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Abstract

In this paper, we study choice under uncertainty with belief functions on a set of
outcomes as objects of choice. Belief functions describe what is objectively known
about the probabilities of outcomes. We assume that decision makers have pref-
erences over belief functions that reflect both their valuation of outcomes and the
information available about the likelihood of outcomes. We provide axioms which
characterize a preference representation for belief functions that captures what is
(objectively) known about the likelihood of outcomes and combines it with subjec-
tive beliefs about unknown probabilities according to the “principle of insufficient
reason”. The approach is novel in its treatment of partial information and in its
axiomatization of the uniform distribution in the case of ignorance. Moreover, our
treatment of partial information yields a natural distinction between ambiguity and
ambiguity attitude.

1 Introduction

In economics, decision analysis under uncertainty has almost exclusively focused on the
two extreme cases of purely subjective probabilities derived from a decision maker’s pref-
erences (Savage, 1954) or perfect information about probabilities (objective lotteries)
analyzed by von Neumann and Morgenstern (1944). With few exceptions1, the more
recent literature on decision making under ambiguity takes a purely subjective perspec-
tive. Many economic decision problems are, however, characterized by knowledge about
the frequencies or probabilities of some events, yet not about all. Giraud and Tallon
(2011) raise this issue and point to belief functions as a formal concept allowing one to
combine objective, that is inter-subjectively verifiable, information about events, with
purely subjective beliefs implicit in an individual’s preferences.
∗We would like to thank Hannes Rau for helpful comments on the early drafts of this paper. Illia

Pasichnichenko acknowledges funding for this research by the Alexander von Humboldt Foundation.
†Alfred-Weber-Institute for Economics, Heidelberg University. E-mail: juergen.eichberger@awi.uni-

heidelberg.de.
‡Alfred-Weber-Institute for Economics, Heidelberg University. E-mail: io.pasich@gmail.com.
1In a couple of papers, Chateauneuf and Vergnaud (2000), Gajdos, Hayashi, Tallon, and Vergnaud

(2008), Gajdos, Tallon, and Vergnaud (2004, 2008) study the impact of objective information on belief
functions. We will discuss this literature in more detail in Section 6 below.
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In this paper, we will study belief functions on a set of outcomes as the decision
maker’s object of choice. In the spirit of Shafer (1976), these belief functions describe
what is objectively known about the probability distributions over outcomes. We assume
that decision makers can order these belief functions and deduce a preference represen-
tation from a set of axioms. Hence, two acts leading to the same belief function on
outcomes are treated as equal. The preference representation will reflect both the ob-
jective information about the likelihood of events embodied in the belief function and,
in case of unknown likelihoods, a subjective belief of the decision maker in the spirit of
the “principle of indifference” advanced in Keynes (1921, Chapter IV). The approach is
novel in its treatment of partial information and in its axiomatization of the uniform
distribution as a representation of beliefs in case of ignorance.

In the following section, we will introduce and illustrate by examples how objective
information can be captured by a belief function. Section 3 will propose a representation
of preferences which uses the available partial information but resorts to the principle of
indifference for events without any information. Section 4 provides and discusses a set
of axioms characterizing the representation studied in Section 3. Section 5 summarizes
essential properties of the representation functional, in particular the representation of
ambiguity attitudes, and Section 6 compares the approach advanced in this paper to
related representations in the literature.

2 Partial information and belief functions

Faced with uncertainty about the outcome of an action, decision makers base their choices
on beliefs about the likelihood of the outcomes. Traditionally, these beliefs have been
represented by probability distributions. von Neumann and Morgenstern (1944) were the
first to consider lotteries over outcomes as objects of choice. In contrast, Savage (1954)
took state-contingent outcomes as primitives and deduced subjective probabilities over
outcomes from preferences over these state-contingent outcomes. The former approach
assumes that information about the likelihood of outcomes is completely specified by
objective probabilities (lotteries), while the latter assumes complete ignorance about the
likelihood of events and views probabilities as purely subjective. We will argue in this
section that real decision situations are usually characterized by more or less information
about the likelihood of events, that is by partial information about the actual probability
distribution.

In his Mathematical Theory of Evidence, Shafer (1976) suggests belief functions (or
totally monotone capacities) as a concept suitable for integrating partial information in a
formal approach. Belief functions are a special case of capacities for which the Choquet
integral provides a natural way of forming an expected value. Capacities and the Cho-
quet integral have been extensively studied in the literature (for example in Grabisch,
2016). The advantage of the special case of belief functions follows from the fact that
the associated Möbius inverse, called mass by Shafer (1976), is a probability distribution
over subsets of the set of outcomes. Hence, partial information about the probability of
an event can be directly associated with the respective event in a mass distribution. The
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Möbius transform converts this mass distribution in a belief function with a well-defined
Choquet integral. The special case of perfect information (von Neumann and Morgen-
stern, 1944) corresponds to the limiting case of a mass distribution putting weight only
on singleton events. The case of no information (Savage, 1954) or complete ignorance,
on the other hand, holds if the mass distribution puts a weight of one on the set of all
possible outcomes and, hence, a weight of zero to all other subsets.

2.1 Belief functions and the Choquet integral

A decision maker’s information and actions induce a probability distribution over out-
comes and the decision maker chooses an action, that is a probability distribution over
outcomes, yielding the highest expected utility. If the available information is insufficient,
however, then the probability distribution over outcomes arising from an action is not
determined completely. Partial information about the unknown probability distribution
over outcomes can be described by a belief function. Before going to examples, we give
formal definitions of a belief function and the Choquet integral.

Consider a finite set of outcomes X and the set 2X of all subsets of X.

Definition 1. A function m : 2X → [0, 1] is called a mass distribution on X, if m(∅) = 0
and

∑
A⊆X m(A) = 1.

Hence, a mass distribution on X shows the proportion of evidence that supports each
event A ⊆ X. For example, if the decision maker knows only that an outcome belongs
to the event A then the mass m(A) = 1 and m(B) = 0 for all other subsets of X, is
a distribution on 2X representing this state of information. Or if the probabilities of
the outcomes x and y are known to be px and py, respectively, with px + py = 1, then
m({x}) = px, m({y}) = py and m(B) = 0 for all other B ⊆ X is the mass distribution
representing the probability distribution (px, py). More examples follow in Section 2.3.

A belief function µ(A) aggregates masses of subevents B ⊆ A indicating the overall
degree of evidence that A is true.

Definition 2. Let m be a mass distribution on X. We call µ : 2X → [0, 1] a belief
function on X, if µ(A) =

∑
B⊆Am(B).

A belief function on X resembles a probability distribution on X, although it is not
necessary additive. In fact, it is a monotone of all orders capacity.2 Given a belief
function, the underlying mass distribution can be recovered uniquely. Hence, there is a
one-to-one correspondence between belief functions and mass distributions. To highlight
this connection, we will sometimes write µm.

The Choquet integral of a belief function µm can be obtained as the expected value
of the minimal outcome in each event, min {u(x)|x ∈ A}, with respect to the mass dis-
tribution.3

2Monotonicity of order 2 is convexity, i.e. µ(A ∪ B) ≥ µ(A) + µ(B) − µ(A ∩ B). See Chateauneuf
and Jaffray (1989) for details. On the contrary, a mass distribution is a set function that is neither
normalized nor monotone, hence no capacity.

3For a detailed discussion, see Gilboa and Schmeidler (1994). They show that the Choquet integral
with respect to µm equals this average of minimums. We use the average of minimums as a definition.
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Definition 3. Let µm be a belief function on X. We call

V C (µm) =
∑
A⊆X

m(A) min {u(x)|x ∈ A} . (1)

the Choquet integral of µm. Abusing notation, we will also write V C(m) instead of V C (µm).

Note that V C depends on decision maker’s risk preferences embodied in the von
Neumann-Morgenstern utility function u.

We assume that the preferences of the decision maker are defined on the set of belief
functions M over outcomes in X. By assumption, the decision maker is indifferent
between any two acts leading to the same belief function on outcomes. In the next
subsection, we discuss how information about states and an act can be converted into a
belief function on X.

2.2 States and acts

In economic applications, information may be available for states s in a set of states S.
In this case, actions (or acts) of a decision maker are functions f : S → X associating
outcomes to states. In this case, information about states is modeled by a mass distri-
bution m on S. This information together with an act f induces a distribution of mass
m ∗ f on the set of outcomes X,

m ∗ f (A) =
∑

E⊆S:f(E)=A

m(E) (2)

for any A ⊆ X. One checks easily that m ∗ f is a mass distribution on X. For the
corresponding belief functions, we have

µm∗f (A) = µm
(
f−1(A)

)
For the Choquet integral (1), one has

V C(m ∗ f) =
∑
E⊆S

m(E) min{u(f(s))|s ∈ E},

which is easy to check using formula (2).

2.3 Leading examples

W.l.o.g., we will assume throughout this subsection that the von Neumann-Morgenstern
utility index u : X → R is a strictly increasing function.

The first example shows how one can easily compute the Choquet integral of an
act given a belief function derived from a mass distribution. It illustrates also that
the Choquet integral represents an extremely pessimistic or conservative evaluation of
ambiguity.
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Example 1. Consider a decision maker who can choose one of two actions {a, b}. The set
of possible outcomes is X = {0, 90, 95, 100}. Action a yields an outcome from the set A =
{0, 90, 100} and action b from the set B = {0, 90, 95, 100}. Notice that different actions
may yield different sets of outcomes. Assume that from previous experience it is known
that, for both actions, there is at least a 40% chance of obtaining an outcome greater than
90. Without further information, this implies a mass distribution m ∗ a ({90, 100}) = 0.4
and m ∗ a ({0}) = 0.6 and m ∗ a = 0 for all other subsets of X. For action b one obtains
the mass distribution m ∗ b ({90, 95, 100}) = 0.4 and m ∗ b ({0}) = 0.6 and m ∗ b = 0 for
all other subsets of X. The Choquet integrals of the corresponding belief functions are
the weighted averages of the worst possible outcomes in each event:

V C(m ∗ a) = m ∗ a ({90, 100}) min {u(x)|x ∈ {90, 100}}+m ∗ a ({0})u(0)

= 0.4u(90) + 0.6u(0)

= m ∗ b ({90, 95, 100}) min {u(x)|x ∈ {90, 95, 100}}+m ∗ b ({0})u(0)

= V C(m ∗ b).

Hence, according to the Choquet evaluation the decision maker will be indifferent between
the two acts a and b, since V C(m ∗ a) = V C(m ∗ b).

Partial information about the probability distribution over outcomes often arises from
information about marginal distributions. The second example illustrates how the partial
information about the outcomes of acts may induce different mass distributions and
therefore different belief functions over sets of outcomes.

Example 2. An investor considers two investments a and b. Investment a concerns a
firm with markets in Europe (Region 1) and Asia (Region 2). State hh corresponds to
good sales in both regions, state ll to bad sales in both regions, and states lh and hl to bad
sales in one region and bad sales in the other region, respectively. Investment b has a safe
return y. For investment a the probability distribution over outcomes X = {0, r, R} with
0 < r < R is induced by the probability distribution over the set of states {hh, hl, lh, ll}.

Region 2

Region 1
h l

h R r

l r 0

states
S : hh hl lh ll

a : R r r 0
outcomes

Suppose it is known from previous studies that the probability of high sales in Region
2 is Pr(h) = p. Hence, it is known that the probability of the event E2h = {hh, lh} equals
p and the probability of the event E2l = {hl, ll} is 1− p. There is no information about
the other events.

This information induces the mass distribution m on events of the state space S =
{hh, hl, lh, ll} with m(E2) = p for E2 = {hh, lh}, = 1 − p for E2 = {hl, ll} and = 0
otherwise. This mass distribution m on the events of the state space S translates into
an action-dependent mass distribution m ∗ a on the events of the outcome space X:

5



mass distribution over outcomes
a R r 0 {r,R} {0, R} {0, r} {0, r, R}

m ∗ a 0 0 0 p 0 1− p 0

The mass distribution of investment a yields the Choquet expected utility

V C(m ∗ a) = m({hl, ll}) min {u(a(s))|s ∈ {hl, ll}}
+m({hh, lh}) min {u(a(s))|s ∈ {hh, lh}}
= m ∗ a ({0, r}) min {u(0), u(r)}+m ∗ a ({r,R}) min {u(r), u(R)}
= (1− p)u(0) + pu(r).

Similarly, for the investment b with the safe return y, one obtains V C(m ∗ b) = u(y).
Hence, the decision maker will be willing to invest in a if V C(m ∗ a) > V C(m ∗ b) or,
equivalently, if (1− p)u(0) + pu(r) > u(y).

Notice that the decision maker in Example 2 chooses extremely cautiously, disregard-
ing the best possible outcome R. Note also that risk attitudes, i.e., the curvature of
u will matter for the optimal choice. For example, a risk-loving decision maker with a
convex von Neumann-Morgenstern function u may choose investment a even if its ex-
pected return p · r is less than the safe return y of investment b. Such a decision maker
may be extremely uncertainty averse with respect to unknown outcomes but risk-loving
with respect to probabilistic gambles. This feature can explain seemingly contradictory
behavior of a consumer buying lottery tickets while insuring against uncertain risks (see
Friedman and Savage, 1948).

The following example interprets the well-known Ellsberg three-color urn paradox
(Ellsberg, 1961) as a consequence of partial information about the composition of the
urn.

Example 3 (Three-color urn (Ellsberg, 1961)). Consider the version of the Ellsberg
paradox where the decision maker can bet on the color of balls drawn form an opaque
urn containing 30 red balls and 60 black or yellow balls in unknown proportion. The
possible bets and corresponding prizes are given in the table.

30 60
R B Y

a $100 0 0
b 0 $100 0
a′ $100 0 $100
b′ 0 $100 $100

There are two possible outcomes, X = {0, 100}, and, omitting the empty set, three
possible events: outcome 100 occurs {100}, outcome zero occurs {0}, and either 100 or
zero occurs {0, 100}. For bet a, the decision maker has complete information about her
chances to win $100. This follows from the fact that the proportion of red balls in the
urn is known. Hence, for betting on red, one can assign a mass value of one third to the
event that an outcome of 100 occurs, m ∗ a ({100}) = 1/3, and a value of two thirds to
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the event that the outcome is zero, m ∗ a ({0}) = 2/3. In this case, there is no ambiguity
about the event that either 0 or 100 may obtain, m ∗ a ({0, 100}) = 0. If all mass value
can be allocated to singleton events, the corresponding belief function is a probability
measure.
In contrast, for bet b, one knows that there is a chance of one third of receiving nothing
(when the drawn ball is red), hence m ∗ b ({0}) = 1/3, and of two thirds of getting
0 or $100, m ∗ b ({0, 100}) = 2/3. This bet illustrates a case of partial information:
the probability of two thirds for the event of obtaining 0 or $100 cannot be subdivided
between 0 and $100, because the proportions of black and yellow balls are unknown. The
corresponding belief function is not additive and reflects the ambiguity due to the lack
of information about the proportions of black and yellow balls.

Applying the same reasoning to the bets a′ and b′ yields the mass distributions
corresponding to the four acts in the table below. We would get the same result by
formally applying equation (2).

{0} {100} {0,100} V C

m ∗ a 2/3 1/3 0 1/3
m ∗ b 1/3 0 2/3 0
m ∗ a′ 0 1/3 2/3 1/3
m ∗ b′ 1/3 2/3 0 2/3

Assuming, w.l.o.g., a von Neumann-Morgenstern utility function u : X → R with
u(0) = 0 and u(100) = 1, one can calculate the expected value of the minimal outcomes
of each event with respect to these mass distributions, i.e.

V C(m ∗ f) = m ∗ f ({0})u(0) +m ∗ f ({100})u(100)

+m ∗ f ({0, 100}) min{u(0), u(100)} (3)

for f ∈ {a, b, a′, b′}. The Choquet expected values of the four bets support the choices
observed by Ellsberg (1961): V C(m ∗ a) > V C(m ∗ b) and V C(m ∗ a′) < V C(m ∗ b′).

Example 3 shows that careful consideration of the partial information about events
together with the strong ambiguity aversion, implicit in the Choquet integral, i.e., in
taking the minimal values over events, suffices to justify the choices in the Ellsberg
three-colors paradox. Notice that the curvature of u, that is risk attitudes of the decision
maker do not matter for this result.

As a final example, we consider the standard textbook insurance case.

Example 4 (Insurance). Consider a consumer with wealth W facing a potential loss L.
From a data set of similar cases, it is supposed to be known that a loss occurs in nL cases,
no loss in nW cases, and for nU cases there is no information recorded. From this data
base, the insurer and the potential insuree can derive the following mass distribution over
events {W}, {W − L}, and {W,W − L}

m({W − L}) =
nL
N
, m({W}) =

nW
N

, m ({W − L,W}) =
nU
N
,
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with N = nL+nW +nU . Denote by πL = nL
nL+nW

the loss proportion and by γ = nL+nW
N

the proportion of recorded outcomes, which may be interpreted as a degree of confidence
in the frequency distribution (πL, 1 − πL). Rewriting the mass distribution in terms of
the parameters πL and γ, one obtains

m({W − L}) = γπL, m({W}) = γ(1− πL), m ({W − L,W}) = 1− γ.

Hence, the consumer’s Choquet expected utility without insurance is

V C(m ∗ 0) = m({W − L})u(W − L) +m({W})u(W )

+m ({W − L,W}) min {u(W − L), u(W )}
= γπLu(W − L) + γ(1− πL)u(W ) + (1− γ) min {u(W − L), u(W )}
= [γπL + (1− γ)]u(W − L) + γ(1− πL)u(W ).

Suppose insurance is available at a premium Q = qL . With insurance, the wealth in
case of a loss would be W −L+L− qL = W − qL and in case of no loss W − qL. Thus,
complete insurance yields a Choquet expected utility of

V C(m ∗ L) = m({W − L})u(W − qL) +m({W})u(W − qL)

+m ({W − L,W}) min {u(W − qL), u(W − qL)} = u(W − qL).

The consumer will insure completely if

V C(m ∗ L) > V C(m ∗ 0). (4)

For the inequality to be true, it is sufficient that u is concave and q < γπL + (1− γ).
Notice that the consumer in Example 4 may take out full insurance even for an unfair

insurance premium of πL < q < γπL + (1− γ) since πL < γπL + (1− γ) holds, if the lack
of data induces a low degree of confidence γ less than 1. In principle, inequality (4) can
hold for a convex u provided that γ is sufficiently small. Hence, this consumer may also
buy lottery tickets at unfair odds.

3 Choice over belief functions

In most applied cases of decision making under uncertainty, complete ignorance, that is
situations with no information about the likelihood of events, is an extreme case. Usually,
some information about the probability of events is available from empirical studies. In
many situations under uncertainty, objective information about the probability of some
events can be gleaned from observed frequencies. Such information is, however, mostly
incomplete or available only for imprecisely specified states and events. Belief functions,
as was shown in the previous section, provide a useful method for modeling partial or
imprecise information.
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The Choquet integral of a belief function µm is the expected value of the minimal
outcomes in each event, min {u(x)|x ∈ A}, with respect to the mass distribution m of
the belief function µm,

V C(µm) =
∑
A⊆X

m(A) min {u(x)|x ∈ A} . (5)

For the special case of a mass distribution assigning positive weight only to singleton
sets, the Choquet integral (5) is the well-known expected utility value with respect to the
probability distribution m over outcomes. At the other extreme, if the mass distribution
assigns all weight to a single subset A then V C(µm) = min {u(x)|x ∈ A} equals the worst
possible outcome in the event A. Hence, one can interpret the Choquet integral associated
with a mass distribution as an expected utility value reflecting the available information
about events by the weight given to the events in the mass distribution while evaluating
possible outcomes within an event by the worst outcome in the respective event.

This evaluation of an event by its worst outcome can be interpreted as pure pessimism
or as (extremely) precautionary behavior. In a seminal paper, Jaffray (1989) takes belief
functions as primitive objects of choice and assumes that decision makers have preferences
over these belief functions. Preferences over belief functions can be interpreted as a
combined evaluation of outcomes and objective information regarding the probabilities
of events.

Applying the von Neumann and Morgenstern (1944) axioms to belief functions yields
an expected utility value over sets of outcomes for which probabilities are known. In
Jaffray (1989), a further axiom then implies an evaluation for sets of outcomes depending
only on the minimum and the maximum utility of the outcomes in the event. A special
case of Jaffray (1989)’s representation is the Hurwicz functional (Hurwicz, 1951). Another
special case is the evaluation by the Choquet integral in equation (5).

Evaluating uncertain outcomes by the Choquet integral, however, takes a very pes-
simistic perspective on the evaluation of outcomes whose probabilities are unknown.
Wald (1955) and Hurwicz (1951) proposed such rules for situations where no information
about the probability of events is available4. An alternative view by Savage (1954) takes
into account also non-extreme intermediate outcomes by weighting them with a purely
subjective probability distribution.

For the case of complete ignorance, Keynes (1921, Chapter IV) advocates a “principle
of indifference”, or “principle of insufficient reason” reaching back to Bernoulli (1713).
This principle suggests an uninformative prior distribution, i.e. a uniform distribution
over states in case of complete ignorance about probabilities, and to compute expected
utility with respect to this uniform distribution.

In contrast to Savage (1954), who provides behavioral axioms for expected utility
with an arbitrary subjective probability distribution, but remains silent about what may
determine the subjective probabilities, the “principle of insufficient reason” suggests a

4Compare Luce and Raiffa (1957) for a detailed discussion of these and other decision rules under
uncertainty.
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uniform distribution, appealing to the symmetry of ignorance.5

There have been behavioral arguments put forward in favor of the “principle of in-
sufficient reason”, e.g., Eva (2019) and Sinn (1980), but to our knowledge there is no
axiomatization of the uniform distribution from behavioral axioms about preferences.
In the next section, we will provide such an axiomatization in the framework of Jaffray
(1989).

More specifically, let |A| be the number of elements in A. We will assume that a
decision maker’s evaluation of a belief function µm can be described by a representation

V (µm) =
∑
A⊆X

m(A)Mφ

(
u1, . . . , u|A|

)
, (6)

where Mφ

(
u1, . . . , u|A|

)
is a quasi-arithmetic mean6 of utilities u1 = u(x1), . . . , u|A| =

u(x|A|) over the outcomes in A,

Mφ

(
u1, . . . , u|A|

)
= φ−1

(
φ(u1) + · · ·+ φ(u|A|)

|A|

)
, (7)

for some increasing function φ. Under risk, i.e. when the mass distribution m is positive
only for singletons, the representation in equation (6) reduces to the expected-utility
functional, because Mφ(u1) = u1 in case |A| = 1.

More generally, the function φ reflects the decision maker’s attitude towards complete
ignorance about the likelihood of outcomes in A. The more concave is φ, the closer Mφ

approaches the lowest utility of an outcome in A representing a pessimistic attitude
when facing unknown chances. In contrast, a convex φ represents an optimistic attitude,
pushing Mφ towards the highest utility among the outcomes in A.7

Before providing an axiomatic characterization for the representation in equations
(6) and (7) above, we will briefly reconsider the examples of Section 2 and compare the
evaluation by the Choquet expected value (5) with the evaluation based on the principle
of insufficient reason in equations (6) and (7).

3.1 Leading examples revisited

Example 5 illustrates the main difference between the principle of insufficient reason and
the more pessimistic approach of Choquet expected utility. While the Choquet expected
utility value disregards all outcomes other than the worst, the principle of insufficient
reason gives all uncertain outcomes the same weight.

5Keynes (1921, p. 41) quotes the moral philosopher Bernard Bosanquet with the following interchange
of two character, “Absolute” and “Sir Anthony”: ABSOLUTE. Sure, Sir, this is not very reasonable,
to summon my affection for a lady I know nothing of.’ SIR ANTHONY: I am sure, Sir, ’tis more
unreasonable in you to object to a lady you know nothing of.’

6Quasi-arithmetic mean was first characterized by Kolmogorov (1930). We rely on the characterization
in Matkowski and Páles (2015) which we cite in the appendix for convenience.

7We will discuss the issue of ambiguity attitude more formally and in more detail below in Section 5.
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Example 5 (Example 1 resumed). Reconsider the decision maker of Example 1 who can
choose one of two actions a or b yielding outcomes from the sets A = {0, 90, 100} in case
of a or B = {0, 90, 95, 100} in case of b. Given the mass distributions m ∗ a and m ∗ b
derived before, a Choquet expected utility maximizer will be indifferent between the two
actions, V C(m ∗ a) = V C(m ∗ b).

In contrast, assuming the principle of insufficient reason with respect to the uncertain
outcomes in the events, one obtains

V (m ∗ a) = m ∗ a ({90, 100})Mφ(u(90), u(100)) +m ∗ a ({0})u(0)

= 0.4Mφ(u(90), u(100)) + 0.6u(0)

< 0.4Mφ(u(90), u(95), u(100)) + 0.6u(0)

= m ∗ b ({90, 95, 100})Mφ(u(90), u(95), u(100)) +m ∗ b ({0})u(0)

= V (m ∗ b).

where the inequality assumes a strict increasing and concave function u and a linear
function φ. We will argue below in Section 5 that a linear function φ corresponds to
ambiguity neutrality. Hence, risk aversion, represented by the concave function u, suffices
to make action b preferable to action a, in contrast to the result for the Choquet integral.

Partial information about the probability distribution over outcomes often arises from
information about marginal distributions.

Example 6 (Example 2 resumed). As shown before, investing in asset a yields the mass
distribution m ∗ a(A) = p for A = {R, r}, = 1 − p for A = {r, 0}, and 0 otherwise. For
the principle of insufficient reason, this mass distribution is evaluated as

V (m ∗ a) = m ∗ a ({0, r})Mφ(u(0), u(r)) +m ∗ a ({r,R})Mφ(u(r), u(R))

= (1− p)Mφ(u(0), u(r)) + pMφ(u(r), u(R)).

Since the quasi-arithmetic mean of two distinct numbers is always larger than the smallest
of the two, one has V (m ∗ a) > (1 − p)u(0) + pu(r) = V C(m ∗ a). Hence, a decision
maker who values uncertainty by the principle of insufficient reason will be willing to pay
more for the investment opportunity than a decision maker with the Choquet evaluation.
Notice that no assumption about risk attitudes, the curvature of u, is necessary for this
result.

Ambiguity aversion also suffices for obtaining the usual behavior in the Ellsberg
three-color urn paradox.

Example 7 (Example 3 resumed: Three-color urn (Ellsberg, 1961)). According to the
principle of insufficient reason, the value of a bet f ∈ {a, b, a′, b′} is given by the formula

V (m ∗ f) = m ∗ f ({0})u(0) +m ∗ f ({100})u(100) +m ∗ f ({0, 100})Mφ(u(0), u(100)).

Assuming u(0) = 0 and u(100) = 1, as before, and also, w.l.o.g., φ(0) = 0 and φ(1) = 1,
we get

V (m ∗ f) = m ∗ f({100}) +m ∗ f({0, 100})φ−1
(

1
2

)
.

11



The values for the four bets are listed in the table below. For easier comparison, we also
reproduce the values obtained for the Choquet expected utility (3).

V V C

m ∗ a 1
3

1
3

m ∗ b 2
3φ
−1
(

1
2

)
0

m ∗ a′ 1
3 + 2

3φ
−1
(

1
2

)
1
3

m ∗ b′ 2
3

2
3

If φ is concave, then φ−1
(

1
2

)
< 1

2 . Hence, V (m ∗ a) > V (m ∗ b) and V (m ∗ a′) <
V (m∗b′) follow. Preferences with a concave φ are usually interpreted as ambiguity averse.
Similarly, a convex function φ will represent ambiguity prone preferences. Finally, for
linear φ, the decision maker would be indifferent between a and b, and between a′ and
b′.

Notice that it is impossible to obtain the preferences V (m ∗ a) > V (m ∗ b) and
V (m∗a′) > V (m∗b′) by just varying φ, holding the mass distribution m fixed. Varying φ
influences only the evaluation of non-singleton events with some “ignorance” component.
E.g., the mass of {0, 100} is the same for the bets b and a′. Any increase in the value of
the bet b due to a change in the shape of φ leads to an equal increase in the value of a′.
Thus, preferences for a and a′ imply that decision maker’s information must be different
from that represented by m.

Example 7 shows that even with a uniform distribution in case of complete igno-
rance about the outcomes in an event ambiguity attitude can enter the decision via the
transformation function φ.

Finally, we reconsider the insurance case.

Example 8 (Example 4 resumed: Insurance). Recall the consumer with wealthW facing
a potential loss L. For the case of ignorance about events due to missing data, a consumer
subscribing to the principle of insufficient reason evaluates the initial allocation without
insurance as

V (m ∗ 0) = γπLu(W − L) + γ(1− πL)u(W ) + (1− γ)Mφ(u(W − L), u(W ))

and, for the case with insurance at a premium Q = qL, one has V (m ∗L) = u(W − qL).
If V (m ∗ L)− V (m ∗ 0) > 0 holds, the consumer will buy full insurance against the loss
L.

For a risk-averse consumer with a concave von Neumann-Morgenstern utility index
u who is also ambiguity averse, i.e., with a concave function φ, one has

φ−1
(

1
2 [φ(u(W − L)) + φ(u(W ))]

)
< 1

2 [u(W − L) + u(W )] < u
(
W − 1

2L
)
,

πLu(W − L) + (1− πL)u(W ) < u(W − πLL),
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and, therefore,

V (m ∗ 0) < γu(W − πLL) + (1− γ)u
(
W − 1

2L
)
< u

(
W −

(
γπL + (1− γ)1

2

)
L
)
.

Hence, the consumer will insure completely if

q ≤ γπL + (1− γ)1
2

holds, since in this case one has

V (m ∗ L)− V (m ∗ 0) > u(W − qL)− u(W − (γπL + (1− γ)1
2)L) ≥ 0.

If γ < 1, the decision maker following the principle of insufficient reason will have to
weigh the frequency information of πL against the equal probability in those cases where
no recorded information is available. Notice that if πL > 1

2 , the decision maker may be
not willing to buy full insurance at a fair premium q = πL. On the other hand, when
πL <

1
2 , full insurance is bought even at an unfair premium πL < q ≤ γπL + (1 − γ)1

2 .
Hence, in contrast to the evaluation according to the Choquet integral where ambiguity
aversion was sufficient for this result, one needs also a loss probability πL which is smaller
than 1

2 , i.e., the default probability of this event due to the principle of insufficient reason.

4 Axioms and representation

In this section, we assume an infinite set of consequences X together with an algebra X
of subsets of X containing all finite subsets. Denote X̄ the set of finite subsets of X.

Let M be the set of belief functions on X that are concentrated on a finite subset.
In other words, for any belief function µm ∈ M there exists a finite number of sets
A1, . . . , An ∈ X̄ such that

∑n
i=1m(Ai) = 1. Hence, µm(D) = 1 for D = ∪ni=1Ai.

A special case of a belief function inM is a finitely supported probability distribution
or lottery l on X . By assumption, the set of consequences X is sufficiently rich to allow
for a certainty equivalent in X for any lottery in M. Abusing notation, we make no
distinction between consequences in X and the degenerate lotteries in M concentrated
on a singleton subset.

We assume that the decision maker’s preferences are given by a binary relation < on
M, that is decision makers can order the set of belief functionsM. Preferences over the
set of belief functions compare both the values of outcomes and the available information
about their likelihood. At one extreme, if a belief function gives only positive weights
to singleton events, one has full information, that is belief functions are probability
distributions over outcomes, and at the other extreme, one may know only the set of all
possible outcomes if the belief function gives full weight of 1 to a finite set of outcomes.
A decision maker is supposed to be able to compare such outcome-information scenarios
as, for example, in the Ellsberg two-urn case.

A convex combination of any two belief functions is a belief function again. We inter-
pret a mixture of the two belief functions µ, ν ∈M with weight λ ∈ [0, 1], λµ+(1−λ)ν ∈
M, as a two-stage lottery over two belief functions. Belief functions are convex capacities
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and, hence, have a non-empty core, i.e., a set of probability distributions consistent with
the information given by the mass distribution. Convex combinations of belief functions
represent the sets of probability distributions consistent with the information contained
in the convex combination of the mass distributions.

Since convex combinations of belief functions are again belief functions,M is a mix-
ture space. Hence, one can apply the von Neumann-Morgenstern axiom system8 to the
preference relation < in order to deduce an “expected utility” representation for a belief
function. In this context, Axioms 1 to 3 have the same interpretation as in the von
Neumann-Morgenstern setup. In particular, the independence axiom (Axiom 3) allows
one to split off common aspects when comparing outcome-information scenarios repre-
sented by belief functions.

Axiom 1 (Weak Order). < is a transitive and complete relation onM.

Axiom 2 (Continuity). For any µ, ν, ξ ∈ M such that µ � ν � ξ, there exist
0 < λ1, λ2 < 1 such that λ1µ+ (1− λ1)ξ � ν � λ2µ+ (1− λ2)ξ.

Axiom 3 (Independence). For any µ, ν, ξ ∈ M and 0 < λ < 1, if µ � ν, then
λµ+ (1− λ)ξ � λν + (1− λ)ξ.

Any belief function inM can be represented as a convex combination of elementary
belief functions.

Definition 4. We call eA ∈ M an elementary belief function, if eA(B) = 1 for any
B ⊇ A and eA(B) = 0 otherwise.

The mass distribution of an elementary belief function eA assigns weight 1 to A and
0 to all other events. Any belief function µm ∈M can be written as

µm(B) =
∑
A∈X

m(A)eA(B),

or simply as µm =
∑

A∈X m(A)eA.9

As we will show in the proof of Theorem 1, axioms 1-3 guarantee (see Jaffray, 1989)
that there is a linear utility function onM:

V (µm) =
∑
A∈X

m(A)V (eA), (8)

that is an expected value of the elementary belief functions eA with respect to the mass
distribution m of the belief function µm. An elementary belief function eA represents a
situation of complete ignorance with respect to the set of outcomes in A. In other words,
the decision maker is certain that the true outcome belongs to A, but nothing more. In

8Jaffray (1989) was the first to make this point.
9The sum is taken over A ∈ X such that m(A) > 0. By the definition of µm ∈ M, there is only a

finite number of such sets.
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order to specify V (eA) in equation (8), additional assumptions need to be made about
decision maker’s evaluation of such situations.10

In this paper, we would like to derive a representation in which also non-extreme
outcomes in A influence the evaluation V (eA). Moreover, outcomes lacking information
about their likelihood should be equally weighted because of their informational symme-
try, the principle of insufficient reason. Maintaining axioms 1 - 3, we will propose four
additional axioms which will characterize the evaluation of elementary belief functions
V (eA) by a function φ and a uniform distribution as in equation (7).11

For notational simplicity, we write A < B instead of eA < eB for A,B ∈ X̄ , and
A < x instead of A < {x} for x ∈ X.

Axiom 4 (Monotonicity). For any x ∈ X \ A and y ∈ A, x < y if and only
if (A \ {y}) ∪ {x} < A.

According to Axiom 4, replacing one of the possible outcomes in an event A by a
weakly preferred one provides valuable information about the composition of the set A
and cannot make the situation of complete ignorance about the outcomes in A worse.

The value of a set of outcomes depends both on the unknown likelihood of the out-
comes in the set and on the composition of outcomes in the set. If ignorance about the
outcomes in a set B is less important than ignorance over the outcomes in another set
A then the ignorance about the combined set A ∪ B should not matter more than the
ignorance about A nor less than the ignorance about B.

Axiom 5 (Set Betweenness). If A < B and A ∩B = ∅, then A < A ∪B < B.12

A failure of Set Betweenness, say A∪B ≺ B, would imply that adding better outcomes
to B makes it less attractive.

Axiom 6 (Set Continuity). For any x0, y, z ∈ X
(a) if x0 � y and {x0, y} � z, then {x1, y} � z for some x1 ∈ X such that x0 � x1 � y;
(b) if x0 ≺ y and {x0, y} ≺ z, then {x1, y} ≺ z for some x1 ∈ X such that x0 ≺ x1 ≺ y.

Set Continuity means that strict preference between a situation of complete ignorance
and a certain alternative is robust with respect to a minor change in one of the possible
outcomes.

Axiom 7 (Certainty Equivalence Consistency). For any x, y ∈ X, if A∩B = ∅
and |A| = |B|, then A ∼ x and B ∼ y imply A ∪B ∼ {x, y}.

According to Axiom 7, two disjoint events of the same cardinality should have a union
which is equivalent to the union of their certainty equivalents. That is, combining two
situations of complete ignorance is equivalent to combining their certainty equivalents,

10For example, Jaffray (1989) provides an additional axiom such that V (eA) depends only on the worst
and the best outcomes in A.

11The axiomatization of the principle of insufficient reason in this paper was inspired by the axioma-
tization of the quasi-arithmetic mean as an aggregator of continuation values in Ke (2019).

12A weaker version of this axiom is sufficient to derive the representation. Namely, if B ∼ x for B ∈ X
and x ∈ X, then B ∼ B ∪ {x}. Nevertheless, we stick to the stronger version because of its intuitive
appeal.
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provided that the two situations are mutually exclusive and the number of possible
outcomes in both cases is the same.

A necessary feature of the principle of insufficient reason is the fact that it does
distinguish events with the same number of elements only by the outcomes involved, i.e.,
for x, y /∈ A, the set of outcomes A ∪ {x} must be indifferent to the set of outcomes
A ∪ {y} if y ∼ x. In fact, it is easy to see that Axioms 4 implies this principle of “equal
weights to equivalent outcomes”, i.e., if y ∼ x, then A ∪ {x} ∼ A ∪ {y}.

Denote by U the set of values of u, i.e. U = u(X). In the appendix, we prove the
following theorem.

Theorem 1. Axioms 1-7 hold if and only if there exists a representation V of preferences
< onM such that

V (µm) =
∑
A∈X

m(A)φ−1

(
1

|A|
∑
x∈A

φ(u(x))

)
, (9)

where u is a von Neumann-Morgenstern utility function on X and φ is a continuous
strictly increasing function on U . Such V is unique up to a positive linear transformation.
Given that V is fixed, u is unique and φ is unique up to a positive linear transformation.

It is straight forward to check that the function V (eA) = φ−1
(

1
|A|
∑

x∈A φ(u(x))
)

satisfies the Axioms A4, A5, A6, and A7. It is not trivial, however, to show that these
axioms are also sufficient for a representation by a quasi-arithmetic mean. The proof of
this theorem uses a little known theorem characterizing a function as a quasi-arithmetic
mean (Matkowski and Páles, 2015, Theorem C). Axioms A4 to A7 imply the important
bi-symmetry property of this function.

5 General properties of the representation

In this section, we will discuss some properties of the representation (9). Our focus will
be on how ambiguity and ambiguity attitudes are captured by this representation.

5.1 Ambiguity and ambiguity attitudes

Most of the literature on ambiguity (e.g., Machina and Siniscalchi, 2014, pp. 730-732)
distinguishes situations of risk, where the decision maker knows the probabilities of all
outcomes, from situations under ambiguity, where the decision maker knows only the
outcomes which may occur but not their probabilities. This distinction can be traced back
to (Knight, 1921, pp. 224-225). In models of ambiguity where probabilities are subjective
and unknown (Savage, 1954; Anscombe and Aumann, 1963), there is no obvious criterion
for classifying a situation as “more or less ambiguous”. Hence, for purely subjective
beliefs derived from preferences, most attempts to distinguish ambiguity from ambiguity
attitude have failed (see Machina and Siniscalchi, 2014, p. 750).
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In the approach advanced in this paper, the uncertainty which a decision maker
faces is closely related to the information available. Belief functions provide a natural
framework for distinguishing ambiguity and ambiguity attitudes: ambiguity is a property
of the objective information embodied in belief functions and ambiguity attitude is a
property of the subjective preferences over these belief functions.

In general, a mass distribution assigns a weight to both singleton and non-singleton
events A ∈ X . The special case of a probability distribution over outcomes arises if only
singleton events have positive mass. Information is ambiguous if some non-singleton
events carry positive mass. Hence, a natural measure of ambiguity is the total mass
assigned to non-singleton events.

Definition 5 (Degree of ambiguity). For a mass distribution m on X , define the degree
of ambiguity δm as the total mass assigned to non-singletons,13

δm =
∑

A∈X ,|A|>1

m(A).

According to Definition 5, there is no ambiguity for δm = 0, which implies that the
belief function µm is a probability distribution with probability p(x) of outcome x equal to
µm({x}) = m({x}) for all x ∈ X. It is easy to check that

∑
x∈X p(x) =

∑
x∈X m({x}) =

1. On the other hand, in case of complete ignorance, no mass is assigned to singletons,
and, hence, one has δm = 1. In the general case when mass is assigned to both singleton
and non-singleton events, one has 0 < δm < 1.

The following example from a laboratory experiment by Kops and Pasichnichenko
(2020) illustrates this idea.

Example 9 (This example describes the setup of an experiment run by Kops and Pa-
sichnichenko (2020)). Consider an urn containing 21 balls which are either green or blue.
Subjects were given the information that ng balls were green and nb balls were blue and
the remaining 21− ng − nb balls were either green or blue. Clearly, for ng + nb = 21 and
ng + nb = 0, one obtains the well-known Ellsberg two-urn case. Arguably, there is more
ambiguity if ng + nb is close to zero than if ng + nb is close to 21. The mass distribution
for the urn would assign m({g}) =

ng

21 , m({b}) = nb
21 , and m({g, b}) =

21−ng−nb

21 . Hence,
δ = 21−m({g})−m({b})

21 = m({g, b}). For δ = 0, one has the case of pure risk, Ellsberg’s
“unambiguous urn”, and for δ = 1 the case of complete ambiguity, Ellsberg’s “ambiguous
urn” (Ellsberg, 1961).

The mass distribution m reflects the available information of a decision maker and,
hence, defines ambiguity objectively. Ambiguity attitude, on the other hand, is a property
of the subjective preferences of the decision maker. Hence, while ambiguity is embedded
in the belief function, the evaluation of the belief function should reflect the (subjec-
tive) ambiguity attitude of the decision maker, since it is derived axiomatically from
preferences over belief functions.

13Recall that following the convention of Section 4 m is positive only for a finite number of finite sets
in X .
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For a formal definition of ambiguity attitude it is necessary to define a reference
point. Ambiguity is reflected by the weights of the mass function for non-singleton
events A ∈ X̄ . The subjective evaluation of this ambiguity is captured by the value
a decision maker assigns to the elementary belief function eA reflecting the situation
where the decision maker is certain that the true outcome x is in A but has no idea
about its probability, V (eA) = φ−1

(
1
|A|
∑

x∈A φ(u(x))
)
, where 1

|A|
∑

x∈A φ(u(x)) reflects
the principle of insufficient reason and φ the weight associated with this ambiguous
“expected utility”. This evaluation has to be assessed with respect to the lottery (without
ambiguity) `A which gives equal weight to each outcome in A,

`A(x) =

{
1
|A| for x ∈ A
0 otherwise.

Following Ellsberg (1961), for any ambiguous eventA, the definition of ambiguity attitude
compares the decision maker’s evaluation of the uniform distribution in case of complete
ignorance V (eA), with the value of the uniform lottery V (`A) in this event.

Definition 6 (Ambiguity attitudes). A decision maker is

• ambiguity averse if `A < eA for all A ∈ X̄ ,

• ambiguity neutral if `A ∼ eA for all A ∈ X̄ , and

• ambiguity loving if `A 4 eA for all A ∈ X̄ .

For the representation (9), ambiguity attitude is measured by the function φ : R→ R.

Proposition 1. A decision maker is ambiguity averse (resp. loving, neutral) if and only
if φ is a concave (resp. convex, linear) function.

All proofs are given in the appendix.
Before providing some more general results on ambiguity and ambiguity attitude in

Subsection 5.2 below, we will try to provide more intuition by studying the case of two
outcomes.

Example 10 (two-outcome case). Consider the case of two outcomes, X = {x1, x2} and
a belief function µm. In this case, one can write the representation (9) as

V (µm) = m({x1})u(x1) +m({x2})u(x2) +m({x1, x2})φ−1

(
1

2
[φ(u(x1)) + φ(u(x2))]

)
.

Or, for notational convenience, we will write

V (x1, x2) = m1u(x1) +m2u(x2) +m12φ
−1

(
1

2
[φ(u(x1)) + φ(u(x2))]

)
with mi = m({xi}),mkl = m({xk, xl}), etc. denoting the parameters of the mass distri-
bution. Note that 0 ≤ m1,m2,m12 ≤ 1 and m1 + m2 + m12 = 1. Assuming that the
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functions u and φ are differentiable for all x1 and x2, the equation V (x1, x2(x1)) = c
defines implicitly a function x2(x1). By the implicit function theorem, we get the slope
of the function x2(x1), s(x1, x2), as the tangent line to the indifference curve at point
(x1, x2),

s(x1, x2) = −
∂V (x1,x2)

∂x1
∂V (x1,x2)

∂x2

= −
m1 + 1

2m12ρ(x1, x2)φ′(u(x1))

m2 + 1
2m12ρ(x1, x2)φ′(u(x2))

· u
′(x1)

u′(x2)
.

where

ρ(x1, x2) = (φ−1)′
(

1
2 [φ(u(x1)) + φ(u(x2))]

)
= 1

φ′(φ−1( 1
2

[φ(u(x1))+φ(u(x2))]))
.

The partial derivative of the representation V ,

∂V (x1, x2)

∂x1
= m1u

′(x1) + 1
2m12ρ(x1, x2)φ′(u(x1))u′(x1),

has a first term corresponding to the risk part of the representation and a second term
corresponding to the ambiguity part. Hence, in general, ambiguity attitudes and risk
attitudes jointly determine the evaluation of an outcome. The function ρ(x1, x2) mea-
sures the ambiguity attitude at the average expected utility with respect to the uniform
distribution which is the default distribution in case of ambiguity by the principle of
insufficient reason.

As special cases, we obtain:

• no ambiguity (pure risk): m12 = 0,

s(x1, x2) = −m1
m2
· u
′(x1)
u′(x2) ,

• complete ambiguity (complete ignorance): m12 = 1 (⇒ m1 = m2 = 0),

s(x1, x2) = −φ′(u(x1))
φ′(u(x2)) ·

u′(x1)
u′(x2) ,

• ambiguity neutrality: φ is a linear function,

s(x1, x2) = −m1+ 1
2
m12

m2+ 1
2
m12

,

• certainty: x1 = x2,
s(x1, x2) = −m1

m2
.

Note that

1. certainty implies independence from risk and ambiguity attitudes, hence, the marginal
rate of substitution equals the known odds: −m1

m2
,
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2. for no ambiguity, δ = 0, only risk attitudes, as measured by the Bernoulli utility
function u, matter: −m1

m2
· u
′(x1)
u′(x2) , and

3. ambiguity neutrality is not equivalent to pure risk, that is m1+ 1
2
m12

m2+ 1
2
m12
6= m1

m2
.

The following diagrams show indifference curves of the preference representation V over
outcome combinations (x1, x2) for different degrees of ambiguity δ (1a) and an exponen-
tial ambiguity attitude function φ(x) = xa with different degrees of ambiguity attitude
a (1b).

Figure 1: Ambiguity δ and Ambiguity attitudes a

a = 1
3 δ = 3

4

Figure 1a Figure 1b

V (x1, x2) = (1− δ) [pu(x1) + (1− p)u(x2)] + δφ−1

(
1

2
[φ(u(x1) + φ(u(x2)]

)
= V (1, 0),

u(x) =
√
x and φ(x) = xa,

p = 1
2 .

Figure 1a illustrates the effect of ambiguity on the evaluation of belief functions by an
ambiguity averse decision maker. Without ambiguity (green indifference curve), δ = 0,
the lottery `X yields the highest utility and with complete ambiguity (red indifference
curve), δ = 1, utility is at the lowest level. The indifference curves for intermediate
degrees of ambiguity (δ = 1

4 ,
1
2 ,

3
4) lie between these two extremes. Notice that both bets

(x1, x2) = (1, 0) and (x1, x2) = (0, 1) are valued the same for any δ, but are valued
increasingly lower as ambiguity increases, δ → 1.

Figure 1b shows indifference curves for different degrees of ambiguity aversion. As
the degree of ambiguity aversion decreases, a→ 1, the utility of the bets (x1, x2) = (1, 0)
and (x1, x2) = (0, 1) increases. For ambiguity neutrality, a = 1, V (µm) = V (`X) for all
degrees of ambiguity δ.
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The diagrammatic illustrations of the effects of ambiguity and ambiguity attitude in
Figure 1 can be generalized to outcome sets X with an arbitrary number of outcomes, to
arbitrary representations u of risk attitudes, and to arbitrary ambiguity attitude functions
φ. In the following section, we will derive these properties in full generality.

5.2 Comparison of ambiguity attitudes

Definition 6 defines ambiguity attitude for ambiguous events. This notion can be applied
to any belief function µm ∈ M in a straightforward way. Given the partial information
of the belief function µm and the evaluation of uncertain events by the principle of
insufficient reason, an ambiguity averse decision maker will prefer the expected utility
from the average distribution

p∗(x) =
∑
A3x

m(A)

|A|
, x ∈ X,

over the belief function µm,

V (µm) ≤
∑
x∈X

p∗(x)u(x)

(see Proposition 6 in Section 6). Moreover, a “more concave” φ corresponds to a higher
degree of ambiguity aversion or pessimism. In this section, we formalize this idea.

Let i and j be two decision makers with preferences onM satisfying Axioms 1-7.

Definition 7 (More ambiguity averse). We say decision maker i is more ambiguity averse
than decision maker j if the two share the same risk preferences and for any A ∈ X̄ and
any lottery l on A, l �j eA implies l �i eA.

Now we can characterize this relation in terms of a concave transformations of φ.14

Proposition 2. Decision maker i is more ambiguity averse than decision maker j if and
only if ui = auj + b for some numbers a > 0 and b and φi = h ◦ φj for some strictly
increasing and concave function h.

Condition ui = auj + b means that both decision makers share the same risk pref-
erences since the two Bernoulli utility functions are linear affine transformations of each
other.

It follows from Proposition 2 that one can define a coefficient of ambiguity aver-
sion −φ′′

φ′ in analogy to the degree of risk aversion in standard expected utility theory
under pure risk.

Proposition 3. Suppose φi and φj are twice continuously differentiable functions. De-
cision maker i is more ambiguity averse than decision maker j if and only if both share
the same von Neumann-Morgenstern utility function u and, for any r ∈ U ,

−
φ′′i (r)

φ′i(r)
≥ −

φ′′j(r)

φ′j(r)
. (10)

14This procedure is similar to what one does in the theory of decision-making under risk (Yaari, 1987)
and in the smooth model of Klibanoff, Marinacci, and Mukerji (2005)
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Once again in analogy to the theory of decision making under pure risk, the next
proposition will show that with increasing ambiguity aversion our representation V based
on the principle of insufficient reason in equation (9) converges to the the Choquet integral
V C in equation (5).

Proposition 4. Let i1, i2, . . . be a sequence of decision makers such that
(i) for any n, in+1 is more ambiguity averse than in,
(ii) for any decision maker j that shares with i1, i2, . . . the same von Neumann-

Morgenstern utility function, there exists ñ such that iñ is more ambiguity averse than
j,

then for any µ ∈M, Vn(µ) converges to the Choquet integral of µ.
If in addition each φn is twice continuously differentiable, then −φ′′n

φ′n
converges uni-

formly to +∞.

6 Related literature

In this section, we discuss two closely related approaches in the literature. Gajdos,
Hayashi, Tallon, and Vergnaud (2008) model partial information about probabilities by
restricting the set of probabilities to a subset P ⊆ ∆(X) 15 that is interpreted as the
set of beliefs consistent with the information available. In another approach, Klibanoff,
Marinacci, and Mukerji (2005) model information about probabilities by a (second-order)
probability distribution ν on the set of probabilities ∆(X).16 Taking the support of the
(second-order) probability distribution ν of Klibanoff, Marinacci, and Mukerji (2005) as
a constraint on the set of probability distributions in ∆(X), that is, taking P = supp(ν)
highlights the similarity of these approaches.

For simplicity, we consider a finite set of outcomes X in this section.

6.1 Multiple priors and partial information

In order to study partial information about probabilities, Gajdos, Hayashi, Tallon, and
Vergnaud (2008) consider choice situations under uncertainty where decision makers have
to rank Savage acts f : S → X, mapping from a set of states S into a set of outcomes X,
in the light of objective information about the possible probabilities of states. Objective
information constrains the set of priors P ⊆ ∆(S). If the set P is a singleton, then
information is perfect. In extreme contrast, if there is no objective information, P equals
the set of all probability distributions ∆(S), that is, there is complete ignorance. Cases of
partial information are modeled by a set P which is neither a singleton not the universal
set.

Decision makers are assumed to be able to compare decision situations (P, f), con-
sisting of information about probabilities P and acts f . In this framework, the authors

15∆(X) is the set of all probability distributions over X.
16Both Gajdos, Hayashi, Tallon, and Vergnaud (2008) and Klibanoff, Marinacci, and Mukerji (2005)

consider probability distributions over a set of states ∆(S), rather than over outcomes ∆(X). Applying
their reasoning to the framework in this paper is, however, straightforward.
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derive a MEU representation

U(P, f) = min
p∈ϕ(P )

∑
s∈S

u(f(s))P (s)

where the set of relevant priors ϕ(P ) is a selection from the set of information-consistent
probabilities P . This set of endogenously derived probability distributions ϕ(P ) is inter-
preted as the set of subjective beliefs of the decision maker in the light of the objective
partial information P .

Gajdos, Hayashi, Tallon, and Vergnaud (2008) also derive a notion of comparative
precision and a concept of imprecision aversion in terms of properties of the selection
mapping ϕ. For example, one may take all probabilities in a neighborhood of the Steiner
point of P as the subjective set of beliefs ϕ(P ) (Gajdos, Hayashi, Tallon, and Vergnaud,
2008, Section 4, p. 42). The size of the neighborhood can be interpreted as a measure of
imprecision.

It is well-known (see, e.g., Gilboa and Schmeidler, 1994, Theorem E, p. 202) that a
belief function µ has a non-empty core,

core(µ) = {p ∈ ∆(X) | p(A) ≥ µ(A) for any A ⊆ X},

and that the Choquet integral of a belief function satisfies the following relationship

V C(µ) = min
p∈core(µ)

∑
x∈X

u(x)p(x).

Hence, we can interpret the Choquet integral of a belief function as a MEU functional
over the probability distributions in the core of the capacity µ, i.e.,

V C(µ) = min
p∈P

∑
x∈X

u(x)p(x), P = core(µ).

Therefore, the objective information encoded in the belief function µ defines uniquely
a set of probability distributions compatible with the information in µ. This links the
approach in Gajdos, Hayashi, Tallon, and Vergnaud (2008) to the Choquet integral of
a belief function. Hence, one may view the Choquet integral of a belief function as a
special case of the approach advanced in Gajdos, Hayashi, Tallon, and Vergnaud (2008).

In contrast to the Choquet integral of the belief function µ, the representation based
on the principle of insufficient reason advanced in this paper can be viewed as a weighted
average of the extreme probability distributions of the core of µ. The following proposi-
tion shows that our representation V (µ) can be interpreted as an expected utility with
respect to a probability distribution p ∈ core(µ).

Proposition 5. For any µ ∈M, there exists a probability p ∈ core(µ) such that

V (µ) =
∑
x∈X

p(x)u(x).
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In other words, V (µ) = V (p) for some probability p ∈ core(µ). In Proposition 6 we
show that in case of ambiguity neutrality, p is the centroid of core(µ), which we define
in the next paragraph.

A set A ⊆ X such that m(A) > 0 is called a focal element of µm. We call p an
extreme probability in core(µm), if for any focal element A of µm there exists x ∈ A
such that p(x) = m(A). Intuitively, an extreme probability assigns all mass m(A) to the
element x ∈ A. By choosing different x ∈ A, we can produce |A| extreme probabilities.
Hence, if A1, . . . , Ak are focal elements of µm, then there are n = |A1| · · · |Ak| extreme
probabilities p1, . . . , pn in core(µm) (which are not necessarily distinct). The average
probability distribution p∗ on X, given by

p∗(x) =
n∑
i=1

pi(x)

for all x ∈ X, is called the centroid of core(µm).17 It is not difficult to show (see the
proof of Proposition 6) that

p∗(x) =
∑
A3x

m(A)

|A|
(11)

for all x ∈ X. The next proposition shows connection between ambiguity attitude and
the notion of centroid.

Proposition 6. For any µ ∈ M and centroid p∗ of core(µ), if a decision maker is
ambiguity averse (resp. loving, neutral), then

V (µ) ≤ V (p∗) (resp. V (µ) ≥ V (p∗), V (µ) = V (p∗))

.

The following example illustrates these results.

Example 11. Consider the following belief function onX = {x, y, z} defined by the mass
distribution m({x}) = mx,m({y, z}) = myz,m({x, y}) = mxy with mx+mxy +myz = 1.
Hence, one obtains the belief function

µm(A) =



1 for A = X

myz for A = {y, z}
mx +mxy for A = {x, y}
mx for A = {x, z}
mx for A = {x}
0 otherwise

.

Figure 2 illustrates the core of µm,

core(µm) =
{
p ∈ ∆3 | px ≥ mx, px + py ≥ mx +mxy, py + pz ≥ myz

}
.

17It is also called the Shapley value or the Steiner point of core(µm).
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In this case, the subsets {x}, {x, y}, {y, z} are focal elements of µm. According to for-
mula (11), the centroid of core(µm) is

(p∗(x), p∗(y), p∗(z)) =

(
mx +

mxy

2
,
mxy +myz

2
,
myz

2

)
.

It is easy to check that p∗(x) + p∗(y) + p∗(z) = 1. The core and its centroid are also
indicated in Figure 2.

Figure 2: Core of the belief function µm and its centroid

In case of ambiguity neutrality, we have

V (µm) = mxV (ex) +mxyV (exy) +myzV (eyz)

= mxu(x) +mxy

[
1

2
(u(x) + u(y))

]
+myz

[
1

2
(u(y) + u(z))

]
=
[
mx +

mxy

2

]
u(x) +

[
mxy +myz

2

]
u(y) +

myz

2
u(z)

= p∗(x)u(x) + p∗(y)u(y) + p∗(z)u(z),

as claimed in Proposition 6.

6.2 The smooth model

In economic applications, the smooth model of decision making under uncertainty, sug-
gested and axiomatized by Klibanoff, Marinacci, and Mukerji (2005), has proved very
useful since it allows to analyze optimization problems with standard differential calculus.
The smooth model represents uncertainty about probability distributions by a secondary
probability distribution ν on ∆(S) and ambiguity attitude by a real-valued function Φ
on the expected values of the unknown probabilities,

V (f) =

∫
∆(S)

Φ

(∑
s∈S

u(f(s))π(s)

)
dν.
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In economic applications, one can interpret the utility function u applied to outcomes
as measuring the decision-maker’s attitude towards risk and the function Φ applied to
the expected values of the probability distributions π ∈ ∆(S) as the decision-maker’s
attitude towards ambiguity.

The representation proposed in this paper,

V (µm) =
∑
A⊆X

m(A)φ−1

(
1

|A|
∑
x∈A

φ(u(x))

)
, (12)

shares some similarities with but also some differences to the smooth representation which
we would like to discuss in this section. Regarding economic applications, however, the
representation is equally smooth and can, therefore, be analyzed by differential calculus
methods.

In contrast, to the smooth model of Klibanoff, Marinacci, and Mukerji (2005), we
do not consider a probability distribution over all elements of ∆(X) but only uniform
distributions over all probability distribution in the faces B of the simplex ∆(X). The
uniform distribution over probabilities in a face 1/|A| reflects the principle of insufficient
reason with respect to the uncertainty about the probabilities in the event (face) A, while
the probability distribution over the faces of the simplex, i.e. the mass m, represents
the (partial) information of the decision maker. Clearly, if there is complete uncertainty,
m(X) = 1, the decision maker applies the principle of insufficient reason to all outcomes,
1/|X|. If there is full information, that is, if

∑
x∈X m({x}) = 1 then the decision maker

knows the probability of each outcome x and the principle of insufficient reason becomes
irrelevant.

More formally, define a utility function û over outcomes,

û(x) = φ(u(x))

for all x ∈ X. Then representation (12) becomes

V (µm) =
∑
A⊆X

m(A)φ−1

(
1

|A|
∑
x∈A

û(x)

)
= Eσφ−1(Eπû), (13)

where E denotes the expectation operator, σ(π̄A) = m(A) for all A ⊆ X and π̄A is
the uniform distribution over the event (face) A of ∆(X). The last expression in (13)
corresponds to the smooth model of Klibanoff, Marinacci, and Mukerji (2005). The
following Figure 3 for X = {x, y, z} illustrates this interpretation.

Notice that according to formula (11) the centroid p∗ of core(µm) is the convex
combination of the points in ∆(X) with weights given by the mass m.

7 Concluding remarks

In this paper, we suggest and axiomatize a representation for a preference order over belief
functions. Belief functions capture the (partial) information about probabilities over
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Figure 3: Uniform distributions on the subsets of X = {x, y, z}.

outcomes that a decision maker may have. In this framework, ambiguity is an objective
feature of the information available in a decision situation. The preference order captures
subjective features of the decision maker such as the evaluation of outcomes, risk attitudes
and attitudes towards ambiguity. This approach allows for a clear separation of ambiguity
as a feature of the information embodied in a belief function and ambiguity attitude as
a feature of the preference relation. Hence, this approach resolves an important problem
of decision making under uncertainty as discussed in Machina and Siniscalchi (2014).

Moreover, in our axiomatization, we provide a characterization of a decision maker
evaluating the outcomes of an ambiguous event according to a generalized average, that is
a uniform distribution over the outcomes in the ambiguous event. Uniform distributions
in case of ignorance have a long tradition in economic and statistical decision theory as
“Principle of Non-Sufficient Reason”, attributed to James Bernoulli by Keynes (1921, p.
41) or “Principle of Indifference” (Keynes, 1921).18 However, such a representation has
not received enough attention in modern axiomatic models.

18See also Machina and Siniscalchi (2014) Section 13.2.5.
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Appendix: Proofs

The main Theorem 1 uses the following result of Matkowski and Páles (2015) which we
quote here for the reader’s convenience.

Matkowski and Páles (2015) define a quasi-arithmetic mean as follows:

“The notion of quasi-arithmetic mean was introduced in the book of Hardy, Littlewood
and Pólya in [12]a as a function Af : ∪∞n=1I

n → I defined by

Af (x1, ..., xn) := f−1

(
f(x1) + · · ·+ f(xn)

n

)
(n ∈ N, x1, ..., xn ∈ I)

where I ⊆ R denotes a non-degenerated interval (also in the rest of this paper) and
f : I → R is a continuous strictly monotone function. The mean Af is said to be the
quasi-arithmetic mean generated by f . The restriction of Af to In will be called the
n-variable quasi-arithmetic mean generated by f .”

Matkowski and Páles (2015) prove the following theorem.

Theorem C. Let n ≥ 2 and let M : In → I. Then M is an n-variable quasi-arithmetic
mean, that is, M = Af |In for some continuous strictly monotone function f : I → R if
and only if
(i) M is a continuous and symmetric function on In which is strictly increasing in each
of its variables;
(ii) M is reflexive;
(iii) M bisymmetric, that is, for all xi,j ∈ I (i, j ∈ 1, ..., n), we have

M(M(x1,1, ..., x1,n), ...,M(xn,1, ..., xn,n)) = M(M(x1,1, ..., xn,1), ...,M(x1,n, ..., xn,n)).

aG. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge University Press, Cambridge,
1934. (first edition), 1952 (second edition).

Theorem 1

Axioms 1-3 imply that there is a linear utility function V onM, i.e.

V (µm) =
∑
A∈X

m(A)V (eA).

Let u be defined by u(x) = V (e{x}) for each x ∈ X. Since for any lottery lm ∈ M, we
have m(A) > 0 only if |A| = 1, function V (lm) has an expected utility form,

V (lm) =
∑
x∈X

m({x})u(x).
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Recall that X contains a certainty equivalent of any lottery inM, for example, for any
x, y ∈ X and 0 < λ < 1 there is z ∈ X such that u(z) = λu(x)+(1−λ)u(y). Therefore, U
is an (open, closed, half-closed, finite or infinite) real interval of positive length (omitting
the trivial case of complete indifference). To construct representation (9), we have to
show that there exists a continuous strictly increasing function φ : U → R such that

V (eA) = φ−1

(
1

|A|
∑
x∈A

φ(u(x))

)
(14)

holds for any A ∈ X̄ . To do this, we first prove (14) for two-element sets and then
generalize the result to arbitrary finite sets.

Let function M : U2 → R be defined by

M (u(x), u(y)) = V
(
e{x,y}

)
.

Note thatM is well-defined, because if u(x1) = u(x2) and u(y1) = u(y2), then {x1, y1} ∼
{x2, y2} by Monotonicity, therefore V

(
e{x1,y1}

)
= V

(
e{x2,y2}

)
. In what follows we study

properties of this function.
For each r ∈ U by richness of X there exist x 6= y such that u(x) = u(y) = r. Since

x ∼ y, Set Betweenness implies {x} ∼ {x, y}. Since

M (u(x), u(y)) = V
(
e{x,y}

)
= V

(
e{x}

)
= u(x),

we get M(r, r) = r, i.e., M is reflexive.
Let r1, r2, s ∈ U and r1 < r2. Take different x1, x2, y ∈ X such that u(x1) =

r1, u(x2) = r2 and u(y) = s. By Monotonicity {x1, y} ≺ {x2, y}, thus M(r1, s) <
M(r2, s). Therefore, M is strictly increasing in both variables.

For the next step, we have to show first that for any A ∈ X̄ there exists a certainty
equivalent cA, i.e. cA ∈ X and cA ∼ A. Indeed, if x∗, x∗ ∈ A and x∗ < x < x∗
for all x ∈ A, then x∗ < A < x∗ by Set Betweenness. We can find 0 ≤ λ ≤ 1 such
that V (eA) = λu(x∗) + (1 − λ)u(x∗). Therefore, the certainty equivalent of the lottery
λx∗ + (1− λ)x∗ is also a certainty equivalent of A.

Now we would like to prove that

M (M(r, s),M(t, k)) = M (M(r, t),M(s, k)) (15)

for arbitrary r, s, t, k ∈ U (bisymmetry). To do this, take different x, y, z, w ∈ X such
that u(x) = r, u(y) = s etc. Since M(r, s) = u

(
c{x,y}

)
, we have

M (M(r, s),M(t, k)) = M
(
u
(
c{x,y}

)
, u
(
c{z,w}

))
.

Axiom 7 implies that {c{x,y}, c{z,w}} ∼ {x, y, z, w} ∼ {c{x,z}, c{y,w}}, which leads to

M
(
u
(
c{x,y}

)
, u
(
c{z,w}

))
= M

(
u
(
c{x,z}

)
, u
(
c{y,w}

))
from which (15) follows.
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The fact thatM is continuous follows from Set Continuity. To show this, we take two
interior points r0 and s0 in U and prove that if |r−r0| < δ, then |M(r, s0)−M(r0, s0)| < ε.
Let r0 > s0, x0, y0 ∈ X, u(x0) = r0, and u(y0) = s0. Since u(y0) < M(r0, s0) < u(x0),
we can take ε > 0 such that the ε-neighborhood of M(r0, s0) entirely lies between u(y0)
and u(x0). Take z ∈ X such that u(z) = M(r0, s0)−ε. Since {x0, y0} � z, by part (a) of
Set Continuity {x1, y0} � z for some x0 � x1 � y0. Let δ1 = r0−u(x1) > 0. If r > r0−δ1,
then for x ∈ X such that u(x) = r we have x � x1 implying {x, y0} � {x1, y0} � z, which
means M(r, s0) > M(r0, s0)−ε. Using part (b) of Set Continuity and following a similar
argument, we can find δ2 > 0 such that if r < r0 + δ2, then M(r, s0) < M(r0, s0) + ε.
By taking δ = min{δ1, δ2}, we finish the proof that M is continuous in the first variable.
For the second variable, the proof is similar.

Thus, we proved that M is continuous and strictly increasing in both variables, sat-
isfies (15) and M(r, r) = r for all r ∈ U . According to the theorem characterizing
the quasi-arithmetic mean (see Matkowski and Páles (2015), Theorem C), M satisfies
these conditions if and only if there exists a continuous and strictly monotonic function
φ0 : U → R with which

M(r, s) = φ−1
0

(
φ0(r) + φ0(s)

2

)
(16)

holds for each r, s ∈ U . Define φ = φ0 if φ0 is an increasing function, and φ = −φ0

otherwise. Therefore, φ is a continuous strictly increasing function satisfying (16). Thus,
we proved (14) for two-element sets.

Now we extend (14) to an arbitrary A ∈ X̄ . Suppose that (14) is true for all sets
with no more than n elements, n ≥ 2, and prove (14) for a set A = {x1, . . . , xn+1}.

If n+ 1 is an even number, then by Axiom 7 we have

A ∼ {c{x1,...,xk}, c{xk+1,...,x2k}},

where 2k = n + 1. The later set has only two elements, so we can apply representation
(14), i.e.

V (eA) = φ−1

(
φ
(
u
(
c{x1,...,xk}

))
+ φ

(
u
(
c{xk+1,...,x2k}

))
2

)
. (17)

Since k ≤ n, using the induction hypothesis we can rewrite

φ
(
u
(
c{x1,...,xk}

))
= φ

(
V
(
e{x1,...,xk}

))
=

1

k

k∑
i=1

φ (u(xi)) (18)

and similarly

φ
(
u
(
c{xk+1,...,x2k}

))
=

1

k

2k∑
i=k+1

φ (u(xi)) . (19)

Substituting the two terms in equation (17), by the right-hand sides of equations (18)
and (19) we obtain

V (eA) = φ−1

(
1

2k

2k∑
i=1

φ (u(xi))

)
,
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as claimed.
Now suppose that n + 1 is an odd number. For a certainty equivalent cA by Set

Betweenness we have
A ∼ {x1, . . . , xn+1, cA}.

The later set has n + 2 elements, which is an even number. By repeating the previous
argument we obtain

φ (V (eA)) =
1

2k

2k−1∑
i=1

φ (u(xi)) +
1

2k
φ (u(cA)) .

Since u(cA) = V (eA),

2k − 1

2k
φ (V (eA)) =

1

2k

2k−1∑
i=1

φ (u(xi)) ,

therefore,

φ (V (eA)) =
1

n+ 1

n+1∑
i=1

φ (u(xi)) .

Thus, we proved (14) for a set with n+ 1 elements.
The proof that the representation implies the axioms is straightforward. The same

is true for the uniqueness results.
This proves the theorem.

Proposition 1

We provide our proof only for the case of ambiguity aversion. By Definition 6 and
Theorem 1, if a decision maker is ambiguity averse, then V

(
`{x1,x2}

)
≥ V

(
e{x1,x2}

)
for

any x1, x2 ∈ X, i.e.,

u(x1) + u(x2)

2
≥ φ−1

(
φ(u(x1)) + φ(u(x2))

2

)
. (20)

Since φ is a strictly increasing function, we can apply it to both sides of inequality (20).
We know that φ is defined on an interval and continuous, and we just showed that for
any r1 and r2 from the interval, φ(1

2r1 + 1
2r2) ≥ 1

2φ(r1) + 1
2φ(r2). Hence, it is concave.

The converse statement follows from Jensen’s inequality.

Proposition 2

For the “if” part, assume w.l.o.g. ui = uj = u and φi = h ◦ φj . Then for any A ∈ X̄ , we
obtain

1

|A|
∑
x∈A

h ◦ φj(u(x)) ≤ h

(
1

|A|
∑
x∈A

φj(u(x))

)
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by Jensen’s inequality. The inequality still holds when we apply a strictly increasing
function φ−1

i = φ−1
j ◦ h

−1, so that

φ−1
i

(
1

|A|
∑
x∈A

φi(u(x))

)
≤ φ−1

j

(
1

|A|
∑
x∈A

φj(u(x))

)
,

which means Vi(eA) ≤ Vj(eA). Together with Vi(l) = Vj(l), this allows us to conclude
that l �j eA implies l �i eA.

For the “only if” part, we need to prove that φi and φj are connected by a concave
transformation. For any A ∈ X̄ , there exists a lottery l on A such that eA ∼i l, as was
shown in the proof of Theorem 1. Thus, we have eA <j l by Definition 7, which implies

Vj(eA) ≥ Vj(l) = Vi(l) = Vi(eA).

Take a set A consisting of two outcomes x1 and x2. From Vj(eA) ≥ Vi(eA), it follows
that

φ−1
j

(
φj(u(x1)) + φj(u(x2))

2

)
≥ φ−1

i

(
φi(u(x1)) + φi(u(x2))

2

)
.

If we define h = φi ◦ φ−1
j , then the previous inequality implies

h

(
φj(u(x1)) + φj(u(x2))

2

)
≥
h(φj(u(x1))) + h(φj(u(x2)])

2
.

Therefore, h is concave, because it is defined on an interval, continuous, and for any r1

and r2 from the interval, h(1
2r1 + 1

2r2) ≥ 1
2h(r1) + 1

2h(r2).

Proposition 3

By Proposition 2, we only need to show that expression (10) is equivalent to φi = h ◦ φj
for a strictly increasing and concave function h. The proof is standard. By differentiating
equation φi(r) = h(φj(r)) twice and rearranging terms, we get

h′′(φj(r)) =
φ′i(r)

(φ′j(r))2

[
φ′′i (r)

φ′i(r)
−
φ′′j(r)

φ′j(r)

]
,

which is non-positive if and only if the term in square brackets is non-positive.

Proposition 4

From the assumptions and Proposition 2 it follows that i1, i2, . . . share the same von
Neumann-Morgenstern utility function u and for any n there exists a strictly increasing
and concave function hn such that φn+1 = hn ◦φn. Moreover, for any continuous strictly
increasing function ψ on U there exist ñ and a strictly increasing and concave function
h̃ such that ψ = h̃ ◦ φñ.
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Take an arbitrary µ ∈M. According to representation (9), Vn(µ) is a convex combi-
nation of terms

Φ(A;φn) = φ−1
n

(
1

|A|
∑
x∈A

φn(u(x))

)
,

whereas the Choquet integral of µ is a convex combination of terms

Φ(A) = min {u(x)| x ∈ A}

with the same weights m(A). It is clear that Φ(A) ≤ Φ(A;φn) for all n. By Jensen’s
inequality, it is also true that Φ(A;φn+1) ≤ Φ(A;φn) for all n. Therefore, we only need
to show that Φ(A;φn) is close to Φ(A) for a sufficiently large n. We can do this by
choosing ψ such that Φ(A;ψ)− Φ(A) ≤ ε for all A. Then

Φ(A) ≤ Φ(A;φn) ≤ Φ(A;ψ) ≤ Φ(A) + ε

for any n ≥ ñ, which means that Vn(µ) converges to the Choquet integral of µ.
Since we can always pick ψ with a sufficiently large coefficient of ambiguity aversion,

it follows from Proposition 3 and Assumption (ii) that −φ′′n
φ′n

converges uniformly to +∞.

Proposition 5

Since for any A ⊆ X,

min
x∈A

u(x) ≤ φ−1

(
1

|A|
∑
x∈A

φ(u(x))

)
≤ max

x∈A
u(x), (21)

we have

φ−1

(
1

|A|
∑
x∈A

φ(u(x))

)
=
∑
x∈A

αA(x)u(x)

for some probability distribution αA over A. Therefore,

V (µm) =
∑
A⊆X

m(A)φ−1

(
1

|A|
∑
x∈A

φ(u(x))

)
=
∑
A⊆X

m(A)
∑
x∈A

αA(x)u(x)

=
∑
x∈X

u(x)
∑
A3x

m(A)αA(x).

For each x ∈ X, define
p(x) =

∑
A3x

m(A)αA(x).
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and show that p is a probability in the core of µm. Since m ≥ 0 and αA ≥ 0, we have
p ≥ 0. Also,∑

x∈X
p(x) =

∑
x∈X

∑
A3x

m(A)αA(x) =
∑
A⊆X

∑
x∈A

m(A)αA(x)

=
∑
A⊆X

m(A)
∑
x∈A

αA(x) =
∑
A⊆X

m(A) = 1.

Now show that p is in the core of µm. For any B ⊆ X, we have

p(B) =
∑
x∈B

p(x) =
∑
x∈B

∑
A3x

m(A)αA(x) =
∑
A⊆X

∑
x∈B∩A

m(A)αA(x)

=
∑
A⊆B

∑
x∈A

m(A)αA(x) +
∑

A\B 6=∅

∑
x∈B∩A

m(A)αA(x).

Take the first term, ∑
A⊆B

∑
x∈A

m(A)αA(x) =
∑
A⊆B

m(A) = µm(B).

Since the second term is non-negative, p(B) ≥ µm(B).

Proposition 6

Let A1, . . . , Ak be focal elements of µm and n = |A1| · · · |Ak|. For an extreme probability
pi, i ∈ {1, . . . , n}, we have pi(x) > 0 if and only if pi(x) = m(A) for some focal element
A 3 x. For a fixed A, there are n

|A| such extreme probabilities pi. Therefore,

p∗(x) =
1

n

∑
i

pi(x) =
1

n

∑
A3x:m(A)>0

n ·m(A)

|A|
=
∑
A3x

m(A)

|A|
.

On the other hand, if a decision maker is ambiguity averse, then φ is concave by
Proposition 1, which implies

V (µm) =
∑
A⊆X

m(A)φ−1

(
1

|A|
∑
x∈A

φ(u(x))

)
≤
∑
A⊆X

m(A)
1

|A|
∑
x∈A

u(x)

=
∑
x∈X

u(x)
∑
A3x

m(A)

|A|
=
∑
x∈X

u(x)p∗(x).

The argument for other cases is similar.
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