > δM. Q.E.D.

Proof of Theorem 1. Note that if ρ(d) is constant, then the objective function in Proposition 1

and the one in Proposition 2 differ from each other by a constant. Therefore, their optimal solutions

are the same, i.e., δFB = δ∗.

Next, assume that ρ(d) is decreasing in d. We prove this by contradiction. Assume that δ∗ > δFB.

Fix d0 and ν. The following condition is satisfied by δFB because δFB is the unique optimal solution

of maxδ∈[0,ν]Rν(δ,α`) +πw(d0 + δ)τ(αh−α`) (see Proposition 2).

Rν(δ
FB, α`) +πw(d0 + δFB)τ(αh−α`)≥Rν(δ,α`) +πw(d0 + δ)τ(αh−α`) ,∀δ ∈ [0, ν] (22)

Because the data impact ρ(·) is decreasing, the term − κ

ρ(d0 + δ)
is an increasing function of δ.

Using the assumption of contradiction, we obtain

− κ

ρ(d0 + δFB)
>− κ

ρ(d0 + δ∗)
(23)

Inequalities (22) and (23) imply that the objective function π̄w(d0)[Rν(δ,α`) + πw(d0 + δ)τ(αh −

α`)]−
κ

ρ(d0 + δ)
evaluated at δ = δFB is strictly larger than the value obtained by evaluating the

same at δ= δ∗. Therefore, the condition δ∗ > δFB contradicts the fact that δ∗ is the optimal solution

(see Proposition 1). This implies that δ∗ ≤ δFB. Furthermore, we know δFB 6= δ∗ from the first-order

conditions of the optimization problems in Propositions 1 and 2. Hence, we obtain δ∗ < δFB. The

last item of the theorem follows the same steps by assuming δ∗ < δFB. Q.E.D.

Proof of Theorem 2. Before proving this result, we first provide a constructive lemma that

shows that the social benefits are monotone in the firm’s data collection decision at equilibrium.
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Lemma 3. Social welfare W ∗ and consumer surplus C∗ are nondecreasing in δ∗. Furthermore,

W ∗ =W FB and C∗ =CFB for any δ∗ = δFB.

(The proof of this lemma is relegated to the end of this proof.) From Theorem 1, we know δ∗ = δFB

(δ∗ > δFB and δ∗ < δFB) when ρ is constant (increasing and, respectively, decreasing). Furthermore,

Lemma 3 implies that W ∗ = W FB and C∗ = CFB (W ∗ >W FB and C∗ < CFB; and W ∗ <W FB and

C∗ >CFB) when δ∗ = δFB (δ∗ > δFB and, respectively, δ∗ < δFB). Q.E.D.

Proof of Lemma 3. In a pricing period (e.g., Period 1b), the total consumer surplus for a given

price p and accuracy α is given by
∫ 1

0
1{αv≥p}(αv − p)f(v)dv = α/2− p+ p2/(2α) , where 1{·} is

the indicator function. Similarly, the total social welfare for a given price p and accuracy α is∫ 1

0
1{αv≥p}αvf(v)dv = α/2 − p2/(2α). In order to find the total expected social welfare and the

customer surplus at equilibrium, we use the equilibrium prices and take expectation with respect

to the induced probabilities of the amounts of collected data at equilibrium. The total expected

social welfare and the customer surplus are in order.

W ∗ =πw(d0)αh

(
1− (1− 2τ)

2
)

+ π̄w(d0)
α`
2

(
1−

(
1− δ

∗

ν

)2
)

+ π̄w(d0)
[
πw(d0 + δ∗)

αh
2

(
1− (1− 2τ)

2
)

+ π̄w(d0 + δ∗)
α`
2

(
1− (1− 2τ)

2
)]

C∗ =πw(d0)2τ 2(2αh−α`) + 2τ 2α` + π̄w(d0)
α`(δ

∗)2

2ν2
+ π̄w(d0)πw(d0 + δ∗)2τ 2(αh−α`)

The first-best benchmarks W FB and CFB are found by evaluating the terms above using δFB instead

of δ∗. Since πw is increasing and δ∗, δFB ∈ [0, ν], the monotonicity result follows. Q.E.D.

Proof of Proposition 3. We use the first-order condition for the maximization problem provided

in Proposition 2 and the implicit function theorem to prove this result. The first-order condition is[
∂Rν(δ,α`)

∂δ
+
∂πw(d0 + δ)τ(αh−α`)

∂δ

] ∣∣∣
δ=δFB

= 0 .

Note here that the left-hand side of the equality above is a continuously differentiable function

of δFB because Rν(δ,α`) and πw(d0 + δ) are twice-differentiable with a continuous second-order

derivative w.r.t. δ; thus we can use the implicit function theorem. From the implicit function

theorem, we know that ∂δFB

∂ν
has the same sign as

∂2Rν(δ,α`)

∂ν∂δ

∣∣∣
δ=δFB

=
α`
ν2

(
−1 +

4δFB

ν

)
because we

consider monotonicity with respect to ν. Recall that we know δFB ≥ δM from Proposition 2 and

δM = νF̄ (φ−1(0)) = ν/2 from Lemma 1. Therefore, δFB is nondecreasing in ν.

Proof of Theorem 3. We use the first-order condition for the maximization problem provided

in Proposition 1 and the implicit function theorem to prove this result. The first-order condition is

π̄w(d0)

[
α`
ν

(
1− 2δ∗

ν

)
+π′w(d0 + δ∗)(αh−α`)τ

]
+
κρ′(d0 + δ∗)

[ρ(d0 + δ∗)]2
= 0 . (24)
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Note that 1/ρ is twice-differentiable and with a continuous second-order derivative because πw and

πs are so and πw(d)− πs(d)> 0 for all d ∈ [dmin, dmax]. Because the left-hand side of this equation

is decreasing in δ∗ (due to concavity), the implicit function theorem implies that the sign of
∂δ∗

∂ν

is equal to
α`
ν2

(
−1 +

4δ∗

ν

)
.

We know that if ρ is increasing, δ∗ ≥ δFB (see Theorem 1), δFB ≥ δM (see Proposition 2) and

δM = ν/2 for the standard uniform distribution (see Lemma 1). Therefore, it follows that
∂δ∗

∂ν
≥ 0.

If ρ is decreasing, it is possible that δ∗ can take values smaller than ν/4. If δ∗ is smaller than ν/4

for all ν ∈ (0, ν̄], it follows that δ∗ is decreasing in ν; therefore ν̂ takes the lowest possible ν value.

If δ∗ is larger than ν/4 for all ν ∈ (0, ν̄], it follows that δ∗ is increasing in ν; therefore ν̂ = ν̄. These

two cases are degenerate in the sense that the monotonicity of δ∗ does not change at an interior ν.

On the other hand, if δ∗ crosses ν/4 at some point υ ∈ (0, ν̄], then δ∗ must first be increasing,

i.e., δ∗ ≥ ν/4 for all ν ∈ (0, υ], and then be decreasing, i.e., δ∗ ≤ ν/4 for all ν ∈ [υ, ν̄]. This implies

ν̂ = υ. Note that δ∗ can cross ν/4 at most once because δ∗ is decreasing in ν after crossing but ν/4

is increasing. We provide a sufficient condition for this case in Proposition EC.6 in Section EC.3

of the e-companion. Q.E.D.

Proof of Theorem 4. The firm’s expected profit derived in Proposition 1 is

J1a(d0) =πw(d0) [2Rν(δ
M, αh) +κ]− κ

ρ(d0)
+ π̄w(d0)τα`

+ π̄w(d0) [Rν(δ
∗, α`) +πw(d0 + δ∗)τ(αh−α`)]−

κ

ρ(d0 + δ∗)
.

We take the derivative of J1a(d0) with respect to ν. For simplicity, we denote by δ∗ν the derivative of

δ∗ with respect to ν. Note that we consider interior optimal solutions δ∗ that satisfy the first-order

condition, so δ∗ν exists.

∂J1a(d0)

∂ν
=π̄w(d0)

[
α`
ν

(
δ∗ν −

δ∗

ν

)(
1− 2δ∗

ν

)
+πw(d0 + δ∗)τ(αh−α`)δ∗ν

]
+
κρ′(d0 + δ∗)δ∗ν
[ρ(d0 + δ∗)]2

=δ∗ν

{
π̄w(d0)

[
α`
ν

(
1− 2δ∗

ν

)
+πw(d0 + δ∗)τ(αh−α`)

]
+
κρ′(d0 + δ∗)

[ρ(d0 + δ∗)]2

}
+ π̄w(d0)

α`
ν

(
δ∗

ν

)(
2δ∗

ν
− 1

)
.

From the first-order condition for the maximization problem in Proposition 1 and the implicit

function theorem, we know that

π̄w(d0)

[
α`
ν

(
1− 2δ∗

ν

)
+π′w(d0 + δ∗)(αh−α`)τ

]
+
κρ′(d0 + δ∗)

[ρ(d0 + δ∗)]2
= 0 . (25)

Thus, it follows that
∂J1a(d0)

∂ν
= π̄w(d0)

α`
ν

(
δ∗

ν

)(
2δ∗

ν
− 1

)
= π̄w(d0)

α`
ν

(
δ∗

ν

)
2

ν

(
δ∗− ν

2

)
.
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The sign of ∂J1a(d0)/∂ν is determined by δ∗ − ν/2. When ρ is increasing, δ∗ > δM = ν/2; thus

∂J1a(d0)/∂ν is positive.

Recall that δ = qν by definition. Thus, we denote by q∗ the quantity corresponding to δ∗ and

focus on it to prove the second item of the theorem. We next provide a lemma whose proof is

relegated to the end of the proof of this theorem.

Lemma 4. When ρ is decreasing, q∗ is decreasing in ν if q∗ < 1/2.

Note also that the sign of ∂J1a(d0)/∂ν is determined by the sign of (q∗−1/2). When ρ is decreasing,

δ∗ can be larger or smaller than δM = ν/2; i.e., q∗ can be larger or smaller than 1/2. We know

that ∂J1a(d0)/∂ν is positive as long as q∗ > 1/2. If q∗ crosses 1/2 at some ν̃, then it follows that

∂J1a(d0)/∂ν is negative for all ν ≥ ν̃ because q∗ is decreasing if q∗ ≤ 1/2 when ρ decreasing (see

Lemma 4).

Note that the expected profit is decreasing in ν when ρ is decreasing and q∗ is smaller than 1/2.

Thus, we next show that q∗ is decreasing in d0 when ρ is decreasing. To do so, we use the implicit

function theorem with the first-order condition for the maximization problem in Proposition 1 in

terms of q∗ given by

1

2α`
π′w(d0 + q∗ν)(αh−α`)τν+

1

2π̄w(d0)α`

κρ′(d0 + q∗ν)ν

[ρ(d0 + q∗ν)]2
= q∗− 1

2
. (26)

The derivative of q∗ with respect to d0 has the same sign with the following term:

−π′w(d0)[α`(1− 2q∗) +π′w(d0 + q∗ν)τ(αh−α`)ν] + π̄w(d0)π′′w(d0 + q∗ν)τ(αh−α`)ν

+
κρ′′(d0 + q∗ν)ν

[ρ(d0 + q∗ν)]2
− 2κ[ρ′(d0 + q∗ν)]ν

[ρ(d0 + q∗ν)]3
.

Replacing q∗ in the above expression using the left-hand side of (26), we obtain

π′w(d0)κρ′(d0 + q∗ν)ν

[ρ(d0 + q∗ν)]2π̄w(d0)
+ π̄w(d0)π′′w(d0 + q∗ν)τ(αh−α`)ν+

κρ′′(d0 + q∗ν)ν

[ρ(d0 + q∗ν)]2
− 2κ[ρ′(d0 + q∗ν)]ν

[ρ(d0 + q∗ν)]3
.

Here, the expression above is negative because ρ is decreasing, 1/ρ is convex; and πw is an increasing

concave function. This concludes the proof. Q.E.D.

Proof of Lemma 4. Using (26) and the implicit function theorem, we know that the sign of the

derivative of q∗ with respect to ν is the same as[
π̄w(d0)π′w(d0 + q∗ν)τ(αh−α`) +

κρ′(d0 + q∗ν)

[ρ(d0 + q∗ν)]2

]
︸ ︷︷ ︸

(i)

(27)

+

[
π̄w(d0)π′′w(d0 + q∗ν)τ(αh−α`) +

κρ′′(d0 + q∗ν)

[ρ(d0 + q∗ν)]2
− 2κ(ρ′(d0 + q∗ν))2

[ρ(d0 + q∗ν)]3

]
νq∗︸ ︷︷ ︸

(ii)

. (28)

First note that q∗ can take values smaller than 1/2 when ρ is decreasing. If q∗ ≤ 1/2, the first-order

condition (26) implies that (i) is negative. We also know that (ii) is always negative because πw is

concave and 1/ρ is convex. Thus, q∗ starts to decrease after crossing 1/2. Q.E.D.
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Electronic Companion

EC.1 Interior Price Decisions of the Firm

In this section, we show that if the probability of high accuracy πw and the data impact ρ

do not increase or decrease too fast, the firm’s optimal price (and hence the collected data

size) take interior values. Let Π′max , maxd∈[dmin,dmax] π
′
w(d) and Π′min , mind∈[dmin,dmax] π

′
w(d) and

D′max ,maxd∈[dmin,dmax] ρ
′(d) and D′min ,mind∈[dmin,dmax] ρ

′(d). Because πw is concave, in fact Π′max =

π′w(dmin) and Π′min = π′w(dmax).

Proposition EC.1. We have that

• If τ(αh−α`)Π′max < 2α`/dmax, then δFB ∈ (0, ν) for ν ∈ (0, νmax].

• If τ(αh − α`)Π′maxπ̄w(dmin) + κD′max/∆π
2 < π̄w(dmax)2α`/dmax and π̄w(dmax)τ(αh − α`)Π′min +

κD′min + π̄w(dmax)α`/ν > 0, then δ∗ ∈ (0, ν) for ν ∈ (0, νmax].

Proof of Proposition EC.1. This result follows from the fact that the derivatives of the objec-

tive functions in the maximization problems in Proposition 2 and respectively Proposition 1 are

positive at δ= 0 and negative at δ= ν when the conditions in the statement of the proposition are

satisfied. (Recall that the objective functions in both problems are concave in δ, see the proofs of

Propositions 2 and 1.)

Note that Proposition 2 implies that δFB ≥ δM (and recall that δM > 0 from Lemma 1). Thus,

we need to check the derivative for the first-best data size only at δ = ν. Using the definition of

Rν(δ,α`), we obtain the derivative of the objective function in Proposition 2 as follows:

α`

(
1

ν
− 2δ

ν2

)
+ τ(αh−α`)πw(d0 + δ) . (EC.1)

The condition in the first bullet point of the result implies that the term in (EC.1) is negative

when evaluated at δ= ν. Hence, it follows that δFB ∈ (0, ν).

Next, we consider δ∗. Similarly, the derivative of the objective function in Proposition 1 with

respect to δ is given as follows:

π̄w(d0)

[
α`

(
1

ν
− 2δ

ν2

)
+ τ(αh−α`)π′w(d0 + δ)

]
+
κρ′(d0 + δ)

[ρ(d0 + δ)]2
. (EC.2)

The first condition in the second bullet point guarantees that the term in (EC.2) evaluated at

δ = ν is negative for any ν ∈ (0, νmax] because π′w(d0 + ν)≤Π′max and ρ(d0 + δ)≥∆π. The second

condition in the same bullet point guarantees that the term in (EC.2) is positive when evaluated

at δ= 0. Therefore, it follows that δ∗ ∈ (0, ν). Q.E.D.
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Although the conditions in Proposition EC.1 are sufficient to guarantee that the optimal solutions

δ∗ and δFB are interior, they are in fact loose because we do not assume any parametric form of

functions πw and ρ. For given parametric forms of functions πw and ρ, these conditions can be

improved. Alternatively, it is straightforward to check if the optimal solutions δ∗ and δFB are interior

for any given set of parameters as in the numerical examples provided in the main body of our

paper.

In case of the corner solution such that the δ∗ takes the value of its upper bound ν, the cor-

responding price of the product p∗ becomes 0 per Section 3. In this case, the firm distributes

the product for free to collect the largest available data. We conclude this section by providing a

necessary and sufficient condition for δ∗ = ν.

Lemma EC.1. The optimal data collection size δ∗ equals to ν if and only if the following con-

dition holds.

π̄w(d0)τ(αh−α`)π′w(d0 + ν) +
κρ′(d0 + ν)

[ρ(d0 + ν)]2
≥ π̄w(d0)α`

ν
(EC.3)

Proof of Lemma EC.1. The firm’s optimal data collection size is found by maximizing the

objective function in Proposition 1. When the inequality in (EC.3) holds, the objective function

is nondecreasing for any δ ∈ [0, ν] because it is concave. Thus, the firm selects the largest data

collection size in this case.

EC.2 Sufficient Conditions for nondegenerate ν̃ and ν̂

Note that the threshold ν̃ provided in Theorem 4 can take boundary values which makes the firm’s

profit entirely increasing. In this section, we provide a condition that guarantees that ν̃ becomes

nondegenerate. We focus on decreasing data impact ρ because the firm’s profit is increasing in ν

otherwise.

Proposition EC.2. Assume that ρ is decreasing and define a(ν) , π′w(d0+ν/2)π̄w(d0)[ρ(d0+ν/2)]2τ

−ρ′(d0+ν/2)
.

If lim
ν→∞

a(ν) = 0 then ν̃ is finite.

Proof of Proposition EC.2. We first prove that sign(∂J1a(d0)/∂ν) = sign(A(ν)) for any given ν

where

A(ν), π′w(d0 + ν/2)τ(αh−α`) +
κρ′(d0 + ν/2)

π̄w(d0)[ρ(d0 + ν/2)]2
.

In the proof of Theorem 4, we show that ∂J1a(d0)/∂ν ≥ 0 if and only if q∗ ≥ 1/2 vice versa. Assume

A(ν)≥ 0, then the derivative of the objective function of the maximization problem in Proposition 1

evaluated at q = 1/2 is nonnegative which implies that q∗ ≥ 1/2 due to concavity. The reverse

directions hold from the same relationship.

The statement in the proposition follows from the fact that A(ν) < 0 if and only if a(ν) <

κ/(αh − α`). Note that κ/(αh − α`) > 0, so lim
ν→∞

a(ν) = 0 implies that a(ν) becomes lower than
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κ/(αh − α`) for a sufficiently large ν. For the same ν, A(ν) < 0. This implies that ν̃ is finite.

Q.E.D.

The condition on a(ν) provided in Proposition EC.2 guarantees that ν̃ ∈ [0,∞). The next corol-

lary identifies a property on πw and πs that implies the limit condition in Proposition EC.2.

Proposition EC.3. If πw(d) − πs(d) is decreasing in d and converges to 0 as d approaches

infinity, then lim
ν→∞

a(ν) = 0 and hence ν̃ <∞.

Proof of Proposition EC.3. Since πw(d)− πs(d) is decreasing in d, ρ(d) is also decreasing in d.

We next check the limit of a(ν). To do so, we reformulate a(ν) as follows:

a(ν) = π̄w(d0)τ
π′w(d0 + ν/2)[ρ(d0 + ν/2)]2

−ρ′(d0 + ν/2)
= π̄w(d0)τ

[πw(d0 + ν/2)−πs(d0 + ν/2)]2

π′s(d0+ν/2)

π′w(d0+ν/2)
πw(d0 + ν/2)−πs(d0 + ν/2)

.

Note that π′s(d0 +ν/2)/π′w(d0 +ν/2) is larger than 1 since πw(d)−πs(d) is decreasing and πe(d) for

e∈ {s,w} are increasing in d. Therefore, it follows that a(ν)< π̄w(d0)τ [πw(d0 +ν/2)−πs(d0 +ν/2)].

Hence the sandwich theorem implies that lim
ν→∞

a(ν) = 0 because πw(d)− πs(d) converges to 0 as d

approaches ∞ and a(ν)≥ 0. Q.E.D.

The exponential function family (πe(d) = 1− exp(−zed)) with parameter ze > 0 for e ∈ {s,w}),

and the power function family (πe(d) = 1− yed−ze with parameters ye, ze > 0 for e ∈ {s,w}) are

commonly used to estimate learning curves (see Table 1 in Viering and Loog 2021 for a list of

references). The term πw(d)− πs(d) converges to 0 as d approaches infinity for these families. For

the exponential family with parameters ze > 0 for e∈ {s,w}, the term πw(d)−πs(d) is decreasing in

d over [dmin = log(zw/zs)/(zw− zs),∞). Note that zw > zs in order to ensure πw(d)>πs(d) for this

family and hence dmin = log(zw/zs)/(zw − zs)> 0. For the power function family with parameters

ye, ze > 0 for e∈ {s,w}, the term πw(d)−πs(d) is decreasing in d over [dmin = log(zwyw/zsys)/(zw−

zs),∞). Also note that zw > zs and yw > ys in order to ensure that πw(d) > πs(d) for this fam-

ily and hence dmin = log(zwyw/zsys)/(zw − zs) > 0. Thus, these families, satisfy the conditions in

Proposition EC.3, which also implies that limν→∞ a(ν) = 0 for a(ν) defined in Proposition EC.2.

Next, we provide a sufficient condition for ν̂ provided in Theorem 3 to be in [0,∞).

Proposition EC.4. Assume that ρ is decreasing and define B(ν), π′w(d0 + ν/4)τ(αh−α`)ν+

κρ′(d0+ν/4)ν

π̄w(d0)[ρ(d0+ν/4)]2
. If there exists a finite ε such that B(ε)<−α`/2, then ν̂ < ε.

Proof of Proposition EC.4. In the proof of Theorem 3, we show that ∂δ∗/∂ν ≥ 0 if and only

if q∗ ≥ 1/4 vice versa. Assume there exists ε such that B(ε) < −α`/2, then the derivative of the

objective function of the maximization problem in Proposition 1 evaluated at q = 1/4 is negative

which implies that q∗ ≤ 1/4. Therefore, q∗ crosses 1/4 at ν̂ and ν̂ < ε due to concavity in q. Q.E.D.
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EC.3 Optimal Effort Choice of the Firm

In our setup, it may not be always optimal for the firm to induce the provider to work in both

periods. To address this issue, we characterize an upper bound κ̄ on the effort cost κ depending

on the problem parameters, and assume that κ< κ̄. Under this assumption, the firm always finds

it optimal to retrain the algorithm after observing a low accuracy α` in the first period if ρ is

increasing. Furthermore, the condition κ< κ̄ also guarantees that if ρ is decreasing, the firm induces

the provider to work in both periods for any ν ≤ ν̄ for some ν̄ > 0, and ν̃ provided in Theorem 4

is strictly lower than ν̄. The next proposition formally characterizes κ̄.

Proposition EC.5. There exists two positive thresholds κ̄ and ν̄ such that the firm finds it

optimal to induce provider to work in both periods if κ < κ̄ and ν < ν̄. Further, ν̄ equals ∞ when

κ< κ̄ and ρ is increasing.

Proof of Proposition EC.5. Let κ̄, π̄w(d0)τ(αh−α`)[πw(d0)− πs(d0)]. Since the firm commits

to the contract before the accuracy realizations, we compare the expected profit J1a(d0) with the

expected profit (denoted by J̃1a(d0)) collected when the firm hires the provider only for the product

development. The expected profit J̃1a(d0) for the no-retraining case is given by

J̃1a(d0) = πw(d0)2αhτ + π̄w(d0)2α`τ −
κ

ρ(d0)
. (EC.4)

Because there is no retraining, in both periods the product is sold with the initial accuracy that

can be αh with probability πw(d0) and α` with the remaining probability. In each case, it is

optimal for the firm to use the myopic price, therefore the expected revenue of the firm is given by

πw(d0)2αhτ + π̄w(d0)2α`. The provider is hired only for the first period. In this case, the optimal

contract for the provider is such that there is a payment of κ/[πw(d0)− πs(d0)] in case of a high

accuracy, and no payment otherwise. This causes an expected cost of κ/ρ(d0).

First assume that ρ is increasing. The difference between this expected profits is

J1a(d0)−J̃1a(d0) = πw(d0)κ+π̄w(d0)

[
Rν(δ

∗, α`) +πw(d0 + δ∗)τ(αh−α`)−
κ

π̄w(d0)ρ(d0 + δ∗)
− τα`

]
.

Note that the firm’s profit is increasing in ν when ρ is increasing. Therefore, we consider the

difference term above when ν = 0 and hence obtain the following lower bound.

J1a(d0)− J̃1a(d0)>πw(d0)κ+ π̄w(d0)

[
πw(d0)τ(αh−α`)−

κ

π̄(d0)ρ(d0)

]
(EC.5)

=πw(d0)κ+ π̄w(d0)
πw(d0)

π̄w(d0)[πw(d0)−πs(d0)]
[κ̄−κ]> 0 (EC.6)

Since κ̄ > κ all terms in the right-hand side of the above inequality are positive. Hence, the claim

follows.
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Next assume that ρ is decreasing. In this case, the profit is increasing for ν ≤ ν̃, and then

decreasing ν ≥ ν̃. As shown for the increasing ρ case, the condition κ̄ > κ ensures that the firm is

better off retraining the algorithm when ν = 0. Therefore, J1a(d0) crosses J̃1a(d0) at most one point

for ν > 0 because J1a(d0) is unimodal and J̃1a(d0) is constant in ν. If exists, the crossing point is

ν̄. Otherwise, ν̄ is ∞. Either case ν̄ is positive. Q.E.D.

Recall that we provide a condition in Section EC.2 of this e-companion to ensure ν̃ is nondegen-

erate. The following proposition shows that the threshold ν̄ provided in Proposition EC.5 is strictly

larger than ν̃ when κ̃ > κ and lim
ν→∞

a(ν) = 0. Furthermore, this result also provides a sufficient

condition for ν̂ < ν̄.

Proposition EC.6. We have the following

• If ρ is decreasing, κ̄ > κ and lim
ν→∞

a(ν) = 0, then ν̃ < ν̄.

• If ρ is decreasing, κ̄ > κ and there exists B(ε)<−α`/2 such that ε < ν̄, then ν̂ < ν̄.

Proof of Proposition EC.6. When ρ is decreasing and κ is lower than κ̄, we know that ν̄ is

positive. If ν̄ is infinite, then ν̃ < ν̄ because Proposition EC.2 implies ν̃ <∞ when lim
ν→∞

a(ν) = 0. If

ν̄ is finite, then we also know the point ν̄ where J1a(d0) crosses J̃1a(d0) is such that ν̄ > ν̃ because

i) J1a(d0) is unimodal with peak point ν̃ ≥ 0, ii) J1a(d0) > J̃1a(d0) at ν = 0 when κ̄ > κ, and iii)

J̃1a(d0) is constant in ν. The second part of the proposition directly follows from Proposition EC.4

because ν̂ < ε. Q.E.D.

EC.4 Competitive Provider Market

In this section, we consider the setting where the firm can terminate the relation with the provider

after observing a low accuracy in the first period, and contract with another provider in the second

period. Recall that the firm does not need to retrain the algorithm after a high accuracy in the

first period. Thus, firing after a low accuracy terminates the contract with the provider in the

first period in any case. The firm then solves two separate contracting problems between which it

collects data. To distinguish from the setting with a single provider, in this section we denote by

θ data collection. The next proposition based on Laffont and Martimort (2009) characterizes the

optimal payments of the firm.

Proposition EC.7. In case of contracting with two providers in different periods, the optimal

payments of the firm are such that x∗1` = 0, x∗2` = 0; and

x∗1h =
κ

πw(d0)−πs(d0)
and x∗2h =

κ

πw(d0 + θ∗)−πs(d0 + θ∗)
, (EC.7)

where θ∗ is the unique optimal solution of maxθ∈[0,ν]Rν(θ,α`)−πw(d0 +θ)τ(αh−α`)−κ/ρ(d0 +θ).



ec6 e-companion to Gurkan and de Véricourt: AI Flywheel Effect

Proof of Proposition EC.7. The optimal payments of the contracting problem with the first

provider is characterized in Proposition 4.2 in Laffont and Martimort (2009). For any data collection

θ after a low accuracy in the first period, the firm faces the same contracting problem in the second

period but this time with a different accuracy probabilities: πw(d0 + θ) and πs(d0 + θ). Therefore,

the same proposition in Laffont and Martimort (2009) characterizes the optimal payments in the

second period for any given θ.

At the end of the first period, the firm maximizes the next periods profit by choosing the optimal

data collection size by anticipating the optimal payments when contracting with a new provider in

case of obtaining low accuracy in the first period. Otherwise, goes with the myopic price for high

accuracy. The firm’s optimization problem after the low accuracy is as follows.

max
θ∈[0,ν]

Rν(θ,α`)︸ ︷︷ ︸
Current Revenue

+πw(d0 + θ)τ(αh−α`)︸ ︷︷ ︸
Continuation Revenue

− κ/ρ(d0 + θ)︸ ︷︷ ︸
Expected Agency Cost

. (EC.8)

Because all terms in the above optimization problem are concave functions of θ and [0, ν] is a

compact set, there exists a unique θ∗. Q.E.D.

As in the case of the single provider we restrict attention to θ∗ ∈ (0, ν) and the induced q∗ =

θ∗/ν ∈ (0,1) for the following results.

Proposition EC.8. When ρ is decreasing, q∗ is decreasing in d0.

Proof of Proposition EC.8. As in the proof of Theorem 4, we use the first-order condition for

(EC.8) and the implicit function theorem. The derivative of q∗ with respect to d0 has the same

sign with the following term:

π′′w(d0 + θ∗)ν(αh−α`)τ +
κρ′′(d0 + θ∗)ν

[ρ(d0 + θ∗)]2
− 2κ[ρ′(d0 + θ∗)]2ν

[ρ(d0 + θ∗)]3
(EC.9)

Because πw is concave and 1/ρ is convex it follows that the term above is negative. Q.E.D.

Note that the objective function in the optimization problem in (EC.8) differs from the one

in Proposition 1 by a scaling term π̄w(d0) for the first two terms: current period revenue and

continuation revenue. Therefore, Theorems 1 and 3 can be repeated verbatim using (EC.8). Thus,

Theorem 2 is extended to this setting as well. The firm’s expected profit in this setting is differently

from Theorem 4 given by

πw(d0) [2Rν(δ
M, αh) +κ]− κ

ρ(d0)
+ π̄w(d0)τα`

+ π̄w(d0)

[
Rν(θ

∗, α`) +πw(d0 + θ∗)τ(αh−α`)−
κ

ρ(d0 + θ∗)

]
.

(EC.10)

Here, the difference is that the firm incurs the expected agency cost in the second period only if the

first period yields low accuracy. Nevertheless the same steps in the proof of Theorem 4 (including
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Lemma 4) can be followed verbatim because θ∗ is the interior optimal solution to (EC.8) as δ∗ is

the interior optimal solution to the maximization problem in Proposition 1. To show Theorem 4

is also extended to this setting, we need to prove that q∗ is decreasing in d0 when ρ is decreasing

in this setting, too. Proposition EC.8 does this.

The effect of incentive issues have further implications for these societal benefits. Specifically,

our setup considers a unique provider, with which the firm contracts in both period. It is not

clear, however, how the previous societal benefits change when the firm can contract with different

providers in different periods. The next result shows that a more competitive market of providers

may actually hurt the social benefits.

Proposition EC.9. Let W̃ ∗ and C̃∗ be the social welfare and, respectively the customer surplus

in a setting where the firm changes providers in each period.

1. If ρ is increasing, W ∗ > W̃ ∗ and C∗ < C̃∗.

2. If ρ is decreasing, W ∗ < W̃ ∗ and C∗ > C̃∗.

Thus, a more competitive provider market hurts societal benefits more if the data impact increases.

This is because the firm suffers more from the moral hazard of the provider in the absence of

competition. Therefore, the firm collects more data when the data impact is increasing to mitigate

incentive issues compared to the competitive provider market.

Proof of Proposition EC.9. This proposition stems from the fact that θ∗ is larger than δ∗ when

ρ is decreasing and vice versa. Specifically, we show in Lemma 3 that collecting more data increases

both the social welfare and the customer surplus. Thus, to compare those societal benefits we can

directly compare the optimal data collection sizes in two settings using the following lemma.

Lemma EC.2. The optimal data collections δ∗ and θ∗ are such that

• θ∗ < δ∗ if ρ is increasing, and

• θ∗ > δ∗ if ρ is decreasing.

Lemma 3 together with Lemma EC.2 imply the result. Q.E.D.

Proof of Lemma EC.2. The optimal data collection δ∗ and θ∗ satisfy the following first-order

conditions.

α`

(
1

ν
− 2δ∗

ν2

)
+ τ(αh−α`)π′w(d0 + δ∗) +

κρ′(d0 + δ∗)

π̄w(d0)[ρ(d0 + δ∗)]2
= 0

α`

(
1

ν
− 2θ∗

ν2

)
+ τ(αh−α`)π′w(d0 + θ∗) +

κρ′(d0 + θ∗)

[ρ(d0 + θ∗)]2
= 0

If ρ is increasing, then α`

(
1
ν
− 2θ∗

ν2

)
+τ(αh−α`)π′w(d0 +θ∗)+ κρ′(d0+θ∗)

π̄w(d0)[ρ(d0+θ∗)]2 > 0 because π̄w(d0)< 1.

Hence, θ∗ < δ∗ because both objective functions are concave, hence their derivatives are decreasing.

This implies the firm collects more data if the provider cannot be fired after a low accuracy in the
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first period and the data impact is increasing. In the case of decreasing ρ, α`

(
1
ν
− 2θ∗

ν2

)
+ τ(αh −

α`)π
′
w(d0 + θ∗) + κρ′(d0+θ∗)

π̄w(d0)[ρ(d0+θ∗)]2 < 0 so θ∗ > δ∗. Q.E.D.

Finally, note that comparing (EC.10) with J1a(d0) provided in the proof of Proposition 1 reveals

that the firm always prefers the competitive provider market because the agency cost is lower.

EC.5 Short-term Contracting

In this section, we consider a setting where the firm has no commitment power across periods when

contracting with the provider. In order to differentiate the data collection sizes in this section from

δ in our paper, we denote by γ data collection sizes. Furthermore, we use the hat symbol ·̂ over

the value functions for this setting.

Since the firm has no commitment power, we formulate the firm’s problem using backward

induction starting from the last period. Denote then by Ĵ2b(α2) the firm’s optimal expected profit

in Period 2b given accuracy α2 such that

Ĵ2b(α2) = max
δ2∈[0,ν]

Rν(δ2, α2) (EC.11)

The firm chooses the amount of collected data (or equivalently the price) so as to maximize the

expected revenue in the current period as in (2).

We denote by Ĵ2a(α1, d1) the firm’s optimal expected profit in Period 2a, given accuracy α1 and

data size d1, such that

Ĵ2a(α`, d1) = max
x2h,x2`≥0

πw(d1)[Ĵ2b(αh)−x2h] + π̄w(d1)[Ĵ2b(α`)−x2`] (EC.12)

s.t.

πw(d1)x2h + π̄w(d1)x2`−κ≥ πs(d1)x2h + π̄s(d1)x2` (EC.13)

Ĵ2a(αh, d1) = Ĵ2b(αh). (EC.14)

When α1 = α`, the firm needs to set payments such that the provider has enough incentives to exert

effort, as formalized by incentive constraint (EC.13). These payments are then deduced from the

firm’s expected revenues in Period 2a. Here, data size d1 affects the chance of improving accuracy

in the next period via probabilities πe(·), e ∈ {w,s}. When α1 = αh, recall that the firm does

not need nor pay the provider. We thus refer to x∗2h and x∗2` as the optimal payments solving

Problem (EC.12).

Moving to the first period, we denote by Ĵ1b(α1, d0) the firm’s optimal expected profit in Period 1b

given accuracy α1 and data size d0, such that

Ĵ1b(α1, d0) = max
γ1∈[0,ν]

Rν(γ1, α1) + Ĵ2a

(
α1, d0 + γ1

)
for α1 ∈ {αh, α`}. (EC.15)
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In contrast to Problem (EC.11), the firm needs to balance the revenues in the current period with

the expected profit in the next one when the algorithm is of low accuracy. When α1 = α`, the choice

of data γ1 (or equivalently price) affects current revenues directly and future ones indirectly by

increasing the dataset size to d0 + γ1. We refer to γ∗ as the optimal solution of Problem (EC.15)

for α1 = α`. When α1 = αh, no retraining is required and the optimal price is equal to the myopic

price.

Given initial data size d0, we denote by Ĵ1a(d0) the optimal total expected profit in Period 1a,

such that

Ĵ1a(d0) = max
x1h,x1`≥0

πw(d0)[Ĵ1b(αh, d0)−x1h] + π̄w(d0)[Ĵ1b(α`, d0)−x1`] (EC.16)

s.t.

πw(d0)x1h + π̄w(d0)
[
x1` + Ĵp(d0)

]
−κ≥ πs(d0)x1h + π̄s(d0)

[
x1` + Ĵp(d0)

]
(EC.17)

Ĵp(d0) = πw (d0 + δ∗)x∗2h + π̄w (d0 + δ∗)x∗2`−κ. (EC.18)

The optimization problem of Ĵ2a in (EC.12) corresponds to minimizing the expected payment while

motivating the provider to exert effort. The following proposition (based on Laffont and Martimort

2009, Proposition 4.2) provides the corresponding optimal payments.

Proposition EC.10. Given dataset size d1, the unique optimal payments for Problem (EC.12)

are x∗2` = 0 and x∗2h = κ/[πw(d1)−πs(d1)]. The firm’s optimal expected profit is then

Ĵ2a(α`, d1) = πw(d1)ταh + π̄w(d1)τα`−
κ

ρ(d1)
and Ĵ2a(αh, d1) = ταh . (EC.19)

where κ/ρ(d1) is the expected payment to the provider.

Proof of Proposition EC.10. Following Proposition 4.2 in Laffont and Martimort (2009, p. 157),

we obtain the optimal payments for Problem (EC.12) x∗2` = 0 and x∗2h = κ/[πw(d1)−πs(d1)]. Fol-

lowing Lemma 1, we have J2b(α2, d1) = α2τ . Combining these, we get

Ĵ2a(α`, d1) = πw(d1)ταh + π̄w(d1)τα`−
κ

ρ(d1)
.

If α1 = αh, there are no payments so Ĵ2a(αh, d1) = Ĵ2b(αh) = ταh. Q.E.D.

The optimal expected continuation profit Ĵ1b(α1, d0) in Problem (EC.15) is then obtained by

using expected profit Ĵ2a(α1, d0 + γ) from (EC.19) in Proposition EC.10. We show next that the

optimal data size solving Problem (EC.15) and hence the corresponding optimal price are unique

Proposition EC.11. The optimal solution to Problem (EC.15) is unique and equal to δM if

α1 = αh.



ec10 e-companion to Gurkan and de Véricourt: AI Flywheel Effect

Proof of Proposition EC.11. Using the expected profit Ĵ2a derived in (EC.19), we write Prob-

lem (EC.15) as follows.

max
γ1∈[0,ν]

Rν(γ1, α1) + 1{α1 = α`}
[
πw(d0 + γ1)αhτ + π̄w(d0 + γ1)α`τ −

κ

ρ(d0 + γ1)

]
(EC.20)

If α1 = αh, it is straightforward to see from (EC.20) that the unique optimal solution to Prob-

lem (EC.15) is δM. Otherwise, the optimal solution γ∗ solves the following problem

max
γ1∈[0,ν]

Rν(γ1, α`) +πw(d0 + γ1)(αh−α`)τ −
κ

ρ(d0 + γ1)
+α`τ (EC.21)

Because πw, Rν and −1/ρ are concave, and d0 +γ1 is a linear function of γ1, the objective function

in (EC.21) is concave in γ1. This implies that the optimal solution γ∗ is unique. Q.E.D.

Finally, the next result characterizes the optimal payments in Period 1a.

Proposition EC.12. Given initial data size d0, the unique optimal payments for Problem (6)

are

x∗1` = 0 and x∗1h =
κ

πw(d0)−πs(d0)
+

(
κ

ρ(d0 + γ∗)
−κ
)
.

Proof of Proposition EC.12. In Period 1a, the optimization problem of the firm is

Ĵ1a(d0) = πw(d0)Ĵ1b(αh, d0) + π̄w(d0)Ĵ1b(α`, d0)− min
x1h,x1`≥0

πw(d0)x1h + π̄w(d0)x1`

st. (EC.17), (EC.18)

Using the optimal payments x∗2h and x∗2` derived in Proposition EC.10, we evaluate the expected

continuation profit Ĵp(d0) of the provider, and Ĵp(d0) = κ
ρ(d0+γ∗) − κ. Characterizing Ĵp(d0), we

reduce this problem to a standard principal-agent model where the cost of effort is κ+
[
πw(d0)−

πs(d0)
]
Ĵp(d0). Therefore, Proposition 4.2 in Laffont and Martimort (2009, p. 157) implies that the

optimal solution of the optimization problem in Ĵ1b(d0) is x∗1` = 0 and x∗1h =
κ

πw(d0)−πs(d0)
+

κ

ρ(d0 + γ∗)
−κ. Q.E.D.

When focusing on γ∗ ∈ (0, ν), we have that the objective function in the optimization problem

in (EC.21) differs from the one in Proposition 1 by a scaling term π̄w(d0) for the first two terms:

current period revenue and continuation revenue. Therefore, Theorems 1 and 3 can be repeated

verbatim using (EC.21).

Proposition EC.13. We have

1. If ρ(·) is strictly increasing, Ĵ1b(α`, d0) is strictly increasing in ν.

2. If ρ(·) is strictly decreasing, a unique threshold νst exists such that Ĵ1b(α`, d0) is strictly increas-

ing in ν if ν ≤ νst and is strictly decreasing otherwise. Further, threshold dst > 0 exists such

that Ĵ1b(α`, d0) is strictly decreasing (i.e., νst = 0) if d0 ≥ dst.
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Proof of Proposition EC.13. Note that Ĵ1b(α`, d0) is given in (EC.21). Using this and the

implicit function theorem, we next derive ∂Ĵ1b(α`, d0)/∂ν.

∂Ĵ1b(α`, d0)

∂ν
=
α`γ

∗

ν2

(
2γ∗

ν
− 1

)
.

Since Theorem 1 holds for this case as discussed above, it follows that γ∗ > δM = ν/2 when ρ is

increasing. This proves the first item. To proved the second item, we can follow the same steps in

the proof of Theorem 4 but by using use Proposition EC.8. Q.E.D.

EC.6 Withholding Data

Proof of Theorem 5. Differently from Problem (6), we allow for the firm to withhold a portion

λ ∈ [0,1] of the collected data δ1` from the provider for the second period after a low accuracy

in the first period. Note that the firm has no incentive to withhold data when ρ is increasing

because more data boosts the positive externalities of the AI Flywheel effect and mitigates the

incentive issues. On the other hand, when the data impact ρ is decreasing more data exacerbates

the incentive issues hence the firm may want to withhold a portion of the data to compensate this

effect. In this setup, the problem of the firm is as follows.

max x1h,x1`≥0
x2h,x2`≥0
δ1h,δ1`∈[0,ν]

λ∈[0,1]

πw(d0)[Rν(δ1h, αh) +J2a(αh, d0 + δ1h)−x1h] (EC.22)

+π̄w(d0)[Rν(δ1`, α`) +J2a(α`, d0 +λδ1`)−x1`]

s.t.

πw(d0)x1h + π̄w(d0) [x1` +Jp(d0)]−κ≥

πs(d0)x1h + π̄s(d0) [x1` +Jp(d0)] (EC.23)

Jp(d0) = πw (d0 +λδ1`)x2h + π̄w (d0 +λδ1`)x2`−κ. (EC.24)

πw(d0 +λδ1`)x2h + π̄w(d0 +λδ1`)x2`−κ≥ (EC.25)

πs(d0 +λδ1`)x2h + π̄s(d0 +λδ1`)x2`

For a fixed λδ1`, we can use Lemmas 1 and 2 to derive the optimal payments. Hence, the firm’s

problem is reduced to choosing the optimal data collection size δ1` and the portion λ.

max
δ∈[0,ν],λ∈[0,1]

π̄w(d0)[Rν(δ,α`) +πw(d0 +λδ)(αh−α`)τ ]− κ

ρ(d0 +λδ)
(EC.26)

In this problem, the firm’s pricing revenue Rν(δ,α`) does not involve λ because the firm first

determines the price of the product and collects revenue, then decides what portion (λ) of the

collected data δ to share with the provider to improve the accuracy of the algorithm.
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Using this expression, the expected profit of the firm can be written as follows:

πw(d0)[2Rν(δ
M, αh) +κ]− κ

ρ(d0)
+ π̄w(d0)τα`

+ max
δ∈[0,ν],λ∈[0,1]

π̄w(d0)[Rν(δ,α`) +πw(d0 +λδ)(αh−α`)τ ]− κ

ρ(d0 +λδ)
.

(EC.27)

In the expected profit of the firm, Rν(δ
M, αh) = ταh by Lemma 1. Therefore, the term ν appears

only in the maximization problem. We next show that the optimal value of this maximization

problem first increases in ν until ν < νw for some νw, then remains constant in ν. By making a

change of variables δ= qν and λδ= η, we can rewrite (EC.26) as follows.

max
q,η

π̄w(d0)[α`q(1− q) +πw(d0 + η)(αh−α`)τ ]− κ

ρ(d0 + η)
(EC.28)

st. 0≤ q≤ 1 (EC.29)

0≤ η≤ qν (EC.30)

First note that, the term ν does not appear in the objective function but exists in the upper bound

of the last constraint. Therefore, the optimal value is nondecreasing in ν because increasing ν

enlarges the feasible region without affecting the objective function.

Assume there exists η̃ be such that π̄w(d0)π′w(d0 + η̃)(αh − α`)τ = −κρ′(d0 + η̃)/[ρ(d0 + η̃)]2. If

η̃ ≤ ν/2, qM and η∗ = η̃ is the optimal solution for (EC.28). In fact, it is the optimal solution of

the problem obtained by relaxing the last constraint η ≤ qν. Observe that η̃ does not depend on

ν because it is induced by functions πw and ρ. Therefore, increasing ν does not affect η∗ = η̃ and

q∗ = qM, and the optimal value of (EC.26) hence the firm’s expected profit is constant in ν. Thus,

one can define νw = 2η̃.

Next, we show that the expected profit is increasing if ν < νw. This can be shown that the last

constraint in (EC.28) is binding when 2η̃ > ν. We prove this result by contradiction. Assume that

2η̃ > ν and the last constraint is not binding at the optimal solution, i.e., η∗− q∗ν < 0.

Let µ be the Lagrange multiplier corresponding to the constraint η − qν ≤ 0. Thus, we obtain

the following Karush-Kuhn-Tucker (KKT) conditions.

q∗ =
α`π̄w(d0) +µν

2α`π̄w(d0)

π̄w(d0)π′w(d0 + η∗)(αh−α`)τ +
κρ′(d0 + η∗)

[ρ(d0 + η∗)]2
= µ

µ(η∗− q∗ν) = 0

Since πw is concave and 1/ρ is convex, derivative of π̄(d0)πw(d0 + η)(αh−α`)τ −κ/ρ(d0 + η) with

respect to η is decreasing. Since η∗ − q∗ν < 0, then µ has to be 0 by complementary slackness

condition µ(η∗−q∗ν) = 0. This (µ= 0) also implies the optimal solution is q∗ = qM and η∗ = η̃ which
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also implies 2η̃ < ν. This contradicts with the initial assumption 2η̃ > ν. Therefore, η∗ = q∗ν and

increasing ν increases the expected profit when 2η̃ > ν.

Finally, if π̄w(d0)π′w(d0 + η̃)(αh−α`)τ + κρ′(d0 + η̃)/[ρ(d0 + η̃)]2 > 0 for all η̃, then we get µ > 0

and hence νw = νmax. The case π̄w(d0)π′w(d0 + η̃)(αh −α`)τ + κρ′(d0 + η̃)/[ρ(d0 + η̃)]2 < 0 for all η̃

implies that η∗ = 0 and hence νw = 0. Note that the term π̄w(d0)π′w(d0 + η̃)(αh − α`)τ + κρ′(d0 +

η̃)/[ρ(d0 + η̃)]2 is decreasing in d0. Therefore, as d0 is sufficiently large, i.e., d0 ≥ dw for some positive

dw, then νw = 0. Q.E.D.

EC.7 Allowing the Provider to Shirk

In the basic setup of our paper, we focus on cases where the provider either works or not. In this

section, we consider the case where the firm lets the provider to shirk, and analyze the effect of

improving the acquisition capacity on the firm’s profit. We first derive the expected profit of the

firm when the provider shirks in one period but works in the other.

Lemma EC.3. The firm’s optimal expected profit when the provider shirks in the first and works

in the second period is given by

Vsw(d0) = πs(d0)2Rν(δ
M, αh) + π̄s(d0)

[
max
δ∈[0,ν]

Rν(δ,α`) +πw(d0 + δ)τ(αh−α`)−
κ

ρ(d0 + δ)
+ τα`

]
.

The firm’s optimal expected profit when the provider works in the first and shirks in the second

period is given by

Vws(d0) = πw(d0)2Rν(δ
M, αh) + π̄w(d0)

[
max
δ∈[0,ν]

Rν(δ,α`) +πs(d0 + δ)τ(αh−α`) + τα`

]
− κ

ρ(d0)
.

Proof of Lemma EC.3. If the provider works only in the second period, the probability of

observing αh in the first period is πs(d0). In this case, the firm collects the myopic optimal revenue

for two periods to get Rν(δ
M, αh) (see Lemma 1). With the remaining probability π̄s(d0), the firm

observes α` in the first period. Then, the firm needs to collect data by considering the current sales

revenue, the AI Flywheel effect (with probability πw(d0 +δ) for a given δ), and the incentive issues.

The moral hazard problem is reduced to a single period problem with high accuracy probabilities

πe(d0 + δ) for e ∈ {s,w} for a given δ. Thus, the firm’s expected payment to the provider in the

second period is given by κ/ρ(d0 + δ) for a given δ (see Proposition 4.2 in Laffont and Martimort

2009, p. 157). Combining all these terms, the firm’s profit is given by

Vsw(d0) = πs(d0)2Rν(δ
M, αh) + π̄s(d0)

[
max
δ∈[0,ν]

Rν(δ,α`) +πw(d0 + δ)τ(αh−α`)−
κ

ρ(d0 + δ)
+ τα`

]
.

If the provider shirks in the second period, the moral hazard problem is with probabilities πe(d0) for

e∈ {s,w}, and the firm’s data collection decision needs to consider only the current sales revenue
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and the AI Flywheel effect (with probability πs(d0 +δ) for a given δ). Hence, we obtain the optimal

profit as follows.

Vws(d0) = πw(d0)2Rν(δ
M, αh) + π̄w(d0)

[
max
δ∈[0,ν]

Rν(δ,α`) +πs(d0 + δ)τ(αh−α`) + τα`

]
− κ

ρ(d0)
.

Note also that the optimization problems in both expressions have unique solutions because the

objective functions are concave and the set [0, ν] is closed and bounded. Q.E.D.

In the following proposition, we first characterize how Vws(d0) changes in ν.

Proposition EC.14. The expected profit Vws(d0) is strictly increasing in ν.

Proof of Proposition EC.14. We directly derive the expressions for these derivatives. Let qws

and δws denote the optimal quantities and data collection respectively for this setting.

∂Vws(d0)

∂ν
=π̄w(d0)

{
∂qws

∂ν
[α`(1− 2qws) +π′s(d0 + qwsν)τ(αh−α`)ν] +π′s(d0 + qwsν)τ(αh−α`)qws

}
=π̄w(d0)

α`
ν

(2qws− 1)qws = π̄w(d0)
α`
ν

(
2δws

ν
− 1

)
δws

ν
> 0 .

Here, the second equality follows from the algebraic simplifications based on the first-order condi-

tion which qws satisfies. The third inequality follows from δ= νq. Finally, the last inequality follows

from the fact that δws > ν/2 which is the myopic data collection. This result can be proved by

following verbatim the same steps in Proposition 2 using πs(d0 +δ) instead of πw(d0 +δ). Q.E.D.

Proposition EC.15. We have:

1. If ρ(·) is strictly increasing, the expected profit Vsw(d0) is strictly increasing in ν.

2. If ρ(·) is strictly decreasing, a unique threshold νsw exists such that the expected profit Vsw(d0)

is strictly increasing in ν if ν ≤ νsw, and is strictly decreasing otherwise. Further, threshold

dsw > 0 exists such that the profit is strictly decreasing (i.e., νsw = 0) if d0 ≥ dsw.

Proof of Proposition EC.15. Note that the optimization problem inside the expected profit

Vsw(d0) is the same as (EC.8). Thus, we can use Proposition EC.8 to show that the same steps in

the proof of Theorem 4 can be followed in this setup, too. Q.E.D.

We conclude this section by noting that Theorems 1-3 can be repeated verbatim for the setup

where the provider shirks in the first period and works in the second period using (EC.8) as

discussed in Section EC.4 of this e-companion.
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