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Abstract

This paper uses a Bayesian non-stationary dynamic factor model to extract common
trends and cycles from large datasets. An important but neglected feature of Bayesian
statistics allows to treat stationary and non-stationary time series equally in terms of
parameter estimation. Based on this feature we show how to extract common trends
and cycles from the data by ex-post processing the posterior output and describe how
to derive an agnostic output gap measure. We apply the procedure to a large panel
of quarterly time series that covers 158 macroeconomic and financial series for the
United States. We find that our derived output gap measure tracks the U.S. business
cycle well, exhibiting a high correlation with alternative estimates of the output gap.
Since the factors are extracted from a comprehensive dataset, the resulting output
gap estimates are stable at the current edge and can be decomposed in a new and
meaningful way.

JEL Classification: C11, C32, E32
Keywords: Non-Stationary Dynamic Factor Model, Potential Output Estimation,
Output Gap Decomposition.

∗Corresponding Author: Leonhardstrasse 21, 8092 Zürich, eckert@kof.ethz.ch, +41 44 632 29 80



1 Introduction

The ability to decompose economic development into its long-run trajectory and a cyclical
component is of paramount importance to both fiscal and monetary policy makers. They
rely on precise estimates of the output gap in order to determine the stance of their
policies and to detect structural imbalances. The importance of reliable estimates for
potential output has been, for example, echoed recently in the heated debate on secular
stagnation. Since it is not observable, the estimation of potential output turns out to be
quite challenging and the outcome depends largely on the underlying model assumptions.

This paper addresses these issues using a novel approach. It bypasses the assumptions
usually imposed in the literature by exploiting an important feature of Bayesian statistics,
in which stationary and non-stationary time series can be treated equally in terms of
model parameter estimation (see Sims and Uhlig, 1991; Uhlig, 1994). This feature is key
in extracting common trends and cycles in an ex-ante agnostic fashion. By extending the
identification strategy of Aßmann et al. (2016) to the non-stationary case, we estimate a
Bayesian non-stationary dynamic factor model that accounts for several common trends
and cycles in a large cross section of macroeconomic data. The estimation procedure
requires no ex-ante assumptions on the stochastic properties of the output gap and a
minimum of restrictions on the parameter space. The identification strategy follows a
decision theoretic approach via minimizing the posterior expected loss to disentangle the
non-stationary factors into a common trend and one or more common cycles.

Besides the methodological innovation of identifying non-stationary factors, we also
contribute to the literature on output gap estimation by presenting a procedure that uses a
large set of economic variables to extract output gaps. The existing output gap literature
can be broadly classified into statistical, relational and structural methods. Statistical
methods decompose a univariate time series into a permanent and transitory component
as in Beveridge and Nelson (1981) and Morley et al. (2003) or by removing the cyclical
component using filtering techniques as in Hodrick and Prescott (1997) and Baxter and
King (1999). Relational methods model the output gap as a function of well observable
market outcomes such as inflation or the unemployment rate. Commonly used methods
are unobserved components models such as Kuttner (1994) and Gerlach and Smets (1999),
structural vector autoregressions as in Cochrane (1994) and Dupasquier et al. (1999) and
multivariate Beveridge-Nelson decompositions as in Evans and Reichlin (1994). Structural
methods model potential output as a function of production factors at normal degrees of
capacity utilization and a smoothed measure of total factor productivity as in Nelson
(1964) and Thurow and Taylor (1966).

All these methods have in common that they rely on strong, non-generic assumptions
on the stochastic properties of the cycle or the underlying economic model. They often
require the calibration of many parameters and the estimated output gaps are sensitive to
changes in those parameters. The model proposed in this paper avoids these ex-ante re-
strictions in their entirety, following a more agnostic approach. Furthermore, Orphanides
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and van Norden (2002) have pointed out that most output gap estimates are unreliable
at the sample end due to model instabilities and data revisions. As Smets (2002) has
shown, this decreases the usefulness of output gap estimates significantly for policy mak-
ers. Aastveit and Trovik (2014) attempt to overcome this issue by estimating a stationary
dynamic factor model and then applying a Hodrick-Prescott filter on the projected GDP
series. While this reduces the revisions at the current edge, the HP-filter itself has been
heavily critized by Hamilton (2018) for introducing spurious dynamic relations, inappro-
priate smoothing parameters and poor performance at the end of the time series. Our
approach adresses these issues by directly linking GDP to common trends and cycles in
a comprehensive set of macroeconomic and financial variables without resorting to pre-
filtering techniques. The output gap resulting from our approach leads to stable results at
the sample end and is less prone to data revisions. Moreover, the ability to extract several
cycles from the data allows for an insightful decomposition of the historical output gap.

We apply our procedure to a large panel of macroeconomic data from the United
States. The data spans the period from 1960 to 2019, consisting of 158 quarterly series
from national accounts, industrial production, employment and wage statistics, flow of
funds, interest rates and asset prices. The empirical findings suggest an output gap tra-
jectory that is similar to alternative estimates from production function approaches. Our
output gap measure is also less volatile than univariate statistical methods and draws a
more accurate picture of the U.S. the business cycle, especially during the Great Reces-
sion, than relational methods. A decomposition of the output gap into several cyclical
components reveals which of the components drive the fluctuations in the output gap. A
first cyclical component moves at the business cycle frequency and is related most strongly
to production and investment variables. A second cyclical component fluctuates at a lower
frequency than the first one and loads strongly on labor market variables. A third com-
ponent is dominated by monetary and financial variables, which provides insight on the
impact of monetary policy on the output gap.

We further find that similar to other approaches, the significance of the agnostic out-
put gap estimate in a Phillips curve regression has weakened over time. However, the
cyclical components relating to production and monetary variables appear to have more
explanatory power and it appears that in recent years the monetary cycle has become
more important in explaining inflation. Moreover, a (quasi) real-time analysis shows that
the proposed output gap estimate is less prone to revisions at the current edge.

The remainder of the paper is structured as follows. Section 2 presents the estimation
and identification of the Bayesian non-stationary dynamic factor model and discusses the
agnostic estimation and decomposition of output gaps. Section 3 presents the empirical
results, contrasts the resulting output gap with several existing methods, discusses its
decomposition and compares the results with regard to the stability of the estimates, ro-
bustness to data revisions and usefulness for policy makers. Section 4 concludes.
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2 Econometric Framework

This section introduces the Bayesian non-stationary dynamic factor model, describes the
identification procedure and shows how to derive the output gap in an agnostic fashion.1

2.1 Model and Estimation

The basic assumption underlying dynamic factor models is that a panel dataset can be
characterized by one or more latent common components that capture the co-movements
of the cross section and a variable-specific idiosyncratic component. These models imply
that overall economic activity is driven by a small number of latent dynamic factors. To
decompose the data into common trends and common cycles, we employ the following
dynamic factor model

yt = Λft + et, (1)

where yt is the (N × 1) vector of stationary and non-stationary time series in period
t for t = 1, ..., T , ft is a (q × 1) vector of latent factors and Λ is an (N × q) matrix
of time-invariant factor loadings. The measurement errors et follow a first-order vector
autoregressive process

et = ρet−1 + ut, et ∼ N (0,Σ) . (2)

The law of motion for the factors is given by

ft = c+ φ1ft−1 + . . .+ φpft−p + vt, vt ∼ N (0, Q) , (3)

where φp is a (q × q) matrix of autoregressive coefficents at lag p. The error term vt is
distributed normally with mean zero and covariance matrix Q. It is assumed that the
majority of the cross-correlation in the data is accounted for by the dynamic factors. Both
ρ and Σ are therefore restricted to be diagonal matrices.

ρ =


ρ1

. . .
ρN

 , Σ =


σ2

1
. . .

σ2
N

 .
The model parameters are estimated using a Gibbs sampling algorithm, consisting of the
following blocks. In the first block we draw the factors conditional on model parameters
and data using the algorithm by Chan and Jeliazkov (2009). In the second block we draw
the model parameters from a Normal-Inverse Wishart distribution conditional on the fac-
tors and data. We cycle through 50k Gibbs iterations as burn-in and then save every
1See Quah and Sargent (1993), Bai (2004) and Bai and Ng (2004) for non-Bayesian non-stationary dynamic
factor models.
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10th draw. Convergence of the sampler is checked by visual inspection using recursive
mean plots and numerically by the equality of means test suggested by Geweke (1992).
Appendix A.1 provides a detailed discussion of the estimation procedure.

A unique feature of this sampling process is the lack of identifying restrictions on the
parameters. Only the error covariance matrix of the transition equation Q is assumed to
be an identity matrix, which anchors the sampler. Because both Λ and f are unknown,
there are infinite observationally equivalent possibilities to describe X. This is commonly
referred to as scale, sign and rotational indeterminacy, which will be discussed in more
detail in the following subsection. In order for the dynamic factors to track the trends and
cycles affecting GDP and not some unrelated movement in the data, it is useful to shrink
the error term σ2

gdp and the corresponding autoregressive coefficient ρgdp towards zero. As
a result of this prior shrinkage, the error term on GDP follows a very small white noise
process and the factors reflect only relevant trends and cycles. Because the error term
lies outside of the rotational indeterminacy, the unidentified parameter space is also not
affected by these prior restrictions. In particular, there is no restriction of the factors to
be orthogonal, which allows for interaction between trend and cycle.

2.2 Identification

A common issue in the estimation of dynamic factor models is that factors and the corre-
sponding factor loadings cannot be uniquely identified. This can be shown by multiplying
factors and loadings in equation (1) with an orthogonal matrix D leading to

yt = ΛDD′ft + et, (4)

with D′D = DD′ = Iq. This transformation yields an observationally equivalent model
even though factors and loadings are different, which is referred to as the rotation problem
(see Anderson and Rubin, 1956). The parameters in equation (3) are also affected by the
rotational indeterminacy

f̃t = c̃+D′φ1Df̃t−1 + . . .+D′φpDf̃t−p + ṽt,

where f̃t = D′ft and c̃ = D′c. In order to uniquely identify the model, it is common to
put constraints on the parameter space. Bai and Wang (2015) show that it is necessary
to impose at least q2 restrictions on the factor loadings. Geweke and Zhou (1996) solve
the identification problem by restricting the upper(q × q) block of Λ to a positive lower
triangular matrix and the variance of the factor innovations to an identity matrix. Bai
and Wang (2015) restrict the upper(q × q) block of Λ to be an identity matrix and show
a convenient approach of imposing these linear restrictions. This allows the covariance
matrix of the factor innovations to be unrestricted.
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However, there are two issues with identification techniques using ex-ante parameter
restrictions. The first issue concerns the order dependence of variables in X and its impact
on factor identification. Because the loadings are fixed on the first q variables, their
correlation structure affects the factors. The second issue of multimodality arises because
parameter restrictions may induce local modes, which leads to complications in sampling.2

In order to avoid these issues, Aßmann et al. (2016) propose an ex-post approach to
identification. They restrictQ to be an identity matrix and stack the remaining parameters
in a vector Θ as

Θ =
(
vec(Λ)′, vec(φ1)′, . . . , vec(φp)′, c′,diag(ρ)′,diag(Σ)′

)′
.

To find a unique solution to the rotation problem, given by Θ∗, they suggest to minimize
a loss function of the following form

LD
(
Θ∗, H(D) Θ

)
=
(
H(D) Θ−Θ∗

)′(
H(D) Θ−Θ∗

)
, (5)

where

H(D) =


D′ ⊗ IN 0 0 0

0 Ip(D′ ⊗D′) 0 0
0 0 D′ 0
0 0 0 I2N

 (6)

such that

H(D)Θ =
(
vec(ΛD)′, vec(D′φ1D)′, . . . , vec(DφpD)′, (D′c)′,diag(ρ)′,diag(Σ)′

)′
.

Since the posterior distribution is approximated using the unconstrained Gibbs sampler,
the minimization problem has to be solved for each draw Θ(r)

{{D(r)}Rr=1,Θ∗} = arg min
R∑
r=1

LD
(
Θ∗, H(D(r))Θ(r)

)
,

where D(r)′D(r) = D(r)D(r)′ = Iq because D(r) is orthogonal. Additionally, r = 1, . . . , R
denotes a sample from the unconstrained posterior distribution. Because each sample
{H(D(r))Θ(r)}Rr=1 is assigned the same posterior probability, Aßmann et al. (2016) re-
fer to the unconstrained sample as orthogonally mixed. The loss function is minimized
numerically by generating Givens rotation matrices that minimize

1
R

R∑
r=1

(
H(D(r))Θ(r) −H(D)Θ

)′ (
H(D(r))Θ(r) −H(D)Θ

)
(7)

2See Aßmann et al. (2016) and Chan et al. (2017) for a more detailed discussion of these issues.

5



where

H(D)Θ = 1
R

R∑
r=1

H(D(r))Θ(r).

The complete algorithm can be found in appendix A.2. The resulting sample {D(r)θ(r)}Rr=1
is not subject to orthogonal mixing anymore and minimizes the loss function. After each
draw from the joint posterior distribution has been rotated this way, the resulting parame-
ter distributions describe a unique set of factors. Furthermore, they are not subject to the
previously described issues of order dependence and multimodality. Appendix A.2 pro-
vides a detailed discussion of the identification procedure and the numerical optimization
of rotation matrices.

2.3 Agnostic Output Gap Identification

Now we describe how to uncover a common trend and several common cycles from the
data in an ex-ante agnostic fashion. We use the fact that a transformation of each draw
by a single orthogonal matrix D∗ in equation (7) results into the same loss (see Aß-
mann et al., 2016). This can illustrated by using the identities H(D∗)′H(D∗) = Iq and
H(D∗)H(D(r)) = H(D∗D(r)) and by rewriting the the minimization problem in (7) as

1
R

R∑
r=1

(
H(D(r))Θ(r) −H(D)Θ

)′
H(D∗)′H(D∗)

(
H(D(r))Θ(r) −H(D)Θ

)

= 1
R

R∑
r=1

(
H(D∗D(r))Θ(r) −H(D∗D)Θ

)′ (
H(D∗D(r))Θ(r) −H(D∗D)Θ

)
.

We find matrix D∗ by defining a loss function that punishes deviations from the case of one
common trend that follows a random walk with drift and one or more stationary common
cycles. While it is an option for the loss function to target the parameters directly, it turns
out to be more stable in practice to estimate the factors in a first step and afterwards target
certain time series properties of the estimated factors. A simple approach is to regress all
factors but the first one on a constant and a time index. The loss is then defined as the
sum of the squared coefficients, which results in a single D∗ that rotates each parameter
draw.

Having solved the rotation problem, there is still no economic interpretation to sign
and scale of the factors. In the simple case of two factors, GDP is simply a function of
a trend and a cycle. It is therefore useful to change column signs and scale each column
in Λ such that the loadings for GDP are equal to one. This observationally equivalent
transformation allows us to express GDP as a function of a common trend and a common
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cycle.3 The output gap is then given by

Output Gapt ≈ XGDP,t − Tt = Ct

The output gap can be derived directly from the cyclical factor as the time series in levels
are on a logarithmic scale. Because the data has been standardized before the estimation,
the factors need to be rescaled using mean and standard deviation of log GDP in order to
have a meaningful interpretation.

In the case of more than one common cycle, the rotation problem is solved identically
by making sure that the cyclical factors follow a stationary process. The loadings on the
trend factor are again scaled such that the absolute coefficient on GDP is equal to one.
Since it is ex-ante unclear whether a cyclical factor affects the output gap positively or
negatively, the sign and scale indeterminacy can only be solved by finding the unique solu-
tion at which the sum of the cyclical factors is equal to the output gap determined in the
case with a single cycle. An interpretation of the individual components of the output gap
can be retrieved by looking at the factor loadings. In order to determine the appropriate
number of cyclical factors, a useful measure is the Bayesian information criterion.

3 Empirical Results

In this section we present our empirical findings. We describe the dataset, compare our
output gap estimates with alternative measures, discuss our output gap decomposition,
contrast the sample end stability of our model with those of its competitors and test the
explanatory power of the different output gap estimates for inflation.

3.1 Data

In order to get meaningful trends and cycles, it is of crucial importance to include vari-
ables that correlate with either potential output, the output gap or both. The inclusion
of indicators that are resilient to revisions such as survey data or industrial production
helps to stabilize the estimates at the current edge. Because the cyclical position of the
economy is usually reflected in most economic variables, it is beneficial to include a broad
set of indicators. In the following case of the United States, the FRED-QD database is
used to obtain a comprehensive representation of economic activity (McCracken and Ng,
2016)4. The data spans a period from 1961 Q1 to 2019 Q2 in quarterly frequency. The
dataset includes time series from national accounts, industrial production, employment
and wage statistics, interest rates and asset prices. The definition of the data is consistent
over time or adjusted if necessary. We omit consumer and producer price indices since
3The approximate identity has been imposed during the sampling procedure using prior restrictions on the
measurement error of GDP. See appendix A.3 for a detailed analysis of the residuals for different model
specifications.

4https://research.stlouisfed.org/econ/mccracken/fred-databases/
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their trend is not of interest in this analysis. The remaining 158 stock and flow variables
are log-transformed to eliminate exponential growth and stabilize the variance over time.
Ratios of stocks and flows or growth rates are not transformed. Then all series are stan-
dardized to have mean zero and variance one such that they have equal weight in the
estimation of the dynamic factors. As a result, all series enter the model in log levels and
most seem to be not stationary. The time series are classified into several groups accord-
ing to their economic interpretation: Output and Production, Consumption and Income,
Financial, Investment, Labor Market, and Monetary. A complete statement of the data
used is available in appendix A.5.

3.2 Output Gap Estimates

The output gap estimates resulting from the dynamic factor model are intuitive and re-
quire very little assumptions. Figure 1 shows the output gap resulting from the approach
proposed in this paper, using one common trend and one common cycle.
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Figure 1: Estimated Output Gap. Blue and red areas indicate inflationary and deflationary
output gaps. Shaded areas mark NBER recessions.

Figure 2 compares the resulting output gap to the production function estimates of
several international institutions. Interestingly, the agnostic factor approach appears to be
very similar to estimates from the European Comission (AMECO), Congressional Budget
Office (CBO), International Monetary Fund (IMF) and the Organisation for Economic
Co-operation and Development (OECD). Differences arise mostly from the fact that the
output gap was not as negative after the recessions in the early 1980s and 1990s, but much
more positive during the dot-com bubble. This could be attributed to the fact that many
of the traditional output gap measure use less information from the tertiary sector than
our approach.
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Figure 2: Comparison of Output Gap with Structural Methods. Shaded areas mark
recessions as determined by the NBER Business Cycle Dating Committee. Output gaps shown are
estimated using production function approaches.

Figure 3 compares the agnostic factor gap to univariate statistical methods such as the
Baxter-King filter (Baxter and King, 1999), Hamilton filter (Hamilton, 2018), Hodrick-
Prescott filter (Hodrick and Prescott, 1997) or an unobserved components model similar to
(Kuttner, 1994). While the Baxter-King filter and the Hodrick-Prescott filter are smooth
and lead to very similar results, the Hamilton filter is more volatile. However, it also
captures the large inflationary gap during the dot-com bubble. All statistical methods
have in common that they are not as persistent as the factor gap.
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Figure 3: Comparison of Output Gap with Statistical Methods. Shaded areas mark
recessions as determined by the NBER Business Cycle Dating Committee. Output gaps shown are
estimated using univariate statistical methods.

Figure 4 compares the factor-based output gap to results from unobserved components
models that either include a Phillips curve relationship between the output gap and core
inflation, an Okun’s law type relationship between the unemployment rate and the output
gap, or both. However, there seems to be no large differences in the estimates.
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Figure 4: Comparison of Output Gap with Relational Methods. Shaded areas mark
recessions as determined by the NBER Business Cycle Dating Committee. Output gaps shown are
estimated using univariate relational methods.

It is important to highlight that the common trend has a natural interpretation as
potential output, which is an important measure in many applications. The factors allow
for interaction between trend and cycle, which is crucial since a persistent shock to out-
put is likely to affect potential output as well. Figure 5 further investigates the decline
in potential growth rates. It shows that there is some impact of economic fluctuations
on potential growth. Periods of weak output growth are likely to be followed by lower
potential growth rates. While there is definitely a decrease in potential growth since the
early 2000s, it is difficult to establish whether this weakening is a product of structural
change that has been going on for a while or is a relatively recent phenomenon.
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Figure 5: Potential Growth. Figure shows annual GDP and potential GDP growth rates from
1960 to 2019.
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3.3 Output Gap Decomposition

The benefits of using a Bayesian non-stationary dynamic factor model does not end with
estimating the output gap and potential output. Using more than one common cycle, it is
possible to identify the fundamental factors that drive the output gap. We use the Bayesian
information criterion to determine how many cycles to include in the models. Based on
the lowest BIC, we select the model using three cycles for the output gap decomposition.5

It is useful to look at the factor loadings in order to find an economic interpretation for
the cycles found in the data. Figure 6 shows sign and strength of the cyclical factors with
respect to the economic groups described in section 3.1. It shows that all investment and
production series load strongly on all factors, while series associated with consumption
and income exhibit rather weak factor loadings. This result conforms with the general
understanding that business cycles are mostly driven by investment activity as the economy
operates below or above capacity. While for some groups such as investment the signs of
the factor loadings are very homogenous, other groups such as labor or monetary have
more mixed signs. This is because variables such as unemployment rate and employment
growth react in opposite directions to the same economic development.
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Figure 6: Factor Loadings. Blue bars indicate positive, red bars negative factor loadings.

The first factor loads strongly and positively on investment and output and production
and loads negatively on most of the labor market and monetary variables. The first factor
is dominated by investment and output and production. The second factor loads similarly
on the aforementioned group of variables, but loads strongest the on labor market variables.
The third factor loads strongly on monetary variables and negative on investment. Figure
7 shows the output gap as the sum of these fundamental driving forces. The factor that
is dominated by monetary and financial variables is restrictive for much of the late 1970s
5See appendix A.4 for output gap decompositions under alternative specifications and appendix A.3 for a
residual analysis of those different specifications.
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and 1980s as a result of the Volcker deflation. It is then again very restrictive before the
Great Recession as a result of quick monetary tightening before the Great Recession. The
crisis years see a slightly positive contribution of the monetary cycle to the output gap,
while becoming more restrictive in recent years.
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Figure 7: Output Gap Decomposition. Figure shows a decomposition of the stationary factor
into three cyclical components.

More influental is the factor dominated by labor market variables, which is positive for
much of the 1980s and 1990s, likely a result of lower taxes and high productivity during
that period. This cycle provides also a negative and persistent contribution to the negative
output gap after the Great Recession. This is reflected in the slow decline of unemploy-
ment and the subdued wage growth in recent years. The most volatile factor is the one
dominated by production and investment, which contributes greatly to the fluctuations
around potential output.

3.4 Stability and Robustness

Since potential output is unobservable, it is not straightforward to identify a single most
appropriate measure for the output gap. In order for an output gap measure to be useful
for policy makers, it should provide a good indication for the degree of capacity uti-
lization in the economy. Furthermore, it should be stable over time and especially at the
current edge. The robustness of the estimates at the current edge is tested using a pseudo-
realtime backtest with an expanding windows from 2005 to 2019. The methods tested are
mostly univariate with the exception of the multivariate unobserved components model,
which uses industrial capacity utilization as an indicator. The dynamic factor model relies
pseudo-realtime vintages of the full cross-section. Figure 8 shows the vintages obtained
from the backtest. Especially the Hodrick-Prescott filter and the Baxter-King filter per-
form poorly during the Great Recession. The factor-based gap, the Hamilton filter and
the unobserved components model on the other hand are fairly robust.
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Figure 8: Pseudo-Real Time Vintages. Vintages from 2005 to 2019 are obtained from a
pseudo-realtime experiment using an expanding window in quarterly frequency.

Figure 9 shows the mean squared revision of the output gap estimates by how much
time has passed since the initial release. In order to account for the different scales of the
output gap measures, revisions are scaled by the variance of corresponding output gap. It
shows that all methods have only minor revisions to an output gap estimate a few years
after it has been estimated for the first time. However, there are substantial differences
in the quarters following the initial release. The Hodrick-Prescott Filter and the Baxter-
King filter are quite unstable in the first few quarters after the initial release, but are not
revised anymore after a couple of years. In the case of unobserved components models, the
trivariate model appears to be more stable than the bivariate approaches. The Hamilton
filter is the only approach being more robust than the factor-based gap.
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Figure 9: Output Gap Revisions. Figure shows the mean squared revision of an output gap
estimate scaled by its variance. Revisions are defined as the difference in the output gap . Quarterly
pseudo-realtime vintages from 2005 to 2019 are used.
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3.5 Explanatory Power for Inflation

In order to determine the usefulness of an output gap for policy makers, we test the ex-
planatory power of various output gap estimates for core consumer price inflation. Follow-
ing Coibion and Gorodnichenko (2015), we estimate an expectations-augmented Phillips
curve given by

πt − Etπt+1 = βCt + εt,

where xt is the temporally disaggregated output gap, π denotes annual core inflation in
quarterly frequency and Etπt+1 denotes inflation expectations, given by the average infla-
tion rate of the preceding year. Also in line with Coibion and Gorodnichenko (2015), the
regression is estimated for the inflationary period from 1960 to 1984, the great moderation
from 1985 to 2007 and the crisis and recovery years from 2008 to 2018. Table 1 shows the
estimates for β. A common result in the literature and also visible here is the weakening
Philips curve relation. For all methods, both strength and significance of the coefficients
decrease rapidly during the great moderation. Interestingly, for the monetary and financial
cycle the coefficient turns negative during the period of the great moderation.
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Table 1. Expectations-Augmented Phillips Curve Coefficients
Entire
Sample

Inflationary
Period

Great
Moderation

Crisis and
Recovery

1960 - 2018 1960 - 1984 1985 - 2007 2008 - 2018

Factor Gap 0.16*** 0.38*** 0.05* 0.02
(0.03) (0.06) (0.02) (0.02)

Labor & Income Cycle 0.01 0.1 -0.06 0.01
(0.07) (0.19) (0.04) (0.04)

Monetary & Financial Cycle 0.68*** 1.43*** -0.47** 0.05
(0.19) (0.37) (0.14) (0.15)

Output & Production Cycle 0.18*** 0.35*** 0.10*** 0.03
(0.04) (0.08) (0.02) (0.02)

Structural Methods

AMECO 0.13*** 0.05
(0.03) (0.03)

CBO 0.14*** 0.21*** 0.08*** 0.02
(0.03) (0.05) (0.02) (0.02)

IMF 0.09*** 0.03
(0.02) (0.02)

OECD 0.13*** 0.01
(0.02) (0.02)

Statistical Methods

Baxter-King Filter 0.3*** 0.38*** 0.12*** 0.14*
(0.04) (0.08) (0.04) (0.05)

Beveridge-Nelson Decomposition 0.39*** 0.53** 0.04 0.17
(0.11) (0.2) (0.1) (0.11)

Hamilton Filter 0.08*** 0.11** 0.02 0.07***
(0.02) (0.04) (0.02) (0.02)

Hodrick-Prescott Filter 0.27*** 0.34*** 0.1** 0.14**
(0.04) (0.08) (0.03) (0.05)

Unobserved Components 0.37*** 0.52*** 0.12** 0.14
(0.05) (0.09) (0.04) (0.07)

Relational Methods

Bivariate UC (Inflation) 0.58*** 0.75*** 0.2** 0.29**
(0.08) (0.14) (0.06) (0.1)

Bivariate UC (Unemployment) 0.39*** 0.53*** 0.13*** 0.16*
(0.05) (0.09) (0.04) (0.07)

Trivariate UC (Infl.& Unempl.) 0.52*** 0.69*** 0.18** 0.26**
(0.07) (0.13) (0.05) (0.09)

Notes: Standard errors in parentheses, significance indicated by *** p < 0.001, ** p < 0.01 and * p < 0.05. Output
gap estimates by AMECO, IMF and OECD do not cover the entire estimation period.

Table 2 shows the results from including all cyclical components of the factor gap in
the expectations-augmented Phillips curve. It shows that there might be beneficial for
the stability of the Phillips curve to include multiple cycles given that the coefficients are
jointly significant for every etimation period. While the production cycle has always been
significant, the labor and income cycle was so only during the inflationary period from
1960 to 1984. The monetary cycle on the other hand has been only significant since the
Great Recession, indicating a certain impact of monetary policy.
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Table 2. Multiple Cycles in Expectations-Augmented Phillips Curve
Entire
Sample

Inflationary
Period

Great
Moderation

Crisis and
Recovery

1960 - 2018 1960 - 1984 1985 - 2007 2008 - 2018

Labor & Income Cycle 0.05 0.57** 0.00 -0.09
(0.06) (0.19) (0.04) (0.05)

Monetary & Financial Cycle 0.75*** 0.65 -0.28 0.76**
(0.18) (0.43) (0.15) (0.23)

Output & Production Cycle 0.18*** 0.40*** 0.08** 0.16***
(0.03) (0.11) (0.03) (0.04)

Adjusted R2 0.15 0.25 0.18 0.21
F -statistic 14.66*** 10.83*** 7.62*** 4.96**

Notes: Standard errors in parentheses, significance indicated by *** p < 0.001, ** p < 0.01 and * p < 0.05.

4 Conclusion

This paper proposes a novel approach to estimate output gaps using a Bayesian non-
stationary dynamic factor model. It provides an efficient sampling algorithm and an
identification method that avoids ex-ante restrictions on the parameter space. By ex-post
processing the posterior output, it is possible to extract common trends and cycles from
a large set of macroeconomic data. This allows for the estimation of the output gap and
its decomposition into multiple cyclical components. The model requires a minimum of
assumptions and is therefore far more generic than many existing methods.

We have applied the model to a comprehensive dataset for the United States, spanning
the period from 1960 to 2019 in quarterly frequency. The estimated output gap measure
is in line with alternative measures and in particular follows a trajectory that is similar to
production function estimates. A decomposition of the output gap shows that two cyclical
components explain most of the fluctuations. Both factors relate strongly to all groups of
variables known to be important for business cycles. While one factor is at the business
cycle frequency and dominated by production and investment variables, the other factor
is at a lower frequency and additionally dominated by labor market variables. A third
component is dominated by monetary and financial variables.

In contrast to many alternative methods, estimates of the output gap and potential
output derived from the non-stationary factor model are relatively stable at the end of the
sample. Furthermore, the cyclical components appear to have more explanatory power in
a Phillips curve regression than the whole output gap.
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A Appendix

A.1 Posterior Simulation

This section describes the estimation of the dynamic factor model. In order to account
for serial correlation in the measurement errors, both sides of equation (1) are multiplied
by (1− ρL), where L is the lag operator.

(1− ρL)yt = (1− ρL)Λft + (1− ρL)et

Following ?, the ‘quasi-differenced’ measurement equation is therefore given by

ỹt = Λft − ρΛft−1 + ut (8)

where ỹt = yt−ρyt−1 and ut = et−ρet−1. The likelihood function is therefore proportional
to

1
|Σ|T/2 exp

[
− 1

2

T∑
t=1

(
(1− ρL)yt − (1− ρL)Λft

)
Σ−1

(
(1− ρL)yt − (1− ρL)Λft

)]

We assume normal-inverse gamma priors. All priors are chosen to be as diffuse as possible.
Draws from the marginal distributions of the parameters are obtained by approximating
the joint posterior distribution via Gibbs sampling from the conditional distributions.

Following Aßmann et al. (2016), convergence is checked using orthogonally invariant
quantities such as the error variance Σ of the measurement equation, the product of
loadings and factors and the determinants of the VAR coefficient matrices. As proposed
by Geweke (1992), equality of the means of the first and last part of a Markov chain is
tested as a convergence diagnostic. Convergence is assumed if the test rejects the null
hypothesis of equality for fewer than 5% of all chains on a 5% confidence interval.

The following steps are repeated until convergence.

Step 1: Estimating factors conditional on model parameters and data
The latent states are sampled jointly using the efficient and sparse state smoothing and
simulation algorithm by Chan and Jeliazkov (2009). In order to group the parameters in
appropriate blocks, the measurement equation (8) is stacked over the T time periods.

Ỹ = GF + U, U ∼ N(0, IT ⊗ Σ) (9)

where

Ỹ
(N(T−1)×1)

=


ỹ2
...
ỹT

 , G
(N(T−1)×qT )

=


−ρΛ Λ

. . .
−ρΛ Λ

 , F
(qT×1)

=


f1
...
fT



A1



The state equation needs to be stacked correspondingly.

HF = C + V, V ∼ N(0, IT−1 ⊗Q) (10)

where

H
(q(T−1)×qT )

=



−φ1 Iq
... . . . Iq

−φp
. . . −φ1 Iq
. . . ... −φ1 Iq

−φp . . . −φ1 Iq


, C

(q(T−1)×1)
=


c
...
c



This setup implies an improper diffuse prior distribution on the initial states of the latent
factors, which gets rid of the need to estimate them according to ?. The precision matrix
K is then given by H ′S−1H and the conditional posterior distribution of the factors is
normal.

F ∼ N(F̂ , P−1) (11)

where the precision P and the mean F̂ are given by

P = K +G′(IT ⊗ Σ−1)G

F̂ = P−1(H ′C +G′(IT ⊗ Σ−1)Ỹ

This algorithm is computationally very efficient if block-banded matrices and sparse ma-
trix algorithms are used (Chan and Jeliazkov, 2009). It is even faster to compute the
banded Cholesky factor of P and solve for F̂ by forward- and backward substitution.

Step 2: Estimating model parameters conditional on factors and data
In a second step, the model parameters are generated conditional on the factors and the
observed data. The factor loadings Λ are obtained via vectorization of equation (8) and
stacking the quasi-differenced factors according into a sparse matrix Z.

Z
(N(T−1)×2N)

=


f2 ⊗ Iq

...
fT ⊗ Iq

−

f1 ⊗ ρ

...
fT−1 ⊗ ρ


Using λ = vec(Λ), the conditional posterior distribution of the factor loadings is given by

λ ∼ N (b1, B1)

where B1 =
(
Z ′(IT−1 ⊗ Σ−1)Z + B−1

0
)−1 and b1 = B1

(
Z ′(IT−1 ⊗ Σ−1)Ỹ + B−1

0 b0
)
. The

prior distribution is chosen as uninformative as possible in order to impose no assumptions
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on the factors and to ensure that the likelihood is invariant to any rotations.

The covariance matrix of the measurement errors Σ can be retrieved conveniently from
Ỹ − Zλ. Assuming that a sufficiently large number of dynamic factors accounts for the
cross-correlation in the data, Σ is assumed to be a diagonal matrix. Defining ui as a vector
of length T containing the errors from the ith variable, the diagonal elements σ2

i are drawn
equation-by-equation from an inverse Gamma distribution.

σ2
i ∼ IG (α1,i, δ1,i) (12)

where α1,i = α0,i + T and δ1,i = δ1,i + uiu
′
i. Although the priors can be completely unin-

formative in order to estimate common trends and cycles, it is sometimes useful to shrink
certain errors towards zero. We will do so in the case of errors on GDP such that the
factors closely fit the actual observations of the time series we are interested in.

In order to get the autoregressive coefficients ρ, the serially correlated errors can be
retrieved equation by equation from Y −fΛ′. Y is defined as a (T ×N) matrix containing
the data and f an (T × q) matrix of factors. Assuming ei to be a vector of length T

containing the errors from the ith variable, the conditional posterior distribution of the
diagonal elements of ρ is given by

ρi ∼ N (p1,i, P1,i)

where P1,i =
(
σ−2
i e′iei + P−1

0,i
)−1 and p1,i = P1,i

(
σ−2
i e′ieiL + P−1

0,i p0,i
)
. In order to enforce

stationarity, it is necessary to impose a truncated normal prior by discarding draws that
are greater or equal than unity. Since we are interested in keeping the errors on GDP
small and inconspicuous, we also shrink this particular autoregressive coefficient towards
zero.

The coefficients φ1, . . . , φp of the vector autoregression are obtained by stacking the
factors according to

F+ =


f ′p+1
...
f ′T

 , Fl =


1 f ′p . . . f ′1
... . . .
1 f ′T−1 . . . f ′T−p

 (13)

Defining Φ = vec(c, φ1, . . . , φp)′, the conditional posterior is given by

Φ ∼ N (a1, A1) (14)

where A1 = Q⊗ (F ′lFl)−1 and a1 = (F ′lFl)−1F ′lF+. Since Q is restricted to be an identity
matrix Iq, factors and loadings are scaled during the sampling process.
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A.2 Identification Algorithm

Since the loss function is globally convex in Θ∗, all minima of the loss function can be
characterized as

1
R

R∑
r=1

(
H(D(r))Θ(r) −H(D)Θ

)′ (
H(D(r))Θ(r) −H(D)Θ

)
(15)

where

H(D)Θ = 1
R

R∑
r=1

H(D(r))Θ(r).

It is necessary to initialize a vector Θ∗, for which we can use the last draw from the
unconstrained sampler. Then the minimization problem has to be solved numerically in
two repeating steps.

(1) The minimization problem has to be solved for each draw r = 1, . . . , R.

D(r) = arg min
D

LD
(
Θ∗, H(D) Θ(r)

)
= arg min

D

(
H(D) Θ(r) −Θ∗

)′ (
H(D) Θ(r) −Θ∗

)
For the numerical optimization, we can factorize the orthogonal matrices D(r) into
a reflection matrix Z and q(q− 1)/2 Givens rotation matrices. ? have parametrized
each Givens rotation matrix Gi,j with an angle γ(i,j) ∈ [−π

2 ,
π
2 ) and the reflection

matrix Z to be a diagonal matrix with entries either 1 or −1. Aßmann et al. (2016)
show that the numerical optimization is easier to handle if the angular domain is
γ(i,j) ∈ [−π, π) and only a single entry of the reflection matrix Z is allowed to
vary between −1 and 1. This allows to split the numerical optimization into two
subproblems.

D =
{
D+ =Z+

∏
(i,j):∈{1,...,q},j>iGi,j,q if det(D) = 1

D− =Z−
∏

(i,j):∈{1,...,q},j>iGi,j,q if det(D) = −1

where

Z+ =
(
Iq−1 0

0 1

)
, Z− =

(
Iq−1 0

0 −1

)

and

Gi,j,q =


g1,1 . . . g1,q
... . . . ...
gq,1 . . . gq,q



A4



The entries gr,s in each givens rotation matrix Gi,j are parametrized with an angle
γ(i,j) ∈ [−π, π).

gr,s =



1, for i 6= r = s 6= j

cos(γ(i,j)), for r = s = i and r = s = j

− sin(γ(i,j)), for r = j, s = i

sin(γ(i,j)), for r = i, s = j

0, else

This leads to q(q − 1)/2 Givens matrices Gi,j,q of the following form, where each
matrix is parametrized with an angle γ(i,j) ∈ [−π, π).

Gi,j,q =

i j



I 0 0 0 0
0 cos(γ(i,j)) 0 − sin(γ(i,j)) 0 i

0 0 I 0 0
0 sin(γ(i,j)) 0 cos(γ(i,j)) 0 j

0 0 0 0 I

The numerical optimization procedure therefore has to minimize the loss function
over q(q − 1)/2 parameters γ(i,j) for both Z+ and Z−. From the two resulting
orthogonal matrices D+ and D−, we select the one as D(r) that provides the smaller
loss.

D(r) = arg min
D+,D−

{
LD

(
Θ∗, H(D+) Θ(r)

)
, LD

(
Θ∗, H(D−) Θ(r)

)}
This procedure yields a different rotation matrix D(r) for each draw from the un-
constrained Gibbs sampler.

(2) Choose Θ∗ = H(D)Θ and return to step (1) in order to minimize the loss function
for each draw again.

Following Aßmann et al. (2016), convergence is assumed if the sum of squared deviations
between two successive Θ∗ is lower than 10−9.
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A.3 Residual Analysis
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Figure 11: Residuals for GDP for Several Model Specifications
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A.4 Alternative Decompositions
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Figure 12: Output Gaps from Multiple Cyclical Components. Bayesian information
criterion in parenthesis.
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Figure 13: Output Gap Decomposition with 2 Cycles
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Figure 15: Output Gap Decomposition with 3 Cycles
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Figure 16: Factor Loadings with 3 Cycles
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Figure 17: Output Gap Decomposition with 4 Cycles

A8



C
yc

le
 1

C
yc

le
 2

C
yc

le
 3

C
yc

le
 4

Consumption and Income Financial Investment Labor Market Monetary Output and Production

0

10

20

30

0
20
40
60
80

0

10

20

30

0

200

400

A
bsolute Loading S

trength

Figure 18: Factor Loadings with 4 Cycles
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A.5 Data

Table 3. Data Description

Description Key Order

Consumption and Income
A823RL1Q225SBEA Real Government Consumption Expenditures and Gross Investment:

Federal
0

AMDMNOx Average Hourly Earnings of Production and Nonsupervisory Employ-
ees: Construction

1

AMDMUOx Average Hourly Earnings of Production and Nonsupervisory Employ-
ees: Manufacturing

1

BUSINVx Total Business Inventories 1
CES0600000008 Average Hourly Earnings of Production and Nonsupervisory Employ-

ees: Goods-Producing
1

CMRMTSPLx Real Manufacturing and Trade Industries Sales 1
COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour 1
DPIC96 Real Disposable Personal Income 1
FGRECPTx Federal Government Current Receipts 1
GCEC1 Real Government Consumption Expenditures and Gross Investment 1
OPHNFB Nonfarm Business Sector: Real Output Per Hour of All Persons 1
OPHPBS Business Sector: Real Output Per Hour of All Persons 1
PCDGx Personal Consumption Expenditures: Durable Goods 1
PCECC96 Real Personal Consumption Expenditures 1
PCESVx Personal Consumption Expenditures: Services 1
PCNDx Personal Consumption Expenditures: Nondurable Goods 1
RCPHBS Business Sector: Real Compensation Per Hour 1
RSAFSx Advance Retail Sales: Retail and Food Services, Total 1
SLCEx State and Local Consumption Expenditures & Gross Investment 1
ULCBS Business Sector: Unit Labor Cost 1
ULCNFB Nonfarm Business Sector: Unit Labor Cost 1
UNLPNBS Nonfarm Business Sector: Unit Nonlabor Payments 1

Financial
BUSLOANSx Commercial and Industrial Loans, All Commercial Banks 1
CNCFx Corporate Net Cash Flow with IVA 1
CONSUMERx Consumer Loans at All Commercial Banks 1
HNOREMQ027Sx Households and nonprofit organizations; real estate at market value,

Level
1

LIABPIx Nonfinancial corporate business; debt securities; liability, Level 1
NIKKEI225 Nikkei Stock Average, Nikkei 225 1
NONREVSLx Total Nonrevolving Credit Owned and Securitized, Outstanding 1
NWPIx Net Worth as a Percentage of Disposable Personal Income 1
REALLNx Real Estate Loans, All Commercial Banks 1
S.P..indust S&P’s Common Stock Price Index: Industrials 1
S.P.500 S&P’s Common Stock Price Index: Composite 1
S.P.div.yield S&P’s Composite Common Stock: Dividend Yield 1
S.P.PE.ratio PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio S&P 0
TABSHNOx Households and Nonprofit Organizations; Total Assets, Level 1
TABSNNBx Nonfinancial noncorporate business; total assets, Level 1

continued . . .
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. . . continued

TFAABSHNOx Households and Nonprofit Organizations; Total Financial Assets, Level 1
TLBSHNOx Households and Nonprofit Organizations; Total Liabilities, Level 1
TLBSNNBx Nonfinancial noncorporate business; total liabilities, Level 1
TLBSNNCBx Nonfinancial Corporate Business; Total Liabilities, Level 1
TNWBSHNOx Households and Nonprofit Organizations; Net Worth, Level 1
TNWBSNNBx Nonfinancial Noncorporate Business; Proprietors’ Equity in Noncorpo-

rate Business (Net Worth), Level
1

TNWMVBSNNCBx Nonfinancial Corporate Business; Net Worth, Level 1
TOTALSLx Total Consumer Credit Owned and Securitized, Outstanding 1
TTAABSNNCBx Nonfinancial Corporate Business; Nonfinancial Assets, Level 1

Investment
FPIx Fixed Private Investment 1
GPDIC1 Real Gross Private Domestic Investment 1
HOUST Housing Starts: Total: New Privately Owned Housing Units Started 1
HOUST5F Privately Owned Housing Starts: 5-Unit Structures or More 1
HOUSTMW Housing Starts in Midwest Census Region 1
HOUSTNE Housing Starts in Northeast Census Region 1
HOUSTS Housing Starts in South Census Region 1
HOUSTW Housing Starts in West Census Region 1
INVEST Gross Private Domestic Investment 1
PERMIT New Private Housing Units Authorized by Building Permits 1
PERMITMW New Private Housing Units Authorized by Building Permits in the Mid-

west Census Region
1

PERMITNE New Private Housing Units Authorized by Building Permits in the
Northeast Census Region

1

PERMITS New Private Housing Units Authorized by Building Permits in the
South Census Region

1

PERMITW New Private Housing Units Authorized by Building Permits in the West
Census Region

1

PNFIx Private Nonresidential Fixed Investment 1
PRFIx Private Residential Fixed Investment 1
Y033RC1Q027SBEAx Gross Private Domestic Investment: Fixed Investment: Nonresidential:

Equipment
1

Labor Market
CE16OV Civilian Employment Level 1
CES9091000001 All Employees: Government: Federal 1
CES9092000001 All Employees: Government: State Government 1
CES9093000001 All Employees: Government: Local Government 1
CIVPART Civilian Labor Force Participation Rate 1
CLAIMSx 4-Week Moving Average of Initial Claims 0
DMANEMP All Employees: Durable Goods 1
HOABS Business Sector: Hours of All Persons 1
HOANBS Nonfarm Business Sector: Hours of All Persons 1
HWIURATIOx Nonfarm Vacancies to Unemployment 0
LNS12032194 Employment Level: Part-Time for Economic Reasons, All Industries 1
LNS14000012 Unemployment Rate: 16 to 19 years 0
LNS14000025 Unemployment Rate: 20 years and over, Men 0

continued . . .
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. . . continued

LNS14000026 Unemployment Rate: 20 years and over, Women 0
MANEMP All Employees: Manufacturing 1
NDMANEMP All Employees: Nondurable goods 1
PAYEMS All Employees: Total Nonfarm Payrolls 1
SRVPRD All Employees: Service-Providing Industries 1
UEMP15T26 Number of Civilians Unemployed for 15 to 26 Weeks 1
UEMP27OV Number of Civilians Unemployed for 27 Weeks and Over 1
UEMP5TO14 Number of Civilians Unemployed for 5 to 14 Weeks 1
UEMPLT5 Number of Civilians Unemployed for Less Than 5 Weeks 1
UEMPMEAN Average (Mean) Duration of Unemployment 0
UNRATE Civilian Unemployment Rate 0
UNRATELTx Civilian Unemployment Rate Long Term 0
UNRATESTx Civilian Unemployment Rate Short Term 0
USCONS All Employees: Construction 1
USEHS All Employees: Education and Health Services 1
USFIRE All Employees: Financial Activities 1
USGOOD All Employees: Goods-Producing Industries 1
USGOVT All Employees: Government 1
USINFO All Employees: Information Services 1
USLAH All Employees: Leisure and Hospitality 1
USMINE All Employees: Mining and logging 1
USPBS All Employees: Professional and Business Services 1
USPRIV All Employees: Total Private Industries 1
USSERV All Employees: Other Services 1
USTPU All Employees: Trade, Transportation and Utilities 1
USTRADE All Employees: Retail Trade 1
USWTRADE All Employees: Wholesale Trade 1

Monetary
AAA Moody’s Seasoned Aaa Corporate Bond Yield 0
AAAFFM Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate 0
BAA Moody’s Seasoned Baa Corporate Bond Yield 0
BAA10YM Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-

Year Treasury Constant Maturity
0

CP3M 3-Month Commercial Paper Rate 0
CPF3MTB3Mx Spread CP3M TB3M 0
DTCOLNVHFNM Consumer Motor Vehicle Loans Owned by Finance Companies, Out-

standing
1

DTCTHFNM Total Consumer Loans and Leases Owned and Securitized by Finance
Companies, Outstanding

1

EXCAUSx Canada / U.S. Foreign Exchange Rate 1
EXJPUSx Japan / U.S. Foreign Exchange Rate 1
EXSZUSx Switzerland / U.S. Foreign Exchange Rate 1
EXUSUKx U.S. / U.K. Foreign Exchange Rate 1
FEDFUNDS Effective Federal Funds Rate 0
GS1 1-Year Treasury Constant Maturity Rate 0
GS10 10-Year Treasury Constant Maturity Rate 0
GS10TB3Mx Yield Curve 10Y 3M 0
GS1TB3Mx Yield Curve 1Y 3M 0

continued . . .
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. . . continued

GS5 5-Year Treasury Constant Maturity Rate 0
M1REAL Real M1 Money Stock 1
M2REAL Real M2 Money Stock 1
MZMREAL Real MZM Money Stock 1
T5YFFM 5-Year Treasury Constant Maturity Minus Federal Funds Rate 0
TB3MS 3-Month Treasury Bill: Secondary Market Rate 0
TB3SMFFM 3-Month Treasury Bill Minus Federal Funds Rate 0
TB6M3Mx Yield Curve 6M 3M 0
TB6MS 6-Month Treasury Bill: Secondary Market Rate 0

Output and Production
A014RE1Q156NBEA Shares of gross domestic product: Gross private domestic investment:

Change in private inventories
0

AWHMAN Average Weekly Hours of Production and Nonsupervisory Employees:
Manufacturing

1

AWOTMAN Average Weekly Overtime Hours of Production and Nonsupervisory
Employees: Manufacturing

1

B020RE1Q156NBEA Shares of gross domestic product: Exports of goods and services 0
B021RE1Q156NBEA Shares of gross domestic product: Imports of goods and services 0
CES0600000007 Average Weekly Hours of Production and Nonsupervisory Employees:

Goods-Producing
0

CUMFNS Capacity Utilization: Manufacturing 0
EXPGSC1 Real Exports of Goods and Services 1
GDPC1 Real Gross Domestic Product 1
HWIx Weekly Hours Worked 1
IMPGSC1 Real Exports of Goods and Services 1
INDPRO Industrial Production Index 1
IPB51110SQ Industrial Production: Durable Goods: Automotive products 1
IPB51220SQ Industrial Production: Consumer energy products 1
IPB51222S Industrial Production: Residential utilities 1
IPBUSEQ Industrial Production: Business Equipment 1
IPCONGD Industrial Production: Consumer Goods 1
IPDCONGD Industrial Production: Durable Consumer Goods 1
IPDMAT Industrial Production: Durable Materials 1
IPFINAL Industrial Production: Final Products (Market Group) 1
IPFUELS Industrial Production: Fuels 1
IPMANSICS Industrial Production: Manufacturing (SIC) 1
IPMAT Industrial Production: Materials 1
IPNCONGD Industrial Production: Nondurable Consumer Goods 1
IPNMAT Industrial Production: Nondurable Materials 1
ISRATIOx Total Business: Inventories to Sales Ratio 0
OUTBS Business Sector: Real Output 1
OUTNFB Nonfarm Business Sector: Real Output 1
UMCSENTx University of Michigan: Consumer Sentiment 0
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