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Abstract

We develop a structural vector autoregressive framework that combines external instru-
ments and heteroskedasticity for identification of monetary policy shocks. We show that
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ternative instruments and find that narrative and model-based measures are valid, while
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1 Introduction

Estimating the effects of monetary policy is a central element of macroeconomic analysis.
While the economy reacts to policy decisions, monetary policy is also endogenous to
the state of the economy, posing the issue of isolating exogenous variation in monetary
policy. In the empirical literature, structural vector autoregressions (SVARs) are a main
tool for studying the causal effects of monetary interventions. Departing from the classical
identification via zero restrictions, two identification approaches are receiving increasing
attention in the literature. On the one hand, authors use external data on monetary
surprises to identify latent monetary shocks in SVARs.1 On the other hand, many papers
draw on volatility changes in macroeconomic and financial data to identify monetary
shocks.2 Both strategies are popular because they are parsimonious in terms of identifying
assumptions and because they incorporate further information into the model.

Identification via an external instrument allows for a contemporaneous response of
monetary policy to asset prices. Moreover, it adds a potentially large information set to
the model through a narrative or financial data-based instrument. Finally, it accounts for
measurement error in the instrument, which reduces the attenuation bias in models treat-
ing the proxy as the true shock (Mertens and Ravn, 2013). However, these advantages
rely on the presumption that the instrument is valid, that is, relevant and exogenous.

Identification through heteroskedasticity adds information from time-varying second
moments to the model and relies on even weaker identifying assumptions. While an
instrument for monetary policy shocks needs to move interest rates without correlating
with other structural shocks, a relative increase in the variance of monetary shocks can
be sufficient to trace out the response of the other variables in the system to these shocks.
The relative variance shift can be viewed a ‘probabilistic instrument’ that increases the
likelihood that monetary policy shocks occur (Rigobon, 2003). Again, these minimal
assumptions are not costless. The statistically identified shocks are often economically
difficult to interpret.

This paper proposes a framework that combines both identification strategies to im-
prove inference within SVARs. The framework preserves the attractive features of both
approaches but addresses some of the key limitations that each of them has in isolation.
It makes use of external instruments for monetary policy shocks proposed in the liter-
ature. In addition, it exploits time-variation in the second moments of the data. The
combination of both types of identifying information into a ‘heteroskedastic proxy-SVAR’
has three main advantages relative to models using only one type of information.

First, the encompassing framework sharpens the identification of the structural model
and, hence, the suitability of the model for policy analysis. To show this, we conduct
an extensive simulation study. The Monte Carlo evidence suggests that the encompass-

1See Gertler and Karadi (2015), Cesa-Bianchi, Thwaites and Vicondoa (2016), Miranda-Agrippino
and Ricco (2018), Stock and Watson (2018), Rogers, Scotti and Wright (forthcoming), Caldara and
Herbst (2019).

2See Rigobon and Sack (2004), Normandin and Phaneuf (2004), Lanne and Lütkepohl (2008), Wright
(2012), Herwartz and Lütkepohl (2014), Nakamura and Steinsson (2018).
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ing model yields more accurate estimates of the true parameters according to the mean
squared errors of impulse response functions than either of the two identification ap-
proaches in isolation.

The second advantage of our framework is that it allows testing the validity, that
is, relevance and exogeneity, of external instruments. We include the instrument as an
endogenous variable in an augmented SVAR, as in Caldara and Herbst (2019). As changes
in volatility of the residuals of the augmented model can suffice for point-identification
of the full structural model, additional restrictions and, hence, the exogeneity condition
become testable. This conveniently reduces to testing zero restrictions on the structural
impact matrix of the augmented SVAR. We propose a likelihood ratio (LR) test for
that purpose. Monte Carlo evidence suggests that it has desirable properties in terms
of size and power. Testing the exogeneity condition has so far been unresolved in the
literature but is of particular interest as the violation of this condition may lead to
erroneous conclusions regarding the validity of the instrument and the effects of latent
structural shocks. We also propose a LR-test for evaluating the relevance condition. The
Monte Carlo evidence suggests that the test reliably discriminates between relevant and
irrelevant instruments. It thereby complements existing versions of F-tests for instrument
relevance (Stock, Wright and Yogo, 2002; Stock and Watson, 2012; Mertens and Ravn,
2013). In our set-up, it has more power than the F-test because it uses all information
in the model both under the null and the alternative hypothesis.

The third advantage of the framework addresses a main challenge in the literature
on identification through heteroskedasticity (Rigobon and Sack, 2003; Herwartz and
Lütkepohl, 2014). In this class of models, structural shocks are identified statistically.
They need to be labeled by the researcher after estimation. While the literature has de-
veloped several strategies for that purpose, this task is often difficult and can cast doubt
on the economic meaning of the structural shocks. Our framework simplifies the inter-
pretation of the structural shocks, because the inclusion of a relevant instrument based
on prior economic reasoning into the model pins down the shock of interest.

We use our framework to evaluate the validity of instruments proposed in the liter-
ature and to provide new, and in light of the Monte Carlo evidence, sharper estimates
of the macroeconomic effects of monetary policy shocks in the United States based on
heteroskedasticity and a valid instrument. The former is a common and well documented
feature of U.S. real and financial data (Stock and Watson, 2002; Justiniano and Prim-
iceri, 2008; Amir-Ahmadi, Matthes and Wang, 2016). Standard statistics provide strong
evidence that changes in volatility are also present in our sample. We model them within
a Markov switching in variances framework and use them for identification. For the
latter, we include the measure of unanticipated changes in the intended federal funds
rate of Romer and Romer (2004). This measure is a cornerstone of monetary policy
analysis but also criticized for being predictable or endogenous (Leeper, 1997; Miranda-
Agrippino and Ricco, 2018). We use our LR-tests to evaluate these claims. The evidence
suggests that the instrument is contemporaneously exogenous to demand, supply, and
cost-push shocks, supporting the approach of Romer and Romer (2004) and studies using
it as an instrument for monetary policy shocks (Stock and Watson, 2012; Tenreyro and
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Thwaites, 2016; Rey, 2016). We find that an unexpected increase in the federal funds rate
by 100 basis points leads to a fall of economic activity by 1.6% and of consumer prices
by 0.8%. These effects are twice as large as estimates obtained from a proxy-SVAR that
does not exploit heteroskedasticity.

We also test and compare alternative instruments for monetary shocks. We find that
model-based measures (Bernanke, Boivin and Eliasz, 2005) are also exogenous, while
higher frequency instruments show signs of invalidity (Barakchian and Crowe, 2013;
Gertler and Karadi, 2015; Miranda-Agrippino and Ricco, 2018). Nevertheless, the mod-
els including high-frequency instruments all imply a significant decline in output and
prices in response to an unexpected tightening. This finding illustrates another advan-
tage of exploiting the time-varying volatility in proxy-SVARs. The heteroskedasticity
adds sufficient information to identify the monetary shocks, while it allows dealing with
weak instruments. If there is sufficient time-variation in the second moments – a condi-
tion that can be checked empirically after estimation – the model is statistically identified
even with little identifying information from the external instrument. In such a situation,
the relevance condition is no longer necessary for reliable inference. Instead, it reduces
to a question about the information contained in the instrument and the interpretation
of the associated structural shock.

This paper is related to several recent articles on the identification of SVARs. Bertsche
and Braun (2020) propose using stochastic volatility for identification of SVARs. They
focus on the econometric theory of using a stochastic volatility model and apply their
setup to the oil market. After estimation, they project the estimated structural shocks
onto candidate instruments in a second step. For that auxiliary regression, they de-
rive Wald-type tests for instrument validity outside the SVAR. This is different to our
approach which tests the instruments within the SVAR and uses LR-tests. Moreover,
they do not use the instrument as additional source of identifying information in an en-
compassing model. In this respect, our analysis is more closely related to Antoĺın-Dı́az
and Rubio-Ramı́rez (2018) who develop a framework that exploits two types of identi-
fying information to improve inference in SVARs. They combine sign restrictions with
prior information on specific shocks and use a Bayesian setting, whereas we combine het-
eroskedasticity with instruments in a frequentist approach. Ludvigson, Ma and Ng (2017)
propose an identification strategy of SVARs through prior knowledge of certain shocks
within classical inference. They show how the resulting new type of inequality restric-
tions can be combined with external instruments to further sharpen inference. Finally,
Arias, Rubio-Ramirez and Waggoner (2021) develop algorithms for exact finite sample
inference in Bayesian proxy-SVAR models. Their framework is sufficiently flexible to
allow for multiple instruments. However, the latter two articles are not concerned with
testing the validity of the instruments.

The remainder of the paper is structured as follows. The next section introduces
the heteroskedastic proxy-SVAR and discusses identification, testing, and estimation.
Section 3 presents simulation results in support of the framework. In Section 4, we use
the heteroskedastic proxy-SVAR to shed new light on the efficacy of monetary policy and
to test a range of instruments discussed in the literature. Finally, Section 5 concludes.
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2 The SVAR framework

The vector autoregressive (VAR) model is

yt = γ + A(L)yt−1 + ut, (1)

where yt = (y1t, . . . , yKt)
′ is a (K×1)-vector of observable variables, A(L) is a lag matrix

polynomial capturing the autoregressive component of the model, γ collects constant
terms, and the ut are K-dimensional serially uncorrelated observable residuals. The
residuals ut are linearly related to white noise structural shocks εt according to

ut = Bεt. (2)

We assume that the VAR is invertible and has a Wold moving average representation
yt = α +

∑∞
i=0 Φiut−i.

2.1 A heteroskedastic proxy-SVAR

A common feature of macroeconomic and financial data are changes in volatility over
time (see, among others, Stock and Watson, 2002; Justiniano and Primiceri, 2008; Amir-
Ahmadi et al., 2016). Rigobon and Sack (2004), Normandin and Phaneuf (2004), and
Lanne and Lütkepohl (2008) show that this holds in particular for the analysis of mone-
tary policy where changes in volatility of the data feed into heteroskedastic residuals in
monetary SVARs and can be used for identification. Against this backdrop, we allow for
heteroskedastic residuals in (1).3 We assume that the volatility changes are driven by a
first order Markov switching (MS) process St ∈ {1, . . . ,M} with M states and transi-
tion probabilities pkl = P (St = l|St−1 = k), k, l = 1, . . . ,M . Furthermore, the reduced
form residuals are normally and independently distributed conditional on a given state
ut|St ∼ NID(0,Σ(St)), where all Σm, m = 1, . . . ,M are distinct.

Another prominent way to identify structural shocks is via external instruments (Stock
and Watson, 2012; Mertens and Ravn, 2013). We assume that the process generating
the (potentially heteroskedastic) instrument wt has a linear form, following Caldara and
Herbst (2019):

wt = βεt + ηνt, (3)

where εt is the K × 1 vector of structural shocks, β = (β1, . . . , βK) is a 1×K-coefficient
vector, νt ∼ N(0, σ2

m) is a measurement error uncorrelated with the structural shocks εt,
and η scales the effect of the noise. Without loss of generality, we order the structural
shock of interest first. Then, β1 and η may be interpreted as weighting parameters of
signal to noise.

3We refrain from introducing additional nonlinearity into the model by allowing state dependency in
the constant or autoregressive parameters as we are interested in the heteroskedasticity features of the
data for identification purposes.
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Instrument validity requires the following two conditions:

βi = 0 ∀ i = 2, . . . , K, (4)

β1 6= 0. (5)

Equation (4) is the exogeneity and (5) the relevance condition. If both are met, the
covariances between the instrument, the shock of interest, and the other shocks are

Cov(wt, ε1,t) = E[wtε1,t] = E[β1ε
2
1,t + ηνtε1,t] = β1E[ε21,t] = β1V ar(ε1,t) 6= 0 (6)

Cov(wt, εi,t) = E[wtεi,t] = E[β1ε1,tεi,t + ηνtεi,t] = 0 ∀ i = 2, . . . , K, (7)

which use (4), (5), and the independence of εt and νt. Equation (6) shows that a valid
instrument is only related to the shock of interest through β1. If the variance of that
shock changes across the regimes, so will the covariance. The assumption of constant β
across regimes thus attributes potential changes in the covariance to heteroskedasticity
in ε1,t. Equation (7) shows that the covariance of the instrument with the other shocks
is zero even if their variances change.4

We compile the system by appending model (1) with (3). The augmented VAR is

zt = δ + Γ(L)zt−1 + et, (8)

where zt = [y′t, wt]
′ is a ((K+ 1)×1)-vector of observable variables, Γ(L) is a (potentially

restricted) lag matrix polynomial capturing the autoregressive component of the model,
δ is a ((K + 1) × 1)-vector of constant terms, and et are (K + 1)-dimensional serially
uncorrelated residuals. The latter are related to the structural innovations µt as

et = Dµt

=

[
B(K×K) 0(K×1)
β(1×K) η

] [
εt
νt

]
. (9)

Using (9), we rewrite the augmented VAR in (8) in structural form as

zt = δ + Γ(L)zt−1 +Dµt. (10)

Since the state dependency in the variances of the reduced form residuals in (8),
var(et|m) = Σ̃m with m = 1, . . . ,M , translates into the structural form, we have
E[µt] = 0 and E[µtµ

′
t|m] = Λm, where Λm is a diagonal matrix satisfying the orthogo-

nality condition of the structural innovations. This heteroskedasticity pattern provides
a valuable source of identifying information (Rigobon and Sack, 2004; Normandin and
Phaneuf, 2004; Lanne and Lütkepohl, 2008). Under the assumption of a constant instan-
taneous impact matrix D, for each volatility regime a decomposition

Σ̃m = DΛmD
′ (11)

4The set-up may be extended to multiple instruments. We consider one extension with two instru-
ments for the identification of one structural shock in the simulation study in section 3.
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exists, where Λm = diag(λ1,m, . . . , λK+1,m). We normalize Λ1 = IK+1. For m ≥ 2, the
Λm are diagonal matrices with positive elements that can be interpreted as the changes
of the structural variances in the respective regime relative to the first regime.

Lanne, Lütkepohl and Maciejowska (2010) state conditions for local uniqueness of
matrix D. Local uniqueness implies that D is identified up to the signs of the parameters
in each column as well as to column permutations. The conditions for local uniqueness of
D are: (i) the structural impact matrix D is time-invariant; (ii) the structural innovations
µt are orthogonal; and (iii) there are sufficiently many and distinct changes in the vari-
ances of the structural innovations, that is, λkm 6= λlm for k, l ∈ {1, . . . , K + 1} with k 6=
l,∃m ∈ {2, . . . ,M}. The first assumption is standard in SVARs identified with external
instruments.5 The second assumption is common in structural VAR analysis more gener-
ally. The third assumption can be checked after estimation by comparing the estimated
variances λlm, with l = 1, . . . , K + 1.

To see how the reduced form and the structural model are related and how the in-
strument helps identify the structural parameters, note that

Σ̃m = DΛmD
′ =


BΛmB

′

βΛmb.1
βΛmb.2

...
βΛmb.K

βΛmb.1 βΛmb.2 . . . βΛmb.K βΛmβ
′ + η2σ2

m

, (12)

where b.j denotes the j-th column of B. The last column (or row) of (12) summarizes the
restrictions on the structural parameters of the model implied by the instrument. If the
instrument is valid, the K first elements of that column satisfy E[utwt] = E[wt(b.1ε1t +
B∗ε∗t )] = b.1E[wtε1t] = b.1β1λ1, where B∗ contains the 2, . . . , K remaining columns of B
and ε∗t the corresponding structural shocks. The expression b.1β1λ1 shows how a valid
instrument informs estimation about the first column of B, which is the vector of interest.
Moreover, it follows that E[uitwt]

E[u1twt] = bi1
b11

. This ratio shows that the relative impact responses
are not affected by changes in volatility.

2.2 Testing the validity of an instrument

While our approach is novel in combining information of an instrument and heteroskedas-
ticity for identification, it conveniently reduces to the standard case for identification via
heteroskedasticity as it incorporates the instrument into the augmented SVAR (see 10).
Hence, estimation, identification, and testing follows Lanne and Lütkepohl (2008) and
Lanne et al. (2010). Specifically, if the conditions for local uniqueness are met, the het-
eroskedasticity in the residuals allows for estimating all structural parameters of D. Any
additional restrictions on D are then over-identifying and, hence, testable. This is par-
ticularly interesting in our context as it allows for testing both the relevance and the

5See Stock and Watson (2012), Mertens and Ravn (2013), Gertler and Karadi (2015), Miranda-
Agrippino and Ricco (2018), or Caldara and Herbst (2019).
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exogeneity of the instrument and, thus, its validity. Such tests reduce to testing zero
restrictions on β, that is, the last row of the structural impact matrix D. This may be
done with likelihood ratio tests (LR-tests) because the elements of β are fixed parameters
under the null hypothesis. This implies that the distribution of the LR-tests is χ2 with
the degrees of freedom equal to the number of restrictions.

To test the exogeneity condition (4), we compare the likelihood of an appropriately
restricted version of model (10), that is, we restrict β = (β1, 0, . . . , 0), with an unrestricted
version where β = (β1, β2, . . . , βK). Formally, we test

H0 : β2 = · · · = βK = 0

H1 : ∃j ∈ {2, . . . , K} s.t. βj 6= 0.

Rejecting the null indicates endogeneity of the instrument.
To test the relevance condition (5), we compare a restricted version of model (10),

where β1 = 0, to model (10) with β1 unrestricted. Under both the null and the alternative
hypothesis β2 = · · · = βK = 0. Formally, we test

H0 : β1 = 0

H1 : β1 6= 0.

Rejecting the null indicates the relevance of the instrument.6 If the instrument is both
exogenous and relevant, it is valid. Then, we set β = (β1, 0, . . . , 0) and refer to model
(10) as a ‘heteroskedastic proxy-SVAR’.

Local uniqueness in our setup implies that a priori we cannot identify the column of
the impact matrix D that belongs to a certain structural shock. Practically, this is of little
concern. First, assessing the exogeneity of an instrument does not require a particular
ordering of the structural shocks. The test will reject the null of all but one β-element
equal to zero in case of endogeneity. Second, because an exogenous instrument imposes
additional restrictions on the covariance matrix, the shock that is most consistent with
these restrictions will be ordered to the column with the only unrestricted element of β.
This pins down the shock of interest. In case of an uninformative or weak instrument, the
structural shock of interest would not necessarily be related to the unrestricted element
of β. However, such a situation would not affect inference. It would only dilute the
economic interpretation of the results. The relevance test would indicate such situations
as uninformative instruments will be detected through not rejecting the null. Then, it is
up to the researcher whether these should be included nevertheless, or discarded.

There are two related papers which assess the validity of external instruments for
over-identified SVARs. Cesa-Bianchi et al. (2016) propose an auxiliary GMM estimation
and a Hansen-Sargan statistic to test the validity of their baseline instrument with a
second external instrument. Angelini and Fanelli (2018) provide a general framework
for employing multiple instruments for shock identification and show how to make use

6Alternatively, one can test for instrument relevance by testing the null hypothesis that β = 0 against
the alternative that β is unrestricted, with the degrees of freedom equal to the number of columns of β.
This test does not assume exogeneity.
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of the resulting over-identifying restrictions for a specification test of the proxy-SVAR.
Our tests complement these approaches but differ along an important dimension. While
these papers use multiple external instruments, which are potentially subject to the same
endogeneity concerns, we employ structural shocks identified through heteroskedasticity
for that purpose which are by construction orthogonal to each other (but do not need to
have an economic interpretation).

2.3 Estimation and bootstrapping

The parameters of model (10) are estimated by means of the expectation maximization
(EM) algorithm proposed by Herwartz and Lütkepohl (2014). Crucial for the analysis is to
incorporate the regime-switching nature of the covariance matrix described in (11), given
the restrictions on D and Λm. All other parameters are assumed to be regime-independent
and do not vary across states. For computational details of the EM algorithm we refer
to Section A.1 of the Online Appendix.

Standard errors of the point estimates of the model parameters are obtained from the
inverse of the negative Hessian matrix evaluated at the optimum after convergence of the
EM algorithm. We use the standard errors of the elements of Λm to construct confidence
intervals around the point estimates to determine whether they differ significantly from
each other. This is a requirement for statistical identification and, hence, for the over-
identification tests to have sufficient power.7

For inference on the structural impulse response functions, bootstrapped pointwise
confidence bands are computed. Given the heteroskedastic pattern of the data, a simple
reshuffling of the estimated residuals êt, as in a classic residual bootstrap, does not
preserve the second moment properties of the data and invalidates inference. Hence,
we use a recursive design wild bootstrap and construct bootstrapped samples as

z∗t = δ̂ + Γ̂(L)zt−1 + ϕtêt,

where δ̂ and Γ̂(L) are estimated counterparts of the coefficients defined in (10), and ϕt
is an independent random variable following a Rademacher distribution, that is, ϕt is
either 1 or –1 with probability 0.5. Each of the 1,000 generated bootstrap samples is
based on identical pre-sample values from the original data set as initial values, i.e.,
z∗−p+1 = z−p+1, . . . , z

∗
0 = z0. The bootstrap is conducted conditionally on estimated

parameters for the relative variances and transition probabilities, which is a commonly
used technique for these types of models (Herwartz and Lütkepohl, 2014; Podstawski and
Velinov, 2018). Our results are robust to using two related bootstrap procedures. First,
we explore a residual-based moving block bootstrap proposed for proxy-VARs by Jentsch
and Lunsford (2016). Second, we use draws from a normal distribution in a fixed design

7For the class of MS-models, currently no formal statistical tests for identification are available. As
the model under the null hypothesis may not be identified, the derivation of the asymptotic distribution
of Wald- or LR-tests is not straightforward. For this reason, in the existing literature, usually the
point estimates and standard errors of the respective elements of Λm are considered when checking for
identification (Herwartz and Lütkepohl, 2014).
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recursive bootstrap. Lütkepohl and Schlaak (2019) show that this methods perform well
for a model with volatility by driven by GARCH. We refer to Online Appendix A.4 for
the computational details of the respective bootstraps.

3 Simulation study

To explore the properties of our framework and LR-tests, we conduct an extensive Monte
Carlo study. We evaluate how the tests behave for different degrees of instrument en-
dogeneity and relevance. Then, we assess whether the framework improves the accuracy
of the estimation of the structural model. We also discuss how the proposed framework
simplifies estimation and inference with weak instruments in proxy-SVARs.

3.1 Setup of Monte Carlo study

We assume that the data generating process is of the form (10). The process implies that
yt and wt are jointly normally distributed conditional on state m = 1, . . . ,M . In the
simulation, we generate data for yt and then for wt contingent on the realizations of yt.
We use the following parameters of a structural first-order autoregressive model, which
are taken from the New Keynesian DSGE-model of An and Schorfheide (2007):rtxt

πt

 =

0.79 0.00 0.25
0.19 0.95 −0.46
0.12 0.00 0.62

rt−1xt−1
πt−1

+

 0.69 0.61 0
−1.10 1.49 1
−0.75 1.49 0

εrtεzt
εgt

 ,
where rt is the interest rate, xt is output and πt is the inflation rate. The structural
shocks are a monetary policy shock (εrt ), a productivity shock (εzt ), and a government
spending shock (εgt ).

The variances of the structural innovations are driven by a discrete MS process with
M = 2 states and transition probabilities

P =

[
0.975 0.025
0.050 0.950

]
,

which are used to generate the Markov states St for t = 1, . . . , T . Following standard
conventions, we normalize the variances of the structural innovations in the first state
to unity. We set the relative variances in the second state by choosing rather distinct
variances in the range used in comparable studies (Lütkepohl and Schlaak, 2018):

Λ2 =

0.5 0 0
0 3 0
0 0 7

 .

Given that the impact matrix is identified up to column signs and permutations only, we
assure that the model is uniquely determined by sorting the estimated coefficients of Λ2
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in ascending order and by adjusting the columns of the estimated impact matrix corre-
spondingly. With appropriate starting values y0 = (0, 0, 0)′, we generate data recursively
by drawing from

εt ∼

{
N(0, I), for m = 1

N(0,Λ2), for m = 2,

using Bεt = ut to calculate the reduced form residuals.
With the structural innovations at hand, we generate the instrument wt using (3).

We set η = 1 and the variances of the noise parameter νt such that

νt ∼

{
N(0, 1), for m = 1

N(0, 12), for m = 2.

This setup implies a time-varying volatility of the instrument which can be observed in
many time series of instruments that are used in the literature (Romer and Romer, 2004;
Gertler and Karadi, 2015).

The correlation between the monetary shock and the instruments is determined by
β, η, the variance of the monetary shock V arm(ε1,t), and the variance of the noise
V arm(νt). The correlation can change with both variances across states m. The variance
of wt is V arm(wt) = β2V arm(ε1,t) + η2V arm(νt). Hence, the correlation between ε1,t and
wt is Corrm(ε1,t, wt) = β

√
V arm(ε1,t)/

√
β2V arm(ε1,t) + η2V arm(νt).

We set β = (β1, β2, 0), where β1 captures the relevance of the instrument for the
monetary shock εrt , while β2 measures the endogeneity to the second structural shock
εzt . We equate β3 to zero to focus the simulation study, concentrating on cases where
endogeneity stems from one source only. We construct different instruments for the mon-
etary policy shock. We target correlations of ρ1 ∈ [0, 0.15, 0.3, 0.4] between the monetary
shock and the instrument over the whole sample by setting β1 ∈ [0, 0.35, 0.72, 1]. The
respective correlations may vary across states. Compared to related studies (Lütkepohl
and Schlaak, 2021), these correlations are small as we are also interested in the case of
weak instruments. Similarly, we introduce different degrees of endogeneity by setting
β2 ∈ [0, 0.05, 0.17, 0.27, 0.37] to obtain sample correlations of the instrument with the
non-monetary shock of ρ2 ∈ [0, 0.03, 0.1, 0.15, 0.2]. Finally, we simulate two sample sizes,
T = 200 and T = 500, which are within the typical range of macroeconomic datasets.
The number of replications for each simulation design is R = 500.

3.2 Fitted models

As a reference model for the test evaluation, we fit a MS(2)-VAR(1) with unrestricted β
to the data. Then, we estimate and compare the following three models:

Model A Heteroskedastic proxy-SVAR with β = (β1, 0, 0), that is, the instrument wt is
assumed to be exogenous.

10



Model B Heteroskedastic SVAR with β = (0, 0, 0), that is, the model is identified via
time-varying volatility only.

Model C Standard proxy-SVAR using the identifying information from the external
instrument only.

We estimate models A and B as a MS(2)-VAR(1) with respective restrictions on β
as discussed in Section 2.1. Model C fits a standard proxy-SVAR with the two stage
least squares procedure as suggested by Mertens and Ravn (2013) to evaluate a situation
where the volatility in the data is not exploited for identification. Here, the response of
the first variable to the identified structural shock is normalized to a have a positive sign.
This model has a priori a disadvantage compared to the other models, given that the
generated data feature volatility changes.

Given that the reference model and models A and B are nested, we can compute
χ2-distributed LR-statistics to test for the exogeneity and the relevance of the gen-
erated instrument in each replication.8 To test the exogeneity condition, we test the
heteroskedastic reference SVAR with β unrestricted against model A. For the relevance
condition, we test model A against the more restricted model B.

To assess the benefits of combining identification via external instrument and via
heteroskedasticity, for each horizon of the estimated structural impulse response functions
for models A-C we calculate the mean squared errors (MSE) and set them into relation
to the MSE of model A before cumulating over all impulse response horizons. Thereby,
we adjust for scaling differences in the MSE of the individual elements of the response
vectors as the absolute magnitude of the impulse responses in the first periods after the
shock is typically larger than in later periods given the mean reversion property of the
impulse responses. We cumulate the relative MSE for a propagation horizon of up to
h = 25 such that we capture the impact of differing estimates of both the impact matrix
and the autoregressive part of the model since the DGP of our VAR(1) model is fairly
persistent. The cumulated relative MSE for horizon h for variable k induced by shock l
is calculated as

MSEh(θkl,•) =
1

h

h−1∑
i=0

[(
1

R

R∑
r=1

(θkl,i − θ̂kl,i(r))2
)
/

(
1

R

R∑
r=1

(θkl,i − θ̂Mod.A
kl,i (r))2

)]
, (13)

where θ̂kl,i(r) denotes the estimate of the structural impulse response θkl,i of models A-C
obtained in the rth replication of our simulation experiment.9 In what follows, we focus

8If β = 0, the heteroskedastic proxy-SVAR reduces to a standard heteroskedastic SVAR where the
distributions of wt and ut are independent. In this case, the structural parameters are identified using
the heteroskedasticity of the data only. Even if the instrument does not contribute to identification
in case of model B, it remains in the autoregressive part of the augmented model and, therefore, may
contribute to the estimation of the state probabilities, for example.

9The structural impulse responses of the models are obtained as the elements of the matrices Θi =
ΦiB, i = 0, 1, . . . , where Φi is the coefficient matrix of the ith propagation horizon of the Wold moving
average representation of the VAR. More precisely, the klth element of Θi, denoted by θkl,i, is interpreted
as the response of variable k to the lth structural shock after a propagation horizon of i periods.
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Table 1: Relative rejection frequencies at nominal significance level of 10% of LR-tests
on exogeneity of instrument.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.12 . . . .
(0.35,0.15) 0.14 0.16 0.54 . .
(0.72,0.30) 0.14 0.17 0.47 0.75 0.93
(1.00,0.40) 0.13 0.16 0.40 0.66 0.89

T = 500

(0,0) 0.12 . . . .
(0.35,0.15) 0.13 0.22 0.83 . .
(0.72,0.30) 0.12 0.19 0.76 0.99 1.00
(1.00,0.40) 0.12 0.17 0.68 0.96 1.00

Notes: Each entry in the table is based on 500 replications of each simulation design. Dots (.) denote
combinations of values for β1 and β2 that produce lower correlations between the instrument wt and the
target structural shock εrt than between the instrument and the non-targeted structural shock εzt . These
cases are not taken into account in the analysis.

on assessing the accuracy of the parameter estimates associated with the monetary policy
shock only.

3.3 Baseline simulation results

Table 1 shows the relative rejection frequencies of the LR-test for exogeneity at a nominal
significance level of 10% for the two different sample sizes. We focus on this significance
level to reduce the possibility of type-II errors, that is, the likelihood of falsely not re-
jecting an endogenous instrument. The complete set of simulation results, including
alternative significance levels, is in Online Appendix A.2. Exogenous instruments with
ρ2 = 0 are rejected with relative frequencies reasonably close to their nominal levels (see
first column). For T = 500, they are very close to the nominal level of 10%.

When moving to the right across columns, the LR-test gains power against the null
hypothesis of an exogenous instrument. For both sample sizes, the rejection frequen-
cies steadily increase with higher instrument endogeneity. For T = 200, the relative
rejection frequencies lie between 40% and 54%, depending on instrument strength, for
an endogenous instrument with a correlation of 0.1 with the non-moneary shock. For
T = 500 and this correlation, the relative rejection frequencies increase to 68% to 83%.
For ρ2 ≥ 0.15, endogeneity is reliably detected in at least 66% and often 100% of the
cases, depending on the strength of the instrument. For a significance level of 5%, the
relative rejection frequencies are slightly lower for small degrees of endogeneity. Higher
degrees of endogeneity, (ρ2 ≥ 0.15) are reliably detected also at this significance level.

Table 2 displays the relative rejection frequencies of the LR-test for instrument rel-
evance. Now, we focus on a 5% nominal significance level to reduce the type-I error,
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Table 2: Relative rejection frequencies at nominal significance level of 5% of LR-test for
relevance of instrument.

Sample
Size

Relevance
(β1, ρ1)

Endogeneity (β2, ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.05 . . . .
(0.35,0.15) 0.94 0.94 0.93 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.00,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 0.05 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.00,0.40) 1.00 1.00 1.00 1.00 1.00

Notes: Each entry in the table is based on 500 replications of the each simulation design. Dots (.) denote
combinations of values for β1 and β2 that produce lower correlations between the instrument wt and the
target structural shock εrt than between the instrument and the non-targeted structural shock εzt . These
cases are not taken into account in the analysis.

that is, the probability to accept irrelevant instruments. We use two different significance
levels for the exogeneity and relevance tests because we want to be conservative. This
approach raises the requirement for instruments to qualify as valid as compared to using
a 5% significance level for both tests. For a white noise instrument without any identi-
fying information (ρ1 = ρ2 = 0), the test shows the expected nominal rejection rate of
5%. When moving south across rows, the rejection frequency rapidly increases for higher
correlations of the instrument with the monetary shock. The null of an uninformative
instrument is rejected in all cases and for both sample sizes if ρ1 ≥ 0.30, irrespective of
the endogeneity.

To obtain an impression of the power of the LR-test and the relevance of the instru-
ments, we compare our test to the well-established F-test for instrument strength (Stock
et al., 2002; Stock and Watson, 2012; Mertens and Ravn, 2013). Table 3 contains the
relative rejection frequencies at a nominal significance level of 5% and the corresponding
F -statistics for exogenous instruments of different strength. The first column shows that
the size of the F-test is close to its nominal level for both sample sizes. The rejection
frequencies increase in instrument relevance, that is, when moving right across columns,
for both sample sizes. However, the increase is substantially slower than for the LR-test
(see first column of Table 2). The latter detects a relevant instrument with 100% prob-
ability for both sample sizes if ρ1 ≥ 0.30, whereas the F-test does so only in 45% and
75% of the cases, respectively. In other words, the LR-test has more power to reject the
null hypothesis when the alternative is true. When comparing both tests one needs to
keep in mind that the LR-test has a priori an advantage as it is based on the correct
specification of the time-varying volatility process, whereas the robust F-test accounts
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Table 3: Relative rejection frequencies at nominal significance level of 5% of robust F-test
for instrument relevance.

Sample
Size

Test
Relevance (β1,ρ1)

(0,0) (0.35,0.15) (0.72,0.30) (1,0.40)

T = 200
Rejection frequency 0.07 0.21 0.45 0.63
Frequency F > 10 0.01 0.05 0.17 0.30
Robust F-statistic 1.22 2.57 5.77 8.97

T = 500
Rejection frequency 0.05 0.29 0.75 0.91
Frequency F > 10 0.00 0.06 0.34 0.62
Robust F-statistic 0.97 3.18 9.18 15.49

Notes: The table shows the relative rejection frequencies of robust F-tests for instrument strength at a
nominal significance level of 5%, the relative frequencies that F > 10, and the average F -statistics, based
on 500 replications for each instrument. Endogeneity is assumed to be absent, that is β2 = ρ2 = 0.

for heteroskedasticity of unknown form.10

Nevertheless, the suggested decrease in type-II error is useful for practical purposes.
It implies that fewer relevant instrument are discarded. The advantage of having an
alternative test with more power is also visible when departing from the 5% significance
level for the F-test and using the stricter criterion of an F-statistic larger than 10, which
is commonly used to shield against weak instrument problems. Table 3 suggests that
even when the correlation is ρ1 = 0.4, between 40% and 70% of the relevant instruments
are erroneously discarded in samples of 200 and 500, respectively.

Table 4 displays the evaluation of models A-C using the MSE of the structural impulse
responses as accuracy criterion. We normalize the MSE by those of model A and focus
on the results based on a sample size of T = 200. Online Appendix A.2 shows that
the results are robust to changes of the propagation horizon and sample size. For a
white-noise instrument (ρ1 = ρ2 = 0), models A and B yield roughly the same MSE,
whereas model C performs extremely poorly. This highlights another attractive feature
of our encompassing framework and its usefulness for applied research using external
instruments. The result implies that weak instruments are unproblematic for inference if
the data contain changes in volatility and if they are used for identification.

For relevant and exogenous instruments, that is, moving south across rows of Ta-
ble 4, the heteroskedastic proxy-SVAR systematically yields the smallest MSE for all
variables and parameterizations. These gains are substantial and increase with instru-
ment relevance. For instruments with a correlation of 0.4 with the monetary shock, the
improvement relative to model B is 27% across parameters on average. Model C performs
worst in all cases. Given that the variances of the instrument and of the other endogenous
variables are time-varying in our setup, fitting a standard proxy-SVAR that does not ac-

10The heteroskedasticity-robust F-test is based on a Wald statistic W ≡ (Rψ−r)′[Rvar(ψ)R′]−1(Rψ−
r), where ψ is the coefficient of a regression of residuals e1t on a constant and the instrument wt and
var(ψ) is the variance of ψ. R (r) is a suitable matrix (vector) to restrict ψ to zero.
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Table 4: Comparison of MSE of impulse responses to monetary policy shock.

Relevance (β1,ρ1)

Endogeneity (β2,ρ2)

(0.0,0.0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31

(0,0)
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 1.02 1.02 1.02 . . . . . . . . . . . .
Model C 31.50 24.33 36.21 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.01 1.03 1.02 1.01 1.02 1.03 0.95 0.78 0.92 . . . . . .
Model C 16.48 12.73 18.03 16.33 13.06 17.87 15.10 13.64 16.44 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.06 1.20 1.06 1.06 1.18 1.06 0.98 0.90 0.95 0.87 0.54 0.82 0.68 0.31 0.64
Model C 7.91 5.75 7.57 7.85 5.99 7.54 7.73 6.71 7.80 7.24 5.72 7.48 5.89 4.51 6.30

(1.0,0.40)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.21 1.37 1.23 1.15 1.20 1.14 1.05 1.05 1.04 0.96 0.72 0.92 0.81 0.43 0.75
Model C 5.22 3.62 4.87 5.10 3.58 4.72 5.19 4.46 5.01 5.30 4.45 5.17 4.80 3.68 4.76

Notes: The table shows the cumulated MSE of fitted models A-C relative to model A for a propagation
horizon up to h = 25 and sample size T = 200. Each entry is based on 500 replications of each simulation
design. Dots (.) denote combinations of values for β1 and β2 that produce lower correlations between
the instrument wt and the target structural shock εrt than between the instrument and the non-targeted
structural shock εzt . These cases are not taken into account in the analysis.

count for heteroskedasticity leads to serious distortions in the estimates of the structural
parameters. Overall these results suggest that the explicit modeling of volatility changes
when they are a feature of the data and using the information of a valid proxy improves
structural inference in SVARs.

This conclusion also holds for slightly endogenous instruments (ρ2 = 0.03) if the proxy
is relevant. If ρ1 ≥ 0.15, model A consistently yields the smallest MSE. When the endo-
geneity increases further, the estimation precision of model A deteriorates considerably
relative to model B, which ignores the misspecified instrument for identification. Now,
model B yields more precise estimates. Its relative MSE are all below one. This finding
underscores the importance of being able to test for instrument exogeneity. As before,
model C performs worst in all cases.

Summarizing the simulation results, both LR-tests are helpful tools to assess the
validity of instruments. Relevant instruments are detected reliably already in small sam-
ples at the 5% significance level. Moreover, in our setup the LR-test has more power
than the widely used F-test. The detection of endogeneity requires somewhat larger
samples and higher correlations between the instrument and the non-targeted shocks.
Regarding structural inference, the heteroskedastic proxy-SVAR recovers the true model
best, even in cases of slightly endogenous instruments. As endogeneity increases, a stan-
dard heteroskedastic SVAR ignoring the instrument for identification performs better
and the (heteroskedastic) proxy-SVARs yield seriously distorted estimates. This stresses
the importance of having a test for instrument exogeneity. Finally, the heteroskedastic
proxy-SVAR yields sharper identification than both alternative models, and the use of
heteroskedasticity simplifies the analysis with potentially weak instruments.
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3.4 Simulation results for alternative DGPs

In this subsection, we modify the set-up of the simulation study along several dimensions
to assess the sensitivity of the results and provide practical guidance. First, we modify the
changes in volatility and the properties of the instrument to compare the influence of each
part on identification. Further, we extend the framework by allowing for two instruments
to identify one structural shock. Then, we assess the impact of model misspecification.
Finally, we take a closer look at weak instruments. In all cases, we estimate the same
models as described in Section 3.2. We present tables for the MSE, focusing on h = 25,
T = 200 and ρ1 ≤ 0.3, and summarize the test results verbally. The complete set of test
results is in Online Appendix A.2.

First, we model a confounding common shift in the volatility of all shocks by choosing
Λ2 = 2Λ1 + diag(0.5, 3, 7). The top panel of Table 5 shows the normalized MSE. Com-
pared to the baseline simulation, the performance of the encompassing model A improves
relative to model B, which is more affected by this shift as it draws only on the het-
eroskedasticity for identification. The gains of model A over model C decrease somewhat
as the advantage of exploiting time-varying volatility declines, but are still sizable.

Alternatively, we model smaller differential changes in the structural shock variances
by setting Λ2 = diag(0.5, 1, 2). Panel 2 of Table 5 shows the results. The gains of model
A over model B increase to 76% on average across parameters for exogenous instruments
with ρ1 = 0.3. The advantage over model C falls again relative to the baseline simulation,
but is still 19% on average for this correlation. For weak and endogenous instruments,
model B is best, whereas all models perform roughly similar for strong and endogenous
instruments. The latter potentially reflects that less precisely estimated impact effects
through heteroskedasticy conflict less with an endogenous instrument.

Next, we generate instruments with censored observations, a common feature of in-
struments used in empirical applications. We censor the 30%, 60% or 90% smallest (in
absolute value) instrument observations to zero. For 30%, the result hardly change com-
pared to the baseline. Panel 3 of Table 5 shows the results for a share of 60% zeros.
The MSE of models A and B change little. But both heteroskedastic models improve
compared to the pure proxy-SVAR, which looses more precision through the censoring.
In case of an endogenous instrument, the distortions picked up by model A are less se-
vere such that model B is less advantageous. These patterns extend up to 90% censored
instrument observations.11

As extension to the baseline simulations, we consider a framework with two instru-
ments for the monetary shock. Online Appendix A.2 contains the formal details of the
model. In the extended framework, the first instrument is generated as described in sub-
section 3.3. As second instrument, we consider two cases. First, we generate a relatively
strong and exogenous instrument with ρ1 = 0.3 and ρ2 = 0. We include two instruments
in model C accordingly. Panel 4 of Table 5 documents that this improves the perfor-

11For the estimation of the MS models based on this simulation design, we shut off the contribution
of the instrument to the state probabiltities as otherwise we implicitly introduced an additional state via
the censored values.
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Table 5: Comparison of MSE for alternative shock variances and instruments.

Relevance (β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31

(0,0) Common confounding shift in structural shock variances
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 0.99 0.93 1.00 . . . . . . . . . . . .
Model C 17.62 8.46 18.12 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.06 1.14 1.05 0.96 1.00 0.91 0.84 0.59 0.81 . . . . . .
Model C 8.86 4.25 8.17 7.91 4.01 6.99 6.99 3.50 6.79 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.27 1.46 1.18 1.28 1.45 1.21 1.10 0.97 0.98 0.91 0.59 0.82 0.74 0.41 0.65
Model C 4.54 2.00 3.74 4.50 2.07 3.77 4.08 2.14 3.47 3.76 2.01 3.47 3.43 2.00 3.22

(0,0) Less distinct changes in structural shock variances
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 0.98 0.98 0.99 . . . . . . . . . . . .
Model C 5.85 3.66 6.38 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.10 1.22 1.05 1.10 1.04 1.05 0.95 0.68 0.93 . . . . . .
Model C 2.99 1.75 2.70 2.91 1.61 2.61 2.50 1.58 2.41 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.68 2.04 1.56 1.67 1.96 1.52 1.55 1.45 1.46 1.37 1.01 1.24 1.15 0.71 1.08
Model C 1.54 0.86 1.17 1.54 0.88 1.14 1.45 0.97 1.13 1.32 0.96 1.08 1.13 0.91 1.01

(0,0) 60% censored instrument observations
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 0.93 0.94 0.93 . . . . . . . . . . . .
Model C 25.40 16.69 28.60 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.03 0.91 0.96 1.11 0.93 1.05 0.99 0.82 0.96 . . . . . .
Model C 12.68 7.56 12.64 13.42 8.15 13.52 11.70 9.20 12.69 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.07 1.07 0.93 0.98 0.96 0.86 0.82 0.78 0.80 0.83 0.60 0.77 0.54 0.37 0.50
Model C 6.02 3.32 5.19 5.52 3.35 4.76 4.79 4.00 4.79 5.21 4.32 5.21 3.66 3.80 3.84

(0,0) Second instrument strong and exogenous (ρ1 = 0.3, ρ2 = 0)
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 0.74 0.87 0.81 . . . . . . . . . . . .
Model C 2.41 3.13 2.58 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 0.74 0.67 0.77 0.87 0.70 0.93 0.81 0.65 0.85 . . . . . .
Model C 1.81 2.82 1.88 1.83 2.90 1.92 2.04 3.17 2.19 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.41 1.15 1.42 1.38 1.11 1.43 1.33 1.11 1.39 1.11 0.96 1.14 1.01 0.93 1.00
Model C 1.51 2.01 1.51 1.51 2.06 1.56 1.51 2.52 1.63 1.31 2.64 1.49 1.23 3.08 1.42

(0,0) Second instrument endogenous (ρ1 = 0.3, ρ2 = 0.15)
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 0.67 0.54 0.69 . . . . . . . . . . . .
Model C 1.72 4.02 1.93 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 0.80 0.70 0.84 0.80 0.63 0.85 0.74 0.58 0.81 . . . . . .
Model C 1.42 4.15 1.49 1.53 4.06 1.63 1.52 3.75 1.69 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 0.99 1.36 1.01 0.97 1.30 0.98 0.94 0.99 0.95 0.98 0.82 0.99 1.00 0.61 0.99
Model C 0.92 3.08 0.97 0.94 3.09 1.00 0.99 2.98 1.07 1.08 2.94 1.21 1.20 2.75 1.36

Notes: The table shows the cumulated MSE of fitted models A-C relative to model A for a propagation
horizon up to h = 25 and sample size T = 200. Each entry is based on 500 replications of each simulation
design. Dots (.) denote combinations of values for β1 and β2 that produce lower correlations between
the instrument wt and the target structural shock εrt than between the instrument and the non-targeted
structural shock εzt . These cases are not taken into account in the analysis.
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mance of models A and C relative to model B in all cases. Even if the first instrument
is endogenous, the distortions are less severe if there is a second instrument, which is
valid. Alternatively, we construct as second instrument a moderately endogenous one
with ρ1 = 0.3 and ρ2 = 0.15 (Panel 5 of Table 5). As expected, the performance gain of
model A over B is smaller, given the endogeneity of the second instrument. But the gains
of A over C also tend to decline, suggesting that model A is less capable of estimating
the larger number of parameters.

The different DGPs affect the performance of the tests for instrument validity typi-
cally only mildly. Introducing a confounding common shift or using smaller differential
changes in shock variances hardly affects the power of the relevance test. The exogeneity
test now has a bit more difficulty in detecting endogenous instruments. For the censored
instrument, the rejection frequencies are also little affected. For instruments with 60%
zeros, the exogeneity test looses power by typically 5 to 10 percentage points (pp) relative
to the baseline simulations and the relevance test by less than 5pp. However, for 90% cen-
sored instrument observations, both tests loose substantial power (by between 10-40pp).
Nevertheless, they still work. In case of a second instrument that is valid, the endogeneity
test is unaffected, while the rejection frequencies for the relevance test increase to 98%
or more. In other words, the test always detects a relevant instrument when there are
one or two relevant instruments. If the second instrument is endogenous, the rejection
frequencies for the exogeneity test increase substantially. The lowest fraction is 65% and
98% for the small and large sample, respectively.

To assess the impact of misspecification, we first increase the number of volatility
regimes, focusing on the case that the DGP has more states than the fitted MS model.
We introduce Λ3 = diag(1, 5, 10) and alter the transition matrix to

P =

0.970 0.020 0.010
0.025 0.950 0.025
0.250 0.250 0.500

 .
With this parametrization, the third state resembles a crisis-state with high volatility but
low persistence. The first panel of Table 6 shows that the relative performance of the three
models is the same as in the baseline simulation design. If the instrument is exogenous,
model A typically outperforms models B and C. If the instrument is endogenous, model
C is more distorted than before, while there is no clear change in the relative performance
of models A and B, which have the same type of misspecification.

Alternatively, we assess the effect of a violation of the assumption of a time-invariant
impact effects matrix. We create Bm for m = 1, 2 using our baseline specification of B
as B1. To generate B2, we add a random component to each element of B1 as follows:

B1 =

 0.69 0.61 0
−1.10 1.49 1
−0.75 1.49 0

 , B2 = B1 + (vec(I3)
′ ⊗ I3)(I3 ⊗ vec(N (0,

√
0.05I9))),

where N is the normal distribution, I is the identity matrix, ⊗ is the Kronecker product
and vec is the vectorization operator. Panel 2 of Table 6 shows that models B and C
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Table 6: Comparison of MSE when Markov switching model is misspecified.

Relevance (β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31

(0,0) DGP is Markov switching model with 3 states
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 1.01 1.02 1.02 . . . . . . . . . . . .
Model C 29.58 19.18 32.32 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.06 1.14 1.11 1.07 1.10 1.11 1.40 1.03 1.42 . . . . . .
Model C 18.91 12.66 19.99 19.58 12.94 20.81 19.07 14.77 20.91 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 0.85 1.18 0.83 1.13 1.24 1.19 1.03 1.05 1.07 0.89 0.65 0.89 1.08 0.50 1.04
Model C 7.11 4.90 6.56 9.62 6.14 9.59 7.31 7.07 7.54 6.69 6.70 7.09 8.11 6.47 8.67

(0,0) DGP has small shift in impact matrix across regimes
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 0.99 1.00 1.00 . . . . . . . . . . . .
Model C 31.89 21.63 37.21 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.04 1.08 1.07 1.06 1.11 1.06 1.00 0.83 0.97 . . . . . .
Model C 18.40 11.70 21.26 19.02 12.87 21.27 16.73 13.27 19.26 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.16 1.33 1.16 1.15 1.25 1.14 1.04 0.93 1.02 0.98 0.60 0.94 0.79 0.36 0.74
Model C 8.19 4.55 7.98 8.12 4.89 7.93 7.94 6.10 8.17 8.16 6.02 8.68 6.40 4.88 6.91

(0,0) DGP with smooth transition in variances
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 1.00 1.00 1.01 . . . . . . . . . . . .
Model C 33.55 30.85 39.80 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.03 1.02 1.03 1.03 1.01 1.02 1.01 0.93 0.99 . . . . . .
Model C 23.55 20.99 27.67 22.94 21.46 27.09 21.59 24.93 26.21 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.06 1.04 1.06 1.05 1.03 1.05 0.99 0.84 0.97 0.91 0.63 0.87 0.74 0.37 0.68
Model C 11.14 8.82 11.97 11.07 9.45 12.03 11.03 11.28 12.44 10.85 11.89 12.67 9.26 9.39 10.76

(0,0) DGP has exogenous break in variances
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 1.00 1.00 1.00 . . . . . . . . . . . .
Model C 38.57 34.64 45.57 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.02 1.00 1.02 1.02 0.99 1.02 1.00 0.91 0.99 . . . . . .
Model C 26.69 22.93 31.27 25.96 23.57 30.58 24.59 27.55 29.81 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.06 1.03 1.06 1.05 1.01 1.05 1.01 0.83 0.99 0.91 0.62 0.87 0.76 0.37 0.69
Model C 12.66 10.12 13.70 12.60 10.55 13.75 12.92 12.53 14.47 12.43 13.23 14.39 10.73 10.46 12.49

Notes: The table shows the cumulated MSE of fitted models A-C relative to model A for a propagation
horizon up to h = 25 and sample size T = 200. Each entry is based on 500 replications of each simulation
design. Dots (.) denote combinations of values for β1 and β2 that produce lower correlations between
the instrument wt and the target structural shock εrt than between the instrument and the non-targeted
structural shock εzt . These cases are not taken into account in the analysis.
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suffer more than model A from such a misspecification. The latter seems more robust
as it draws on two sources of identifying information. Next, we generate time-varying
volatility either through a smooth transition in variances DGP using time as transition
variable and parameters c = 0.5T and γ = −

√
T/10 or through an exogenous break

in variances at 0.5T (Online Appendix A.4). Panels 3 and 4 of Table 6 show that the
MS successfully accounts for different underlying volatility models. The gains of models
A and B versus model C increase essentially in all cases as compared to the baseline
simulations. Moreover, the performance of model A relative to model B increases in
instrument strength as expected even though the advantage of model A over model B
declines somewhat. Together, these results suggest that exploiting the heteroskedasticity
for identification is easier for the MS model if the DGP has a simpler form of time-varying
volatility. This worsens the relative performance of model C and reduces the benefits of
A over B.

The LR-tests are robust towards these forms of misspecification. For an underspecified
number of states, the rejection frequencies of the exogeneity test fall typically by less than
10pp and those of the relevance test are largely unaffected. In case of a failure of the
constancy assumption, the exogeneity test becomes slightly oversized. But the rejection
frequencies for endogenous instruments and the relevance test are hardly affected. For
the alternative variance models, the rejection frequencies of both tests are essentially
unchanged.

Finally, we take a closer look at weak instruments by varying the degree of relevance
on a finer grid. Specifically, we simulate exogenous instruments with target correlations of
ρ1 ∈ [0, 0.07, 0.1, 0.15, 0.225, 0.3] with the monetary shock. 83%-99% of these instruments
are rejected in standard proxy-SVARs as being weak according to the typically used
robust F-statistic (Table 3). In contrast, the heteroskedastic proxy-SVAR allows using
all of them. Table 7 shows that the MSE of model A are at least as small as those for
model B, and always smaller than the ones for model C. The advantage of model A over
B increases in instrument relevance, whereas the improvement over model C decreases.
Taken together, these results suggest that one can include a weak instrument into a
heteroskedastic SVAR to label the main shock of interest without blurring inference, and
which in many cases may sharpen inference.

Table 7: Comparison of MSE of for weak instruments.

Relevance (β1,ρ1) (0,0) (0.16,0.07) (0.23,0.1) (0.35,0.15) (0.53,0.225) (0.72,0.30)
θ11, θ21, θ31 θ11, θ21, θ31 θ11, θ21, θ31 θ11, θ21, θ31 θ11, θ21, θ31 θ11, θ21, θ31

Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.02 1.02 1.02 1.02 1.03 1.03 1.00 1.02 1.00 1.01 1.03 1.02 1.02 1.06 1.03 1.06 1.20 1.06
Model C 31.50 24.33 36.21 26.20 19.83 29.62 22.15 16.59 23.83 16.48 12.73 18.03 11.11 8.29 11.37 7.91 5.75 7.57

Notes: The table shows the cumulated MSE of fitted models A-C relative to model A for a propagation
horizon up to h = 25 and sample size T = 200. Each entry is based on 500 replications.

20

online_appendix.pdf{}{}{}#appendix.D{}{}{}


4 Monetary policy analysis in a heteroskedastic proxy-

SVAR

We use our framework to provide new – and in light of the Monte Carlo evidence sharper
and more reliable – estimates of the impact of monetary policy on the macro-economy.
Our baseline model consists of four endogenous variables and an instrument for monetary
policy shocks in the vector zt = [fft, ipt, pcet, prmt, rrt]

′. We use the federal funds rate
as the monetary policy indicator fft, the log of industrial production as a measure of
real economic activity ipt, the log of the personal consumption expenditure core price
index pcet as a measure of the Federal Reserve price target variable, and the log of a
price index of raw materials prmt to deal with anticipation of future inflation and the
associated price puzzle, following Christiano, Eichenbaum and Evans (1999).12 We take
the narrative-based measure of unexpected changes in the intended fed funds rate of
Romer and Romer (2004) as an instrument for the latent monetary policy shocks, rrt.

13

This proxy starts in 1969M1 and has the longest sample, while instruments constructed
with high-frequency data usually start only in the 1990s.

We estimate the VAR on monthly frequency data within the sample 1980M1 to
2007M6. The start is dictated by the availability of the raw materials price data, while
the end is chosen such as to ensure that our sample is not affected by the zero lower
bound or by unconventional monetary policy. We use six lags to account for the persis-
tence in the data. In Online Appendix A.4 we conduct and extensive robustness analysis
and show that our results hold when changing the number of lags and states, the sample
period, the monetary policy indicator, and an alternative volatility model.

4.1 Model specification

An important choice in our framework is the volatility model. Its functional form affects
the likelihood, estimators, and tests. Therefore, we perform an extensive model compari-
son. As candidates we describe heteroskedasticity through smooth transition in variances
using either a 12-month trailing moving average of industrial production or time as the
transition variable, an exogenous break point iterating over all potential break points,
a multivariate GARCH process, as well as MS models with M = 2 and M = 3 states,
respectively.14 Online Appendix A.4 describes all models formally.

Table 8 shows the log-likelihood for a linear model assuming white noise residuals and
the five alternative volatility models. In addition, we report information criteria because
they work well for judging the performance of MS models (Psaradakis and Spagnolo,
2006), whereas standard tests are problematic for this purpose as some parameters might

12The series are INDPRO, FEDFUNDS, PCEPILFE; and PINDUINDEXM downloaded from the
(AL)FRED database of the Federal Reserve Bank of St. Louis.

13We use the updated version of the original Romer and Romer (2004) constructed by Wieland and
Yang (2016) downloaded from Wieland’s webpage.

14We also estimate smooth transition in variances models using either 6 or 24-month moving averages
of industrial production. Both perform worse than the 12-month version so we do not report them.
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Table 8: Model selection.

Reduced form models log(LT ) SC AIC HQ

Markov switching 3 states 2637.660 -4883.320 -4587.544 -4142.295
Smooth transition in variances (time) 2578.269 -4782.538 -4500.343 -4075.539
Markov switching 2 states 2577.234 -4780.468 -4498.272 -4073.469
GARCH residuals 2498.744 -4617.487 -4330.765 -3899.146
Smooth transition in variances (IP) 2441.076 -4508.152 -4225.957 -3801.153
Exogenous breakpoint 2427.803 -4483.607 -4202.921 -3780.388
White noise residuals 2290.697 -4241.394 -3984.853 -3598.667

Note: LT denotes the likelihood function evaluated at the optimum, AIC = −2log(LT ) + 2f , SC =
−2log(LT )+ log(T )f and HQ = −2log(LT )+2f× log(log(T )), where f is the number of free parameters
and T the number of observations.

not be identified under the null hypothesis of a smaller number of states than under the
alternative (Hansen, 1992). Specifically, the AIC chooses successfully between alternative
volatility models (Lütkepohl and Schlaak, 2018). The models are ordered descending
according to their log-likelihood values. This ranking coincides with that implied by the
information criteria.

The table conveys two results. First, the linear model is dominated by all models that
allow for changes in volatility. This strongly supports the assumption of heteroskedas-
ticity. In this case, using any time-varying volatility model estimates structural impulse
responses more precisely than a linear model (Lütkepohl and Schlaak, 2018). Second,
the MS models tend to be preferred over the other heteroskedastic models. We opt for
the MS(2) model. It yields more stable and precise estimates given that the third state
in the MS(3) model contains only few observations. Moreover, relative to the smooth
transition in time model, MS models are usually the best choice even in cases where the
volatility specification does not coincide with the data generating process (Lütkepohl and
Schlaak, 2018). Modeling changes in volatility through a latent variable gives full voice
to the data, reducing the risk of misspecification of the transition variables, functions or
break points. In Online Appendix A.4, we show that the results are robust to using the
MS(3) or the smooth transition model.

At the same time, MS models have several limitations due to their computational
complexity. First, they require sufficiently many observations (in each regime) to es-
timate the parameters reliably. While there is no formal analysis, the existing fre-
quentist applications suggests that the minimum sample length is 100 for a bivariate
model (Podstawski and Velinov, 2018). In our simulations, we obtain reliable results
for a four-variable model with 200 observations. Second, the MS models cannot ac-
commodate a large number of variables. For our empirical application, we need a high
performance computing server in order to check the optima of the likelihood function
of a sufficiently high number of starting values to assure that a global optimum is
found. Hence, five endogenous variables is probably an upper bound for frequentist
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applications in practice. Bayesian MS models may accommodate up to six variables
(Lütkepohl and Woźniak, 2020). Similarly, the number of lags in our application (6)
rather constitutes a maximum, while other studies typically use fewer lags (Podstawski
and Velinov, 2018; Herwartz and Lütkepohl, 2014; Lütkepohl and Woźniak, 2020; Lanne
et al., 2010; Lütkepohl and Schlaak, 2018). Summarizing, the strong nonlinearity of the
MS model may limit its applicability if the data or research question require many endoge-
nous variables to avoid nonfundamentalness, or many observations to have sufficient data
points in each regime. Solutions to these bottlenecks are high performance computing
servers, Bayesian analysis, or higher frequency data.

4.2 Volatility regimes and identification

Table 9 reports the estimated state-dependent reduced form covariance matrices. They
indicate whether the model detects switches in volatility, which are central for identifi-
cation and testing. They also help interpret the endogenously and agnostically identified
regimes. The variances all increase in state 2, by factors of 2, 53, 5, 3, and 18 across rows.
The strong increase in the volatility of the interest rate residual by 53 is further evidence
that the sample is characterized by changes in monetary policy volatility. Moreover, the
MS model seems able to detect and separate these changes.

The table also shows that the covariances increase (in absolute value) in state 2, and
often by larger factors than the variances. These changes in the covariances illustrate
the idea behind identification through heteroskedasticity. In a period where interest
rates are highly volatile, we learn more about the relation between the federal funds
rate, economic activity, and prices as the covariance between them temporarily increases.
Monetary policy shocks are then more likely to occur and can be used as a ‘probabilistic
instrument’ (Rigobon, 2003) to trace out the response of production and prices.

Table 9: Estimated state covariance matrices (×103) of reduced form model (8) with
zt = [fft, ipt, pcet, prmt, rrt]

′.

State 1: Σ̃1 State 2: Σ̃2
0.443
0.090 1.562
0.003 0.005 0.017
0.404 0.295 0.024 9.526
−0.375 5.518 0.026 −0.604 157.933




0.821
3.389 82.749
−0.005 −0.262 0.089
−0.161 −1.311 −0.161 32.801
24.978 277.004 −0.709 7.996 2845.134


To test the validity of the external instrument, we use statistical identification. The

latter requires significant and differential changes in the volatility of the structural in-
novations µt. Table 10 shows the estimated variances of the structural model (10) with
unrestricted β in state 2, which are contained in Λ2. Given the restrictions on D and
that the instrument is ordered last in zt, λ52 captures the change in the variance of the
noise in the measurement of the instrument. As the ordering of the remaining λ·2s is
arbitrary, we simply order them from largest to smallest. All estimates are larger than
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one, implying that all structural shocks are more volatile in state 2. Thus, we label state
2 the high volatility state. Identification requires that the variance shifts are all distinct
from each other. The heterogeneity of the elements of Λ2 points toward statistical iden-
tification. The confidence intervals constructed using one standard deviation around the
point estimates do not overlap. This suggests that the decomposition in (11) is locally
unique and can be used to test the validity of the instrument.

Table 10: Estimates and standard errors of relative variances.

Parameter Estimate Standard error

λ12 14.56 3.26
λ22 5.56 1.27
λ32 3.49 0.78
λ42 1.23 0.28
λ52 53.59 12.18

Notes: The standard errors are obtained from the inverse of the negative Hessian evaluated at the
optimum of the structural model (10) with zt = [fft, ipt, pcet, prmt, rrt]

′.

To develop an economic notion about the statistically identified regimes, Figure 1
shows the smoothed state probabilities. The upper panel corresponds to state 1 and the
lower panel to state 2. State 1 dominates the sample. The model detects a long spell of
low volatility during a period that is often referred to as the ‘Great Moderation’ in the
1990s and 2000s with stable growth and inflation under the Federal Reserve chairman
Alan Greenspan. The high volatility regime appears more often during the first part of the
sample. Many of the spikes are associated with specific events in the economic history of
the U.S. In particular, a longer-lasting switch to state 2 coincides with the chairmanship
of Paul Volcker during the first half of the 1980s. In the second part of the sample, there
are peaks around the burst of the dot-com bubble in 2001, the 9/11 attacks, and the
subsequent recession. Overall, this narrative, while only suggestive, indicates that the
endogenously determined volatility regimes capture relevant developments in the U.S.
economy and in the conduct of monetary policy.

In model (10) we assume that both the autoregressive parameters Γ(L) and the struc-
tural impact matrix D are state-invariant. The first assumption ensures computational
tractability. The latter is a crucial ingredient for identification in our setup and standard
in the literature on identification via heteroskedasticity.15 These assumptions also imply
that the model attributes time-varying reduced form volatility entirely to the changes in
structural shock variances and not to changes in the policy rule of the estimated mone-
tary SVAR. The evidence in Owyang and Ramey (2004), Primiceri (2005), Sims and Zha
(2006), and Amir-Ahmadi et al. (2016) supports this assumption. These papers examine
the drivers of volatility changes in the U.S. over time. While they find some evidence

15See Sentana and Fiorentini (2001), Rigobon (2003), Rigobon and Sack (2003), Normandin and
Phaneuf (2004), Herwartz and Lütkepohl (2014), Nakamura and Steinsson (2018).
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Figure 1: Smoothed state probabilities.
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Notes: The figure shows the smoothed state probabilities for m = 1 in the upper panel and for m = 2
in the lower panel of model (10) with zt = [fft, ipt, pcet, prmt, rrt]

′. The shaded vertical bars mark
recession periods defined by the NBER.

for regime switches in the policy rule, they conclude that these changes explain only a
small part of U.S. business cycles and that changes in shock variances explain most of the
time-varying volatility. Other authors find little or no evidence of changes in the mon-
etary policy coefficients (Bernanke and Mihov, 1998; Leeper and Zha, 2003). Recently,
Antoĺın-Dı́az and Rubio-Ramı́rez (2018) follow these views by assuming no variation in
the policy rule in their monetary SVAR.

Our framework allows testing the assumption of a constant impact matrix implicitly.
To assess whether our assumption of zeros on the last column of D is in line with the
data (9), we test the null hypothesis H0 : d15 = d25 = d35 = d45 = 0 against the
alternative hypothesis H1 : ∃j ∈ {1, . . . , 4} s.t. dj5 6= 0. The associated LR-test has a
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χ2(4) distribution. The LR-statistic is 6.582 with a p-value of 0.160, not rejecting the zero
restrictions. The test result also implies that there is no evidence against the constancy
of B and β across states because the data could speak up against this assumption in an
overidentified system.

4.3 Instrument validity

We now use the significant and distinct changes in the variances of the structural in-
novations to test the validity of the instrument. First, we test for exogeneity. We test
H0 : β2 = β3 = β4 = 0 against H1 : β unrestricted. Thereby, we order the monetary
shock first and test whether the instrument is exogenous to the non-monetary policy
shocks. Table 11 shows that the data do not reject the assumption of exogeneity. The
LR-statistic is small and the p-value far above conventional significance levels. Thus, the
instrument can be considered as exogenous in our model.

Table 11: Instrument validity.

Exogeneity Relevance

LR statistic 0.80 44.85
Degrees of freedom 3 1
p-value 0.85 0.00

Notes: The table shows the LR statistic, the p-value and the number of restrictions for the tests of
instrument exogeneity (H0 : β2 = · · · = βK = 0, H1 : β unrestricted) and instrument relevance
(H0 : β1 = 0, H1 : β1 6= 0). The instrument is the narrative-based measure of monetary surprises of
Romer and Romer (2004).

Second, we test for relevance. We test the null hypothesis that the instrument is
unrelated to all structural shocks, H0 : β = 0, against the alternative that it is significantly
related to at least one structural shock. If the null is rejected, this will be the monetary
policy shock given the first stage result and that the instrument is constructed to have
a high correlation with the monetary shock and a low (zero) correlation with the other
shocks. The test indicates that the instrument is highly relevant. The null is rejected
at the 1% significance level.16 We conclude that the monetary surprises of Romer and
Romer (2004) are a valid instrument for monetary policy shocks in our SVAR.

These results, as any tests, are model-specific. Nevertheless, they suggests that the
measure of Romer and Romer (2004) successfully addresses endogeneity concerns raised
by Leeper (1997) about their earlier narrative measures of presumably exogenous policy
changes (Romer and Romer, 1989). Moreover, the results indicate that the measure
is a valid instrument for monetary policy shocks. This supports the results of many
papers employing it as such in time-series models (Stock and Watson, 2012; Tenreyro
and Thwaites, 2016; Ramey, 2016; Rey, 2016).

16The alternative relevance test yields the same conclusion. The LR-statistic is 45.65 with 4 degress of
freedom. The corresponding p-value is virtually zero, clearly rejecting the null hypothesis of irrelevance.

26



4.4 Dynamic effects of monetary policy shocks

We now estimate the dynamic effects of monetary shocks. Based on the testing sequence,
we leave β1 unrestricted and set β2 = β3 = β4 = 0. This implies that the estimation
combines the information in the instrument and the time-varying second moments for
identification of a heteroskedastic proxy-SVAR.

Figure 2 shows the impulse responses to all four structural shocks in columns on the
endogenous variables in rows. When interpreting the results, the inclusion of the proxy is
a key advantage over traditional identification through heteroskedasticity, where a main
challenge is the economic interpretation of the statistically identified shocks (Herwartz
and Lütkepohl, 2014). The restrictions on β pin-down the monetary shock in the first
column of D. A 100 basis points surprise monetary contraction leads to an significantly
elevated federal funds rate for a year and a half, according to the 95% confidence intervals.
Economic activity declines half a year after the occurrence of the shock. The response
bottoms after two years and is highly statistically significant. The trough is –1.6%.
Thereafter, industrial production gradually returns to its trend, but is still depressed at
the end of the propagation horizon. Consumer prices fall steadily after the shock, but
more sluggishly and persistently than activity. The trough is –0.8% after five years. With
the weakening economy, the policy rate falls below trend after two years, reflecting an
endogenous response of monetary policy. Finally, raw material prices fall significantly.

Qualitatively, the results are in line with a long literature that documents contrac-
tionary effects of unexpected increases in the federal funds rate on output and prices
(Christiano et al., 1999; Gertler and Karadi, 2015; Caldara and Herbst, 2019). Impor-
tantly, there is no price puzzle. Quantitatively, the estimated impacts are ‘medium’ in
the terminology of Coibion (2012), that is, they are roughly in-between the small effects
of monetary policy shocks documented by Christiano et al. (1999) and the large effects
presented by Romer and Romer (2004). Compared to the latter paper, our estimates for
industrial production are only about half of the size. We attribute this to the more recent
sample, as the impact of monetary surprises is typically estimated to be at least partly
smaller after the 1980s (Ramey, 2016).

The other structural shocks are identified using the changes in volatility and yet need
to be labeled (if they are of interest to the researcher). Our framework also simplifies this
task compared to traditional identification through heteroskedasticity. The inclusion of
a valid proxy separates the shock of interest from the remaining shocks. Therefore, the
latter are easier to label. This is reflected in relatively clear sign patterns of the impulse
responses for the other shocks and in the forecast error variance decomposition (Online
Appendix A.3), which both suggest a clear economic labeling of the shocks.

The second shock leads to an increase in economic activity, consumer prices, and the
federal funds rate. These signs are consistent with a demand shock that induces tighter
policy. The third shock implies a significant decline in real activity and a concurrent
increase in consumer prices. Thus, we label it a supply shock. Finally, the fourth shock
explains roughly 80% of the error variance in raw material prices. It leads to an immediate
and significant jump in this price index that feeds into consumer prices with a delay of
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Figure 2: Impulse responses for heteroskedastic proxy-SVAR model.
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Notes: The figure shows the impulse responses to one standard deviation shocks in state m = 1 of the
heteroskedastic proxy-SVAR(6) model with M = 2 states for zt = [fft, ipt, pcet, prmt, rrt]

′. The sample
is 1980M1-2007M6 and the instrument for monetary policy shocks is the narrative-based measure of
Romer and Romer (2004). The shaded bands denote 95% pointwise confidence intervals based on 1,000
bootstrap replications.

several months. This is associated with a concurrent increase the federal funds rate.
Industrial production falls given higher input costs and tighter policy. These patterns
reflect those induced by a cost-push shock.

The simulation study suggests that another advantage of modeling heteroskedasticity
is sharper identification of the structural model and, hence, of the effects of monetary
policy. To see this in the application, Figure 3 compares the impulse responses to a
monetary policy shock from the heteroskedastic proxy-SVAR (left column) to those from
a standard heteroskedastic SVAR with β = 0 (middle column) and from a standard
proxy-SVAR neglecting time-varying volatility (right column). The shock is scaled to
100 basis points for comparison. Qualitatively, all models yield the same conclusions.
Production and prices decline.

Quantitatively, however, and in terms of statistical significance, there are notable
differences. In the heteroskedastic SVAR models, the monetary shock is about twice
as persistent. The federal funds rate remains significantly above trend for about 18
months, whereas in the standard proxy-SVAR it is indistinguishable from zero after
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Figure 3: Comparison of models.
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Notes: The figure shows the impulse responses to a monetary policy shock of 1pp in a heteroskedastic
proxy-SVAR (left column), a heteroscedastic SVAR (middle column), and a proxy-SVAR (right column)
on the endogenous variables in rows. The model contains zt = [fft, ipt, pcet, prmt, rrt]

′, the sample
is 1980M1-2007M6 and the instrument for latent monetary shocks is the narrative-based measure of
Romer and Romer (2004). The shaded bands denote 95% pointwise confidence intervals based on 1,000
bootstrap replications.

roughly three quarters. This stronger and longer-lasting monetary contraction leads to a
quicker, stronger, and more persistent drop in industrial production. In the heteroskedas-
tic SVAR models, output falls significantly below trend after a year and remains depressed
for more than three years. The trough is at –1.6%. In contrast, in the proxy-SVAR, the
decline in economic activity is largely insignificant and the trough is only –0.8%. Sim-
ilarly, the effect of the monetary shock on prices is quicker, about twice as strong, and
more statistically significant in the heteroskedastic models.

The comparison suggests that the heteroskedastic proxy-SVAR attributes a larger role
to monetary shocks in business cycles than the standard proxy-SVAR. To see whether
this is the case, we compute forecast error variance decompositions. Indeed, the het-
eroskedastic proxy-SVAR implies that monetary shocks account for 68%-76% of the long-
run variation (at horizon 60) of industrial production and both price measures in the high
volatility regime, and for 7%-15% in the low volatility regime (Online Appendix A.3).
The standard proxy-SVAR implies that monetary shocks explain 9%-18% of the variance
of these variables. When interpreting the numbers of the heteroskedastic proxy-SVAR,
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one needs to keep in mind, however, that the high volatility regime accounts only for one
fifth of the observations.

Finally, the similarity between the impulse responses for the first two models suggest
that heteroskedasticity provides strong identifying information in the sample. In other
words, the inclusion of the instrument changes the responses only marginally. This ob-
servation, in turn, has two implications. First, in this application, the main advantage
of including the instrument is to pin-down the shock of interest. Second, heteroskedas-
ticity alone can in principle be used to identify monetary policy shocks in U.S. post
WWII samples. The statistically identified shocks are consistent with those that also
use an instrument for identification. This supports the results from a long series of pa-
pers that use time-varying volatility to identify monetary policy shocks (Normandin and
Phaneuf, 2004; Lanne and Lütkepohl, 2008; Lütkepohl and Woźniak, 2020).

4.5 Testing alternative proxies for monetary shocks

Finally, we test and compare further measures of monetary surprises proposed in the
literature. We consider the identified monetary shocks from the SVAR of Bernanke et al.
(2005, BBE05) and monetary surprises identified using high(er) frequency data. For the
latter, we employ measures derived from changes in federal funds futures data around
policy announcements using a daily window (Barakchian and Crowe, 2013, BC13), a 30-
minutes window (Gertler and Karadi, 2015, GK15), and a 30-minutes window including
further cleaning of the surprises by regression on a range of control variables (Miranda-
Agrippino and Ricco, 2018, MR18). Finally, we compute the first principal component of
all instruments, which accounts for about 44% of their variation, to see whether combining
the information from multiple instruments generates an advantage. We consider the
potential instruments one at a time. To facilitate a clean comparison, we use the baseline
sample period for the evaluation of all proxies although they are available for slightly
different periods. We fill the missing observations with zeros.

Table 12: Testing alternative proxies.

Instrument Exogeneity Relevance
p-value p-value

Model-based (BBE05) 0.680 0.000
Daily (BC13) 0.127 0.593
30-minute (GK15) 0.608 0.056
30-minute cleansed (MR18) 0.584 0.036
Factor 0.673 0.000

Notes: The table shows the p-values of LR-tests for the exogeneity and relevance of different instruments
wt in the model with zt = [fft, ipt, pcet, prmt, wt]

′, testing them one at a time. The sample period is
1980M1-2007M6. The model-based measure is of Bernanke et al. (2005), and measures based on high(er)
frequency data are taken from Barakchian and Crowe (2013), Gertler and Karadi (2015) and Miranda-
Agrippino and Ricco (2018), respectively, and the first principal component of these instruments.
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Table 13: p-values of Granger-causality tests.

Dependent variable RR04 BBE05 BC13 GK15 MR18 Factor

p-value GC-test
Instrument 0.69 0.47 0.36 0.04 0.04 0.58
Federal funds rate 0.12 0.83 0.67 0.00 0.48 0.83
ln(Industrial production) 0.87 0.99 0.51 0.29 0.29 0.98
ln(PCE core) 0.60 0.13 0.58 0.03 0.19 0.37
ln(Material prices) 0.47 0.02 0.89 0.46 0.41 0.09

Observations 384 209 235 263 233 203
Parameters 31 31 31 31 31 31
R2 0.20 0.12 0.13 0.38 0.23 0.10

Notes: The table shows p-values of robust F-statistics using HAC standard errors testing the null hy-
pothesis that the coefficients on six lags of each variable in the VAR with zt = [fft, ipt, pcet, prmt, wt]

′

are jointly equal to zero. The instruments wt are included one at a time into the VAR and are RR04 -
Romer and Romer (2004), BBE05 - Bernanke et al. (2005), BC13 - Barakchian and Crowe (2013), GK15
- Gertler and Karadi (2015), MR18 - Miranda-Agrippino and Ricco (2018), and the first factor of these.

Table 12 shows the test results. The model-based measure is a valid instrument.
The p-values are 0.68 for exogeneity and essentially zero for relevance. The picture is
more mixed for the instruments based on high-frequency data. In particular, for the
instrument based on daily data, there is some indication of endogeneity. The p-value of
0.127 is only marginally above the 10% level that the simulations suggest using. Moreover,
the hypothesis of irrelevance cannot be rejected. The p-value of 0.593 is quite large. The
remaining three instruments are all exogenous, according to the high p-values of close
or above 0.5. But the 30-minute instrument and the cleansed version thereof are not
particularly strong, with p-values of 0.056 and 0.036, respectively. The relevance tests for
the higher-frequency instruments need to be treated with some caution, however, due to
the smaller number of non-zero instrument observations.

We compare our findings based on the LR-tests to three alternative procedures that
are used to evaluate the quality of instruments. First, we use Granger-causality (GC)
tests to see whether lags of the endogenous variables predict the instruments, thereby
following procedure based on joint correlations (Miranda-Agrippino and Ricco, 2018).
Projecting one instrument at a time onto the autoregressive part of the VAR, we test
the null hypothesis that the lags of each endogenous variable are jointly equal to zero.
Table 13 shows robust p-values of the corresponding F-tests and some summary statistics.
The R2s are modest at around 10%-20%, suggesting little explanatory power of all 30
lags for the instruments. Moreover, there is generally little evidence of Granger causality.
The baseline instrument (RR04) and the daily surprises (BC13) are not Granger caused
by any of the variables. The model-based instrument (BBE05), the cleansed 30-minute
surprises (MR18), and the factor are Granger caused only by one variable at the 10%
significance level. An exception are the 30-minute surprises (GK15), which are Granger
caused by three variables at the 5% significance level. Accordingly, the R2 is 0.38.

31



Second, we use the overidentification test proposed by Cesa-Bianchi et al. (2016) which
is based on the availability of two instruments. For each reduced form residual e2t, ..., e4t,
we compute Hansen’s J-statistics testing the joint null hypothesis that two instruments
are valid. We keep the baseline instrument of Romer and Romer (2004) fixed across
tests and add one alternative instrument at a time. Table 14 reports the p-values of the
(HAC-consistent) J-tests. The results add to the evidence based on the LR-tests and
GC-tests. The p-values are all large for the model-based measure and the factor. For the
daily and 30-minute proxy, the test rejects instrument validity at the 5% and 10% level,
respectively, when using the residual of the equation of consumption expenditure prices.
The cleansed 30-minute instrument is a borderline case.

Table 14: p-values of Hansen’s overidentification J-test.

Residual BBE05 BC13 GK15 MR18 Factor

ln(Industrial production) 0.85 0.64 0.40 0.96 0.44
ln(PCE core) 0.42 0.07 0.03 0.10 0.45
ln(Material prices) 0.89 0.86 0.61 0.39 0.75

Notes: The table shows p-values of Hansen’s HAC-consistent J-statistics testing the joint null hypothesis
that the instruments are valid. The instruments are tested one at a time against the baseline instrument
of Romer and Romer (2004). The alternative instruments are BBE05 - Bernanke et al. (2005), BC13 -
Barakchian and Crowe (2013), GK15 - Gertler and Karadi (2015), MR18 - Miranda-Agrippino and Ricco
(2018), and the first factor of these.

Third, we regress the instruments on different types of structural shocks available
from the literature to see whether the instruments are potentially endogenous to these
shocks. We use all shocks and variables considered by Stock and Watson (2012) except for
monetary policy shocks and a few measures with insufficient observations. We consider
oil shocks (Hamilton, 2003; Kilian, 2008; Ramey and Vine, 2011), uncertainty shocks
(Baker, Bloom and Davis, 2016), fiscal policy shocks (Romer and Romer, 2010; Fisher and
Peters, 2010; Ramey, 2011), productivity shocks (Basu, Fernald and Kimball, 2006; Smets
and Wouters, 2007), and financial shocks (Gilchrist and Zakrajsek, 2012). Half of these
series is available only for the quarterly frequency so we sum the instruments within
quarters. We regress one proxy on all potential shocks for a given frequency at a time.

Table 15 shows the regression results with HAC standard errors. The results are simi-
lar to those based on the LR-tests. The R2s are typically low, indicating little relevance of
the shocks. Moreover, out of the 36 coefficients, only 8 are statistically significant, thereof
three only at the 10% level. An exception are the higher frequency measures that are not
cleansed. They seem to systematically relate to oil and uncertainty shocks, consistent
with the indication of endogeneity by the LR-test and that they are Granger caused by
the federal funds rate and consumption expenditure prices. However, the two uncertainty
measures have puzzling opposite signs, potentially reflecting multicollinearity.

Focusing on the instruments that have been identified as valid instruments by the LR-
tests, Figure 4 compares the implied effects of a monetary policy shock on the endogenous
variables. The solid lines show the estimates using the narrative-based measure together
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Table 15: Regression of proxies on other shocks.

Dependent variable RR04 BBE05 BC13 GK15 MR18 Factor

(a) Monthly data

Ramey and Vine (2011) 1.39 14.98 30.87 3.34∗∗ 1.25 1.90
(6.59) (49.39) (27.36) (1.29) (2.05) (3.87)

Kilian (2008) -0.04 -0.01 -0.29 0.01 0.00 -0.01
(0.06) (0.46) (0.30) (0.02) (0.02) (0.03)

Hamilton (2003) 0.19 0.62 2.55 -0.01 0.09 0.17
(0.33) (2.70) (2.15) (0.07) (0.14) (0.18)

TED spread -3.87 -34.41 -2.19 -1.11 0.04 0.33
(3.41) (27.87) (15.02) (0.68) (1.23) (2.20)

Baker et al. (2016) 0.02 -0.36 -0.73∗∗∗ -0.03∗∗∗ -0.01 0.00
(0.05) (0.34) (0.27) (0.01) (0.02) (0.02)

AR(2) residual of VIX 0.26 0.42 3.53∗∗ 0.28∗∗∗ 0.04 -0.16
(0.32) (2.36) (1.70) (0.08) (0.12) (0.20)

Observations 321 215 241 260 239 209
R2 0.09 0.06 0.10 0.11 0.06 0.06

(b) Quarterly data

Ramey (2011) 2.13 20.68 2.41 3.16 2.15 0.89
(9.43) (65.46) (12.52) (5.44) (3.72) (2.73)

Fisher and Peters (2010) 2.31∗ 2.54 -1.28 0.19 0.08 -0.04
(1.33) (3.58) (2.83) (0.32) (0.24) (0.14)

Romer and Romer (2010) -0.18 1.01 0.11 -0.12 0.00 -0.03
(0.29) (1.50) (0.55) (0.14) (0.08) (0.14)

Smets and Wouters (2007) -0.19 -0.44 -0.04 -0.03 -0.00 -0.01
(0.14) (0.46) (0.21) (0.03) (0.02) (0.02)

Basu et al. (2006) 0.04 0.25∗ 0.06 0.00 0.00 0.01
(0.07) (0.13) (0.08) (0.01) (0.01) (0.01)

Gilchrist and Zakrajsek (2012) -0.33∗ -1.22 -0.58 -0.09 -0.04 -0.06
(0.18) (0.84) (0.38) (0.06) (0.04) (0.04)

Observations 102 60 64 60 60 60
R2 0.17 0.27 0.09 0.21 0.06 0.17

Notes: The table shows results of regressions of alternative instruments for monetary policy shocks
(in columns) on structural shocks proposed in the literature for uncertainty, oil markets, fiscal policy,
productivity, and financial frictions (in rows). The frequency is monthly in panel (a) and quarterly in
panel (b). HAC standard errors are in parenthesis. ***, **, and * indicate statistical significance at the
1%, 5%, and 10% level, respectively. All regressions include a constant and month/quarter dummies.
The monetary instruments are RR04 - Romer and Romer (2004), BBE05 - Bernanke et al. (2005), BC13
- Barakchian and Crowe (2013), GK15 - Gertler and Karadi (2015), MR18 - Miranda-Agrippino and
Ricco (2018), and the first factor of these.

with 95% confidence bands for the comparison. The other proxies imply similar effects.
The responses are not distinguishable from those implied by the narrative-based measure
according to the confidence bands of the latter. This suggests that the estimates of the
previous section provide a reasonable description of the effects of monetary policy. More-
over, it reflects the finding that a standard heteroskedastic SVAR and the heteroskedastic
proxy-SVAR estimate similar effects. The identification through time-varying volatility
seems to dominate the information in the instruments considered here.

We conclude that most of the instruments for monetary policy shocks proposed in the
literature are valid. In particular, our findings support the estimates of Romer and Romer
(2004), Bernanke et al. (2005), and Miranda-Agrippino and Ricco (2018). In contrast,
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Figure 4: Responses for heteroskedastic proxy-SVAR using different instruments.
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Notes: The figure shows the impulse responses to a 100 basis points monetary policy shock. The
sample is 1980M1-2007M6 and the different instruments, using one at a time, are the narrative measure
of Romer and Romer (2004) (solid line with shaded 95% pointwise confidence intervals based on 5,000
bootstrap replications), the high-frequency proxy of Gertler and Karadi (2015) (dotted lines), the model-
based measure of Bernanke et al. (2005) (long dashed lines), the high-frequency cleaned instrument of
Miranda-Agrippino and Ricco (2018), and the first factor (short dashed lines).

they indicate some problems of the higher frequency instruments, in line with Ramey
(2016) who documents partially puzzling effects of monetary policy shocks identified
using these instruments.

5 Conclusions

We propose a structural vector autoregressive framework that combines the information
contained in external instruments and in time-varying second moments of the data for
identification of latent monetary policy shocks in the U.S. We show that the framework
sharpens structural inference. Moreover, it allows testing the validity, that is, both
the exogeneity and relevance, of instruments using likelihood ratio tests. Finally, it
facilitates an economic interpretation of the structural shock of interest, which is not
only identified statistically through heteroskedasticity, but also through prior economic
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reasoning contained in the instrument. These three features of the encompassing model
increase the reliability of the estimation results.

We apply the framework to test the narrative measure of monetary surprises of Romer
and Romer (2004). We find that it is a valid instrument for monetary policy shocks. Using
it in combination with the heteroskedasticity in the data, we provide new and potentially
sharper estimates of the dynamic effects of monetary policy on the macro-economy. We
find that a surprise monetary contraction of 100 basis points in the federal funds rate leads
to a significant decline in economic activity and prices of 1.6% and 0.8%, respectively.
In contrast, a standard proxy-SVAR that does not exploit time-varying volatility implies
substantially smaller effects.

Finally, we evaluate different proxies for monetary policy proposed in the literature.
We find that instruments based on intra-daily data that are further cleansed (Miranda-
Agrippino and Ricco, 2018) and instruments from time-series models (Bernanke et al.,
2005) are also valid. In our framework, they lead to qualitatively and quantitatively
similar results as the narrative-based proxy.
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A.1 Notes on computation

Our estimation procedure follows the expectation maximization algorithm de-
scribed in Herwartz and Lütkepohl (2014) and is based on the following concen-
trated out log-likelihood function in the maximization step:

L(D,Λm) =
1

2

M∑
m=1

[
Tmlog(det(Σ̃m)) + tr

(
(Σ̃m)−1

T∑
t=1

ξmt|Tutu
′
t

)]
,

where ξmt|T , t = 1, . . . , T are the model smoothed probabilities with Tm =
∑T

t=1 ξmt|T .
All estimations in this paper use the statistical software R4.0.5. For maximiza-

tion of the log-likelihood function the R-package ‘nloptr’ provides the optimization
routine ‘slsqp’, a sequential (least-squares) quadratic programming algorithm for
nonlinearly constrained, gradient-based optimization. This algorithm supports
equality constraints and inequality constraints. The former are needed to imple-
ment zero restrictions in our model setup on the structural impact matrix. The
latter are used to impose a lower bound of 0.001 on the diagonal elements of Λm

for m = 1, . . . ,M to avoid singularity of the covariance matrix.
The zero restrictions in columns (K + 1) of the autoregressive coefficient ma-

trices Γp for p = 1, . . . , P of model 8 are implemented using restricted ordinary
least squares. The restrictions are updated at the end of each maximization step
of the EM algorithm.

To generate starting values for the structural parameters D and Λm for m =
2, . . . ,M for the estimation algorithm we follow Herwartz and Lütkepohl (2014)
with two exceptions. First, we choose starting values of D = (T−1

∑T
t=1 ûtû

′
t)

1/2Ω
with ût being the estimated reduced form residuals of the respective model and
Ω being a random orthogonal matrix. Choosing an orthogonal matrix instead of
adding a matrix of small random numbers as suggested by Herwartz and Lütkepohl
(2014) covers a wider range of the parameter space of possible starting values
for D. Second, starting values of Λm for m = 2, . . . ,M are chosen as Λm =
diag(0.5k, 2.0k, 3.5k, 5.0k)m−1 with k = 1, . . . , 10. For each k we draw 100 random
orthogonal matrices Ω as starting values for D. Thus, the total number of distinct
initial parameters for each model amounts to 1000. We check convergence of the
estimation algorithm using the relative changes of the log-likelihood function for of
each estimated model and choose the model that maximizes the likelihood among
all converged models.

In the Monte Carlo study we rely on one draw of starting values for D to limit
the computational burden. To make up for choosing only one initial parameter for
D we set starting values for Λ = (0.5, 2, 3.5, 5) to start the estimation algorithm
in the proximity of the true parameter values. We did not encounter convergence
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problems of the estimation algorithm in the simulation study. The simulations
were conducted with 50 cores (Intel Xeon Skylake 6130 processors) on the high
performance computing server at Freie Universität Berlin.

A.2 Supplementary results of Monte Carlo study

This section contains supplementary material to the Monte Carlo study carried
out in Section 3 of the paper. All relevant information is in the captions and notes
of the respective tables.

A.2.1 Supplementary results of baseline simulation

Table A.1: Relative rejection frequencies at nominal significance level of 5% of
LR-tests on exogeneity of instrument.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.07 . . . .
(0.35,0.15) 0.07 0.09 0.40 . .
(0.72,0.30) 0.08 0.08 0.32 0.64 0.89
(1.00,0.40) 0.08 0.08 0.29 0.57 0.81

T = 500

(0,0) 0.06 . . . .
(0.35,0.15) 0.05 0.14 0.76 . .
(0.72,0.30) 0.05 0.13 0.66 0.97 1.00
(1.00,0.40) 0.06 0.11 0.57 0.92 1.00

Notes: Based on 500 replications of simulation experiment. Dots (.) denote combinations of
values for β1 and β2 that produce lower correlations between the instrument st and the target
structural shock of interest (εrt ) than between the instrument st and the endogenous structural
shock (εzt ). These cases are not taken into account in the analysis.
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Table A.2: Relative rejection frequencies at nominal significance level of 10% of
LR-tests for relevance of instrument for sample sizes T = 200 and T = 500.

Sample
Size

Relevance
(β1,ρ1,F )

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.11 . . . .
(0.35,0.15) 0.96 0.96 0.96 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.00,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 0.10 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.00,0.40) 1.00 1.00 1.00 1.00 1.00

Notes: Based on 500 replications of each simulation design. Dots (.) denote combinations of
values for β1 and β2 that produce lower correlations between the instrument st and the target
structural shock εrt than between the instrument and the other structural shock (εzt ). These
cases are not taken into account in the analysis.

Table A.3: Comparison of MSE of impulse responses to monetary policy shock.

Relevance (β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31

(0,0)
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 1.00 1.00 1.00 . . . . . . . . . . . .
Model C 113.18 74.12 132.97 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.01 1.07 1.01 1.01 1.05 1.01 0.98 0.82 0.98 . . . . . .
Model C 37.66 22.56 39.75 37.70 26.73 40.38 35.82 42.07 41.48 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.08 1.25 1.08 1.07 1.18 1.08 1.01 0.73 0.99 0.90 0.42 0.85 0.76 0.20 0.68
Model C 13.18 7.21 12.34 13.38 8.75 12.71 14.30 13.46 14.60 14.43 13.43 15.22 12.95 9.54 13.56

(1.0,0.40)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.18 1.46 1.22 1.18 1.36 1.22 1.10 0.78 1.10 0.98 0.44 0.94 0.81 0.23 0.72
Model C 7.95 4.54 7.41 8.07 5.39 7.60 8.70 7.68 8.69 9.00 7.77 9.24 8.60 6.60 8.85

Notes: The table shows the cumulated MSE of fitted models A-C relative to model A for a
propagation horizon up to h = 25 and sample size T = 500. Each entry is based on 500
replications of each simulation design. Dots (.) denote combinations of values for β1 and β2 that
produce lower correlations between the instrument wt and the target structural shock εrt than
between the instrument and the non-targeted structural shock εzt . These cases are not taken into
account in the analysis.
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Table A.4: Comparison of MSE of impulse responses to monetary policy shock for
a propagation horizon up to h = 5 and sample size T = 200.

Relevance (β1,ρ1)

Endogeneity (β2,ρ2)

(0.0,0.0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31

(0.0,0.0)
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 1.05 1.05 1.08 . . . . . . . . . . . .
Model C 35.52 42.45 64.68 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.05 1.06 1.16 1.04 1.04 1.15 1.04 0.87 1.12 . . . . . .
Model C 20.33 21.83 31.57 20.30 21.45 30.73 18.46 20.31 26.79 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.09 1.21 1.18 1.08 1.11 1.10 1.06 0.85 0.99 0.97 0.56 0.95 0.79 0.35 0.90
Model C 10.97 7.92 10.83 10.92 8.11 10.80 10.26 8.89 10.92 8.61 7.48 9.48 6.29 5.88 7.89

(1.0,0.40)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.14 1.34 1.23 1.14 1.24 1.22 1.05 1.08 1.10 1.02 0.76 1.05 0.97 0.48 1.09
Model C 7.19 4.70 6.21 7.15 4.72 6.16 6.99 5.70 6.40 6.61 5.24 5.70 5.62 4.55 5.28

Notes: The table shows the cumulated MSE of fitted models A-C relative to model A. Each entry
is based on 500 replications of each simulation design. Dots (.) denote combinations of values for
β1 and β2 that produce lower correlations between the instrument st and the target structural
shock εrt than between the instrument and the other structural shock (εzt ). These cases are not
taken into account in the analysis.

Table A.5: Comparison of MSE of impulse responses to monetary policy shock for
a propagation horizon up to h = 5 and sample size T = 500.

Relevance (β1,ρ1)

Endogeneity (β2,ρ2)

(0.0,0.0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31

(0.0,0.0)
Models A 1.00 1.00 1.00 . . . . . . . . . . . .
Models B 1.00 1.00 1.00 . . . . . . . . . . . .
Models C 115.53 157.32 226.58 . . . . . . . . . . . .

(0.35,0.15)
Models A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Models B 1.02 1.06 1.00 1.01 1.02 1.00 0.99 0.78 0.99 . . . . . .
Models C 47.14 44.47 61.63 45.83 48.35 60.36 37.40 57.00 50.29 . . . . . .

(0.72,0.30)
Models A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Models B 1.07 1.19 1.05 1.06 1.10 1.05 1.05 0.69 1.04 1.02 0.40 1.01 0.93 0.20 0.96
Models C 18.19 11.04 15.11 18.04 12.90 15.03 17.03 16.74 14.26 15.80 15.85 13.17 13.72 11.39 11.55

(1.0,0.40)
Models A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Models B 1.16 1.66 1.31 1.16 1.53 1.32 1.15 0.91 1.33 1.12 0.52 1.30 1.01 0.22 1.03
Models C 10.76 6.59 8.51 10.72 7.67 8.51 10.45 9.56 8.36 10.07 9.21 8.07 9.25 7.62 7.64

Notes: The table shows the cumulated MSE of fitted models A-C relative to model A. Each entry
is based on 500 replications of each simulation design. Dots (.) denote combinations of values for
β1 and β2 that produce lower correlations between the instrument st and the target structural
shock εrt than between the instrument and the other structural shock (εzt ). These cases are not
taken into account in the analysis.
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A.2.2 Tests for alternative DGPs

This subsection contains robustness checks and extensions of the simulation study.

A.2.2.1 Confounding common shift in variances

Table A.6: Relative rejection frequencies at nominal significance level of 10% of
exogeneity test for common confounding shift.

Sample
Size

Relevance
(hβ1,hρ1)

Endogeneity (hβ2,hρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.09 . . . .
(0.35,0.15) 0.12 0.14 0.27 . .
(0.72,0.30) 0.14 0.14 0.24 0.31 0.43
(1.0,0.40) 0.13 0.14 0.19 0.29 0.35

T = 500

(0,0) 0.10 . . . .
(0.35,0.15) 0.12 0.17 0.62 . .
(0.72,0.30) 0.11 0.13 0.38 0.63 0.80
(1.0,0.40) 0.10 0.11 0.27 0.48 0.67

Table A.7: Relative rejection frequencies at nominal significance level of 5% of
relevance test for confounding common shift.

Sample
Size

Relevance
(hβ1,hρ1)

Endogeneity (hβ2,hρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.09 . . . .
(0.35,0.15) 0.96 0.96 0.97 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 0.05 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.2.2.2 Alternative structural shock variances

Table A.8: Relative rejection frequencies at nominal significance level of 10% of
LR-Tests of exogeneity of instrument for alternative structural shock variances.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.20,0.12) (0.30,0.16) (0.40,0.22)

T = 200

(0,0) 0.10 . . . .
(0.35,0.15) 0.13 0.16 0.26 . .
(0.72,0.30) 0.14 0.15 0.22 0.31 0.38
(1.0,0.40) 0.13 0.13 0.19 0.27 0.35

T = 500

(0,0) 0.11 . . . .
(0.35,0.15) 0.12 0.14 0.57 . .
(0.72,0.30) 0.11 0.13 0.33 0.61 0.76
(1.0,0.40) 0.09 0.11 0.22 0.43 0.64

Table A.9: Relative rejection frequencies at nominal significance level of 5% of
LR-test of instrument relevance for alternative structural shock variances.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.09 . . . .
(0.35,0.15) 0.93 0.94 0.94 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 0.06 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.2.2.3 Censored instrument observations

Table A.10: Relative rejection frequencies at nominal significance level of 10% for
exogeneity test with 60% censored instrument observations.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.10 . . . .
(0.35,0.15) 0.14 0.15 0.40 . .
(0.72,0.30) 0.14 0.17 0.37 0.62 0.82
(1.0,0.40) 0.15 0.17 0.36 0.55 0.75

T = 500

(0,0) 0.08 . . . .
(0.35,0.15) 0.08 0.17 0.75 . .
(0.72,0.30) 0.10 0.18 0.68 0.96 1.00
(1.0,0.40) 0.10 0.16 0.61 0.90 1.00

Table A.11: Relative rejection frequencies at nominal significance level of 5% for
relevance test with 60% censored instrument observations.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.04 . . . .
(0.35,0.15) 0.84 0.83 0.84 . .
(0.72,0.30) 0.98 0.98 0.97 0.96 0.96
(1.0,0.40) 0.98 0.99 0.98 0.98 0.97

T = 500

(0,0) 0.04 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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Table A.12: Relative rejection frequencies at nominal significance level of 10% for
exogeneity test with 90% censored instrument observations.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.08 . . . .
(0.35,0.15) 0.11 0.11 0.20 . .
(0.72,0.30) 0.17 0.16 0.25 0.37 0.56
(1.0,0.40) 0.17 0.17 0.27 0.37 0.51

T = 500

(0,0) 0.06 . . . .
(0.35,0.15) 0.07 0.09 0.41 . .
(0.72,0.30) 0.08 0.10 0.37 0.70 0.93
(1.0,0.40) 0.09 0.10 0.35 0.65 0.88

Table A.13: Relative rejection frequencies at nominal significance level of 5% for
relevance test with 90% censored instrument observations.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.05 . . . .
(0.35,0.15) 0.61 0.59 0.59 . .
(0.72,0.30) 0.96 0.95 0.94 0.93 0.92
(1.0,0.40) 0.97 0.97 0.97 0.97 0.96

T = 500

(0,0) 0.05 . . . .
(0.35,0.15) 0.95 0.96 0.94 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.2.2.4 Two instruments for one shock

If there are q instruments, wt and νt in

wt = βεt + ηνt, (A.1)

are q × 1 column vectors, where νt are independent potentially heteroskedastic
measurement errors, and β and η matrices with dimension q×q. In the simulation
study, we consider the case of q = 2 for the identification of one shock. As for
q = 1, we order the structural shock of interest first.

Validity of the q instruments requires the following two conditions:

β·i = 0q×1 ∀ i = 2, . . . , K, (A.2)

β·1 6= 0q×1, (A.3)

where β·i indicates the i-th column of β. Equation (A.2) implies exogeneity and
(A.3) relevance. If both are met, the instruments are valid.

The augmented VAR is

zt = δ + Γ(L)zt−1 + et, (A.4)

where zt = [y′t, wt]
′ is a ((K + q) × 1)-vector of observable variables, Γ(L) is a

(potentially restricted) lag matrix polynomial capturing the autoregressive com-
ponent of the model, δ is a ((K + q) × 1)-vector of constant terms, and et are
(K + q)-dimensional serially uncorrelated residuals. The latter are related to the
structural innovations µt as

et = Dµt

=

[
B(K×K) 0(K×q)
β(q×K) η(q×q)

] [
εt
νt

]
. (A.5)

Using (A.5), the VAR in structural form is

zt = δ + Γ(L)zt−1 +Dµt. (A.6)

Estimation and identification of (A.5) remains as described in Section 2. Test-
ing the validity of the q instruments can also be done with LR-tests. To test
the exogeneity condition (A.2), we compare the likelihood of a model with β =
(β·1, 0q×1, . . . , 0q×1), against a model with β fully unrestricted. Formally, we test

H0 : β·2 = · · · = β·K = 0q×1

H1 : ∃j ∈ {2, . . . , K} s.t. β·j 6= 0q×1.
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This is a joint test of exogeneity of both instruments. Rejecting the null indicates
the endogeneity of at least one instrument.

To test the relevance condition (A.3), we compare a restricted model version
with β·1 = 0q×1 to a model with β·1 unrestricted. Under both the null and the
alternative hypothesis β·2 = · · · = β·K = 0q×1. Formally, we test

H0 : β·1 = 0q×1

H1 : β·1 6= 0q×1.

This is a joint test of relevance of both instruments. Rejecting the null indicates
the relevance of at least one instrument. If the instruments are both exogenous
and relevant, they are valid. Then, we set β = (β·1, 0q×1, . . . , 0q×1).

Table A.14: Relative rejection frequencies at nominal significance level of 10%
of LR-tests for exogeneity with second (strong and exogenous) instrument (ρ1 =
0.3, ρ2 = 0).

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0.0,0.0) 0.13 . . . .
(0.35,0.15) 0.15 0.18 0.50 . .
(0.72,0.30) 0.14 0.17 0.42 0.75 0.95
(1.0,0.40) 0.13 0.15 0.39 0.67 0.90

T = 500

(0.0,0.0) 0.10 . . . .
(0.35,0.15) 0.10 0.18 0.82 . .
(0.72,0.30) 0.09 0.16 0.78 0.99 1.00
(1.0,0.40) 0.10 0.16 0.73 0.98 1.00
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Table A.15: Relative rejection frequencies at nominal significance level of 5% of LR-
tests for relevance with second (strong and exogenous) instrument (ρ1 = 0.3, ρ2 =
0).

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0.0,0.0) 0.98 . . . .
(0.35,0.15) 0.98 0.98 0.98 . .
(0.72,0.30) 0.99 0.99 1.00 1.00 1.00
(1.00,0.40) 0.99 1.00 0.99 1.00 1.00

T = 500

(0.0,0.0) 1.00 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.00,0.40) 1.00 1.00 1.00 1.00 1.00

Table A.16: Relative rejection frequencies at nominal significance level of 10% of
LR-tests for exogeneity with second (endogenous) instrument (ρ1 = 0.3, ρ2 = 0.15).

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.66 . . . .
(0.35,0.15) 0.71 0.66 0.71 . .
(0.72,0.30) 0.73 0.67 0.65 0.76 0.89
(1.0,0.40) 0.75 0.71 0.64 0.72 0.82

T = 500

(0,0) 0.97 . . . .
(0.35,0.15) 0.99 0.97 0.99 . .
(0.72,0.30) 0.99 0.98 0.98 0.99 1.00
(1.0,0.40) 0.99 0.99 0.98 0.98 1.00

Table A.17: Relative rejection frequencies at nominal significance level of 5% of
LR-tests for relevance with second (endogenous) instrument (ρ1 = 0.3, ρ2 = 0.15).

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.99 . . . .
(0.35,0.15) 0.99 0.98 0.99 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 1.00 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.2.2.5 DGP is MS(3)

Table A.18: Relative rejection frequencies at nominal significance level of 10% for
exogeneity test and DGP with M = 3 Markov states.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.11 . . . .
(0.35,0.15) 0.12 0.13 0.46 . .
(0.72,0.30) 0.12 0.13 0.40 0.72 0.90
(1.0,0.40) 0.12 0.12 0.35 0.68 0.84

T = 500

(0,0) 0.12 . . . .
(0.35,0.15) 0.10 0.22 0.85 . .
(0.72,0.30) 0.10 0.20 0.81 0.99 1.00
(1.0,0.40) 0.09 0.18 0.75 0.98 1.00

Table A.19: Relative rejection frequencies at nominal significance level of 5% rel-
evance test for DGP with M = 3 Markov states.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.08 . . . .
(0.35,0.15) 0.93 0.93 0.92 . .
(0.72,0.30) 1.00 1.00 1.00 0.99 0.99
(1.0,0.40) 1.00 1.00 1.00 1.00 0.99

T = 500

(0,0) 0.06 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.2.2.6 DGP with failure of constancy of impact effects matrix

Table A.20: Relative rejection frequencies at nominal significance level of 10% of
exogeneity test for failure of constancy of impact effects.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.10 . . . .
(0.35,0.15) 0.11 0.14 0.47 . .
(0.72,0.30) 0.15 0.17 0.43 0.73 0.90
(1.0,0.40) 0.17 0.19 0.40 0.66 0.85

T = 500

(0,0) 0.10 . . . .
(0.35,0.15) 0.13 0.22 0.86 . .
(0.72,0.30) 0.20 0.29 0.80 0.97 1.00
(1.0,0.40) 0.25 0.33 0.73 0.94 0.99

Table A.21: Relative rejection frequencies at nominal significance level of 5% of
relevance test for mild failure of constancy of impact effects.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.05 . . . .
(0.35,0.15) 0.97 0.97 0.97 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 0.06 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.2.2.7 DGP with smooth transition in variances

Our parameter choice in the simulations of γ = −sqrt(T )/10 and c = 0.5T (Sec-
tion A.4) ensures a variance change roughly in the middle of the sample. The
choice implies that the variance change is largely completed over about 20% of the
respective sample size.

Table A.22: Relative rejection frequencies at nominal significance level of 10% for
exogeneity test and DGP with smooth transition in variances.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.12 . . . .
(0.35,0.15) 0.12 0.17 0.51 . .
(0.72,0.30) 0.14 0.15 0.48 0.77 0.94
(1.0,0.40) 0.13 0.15 0.43 0.72 0.92

T = 500

(0,0) 0.10 . . . .
(0.35,0.15) 0.10 0.19 0.82 . .
(0.72,0.30) 0.11 0.20 0.77 0.99 1.00
(1.0,0.40) 0.10 0.18 0.71 0.97 1.00

Table A.23: Relative rejection frequencies at nominal significance level of 5% for
relevance test and DGP with smooth transition in variances.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0.,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.05 . . . .
(0.35,0.15) 0.89 0.89 0.88 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 0.06 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.2.2.8 DGP with exogenous break in variances

For a description of the model see Section A.4.

Table A.24: Relative rejection frequencies at nominal significance level of 10% for
exogeneity test and DGP with exogenous break in variances at 0.5T .

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.11 . . . .
(0.35,0.15) 0.11 0.16 0.53 . .
(0.72,0.30) 0.12 0.15 0.51 0.79 0.96
(1.0,0.40) 0.12 0.14 0.46 0.75 0.93

T = 500

(0,0) 0.10 . . . .
(0.35,0.15) 0.10 0.20 0.85 . .
(0.72,0.30) 0.10 0.19 0.80 0.99 1.00
(1.0,0.40) 0.10 0.18 0.75 0.98 1.00

Table A.25: Relative rejection frequencies at nominal significance level of 5% for
relevance test and DGP with exogenous break in variances at 0.5T .

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.06 . . . .
(0.35,0.15) 0.92 0.92 0.91 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 0.04 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.3 Additional results of baseline model

This section contains additional results for the baseline model.

Table A.26: Estimates and standard errors of matrix of transition probabilities.

P̂ =

[
0.951 (0.029) 0.302 (.)
0.049 (0.165) 0.698 (.)

]
Notes: Estimates of transition matrix P for baseline heteroskedastic proxy-SVAR(6) with M =
2 states with zt = [fft, ipt, pcet, prmt, rrt]

′. The standard errors (in parentheses) are obtained
from the inverse of the negative Hessian evaluated at the optimum of the structural model.
Standard errors are available only for K − 1 columns of matrix P as each row need to sum up
to 1 and hence the Kth-element of each row is not estimated. The respective entries for the
standard errors are marked with (.).

Table A.27: Estimates and standard errors of matrix of instantaneous impact effect
matrix D.

Estimates
-0.001 0.020 -0.004 0.001 0
-0.039 0.003 0.003 0.001 0
0.002 0.002 0.001 0.004 0
0.001 0.038 0.087 -0.027 0
-0.137 0 0 0 0.375

S.E.

0.001 0.001 0.005 0.003 .
0.002 0.003 0.003 0.004 .
0.001 0.001 0.001 0.002 .
0.004 0.022 0.013 0.027 .
0.039 . . . 0.024

Notes: Estimates of instantaneous impact effect matrix D in the upper panel for baseline het-
eroskedastic proxy-SVAR(6) with M = 2 states with zt = [fft, ipt, pcet, prmt, rrt]

′. The standard
errors in the lower panel are obtained from the inverse of the negative Hessian evaluated at the
optimum of the structural model.

The regime-specific forecast error variance decompositions in Figure A.1 quan-
tify the economic importance of monetary policy shocks for output and credit
spread fluctuations. It shows that the contribution of monetary shocks to the vari-
ability of the endogenous variables is highly state-dependent. In the high volatility
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regime, monetary shocks account for up more than half of the variance of produc-
tion and prices at longer horizons. In the low volatility regime, they each explain
between 10% and 25%. The monetary shocks also account for a much larger share
of the variance in the federal funds rate in the high volatility regime than in the
low volatility regime.

Figure A.1: Variance decompositions for heteroskedastic proxy-SVAR.
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Notes: The figure shows the regime-specific forecast error variance decompositions (solid line -
state 1; dashed line - state 2) for the structural shocks in columns on the endogenous variables
in rows for the baseline Markov switching heteroskedastic proxy-SVAR(6) model with M = 2
states and zt = [fft, ipt, pcet, prmt, rrt]

′. The sample is 1980M1-2007M6 and the instrument for
monetary policy shocks is the narrative-based measure of Romer and Romer (2004).
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A.4 Sensitivity analysis of baseline model

In this section we show various sensitivity results for the baseline heteroskedastic
proxy-SVAR(6) model withM = 2 states, zt = [fft, ipt, pcet, prmt, rrt]

′ and sample
1980M1-2007M6. The model is described in detail in Section 4 of the paper. More
information is in the captions and notes of the figures and tables.

A.4.1 Alternative volatility models

Various approaches have been used in the SVAR literature to identify the structural
parameters by time-varying volatility besides the Markov switching in covariances,
which we apply in our baseline specification. The following expositions are taken,
apart from minor notational adjustments, from Lütkepohl and Netšunajev (2017)
and Lütkepohl and Schlaak (2018) and explain the different approaches briefly.
For a more detailed overview we refer to the respective papers.

Exogenous volatility changes

One alternative to model time-varying volatility is to assume that the changes of
the covariance occur at prespecified break dates,

E(ete
′
t) = Σ̃t = Σ̃m for t ∈ Tm, m = 1, . . . ,M, (A.7)

where Tm = {Tm−1 + 1, . . . , Tm} (m = 1, . . . ,M) are M given volatility regimes
of consecutive time periods. The Tm, for m = 1, . . . ,M − 1, represent the time
periods of volatility changes with T0 = 0 and TM = T . The change points Tm may
be predetermined by some statistical procedure, for example, Chow breakpoint
tests. Lanne, Lütkepohl and Maciejowska (2010) state the identification conditions
for this model. Assuming Gaussian residuals ut, the log-likelihood function is

log l(ξ,σ) = −KT
2

log 2π − 1

2

T∑
t=1

log det(Σ̃t)−
1

2

T∑
t=1

e′tΣ̃
−1
t et, (A.8)

where ξ = vec[ν,A1, . . . , Ap] and σ contains all unknown covariance parameters.

Smooth transition in variances

Alternatively, one may model the change in the residual covariance matrix as
a smooth transition from a volatility regime with a positive definite covariance
matrix Σ̃1 to a regime with Σ̃2 such that

E(ete
′
t) = Σ̃t = (1−G(γ, c, wt))Σ̃1 +G(γ, c, wt)Σ̃1, (A.9)
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where the transition function G(γ, c, wt) = (1+exp[− exp(γ)(wt− c)])−1 is a logis-
tic function that depends on the smoothness parameter γ, the location parameter c
and a transition variable wt. In this setup, small values of the smoothness parame-
ter γ imply a slow, gradual transition from one volatility regime to the other. When
the smoothness parameter becomes very large, however, the transition resembles
a step function with a discrete change between volatility states. A locally unique
decomposition of the reduced form covariance matrices is obtained if Σ̃1 = DD′

and Σ̃2 = DΛD′, where the diagonal matrix Λ = diag(λ1, . . . , λK) has distinct,
strictly positive values λk (k = 1, . . . , K). This model was proposed and used by
Lütkepohl and Netšunajev (2014) in the context of SVAR analysis.

For Gaussian et, the log-likelihood can be written as in (A.8). It is now a
function of the transition parameters as well. Lütkepohl and Netšunajev (2014)
propose an iterative procedure for estimation. Since the range of the smoothness
and threshold parameters {γ, c} can be bounded, a grid search can be performed
over the relevant range of these two parameters.

Multivariate GARCH

Multivariate GARCH processes offer yet another possibility to model time-varying
volatility. In the context of SVAR analysis the GO-GARCH model proposed by
van der Weide (2002) is typically used. It specifies the volatility changes as

E(ete
′
t|Ft−1) = Σ̃t|t−1 = DΛt|t−1D

′. (A.10)

Here Ft denotes the information available at time t,

Λt|t−1 = diag(σ2
1,t|t−1, . . . , σ

2
K,t|t−1)

is a diagonal matrix with univariate GARCH(1,1) diagonal elements,

σ2
k,t|t−1 = (1− γk − gk) + γkε

2
k,t−1 + gkσ

2
k,t−1|t−2, k = 1, . . . , K, (A.11)

where εk,t = b∗ket and b∗k is the kth row of B−1 (k = 1, . . . , K). Moreover, gk ≥ 0,
γk > 0, gk + γk < 1 (k = 1, . . . , K). The model has been proposed and used for
SVAR analysis by Normandin and Phaneuf (2004) and Bouakez and Normandin
(2010), for example. Identification conditions for uniqueness of B are stated in
Sentana and Fiorentini (2001) and Milunovich and Yang (2013).

The setup of the model implies an unconditional residual covariance matrix
E(ete

′
t) = Σ̃ = DD′. Under Gaussian assumptions for the εk,t the log-likelihood

of the model is log l =
∑T

t=1 log ft|t−1(yt), where the conditional densities have the
form

ft|t−1(yt) = (2π)−K/2 det(Σ̃t|t−1)
−1/2 exp

(
−1

2
e′tΣ̃

−1
t|t−1et

)
. (A.12)
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The log-likelihood function is highly nonlinear which makes the maximization and,
thus, ML estimation of the GARCH parameters and the impact effects matrix D
numerically challenging. We follow the existing literature and apply the two-step
algorithm for ML estimation described by Lanne and Saikkonen (2007). In the first
step, the estimation procedure is broken down in univariate GARCH estimations
to get initial estimates of the parameters of the volatility model and in the second
step, a full, joint ML estimation of the parameters is performed starting from the
initial estimates obtained in the first step.

A.4.2 Smooth transition in variances

In this subsection, we assess whether our results are sensitive to a smooth transition
in variances model with time as transition variable. Figure A.2 compares the
volatility states across models. The smooth transition model estimates roughly
similar states as the MS model. It matches the transition of the Fed chairmanship
from Volcker to Greenspan. Accordingly, Table A.28 shows that the instrument is
also valid when using this volatility model. Finally, Figure A.3 illustrates that the
estimated effects of monetary policy shocks are similar to those from the baseline
MS model as well.

Table A.28: Instrument validity for smooth transition in variance model.

Exogeneity Relevance

LR-statistic 2.285 60.829
p-value 0.515 0.000
Restrictions 3 1

Notes: The table shows the LR-statistic, the p-value and the number of restrictions for the tests
of instrument exogeneity (H0 : β2 = · · · = βK = 0, H1 : β unrestricted) and instrument
relevance (H0 : β1 = 0, H1 : β1 6= 0). The instrument is the narrative-based measure of
monetary surprises of Romer and Romer (2004).
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Figure A.2: Volatility states 2 of Markov switching and smooth transition model.
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Notes: The figure shows the state 2 probability of heteroskedastic proxy-SVARs, using the
baseline Markov switching heteroskedastic proxy-SVAR(6) model with m = 2 states (upper
panel) and smooth transition in variances SVAR(6) based on time as transition variable (lower
panel). The model is zt = [fft, ipt, pcet, prmt, rrt]

′. The shaded vertical bars mark recession
periods defined by the NBER.
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Figure A.3: Comparison of smooth transition with baseline Markov switching
model.
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Notes: The figure shows impulse responses to a 100 basis points monetary policy shock of
heteroskedastic proxy-SVAR models using the baseline Markov Switching heteroskedastic proxy-
SVAR(6) model with M = 2 states (shaded areas and dash dotted lines) and a smooth transition in
variances with time as transition variable (dashed line). The shaded area denotes 95% pointwise
confidence intervals based on 5,000 bootstrap replications of the baseline Markov switching proxy-
SVAR(6).
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A.4.3 Robustness of Markov switching proxy-SVAR

Figure A.4: Smoothed state probabilities of Markov switching proxy-SVAR(6)
model with M = 3 states.
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Notes: The figure shows the estimated smoothed state probabilities ξ̂mt|T for m = 1 in the
upper panel, for m = 2 in the middle panel, and for m = 3 in the lower panel, where t =
1, . . . , T , of the Markov switching proxy-SVAR(6) model with M = 3 states. The dataset is
zt = [fft, ipt, pcet, prmt, rrt]

′. The shaded vertical bars mark recession periods as defined by the
NBER.
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Table A.29: Instrument validity for MS(3)-VAR(6) model.

Exogeneity Relevance

LR-statistic 1.405 33.547
p-value 0.704 0.000
Restrictions 3 1

Notes: The table shows the LR statistic, p-value and number of restrictions of the test for
instrument exogeneity (H0 : β2 = · · · = βK = 0, H1 : β unrestricted) and for instrument
relevance (H0 : β1 = 0, H1 : β1 6= 0) for a Markov switching proxy-SVAR(6) model with
M = 3 states. The instrument is the narrative-based measure of monetary surprises of Romer
and Romer (2004).

Figure A.5: Impulse responses for Markov switching proxy-SVAR(6) model with
M = 3 states.
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Notes: The figure shows the impulse responses to one standard deviation shocks in state m =
1 of the Markov switching proxy-SVAR(6) model with M = 3 states. The dataset is zt =
[fft, ipt, pcet, prmt, rrt]

′. The sample is 1980M1-2007M6 and the instrument for monetary policy
shocks is the narrative-based measure of Romer and Romer (2004). The shaded bands denote
95% pointwise confidence intervals based on 1,000 bootstrap replications.
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Figure A.6: Sensitivity analysis of baseline model using different lag lengths.
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Notes: The figure shows the impulse responses to a monetary policy shock of 100 basis points
in state m = 1 of the heteroskedastic proxy-SVAR(p) with M = 2 states with p = 4, 5, 7, 8. The
dataset is zt = [fft, ipt, pcet, prmt, rrt]

′. The sample is 1980M1-2007M6 and the instrument for
monetary policy shocks is the narrative-based measure of Romer and Romer (2004). The shaded
bands denote 95% pointwise confidence intervals based on 1,000 bootstrap replications of the
baseline heteroskedastic proxy-SVAR(6) model with M = 2 states.
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Figure A.7: Sensitivity analysis of baseline model using different sample periods.
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Notes: The figure shows the impulse responses to a monetary policy shock of 25 basis points
in state m = 1 of the heteroskedastic proxy-SVAR(6) model with M = 2 states. The dataset
is zt = [fft, ipt, pcet, prmt, rrt]

′ for different sample specifications. Sample 1 refers to 1982M1-
2007M6, Sample 2 refers to 1981M1-2007M6, Sample 3 refers to 1980M1-2005M6, Sample 4 refers
to 1980M1-2006M6. The instrument for monetary policy shocks is the narrative-based measure
of Romer and Romer (2004). The shaded bands denote 95% pointwise confidence intervals based
on 1,000 bootstrap replications of the baseline heteroskedastic proxy-SVAR(6) model with M = 2
states for the sample 1980M1-2007M6.
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Figure A.8: Sensitivity analysis of baseline model using alternative indicator for
monetary policy.
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Notes: The figure shows the impulse responses to a monetary policy shock of 25 basis points in
state m = 1 of the heteroskedastic proxy-SVAR(6) model with M = 2 states. The dataset is
zt = [fft, ipt, pcet, prmt, rrt]

′, where 1yrt refers to the US government bond yield with one year
maturity. The sample is 1980M1-2007M6 and the instrument for monetary policy shocks is the
narrative-based measure of Romer and Romer (2004). The shaded bands denote 95% pointwise
confidence intervals based on 1,000 bootstrap replications of the baseline heteroskedastic proxy-
SVAR(6) model with M = 2 states and zt = [ipt, fft, pcet, prmt, rrt]

′.
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Figure A.9: Sensitivity analysis of baseline model using a residual-based moving
block bootstrap method.
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Notes: The figure shows the impulse responses to a monetary policy shock of 100 basis points
in state m = 1 of the baseline heteroskedastic proxy-SVAR(6) model with M = 2 states. The
dataset is zt = [fft, ipt, pcet, prmt, rrt]

′. The shaded bands denote 95% pointwise confidence
intervals based on 1,000 bootstrap replications of the baseline heteroskedastic proxy-SVAR(6)
model with M = 2 states. The dashed lines denote the 95% pointwise confidence intervals
based on 1,000 bootstrap replications of a VAR-residual moving block bootstrap. Bootstrapped
samples are constructed by sampling blocks of the estimated residuals êt of model (8) of the main
paper. Using block length of l = 50 defines n = T/l as the number of nonoverlapping blocks,
where ln ≥ T . The blocks of length l of the estimated residuals êt are arranged in the form of
the matrix

ê1 ê2 . . . êl
ê2 ê3 . . . ê1+l

...
...

...
êT−l+1 êT−l+2 . . . êT

 .
The bootstrap residuals are recentered by removing the columnwise mean to ensure that the
bootstrap residuals have mean zero, i.e., ẽjl+i = êjl+i − 1

T−l+1

∑T−l
r=0 êi+r for i = 1, 2, . . . , l and

j = 0, 1, . . . , n − 1. Bootstrap residuals are generated by drawing n times with replacement
from the recentered rows of the matrix. These draws are combined in a time series of bootstrap
residuals, [e∗1, . . . , e

∗
T ], by joining them end-to-end and retaining the first T bootstrap residuals.

Each bootstrap samples starts with identical pre-sample values from the original data set as
initial values, i.e., z∗−p+1 = z−p+1, . . . , z

∗
0 = z0 and is then generated recursively for t = 1, . . . , T

as z∗t = δ̂+Γ̂(L)zt−1+êt. In this bootstrap, also the relative variances and transition probabilities
are re-estimated in each bootstrap repetition. The ordering of the relative variances and, hence,
of columns of D in each bootstrap repetition is done identically to the procedure described in
the main paper.
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Figure A.10: Sensitivity analysis of baseline model using an recursive design wild
bootstraps with draws from standard normal distribution.
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Notes: The figure shows the impulse responses to a monetary policy shock of 100 basis points
in state m = 1 of the baseline heteroskedastic proxy-SVAR(6) model with M = 2 states. The
dataset is zt = [fft, ipt, pcet, prmt, rrt]

′. The shaded bands denote 95% pointwise confidence
intervals based on 1,000 bootstrap replications of the baseline heteroskedastic proxy-SVAR(6)
model with M = 2 states. The dashed lines denote the 95% pointwise confidence intervals based
on 5,000 bootstrap replications of an alternative recursive design wild bootstrap. Bootstrapped
samples are contructed as z∗t = δ̂ + Γ̂(L)zt−1 + ϕ̃têt, where êt are the estimated residuals, δ̂ and
Γ̂(L) are estimated counterparts of the coefficients the model (8) of the main paper, and ϕ̃t is
an independent random variable drawn from a standard normal distribution, i.e., ϕ̃ ∼ N(0, 1).
Each of the 1,000 generated bootstrap samples is based on identical pre-sample values from the
original data set as initial values, i.e., z∗−p+1 = z−p+1, . . . , z

∗
0 = z0. The bootstrap is conducted

conditionally on estimated parameters for the relative variances and transition probabilities.
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A.4.4 FEVD for standard proxy-SVAR

Figure A.11: Forecast error variance decomposition for standard proxy-SVAR
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