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Abstract

We extend the Baron and Ferejohn (1989) model of multilateral bargaining by allowing

the players to attempt commiting to a bargaining position prior to negotiating. If successful,

commitment binds a player to reject any proposal which allocates to her a share below a self-

imposed threshold. Any such attempted commitment fails and decays with an exogenously given

probability. We characterize and compare symmetric stationary subgame perfect equilibria under

unanimity rule and majority rules. Under unanimity rule, there are potentially many equilibria

which can be ordered from the least to most ine�cient, according to how how many commitment

attempts must fail in order for an agreement to arise. The most ine�cient equilibrium exists

independently of the number of players, and the delay in this equilibrium is increasing in the

number of players. In addition, more e�cient commitment pro�les cannot be sustained in

equilibrium if the number of players is su�ciently large. The expected ine�ciency due to delay

at the least and at the most e�cient equilibrium increases as the number of players increases.

Under any (super)majority rule, however, there is no equilibrium with delay or ine�ciency.

The reason is that competition to be included in the winning coalition discourages attempts

to commit to an aggressive bargaining position. We also show that ine�ciencies related to

unanimity decision making may be aggravated by longer lags between consecutive bargaining

rounds. The predicted patterns are by and large consistent with observed ine�ciencies in many

international arenas including the European Union, WTO, and UNFCCC. The results suggest

that the unanimity rule is particularly damaging if the number of legislators is large and the

time lags between consecutive sessions are long.
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1 Introduction

�The unanimity rule has meant that some key proposals for growth, competitiveness and tax fairness

in the Single Market have been blocked for years.� (European Commission press release, Jan 15th
2019)

E�cient and e�ective governance of global market failures requires a great deal of international
agreement. Currently, there are a number of fora where key issues for sustainable development of
the planet are negotiated. However, many of these are characterized by a prolonged negotiation
process or even a negotiation impasse. First, The United Nations Framework Convention on Climate
Change (UNFCCC) has not been able to reach a comprehensive and binding agreement on how to
limit carbondioxide emissions (Pizer, 2006).1 Second, the World Trade Organization's (WTO) Doha
Development Round2 has missed a number of deadlines, and by the present day still has not resulted
in a comprehensive agreement (Ehlermann and Ehring, 2005; Bagwell et al., 2016).3 Alternative
plurilateral agreements, such as the WTO TRIPS agreement, have been adopted instead between
a considerably smaller number of countries. Finally, the European Commission strives to reach
unanimous consent among member states on such issues as common environmental, tax, or refugee
policies. No considerable progress has been reached in these fronts. As a consequence, the European
Commission, including former Commission president Jean-Claude Juncker, and Pierre Moscovici
(the Commissioner for Economic, Financial A�airs, Taxation and Customs) has recently proposed
that the unanimity rule should be abandoned in favor of the so called quali�ed majority rule4 in
EU taxation policy. In popular media and among negotiation delegates, the unanimity requirement
according to which all parties must reach a consensus for an agreement to arise, has been blamed for
its ine�ectiveness. Within the WTO and the EU, the criticism seems to have gained momentum as
the number of member states in each organization has grown.

Existing models of rational multilateral bargaining, building upon the seminal model by Baron and
Ferejohn (1989), do not provide much reason to challenge the unanimity rule. Rather, the basic model
under stationary equilibria predicts immediate agreement without delay, independently of whether
unanimity or any type of majority is required, and independently of the number of players (Banks and
Duggan, 2000). Moreover, unanimity rule is predicted to result in more egalitarian terms of agreement
than majority rules in symmetric stationary environments according to the existing models (Eraslan
and Merlo, 2017).5 Models of asymmetric information and/or reputation for obstinacy (Myerson,
1991; Abreu and Gul, 2000; Compte and Jehiel, 2002) may predict delay and ine�ciency, but they
are typically fairly complicated or even intractable in multilateral settings, and have thus mostly
focused on the bilateral case.6

1See also Nordhaus (2006) and Stern (2008).
2The round was launched in 2001 and focused among other things on market access for agricultural goods �

especially from the developing to the markets of the developed countries � and the reduction of subsidies in this sector
by the developed countries (Meltzer, 2011).

3The WTO was not able to meet the December 2002 deadline imposed in paragraph 6 of the Doha declaration on
the TRIPS agreement and Public Health since a single member prevented consensus (Ehlermann and Ehring, 2005).
Instead a considerably weaker Trade Facilitation Agreement was agreed upon in 2013.

4See the European Commission press release, Jan 15th 2019. The quali�ed majority rule applied in the EU decision
making requires 55% of member states to vote in favor and these countries must represent at least 65% of the total
EU population.

5Comparing the majority and unanimity rules, Maggi and Morelli (2006) consider repeated voting without en-
forcement of outcomes and �nd that majority rule is more e�cient than unanimity when preferences are positively
correlated and players are patient.

6Ma (2018) provides an analysis of the three-player case. See Eraslan and Evdokimov (2019) for a general review
of the literature, and sections 6 and 7 in particular for the literature on asymmetric information. Kiefer (1988) and
Kessler (1996) suggest that hazard rates in labor disputes are inconsistent with the incomplete information explanation.
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How can the role of unanimity in contributing to delay, impasse and ine�ciency then be under-
stood from the perspective of rational interactive decision making, i.e. game theory? In this paper
we propose a tractable complete information model of commitment and con�ict of multilateral bar-
gaining in an in�nite horizon setting which builds on the seminal Baron-Ferejohn model to which it
adds the capacity to precommit.7 (Crawford, 1982; Levenoto§lu and Tarar, 2005; Ellingsen and Miet-
tinen, 2008, 2014; Miettinen and Perea, 2015). At the commitment stage of each round, each player
can attempt to commit to rejecting, in the subsequent bargaining stage, any proposal where she
receives less than a self-imposed threshold. Any such attempted commitment fails and decays with
an exogenously given probability. The commitment status of all players is common knowledge at the
bargaining stage of each round. We adopt the simplest such model where each player's probability
of failing is independent of the failures of the commitment attempts of other players and, moreover,
each individual commitment attempt has an equal chance of failing. Also for the sake of simplicity,
we assume that commitments have to be re-established at the commitment stage of each round. As
in Ellingsen and Miettinen (2014), commitments are costly to an extent that two strategies which
lead to otherwise identical payo�s for a player are ranked lexicographically, with preference given to
the strategy that does not require commitment. Once commitment attempts have been made and
their success determined, one of the players is randomly drawn to make a proposal to which all others
respond by either accepting or rejecting the o�er. Agreement arises if, according to an exogenously
given consent rule, su�ciently many players give their consent to the proposal.

The key focus of the paper is to compare unanimity rule with various majority rules under these
circumstances. We �nd that, under the unanimity rule, delay and ine�ciency are commonplace and
often unavoidable. Under a wide range of relevant parameter values, every symmetric stationary
equilibrium is associated with delay. Moreover, as the number of players grows larger, the delay and
ine�ciencies become more severe: both the maximal and the minimal expected con�ict duration
over all equilibria increase. To the contrary, there is never delay or ine�ciency in any equilibrium
under the majority or any supermajority rule. Ruling out unanimity and requiring all but one party
to agree is enough to restore e�ciency in our non-cooperative model. The mechanism underlying
this result is that players compete for being included into the winning coalition. Comparing the
agreements between unanimity and (super)majority rules, negotiation outcomes are not necessarily
more equal under unanimity, and inequality increases with the number of players in the unanimity
case. Thus our model provides a clear rationale for favoring less-than unanimity rules (including
`all but one' or other supermajority rules) over unanimity rule, as suggested by many policy makers
involved in international negotiations.

The paper contributes to understanding the role of bargaining frictions in multilateral bargaining,
and especially the mediating role of the number of negotiating parties in aggravating such frictions.
There is a growing need for better understanding of such frictions from an applied perspective, as
pointed out by Bagwell et al. (2016, pp. 97) in their survey article on the economics of WTO,
for instance. Naturally, our model abstracts from the complexities generated by cross-externalities,
asymmetric and incomplete information, and the shadow of alternative pluri- and bilateral treaties
which characterize the WTO and UNFCCC negotiations (See Harstad, 2012, for instance). Nev-
ertheless, the present paper provides a tractable and simple framework to understand the role of
unanimity in multilateral bargaining where precommitent is feasible.

The paper builds on the complete information strategic pre-commitment literature on bargain-
ing starting with the seminal contributions of Schelling (1956). Crawford (1982) formalized some of
Schelling's arguments in a bilateral bargaining framework with both strategic ex ante pre-commitment
and ex-post revoking of commitments. He showed that with su�ciently low success probability of
individual precommitments, both players make aggressive pre-commitments in the unique equilib-

7The seminal ideas were presented by Schelling (1956).
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rium which is ine�cient since the commitments are mutually incompatible.8 Ellingsen and Miettinen
(2008) show that impasse may be considerably more likely and ine�ciency more severe if there is
a small cost of commitment. Ellingsen and Miettinen (2014) generalize the results to a dynamic
in�nite horizon setting.9 We generalize the Ellingsen and Miettinen (2014) model to a multilateral
case.10

In our model, the success of the commitment is not based on an attempt to mimic a behavioral
type and the time that it takes for an opponent to credibly screen the committing player's true type
as in Myerson (1991); Abreu and Gul (2000); Compte and Jehiel (2002). Rather the commitment
technology is exogenously given. Our modeling approach is thus considerably simpler. In a mul-
tilateral bargaining model with obstinate types, each player would have to track the beliefs about
the obstinacy of each of the other players and these would have to be updated both based on the
proposals and the rejections made. The optimal actions would then depend on these beliefs. Thus,
the dimensionality of the model grows exponentially with the number of players. The simplicity and
tractability of the present complete information commitment model makes it scalable from a bilateral
to a multilateral bargaining setting.

A key lesson in the existing multilateral bargaining literature is that when players' valuations
are heterogeneous, those who need to be compensated the least will be included in the winning
coalition. Moreover under unanimity players with lowest valuations, will be monetarily compensated
to buy them into the agreement. This theoretical idea receives empirical support in the experiment
by Miller et al. (2018). This also illustrates why signaling or mispresenting a private information
about valuation (Tsai and Yang, 2010; Eraslan and Chen, 2014), or sending delegates with induced
valuations higher or lower than those of the principal (Harstad, 2010) may pay o� individually in
these settings. Such mispresentation or delegation would result in ine�cient delay.

In addition to the present paper, there are other complete information explanations for delay in
multilateral settings. E�cient delay and ine�cient immediate agreements may arise due to �uctua-
tions over time in the total surplus which is being shared (Merlo and Wilson, 1995, 1998). Opposite
to our results, Eraslan and Merlo (2002) show in bargaining with a stochastic surplus that unanimity
rule is always e�cient but majority rule may lead to ine�ciencies: a proposer may be better o�
buying a majority into an ine�cient agreement than passing and waiting for an e�cient realization
of the pie. In non-stochastic environments and focusing on stationary equilibria, ine�cient delay may
arise if the principal or proposer negotiates with others sequentially one at a time or in smaller groups
(Cai, 2000; Iaryzcower and Oliveros, 2019) or if there are several simultaneous o�ers at each round
and thus free-riding among proposers (Kosterina, 2019). Yildirim (2007, 2018) show that there can
be ine�ciencies due to endogenous recognition probabilities. Ali (2006) generalizes the analysis of
e�ects of optimism on delay in dynamic bargaining (Yildiz, 2003) to multilateral settings and shows
that, unlike in bilateral negotiations, persistent optimism may lead to delay in multilateral settings
if unanimity decision making is applied.

The paper is structured as follows. Section 2 presents the model. 3 analyzes the simplest mul-
tilateral case of three players. Section 4 has the general analysis and the main results. Section 5
concludes.

8A number of authors have investigated the evolutionary dynamics of aggressive commitments in bilateral bargain-
ing. See Ellingsen (1997); Poulsen (2003).

9See also Muthoo (1996); Levenoto§lu and Tarar (2005) and Güth et al. (2004).
10Binmore (1985) and Morelli (1999) formulate three-player bargaining models where players make demands on

prices at which they are willing to join a winning coalition. In Morelli's model there is no proposer advantage; in our
model proposer advantage arises when su�ciently many demands fail. In all analysis we restrict attention to the case
of exogenous status quo (see Eraslan et al. (2020) for a review on the endogenous status quo case).
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2 The model

2.1 The negotiation game

The bargaining game, denoted by G, has in�nite horizon. There are n players in the game. In the
main analysis we assume that players have identical preferences and technologies. A player's utility
is assumed to be linear in the player's share of the surplus. Players are impatient, with per period
discount factor δ. The size of the surplus is normalized to one. The rules of the game, the parameters
of the model and the rationality of the players are common knowledge.

In each period, indexed by t, actions are taken in two stages � the commitment stage and the
bargaining stage. At the commitment stage, players can attempt making short-lived commitments
which last at most the current period, i.e. each player i chooses a commitment attempt xi ∈ (0, 1] or
stays �exible, which we denote by xi = 0. In between the two stages, commitments may decay, each
with an independent probability 1 − ρ. (We will sometimes refer to this event as a player having a
�loophole�.) The probability that a commitment �sticks� is ρ. The realization of the attempt, the
commitment status, is denoted by si and, given the technology, it equals xi with probabiliy ρ and 0
with probability 1− ρ.

At the bargaining stage, each player becomes the proposer with probability 1/n (each player has
an equal recognition probability), in which case that player's commitment loses its strength. I.e. we
assume for simplicity that the proposer always has a loophole. With probability (n− 1)/n, a player
becomes a responder. The proposer proposes a deal d = (d1,..., dN), with

∑N
i=1 di ≤ 1, where we refer

to di as the �o�er� made to player i. Each player then votes to accept or reject. Yet, a player i with
commitment status si > di will automatically reject the proposal. The proposed deal is implemented
if at least q players (including the proposer) vote to accept. If not, a new period begins with the
commitment stage.

If a deal d is implemented in period t, player i′s payo� equals δt−1di. We assume that players
lexicographically prefer to receive a given share without attempting to commit. Substantively, this
means that commitment is negligibly costly. Even more drastic commitment costs could be modelled
but at the expense of more complicated exposition of the model.

The assumption that each period is divided into a commitment stage and a bargaining stage
closely matches Crawford (1982) and Ellingsen and Miettinen (2008, 2014). Indeed, the basic as-
sumption of this literature is that negotiators always have the opportunity to make unilateral com-
mitments before they sit down to engage in bilateral talks. In addition to the number of number
of parties in the negotiations, the key di�erence with respect to the durable commitment model of
Ellingsen and Miettinen (2014) is that in the present model commitments endure at most for the
present period only. In that sense, the model is reminiscent to Miettinen and Perea (2015). This
assumption is made to simplify analysis: there are no commitment states to be kept track of and thus
we use simply the stationary subgame perfect equilibrium rather than Markov perfect equilibrium
as our solution concept.

2.2 Histories, strategies and equilibrium

A history ht consists of a sequence of commitment attempts, stochastic commitment status ran-
domizations (determining whether each attempt succeeds or fails) and recognitions of the proposer,
proposals and responses at consecutive periods, and the two stages of each period. A behavioral
strategy ψi of player i is a collection of randomizations of actions of player i, one for each history
of the game. A behavioral strategy pro�le ψ is an n-tuple of strategy pro�les, one for each player
i = 1, ..., n. A subgame conditional on history ht is denoted by G(ht) and ψ|ht is a strategy pro�le
of the game, consistent with history ht, and thus a strategy in the subgame G(ht).
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A subgame perfect equilibrium is an n-tuple of strategy pro�les which is a Nash equilibrium in
every subgame, at each history ht. A stationary subgame perfect equilibrium is a subgame perfect
equilibrium where (i) ψ|ht coincides across ht at any commitment stage, (ii) proposals at the bar-
gaining stage coincide across histories where the current commitment status pro�les coincide, and
(iii) voting responses following a proposal depend only on the current proposal s, the identity of the
proposer, and the current commitment status pro�le. In a Symmetric Stationary Subgame Perfect

Equilibrium, commitment attempts coincide for all players at the commitment stage, and bargaining
stage proposal and voting strategies coincide for players with identical commitment statuses. We
consider Stationary Subgame Perfect Equilibria (SSPE) of the game and when necessary focus on the
symmetric SSPE. The restriction to symmetric equilibria is clearly indicated whenever we do so.

Let x∗ = (x∗1, ..., x
∗
n) be a vector of commitment attempts that is part of a SSPE strategy pro�le

ψ∗. And let v∗ = (v∗1, ..., v
∗
n) be the vector of expected utilities associated with that equilibrium.

Then the equilibrium strategies speci�ed by ψ∗ in the bargaining stage, given any commitment status
pro�le (s1, ..., sn) satis�es the following conditions (see Eraslan and Evdokimov (2019)):

• De�ne x̂i = max{δv∗i , si} as player i's �price�, where si is the player's current commitment
status. In the negotiation stage, player i votes to accept at any history i� she is o�ered di ≥ x̂i.

• If chosen to propose, player i o�ers x̂i to the �cheapest� coalition Ci consisting of q−1 responders
other than i (possibly randomizing if the cheapest coalition Ci is not unique), provided that
1−

∑
j∈Ci x̂j > δv∗i . Otherwise, he makes a proposal that fails.

De�ne πi(x|ψ∗) as the expected (instantaneous) utility that would be achieved by player i if, at
a given commitment stage, (i) players attempt commiting to x (not necessarily x∗), and (ii) all
players followed the equilibrium strategy ψ∗ starting at the immediately ensuing bargaining stage.
This payo� is pinned down by the conditions already outlined for the bargaining stage and by the
additional condition that, in case of failure, player i's EU is given by δv∗i . (The formal details are
cumborsome to express explicitly but will be clearly developed in the subsequent analysis.) Then
the commitment attempts x∗ satisfy the following:

x∗i = arg maxπi(xi, x
∗
−i|ψ∗)

with a lexicographic preference for staying ��exible� (xi = 0), as explained above. Finally, the
equilibrium expected utilites v∗ satisfy

v∗i = πi(x
∗|ψ∗).

3 The case of three players

In this section, we illustrate our main results within a simple three-player model. A more general
analysis for n players is presented in Section 4. We consider unanimity and majority rules. In both
cases, we characterize the set of symmetric SSPE in which all players make the same commitment
attempt x∗. In the three player game, these commitments can conceivably be of two types. A
�moderate� commitment is such that a deal can be reached even if neither of the two responders
has a loophole. An �aggressive� is such that a deal is possible only if (at least) one responder has a
loophole. Therefore, aggressive commitments are associated with a positive probability of ine�cient
delay. We begin by analyzing the unanimity case and �rst characterizing the �aggressive� equilibrium
in subsection 3.1 and then turning to the e�cient equilibrium in subsection 3.2. Finally, we analyze
the majority rule in subsection 3.3.
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3.1 Aggressive equilibrium

Suppose that a symmetric stationary equilibrium with aggressive commitments exists, and denote
the (common) expected equilibrium payo� by v∗. Due to stationarity, each player's continuation
value is δv∗. Then the largest commitment to which a proposer will concede in the event that exactly
one responder's commitment �sticks� in the negotiation stage is given by

x∗ = 1− 2δv∗. (1)

This commitment is targeted to leave both the proposer and the uncommitted responder indi�erent
between a deal and continuation: they each receive the continuation value δv∗, and the player who
is the only one to succeed with her commitment receives the residual, i.e. her commitment 1− 2δv∗.
Since agreement occurs only when at least one responder has a loophole, this equilibrium involves
a positive probability of delay and therefore ine�ciency. Concretely, the probability of agreement
in a given round is 1 − ρ2. Conditional on agreement, the sum of payments is one. Therefore, the
expected discounted sum of utilities is

∑
i v
∗ = 1−ρ2

1−δρ2 , and so

v∗ =
1− ρ2

3(1− δρ2)

is the expected equilibrium payo� for each player. The following proposition establishes that this
equilibrium always exists in the three-player game under unanimity.

Proposition 1. In the three-player game under unanimity rule, there always exists an equilibrium

with aggressive commitments and delay. Moreover, this is the only symmetric and stationary equi-

librium when ρ < 1/2.

In this equilibrium, three things can happen with positive probability in a given round. Suppose
w.l.g. that player 1 is proposer. If one responder has a loophole (say, player 3) then player 1 proposes
d = (δv∗, x∗, δv∗) (and symmetrically if player 2 has a loophole). If instead both responders have a
loophole, player 1 o�ers d = (1−2δv∗, δv∗, δv∗). Note that we can write d = (δv∗+(x∗−δv∗), δv∗, δv∗),
re�ecting the fact that, in the event of an �extra� loophole, the proposer secures an additional �chunk�
of size (x∗−δv∗). We will encounter this type of logic again in what follows. Finally, if both responders
are committed, player 1 makes any o�er where at least one of the responders receives less than the
committed share and thus the game proceeds to round t + 1. Thus the equilibrium is ine�cient
and exhibits costly delay. The ine�ciency is exhibited in the individual equilibrium payo�, which is
strictly below 1/3.11 Equilibrium payo�s increase and commitments become less aggressive if players
discount less (δ increases) or they are less likely to succeed with their commitments (ρ decreases).

Let us now verify that the commitment pro�le (1) constitutes part of an equilibrium. The
discounted present value of utility in equilibrium equals v∗. In a stationary equilibrium all �exible
players will renew their attempt to commit to x∗ in the follow-up round. Thus the continuation
value of a �exible responder at the bargaining stage equals δv∗. Notice �rst that (1) can be written

11The expression closely resembles the unique and ine�cient Markov-perfect equilibrium payo� of (Ellingsen and
Miettinen, 2014): in the present formula a factor δ is absent in the numerator since there is no discounting between
the commitment stage and the bargaining stage and thus there is no exogenously imposed delay in the present model.
Moreover, in the present model the proposer's commitment automatically fails and thus the endogenous delay is only
driven by the commitment attempts of the two responders and thus the endogenous expected delay coincides in the
bilateral model and the three-player version of the multilateral model. Naturally, what is left, once the endogenous
delay is accounted for, will be split evenly, ex ante, between the three parties who have identical recognition and
commitment success probabilities and who adopt identical strategies.
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as δv∗ = 1 − δv∗ − x∗. Thus the proposer is indi�erent between inducing disagreement, on the one
hand, and proposing (δv∗, x∗, δv∗), on the other hand, and thus conceding to the aggressive demand
of a single committed responder. On the same grounds, a responder who is uncommitted is indi�erent
between accepting and rejecting the proposal.

Consider then deviations at the commitment stage. A commitment matters only if the player is
drawn to respond (recall that the commitment is automatically relaxed if one is drawn to propose).
Since all other players attempt commitment, deviating and not committing would automatically
imply that the highest share this player can receive conditional on a deal (and a responder role)
equals δv∗ which is lower than the share one receives in equilibrium conditional on being responder
whose commitment sticks and the other responder having a loophole, and equal in every other
contingency. Thus the deviation not to commit (x = 0) does not pay o�.

Deviating by choosing a more aggressive commitment does not pay o� since conceding to such a
commitment would result in a payo� lower than δv∗ and hence no proposer would ever concede when
such a commitment sticks. A deviation down to a less aggressive commitment can only increase the
payo� if it increases the probability of a deal in the ensuing bargaining stage. In equilibrium, no
deal will be reached with probability ρ2, i.e. in case both responders remain committed to x∗. To
induce a deal in this case, a deviating responder would have to choose a less aggressive commitment
position y such that δv∗ ≤ 1− x∗ − y. Otherwise, conditional on both commitments succeeding, the
proposer would want to make a proposal that fails. Thus y ≤ 1− δv∗ − x∗ = δv∗ and the deviation
does not pay o�.

3.2 E�cient equilibrium

Suppose now that there exists a symmetric stationary equilibrium in which immediate agreement is
certain - i.e. occurs even if both responders' commitments �stick�. As above, denote the (common)
expected equilibrium payo� by v∗. Then the largest commitment to which a proposer will concede
in the event that both one responder's commitments �stick� is given by

x∗ =
1− δv∗

2
. (2)

This commitment is targeted to leave the uncommitted proposer indi�erent between a deal and
continuation while allowing two reponders who succeed to each have their commiment shares. Since
x∗ − δv∗ = (1 − 3δv∗)/2 ≥ 0, each responder's commitment share is greater than her continuation
value δv∗. The proposal where the committed responders receive x∗ and the proposer receives δv∗

will thus be passed, and the agreement is immediate even in the event that both responders succeed
in committing. This equilibrium is thus e�cient. The following proposition establishes that this
equilibrium exists if and only if ρ ≥ 1/2.

Proposition 2. In the three-player game under majority rule, an e�cient equilibrium exists if and

only if ρ ≥ 1/2.

If either of the responders or both fail to commit, however, the proposer o�ers each such respon-
der the continuation value, thus allowing the proposer to receive δv∗ + k(x∗ − δv∗) where k is the
number of responders with a loophole. The fact that there are positive probability events where the
proposer receives more than her continuation value creates an opportunity to deviate upwards at the
commitment stage. Spe�cically, players may increase their commitment by (x∗− δv∗) in an attempt
to appropriate the extra �chunk� of size (x∗−δv∗) that otherwise accrues to the proposer in the event
that their commitment succeeds and the other responder has a loophole.

Such a deviation y will leave the proposer indi�erent between continuation and passage in the
event that one responder has a loophole, i.e. it satis�es δv∗ = 1− y− δv∗, or y = 1−2δv∗. As before,
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the deviation matters only if the deviating player is drawn to respond and the commitment succeeds.
Conditional on this event, the deviating player will gain (x∗ − δv∗) if the other responder has a
loophole (probability ρ), and lose (x∗ − δv∗) in case the other responder does not have a loophole
(probability 1− ρ). Therefore, this deviation does not pay o� and the e�cient equilibrium exists if
and only if ρ ≥ 1/2.

3.3 Majority rule

Proposition 2 illustrates that aggressive commitment tactics potentially lead to delay, ine�ciency and
asymmetric deals in multilateral bargaining much the same way as in bilateral bargaining (Ellingsen
and Miettinen, 2008, 2014). In fact, in Section 4.4 below will show that the equilibrium with delay
is the only symmetric stationary stationary equilibrium if and only if ρ < 1/2 and thus ine�ciencies
necessarily arise in that case. Yet, the result hinges upon a key condition � that of unanimity. Only
when mutual consent is needed from all parties can the players force concessions from others in
equilibrium. Proposition 3 below shows that all stationary subgame perfect equilibria are e�cient
under majority rule, as in the original Baron and Ferejohn (1989) model.

Proposition 3. In the three-player game under majority rule, there exists a unique symmetric SSPE

involving no commitments.

The proof is omitted since a general proof for the n−player case is provided in Subsection 4.1. The
intuition for this result is simple. Under majority rule, responders compete for being included into
the winning coalition. If no player attempts to commit, any player who deviates to a commitment
above the common continuation value would simply be left out of any coalition. To see uniqueness,
suppose instead that all players commit to some x∗ > 0. Then x∗ ∈ (δv∗, 1− δv∗), as otherwise
players would prefer not to commit. The only event in which a player's commitment matters for
her payo� is when she is responder and both commitments stick. In this event, she is included in
the winning coalition with a probability strictly less than one. Then an arbitrarily small downward
deviation to x∗ − ε results in her being included with probability one, and has no e�ect in other
events. A typical Bertrand competition argument then shows that commitments are competed down
to a level where they have no e�ect on payo�s, and thus remaining �exible is in fact preferred. Thus
the standard Baron & Ferejohn equilibrium outcome is the unique equilibrium outome in this case.

4 General analysis

We now turn to a more general analysis of the n-player game. To start, section 4.1 considers
arbitrary q−majority rules with q < n, and shows that Proposition 3 generalizes, i.e. that there is no
ine�cienct SSPE in that case. We will then turn to the unanimity rule. As we will see in that case,
symmetric equilibria can be ordered in terms of the �aggressiveness� of their associated commitments.
In subsection 4.3 we analyze the most aggressive and ine�cient symmetric equilibrium, and show that
it always exist. In subsection 4.4, we characterize the unique e�cient symmetric equilibrium, and
show that it exists only if ρ is su�ciently large with respect to the number of players. In subsection
4.5 we consider all other (�intermediate�) equilibria, which are more e�cient than the most aggressive
equilibrium but still not e�cient. Finally we analyze how the frequency of negotiation rounds a�ects
the predictions in subsection 4.6.
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4.1 Commitment and q-majority rules

Let us begin our analysis by showing that Proposition 3 generalizes: commitments are never used
and thus the agreement is immediate when adopt any supermajority rule (apart from unanimity) is
used.

Theorem 1. There is no ine�cient SSPE under any q-majority rule with q < n.

Proof. W.l.g. order players such that 0 ≤ x1 ≤ ... ≤ xn. For all i, if xi > 0 then xi > δvi due to the
lexicographic preference. Suppose there exists an i such that xi > xq ≥ 0. Then player i is never
included in the winning coalition when he is a responder and his commitment sticks. Therefore,
he is better o� not committing. Therefore xi = xq for all i ≥ q. Suppose that xq > xq−1 ≥ 0.
Take any i ≥ q. Since xi = xq > 0, we have xq > δvi. Then the only event where player i has a
strictly positive chance of receiving xq is when all i ≥ q are responders whose commitments stick.
Moreover, there exists at least one such player i who is included with a probability smaller than or
equal to 1/(n − q + 1) < 1 in this event. By deviating to xq − ε for ε arbitrarily small, this player
will be included with probability one in that event. A contradiction. Therefore xq−1 = xq = ... = xn.
Suppose that 0 ≤ xq−k−1 < xq−k = ... = xn where k ∈ {1, ..., q − 2}. Take any i ≥ q − k. Since
xi = xq−k > 0, we have xq−k > δvi. Then the only event where player i has a strictly postive chance
of receiving xq−k is when among the n − (q − k − 1) players making expensive commitents, there
are at least n− q + 1 responders whose commitments stick. Moreover, there exists at least one such
player i who is included with a probability smaller than or equal to 1/(n− q + 1) < 1 in that event.
By deviating to xq−k − ε for ε arbitrarily small, this player will be included with probability one in
that event. A contradiction. Therefore, it follows xn = ... = x1 = x. Finally, suppose x > 0. Then
an analagous argument establishes that at least one player must have an incentive to deviate to x−ε.
Therefore x = 0.

The intuition for this result is highlighted in Proposition 3 of the three-player example of Section
3. When majority rule is used, there is competition between the responders to be included in the
winning coalition. If commitments di�er, those who attempt the largest commitments will be left
out. If several responders commit in a way such that they are included with positive probability, at
least one will have an incentive to �undercut� another's commitment in order to be included more
often. This triggers a Bertrand-like competition in commitments. In equilibrium, the commitment
cannot exceed the continuation value, which is what each responder receives without commitment
anyway (Baron and Ferejohn, 1989). Thus, no aggressive commitments are made. The outcome is
e�cient and coincides with that of the Baron and Ferejohn (1989) model. The analysis starting from
the subsection shows that, contrary to supermajority decision making, commitment strategies are
used in any equilibrium and ine�ciency due to delay is often unavoidable.

4.2 Symmetric commitment pro�les under unanimity decision making

Let us now turn to the analysis of unanimity decision making. In the three player case, we saw that
two types of commitments are conceivable. Namely, those which require no loopholes (the modest
equilibrium), and those which require one responder to have a loophole (aggressive equilibrium) for
an agreement to occur. In both cases the commitment is crafted to make a certain number of players
with a loophole (including the proposer) indi�erent between passing the agreement and continuation.
Conditional on an agreement, a responder whose commitment fails loses a chunk (x∗ − δv∗), which
goes to the proposer. These patterns generalize.

When there are fewer than the targeted number of players with a loophole, any agreement will
be vetoed and all players earn δv∗. When there are exactly the required number of loopholes, the
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proposer earns exactly the continuation value δv∗ and each succesful responder earns (x∗ − δv∗)
more than that. When there are more than the required number of loopholes, the proposer receives a
chunk (x∗−δv∗) from each responder with a loophole beyond the required number. The commitment
pro�les across equilibrium candidates di�er, not only in terms of how many loopholes are required,
but also in terms of how large a commitment is made. When more loopholes are required, there are
more players earning their commitment value and thus fewer players earning the additional (x∗−δv∗).
Therefore the commitment must be larger when the number of required loopholes is larger. Since the
successes of commitments are indepdendent across players, it also takes longer to reach an agreement
and thus the common continuation value δv∗ must be smaller, further contributing to the share that
the committed reponders are attempting to appropriate. Therefore, the e�ciency of the equilibrium
is inversely related to the number of loopholes required, on the one hand, and to how large a share
of the pie each player commits to, on the other hand.

We will begin by introducing some formalism needed in the following subsections. Let x∗n,h be
a symmetric commitment pro�le when there are n players and at least h loopholes are required
in order for an agreement to arise. Denote the symmetric equilibrium value by v∗n,h. A successful
commitment thus equals s = x∗n,h. Suppose that, at the commitment stage of each round, all players
attempt committing to x∗n,h. Then if, at the bargaining stage, fewer than h responders have a
loophole, then all players are put down to their continuation value δv∗n,h. If, on the other hand, the
number of �exible responders is at least h, all agents with a loophole will be o�ered δv∗n,h, while those
without will be o�ered x∗n,h.

As in the case of three players above, the commitment x∗n,h is chosen so as to make the proposer
just indi�erent between making a propsal that fails and o�ering x∗n,h to (n − h − 1) committed
responders when exactly h responders have a loophole. That is,

δv∗n,h = 1− (n− h− 1)x∗n,h − hδv∗n,h. (3)

Note that equation 3 also implies that the h uncommitted responders are indi�erent between accept-
ing and rejecting the proposal. Solving for x∗n,h yields

x∗n,h =
1− (h+ 1)δv∗n,h

n− h− 1
, (4)

showing that, if exactly h reponders have a loophole, then the n−h−1 responders each get an equal
share of what is left after the proposer and those who have a loophole are paid the continuation
value. It is easy to see that when n = 3 and h = 1 the formula coincides with that in the three-player
case above.

In order to learn more about x∗n,h and v∗n,h, we need to write explicit expressions of v∗n,h. Let us
�rst look at the proposer's expected payo�. Denote the probability that at least h of k responders

will have a loophole by η(k, h). That is

De�nition 1. Let f (k, l) =

(
k
l

)
(1 − ρ)lρk−l be the probability of exactly l loopholes out of k

trials. Note that f is the pdf of a binomial probability distribution. Then

η (k, h) =
k∑
l=h

f (k, l) .

Currently, we are interested in the case where k = n−1, which is the number of responders. Then
we can think of the proposer paying all (n−1) responders x∗n,h and getting back a �chunk� (x∗n,h−δv∗n,h)
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from each responder that has a loophole, as long as their number is at least h. Her expected payo� is
therefore πP = (1−η(n−1, h))δv∗n,h+η(n−1, h)

[
1− (n− 1)x∗n,h + E(l|h ≤ l ≤ n− 1)(x∗n,h − δv∗n,h)

]
Combined with equation 3, this yields

πP = δv∗n,h + η(n− 1, h) [E(l|h ≤ l ≤ n− 1)− h]
(
x∗n,h − δv∗n,h

)
That is, the proposer's expected payo� is equal to the common continuation value (which he gets in
case no agreement occurs) plus the additional surplus he expects to secure in case of an agreement.
The latter equals the expected number of loopholes in excess of the necessary h, multiplied with a
chunk of the pie that each such responder with a loophole loses by failing with the commitment.

Next think about the expected payo� conditional being drawn to respond (which happens with
probability (n− 1)/n). If a responder has a loophole (probability 1−ρ), she will receive her continu-
ation value no matter whether an agreement will be reached or not. If she does not have a loophole,
(probability ρ), then she will receive her commitment if at least h of the other (n−2) responders have
a loophole (probability η(n − 2, h)), and otherwise her continuation value. Therefore her expected
utility is given by

πR = δv∗n,h + ρη(n− 2, h)
(
x∗n,h − δv∗n,h

)
To sum up, players expected payo� when all players attempt a commitment to x∗n,h in the com-

mitment stage can be written as

v∗n,h =
1

n
πP +

n− 1

n
πR (5)

We can now solve equations (3) and (5) to yield an explicit expressions for v∗n,hand x∗n,h(proof in
Lemma 3 in the appendix)

v∗n,h =
1

n

η(n− 1, h)

1− δ (1− η(n− 1, h))
,

which re�ects the fact that the expected total payo� in the game comes from 1 dollar being paid
out randomly at some point, with probability η(n− 1, h) in each period, i.e. the probability that it
will be paid at a given period t is η(n− 1, h)(1− η(n− 1, h))(t−1) and so the expected total payo� is
η(n− 1, h)

∑∞
t=1[(1− η(n− 1, h))δ](t−1), which when divided by n gives v∗n,h above.

Clearly, generally η(n− 1, h) < 1 and thus v∗n,h < 1/n and therefore, if these strategies constitute
an equilibrium, the equilibrium is ine�cient. Moreover, the higher is h, the smaller is η(n − 1, h)
and so is also v∗n,h. Thus, symmetric commitment pro�les which require more loopholes for a deal to
arise are also more ine�cient. Yet, x∗n,h increases with h and thus, conditional on succeeding with
one's own commitment, the earned share when the deal arises is larger the higher is h. In this sense
commitment pro�les with higher h generate longer con�ict duration, greater ine�ciency and greater
asymmetries in the shares that the parties receive conditional on reaching an agreement. Thus the
commitment pro�le candidates can be very naturally ordered from the most aggressive one h = n−2
to the least aggressive one h = 0.

None of what we have said thus far proves that these candidate commitment pro�les actually
constitute equilibria. In the remainder of this section, we will consider the conditions under which
this is the case. We begin by considering the most aggressive, then the least, and �nally intermediate
equilibria.
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4.3 Aggressive equilibrium

Let us begin with considering the most aggressive symmetric commitment pro�le,

x∗n,n−2 = 1− (n− 1)δv∗n,n−2,

where each player aims to extract the entire surplus (beyond the continuation value) from the other
players. If this is an equilibrium, the expected payo� received by each player equals

v∗n,n−2 =
1

n

η(n− 1, n− 2)

1− δ (1− η(n− 1, n− 2))
,

where the probability than an agreement arises in each period, η(n−1, n−2) = (n−1)ρ(1−ρ)n−2 +
(1 − ρ)n−1 is very small if n and ρ are large. In that case, the expected delay at this pro�le is long
thereby severly undermining e�ciency.

In order to check that this is an equilibrium, we must verify that no player wishes to deviate
at the commitment stage. Note that the agreement requires that there are at least h = n − 2
loopholes among the n − 1 responders. Hence, agreement occurs only in two cases: (i) only one
of the commitment attempts succeeds or (ii) none of the commitment attempts succeeds. In both
cases, n − 1 agents will get exactly the continuation value, and the residual, 1 − (n − 1)δv∗n,n−2, is
secured either by the committed responder (note that x∗n−2 is exactly the residual) or by the proposer.
The key to understanding the e�ects of deviations, it will be useful to note that deviating to any
y 6= x∗n,n−2 a�ects the deviator's payo� only if (a) she is drawn to respond and (b) her commitment
sticks. Therefore, the entire analysis that follows focuses on the payo�s achieved only in that event.

Let us �rst consider an upward deviation to y > x∗n,n−2. In that case the proposer will not want
to pay the deviator even in the most favorable instance where everyone else has a loophole; so a
more aggressive commitment cannot be pro�table. Consider then a deviation to less aggressive com-
mitments, y < x∗n,n−2. Since the payo� achieved conditional on commitment success and agreement
would then be lower, such a deviation can only be bene�cial if the probability of an agreement is
increased. Therefore, the deviation must have the property that the proposer will concede to it in
cases where the deviator's own commitment attempt as well as k ≥ 1 others succeed. The largest
commitment that will be met when (at most) one additional person's commitment sticks is such that
the proposer is left with her commitment value after giving x∗n,n−2 to one succesful responder, y to
the deviator and δv∗n,n−2 to the other responders, i.e.

δv∗n,n−2 = 1− x∗n,n−2 − y − (n− 3)δv∗n,n−2

But substituting x∗n,n−2 = 1− (n− 1)δv∗n,n−2 we see that this boils down to

y = δv∗n,n−2.

Therefore in the only event where the commitment matters, the deviator's payo� drops to the con-
tinuation value δv∗n,n−2, whereas if she stays with the equilibrium demand, she will get x∗n,n−2 in case
all of the other responders have a loophole.

It's clear that the argument can be extended to say that for all k > 1, there is also no pro�table
commitment that would be met if my own and k additional commitments stick, i.e. deviations of
the type

y = 1− kx∗n,n−2 − (n− 1− k)δv∗n,n−2,

since a fortiori these commitments would be strictly smaller than the continuation value. This is
enough to establish
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Theorem 2. Under unanimity rule, the most aggressive symmetric commitment pro�le, in which at

least n− 2 responder loopholes are required for agreement to be reached, always constitutes a SSPE.

Let us then analyze the comparative statics of this most aggressive equilibrium. In particular,
we are interested in understanding how the duration of the con�ict and the fraction of the surplus
demanded are a�ected by the number of players in the game, n, and the the e�ectiveness of commit-
ments, ρ. Recall that the commitments are independently and identically distributed. A loophole
arrives randomly with probability (1 − ρ) to each player at each round. Thus comparative statics
with respect to ρ is obvious: delay increases in ρ. The number of loopholes at a given round among
the n − 1 responders follows the binomial distribution.12 The number of required loopholes n − 2
increases with the number of players n. It is thus intuitive that the duration of the con�ict increases
with the number of players.

Moreover, since the duration of con�ict increases with n, the expected arrival date of the deal
also increases with n and thus the the equilibrium payo�, v∗n,n−2, and the continuation value, δv∗n,n−2,
which is allocated to each �exible responder when the deal is done, decreases with n. Therefore,
the fraction of the pie that the deal allocates to the unique successful player, x∗n,n−2, and thus the
di�erence of the �nal payo�s, x∗n,n−2 − δv∗n,n−2, increases as the number of players increases.

Corollary 1. Consider the most aggressive commitment equilibrium with pro�le x∗n,n−2.

• The duration of con�ict increases as n or ρ increases.

• The equilibrium payo�, v∗n,n−2,decreases as n or ρ increases.

• The commitment share, x∗n,n−2, increases as n or ρ increases.

Proof. The duration of con�ict is inversely related to the probability of agreement at a given date.
This is η (n− 1, n− 2) = (n − 1)ρ(1 − ρ)n−2 + (1 − ρ)n−1. It is straightforward to show that this
is decreasing ρ and that that η (n− 1, n− 2) > η (n, n− 1) for n > 1. The other two points follow
immediately.

4.4 E�cient equilibrium

Now consider the opposite extreme, a commitment pro�le requiring no loopholes, i.e. h = 0. Since
no loopholes are required, this commitment pro�le constitutes an e�cient equilibrium if or when it
exists. When h = 0 and v∗ = 1/n, the optimal commitment characterized in equation (4) yields,

x∗n,0 =
1

n− 1

[
1− δ

n

]
. (6)

That is, in the event that all responders succed with their commitment, the n−1 responders are shar-
ing what's left after the proposer is permitted to keep δ

n
. But when there are loopholes, the proposer

will secure a surplus, implying a potential incentive to engage in more aggressive commitments.13

Consider now a deviation to a more aggressive commitment y > x∗n,0. Recall that such a devia-
tion a�ects the deviator's payo� only conditional on the deviator being drawn to respond and her
commitment succeeding. Since x∗n,0 was such that the proposer was permitted to keep exactly the

12This approaches the normal distribution with mean (n− 1)(1− ρ) and standard deviation
√
(n− 1)(1− ρ)ρ as n

tends to in�nity.
13In fact, it is straightforward to notice that for any e�cient equilibrium candidate with x∗n,0<

1
n−1

[
1− δv∗n,0

]
, there

is a pro�table upward deviation which extracts rents from the proposer without risking the agreement. Therefore, the
only e�cient equilibrium candidate satis�es (6).
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continuation value, δv∗n,0, the upward deviation must have the property that it will be met only if
at least k ≥ 1 of the other responders have a loophole. Then the most aggressive commitment that
will be met with exactly k loopholes is yk = 1 − (n− 2− k)x∗n,0 − (1 + k) δv∗n,0. To see this, note
that (n− 2− k) committed responders will get x∗0, the deviator will get yk, and the proposer and k
�exible players get δv∗n,0. Substituting (6) yields the candidate deviation

yk = x∗n,0 + k
(
x∗n,0 − δv∗n,0

)
. (7)

The equation states that the deviating player is increasing his demand by k
(
x∗n,0 − δv∗n,0

)
, which is

the extra residual surplus that can be captured from the proposer if k responders have a loophole.
Let us consider the payo� consequences of such a deviation conditional on the deviator's commitment
succeeding. In all cases where fewer than k of the other n − 2 other responders have a loophole,
agreement will fail and the deviating player will lose

(
x∗n,0 − δv∗n,0

)
. This occurs with probability

1 − η (n− 2, k). In all cases where at least k of the n − 2 other responders get a loophole, the
deviating player will gain k

(
x∗0 − δv∗n,0

)
. This occurs with probability η (n− 2, k). So a deviation

aiming at k ≥ 1 loopholes pays o� if η (n− 2, k) k
(
x∗n,0 − δv∗n,0

)
> (1− η (n− 2, k))

(
x∗n,0 − δv∗n,0

)
,

which boils down to

η (n− 2, k) ≤ 1

k + 1
.

It follows that a symmetric e�cient equilibrium exists i� for all k ∈ {1, ..., n− 2}, we have
η(n− 2, k) ≤ 1

k+1
. This condition can be further simpli�ed. Lemma 2 in the Appendix implies that

whenever a deviation targeting k = 1 additional loopholes does not pay o�, no larger deviation will
pay o� either. That is, if the condition η (n− 2, k) ≤ 1

k+1
is satis�ed for k = 1, then it is satis�ed

for all k = {1, ..., n− 2}. Thus the e�cient equilibrium exists if and only if the probability of having
at least one out of n− 2 loopholes is at most 1/2, i.e. 1− ρn−2 ≤ 1/2.14 Let us denote the maximal
n which satis�es this existence condition by n̄.

Theorem 3. An e�cient symmetric SSPE requiring no loopholes for agreement to be reached exists

i� n ≤ n̂ = 2− ln 2
ln ρ

.

Remark that, as n increases, the probability that at least one loophole arises also increases, so
that the e�cient equilibrium will eventually be destabilized. Furthermore, the maximum n for which
the e�cient equilibrium exists, n̂, is increasing in ρ and approaches in�nity as ρ tends to 1. This is
displayed in Figure 1. For ρ = 0, n̂ = 2, so the e�cient equilibrium does not exist. However, ρ = 0
means that the commitments are ine�ective. As ρ tends to 1, n̂ tends to in�nity. Remark also that
n̄ rapidly falls as we more down from ρ close to one. For example, n̂ is small (less than 10) even for
ρ = 0.9.

4.5 Intermediate equilibria

So far we have found that the most aggressive equilibrium exists independently of the parameter
values. The e�cient equibrium exists only if the probablity of a loophole or the number of players
is su�ciently small. In between these two extremes, additional equilibria requiring an intermediate
number of loopholes, 1 ≤ h ≤ n− 3, may exist. In this subsection we will characterize the full set of
such equilibria and how it depends on the number of players and the probability of a loophole.

14Notice that that the condition for the existence of the e�cient equilibrium does not depend on δ.
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Figure 1: Maximum n such that the e�cient equilibrium exists

Consider a pro�le with symmetric commitments targeting to at least h ∈ {1, n − 3} responders
with loopholes. Using equations (4), such symmetic commitment is characterized by

x∗n,h =
1

n− 1− h
[1− (h+ 1)δv∗h] ,

and the associated expected payo�, (3), equals

v∗n,h =
1

n
· η(n− 1, h)

1− δ(1− η(n− 1, h))
. (8)

As above, we will now study whether and under which conditions this consititutes an equilibrium.
In this intermedate case, we need to consider both upward and downward deviations. Both types of
deviations a�ect the deviating player's payo� only if she becomes a responder and her commitment
attempt succeeds. So like above we can conduct the analysis conditional on that event.

Let us begin by considering downward deviations, to less aggressive commitments. Such devia-
tions have the property that they may be met even if strictly fewer than h responders have a loophole.
The largest commitment y that will be met when there are at least h−1 responder loopholes is given
by

δv∗n,h = 1− y − (n− 1− h)x∗n,h − (h− 1)δv∗n,h.

If we substitute the expression for x∗n,h, we obtain y = δv∗n,h. Therefore, just as in the most aggressive
equilibrium, the deviator's payo� is reduced to the continuation value, and thus a deviation designed
to make agreement possible with one fewer loopholes is not pro�table. It is clear that the argument
can be extended to say that for all k > n− 1− h, there is also no pro�table commitment that would
be met when there are even fewer than h − 1 loopholes, since a fortiori these commitments would
be strictly smaller than the continuation value. This is enough to establish the following lemma.

Lemma 1. Consider a symmetric commitment pro�le where all players commit to x∗n,h for some

h ∈ {1, ..., n− 1}. Then a unilateral downward deviation to any y < xn,h is not pro�table.

Next consider a deviation to a more aggressive commitment y >x∗n,h. Such a deviation must have
the property that, for some k ≥ 1, it will be met if at least h+ k ≥ h of the other responders have a
loophole. I.e. the deviation is targeted to succeed when at least k loopholes occur in addition to the
h required in equilibrium. As before, such a deviation makes a di�erence only in case the deviating
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player ends up being a responder and her own commitment attempt succeeds. In addition, we can
restrict attention to events where at least h of the other (n − 2) responder commitments have a
loophole since, if there were fewer, the payo� would be δv∗n,h in every case. In this contingency, the
outcome will depend on how many of the remaining (n− 2− h) responders have loopholes. Then by
the same reasoning leading up to equation (7), the most aggressive commitment y that will be met
with k additional loopholes (i.e. h+ k in total) is of the form

yk = x∗n,h + k
(
x∗n,h − δv∗n,h

)
.

To see whether such a deviation pays o�, note again that we can condition on the event that (a) the
deviating responder's commitment sticks and (b) at least h of the other (n−2) commitments attempts
fail. Then the tradeo� is as follows. In all cases where fewer than k additional loopholes appear
(out of n− 2− h chances), the deviating player will lose (x∗n,h− δv∗n,h). This occurs with probability
1−η(n−2−h, k). In all cases where at least k additional loopholes occur, the deviating player will gain
k
(
x∗n,h − δv∗n,h

)
. This occurs with probability η(n−2−h, k). So a deviation aiming at k ≥ 1 additional

loopholes strictly pays o� if and only if η(n− 2−h, k)k
(
x∗n,h − δv∗n,h

)
> (1− η(n− 2− h, k)) (x∗n,h−

δv∗n,h) or simply

η(n− 2− h, k) >
1

k + 1
. (9)

This establishes that an equilibrium requiring h ∈ {1, n − 3} loopholes exists i� the reverse of
(9) holds for k = 1, ..., n − h − 2. To gain intuition, de�ne g = n − h. Then, since the equilibrium
requires at least n− g loopholes, there are up to (n− 2)− (n− g) = g − 2 chunks of the pie of size
x∗n,h − δv∗n,h that accrue to the proposer in case more than n− g loopholes appear. The player who
deviates upwards is aiming to extract some number k of these chunks from the proposer, at the cost
of higher probability of provisional impasse. There are up to g − 2 variants of upward deviations
which are ordered in terms of aggresiveness, k. Each of them generates a bene�t of k times the
size of the chunk times the probability of at least k additional loopholes η(g − 2, k). Each deviation
labelled by k is also associated with a provisional loss of the probability of less than k additional
loopholes (1− η(g− 2, k)) times one chunk of size x∗n,h− δv∗n,h. The condition checks for each of these
deviations, that the deviation does not pay o�. It is a necessary and a su�cient condition since
we veri�ed above in Lemma 1 that a downward deviation is never pro�table. The bargaining stage
strategies are optimal in an obvious manner that we are familiar with from the existing literature
(see subsection 2.2).

As in our analysis of the e�cient equilibrium, the characterization can be simpli�ed further.
Lemma2 in the Appendix implies that whenever a deviation targeting k = 1 additional loopholes
does not pay o�, no larger deviation will pay o� either. That is, if the condition η(n−2−h, k) ≤ 1

k+1

is satis�ed for k = 1, then it is satis�ed for all k = {1, ..., n − h − 2}. De�ning h = n − g we
have established that for any g ∈ {3, ..., n− 1}, a symmetric equilibrium requiring at least (n− g)

loopholes exists i� η (g − 2, 1) ≤ 1
2
, which can be written g ≤ 2 − ln(2)

ln(ρ)
or equivalently ρ > 2−

1
g−2 .

Combining this insight with Theorems 3 and 2 yields our main result.

Theorem 4. For any h ∈ {0, ..., n− 2}, a symmetric equilibrium requiring h loopholes exists i� any

of the following equivalent conditions hold:

• η (n− 2− h, 1) ≤ 1
2

• n ≤ n̄(h, ρ) ≡ h+ 2− ln(2)
ln(ρ)

• ρ > ρ(h, n) ≡ 2−
1

n−2−h .
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The corresponding commitment pro�le involves x∗n,h =
1−(h+1)δv∗n,h

n−h−1
, and the expected payo� is v∗n,h =

1
n
· η(n−1,h)

1−δ(1−η(n−1,h))
.

In order to appreciate the substance of this result, we should emphasize that it is an if-and-
only-if statement. For example, setting h = 0 yields that the most e�cient equilibrium exists only
if n < n̄(0, ρ) which of course coincides with the n̂ already derived earlier in subsection 4.4. For
n > n̄(0, ρ), a pro�le in which no player attempts to commit in a way that would cause delay does
not constitute an equilibrium. Thus, the ine�ciency is not just a consequence of coordination failure.
Even if all players expected others not to commit, each individual player would have an incentive to
deviate from such a pro�le.

Notice also that the expected period of reaching an agreement in an equilibrium with n players
and h > 0 required loopholes equals

∑∞
t=0 t[(1 − η(n − 1, h; ρ))]t−1η(n − 1, h; ρ) = 1/η(n − 1, h; ρ).

This is increasing in the number of required loopholes h and the strength of commitment ρ. Yet, it is
decreasing in the number of players n, re�ecting the fact that any given number of loopholes h is more
likely to arise when there are more players. However, it is precisely this e�ect that makes deviations
to more aggressive commitments more pro�table, such that an increase in n will eventually destabilize
an equilibrium with h required loopholes. For arbitrary n and ρ, the most e�cient equilibrium that
exists requires at least

h(n, ρ) ≡


n− 2 ρ ≤ 1

2

n− 2 + I
(

ln(2)
ln(ρ)

)
ρ ∈

(
1
2
, 2−

1
n−2

)
0 ρ ≥ 2−

1
n−2

(10)

loopholes, where I (ln(2)/ ln(ρ)) is the smallest integer larger than ln(2)/ ln(ρ). Thus, for ρ < 1
2
,

only the most ine�cient equilibrium exists. As ρ gets larger, additional more e�cient symmetric

equilibria exist. And for ρ ≥ 2−
1

n−2 , all symmetric equilibria, including the fully e�cient equilibrium,
exist. Notice, yet, that h(n, ρ) is increasing in n and, as we discovered at the end of the previous
subsection, the e�cient equilibrium will eventually destabilize and cease to exist.15 Therefore, the
expected delay before reaching an agreement increases in n.

Theorem 5. The shortest delay in any equilibrium is increasing in n.

Proof. We know that for each n, the most e�cient equilibrium is either the e�cient equilibrium or
the pro�le with h > 0 required loopholes such that η (n− 2− h, 1) ≤ 1

2
and η (n− 2− (h− 1), 1) =

η (n− 1− h, 1) > 1
2
. Find the largest n for which 1−ρn−2 ≤ 1/2. Then η (n̄(0, ρ)− 2, 1) = 1−ρn−2 ≤

1/2 and the e�cient equilibrium exists and yet η (n̄(0, ρ) + 1− 2, 1) > 1 − ρn−1 > 1/2. Thus the
e�cient equilibrium does not exist when n = n̄(0, ρ) + 1. Yet, by (10), the equilibrium requiring one
loophole does exist in that case. The expected delay clearly increases when moving from n̄(0, ρ) to

n̄(0, ρ)+1 players in that case. These facts also imply that ρn̄(0,ρ)−1 < 1
2
≤ ρn̄(0,ρ)−2. Or, 1−2−

1
n̄(0,ρ)−2 ≥

1 − ρ > 1 − 2−
1

n̄(0,ρ)−1 . Thus, for l, k = 0, 1, ... and for n̄(0, ρ) > 5,we have that

(
n̄(0, ρ) + k
1 + k + l

)
(1 −

ρ) −
(
n̄(0, ρ)− 1 + k

k + l

)
<

(
n̄(0, ρ) + k

1 + k

)
(1 − ρ) −

(
n̄(0, ρ)− 1 + k

k

)
<

(
n̄(0, ρ)

1

)
(1 − ρ) −(

n̄(0, ρ)− 1
0

)
≤
(
n̄(0, ρ)

1

)
(1−2−

1
n̄(0,ρ)−2 )−

(
n̄(0, ρ)− 1

0

)
= n̄(0, ρ)(1−2−

1
n̄(0,ρ)−2 )−1 < 0 and

thus = η (n, h(n+ 1, ρ))−η (n− 1, h(n, ρ)) =
∑n

l=h(n,ρ)+1 ρ
n−l(1−ρ)l−1

[(
n
l

)
(1− ρ)−

(
n− 1
l − 1

)]
<

152−
1

n−2 is increasing in n.
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0 showing that expected delay increases whenever ρ is such that the e�cient equilibrium exists with
six or more players. In order to show that the claim holds also for n̄(0, ρ) ∈ {3, 4, 5}, remark �rst that(
n− 1
l − 1

)
/

(
n
l

)
≥ 1/2 holds when l−1 ≥ (n−1)/2. Thus the only remaining non-obvious case is

when there are 5 players and ρ is such that the equilibrium requiring one loophole is the most e�cient

one. In that case, there are four responders and

(
5
2

)
>

(
4
1

)
. The probability of an agreement

changes from 1− ρ4 to 1− ρ5 − 5(1− ρ)ρ4. The di�erence equals −ρ5 + 5ρ5 − 5ρ4 + ρ4 < 0.

The theorem shows that, although increasing the number of players increases the chances of
reaching an agreement at an equilibrium pro�le with a given number of required loopholes, the
strategic incentives also change and more aggressive commitments become more attractive. This
destabilizes the most e�cient equilibrium. When there is one more player in the game, the most
e�cient equilibrium also requires one more loophole. This is associated with, not shorter, but longer
delay.

The e�ect of changing ρ has an analogous, but reverse logic. E�ciency decreases and delay
increases in a given equilibrium pro�le as commitment strength ρ increases. Yet, at the same time,
increasing commitment strength, also eventually has the e�ect that more e�cient equilibria emerge
to the set of equilibria.

4.6 Frequent negotiations

So far we have considered several institutional features of multilateral negotiations, such as which
kind of decision rule is being applied, how many parties there are in the negotiations, whether com-
mitment positions can be formulated, and how likely they are to succeed. Let us now analyse another
institutional constraint in multilateral negotiations, namely how frequently negotiation rounds take
place. Unlike in many face-to-face bilateral negotiations, it is by no means obvious that in interna-
tional multilateral negotiations, o�ers could be generated very frequently. In the European Union,
a summit where all heads of state gather together takes place once every six months (June and
December), the Doha round of the WTO has had nine comprehensive meetings since the start of the
round in 2001 (and are by and large inconclusive by the time of writing this manuscript), in climate
change negotiations, general meetings (Conference of the Parties, COP) take place once a year (the
25th COP was organized in Madrid in December 2019 and ended without any conclusive agreement
on measures or timeline on how to reach the targets set in Paris 2015).

In such institutionally rich settings, it is not entirely obvious how to think about the frequency of
negotations. A commonly used approach in the bargaining literature is to consider a continuous time
formulation where discounting over two consecutive negotiation rounds is parametrized by the time
gap between the rounds, t, such that delay between the rounds is discounted by factor δ = exp(−rt).
Here r is the discount rate re�ecting the cost associated with the passage of a naturally given time
interval such as a year, and t is the delay between negotiation rounds expressed as a fraction of
the natural time interval. For example, if negotiation rounds take place once a year and the yearly
institutional interest rate equals 3%, then δ = exp(−0.03) ≈ 0.97; if negotiation rounds occur once
in every six months δ = exp(−0.03/2) ≈ 0.985. A typical question addressed in this setting is
what happens when all institutional frictions constraining frequency of rounds are lifted and the
rounds rather follow each other in an almost continuous sequence. Formally, what happens when t
approaches zero?

In order to formulate that limit, we must �rst take a stand on what happens to the process of
commitments and the exogenous, but stochastic, arrival of loopholes. A straigthforward general-
ization of the model presented in the previous sections would assume that each player's individual
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loophole arrivals follow an i.i.d. memoryless Poisson process with an arrival rate of λ. Then within
a time period of length t, the probability of zero arrivals, i.e. that no loophole arises for this player,
is ρ = exp(−λt). Notice that this implies that the arrival rate of a loopholes among the n − 1
responders is then just (n− 1)λ. Not surprisingly, the probability of loophole arrival within a given
round of negotiations tends to zero as the length of negotiation round, t, tends to zero. Thus the
periodic probability of commitment success ρ tends to one. Moreover, among the known properties
of Poisson processes is that the probability of two arrivals at exactly the same time is zero.16 Thus
when t tends to zero, two or more loopholes never arrive at the same time.17

As established by equation (10), the minimum number of loopholes required for an agreement
in the most e�cient equilibrium is decreasing in ρ. Since ρ tends to one as t tends to zero, more
e�cient equilibria will emerge until �nally even the e�cient equilibrium will exist.18

The equilibrium payo� equation in the discrete time formulation of the model (8) can now be
adjusted to the continuous time formulation, as a function of n, h, λ, r and t, as follows

v∗n,h =
1

n
· η(n− 1, h)

1− exp(−rt)(1− η(n− 1, h))
.

Given that at most one loophole arrives in a Poisson process at any given on point in time, two
cases are of special interest in the limit where the time period length tends to zero: �rst the e�cient
equilibrium,

v∗n,0 =
1

n
,

and second the equilibrium requiring just one loophole,

v∗n,1 =
1

n
· η(n− 1, 1)

1− exp(−rt)(1− η(n− 1, 1))
=

1

n
· 1− (exp(−λt))n−1

1− exp(−rt)(exp(−λt))n−1
.

In the latter case, applying l'Hôspital's rule yields the limit payo�

limt→0v
∗
n,1 =

1

n
· λ(n− 1)

r + λ(n− 1)
. (11)

Equation (11) reveals that, when o�ers are generated very frequently, the e�ciency losses in the
ine�cient one-loophole equilibrium increase in the discount rate r and decrease in the loophole
arrival rate λ and the number of players n.19

Recall that two or more loopholes never arrive at the same time and thus, in the limit, equilibria
with of h ≥ 2 loopholes have value zero. Therefore v∗n,0 and v∗n,1 are the only equilibrium payo�s
bounded away from zero. Since ρ tends to one as t tends to zero, all equilibria with h = 0, ..., n−2 exist

16This is due to the fact that a Poisson process is orderly and thus simple.
17Despite its simplicity and tractability, this approach implicitly assumes some unrealistic features, above all that (i)

commitments can be reformulated at an increasing pace after a loophole arrival (at the beginning of the commitment
stage following the arrival), and (ii) thus that the loopholes last for an decreasing length of time as t tends to zero.
In more realistic formulations, one might decouple the process of re-establishing commitments from the frequency of
negotiation rounds, but we leave that for future research.

18To con�rm this, it is easy to see that staying �exible, deviating down, or deviating up in the most aggressive
equilibrium cannot pay o� since v∗ > exp(−rt)v∗for any t > 0. In any equilibrium where h < n− 2 the key condition
is thus the upward deviation requiring one more loophole, i.e. the necessary and su�cient condition of Theorem 4.

19Notice also that, because the arrival probability of the �rst loophole is independent of the length of the time
period, the expected length of con�ict and thus the equilibrium payo� v∗n,1 are independent of the length of the time
period, too.
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but equilibria with h ≥ 2 have a zero expected payo� and thus commitments are very aggressive
limt→0x

∗
n.h = 1/(n − h − 1). For example the aggressive equilibrium requiring n − 2 loopholes

always exists and in that equilibrium limt→0x
∗
n.h = 1 much like in the ine�cient equilibrium of

the bilateral Nash demand game where each party demands the entire pie. In this limit case, the
e�cient equililibrium always exists and therefore any ine�ciency is due to a coordination failure like
in the Nash demand game. This is in contrast to the less frequent negotiations in which the e�cient
equilibrium does not exist.

5 Conclusion

In recent times many prominent policy makers and practitioners have blamed the unanimity rule for
the paralyzed decision making in the EU and WTO arenas, for instance, and called for more extensive
use of variants of majority decision making (see Jean-Claude Juncker, �State of the Union -speech
at the European Parliament 2018, Pierre Moscovici, European Commissioner for Economic and
Financial A�airs, Taxation and Customs, European Commission press release, Jan 15th 2019, and
Ehlermann and Ehring (2005), for EU and WTO, respectively). In this paper, we have provided an
explanation for why the unanimity decision making rule is prone to delay in multilateral bargaining.
We also show that any majority rule including the all-but-one supermajority rule circumvents this
problem. The stylized predictions of our simpli�ed theoretical model thus �t the empirical patterns
in the mentioned international arenas of negotiation where unanimous agreement is required. In both
these settings the number of parties is large and has even increased prior to the observed impasses:
WTO Doha round failed after the enlargement of the organization in late 1990's and early this
Millennium and EU decision making in sensitive areas has stalled ever since the enlargement of 2004.
In addition to explaining why supermajority rules result in more e�cient outcomes than unanimity,
our model also suggests that ine�ciencies related to unanimity are likely to be more severe when the
number of parties grows larger. Our analysis also suggests that the typical long delay between rounds
of negotiations is another potential source of ine�ciencies. A policy recommendation which warrants
further investigation is thus to organize bargaining rounds more frequently. However, this policy
conclusion hinges on the implicit assumption that commitment positions can be re-established at the
beginning of the following round independently of how soon the next round arrives. This implicit
assumption implies that the frequency narrows the short-term advatage of committed parties over the
uncommitted ones thereby undermining the incentive to deviate to a more aggressive commitment
which was the source of instability of the more e�cient equilibria when length between negotiation
rounds is longer.

The virtue of the model is its simplicity and transparency. Yet in order to study the robustness of
the results, many extensions are conceivable. One could study asymmetric equilibria. It is of interest
to understand whether asymmetric equilibria exist and if so, are outcomes always ine�cient when
the unanimity rule is used. Another extension would allow commitments to decay stochastically over
time as in Ellingsen and Miettinen (2014) in the bilateral case. The complication in the multiparty
setting is that chains of deviations are conceivable and each commitment in the chain must take into
account the e�ects of the commitment on the continuation payo�s of the players whose commitments
stochastically fail since each optimal commitments must each target to make players in one such
set indi�erent. The �xed point problem in this multidimensional state-space of commitments is
hardly tractable and out of the scope of the present paper. This challenge of bandwagon e�ects in
commitments does not arise in the bilateral case since players can only renew their commitments
if their commitment fails and that is precisely the contingency where the opponent's commitment
targets to make the player indi�erent between accepting or rejecting and countercommitting.

One could also incorporate many institutional features typical for legislative bargaining: endo-
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genize the status quo or recognition probabilities, allow for several policy dimensions, bargain over
public and private goods simultaneously. Such extensions could allow understanding how other in-
stitutional features interact with the decision making rule and the capacity to commit in generating
delay and impasse.

More generally, the paper belongs to an emerging literature which proposes novel complete in-
formation explanations for delay in bargaining. Commitments constitute a friction which breaks
the �Coase theorem�. In addition to international and political economics, these ideas could deliver
novel insights in understanding the boundaries of the �rm or orgnizational economics and industrial
economics more generally or when attempting to understand in labor disputes or the rising costs of
legal con�ict and the burden on the courts and the legal system.

Appendix

Lemmas

Lemma 2. If there exists ĥ ≥ 1 such that η
(
k, ĥ
)
≤ 1

ĥ+1
, then η

(
k, h̃
)
≤ 1

h̃+1
for all h̃ > ĥ.

Proof. Note that η (k, h) =
∑k

l=h f (k, l), where f (k, l) =

(
k
l

)
(1 − ρ)lρk−l is the probability of

l `successes' (loopholes) in a binomial experiment with k trials and success (loophole) probability

(1 − ρ). It is su�cient to show the following: �If there exists ĥ ≥ 2 such that η
(
k, ĥ
)
> 1

ĥ+1

then η
(
k, ĥ− 1

)
> 1

ĥ
.� Suppose there exists ĥ ≥ 2 such that η

(
k, ĥ
)
> 1

ĥ+1
. Suppose ĥ <

k(1 − ρ) + 1, then ĥ − 1 < k(1 − ρ), implying that
(
ĥ− 1

)
is below the median of the binomial,

and so η
(
k, ĥ− 1

)
> 1

2
≥ 1

ĥ
. Suppose ĥ ≥ k(1 − ρ) + 1. Since the binomial distribution is

discrete log concave, it has the property that f(k,h)
η(k,h)

is non-decreasing (see An (1997) Proposition 10),

which implies η
(
k, ĥ− 1

)
≥ f(k,ĥ−1)

f(k,ĥ)
η
(
k, ĥ
)
. Further, it can be shown that

f(k,ĥ−1)
f(k,ĥ)

= ĥ

k+1−ĥ
ρ

1−ρ .

Therefore η
(
k, ĥ− 1

)
≥ ĥ

k+1−ĥ
ρ

1−ρη
(
k, ĥ
)
> ĥ

k+1−ĥ
ρ

1−ρ
1

ĥ+1
. The last expression is increasing in ρ,

and we have (1−ρ) ≤ ĥ−1
k

(see above). Therefore, this expression is greater than ĥ

(k+1−ĥ)(ĥ+1)
1− ĥ−1

k
ĥ−1
k

=

ĥ

ĥ2−1
> 1

ĥ
.

Lemma 3. Consider a symmetric commitment equilibrium which requires that at least h responders

are �exible for the agreement to arise. The decomposed expected equilibrium payo� 1
n
πP+

n−1
n
πR equals

1
n

η(n−1,h)
(1−δ(1−η(n−1,h))

.

Proof. The equation (5) can be written in the form

v∗n,h = δv∗n,h +
1

n
η(n− 1, h)[E(l|h ≤ l ≤ n− 1)− h] +

n− 1

n
ρη(n− 2, h)]

(
x∗n,h − δv∗n,h

)
.

We can plug in the expression for x∗n,h into this equation and solve for v∗n,h. This yields

v∗n,h =
m(n− 1, h)

(1− δ)(n− 1− h) + δnm(n− 1, h)

where

m(n− 1, h) =
1

n
η(n− 1, h)[E(l|h ≤ l ≤ n− 1)− h] +

n− 1

n
ρη(n− 2, h)
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and

η(n− 1, h)[E(l|h ≤ l ≤ n− 1)− h] =
n−1∑
l=h

(l − h)(
n− 1
l

)(1− ρ)lρn−1−l

and

η(n− 2, h) =
n−2∑
l=h

(
n− 2
l

)(1− ρ)lρn−2−l

so that

m(n− 1, h) = 1
n

∑n−1
l=h (l − h)(

n− 1
l

)(1− ρ)lρn−1−l + n−1
n

∑n−2
l=h (

n− 2
l

)(1− ρ)lρn−1−l

=
∑n−2

l=h

[
1
n
(l − h)(

n− 1
l

) + n−1
n

(
n− 2
l

)

]
(1− ρ)lρn−1−l + 1

n
(n− 1− h)(1− ρ)n−1

= 1
n
η(n− 1, h)(n− 1− h)

because η(n− 1, h) =
∑n−1

l=h (
n− 1
l

)(1− ρ)lρn−1−l is the expected number of times that a player

receives the �bonus� (x∗n,h − δv∗n,h) in a given period. Therefore,

v∗n,h =
1
n
η(n− 1, h)(n− 1− h)

(1− δ)(n− 1− h) + δn 1
n
η(n− 1, h)(n− 1− h)

=
1
n
η(n− 1, h)

(1− δ) + δη(n− 1, h)
.
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