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Abstract

Decisions with long-term consequences require comparing utility derived from

present consumption to future welfare. But can we infer socially relevant in-

tertemporal preferences from saving behavior? I allow for a decomposition of the

present generation’s preference for the next generation into its dynastic and cross-

dynastic counterparts, in the form of welfare weights on the next generation in

the own dynasty and other dynasties. Welfare weights on other dynasties can be

motivated by a concern for sustainability, or if descendants may move or marry

outside the dynasty. With such cross-dynastic intergenerational altruism, savings

for one’s own descendants benefit present members of other dynasties, giving rise

to preference externalities. I find that socially relevant intertemporal preferences

may not be inferred from saving behavior if there is cross-dynastic intergenera-

tional altruism. I also show that the external effect of present saving decreases

over time. This means that intertemporal preferences inferred from saving be-

havior are time-inconsistent, unless cross-dynastic intergenerational altruism is

accounted for.

Keywords: Intergenerational altruism, social discounting, time-inconsistency,

declining discount rates, generalized consumption Euler equations, interdepen-

dent utility, isolation paradox.
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1 Introduction

Managing resources requires trading off the interests of different generations.

Climate policy, for example, must balance the mitigation costs incurred by

the present generation against the benefits from a stable climate that accrue

to future generations (Kolstad et al., 2014). As optimal resource management

depends on the weights assigned to each generation (Stern, 2007; Nordhaus,

2007; Drupp et al., 2018), determining the trade-off between different gen-

erations has been described as “one of the most critical problems of all of

economics” (Weitzman, 2001: 260).

Determining this trade-off depends on the sacrifice that the present gener-

ation is willing to make for future generations (Goulder and Williams, 2012;

Kelleher, 2017). Economists usually impute the social welfare function from

returns in the market on either corporate capital, equities or bonds, depend-

ing on project maturity and risk profile (Arrow et al., 1995; Gollier, 2012).

Hence, the discount rate is implied by saving behavior. However, the tradi-

tional models consider altruism only for own descendants. I find that calibra-

tion saving behavior might not reveal the sacrifice that the present generation

is willing to make if there is altruism for the descendants of others. I also

show that the discount rate consistent with saving behavior is decreasing in

the time horizon, and only over time approaches the socially desirable level.

Altruism for the descendants of others can be motivated by a concern

for sustainability, or if own descendants may move or marry (Bernheim and

Bagwell, 1988; Laitner, 1991). With such altruism, the welfare of the present

generation depends on their own utility and the welfare of the next genera-

tion across dynasties (parallel families or social groups). This paper extends

Sen (1961, 1967) and Marglin’s (1963) two-period model of intergenerational

altruism to a stationary infinite horizon setting. This allows for a novel de-

composition of intergenerational altruism into its dynastic and cross-dynastic

counterparts. Dynastic intergenerational altruism gives the own dynasty wel-

fare weights (Barro, 1974), while cross-dynastic intergenerational altruism

gives the welfare weights on all other dynasties (Figures 1a and 1b illustrate

the preference of generation 0 in dynasty 1 when there are two dynasties).
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(a) Dynastic intergenerational altruism.
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(b) Cross-dynastic intragenerational altruism.
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(c) Consequence of saving for own descendants.

Figure 1: Welfare implication of incremental utility backward in time (direc-
tion of arrows). Subscript refers to generation, superscript to dynasty.
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The network of altruistic links implies an infinite chain of concerns.

I investigate whether altruism for the next generation is reflected in the

market by considering a traditional game of saving for own immediate de-

scendants (Shapley, 1953). The game is a tractable model in which cross-

dynastic intergenerational altruism can be studied analytically. Crucially,

savings for one’s own descendants benefit the present members of the other

dynasties when they have cross-dynastic altruism (see Figure 1c), giving rise

to preference externalities.

The analysis shows the existence of a stationary Markov-perfect equilib-

rium in linear strategies with a saving rate that is inefficiently low. I also

establish that a unique subgame-perfect equilibrium in the finite horizon ver-

sion of the game exists. Furthermore, the equilibrium strategies used in these

finite horizon games go to the linear strategy when the time horizon goes to

infinity. The equilibrium saving rate in this equilibrium is increasing in in-

tergenerational altruism, both within and between dynasties. For constant

total intergenerational altruism, it is decreasing in the number of dynasties.

Assuming that the altruistic weight on each of the other dynasties goes to

zero in the limiting case, when the number of dynasties goes to infinity, the

saving rate reduces to the Brock-Prescott-Mehra saving rate (Brock, 1979,

1982; Prescott and Mehra, 1980), the rate without cross-dynastic intergener-

ational altruism. This means that cross-dynastic intergenerational altruism

is not affecting the equilibrium saving rate in the limit when the number of

dynasties goes to infinity.

In contrast, dynasties choose the efficient saving rate if they cooperate

by acting as if there is only one dynasty. Such a coalition would capture any

generation’s altruism for the next generation. I find that the efficient saving

rate is increasing in intergenerational altruism, both within and between

dynasties. The wedge between the efficient and equilibrium saving rates

measures the externality problem. I find that this wedge is positive if there

is cross-dynastic intergenerational altruism. I also establish that this result

is qualitatively robust even with intragenerational altruism, as long as the

weight on the utility of the present generation as compared to the weight

on the utility of the next generation is higher for the own dynasty than the
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other dynasties.

The wedge between the efficient and equilibrium saving rates can also

be derived from the discount functions. I find that the external effect of

present saving becomes less important over time, and vanishes only in the

limit. Cross-dynastic intergenerational altruism thus leads to different dis-

count functions in equilibrium and under efficiency. In general, the discount

rates converge only in the limit, as time goes to infinity. This means that a

dynasty’s discount rate is smaller for long-term projects, leading to a time-

inconsistency problem unless the dynasties cooperate.

Accounting for cross-dynastic intergenerational altruism beyond what is

reflected by saving behavior translates into an increase in the relative weight

on future generations. Nordhaus (2008) offers an influential market-based

calibration. Respecting the distribution that would arise following the pref-

erence of the present generation (thereby retaining Nordhaus’ setting but ab-

stracting away from crowding out of saving), I illustrate that cross-dynastic

intergenerational altruism of 10% and 20% beyond the level of intergenera-

tional altruism inferred from saving behavior imply utility discount rates of

1.2% and 0.9%, as compared to the Nordhaus rate of 1.5%. The immedi-

ate implication for policy guidelines is thus that discount rates inferred from

saving behavior should be lowered. The extent of this adjustment depends

on the degree of cross-dynastic intergenerational altruism. Even if cross-

dynastic intergenerational altruism cannot be inferred from saving behavior,

it therefore plays an important normative role.

1.1 Contribution to the literature

Beyond showing that altruism for the next generation may not be reflected

in the market, I contribute to the literature on present-biasedness. Cross-

dynastic intergenerational altruism implies time-inconsistency (for early con-

tributions on time-inconsistency, Strotz, 1955-1956; Phelps and Pollak, 1968).

Time-inconsistency has influenced the study of discounting (Weitzman, 2001;

see Arrow et al., 2013 and Groom and Hepburn, 2017), as well as procrastina-

tion, intoxication, and addiction (Asheim, 1997). My study on cross-dynastic
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intergenerational altruism makes two contributions. First, cross-dynastic in-

tergenerational altruism serves as a microfoundation for declining discount

rates in equilibrium (relating to Phelps and Pollak, 1968; Sáez-Marti and

Weibull, 2005; Galperti and Strulovici, 2017), since the external effect of

present saving weakens over time. In the cited papers, time-inconsistency

follows from intergenerational altruism being sensitive beyond the next gen-

eration of the same dynasty. In my paper, time-inconsistency is due to altru-

ism for the next generation as such. I further establish that cross-dynastic

intergenerational altruism implies constant discount rates under efficiency.

The equilibrium discount rate converges only to the lower efficient discount

rate as time goes to infinity. This follows because the external effect of

present saving vanishes only in the limit. Second, the preference formulation

permits the saving rates to be derived from generalized consumption Euler

equations (Hiraguchi, 2014; Iverson and Karp, 2018; Laibson, 1998), but for

a distinct reason: Hiraguchi (2014) and Iverson and Karp (2018) assume de-

clining discount rates when deriving the saving rate. Here, the relation is an

outcome of the game of saving.

I contribute to the literature on dynamic interdependent utility and sav-

ing behavior. Cross-dynastic intergenerational altruism implies a system of

benevolent utility functions (Pearce, 1983; Bergstrom, 1999). Recent ad-

ditions to the literature focus on static interdependent utility (Bourlès et

al., 2017), as well as dynamic interdependent utility without considering sav-

ing behavior (Millner, 2019). My paper clarifies consequences in terms of

saving. I thus relate most closely to a classical result on dynamic interde-

pendent utility and saving behavior by Sen (1961, 1967) and Marglin (1963).

They study a two-period model in which present members of dynasties are

altruistic toward own descendants and descendants in other dynasties. As in

my paper, they also find that equilibrium saving rate is inefficiently low. Sen

(1961) names it the “isolation paradox” because each dynasty would agree

collectively to save more, although no dynasty is willing to do so in “iso-

lation”. My study on cross-dynastic intergenerational altruism makes two

contributions beyond this earlier work. First, through my analysis I reinves-

tigate conditions for the “isolation paradox” to arise. Sen’s (1967) condition
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is that the relative weight on the utility of the present and next generations

is strictly larger for the own dynasty than the other dynasties. I establish

that the condition is the same in a stationary infinite horizon setting. The

intuition is that if there is a discrepancy between the relative discounting of

the first two generations then there is also a discrepancy in any two genera-

tions. Second, accounting for cross-dynastic intergenerational altruism also

exposes a limitation to, and extends, Sen’s (1967) formulation of the “isola-

tion paradox”. In Sen’s two-period model, cross-dynastic intergenerational

altruism cannot effect the decision of how much to save. This is not the case

in the stationary infinite horizon model of this paper, except in the limit

case, when the number of dynasties goes to infinity.

I also relate to three other literatures. First, the preference formulation

offers a new interpretation of discount functions (building on Bernheim and

Bagwell, 1988; Laitner, 1991; Zhang, 1994; Myles, 1997). Cross-dynastic

intergenerational altruism can be interpreted as the relative probability of

immediate descendants ending up in other dynasties, for example through

mating. Since the external effect of present saving becomes less important

over time and vanishes only in the limit, the weight on each dynasty converges

to a uniform distribution. Second, the existence of cross-dynastic intergen-

erational altruism is consistent with findings from surveys of intergenera-

tional time preferences (Cropper et al., 1991, 1992, 1994; Johanneson and

Johansson, 1997; Frederick, 2003) and experiments (Chermak and Krause,

2002; Fischer et al., 2004; Hauser et al., 2014; Molina et al., 2018; see Fehr-

Duda and Fehr, 2016 for a perspective). There is also a strong empirical

support for a smaller weight on the other dynasties in this generation than

the own dynasty (Bernhard et al., 2006 and references therein for evidence

on “parochial” altruism; see Schelling, 1995 for a perspective). This is my

conceptual basis for claiming that the large discount rates implied from sav-

ing behavior do not respect the present generation’s preference for the next

generation. Third, there is an analogy between cross-dynastic intergenera-

tional altruism towards the other dynasties and back again from the other

dynasties, and the indirect concern caused by technological spillovers from

one dynasty to another. Such linkages through technology may also lead to
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time-inconsistency (Harstad, 2019).

The paper proceeds as follows. Section 2 provides an informal motivating

example, clarifying how the preference externalities are generated. Section

3 presents the model. Section 4 derives the main results, in the context of

a wedge between the equilibrium and efficient saving rates. Section 5 es-

tablishes how the main results relate to time-inconsistency, and explains the

contributions of the paper. Section 6 establishes how the main results re-

late to interdependent utility, and explains the contributions of the paper.

Section 7 concludes with a numerical exercise, illustrating the policy impli-

cations. Appendix A contains additional proofs. Appendix B provides an

interpretation of the model if descendants may move or marry someone from

other dynasties.

2 Motivating example

Structure the problem by defining α ∈ (0, 1) as any generation’s altruism

for the next generation. Generation 0 thus assigns weights 1 to itself and

α to the next generation, so that W0 = (1 − α)u0 + αW1, where W , u and

subscript refer to welfare, utility and generation. But any future generation

t will do so in turn: Wt = (1 − α)ut + αWt+1. This leads to the following

relative weights on (u0, u1, u2, . . . ) from the perspective of generation 0: 1−
α, (1 − α) · α, (1 − α) · α2, . . . , which is proportional to (and in line with

Samuelson, 1937):

1, α, α2, . . . . (1)

This preference is stationary, so that time-consistency follows from time-

invariance. The question then, is whether the preference for the future is

reflected by saving behavior.

To illustrate the consequences of a particular network, suppose that there

are only two dynasties. Assume, for simplicity, that altruism is only inter-

generational, so that there is no altruism for contemporaries in the other

dynasty. (I show in Section 6 under which condition the main results hold

8



𝑢0
1 𝑢1
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0 𝛼𝐶 2𝛼𝐷𝛼𝐶

𝑢0
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Figure 2: Resulting discount functions with two dynasties (sequences). Wel-
fare implication of incremental utility backward in time (direction of arrows).
Subscript refers to generation, superscript to dynasty.

even if there is altruism for contemporaries in the other dynasties.) Con-

sequently, the present generation of any dynasty assigns weights 1 to itself

and α to the next generation in both dynasties. The weight on the next

generation consists of two parts, defining the network. Write α ≡ αD + αC ,

where αD and αC are dynastic and cross-dynastic intergenerational altruism.

As extreme cases, any dynasty might care only for own descendants: αD = α

(Barro, 1974), or equally for all descendants: αD = αC = α/2. It is natural

to assume that αD ≥ αC ≥ 0 (e.g., Myles, 1997), that is a dynasty cares

weakly more for its own descendants.

Consider the network implied by αC > 0. Figure 2 illustrates the prefer-

ence of generation 0 in dynasty 1, with positive weights on future generations

also in the other dynasty. These weights follow from accounting for the total

number of dynastic and cross-dynastic altruistic links forward in time. The

weights assigned by generation 0 in dynasty 1 to dynasties 1 and 2 can be

written
1, αD, α

2
D + α2

C , . . .

0, αC , 2αDαC , . . .
(2)

To see this, consider α2
D+α2

C in Figure 2. This follows because generation 0 in

9



𝑢0
2 𝑢1

2 𝑢2
2 ---

𝑢0
1 𝑢1

1 𝑢2
1 ---

𝛼𝐷 𝛼𝐷+𝛼𝐶
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(a) Instantaneous discount factors for dynasty 1 (sequence).

𝑢0
2 𝑢1
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1 𝑢2
1 ---

𝛼𝐷

(b) Instantaneous discount factors for dynasty 1 (sequence).

Figure 3: Welfare implication of incremental utility backward in time (direc-
tion of arrows). Subscript refers to generation, superscript to dynasty.
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dynasty 1 cares dynastically for generation 1 which, again, cares dynastically,

and because generation 0 in dynasty 1 cares cross-dynastically for generation

1 which, again, cares cross-dynastically. The preference of generation 0 in

the other dynasty is the mirror image of (2).

Interpret a game of saving for own immediate descendants (Shapley, 1953)

as the relevant market. In a stationary Markov-perfect equilibrium with lin-

ear strategies, generation 0 in dynasty 1 considers only the first sequence

of (2) as cross-dynastic transfers are not allowed. This gives rise to pref-

erence externalities because savings for one’s own descendants benefit the

present members of the other dynasty. Furthermore, the within-dynasty

instantaneous discount factors, αD, αD + α2
C/αD, . . . follow from αD and

(α2
D + α2

C)/αD, and are illustrated in Figure 3a. I have that αD + αC =

α ≥ αD + α2
C/αD > αD. This means that that the external effect of present

saving on the other dynasty becomes less important over time, leading to

non-stationary preferences (as illustrated by comparing Figure 3b, where in-

stead the preference of generation 1 in dynasty 1 is considered, to Figure

3a), thus being time-inconsistent if preferences are time-invariant (Strotz,

1955-1956; Halevy, 2015).

In contrast, the efficient saving captures any generation’s altruism for the

next generation. Recall that sequences 1 and 2 (from (2)) are the weights

of generation 0 in dynasty 1, and that the mirror image gives the weights of

dynasty 2. Assuming no side-transfers, it will later be verified that efficiency

in the game of saving implies equal relative importance of 1/2 on each of

the two dynasties, so that they act as if there were only one dynasty. For

dynasty 1, this gives

1/2 · 1, 1/2 · αD, 1/2 · (α2
D + α2

C), . . .

1/2 · 0, 1/2 · αC , 1/2 · 2αDαC , . . .

And symmetrically, for dynasty 2. Adding up, efficiency thus recovers se-

quence (1), the preference for the next generation.
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3 Model

Society is divided into N ≥ 2 equally populated dynasties. Index these by

i = 1, 2, . . . . Time t ≥ 0 is discrete and countably infinite. Write N =

{1, 2, . . . } and N0 = N ∪ {0} for the natural numbers without and with 0.

Generations, also indexed by t, are non-overlapping, and live for one period

only.

A consumption stream 0c
i = (ci0, c

i
1, . . . ) ≥ 0 is feasible given an initial

level of wealth xi0 ≥ 0 if there exists a wealth stream 0x
i = (xi0, x

i
1, . . . ) ≥ 0

such that

xit = cit + kit for all t ∈ N0, and (3)

xit = Akit−1 for all t ∈ N.

The present generation in dynasty i has wealth xit. The action taken by each

dynasty i is to save kit ≥ 0 for own immediate descendants. The residual,

cit, is consumed. Hence, no cross-dynastic transfers are possible. Wealth

is determined by the saving of the previous generation in the same dynasty,

kit−1, multiplied by a gross productivity parameter, A ≥ 1. Such a technology

is referred to as the AK model (Romer, 1986), and is a tractable model in

which cross-dynastic intergenerational altruism can be studied analytically.

Denote by

Xτ (x
i
0) = {0xi : xi0 = xi and 0 ≤ xit ≤ Axit−1 for all t ∈ {1, 2, . . . , τ}} (4)

the set of feasible wealth streams until time τ ∈ N. Write X(xi0) = X∞(xi0).

Hence, X(xi0) denotes the set of feasible wealth streams. Furthermore, define

xt = (x1t , x
2
t , . . . , x

N
t ) as the distribution of wealth at time t ∈ N0.

Define

c(0x
i) = (xi0 − xi1/A, xi1 − xi2/A, . . . )

as the consumption stream that is associated with 0x
i, and denote by

C(xi0) = {0ci : there is 0x
i ∈ X(xi0) s.t. 0c

i = c(0x
i)}

12



the set of feasible consumption streams.

Map consumption cit ≥ 0 into utility by the utility function u : R+ →
R ∪ {−∞} defined by:

u(cit) =

{
ln cit if cit > 0,

−∞ if cit = 0.

The present generation in dynasty i has a logarithmic utility function, which

justifies the first equality in (3). Write u(0c
i) = (u(ci0), u(ci1), . . . ) and denote

by

U(xi0) = {0ui : there is 0c
i ∈ C(xi0) s.t. 0u

i = u(0c
i)}

the set of feasible utility streams. Write U =
⋃
xi∈R+

U(xi0).

The present generation of dynasty i cares about immediate descendants

in all dynasties. I allow for a decomposition of intergenerational altruism

into its dynastic, αD, and cross-dynastic, αC , counterparts. The following

assumption on the network of altruistic links will be useful:

Assumption 1 Altruism parameters have the following restrictions: 1 >

αD + αC > 0 and αD ≥ αC/(N − 1) ≥ 0.

The restrictions embody the extreme cases: αD > αC = 0 (Barro, 1974) and

αD = αC/(N − 1) > 0 (e.g., Myles, 1997), weight only on own immediate

descendants and equal weight on the immediate descendants of all.

In particular, the preference of each dynasty is represented by the welfare

function W i. Denote by W−i the vector of welfare in other dynasties. Assume

that there exists an aggregator function V : (R ∪ {−∞})N+1 → R ∪ {−∞}
defined by:

V (ui,W i,W−i) = (1− αD − αC)ui + αDW
i +

αC
N − 1

∑

j 6=i
W j, (5)

where ui is the utility of the present generation in dynasty i, W i is the welfare

of the immediate descendants of the same dynasty, and W j is the welfare of

the immediate descendants of another dynasty. Assume furthermore that

V = −∞ if ui = −∞.

13



The aggregator function, V , implicitly defines the welfare function. It

assumes that intergenerational altruism is constant, non-paternalistic and

sensitive only for the next generation, in the sense that the welfare of the

present generation in dynasty i is derived from own utility and the welfare

of immediate descendants in the different dynasties (following Ray, 1987, for

the within-dynasty case).

I show in Section 6 that the main results hold qualitatively even with

intragenerational altruism as long as the weight on the utility of the present

generation as compared to the weight on the utility of the next generation

is higher for the own dynasty than the other dynasties. To ease exposition,

I abstract from these complications when deriving the main results.

3.1 Equilibrium concept

The strategic setting is how to best respond to the present saving of other

dynasties and the future saving of all dynasties. I defined in (4) the set

of feasible wealth streams until time τ for a single dynasty. Write the set

of histories as hτ (x0) = Xτ (x
1
0) × · · · × Xτ (x

i
0) × · · · × Xτ (x

N
0 ), as initial

wealth can vary. This gives h0(x0) = x0. When deciding how much to

save, the dynasties see the entire history, hτ . Write the union of histories as

H(x0) =
⋃
τ∈N0

hτ (x0). Map the union of histories into present saving by a

strategy ki,σ : H(x0)→ R+. Unimprovability is defined such that no strategy

that differs from it after only one history can increase welfare. The strategy

is a subgame-perfect equilibrium (SPE) if and only it, for any i and for any

history hτ , is unimprovable. This follows because the game is continuous at

infinity.

I restrict attention to Markovian strategies (Maskin and Tirole, 2001).

Under this restriction, there exists a unique equilibrium in linear strategies.

This equilibrium is the limit of the unique unrestricted equilibrium of a finite

horizon game when the horizon goes to infinity. Define a Markovian strategy

ki,µ : RN
+ → R+ as a function from present wealth xt to present saving, where

xt contains all payoff-relevant information at time t (the last entry into hτ ).

The strategy is also stationary because it is independent of calendar time.

14



Denote by x and x+1 the present and next period wealth levels. Write

optimal behavior in the form of a value function from dynamic programming.

In particular, a value function U i : RN
+ → R ∪ {−∞} defined over wealth

levels satisfies

U i(x) = max
ki∈[0,xi]

V (ui, U i
+1, U

−i
+1)

= max
ki∈[0,xi]

{
(1− αD − αC)ui + αDU

i
+1 +

αC
N − 1

∑

j 6=i
U j
+1

}
, (6)

where ui = u(xi − ki) is defined as the utility of the present generation in

dynasty i, U i = U i(A(xi − ki), x−i+1) the induced welfare of the immediate

descendants of the same dynasty, and U j = U j(x−i+1, A(xi− ki)) the induced

welfare of the immediate descendants of another dynasty.

A Markovian strategy is unimprovable if it satisfies ki,µ(x) = argmaxki U
i(x)

for all i and wealth x. As above, it is an SPE if and only if it is unimprov-

able. A stationary Markovian strategy profile that is an SPE is a stationary

Markov-perfect equilibrium (MPE).

4 Main results

4.1 Equilibrium

I now report the main results. I have the following theorem:

Theorem 1 Under Assumption 1, there exists a stationary MPE where all

dynasties use the linear strategy:

ki,µ(xt) = sxit (7)

for all i and xt, where the constant saving rate, s, is given by

s = αD +
α2
C

(N − 1)(1− αD − αC) + αC
. (8)

This is the limit of the unique finite time horizon SPE when time goes to
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infinity.

Proof. The proof of existence is an application of the unimprovability prop-

erty. Assume that all generations in dynasties j 6= i and all future generations

in dynasty i use the linear strategy (7). This gives a marginal propensity to

consume of 1− s.
Write:

y ≡ U i(xt),

zj ≡ U j(xt),

u ≡ ln((1− s)xit),
vj ≡ ln((1− s)xjt).

By observing that the gross growth rate is sA, it follows from (6):

y = (1− αD − αC)u+ αD (y + ln(sA)) +
αC

N − 1

∑

`

(
z` + ln(sA)

)
,

zj = (1− αD − αC)vj + αD
(
zj + ln(sA)

)

+
αC

N − 1

(
(y + ln(sA)) +

∑

` 6=j

(
z` + ln(sA)

) )
,

for all j. Solving the set of these equations, yield:

y =
((N − 1)(1− αD)− (N − 2)αC)u+ αC

∑
` v

`

(N − 1)(1− αD) + αC
(9)

+
αD + αC

1− αD − αC
ln(sA),

zj =
((N − 1)(1− αD)− (N − 2)αC)vj + αC(u+

∑
`6=j v

`)

(N − 1)(1− αD) + αC
(10)

+
αD + αC

1− αD − αC
ln(sA),

for all j.

Insert for (9) to (10) in (6). The problem is to show that kit = sxit
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maximizes

(1− αD − αC) ln(xit − kit) + αD
((N − 1)(1− αD)− (N − 2)αC) ln((1− s)Akit)

(N − 1)(1− αD) + αC

+ αC
αC ln((1− s)Akit)

(N − 1)(1− αD) + αC
.

The first derivative is:

−1− αD − αC
xit − kit

+
αD((N − 1)(1− αD)− (N − 2)αC) + α2

C

(N − 1)(1− αD) + αC

1

kit
,

which yields the first-order condition:

1− αD − αC
xit − kit

=
αD((N − 1)(1− αD)− (N − 2)αC) + α2

C

(N − 1)(1− αD) + αC

1

kit
,

Therefore:

kit
xit

= αD +
α2
C

(N − 1)(1− αD − αC) + αC
= s,

which gives kit = sxit.

The second derivative is:

−1− αD − αC
(xit − kit)2

− αD((N − 1)(1− αD)− (N − 2)αC) + α2
C

(N − 1)(1− αD) + αC

1

(kit)
2
,

and is strictly negative for kit ∈ (0, xit). This verifies that the problem is

concave. kit = sxit therefore maximizes the problem. There is no profitable

deviation for the present generation in dynasty i when all generations of dy-

nasties j and all future generations in dynasty i use the linear strategy (7).

It is verified that there exists a stationary MPE where all dynasties use a

linear strategy. Hence, the saving of one dynasty is independent of the wealth

levels of other dynasties.

Proving that (7) is the limit of the unique finite time horizon SPE when

time goes to infinity requires additional notation introduced in Section 5. A

proof is delegated to Appendix A. It is shown that there exists a unique SPE
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in the finite horizon game for any horizon. The equilibrium strategies used

in these finite horizon games go to the linear strategy with s given by (8)

when the horizon goes to infinity.

I obtain the following corollary, describing the properties of the equilib-

rium saving rate, s:

Corollary 1 Under Assumption 1, the equilibrium saving rate, s, has the

following properties:

(i) s = αD if αC = 0.

(ii) s is increasing in αD.

(iii) s is increasing in αC.

(iv) s is decreasing in N if αC > 0.

(v) s→ αD if N →∞.

This follows from expression (8), and is proved in Appendix A.

Without cross-dynastic intergenerational altruism, the saving rate reduces

to the Brock-Prescott-Mehra rate of αD (Brock, 1979, 1982; Prescott and

Mehra, 1980). This follows because the cross-dynastic intergenerational al-

truism of the descendants in the other dynasties in the next generation has

(almost) no concern for dynasty i. The saving rate is decreasing in the num-

ber of dynasties, as it increases the externality problem. Since the altruistic

weight on other dynasties goes to zero in the limiting case, when the number

of dynasties goes to infinity, the saving rate reduces to the Brock-Prescott-

Mehra saving rate. This means that cross-dynastic intergenerational altruism

is not affecting the equilibrium saving rate when the number of dynasties is

infinitely large.

4.2 Efficiency

Recall that the equilibrium saving rate is inefficient due to the preference

externalities. Interpret the efficient saving rate as the saving rate that would
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emerge if all dynasties bargain over how much to save for immediate de-

scendants, under the assumption of cooperation also in the future (and by

the assumptions on technology, also no side-transfers). This means that the

present representatives of all dynasties come together with the aim of re-

alizing a Pareto optimal trajectory for the present generation, with their

preferences also including the preference for the future.

This is a normative setting similar to the cooperative solution to region-

ally integrated assessment models of the climate and economy (e.g., Nordhaus

and Yang, 1996), with the exception that these models do not account for

cross-dynastic intergenerational altruism (see Milgrom, 1993 and Hausman,

2011 for perspectives on preference satisfaction in behavioral welfare anal-

ysis). More precisely, I derive a stationary saving rate that, if used also in

the future, gives a Pareto optimal trajectory for the present generation. By

application of Negishi’s (1960) theorem, the efficient saving rate is shown to

be equal to the equilibrium saving rate if the dynasties act as if there is only

one dynasty.

I have the following theorem:

Theorem 2 Under Assumption 1, saving according to

kit = s∗xit (11)

for all i and xt, where the constant saving rate, s∗, is given by

s∗ = αD + αC , (12)

implies a Pareto optimal trajectory for the present generation, given that the

rule is used in the future.

Proof. Define the Negishi weights by φi ≥ 0 for all i and
∑

i φ
i = 1.

Cooperation in all periods implements the maximum of

∑

i

φiW i(tu) (13)

subject to 0 ≤ ∑i c
i
t+τ ≤

∑
i x

i
t+τ for all τ ∈ N0. Negishi’s (1960) theorem
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states that all Pareto optimal allocations (for the present generation, in the

case of Theorem 2) can be obtained by varying the vector of φi’s. The

following proof is an application of this result.

Replace s by s∗ (from expression (12)) in y, zj, u and vj from the proof

of Theorem 1. Denote the new expressions by y∗, z∗j, u∗ and v∗j, and insert

these in (13). The problem is to show that kit = s∗xit for all i maximizes

∑

i

φi

[
(1− αD − αC) ln(xit − kit)

+ αD

(((N − 1)(1− αD)− (N − 2)αC) ln((1− s∗)Akit)
(N − 1)(1− αD) + αC

+
αC
∑

` ln((1− s∗)Ak`t)
(N − 1)(1− αD) + αC

)

+
αC

N − 1

∑

j 6=i

(((N − 1)(1− αD)− (N − 2)αC) ln((1− s∗)Akjt )
(N − 1)(1− αD) + αC

+
αC(ln((1− s∗)Akit) +

∑
` 6=j ln((1− s∗)Ak`t))

(N − 1)(1− αD) + αC

)]
.

The first derivative with respect to kit is:

− φi1− αD − αC
xit − kit

+
(
φi
αD((N − 1)(1− αD)− (N − 2)αC) + α2

C

(N − 1)(1− αD) + αC

+
∑

j 6=i
φj
αDαC + αC

N−1(((N − 1)(1− αD)− (N − 2)αC) + (N − 2)αC)

(N − 1)(1− αD) + αC

) 1

kit
,

which yields the first-order condition:

1− αD − αC
xit − kit

=
αD + αC

kit
,

when φi = 1/N for all i. To see this, note that the terms multiplied by 1/kit

can be written:

(αD + αC)
(N − 1)(1− αD) + αC
(N − 1)(1− αD) + αC

.
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Therefore:

kit
xit

= αD + αC = s∗,

which gives kit = s∗xit.

The second derivative with respect to kit is:

−1− αD − αC
(xit − kit)2

− αD + αC
(kit)

2
,

and is strictly negative for kit ∈ (0, xit). All cross-derivatives equal 0, imply-

ing that the problem is concave. kit = s∗xit therefore maximizes the problem.

The kjt ’s follow by symmetry.

I obtain the following corollary, describing the properties of the efficient

saving rate, s∗:

Corollary 2 Under Assumption 1, the efficient saving rate, s∗, has the fol-

lowing properties:

(i) s∗ = αD if αC = 0.

(ii) s∗ is increasing in αD.

(iii) s∗ is increasing in αC.

This follows from expression (12).

Define by

s∗ − s = αC −
α2
C

(N − 1)(1− αD − αC) + αC
(14)

the wedge between the efficient and equilibrium saving rates. I obtain the

following corollary, describing the wedge, s∗ − s:

Corollary 3 Under Assumption 1, the equilibrium saving rate, s, is ineffi-

cient if αC > 0.
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This follows from expression (14), and is proved in Appendix A.

The efficient saving rate, s∗, is increasing in intergenerational altruism. It

reduces to the Brock-Prescott-Mehra rate of αD without cross-dynastic in-

tergenerational altruism. With cross-dynastic intergenerational altruism, the

efficient saving rate, s∗, is always larger than the equilibrium saving rate, s.

It follows from Corollaries 1 and 2 that this wedge increases to αC in the

limit case, when the number dynasties goes to infinity.

The present generation’s preference for future generations is reflected by

s∗, and can only be inferred from saving behavior when there is no cross-

dynastic intergenerational altruism, so that s∗ − s = 0. Efficient saving

may therefore translate into an increase in the relative weight on all future

generations when accounting for cross-dynastic intergenerational altruism.

As illustrated later, the policy implication could be a lowering of discount

rates inferred from saving behavior in the market, even if cross-dynastic

intergenerational altruism is small.

5 Time-inconsistency

I now establish how the main results relate to time-inconsistency and present-

biasedness (for early contributions, Strotz, 1955-1956; Phelps and Pollak,

1968), which has influenced the study of discounting (Weitzman, 2001; see

Arrow et al., 2013 and Groom and Hepburn, 2017), as well as procrastination,

intoxication, and addiction (Asheim, 1997). It will prove useful to first derive

a non-recursive formulation of the welfare function W i.

I have the following theorem:

Theorem 3 Under Assumption 1, welfare can be written non-recursively:

W i(tu) = (1− αD − αC)
( ∞∑

τ=0

∆τu
i
t+τ +

∑

j 6=i

∞∑

τ=0

Γτu
j
t+τ

)
, (15)
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with discount functions

∆τ =
1

N

(
(αD + αC)τ + (N − 1)(αD −

αC
N − 1

)τ
)
, (16)

Γτ =
1

N

(
(αD + αC)τ − (αD −

αC
N − 1

)τ
)
. (17)

Proof. The welfare function (15) follows by repeated substitution of W i and

W j’s into V from (5), keeping in mind that V = −∞ if ui = −∞. Discount

functions (16) and (17) are proven by induction.

The base case: Discount functions (16) and (17) hold for τ = 0 since

∆0 = 1 and Γ0 = 0.

The step case: Suppose that discount functions (16) and (17) hold for

τ − 1. Then,

∆τ = αD∆τ−1 +
αC

N − 1
(N − 1)Γτ−1

= αD∆τ−1 + αCΓτ−1

=
1

N

(
αD(αD + αC)τ−1 + αD(N − 1)(αD −

αC
N − 1

)τ−1

+ αC(αD + αC)τ−1 − αC(αD −
αC

N − 1
)τ−1

)

=
1

N

(
(αD + αC)τ + (N − 1)(αD −

αC
N − 1

)τ
)
,

by inserting for ∆τ−1 and Γτ−1. And,

Γτ =
αC

N − 1
∆τ−1 + (αD +

(N − 2)αC
N − 1

)Γτ−1

=
1

N

( αC
N − 1

(αD + αC)τ−1 +
αC

N − 1
(N − 1)(αD −

αC
N − 1

)τ−1

+ (αD +
(N − 2)αC
N − 1

)(αD + αC)τ−1 − (αD +
(N − 2)αC
N − 1

)(αD −
αC

N − 1
)τ−1

)

=
1

N

(
(αD + αC)τ − (αD −

αC
N − 1

)τ
)
,

by inserting for ∆τ−1 and Γτ−1. This proves that discount functions (16) and

(17) hold for all τ ∈ N0.

It follows from (16) and (17) that ∆τ + (N − 1)Γτ = (αD + αC)τ . This
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ensures that W i is well-defined on UN .

The discount functions (16) and (17) give the weights the present generation

of dynasty i puts on the utility of generation τ in the same dynasty and each

of the other dynasties. They imply the following weights on the first two

generations:

∆0 = 1, ∆1 = αD,

Γ0 = 0, Γ1 =
αC

N − 1
.

Figure 2 illustrates these weights for N = 2. More generally, I have that

∆τ ≥ Γτ for all τ ∈ N.

The following observation will be helpful in interpreting the term struc-

ture of the discount rates. The total weight on all other dynasties, (N −
1)Γτ+1, is of importance to the construction of ∆τ+2 (in the proof of Theo-

rem 3). It also offers a new perspective on the limiting case of Theorem 1,

when the number of dynasties is finite, but goes infinity. Using expressions

(16) and (17), the link between ∆τ and ∆τ+2 via (N −1)Γτ+1 can be written

αC
N − 1

(N − 1)
αC

N − 1
=

α2
C

N − 1
→ 0 as N →∞. (18)

The intuition is that although dynasty i gives weight αC on the other dynas-

ties, the other dynasties give weight αC/(N − 1) to dynasty i. This weight

goes to zero as the number of dynasties goes to infinity (see also Asheim and

Nesje, 2016).

5.1 Declining discount rates

To see that cross-dynastic intergenerational altruism implies declining dis-

count rates in equilibrium, consider the non-recursive formulation of the wel-

fare function (15). Importantly, note that since the behavior of one dynasty

does not depend on the utilities of other dynasties (from Theorem 1), only

the first summation is relevant for time-inconsistency.
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Assume for the moment that αC = 0. Then, ∆τ = ατD and Γτ = 0 for

all τ ∈ N0. Inserting in (15) gives the dynastic intergenerational altruism

welfare function:

(1− αD)
∞∑

τ=0

ατDu
i
t+τ .

Since ∆τ/∆τ−1 = αD for all τ ∈ N, all generations weight within-dynasty

utility similarly. This implies a geometric discount function (i.e., constant

discount rates). Hence, the preference of each dynasty is time-consistent.

This is no longer the case with cross-dynastic intergenerational altruism. I

have the following propositions, which generalizes the claim related to Figure

3a in Section 2:

Proposition 1 Under Assumption 1, the preference of each dynasty is non-

stationary, and thus time-inconsistent, if αC > 0.

This follows from expressions (16) and (17), and is proved in Appendix A.

Proposition 2 Under Assumption 1,

(i) ∆τ/∆τ−1 converges to αD+αC only in the limit, as time goes to infinity,

if αD > αC/(N − 1) > 0.

(ii) ∆τ/∆τ−1 converges to αD + αC immediately if αD = αC/(N − 1).

This follows from the proof of Proposition 1.

There are two cases: If αD > αC/(N − 1), then ∆τ/∆τ−1 is increasing from

αD and converges only in the limit to αD +αC , so that all generations weight

within-dynasty utility differently. This is a discount function with declining

discount rates. If αD = αC/(N − 1), ∆τ/∆τ−1 is increasing from αD and

converges immediately to αD+αC , so that only subsequent generations weight

within-dynasty utility differently. This implies a “quasi-hyperbolic” discount

function. In both cases, the preference of each dynasty is time-inconsistent.
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This observation differs from Phelps and Pollak (1968) and Sáez-Marti

and Weibull (2005), and more recently Galperti and Strulovici (2017), since

time-inconsistency in these papers follows from intergenerational altruism

being sensitive beyond the next generation of the same dynasty. Here, time-

inconsistency is due to altruism for the next generation as such. In line with

expression (18), the weight each other dynasty gives to a dynasty goes to zero

as the number of dynasties goes to infinity. (Consult the proofs of Theorem 3

and Proposition 1.) This leads to geometric discounting of the own dynasty

only in the limit.

In contrast, cross-dynastic intergenerational altruism implies constant

discount rates under efficiency (Theorem 2). This can be seen from the dis-

count functions (16) and (17), where (∆τ+(N−1)Γτ )/(∆τ−1+(N−1)Γτ−1) =

αD + αC for all τ ∈ N. From the discussion above, it is clear that ∆τ/∆τ−1

is increases from αD and approaches αD + αC .

An intuition for why efficient and equilibrium discounting agree in the

limit if αD > αC/(N − 1) can be obtained from the discount functions as

time goes to infinity. In a version of the model in Appendix B, I find that

the external effect of present saving becomes less important over time, and

vanishes only in the limit. This establish that a dynasty’s discount rate is

smaller for the long term. More precisely, I establish that limτ→∞∆τ/(∆τ +

(N − 1)Γτ ) = 1/N . Hence, one dynasty’s present value of a gain at time

t converges to 1/N of the social value of this benefit, when t approaches

infinity.

5.2 Generalized consumption Euler equations

An alternative starting point for deriving the stationary saving rate is Laibson

(1998). Laibson studies the extent of undersaving by a “quasi-hyperbolic”

discounter that is sophisticated, in the sense that he takes into account that

his preference is time-inconsistent. Krusell et al. (2002) integrate Laibson’s

insight into standard discrete-time macroeconomic models. (For continuous-

time formulations, see, e.g., Karp, 2007 and Ekeland and Lazrak, 2010.)
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Hiraguchi (2014) and Iverson and Karp (2018), that are closer to my contri-

bution, generalize Krusell et al. (2002) to an economy exhibiting declining

discount rates.

The equilibrium saving rate, s from expression (8), can be derived from

the generalized consumption Euler equation of Hiraguchi (2014) and Iverson

and Karp (2018):

s =

∑∞
τ=1 ∆τ∑∞
τ=0 ∆τ

, (19)

but for a distinct reason. I have the following proposition:

Proposition 3 Under Assumption 1, the equilibrium saving rate, s from

expression (8), follows from the Hiraguchi-Iverson-Karp solution for s (19).

This follows from expression (16), and is proved in Appendix A.

Hiraguchi (2014) and Iverson and Karp (2018) assume declining discount

rates when deriving the saving rate. Here, the relation is an outcome of

the game of saving. This follows since the behavior of one dynasty does not

depend on the utilities of other dynasties (from Theorem 1). It is as if society

consists of N parallel dynasties with declining discount rates according to

expression (16).

6 Interdependent utility

I now establish how the main results relate to interdependent utility (Pearce,

1983; Bergstrom, 1999), focusing on a classical result on dynamic interde-

pendent utility and saving behavior (Sen, 1961, 1967; Marglin, 1963). It will

prove useful to first illustrate the qualitative robustness of the main results

by considering two formulations of intragenerational altruism replacing the

aggregator function, V , from expression (5).
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6.1 Paternalistic intragenerational altruism

Suppose that the present generation of dynasty i cares also about the util-

ity of contemporaries in the other dynasties. I allow for a decomposition

of intragenerational altruism into its dynastic, αA, and cross-dynastic, αB,

counterparts. As argued in the Introduction, there is strong empirical sup-

port for αA > αB/(N − 1).

The following additional assumption on the network of altruistic links will

be useful:

Assumption 2 Altruism parameters have the following restrictions: αA +

αB = 1 and αA ≥ αB/(N − 1) ≥ 0.

The restrictions embody the extreme cases: αA > αB = 0 (Section 3) and

αD = αB/(N−1) > 0, weight only on own dynasty contemporaries and equal

weight on all contemporaries.

The preference of each dynasty is represented by the welfare function W i.

Denote by u−i and W−i the vectors of utility and welfare in other dynasties.

Assume that there exists an aggregator function V : (R ∪ {−∞})2N → R ∪
{−∞} defined by:

V (ui, u−i,W i,W−i) =(1− αD − αC)
(
αAu

i +
αB

N − 1

∑

j 6=i
uj
)

+ αDW
i +

αC
N − 1

∑

j 6=i
W j,

(20)

where ui is the utility of the present generation in dynasty i, uj is the utility of

the present generation of another dynasty, W i is the welfare of the immediate

descendants of the same dynasty, and W j is the welfare of the immediate

descendants of another dynasty. Assume furthermore that V = −∞ if ui =

−∞ or, if αB > 0, uj = −∞.

I have the following proposition:

Proposition 4 Under Assumptions 1 and 2, welfare can be written non-
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recursively:

W i(tu) = (1− αD − αC)
( ∞∑

τ=0

∆τu
i
t+τ +

∑

j 6=i

∞∑

τ=0

Γτu
j
t+τ

)
, (21)

with discount functions

∆τ =
1

N

(
αA
(
(αD + αC)τ + (N − 1)(αD −

αC
N − 1

)τ
)

(22)

+ αB
(
(αD + αC)τ − (αD −

αC
N − 1

)τ
))
,

Γτ =
1

N

( αB
N − 1

(
(αD + αC)τ + (N − 1)(αD −

αC
N − 1

)τ
)

(23)

+ (αA +
(N − 2)αB
N − 1

)
(
(αD + αC)τ − (αD −

αC
N − 1

)τ
))
.

This follows from an application of the proof of Theorem 3, and is proved in

Appendix A.

The discount functions (22) and (23) give the weights the present generation

of dynasty i puts on the utility of generation τ in the same dynasty and each

of the other dynasties. They imply the following weights on the first two

generations:

∆0 = αA, ∆1 = αDαA + αC
αB

N − 1
,

Γ0 =
αB

N − 1
, Γ1 =

αC
N − 1

αA +
(
αD +

(N − 2)αC
N − 1

) αB
N − 1

.

Figures 4a and 4b illustrate the weights for αA = 1 (identical to Figure 2)

and αA according to Assumption 2 for N = 2. To see this, consider αA and

αB in Figure 4b. This follows directly from Assumption 2 as the weights

the present generation of dynasty i put on itself and contemporaries in the

other dynasty. The weight on the next generation in the same dynasty is

αDαA + αCαB, and follows because dynasty i cares dynastically and cross-

dynastically. By Assumption 2, the dynastic link is weighted by the share

put on the own dynasty utility and the cross-dynastic link by the share put
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on the other dynasty utility. The weight αDαB +αCαA follows by symmetry.

More generally, I have that ∆τ ≥ Γτ for all τ ∈ N0.

I have the following propositions, generalizing Propositions 1 and 2:

Proposition 5 Under Assumptions 1 and 2, the preference of each dynasty

is time-inconsistent, and thus time-inconsistent, if αA > αB/(N − 1) and

αC > 0.

This follows from expressions (22) and (23), and is proved in Appendix A.

Proposition 6 Under Assumptions 1 and 2,

(i) ∆τ/∆τ−1 converges to αD+αC only in the limit, as time goes to infinity,

if αA > αB/(N − 1) and αD > αC/(N − 1) > 0.

(ii) ∆τ/∆τ−1 converges to αD + αC immediately if αA > αB/(N − 1) and

αD = αC/(N − 1).

This follows from the proof of Proposition 5.

Assuming αA > αB/(N − 1), there are two cases: If αD > αC/(N − 1),

then ∆τ/∆τ−1 is increasing from αD + αCαB/((N − 1)αA) and converges

only in the limit to αD + αC , so that all generations weight within-dynasty

utility differently. This is a discount function with declining discount rates.

If αD = αC/(N − 1), ∆τ/∆τ−1 is increasing from αD + αCαB/((N − 1)αA)

and converges immediately to αD + αC , so that only subsequent generations

weight within-dynasty utility differently. This implies a “quasi-hyperbolic”

discount function. In both cases, the preference of each dynasty is time-

inconsistent.

I obtain the following corollary, describing the equilibrium and efficient

saving rates:
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(a) Non-paternalistic cross-dynastic intergenerational altruism.
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(b) Paternalistic cross-dynastic intragenerational altruism.
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(c) Non-paternalistic cross-dynastic intragenerational altruism.

Figure 4: Resulting discount functions with two dynasties (sequences) for
alternative preference formulations. Welfare implication of incremental util-
ity backward in time (direction of arrows). Subscript refers to generation,
superscript to dynasty.
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Corollary 4 Under Assumptions 1 and 2, the equilibrium and efficient sav-

ing rates can be written:

s = αD + αC
αAαC + αB(1− αD)

αA((N − 1)(1− αD − αC) + αC) + αBαC
, (24)

s∗ = αD + αC . (25)

This follows from expressions (22) and (23), and is proved in Appendix A.

It then follows from Assumptions 1 and 2 that s∗ − s ≥ 0. Furthermore,

s∗ − s > 0 if αA > αB/(N − 1) and αC > 0. This means that all results

of the main text hold qualitatively even with paternalistic cross-dynastic

intragenerational altruism as long as the weight on the other dynasties in this

generation is smaller than the weight on the own dynasty in this generation.

Somewhat surprisingly for the stationary infinite horizon setting, it re-

duces to the following condition for s∗ > s:

∆0

∆1

>
Γ0

Γ1

,

that the relative weight on the utility of the present and next generations is

strictly larger for the own dynasty than for the other dynasty. Equilibrium

saving is thus inefficient because of the discrepancy between the dynastic

and cross-dynastic discount functions, but only in the first two generations.

The intuition follows from Assumptions 1 and 2. If there is a discrepancy

between the relative discounting of the first two generations then there is

also a discrepancy in any two generations.

6.2 Non-paternalistic intragenerational altruism

Suppose that the present generation of dynasty i now cares cross-dynastically

only for the other dynasties in the present generation rather than the next

generation. While there is less support for such preferences, it illustrates the

limit of the analysis.

The following alternative assumption on the network of altruistic links
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will be useful:

Assumption 3 Altruism parameters have the following restrictions: 1 >

αD + αE > 0 and αD ≥ αE/(N − 1) ≥ 0.

The restrictions embody the extreme cases: αD > αE = 0 (Barro, 1974) and

αD = αC/(N−1) > 0, weight only on own immediate descendants and equal

weight on immediate descendants in the own dynasty and contemporaries in

the other dynasties.

The preference of each dynasty is represented by the welfare function W i.

Denote by W−i the vector of welfare in other dynasties. Assume that there

exists an aggregator function V : (R ∪ {−∞})N+1 → R ∪ {−∞} defined by:

V (ui,W i,W−i) = (1− αD − αE)ui + αDW
i +

αE
N − 1

∑

j 6=i
W j, (26)

where ui is the utility of the present generation in dynasty i, W i is the

welfare of the immediate descendants of the same dynasty, and W j is the

welfare of the present generation of another dynasty. Assume furthermore

that V = −∞ if ui = −∞.

I have the following proposition:

Proposition 7 Under Assumption 3, welfare can be written non-recursively:

W i(tu) = (1− αD − αE)
( ∞∑

τ=0

∆τu
i
t+τ +

∑

j 6=i

∞∑

τ=0

Γτu
j
t+τ

)
, (27)

with discount functions

∆τ = ατD, (28)

Γτ =
αE

N − 1
ατD, (29)

when ∆0 is normalized to 1.

This follows from an application of the proof of Theorem 3, and is proved in

Appendix A.
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The discount functions (28) and (29) give the weights the present generation

of dynasty i puts on the utility of generation τ in the same dynasty and each

of the other dynasties. They imply the following weights on the first two

generations:

∆0 = 1, ∆1 = αD,

Γ0 =
αE

N − 1
, Γ1 =

αE
N − 1

αD.

Figure 4c illustrates these weights for N = 2. To see this, consider the weight

the present generation of dynasty i puts on itself. Since cross-dynastic in-

tragenerational altruism is reciprocal, this weight is (1 + αE + α2
E + . . . ) =

1/(1− αE). Contemporaries in the other dynasty are additionally weighted

cross-dynastically, αE(1 + αE + α2
E + . . . ) = αE/(1 − αE). Both dynas-

ties care dynastically about the next next generation, so that the resulting

weights are αD/(1 − αE) for dynasty i and αEαD/(1 − αE) for dynasty j.

Multiply through by 1 − αE to ensure ∆0 = 1. More generally, I have that

∆τ > Γτ for all τ ∈ N0.

I obtain the following corollary, describing the equilibrium and efficient

saving rates:

Corollary 5 Under Assumption 3, the equilibrium and efficient saving rates

can be written:

s = αD, (30)

s∗ = αD. (31)

This follows from expressions (28) and (29).

Hence, s∗−s = 0 for all αE. This means that cross-dynastic intragenerational

altruism alone is not sufficient for deriving the main results. Cross-dynastic

altruism needs to be sensitive to the welfare of future generations.
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This reduces to the following condition, implying s∗ = s:

∆0

∆1

=
Γ0

Γ1

,

that the relative weights on the utility of the present and next generations

are equal for the own dynasty and the other dynasties. Equilibrium saving

is efficient because of the similarity between the dynastic and cross-dynastic

discount functions.

6.3 The “isolation paradox”

Sen (1961, 1967) and Marglin (1963) developed a model of dynamic inter-

dependent utility and saving (see Robson and Szentes, 2014 for a recent

addition to this literature). In the terminology of this paper, they study a

two-period model in which present members of dynasties are altruistic to-

ward own descendants and descendants in other dynasties. Each dynasty

decide how much to save for own immediate descendants. As in the present

paper, the equilibrium saving rate is inefficiently low.

Sen (1961) names it the “isolation paradox” because each dynasty would

agree collectively to save more, although no dynasty is willing to do so in

“isolation” (borrowing Newbery’s 1990 explanation). Attempting to solve

this problem, Sen (1967) considers a bargain between all dynasties, aiming at

realizing a Pareto optimal trajectory for the present generation. The efficient

saving rate, s∗, can be interpreted as the saving rate that would emerge if

all the dynasties bargain over how much to save for immediate descendants.

Thus, the interpretation resembles that of the “isolation paradox” literature.

In Sen’s two-period model of within-dynasty saving (see also Lind, 1964),

the equilibrium saving rate, s, is inefficient if the relative weight on the utility

of the present and next generations is strictly larger for the own dynasty than

for the other dynasties. Using my notation, that is

∆0

∆1

>
Γ0

Γ1

. (32)

It follows from the discussion above that this condition is equal to the con-
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dition for s∗ > s. Sen’s (1967) condition thereby generalizes to a stationary

infinite horizon setting:

Remark 1 Under Assumptions 1 and 2, or Assumption 3, the condition for

the “isolation paradox” to arise in Sen’s two-period model, given by expression

(32), is equal in the stationary infinite horizon model.

Hence, only the utility weights in the first two generations are relevant for

determining whether equilibrium saving is inefficient. The intuition follows

from Assumptions 1 and 2, or Assumption 3. If there is a discrepancy be-

tween the relative discounting of the first two generations then there is also

a discrepancy in any two generations.

Accounting for cross-dynastic intergenerational altruism also exposes a

limitation to, and extends, Sen’s (1967) “isolation paradox”. In Sen’s two-

period model, cross-dynastic intergenerational altruism cannot effect the de-

cision of how much to save. This is not the case in the model of this paper,

except in the limit case, when the number of dynasties goes to infinity:

Remark 2 Under Assumption 1, αC affects the decision of how much to

save, except in the limit as N → ∞. In Sen’s two-period model this is not

the case for any N .

7 Concluding remarks

In this paper, I ask whether the trade-off between present utility and fu-

ture welfare can be inferred from saving behavior. Answering this ques-

tion, I study a setting with cross-dynastic intergenerational altruism. Cross-

dynastic intergenerational altruism is the welfare weight on the next genera-

tion in other dynasties. It can be motivated by a concern for sustainability,

or if descendants move or marry outside the dynasty. Crucially, savings for

one’s own descendants benefit present members of other dynasties. This gives

rise to preference externalities because the other dynasties also care cross-

dynastically. I show that intergenerational altruism may not be inferred from
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Figure 5: Implications for the relative weights by changes in the wedge be-
tween the efficient and equilibrium saving, s∗− s. Assume that a generation
is 30 years and that N → ∞. From Nordhaus (2008): αD = 0.98530. The
wedge, which is a measure of preference externalities, is given by s∗−s→ αC .
Consider cases αC = 0, 0.1αD, and 0.2αD.
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saving behavior as long as the relative weight on the utility of the present

and next generations is strictly larger for the own dynasty than the other

dynasties. I also find that the external effect of present saving decreases over

time. This implies that the utility discount rate consistent with saving be-

havior is decreasing. In general, this discount rate converges to the efficient

level only in the limit, as time goes to infinity.

Yet, the utility discount rate in public guidelines is typically informed by

saving behavior (OECD, 2018). To illustrate the consequence of the adoption

of such discount rates, assume that a generation is 30 years. Assume fur-

thermore that the number of dynasties goes to infinity, N → ∞. Nordhaus

(2008) offers an influential-market based calibration. According to Nord-

haus, the relative weight on future generations can then be expressed as

s → αD = 0.98530 ≈ 64%. The main results gave the following wedge be-

tween the efficient and equilibrium saving rates: s∗−s→ αC . This measures

the preference externalities due to cross-dynastic intergenerational altruism.

Figure 5a exemplifies the shift of relative weights forward in time by ac-

counting for cross-dynastic intergenerational altruism (s∗ − s → αC , with

αC = 0, 0.1αD and 0.2αD, respectively), thereby correcting the externality

problem. From the restriction that αC is less than or equal to (N − 1)αD,

it is clear that I consider very low αC among those that satisfy this re-

striction. Accounting for cross-dynastic intergenerational altruism implies

relative weights on future generations of 64%, 70%, and 76%, leading to dis-

count rates below the rate inferred from saving behavior (1.2% and 0.9%, as

compared to the Nordhaus rate of 1.5%). Figure 5b illustrates the percentage

change in these weights as compared to the Nordhaus calibration, clarifying

that even accounting for limited levels of cross-dynastic intergenerational al-

truism is important. The weight on future generations increase by 10% and

20%, respectively. The immediate implication for policy guidelines is that

discount rates implied from saving behavior should be lowered.

The analysis has clarified the conceptual basis for the above claim in

a model of within-dynasty saving. I argued in the Introduction that the

condition on preference parameters for preference externalities to emerge are

likely to hold in practice. But, not all transfers to future generations are in
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the form of dynastic saving. One might additionally consider transfers to

the immediate descendants of all dynasties, and whether such transfers can

crowd out transfers to own immediate descendants.
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Appendix A

This section contains additional proofs of results.

Proof of Theorem 1 – Uniqueness

The following proves that (7) is the unique MPE in the finite horizon game.

Let the remaining horizon be H. Write

U i((hH+1, xH)) = max
ki

F (x, ki, H), (33)

ki((hH+1, xH)) =

∑H
τ=1 ∆τ∑H
τ=0 ∆τ

xi = argmax
ki

F (x, ki, H) := sHx
i, (34)

where, based on a finite horizon version of (15):

F (x, ki, H) = (1− αD − αC)
(

ln(xi − ki) +
H∑

τ=1

∆τ ln(ki) + CH

)
, (35)

with constant

CH =
∑

j 6=i

H∑

τ=1

Γτ ln(kj) +
H∑

τ=1

(αD + αC)τ ln
(
(1− sH−τ )

τ−1∏

`=1

sH−` A
τ
)
,

depending on the present saving of other dynasties and growth terms implied

by future play. The value function (33) and strategy (34) are proven by

induction.

The base case: Expressions (33) and (34) hold for H = 0 due to the

convention
∑0

τ=1 ∆τ = 0.

The step case: The problem for dynasty i with remaining horizon H is

to maximize (35) with respect to ki. The first derivative is:

− 1

xi − ki +

∑H
τ=1 ∆τ

ki
,
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which yields the first-order condition:

1

xi − ki =

∑H
τ=1 ∆τ

ki
.

Therefore:

ki =

∑H
τ=1 ∆τ∑H
τ=0 ∆τ

xi,

which gives ki = sHx
i. The second derivative is:

− 1

(xi − ki)2 −
∑H

τ=1 ∆τ

(ki)2
,

and strictly negative for ki ∈ (0, xi). This verifies that the problem is concave.

The solution ki = sHx
i satisfies the strategy (34), and also the value function

(33) due to the independence of the kj’s.

The above establishes uniqueness in a finite horizon game. From expres-

sion (19), it is clear that

lim
H→∞

sHx
i = sxi.

Hence, it is shown that there exists a unique SPE in the finite horizon game

for any horizon. The equilibrium strategies used in these finite horizon games

go to the linear strategy with s given by (8) when the horizon goes to infinity.

Proof of Corollary 1

Statements are proven one-by-one:

(i) follows by inserting for αC = 0 in expression (8).

(ii) follows by taking the first derivative of s with respect to αD:

1 +
α2
C(N − 1)

(
(N − 1)(1− αD − αC) + αC

)2 > 0,

since 1 > αD + αC .
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(iii) follows by taking the first derivative of s with respect to αC :

2αC
(N − 1)(1− αD − αC) + αC

+
α2
C(N − 2)

(
(N − 1)(1− αD − αC) + αC

)2 > 0.

(iv) follows by taking the first derivative of s with respect to N :

−α2
C

(1− αD − αC)
(
(N − 1)(1− αD − αC) + αC

)2 < 0.

(v) follows by taking the following limit:

lim
N→∞

αD +
α2
C

(N − 1)(1− αD − αC) + αC
= αD + 0 = αD.

This completes the proof.

Proof of Corollary 3

Assume αC > 0. Compare the equilibrium saving rate, s from (8), with the

efficient saving rate, s∗:

αC >
α2
C

(N − 1)(1− αD − αC) + αC
,

since (N − 1)(1 − αD − αC) > 0. This verifies that the equilibrium saving

rate is inefficiently low for all N > 1.

Proof of Proposition 1

Write the relative utility weight of two subsequent generations

∆τ

∆τ−1
=
αD∆τ−1 + αCΓτ−1

∆τ−1
= αD + αC

Γτ−1
∆τ−1

, (36)
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by inserting from (16). Combine expressions (16) and (17),

Γτ−1
∆τ−1

=
(αD + αC)τ−1 − (αD − αC

N−1)τ−1

(αD + αC)τ−1 + (N − 1)(αD − αC

N−1)τ−1
. (37)

There are two cases:

Case 1: Assume αD > αC/(N − 1). The fraction ∆τ/∆τ−1 in (40) is

increasing from αD and converges only in the limit to αD +αC . This follows

directly from (41): Γ0/∆0 = 0, Γτ/∆τ is increasing in τ (since the nominator

is increasing in τ , and the denominator is decreasing), and limτ→∞ Γτ/∆τ =

1. This means that all generations weight within-dynasty utility differently.

Hence, the preference of each dynasty is time-inconsistent

Case 2: Assume αD = αC/(N − 1). The fraction ∆τ/∆τ−1 in (40) is

increasing from αD and converges immediately to αD + αC . This follows

directly from (41): Γ0/∆0 = 0 and Γτ/∆τ = 1 for all τ ∈ N. This means

that only subsequent generations weight within-dynasty utility differently.

Hence, the preference of each dynasty is time-inconsistent.

Proof of Proposition 3

Define the geometric series

∞∑

τ=0

(αD + αC)τ =
1

1− αD − αC
, (38)

(N − 1)
∞∑

τ=0

(αD −
αC

N − 1
)τ =

N − 1

1− αD + αC

N−1
. (39)

Hence, by (16), it follows from (38) and (39) that

∞∑

τ=0

∆τ =
1

N

( 1

1− αD − αC
+

N − 1

1− αD + αC

N−1

)
,

which, by rewriting (19), implies

s =

∑∞
τ=0 ∆τ − 1∑∞
τ=0 ∆τ

= αD +
α2
C

(N − 1)(1− αD − αC) + αC
.
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This is identical to expression (8), the equilibrium saving rate.

Proof of Proposition 4

The welfare function (21) follows by repeated substitution of W i and W j’s

into V from (20), keeping in mind that V = −∞ if ui = −∞ or, if αB > 0,

uj = −∞. Discount functions (22) and (23) are proven by induction.

The base case: Discount functions (22) and (23) hold for τ = 0 since

∆0 = αA and Γ0 = αB/(N − 1).

The step case: Suppose that discount functions (22) and (23) hold for

τ − 1. Then,

∆τ = αD∆τ−1 + αCΓτ−1

=
1

N

(
αA
(
(αD + αC)τ + (N − 1)(αD −

αC
N − 1

)τ
)

+ αB
(
(αD + αC)τ − (αD −

αC
N − 1

)τ
))
,

by inserting for ∆τ−1 and Γτ−1 (and noting the similarity to the Theorem 3).

And,

Γτ =
αC

N − 1
∆τ−1 +

(
αD +

(N − 2)αC
N − 1

)
Γτ−1

=
1

N

( αB
N − 1

(
(αD + αC)τ + (N − 1)(αD −

αC
N − 1

)τ
)

+ (αA +
(N − 2)αB
N − 1

)
(
(αD + αC)τ − (αD −

αC
N − 1

)τ
))
.

by inserting for ∆τ−1 and Γτ−1 (and noting the similarity to Theorem 3).

This proves that discount functions (22) and (23) hold for all τ ∈ N0.

It follows from (22) and (23) that ∆τ + Γτ = (αD + αC)τ . This ensures

that W i is well-defined on UN .
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Proof of Proposition 5

Write the relative utility weight of two subsequent generations

∆τ

∆τ−1
=
αD∆τ−1 + αCΓτ−1

∆τ−1
= αD + αC

Γτ−1
∆τ−1

, (40)

by inserting from (22). Combine expressions (22) and (23),

Γτ−1
∆τ−1

=
αB

N−1f +
(
αA + (N−2)αB

N−1
)
g

αAf + αBg
, (41)

where

f ≡ (αD + αC)τ−1 − (αD −
αC

N − 1
)τ−1,

g ≡ (αD + αC)τ−1 + (N − 1)(αD −
αC

N − 1
)τ−1.

Assuming αA > αB/(N − 1), there are two cases:

Case 1: Assume αD > αC/(N − 1). The fraction ∆τ/∆τ−1 in (40) is

increasing from αD + αCαB/((N − 1)αA) and converges only in the limit to

αD +αC . This follows directly from (41): Γ0/∆0 = αB/(N − 1)αA, Γτ/∆τ is

increasing in τ (since the nominator is increasing in τ , and the denominator is

decreasing), and limτ→∞ Γτ/∆τ = 1. This means that all generations weight

within-dynasty utility differently. Hence, the preference of each dynasty is

time-inconsistent

Case 2: Assume αD = αC/(N − 1). The fraction ∆τ/∆τ−1 in (40) is

increasing from αD +αCαB/((N −1)αA) and converges immediately to αD +

αC . This follows directly from (41): Γ0/∆0 = αB/(N − 1)αA and Γτ/∆τ = 1

for all τ ∈ N. This means that only subsequent generations weight within-

dynasty utility differently. Hence, the preference of each dynasty is time-

inconsistent.
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Proof of Corollary 4

For discount function (22), it follows from (38) and (39) that

∞∑

τ=0

∆τ =
1

N

( 1

1− αD − αC
+
(
αA −

αB
N − 1

) N − 1

1− αD + αC

N−1

)
,

which, by the Hiraguchi-Iverson-Karp solution, implies

s =

∑∞
τ=0 ∆τ − αA∑∞

τ=0 ∆τ

= αD + αC
αAαC + αB(1− αD)

αA((N − 1)(1− αD − αC) + αC) + αBαC
.

This is identical to expression (24), the equilibrium saving rate. The efficient

saving rate (25) follows immediately from (22) and (23).

Proof of Proposition 7

The welfare function (27) follows by repeated substitution of W i and W j’s

into V from (26), keeping in mind that V = −∞ if ui = −∞. Discount

functions (28) and (29) are proven by induction.

The base case: Discount functions (28) and (29) hold for τ = 0 since

∆0 = 1 and Γ0 = αE, under the condition that ∆0 is normalized to 1.

The step case: Suppose that discount functions (28) and (29) hold for

τ − 1. Then,

∆τ = αD∆τ−1 = ατD,

by inserting for ∆τ−1. And,

Γτ =
αE

N − 1
αD∆τ−1 =

αE
N − 1

ατD,

by inserting for ∆τ−1. This proves that discount functions (28) and (29) hold

for all τ ∈ N0.

It follows from (28) and (29) that ∆τ + Γτ = (1 + αE)ατD. This ensures

that W i is well-defined on UN .
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Appendix B

This section provides interpretations of the model if descendants can move

or marry someone from other dynasties.

The “dynastic family”

In response to Barro’s (1974) formulation of intergenerational altruism, Bern-

heim and Bagwell (1988) consider the case in which each generation consists

of a large number of individuals, and that links between dynasties imply

that individuals belong to different dynasties. A limitation of their analysis

is that these links are hypothesized and not modeled. Laitner (1991) and

Zhang (1994) formulate links between two dynasties through marital con-

nections, but focus on cross-sectional neutrality of policies and assortative

mating, respectively. Myles (1997) state a more general preference, but is

silent about its implications for the discount function.

I give a new interpretation of the discount function. Define for now αC

as the relative probability of immediate descendants ending up in the other

dynasties, for example through mating. (Consult Proposition 8 in the next

subsection for a statistical interpretation of the discount functions.) Then,

discount functions (16) and (17) are Markov chains assigning the relative

probabilities that descendants end up in different dynasties:

Remark 3 Under Assumption 1, the fraction ∆τ/(∆τ + (N − 1)Γτ ) assigns

the probability that the descendants of the present generation of a dynasty are

in the same dynasty τ generations from now.

Note that

∆τ

∆τ + (N − 1)Γτ
=

1

N

(αD + αC)τ + (N − 1)(αD − αC

N−1)τ

(αD + αC)τ
,

by inserting from expressions (16) and (17). Observe that limτ→∞∆τ/(∆τ +

(N − 1)Γτ ) = 1/N , implying convergence to a uniform distribution if αD >

αC/(N−1). In fact, the uniform distribution follows since the external effect
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of present saving becomes less important over time, and vanishes only in the

limit.

Statistical interpretation

Consider discount functions (16) and (17) for N = 2. I have the following

proposition:

Proposition 8 Assume N = 2. Under Assumption 1, discount functions

(16) and (17) can be written:

∆τ =
∑

q even

0≤q≤τ

(
τ

τ − q

)
ατ−qD αqC , (42)

Γτ =
∑

q odd

0≤q≤τ

(
τ

τ − q

)
ατ−qD αqC .

Proof. The right-hand side of (42) can be simplified. Do the following

rescaling of parameters: α̃D = αD/(αD + αC) and α̃C = αC/(αD + αC).

Since α̃D + α̃C = 1, I can work with sums of binomial distributions. Write

the sum over q even and q odd distributions as:

τ∑

q=0

(
τ

τ − q

)
ατ−qD αqC = (αD + αC)

τ∑

q=0

(
τ

τ − q

)
α̃D

τ−qα̃C
q

= (αD + αC)τ , (43)

where the last line follow since the summation is now the total cumulative

probability distribution of a binomial distribution, and is equal to 1. The

difference between q even and q odd distributions can be expressed as:

∑

q even

0≤q≤τ

(
τ

τ − q

)
ατ−qD αqC −

∑

q odd

0≤q≤τ

(
τ

τ − q

)
ατ−qD αqC
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=
∑

q even

0≤q≤τ

(−1)q
(

τ

τ − q

)
ατ−qD αqC +

∑

q odd

0≤q≤τ

(−1)q
(

τ

τ − q

)
ατ−qD αqC

=
τ∑

q=0

(
τ

τ − q

)
ατ−qD (−αqC) = (αD − αC)τ , (44)

using the definitions of α̃D and α̃C .

Using the insights from expressions (43) and (44), expression (42) can be

written:

∆τ =
1

2

(
(αD + αC)τ︸ ︷︷ ︸
q even + q odd

+ (αD − αC)τ︸ ︷︷ ︸
q even - q odd

)
,

which is identical to (16) for N = 2.

For completeness, define Γτ as:

Γτ = (αD + αC)τ −∆τ

= (αD + αC)τ − 1

2

(
(αD + αC)τ + (αD − αC)τ

)

=
1

2

(
(αD + αC)τ − (αD − αC)τ

)
,

which is identical to (17) for N = 2.

From the point of view of the present generation of dynasty i, even time

periods allow more cross-dynastic altruistic intergenerational links forward

in time, as compared to the preceding odd time period. This asymmetry is

clear from extending Figure 2 forward in time. The expression within the

summation in (42) resembles a binomial distribution, with the exception that

αD + αC < 1.
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