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Abstract

Projections of energy intensity are important for the assessment of future energy demand, future

emission pathways, and the costs of climate policies. We estimate and simulate energy intensity based

on a conditional convergence approach, and show how based on the results the long-run minimum of

energy intensity attainable can be estimated. We consider education, urbanization, and institutional

factors and �nd them to positively impact energy intensity improvements. We link the estimated

econometric models to an iterative projection model, resulting in a �nite long-term lower limit of

energy intensity of GDP to be around 0.35MJ/$ at the global level in most SSPs. Yet, by 2100, we

estimated that energy intensity below one is hard to achieve based on historical patterns. By 2100,

the projected energy intensities are in the range of 1MJ/$ at the global level. These results show

that scenarios such as the ones used in the SR15 can be rationalized based on empirically founded

projections, and that in particular the very low energy demand scenarios can be considered feasible

on empirical grounds. The speed at which such ow values are achievable is however the big question

and achieving them will require substantially going beyond historical technical change patterns.

Keywords: Energy Intensity, Energy Demand, Convergence

JEL Classi�cation: O44, P18, Q47, C23
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1 Introduction

Growth in energy demand is one of the key challenges for the energy sector (Bauer et al., 2017), and

improving energy e�ciency is critical for reducing greenhouse gas emissions while addressing the goals

of sustainable development related to poverty (Fuso Nerini et al., 2018). Historically, technological im-

provements and structural changes in the mix of economic activities have helped the world to achieve5

major reductions in the energy used to produce economic output as shown in Stern (2012) and Voigt

et al. (2014). While annual historical improvement rates have been around 1.3% and 0.99% for non-

OECD and OECD countries, respectively1, maintaining the global temperature increase below 2°C and

its associated mitigation goals require a signi�cant acceleration in the reduction of energy intensity.

*We thank participants at the 9th Annual Meeting of the IAMC 2016, Beijing, and the International Energy Workshop
for very valuable comments. J.E. acknowledges �nancial support from the European Union's Horizon 2020 research and
innovation programme under grant agreement No. 723791 (PENNY) and ERC grant agreement No. 336155 (COBHAM).

�RFF-CMCC European Institute on Economics and the Environment (EIEE), Centro Euro-Mediterraneo sui Cam-
biamenti Climatici and Fondazione Eni Enrico Mattei, Via Bergognone 34, 20144 Milan, Italy. E-mail: jo-
hannes.emmerling@eiee.org

�Ca' Foscari University of Venice and Centro Euromediterraneo sui Cambiamenti Climatici (CMCC), Cannaregio 873/b,
30121, Venice, Italy. E-mail: enrica.decian@unive.it

�Bocconi University, Via Röntgen n. 1, 20136 Milano. E-mail: maurizio.malpede@unibocconi.it
1The value come from the AR5 database of IPCC which forecasts a range of energy intensity values for 2100 between

0.9 MJ/$ and 4.5 MJ/$
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The IPCC 5th Assessment Report database projects future average annual improvement rates of energy10

intensity (EI) between 2010 and 2100 of up to 2.23% per year. The development of energy intensity

depends on structural drivers - the composition of economic activities within a speci�c country along

with technological factors - di�usion of innovative technologies, as well as behavioral and institutional

factors. Indeed actual implementation of environmental policies and their in�uence on behaviors and

environmental outcomes depend on the broader institutional setting (Stavins, 2004). Good governance15

and transparency are decisive factors, as bureaucrats are the actors ultimately implementing environ-

mental interventions (Lockwood, 2013), and indeed the in�uence of institutional quality is apparent even

in relation to aggregate outcomes, such as energy intensity, as shown in Fredriksson et al. (2004).

How energy intensity will evolve in the future is deeply uncertain, and model-based scenario analysis

has become a key analytical approach to explore uncertainties related to energy demand, as well as the20

consequences for the economy and the energy system in the context of decarbonization and sustainable

development. The Shared Socio-economic Pathways (SSPs) provide a new framework for this type of

investigation by proposing �ve di�erent global futures articulated into quantitative pathways for popu-

lation change, urbanization, education, economic growth, and qualitative narratives regarding a broad

range of elements including inequality, technological advancements and institutional quality (O'Neill25

et al., 2014). Several publications have already shown how to translate SSP narratives into assumptions

that can be used in Integrated Assessment Models (IAMs). Riahi et al. (2017) focus on the baseline SSP

drivers (i.e., population, GDP, urbanization and education). However, the translation of the qualitative

elements regarding economy and lifestyle, policies and institutions into model assumptions is still limited

to a few SSP elements, mostly related to the energy sector such as �nal energy demand, e�ciency of30

energy conversion technology, and fossil fuel supply (Bauer et al., 2017).

In order to evaluate the future projections of energy intensity trends for di�erent regions of the world

we need to comprehend what were the principal determinants of past energy intensity improvements.

In this paper we develop a framework which aims to facilitate the modeling of qualitative SSP elements

related to the quality of institutions and their impact on energy intensity. Understanding how institutions35

interact with environmental policies as well as other socioeconomic drivers of energy intensity is an

important element for cost-e�ective transition towards low carbon and sustainable societies (Dasgupta

and Cian, 2018), as institutions can a�ect mitigation costs as well as their distribution (Iyer et al., 2015).

Earlier model-based work, such as those presented in AR5 (Clarke et al., 2014), has already shifted

from �rst-best transition pathways (fully oriented towards cost-optimality under perfect conditions) to40

second-best transition pathways (exploring sociopolitical and other limitations (Kriegler et al., 2013b,a,

2014; Staub-Kaminski et al., 2014; Riahi et al., 2017).

We focus on energy intensity because, as shown in Marangoni et al. (2017), this is the most important

determinant of uncertain future energy demand and hence greenhouse-gas emissions . To assess the

impact of major determinants of energy intensity changes we use a conditional convergence approach45

for energy intensity, such as in Csereklyei and Stern (2015) and Csereklyei et al. (2016). We use both a

cross-sectional and a panel regression model highlighting the importance of the di�erence of both widely

used models and compare their results. Moreover, this allows us to estimate the e�ects of covariates

including urbanization rates along with variables measuring the role of institutions, and education for

explaining historical energy intensity trends.50

There is empirical evidence suggesting that urbanization, physical and human capital, as well as

institutions, a�ect aggregate energy intensity patterns and energy convergence (Sadorsky (2013), Stern

(2012), Fredriksson et al. (2004)). The empirical evidence on the impact of urbanization on energy use and

energy intensity is mixed (Sadorsky, 2013; Elliott et al., 2017) and depends on income level (negative for

low-income, positive for high-income). On the one hand, urbanization increases economic activity as well55

as the consumption of energy-intensive goods (e.g. air conditioning). On the other hand, urbanization has
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also a scale and structural e�ect that can create opportunities for lower energy intensity (e.g. production

reallocation from industrial to tertiary sector, more e�cient buildings, lower use of private transportation

in per capita terms). Some studies �nd that population density is correlated with a lower demand for

personal vehicles (Liddle, 2004). More capital and human capital-intensive economies should be less60

energy intensive as these inputs substitute for energy (Stern, 2012). Investments and capital turnover has

been shown to be correlated with income convergence (Papyrakis and Gerlagh, 2007). Moreover, a faster

capital turnover facilitates the transition towards more e�cient equipment and appliances, leading to a

decline in aggregate energy intensity. Human capital and schooling have been shown to be correlated with

the rate of adoption of technologies as well as with faster convergence in income (Benhabib and Spiegel,65

2005; Comin and Hobijn, 2004). Institutional factors such as corruption, transparency of governments,

the quality of bureaucratic quality and speed, in�uence the ability to implement environmental policies,

the type of policy chosen, policy stringency, as well as the e�ectiveness of the policy implemented, with

implications for more aggregate indicators such as green investments (Masini and Menichetti, 2013), R&D

(Dasgupta et al., 2016), and energy intensity (Fredriksson et al., 2004). Speci�cally, good governance70

encourages the adoption of environmental policies and generally leads to better environmental outcomes,

while corruption can be a channel for environmental degradation, as it could lead to a sub-optimal use of

resources and ine�ciencies (Dasgupta and Cian, 2018). Fredriksson and Svensson (2003) and Fredriksson

et al. (2004) �nd that more corrupted countries have less stringent environmental policies. Masini and

Menichetti (2013) and Iyer et al. (2015) focused on the role of institutional quality on investment on75

renewable energy and low carbon technologies. Both studies led the results that the presence of inferior

and ine�cient institutions was associated with lower rates of investments on low carbon technologies and

renewable energy. Dasgupta et al. (2016) �nd evidence suggesting that quality of institution matters,

and bad governance or corruption can hinder green investments in R&D and innovation.

The main idea behind our approach is to use the evidence from historical data to model the devel-80

opment of energy intensity in Integrated Assessment Models as an endogenous function of urbanization,

physical and human capital, and institutions. To do that, we �rst investigate the empirical relationship

between these variables and energy intensity using historical data on energy intensity, years of school-

ing, urbanization, and institutional quality. The estimates obtained with historical data indicating the

impact of each institutional factor on energy intensity changes, are then used to project future energy85

intensity combining the empirical results with quantitative projections (urbanization, education, GDP,

population, institutions) across di�erent SSP scenarios. This representation of energy intensity based on

historical dynamics can provide an alternative projection based on historical rather than modeled data.

Our approach also contributes to the discussion about substitutability of energy or resource use with

capital and labor, notably, about whether or not the long-run energy required to produce one unit of90

GDP is asymptotically zero, as in Stiglitz (1974) in the context of natural resources, or strictly positive.

In this way it contributes to the stylized facts about macroeconomic energy intensity (Smulders and

de Nooij, 2003; Gales et al., 2007; Kander et al., 2014; Csereklyei et al., 2016).

The remainder of the paper is organized as follows. Section two describes the method by introducing

the theoretical framework of two di�erent models of conditional convergence of energy intensity. Section95

three discusses the empirical counterparts of the models to estimate them and the data-set used. Section

four analyzes the empirical results and based on the estimated coe�cients simulation results over the

21st century. Section �ve concludes.
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2 Analytical model

Our analytical approach relies on a cross-sectional and a panel regression approach to model conditional100

convergence of energy intensity (EI). The cross-sectional approach, originally introduced within the

context of economic growth by Kerr et al. (1960) and famous since the 1960s among macro economists

has since then extended to the notion of conditional (Barro, 1991) and club convergence (Baumol, 1986;

Phillips and Sul, 2007). It has already been used to simulate energy intensity, but most studies build

on the assumption of absolute convergence, which suggests that energy intensity across countries would105

converge towards a uniform steady state, as countries' dynamics in terms of energy intensity is related to

the initial level of energy intensity (Greening et al. (1998), Mulder and De Groot (2012), and Meng et al.

(2013) for OECD countries and Markandya et al. (2006), Mohammadi and Ram (2012), and Jakob et al.

(2012) for developing countries). Compared to historical improvement rates, annual energy intensity

improvements projected by models and organizations such as the International Energy Agency (IEA)110

have been found to be substantial and often subject to large errors, with a tendency to overestimate

EI improvements (Stern, 2017). Understanding the factors that accelerate or hinder convergence is also

important to understand the complementary measures that need to be implemented in order to achieve

energy e�ciency improvements , e.g., required to achieve stringent climate policy targets. Indeed, there

is evidence of convergence depending on other factors, that is of conditional convergence (Le Pen and115

Sévi, 2010). The conditional convergence hypothesis postulates convergence in energy intensity within

group of countries with similar characteristics and implies that countries with the same initial energy

intensity but with a di�erent structure, socio-economic conditions, policy environment, and institutions

would experience di�erent improvement rates. Hence, di�erences in fundamental characteristics such as

education, abundance of natural resources, urbanization rates, institutions can a�ect the convergence120

process, and lead to di�erent long-run equilibria in energy intensity (Jorgenson (2006),Fredriksson and

Wollscheid (2007) and Castiglione et al. (2012)).

Our principal approach to modeling convergence is to update energy intensity at each point in time,

using a model for conditional convergence. That is, we specify that the growth rate of energy intensity,

in continuous time notation given by
˙EIi

EIi
, where we use the notation ˙EIi = dEI

dt , depends on the initial125

level of (the logarithm) of the value of EI, and some other covariates. First assume to have time interval

(0− T ) over which to compute the change in energy intensity. Considering that for growth rates of EIi

over the period 0 − T , ∆lnEIi,T '
˙EIi

EIi
, we can write a simple process of conditional convergence as

follows:
˙EIi
EIi

= {α+ f(yi)}+ βlnEIi (1)

where f(yi) represents the factors a�ecting the long-run limit of convergence, e.g. those factors upon130

which convergence is conditional on country-speci�c additional control variables yi. Equation (1) is

a non-linear non-homogeneous, separable, ordinary di�erential equation (ODE), which can be solved

analytically. The solution of this ODE equation yields a Gompertz curve2:

EIit = e

(
lnEIi0+

{α+f(yi)}
β

)
eβt− {α+f(yi)}

β (2)

The parameters α and β can be estimated through a convergence regression using cross-sectional

data. Moreover, equation (2) can be used to project energy intensity improvements into the future in135

each period.3 Importantly, for β < 0, there is a positive long-run limit to the level of convergence de�ned

2Note that if in the regression one were to use the level of EIi(t) instead of its logarithm, one obtains a logistic equation
for EIt (with an intrinsic growth rate of the population of {α+f(yi)} and carrying capacity of −β ∗{α+f(yi)}), for which
the long-run limit becomes limt→∞EIi(t) = −{α+ f(yi)}/β > 0.

3Note that we consider for this example that the exogenous variables yi are constant over time as in the regression.
When actually forecasting EI numerically below, and with exogenous additional time-varying variables in yi, this will also
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as follows4:

limt→∞EIit = e−
{α+f(yi)}

β > 0 (3)

This value can be considered the minimum energy intensity that can be achieved in the long-run. By

solving this di�erential equation, we implicitly assume that the trajectory of EI is based on an iteratively

updated rule based on equation (1). Note that this way we �nd a �nite �xed point or limit of EI, which140

is a new contribution in the literature on (economic) convergence about it's long-run implications.5

Alternatively, and also widely applied in the empirical panel literature, is modeling the annual growth

rate in energy intensity as varying over time. In this framework, the factors a�ecting the long-run limit,

g(yit) = φZi,t−1 +αi, vary over time, and a linear time trend can be included to account for other time-

varying factors not captured by g(yit) that a�ect all cross-sectional units, yielding a modi�ed Gompertz145

curve that includes a time trend:

˙EIit
EIit

= {αi + g(yit)}+ βlnEIit + γt (4)

Equation (4) has the following solutions, which we will use for the projection of energy intensity below:

EIit = e

(
lnEIi0+

{αi+g(yit)}
β + γ

β2

)
eβt− {αi+g(yit)}

β − γ

β2
− γβ t (5)

for which we �nd the following long-term asymptote at zero:

limt→∞EIi(t) = 0 (6)

for β < 0 and γ < 0. For γ = 0, it corresponds to the original Gompertz curve. If any of the two main

parameters is positive, it diverges. Both equations (1) and (4) can be taken to the data to estimate the150

parameters of interest, αi, β , and γ using a convergence regression, and subsequently combined with

projections for f(yi) and g(yit) to project future energy intensity. That is, we can combine convergence

regressions with projections based on functions that resemble Gompertz curve patterns.

3 Empirical model and data

Building on the conditional convergence framework outlined in the previous section, we develop two155

empirical models that we take to the data. We estimate a di�erence equation version of equation (1)

using a cross-sectional convergence regression for energy intensity in country i between time 0 and T.

Considering, that for small annualized growth rates, we can approximate
˙EIi

EIi
by the annualized growth

rate T−1∆lnEIi,T where ∆lnEIi,T = lnEIi,T − lnEIi,0, we can write a simple process of conditional

convergence empirically as follows:160

T−1∆lnEIi,T = α+ βlnEIi,0 + φZi,0 + εi (7)

Here, EIi,0 is the level of energy intensity at the beginning of the time period considered in country i.

The average annual change in energy intensity (EI) between time 0 and T , T−1∆lnEIi,T , is de�ned over

the period from 1996 until 2016. This equation is the empirical counterpart of (4), where f(yi) = φZi,

are a set of control variables that a�ect the long-run level of energy intensity. The coe�cient β coe�cient

lead to some changes in EI, but it does not change the convergence process qualitatively.
4We can rewrite the equation as a weighted average of today's value and the long-term limit asEIi(t) =

(EI0)
eβt (e−{α+f(yi)}/β)(1−eβt) .

5Note that instead the projection procedure is not performed iteratively, eventually two di�erent starting values will
eventually cross and diverge.
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is expected to be negative, in line with the hypothesis of conditional convergence. The set of coe�cients165

φ will determine whether the hypothesis of conditional convergence is supported by the data.

Secondly, we estimate (4) using a �xed e�ects panel data model including the convergence term. The

dependent variable here is the the annual growth rate of energy intensity, ∆lnEIi,t = lnEIi,t− lnEIi,t−1:

∆lnEIi,t = βlnEIi,t−1 + φZi,t−1 + γt+ αi + εit (8)

Here, the conditioning function is speci�ed as φZi,t−1 + αi, which comprises region and time speci�c

control variables as well as country-speci�c �xed e�ect αi. This speci�cation also includes a common170

time trend accounting for common, time factors a�ecting all cross sectional units, such as energy prices

or technical change. The Z variables include years of schooling, urbanization rate and a measure of

institutional quality.6 While the existing literature suggests that the coe�cients of human capital can be

expected to have a negative sign, as these are factors that accelerate the improvements in energy intensity,

the literature is less clear about the sign of urbanization and institutions. Whether urbanization has175

a positive or negative impact on the growth rate of energy intensity depends on how the process is

managed, as well as on other socioeconomic factors such as income. Institutional quality, measured

as good governance and e�cient control of corruption, can also have an impact on energy e�ciency

improvements.

In order to estimate equations (7) and (8), we construct a country panel data set for the period 1996180

- 2016. Energy intensity (EI) is de�ned as the ratio between total primary energy supply (TPES), and

GDP. Total Primary Energy Supply is obtained from the World Energy Balances from the International

Energy Agency (IEA)7 and Gross Domestic Product (GDP) from the World Development Indicators

(WDI) measured in USD[PPP] of 2005.8

Years of schooling (WDI) is the average years of schooling in the population over 25 years old. Since185

this variable is available only every �ve years, we created a new variable schooling as linear interpolation

of the original variable as available every �ve years. Urbanization is the share of population living

in urban centers based on WDI data. Institutional quality is measured using the World Governance

Indicators (WGI) (Kaufmann et al., 2010), combining several sub-indices as a broad institutional measure

as computed in Andrijevic et al. (2020). Table 1 below summarizes the main variables used on the analysis190

and shows the energy intensity growth rate over di�erent time windows and the initial values.

Table 1: Descriptive statistics

Statistic N Mean Min Max St. Dev.

education_years 2,974 7.63 0.91 13.42 3.11
Governance 3,520 0.53 0.09 0.96 0.19
GDP per capita 3,847 11,266.33 170.56 101,844.60 16,026.92
Energy Intensity 2,757 7.35 1.43 40.95 5.25
Urbanisation 3,902 55.22 7.41 100.00 23.37
T−1∆lnEIi,T 123 −0.36 −1.88 −0.05 0.33

6We also considered the industry share of the economy, which however turned out to be not signi�cant in all speci�cations.
7The energy values are converted from tons of oil equivalent (toe) into Mega Joule (MJ) by using the conversion rate 1

toe= 41,840 MJ.
8There are several measurement issues around energy intensity: �rstly, one could consider �nal or primary energy.

Secondly, GDP across countries can be compared or by conversion at market exchange rates (MER) and at purchasing
power parity (PPP). The two conversions yield di�erent GDP estimations and consequently di�erent energy intensity ratios.
In our study we consider GDP converted at PPP. Moreover it is worthwhile to specify that as shown in Levin et al. (2008)
using GDP at MER the non-OECD countries exhibit greater amount of energy consumption per unit of economic output
with respect to OECD countries, while this di�erence signi�cantly dwells when using GDP at PPP.
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4 Results

4.1 Empirical results

Table 2 shows the result for the conditional convergence regressions using cross sectional data considering195

the growth rate in energy intensity between 1996 and 2016. Table 3 reports the estimates from the panel

data for the same time period. The �rst speci�cation points at the evidence for absolute convergence

using both cross sectional and panel data. When additional covariates are added to test for the hypothesis

of conditional convergence, the speed of convergence increases because some of the covariates have an

opposite e�ect. Regarding the impact of urbanization, results from cross-sectional and panel data suggest200

a positive contribution to the growth rate in energy intensity, suggesting that scale e�ect and structural

changes towards more energy intensive economies tends to prevail over e�ciency gains of well-managed

urban centers. Yet, the e�ect of urbanization is not always precisely identi�ed, suggesting that the

e�ect could actually go in both directions. Regarding human capital, both contribute to accelerate the

improvement in energy intensity, though the e�ect is more precisely identi�ed in the cross sectional data.205

In the panel data model, urbanization has a negative impact on energy intensity improvements, while

education has a positive albeit insigni�cant e�ect. Finally, improvements in government e�ectiveness

lead to a small and insigni�cant improvement of intensity improvements. Based on the signi�cance

of results, we consider the variables concerning education and urbanization relevant while institutions

don't seem to matter in a statistical sense. Hence, we consider the speci�cations panel regression (3)210

and cross-sectional speci�cation (3) as our baseline estimates for developing future projections.

Table 2: Energy Intensity trends: Cross section

(1) (2) (3) (4)
Ln EI -0.01881*** -0.01931*** -0.01019*** -0.01062***

(0.00294) (0.00305) (0.00254) (0.00325)
Urbanisation -0.00006 0.00026*** 0.00027***

(0.00007) (0.00008) (0.00009)
School Years -0.00350*** -0.00320***

(0.00060) (0.00067)
Governance -0.00850

(0.00972)
Constant 0.01931*** 0.02351*** 0.01436** 0.01671*

(0.00551) (0.00785) (0.00628) (0.00863)
Observations 120 120 110 108
Adjusted R2 0.335 0.333 0.396 0.392

*** p<0.01, ** p<0.05, * p<0.1

4.2 Projections and modeling energy intensity

Building on the empirical results on the convergence relationship described in the previous section, we215

combine the estimates with scenarios for the SSP elements to project future energy intensity based on the

analytical expressions of the solutions of the implied di�erential equations derived above. We combine the

central point estimates of the coe�cients associated with the three SSP elements of interest from 2 and

with quantitative projections of urbanization, education and institutions, to simulate EI improvements

using equation 8. We compare the results from the conditional convergence approach to that from the220

absolute convergence approach, using the estimates from both the cross sectional and panel model.
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Table 3: Energy Intensity trends: Panel model

(1) (2) (3) (4)
L.ln EI -0.0947*** -0.0979*** -0.1124*** -0.1507***

(0.0156) (0.0154) (0.0157) (0.0194)
Time -0.0017*** -0.0021*** -0.0021*** -0.0025***

(0.0003) (0.0003) (0.0004) (0.0006)
L.Urbanisation 0.0010 0.0014** 0.0010

(0.0006) (0.0006) (0.0008)
L.School Years -0.0011 -0.0014

(0.0035) (0.0041)
L.Governance -0.1481**

(0.0705)
Constant 0.2263*** 0.1905*** 0.1959*** 0.3894***

(0.0354) (0.0444) (0.0516) (0.0777)
Observations 3261 3261 2949 2274
Adjusted R2 0.063 0.064 0.075 0.090
Fixed E�ects Yes Yes Yes Yes
Time Dummies No No No No
Time Trend Yes Yes Yes Yes

*** p<0.01, ** p<0.05, * p<0.1

Table 4 summarizes the assumptions regarding urbanization, education, and institutions across the

�ve SSP scenarios as described in the SSP narratives in O'Neill et al. (2017). Urbanization and education

narratives have already been quanti�ed Jiang and O'Neill (2017) and KC and Lutz (2017)) and therefore

we use the scenarios available in the IIASA SSP database (Riahi et al., 2017).225

SSP1 SSP2 SSP3 SSP4 SSP5
Urbanisation High Medium Low High, high, medium High

Well-managed Continuation of Poorly managed Mixed across Better managed
historical patterns and within cities over time, some sprawl

Education High Medium Low Uneven High
Institutions E�ective Uneven, modest Weak E�ective for elite, Increasingly e�ective

not for rest of society competitive markets

Table 4: Summary of assumptions regarding urbanization, education, institutions. Source: O'Neill et al. (2017)

Regarding the role of institutions, quantitative pathways implementing the qualitative patterns de-

scribed by O'Neill et al. (2017) have been developed in (Andrijevic et al., 2020) providing pathways of a

broad governance measures combining government e�ectiveness, control of corruption, voice & account-

ability, political stability, rule of law, and regulatory quality.

Figure 1 shows the resulting projected trends for education, urbanization, and institutions throughout230

the century, at the global average level considering the average path across all countries. On average

education increases from the 2010 value of around 9.5 years of schooling to more than 12 years in SSP1,

SSP2, and SSP5, whereas it even decreases due to population shifts in the other SSPs. Urbanization

trends are signi�cant across all SSPs, raising the share of people living in urban centers from the present

value of 56% to between 58% in SSP3 to more than 90% in SSP1, SSP4 and SSP5. Institutional quality,235

here measures as the e�ectiveness of government, varies across world regions, and is assumed to increases

in SSP1 and SSP5, while it declines in SSP3 and slightly increases in SSP4 whereas it is assumed to stay

constant in SSP2.
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Figure 1: Projections of GDP per capita, Education, Urbanization, and Governance according to the SSPs

Figure 2 displays our preferred speci�cations Convergence (3) and Panel (3) compared with the SSP

IAM model implementations from Bauer et al. (2017) (as shaded grey ribbon showing the range of all240

maximum six model implementations.9 All estimated speci�cations are presented in Figure 3 in the

Appendix, and show in general similar results.

9Note that due to di�erent base year calibrations and PPP de�nitions, historical and base year values sometimes di�er.
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Figure 2: Projected energy intensity across SSPs and regions, cross-sectional and panel speci�cations and SSP
range (shaded).

Across the �ve di�erent story lines of the SSPs, the implications for energy intensity can now also be

based on the underlying baseline assumptions. Firstly, di�erent assumptions about population and pro-

ductivity growth have a substantial impact on energy demand. Secondly, the projections for educational245

attainment and urbanization varies signi�cantly across SSPs. The strong convergence pattern across

regions is clearly visible in both frameworks. In the case with an exogenous time trend re�ecting secular

improvements of energy e�ciency over time, energy intensity improves signi�cantly reaching consistently

values slightly around 1MJ/$ by the end of the century in almost all regions.

Starting from the level of around 6.5MJ/$ in 2010, Table 5 shows the projected energy intensities250

across SSPs for the two baseline speci�cations Convergence (3) and Panel (3) as well as the SSP Marker

scenarios of Riahi et al. (2017).

The resulting energy intensity estimates for 2100 range between 0.8 and 3.1MJ/$ by 2100 depending
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SSP EI_conv (3) EI_panel (3) SSP Marker Scenario
SSP1 1.314 1.131 1.238
SSP2 1.391 0.987 2.396
SSP3 2.057 0.836 4.406
SSP4 3.126 1.138 2.566
SSP5 1.321 1.114 1.769

Table 5: Projected Energy intensity values in 2100 [MJ/$]

on the scenario and estimation. SSP4 hows the slowest improvement rate, while SSP1 and SSP2 tend255

to allow energy intensities to drop to a value between 0.9 and 1.4 MJ/$. If the time trend is projected,

notably energy intensity falls to around a value of 0.8−1.3MJ/$ by 2100 driven to a large extend by this

secular improvement estimated in the data. Based on the simple convergence on the other hand, values

between 1.5 and 2.8 are found for the end of century, broadly in line with the results from IAM models

as reported in Bauer et al. (2017) and shown in the last column of Table 5. Notably, we make use of260

the public SSP database that has implemented each SSP within each (attainable) RCP by six di�erent

Integrated Assessment Models (IAMs), and we chose the so-called �Marker� model for each SSP.10

Our main focus here are the long run attainable minimum values of energy intensity which we analyze

in the following. As shown above, we �nd that a strictly positive limit can be established in the conditional

convergence case, while a secular time trend in addition would imply asymptotically approaching an265

energy intensity of zero. These long-run limiting values at the global level are shown in Table 6.

SSP1 SSP2 SSP3 SSP4 SSP5

EI_Cronv (3) limit 0.352 0.350 1.076 2.997 0.353
EI_Panel (3) limit 0.000 0.000 0.000 0.000 0.000

Table 6: Long-term EI limits [MJ/$]

In the conditional convergence case, we �nd a value of around 0.35MJ/$ in the SSPs 1, 2, and

5 - re�ecting a rather favorable socioeconomic development. In the SSPs following regional rivalry

or inequality (SSP3 and SSP4), much higher limits are found of between 1 and 3MJ/$, showing the270

importance of economic, institutional, and educational drivers. For the other SSPs, a remarkable similar

value of 0.35MJ/$ is found, which moreover is far below projected values by 2100, showing that it takes

over one century to reach the theoretical limit and convergence is relatively slow in terms of energy.

These results can be thought of an additional �stylized fact� in the context of energy intensity patterns

such as the one established in Smulders and de Nooij (2003); Gales et al. (2007); Kander et al. (2014);275

Csereklyei et al. (2016): in terms of long-run energy required to produce one unit of GDP we �nd that

a strictly positive limit can be established in the conditional convergence case.

We can also compare these results to the scenario database of the IPCC SR15 special report. Based

on the full set of scenarios reporting primary energy and GDP (80 scenarios), for 2100, the range of

energy intensities ranges from 0.47 to 2.20MJ/$ with an average of 1.29MJ/$. Our results suggest280

that these values for 2100 could in general be considered as compatible with the range of extrapolating

patterns from historical values. Values below unity within 80 years on the other hand seem challenging

and will require structural dynamics well beyond historical patterns. An interesting case is the lowest

value of 0.47MJ/$, which has been obtained in the Low Energy Demand (LED) scenario (Grubler et al.,

10While several SSPs have been implemented in many models, we chose the marker model to abstract from additional
uncertainty due to the use of di�erent models. We did run the results with all models though (results are available from
the authors upon request) and the results are very similar and SSP/RCP di�erences by far dominate model uncertainty in
this application.
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2018), precisely developed to consider the maximum possible e�ciency improvements and energy demand285

reductions. And in fact, we �nd that the obtained value is very close to our theoretical long-run limit of

0.35MJ/$ based on the conditional convergence speci�cation, our �ndings suggest that obtaining such

a value within only 80 years goes beyond anything we have seen in the past. This shows that, while

conceptually attainable, achieving such e�ciency improvements by the end of the century will require

economy-wide substantial e�orts.290

5 Conclusions

We �nd that based on a conditional convergence model, energy intensity has historically been improved

across regions in a rather consistent way. We apply two widely used models based on a cross-sectional and

panel data approach. Moreover, additional explanatory variables have been found to a�ect how energy

e�ciency changes over time, even though the e�ect di�ers in some cases between both econometric295

models. Both models �nd a strong convergence e�ect, and that increasing urbanization rates are shown

to have a negative impact on energy intensity improvements. Weaker evidence is found for the level of

education leading to faster improvements in energy intensity and improved governance increasing energy

intensity improvements.

We link the estimated econometric models to an iterative projection model based on ordinary di�eren-300

tial equations, allowing us to compute projected energy intensities for the year 2100, which vary between

0.8 and 3.1 MJ/$. Moreover, we show that based on the cross-sectional model we �nd a the strictly

positive long-term limit of global energy intensity, which we estimate to be about 0.35MJ/$[2005, PPP ],

down from its value in 2010 of about 6.5MJ/$. Only in very challenging scenarios including SSP 3 and

SSP4, the long-term limit lies much higher around 2 to 3 MJ/$. In the conditional convergence case,305

this level of energy used per dollar of GDP thus provides a lower limit of energy intensity, while in the

panel regression model with time trend, the lower limit equals zero, even though it is only reached several

centuries into the future. We are thus the �rst to quantify this potential long term techno-economic level

based on purely historical observations, and �nd it to be not too far away from the Low Energy Demand

scenario of Grubler et al. (2018) recently developed and discussed in the IPCC's SR15 report.310
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A Additional Figures

Figure 3: Projected energy intensity across SSPs and regions, all speci�cations
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