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April 19, 2021

Abstract

Multiple Cournot oligopoly experiments found more collusive behavior in markets
with fewer firms (Huck et al., 2004; Horstmann et al., 2018). This result could be
explained by a higher difficulty to coordinate or by lower incentives to collude in
markets with more firms. We show that the Quantal Response Equilibrium can
explain how the change in incentives alone could result in more collusive output in
smaller markets. We propose a new method to manipulate the group size while
keeping constant the locations of key outcomes, payoffs at these outcomes and the
incentives to collude. Experiments using this normalized payoff function find that
the number of firms has no direct effect on the average output or profit. We conclude
that higher rates of aggregate collusion in markets with fewer firms are driven by
the changes in incentives or focality rather than purely the number of firms. These
findings imply that antitrust policies aimed at preventing collusion should focus on
incentives rather than on the market concentration.
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1 Introduction

Cournot oligopoly experiments consistently find more tacit collusion in markets with fewer

competing firms, a result termed the “number effect” (see Horstmann et al., 2018, for a

recent overview and meta-analysis). The mechanism behind this effect has never been

studied. If it is driven by an increased difficulty to coordinate with many participants,

collusion could be prevented by regulating the market concentration. On the other hand,

the number effect could be driven by changes in the incentives to collude, which would

suggest focusing on the gains from collusion instead of market concentration. We show

that both the Friedman index of collusion and the Quantal Response Equilibrium (QRE)

predict more collusive behaviour in smaller markets in the standard setting considered in

previous experiments. We then introduce a method to manipulate the market size while

keeping constant the incentives to collude and the locations of the collusive, competitive,

and Nash equilibrium outcomes. Our experiments replicate the standard result of more

collusion in smaller markets using the standard treatments, but find no number effect when

the incentives are held constant. We conclude that if the incentives are held constant, the

number of competing firms does not affect the collusion rates.

Understanding how the number of interacting parties affects collusion rates is important

for multiple reasons. First, it is important to know which behavioral regularities found in

small scale experiments are likely to generalize to real life situations with a large number

of participants. Previous research identified systematic differences between small and large

groups in various games (Diederich et al., 2016, Choi et al., 2020, Hommes et al., 2020).

We extend this line of research by studying both the consequences and the mechanism

through which the group size affects choices. Second, it is useful to understand which

factors influence collusion rates to identify the potentially collusive markets and assess the

consequences of antitrust policies (Levenstein and Suslow, 2006). Historically, regulators
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focused on market concentration, measured either by the number of significant competitors

in the market or by the Herfindahl-Hirschman Index.1 Recently, the focus shifted towards

the economic factors that affect the incentives to collude (Shapiro, 2010) and it has been

debated whether an indicator of upward pricing pressure should replace the concentration-

based methods (Farrell and Shapiro, 2010; Jaffe and Weyl, 2013). Whether mergers should

be screened based on market concentration or on the incentives to increase prices depends

on the nature of the number effect. We show that the results from the previous Cournot

experiments (e.g. Huck et al., 2004) could be driven either by the reduced market size or

by the accompanying increase in the incentives to collude. When we manipulate only the

market size, aggregate collusion rates do not change, suggesting that market concentration

alone does not have a large effect on the collusion rates and regulators might be right to

focus on the incentives rather than market concentration.

We find that the market size has no direct effect on the average output or profits, but it

affects the distribution of output. Specifically, we find higher variance in smaller markets,

therefore more choices are classified as collusive – but also as competitive. This result could

be explained by the difference in how the market size affects the variance of the payoff-

relevant statistic, either the mean or the sum of output. The variance of average output

produced by other firms decreases in larger markets, therefore when payoffs are a function

of the average output, extremely high or low output is unlikely to maximize profits. The

variance of total output does not decrease in larger markets, therefore this effect does

not apply to standard Cournot treatments. We formalize the intuition of the variance

effect using a modification of the QRE, in which choice probabilities are derived from the

likelihood that each action is the best response. We show that this solution concept fits

data better than QRE and can explain why variance is higher in smaller markets.

1See Davies et al. (2011), Farrell and Shapiro (1990) and U.S. Department of Jus-
tice & Federal Trade Commission, Horizontal Merger Guidelines (2010), available at
http://www.justice.gov/atr/public/guidelines/hmg-2010.pdf
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Our study extends the findings from the previous literature that studied the relation-

ship between collusion and market size in Cournot oligopoly experiments. Fouraker and

Siegel (1963) found slightly more collusive behavior in Cournot duopolies than in triopolies.

Huck et al. (2004) found that average output is more collusive and more markets are clas-

sified as collusive in duopolies than quadropolies. Roux and Thöni (2015) replicated these

results in baseline treatments without punishment. Waichman et al. (2014) found a higher

frequency of collusion counts in duopolies than in triopolies when communication was not

possible, although the effect was not significant in the manager sample. Similarly, Fonseca

et al. (2018) found an increase in the collusiveness of output when the number of firms

decreases from six to four and from four to two, in treatments without communication. In

quadropolies without a forward market, output was more competitive than the equilibrium

prediction, but more collusive than equilibrium in duopolies (Le Coq and Orzen, 2006).

Van Koten and Ortmann (2013) also ran baseline treatments without a forward market

and replicated the result of competitive output in quadropolies but output in triopolies and

duopolies was not significantly different from the equilibrium prediction. Horstmann et al.

(2018) found that duopolies were more collusive than triopolies, which in turn were more

collusive than quadropolies, as measured using two collusion indexes. Horstmann et al.

(2018) also performed a meta-analysis of previously published results and found higher

rates of tacit collusion in duopolies than in triopolies or quadropolies.2

Similar results were obtained in Bertand oligopoly experiments. Fouraker and Siegel

(1963), Dufwenberg and Gneezy (2000), Orzen (2008), Davis (2009) and Fonseca and

Normann (2012) found less competitive behavior and higher profits in Bertrand duopolies,

compared to triopolies or quadropolies. A meta-analysis and additional experiments in

2A slightly different design was used by Friedman et al. (2015), who compared Cournot duopolies to
triopolies with a unit elastic demand function in a low information environment and 1200 4-second rounds.
By the end of the game, output converged to the collusive outcome in the duopoly, but not in the triopoly.
Oechssler et al. (2016) replicated the study using a standard linear demand function and found more
collusive behavior in duopolies than in quadropolies.
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Horstmann et al. (2018) corroborate these results.

The origins of the group size effect have been studied in other games. Isaac and Walker

(1988) noted that in public goods games, an increase in group size would decrease the

marginal per capita return of contributions to a public good. A change in the group size

could therefore be divided into a “pure” group size effect and the part of the effect driven

by the changes in incentives to contribute. Isaac and Walker (1988) observed a significant

decrease in contributions when the group size was increased from 4 to 10. However, the

effect disappeared when the payoff function was corrected to keep MPCR constant across

group sizes.3 Similarly, we find a decrease in the group size effect in Cournot oligopoly

when the payoff function is normalized to keep the incentives comparable.

2 Experimental Design

2.1 Payoff Function

We study a symmetric n-firm Cournot oligopoly. Each firm i P N simultaneously chooses

output qi. Price pi is determined by a linear inverse demand function:

pipqi, q�iq � max

�
�0, 81 �

�
�qi � θ

¸
jPpNziq

qj

�

�
 (1)

where q�i denotes the outputs of firms other than i.

The sole difference compared to the standard Cournot oligopoly implementation (e.g.

Bigoni and Fort, 2013, Huck et al., 2004) is the addition of θ, which could be interpreted

as the degree of product differentiation (Vives, 1984, Horstmann et al., 2018). If θ � 1, as

is commonly assumed, products are homogeneous and the market price is common for all

3Follow-up studies found that the group size may have a significant effect, although it depends on the
value of MPCR and the nature of the game; for example, see Isaac et al. (1994), Barcelo and Capraro
(2015), Nosenzo et al. (2015), Zelmer (2003).
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firms. Otherwise, prices are different for each firm.

We assume that the marginal cost of production is equal to one, so that the cost function

is Cpqiq � qi. Then profits obtained by i are

πipqi, q�iq � ppipqi, q�iqqi � qiqs� FC

The s parameter scales the payoffs to equalize equilibrium payoffs across games with

a different number of firms. In previous research, a change in equilibrium payoffs due

to a different group size was corrected using different exchange rates (e.g. Huck et al.,

2004, Bosch-Domènech and Vriend, 2003). Instead, we use an explicit scaling parameter to

increase transparency and maintain the same order of magnitude of payoffs across treat-

ments, preventing any treatment effects due to the salience of payoffs. We set the fixed

cost FC � �130, providing a subsidy that prevents negative payoffs and generates positive

payoffs in the Walrasian equilibrium.4

Three key outcomes are typically studied in Cournot oligopoly games: collusive out-

come, at which the sum of payoffs earned by all players is maximized; Nash equilibrium,

at which all players best-respond to the action profile of all other players and Walrasian

equilibrium, at which all players maximize their relative profits. We calculate the symmet-

ric outcomes of interest using the standard procedure. In a symmetric Nash equilibrium,

qNi � 80
2�θpn�1q

. In a symmetric collusive outcome, qCi � 80
2�2θpn�1q

. In a symmetric Wal-

rasian equilibrium,5 qWi � 80
1�θpn�1q

. There sometimes are asymmetric collusive outcomes

and asymmetric Nash equilibria; in all asymmetric Nash equilibria, the total output is

4The choice of the scaling parameters and the strategy space also ensure that in the normalized treat-
ments all the payoffs are three-digit numbers (i.e. within the range 100-999), therefore no part of the
payoff space is particularly salient.

5With the parameters used in the experiment, the Walrasian equilibrium is at the point where price
equals marginal cost. In general, the symmetric relative payoff maximization point could be different for
small values of θ, i.e. if θpn� 1q   1.

6



equal to the total output produced in the symmetric equilibrium.6

2.2 Treatments

We aim to understand why output is more collusive in markets with fewer firms. Based

on the findings from previous experiments and the insights from competition policy, we

identify three potential explanations for this effect:

1. In smaller markets, it is easier to coordinate. In competition policy, market

concentration is controlled in part due to a belief that “the presence of many com-

petitors tends to make it more difficult to sustain coordination (...)”.7 This belief

is supported by the results from economic experiments. Smaller groups manage to

coordinate on higher prices and receive higher profits in Bertrand oligopoly (Dufwen-

berg and Gneezy, 2000; Davis, 2009; Fonseca and Normann, 2012), coordinate on the

efficient equilibrium in a minimum effort game (Van Huyck et al., 1990) and sustain

cooperation in voluntary contribution mechanism games (Nosenzo et al., 2015). The

success of smaller groups could be explained by the use of “language of coordina-

tion” (Davis, 2009), which allows participants to signal the intentions to collude and

identify deviations from collusive agreements (Masiliūnas, 2017). We will call this

explanation the “pure number effect” (following Isaac and Walker, 1988), as it is

driven purely by the group size, rather than by the change in incentives or other

elements of the game.

6In the normalized treatments with the parameters used in the experiments and a discrete strategy
space, there are 4 asymmetric equilibria in markets with two firms: (7,9), (9,7), (0,16), (16,0). There are
18 asymmetric equilibria in markets with three firms and 18 in markets with four firms. The average output
is the same in all equilibria. Multiplicity of equilibria is common in Cournot oligopoly: for example, in
the standard treatments, there are 2 asymmetric equilibria in two-firm markets, 6 equilibria in three-firm
markets and 18 equilibria in four-firm markets.

7U.S. Department of Justice & Federal Trade Commission, Commentary on the Horizontal Merger
Guidelines (2006), available at http://www.justice.gov/atr/public/guidelines/215247.pdf. Also see Ivaldi
et al. (2007).
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2. In smaller markets, there are more incentives to collude or less incentives

to deviate from collusive agreements. In competition policy, mergers are ex-

pected to increase the individual incentives to increase prices, commonly measured

using the value of diverted sales or an index of upward pricing pressure (Shapiro,

2010, Farrell and Shapiro, 2010). This “unilateral effect” is typically explained by

the merged firm recapturing some of the sales lost due to a price increase by selling

more substitute products (Jaffe and Weyl, 2013). The stability of collusive agree-

ments in infinitely repeated Cournot experiments depends on the incentives to make

a collusive agreement and the incentives to deviate from it. In standard Cournot

oligopoly, firms have more incentives to collude, but also more incentives to deviate

from the collusive agreement when there are more firms in the market. Overall, larger

markets require a higher minimum discount factor to sustain collusion in an infinitely

repeated game (Friedman, 1971). Our experiments follow the previous literature and

use finitely repeated games, therefore collusive equilibria do not exist; however, we

will show that changes in incentives predict more collusive output in smaller markets.

3. In smaller markets, more choices are classified as collusive because the

collusive outcome is closer to the focal options. Preferences and beliefs depend

on the choice set and item’s location in the set; for example, there is a preference

for options in the middle (Valenzuela and Raghubir, 2009; Chang and Liu, 2008) or

for the multiples of 10 or 100. In standard Cournot oligopoly, the focality of the

key outcomes, their location on the strategy space and the distance between them

change as a result of a different market size. These changes could affect the behavior

of boundedly rational participants and therefore more choices might be misclassified

as collusive in smaller markets.

We designed the “normalized” treatments to keep the incentives and the focality of
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actions the same across markets of different size to identify the pure number effect. We

also ran experiments with the “standard” design to compare the number effect between the

two designs using the participants from the same subject pool and identical experimental

procedures.

Table 1 summarizes the key differences between the five treatments. The difference

between standard and normalized treatments lies in how the output of the opponents is

aggregated, which is determined by the θ parameter. In standard treatments, we set θ � 1,

regardless of the market size, as is common in the previous literature (e.g. Huck et al.,

2004, Roux and Thöni, 2015, Horstmann et al., 2018, Oechssler et al., 2016). As a result,

a change in the market size does not affect the profit of firm i if the output of firm i and

the sum of output of all other firms are held constant.8 In normalized treatments, we set

θ � 1
n�1

, therefore market size does not affect the profits of i if the output of i and the

average output of all other firms are held constant. This small difference in the aggregation

of opponents’ output has important consequences on how the incentive structure responds

to changes in market size.

In the standard treatments, market size affects the output and payoffs in the three

key outcomes: Nash equilibrium, collusive outcome and Walrasian equilibrium. First two

columns of Table 1 summarize these differences in markets with 2 and 4 firms (S2 and

S4). Nash equilibrium payoffs are held constant using a scaling parameter (s � 1 in 4-firm

markets, s � 0.36 in a 2-firm markets), but the payoffs in the collusive outcome and the

most profitable deviation from it are different. A common measure of the incentives to

collude is the Friedman index (Friedman, 1971), defined as F � πpCq�πpNq
πpDq�πpCq

, where πpDq is

the payoff in the most profitable unilateral deviation from the collusive outcome. Table 1

shows that in the standard treatments, the incentives to collude decrease in the group size.9

8Note than in the experiment, we set s to different values in 2 and 4 player markets, in line with
the previous literature, therefore the profits in one treatment will be multiplied by a scalar; however,
multiplication does not affect the best response.

9Friedman index values in our experiment are identical to the values in standard experiments that
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Table 1: Parameter values and key outcomes in each treatment.

Treatment S2 S4 N2 N3 N4
n 2 4 2 3 4
θ 1 1 3 1.5 1
s 0.36 1 1 1 1
Strategy space 0-50 0-50 8-24 8-24 8-24
qCi 20 10 10 10 10
qNi 26.67 16 16 16 16
qWi 40 20 20 20 20
πpCq 418 530 530 530 530
πpNq 386 386 386 386 386
πpW q 130 130 130 130 130
Friedman index 0.89 0.64 0.64 0.64 0.64
# participants 36 60 96 72 96
# markets 18 15 48 24 24

In the normalized treatments, the locations of the three key outcomes and the payoffs are

invariant to the market size.

The second difference between standard and normalized treatments is in the strategy

space. In standard, firms could choose output from 0 to 50. In normalized, the strategy

space was restricted to 8-24, for several reasons. First, we aimed to increase the accuracy of

categorization by having the three key outcomes evenly spaced across the strategy space. If

all three outcomes were located at the bottom of the strategy space (e.g. as in S4), there is

more scope for exceeding the equilibrium prediction and the average output might appear

to indicate competitiveness. Instead, in normalized treatments the Nash equilibrium was

placed in the middle of the strategy space and the other two outcomes were located at a

similar distance from it. However, we did not want any outcomes to be located at either end

of the strategy space, so as not to misclassify extreme choices as either perfectly collusive

or competitive. It was also necessary to bound the strategy space from below to decrease

the attractiveness of collusion by an alternating play of asymmetric outcomes.10

manipulated group size in Cournot oligopoly, e.g. Huck et al. (2004).
10In N2, the symmetric collusive outcome is (10,10), generating a payoff of 530 ECU per firm. However,

total payoffs would be maximized in the output profile (8, 16), with an average payoff of 546 EU per firm.
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Finally, the strategy space in normalized treatments was labeled such that the key out-

comes would not be focal. For example, in S4 treatment, which uses the same parameters

as the previous literature, the collusive and competitive outcomes are at focal locations

(respectively 10 and 20), and it is found that these outcomes are commonly chosen (Bigoni

and Fort, 2013). It is unclear whether these values are chosen because they were focal,

or because participants converge to the collusive or competitive outcome. To simplify the

explanation of the game and separate the key outcomes from focal values, we re-labeled the

strategy space, using strategy space from 0 to 16 to represent output 8-24. The mapping

was performed in two ways: in “increasing” treatments, higher output was represented by

higher numbers in the strategy space (i.e. output of 8 was labeled as “0” and 24 was labeled

as “16”). In “decreasing” treatments, higher output was represented by lower numbers (i.e.

output of 8 was labeled as “16” and 24 was labeled as “0”), reversing the strategy space.

This labeling ensures that the key outcomes are never at focal locations (in increasing

treatments, key outcomes are at 2, 8 and 12; in decreasing treatments they are at 4, 8 and

14). Running some treatments with a reversed strategy space helps to further evaluate

the importance of focality and to eliminate it’s effect when classifying choices (for more

details, see Appendix A).11 In the data analysis section, we map the choices made by par-

ticipants back into the output of the original Cournot payoff function and pool increasing

and decreasing treatments.

In N3, the asymmetric collusive outcome is (8, 8, 16), with a profit of 535.33 EU per firm. In N4, all output
profiles in which total output equals 40 generate the same payoff of 530 ECU per person. If the strategy
space was not bounded from below, the payoff difference between symmetric and asymmetric collusive
outcomes would be much larger, and cause different patterns of behaviour in 2 and 4 firm markets. For
example, the asymmetric collusive outcome in an unbounded 2-firm treatment is (4, 24), with a payoff of
810 ECU per person. The lower limit of 8 makes the asymmetric collusive outcome less attractive, while
keeping the symmetric collusive outcome in the interior of the strategy space. To completely eliminate the
asymmetric collusive outcome, the lowest available output would have to be 10. In the data, we do not
observe any successful attempts of asymmetric collusion.

11We find evidence that focal outcomes are more commonly chosen. For example, action labeled as “10”
is the most commonly chosen action in N3I (increasing treatment with a market size of 3), second most
common in N4I and N3D, third most common in N2I, N2D and N4D. When the same action is labeled
as “6”, it is chosen less than half of the times. If we hadn’t run the treatments with a reversed strategy
space, the frequency of competitive outcomes would likely be overestimated.
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2.3 Other Design Details

The stage game was repeated 20 times under partner matching. An alternative random

matching protocol would have made it very difficult to study collusion. Participants had

30 seconds to make their decision in each round (as in Bigoni and Fort, 2013). If no

decision was made within the time limit, the output chosen in the previous round was

implemented. If no decision was made in round 1, output was drawn at random from a

uniform distribution.12

Original instructions were in French; Appendix D provides a complete English trans-

lation. Instructions were identical in all treatments and framed using neutral language.13

Participants could learn about the incentive structure using either a payoff table or a payoff

calculator (examples of the information seen by the participants are displayed in figures F.1

and F.2 in Appendix F). The payoff table listed participant’s payoffs for some combinations

of chosen output and the average output of the opponents: 441 combinations in standard

treatments (21x21 action profiles, 0-50 in increments of 2.5) and 289 combinations in nor-

malized treatments (17x17 action profiles, 0-16 in increments of 1). The payoff calculator

could be used to compute the payoff for any combination of own output and the average

output of the opponents.

In each round other than the first one, participants had access to two additional tools.

The “output-payoff graph” visually displayed the previous round output-payoff combina-

tions of all the firms in the market (see Friedman et al., 2015 for a similar design). This

information is needed to imitate the best, which could lead to convergence to the Walrasian

equilibrium (Vega-Redondo et al., 1997). The second tool was a table that listed the his-

tory of chosen output, payoff and average output of the opponents in the previous rounds.

12The decision was not made within the time limit 3.5% of the time, primarily in the first two rounds. In
the analysis part, we use all the decisions, although excluding the decisions that were not made explicitly
does not change the overall results.

13For a discussion about how the use of neutral language rather than the more commonly used economic
framing affects preferences and beliefs in Cournot oligopoly, see Masiliūnas and Nax (2020).
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This information would be used to make decisions from experience (e.g. reinforcement

or belief learning). Participants could switch between the four tools at any time, and we

tracked how much time was spent using each tool, just as in Bigoni and Fort (2013). This

process data provides additional insight into how the decision making process is affected

by the market size.

After 20 rounds, participants continued the experiment with different games for another

20 or 40 rounds (depending on the treatment). This data was collected to study learning

transfer and is used in a separate paper. Table C.1 in Appendix C shows the structure of the

entire experiment. In this paper, we use only choices from the first 20 rounds. Participants

were aware that the experiment will contain multiple parts, but did not know how many

parts there will be and what type of games will be played. In each part, participants were

matched with different opponents, therefore they never interacted with their opponents

from the first part again. One round from each part was randomly selected at the end

of the experiment, and the earnings from these rounds were added up and paid to the

participants in cash.14

Additional information was collected at the end of the experiment. We elicited social

preferences using the Social Value Orientation slider measure (Murphy et al., 2011, using

the z-Tree implementation by Crosetto et al., 2019). We also measured the cognitive

abilities using a part of the advanced version of Raven’s Progressive Matrices task (Raven

and Court, 1998). In this test, participants had 10 minutes to solve 16 tasks. After these

tasks, we collected the age, gender and year of study of the participants.

In total, 360 participants took part in experiments. The numbers of participants and

markets in each treatment are shown in Table 1. In normalized treatments, exactly one

half of the participants in each treatment took part in “increasing” treatments and the

other half in “decreasing” treatments. We collected more observations for the normalized

14Earnings were denominated in ECU and exchanged to cash using rate 150 ECU = 1 euro.
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treatments because the standard treatments have already been studied in the previous

literature.

All experiments were run in the LEEN laboratory of the Université Côte d’Azur in

May and October 2018. The experiments took on average 75 minutes and participants on

average received 14.2 euros. Participants were recruited using ORSEE (Greiner, 2015) and

experiments were programmed using z-Tree (Fischbacher, 2007).

3 Quantal Response Equilibrium Predictions

We have shown that the market size interacts with the incentive scheme differently in

standard and in normalized treatments. This section quantifies how these differences in

incentives are predicted to affect the collusion rates under bounded rationality, as modeled

by the Quantal Response Equilibrium (McKelvey and Palfrey, 1995).

QRE requires consistency between actions and beliefs, but the responses to beliefs are

noisy, therefore all actions have a positive probability to be played. In a game with n

players, a set of players N and a set of pure strategies Qi � tq1, . . . , qmu, denote the

set of all probability measures on Qi by ∆i � tp1, . . . , pmu and the set of all probability

measures on �iQi by ∆ � t∆1, . . . ,∆nu. We will use shorthand notation p � ppi, p�iq for

any p P ∆, where pi is the mixed strategy of player i and p�i is the mixed strategy profile

of all other players. The probability with which player i chooses action qk is pipqkq. The

expected payoff that i obtains by choosing qk is denoted by πipqk, p�iq. Nash equilibrium

assumes that each player chooses the action with the highest expected payoff. Instead,

QRE assumes that participants are maximizing their decision utility uipqk, p�iq, equal to

the sum of the expected payoff and the noise term:

uipqk, p�iq � πpqk, p�iq � εik (2)
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If each of the stochastic terms εik is independently drawn from a type-I extreme value

distribution with parameter λ (McFadden, 1981) and each player chooses the action that

generates the highest decision utility, the probability that i will play qk can be calculated

using a noisy best-response function σipqk, p�iq, defined as:

σipqk, p�iq �
eλπipqk,p�iq°

qjPQi
eλπipqj ,p�iq

(3)

The logit QRE is a probability distribution p P ∆ that satisfies pipqkq � σipqk, p�iq,

for all i P N and qk P Qi (McKelvey and Palfrey, 1995). In other words, QRE requires

the mixed strategy of each player to be a noisy best-response to the mixed strategy profile

used by all other players.

Parameter λ measures precision, or sensitivity to expected payoff differences. If λ � 0,

all actions are chosen with equal probabilities. A positive λ indicates that actions that

generate higher expected payoffs are chosen more often. If λ Ñ 8, there is no error and

players always choose the action with the highest expected payoff, therefore QRE reduces

to the Nash equilibrium.

Since the closed-form expressions of logit QRE are generally unknown, we calculate

QRE using the tracing procedure from Turocy (2005), implemented using Gambit software

(McKelvey et al., 2015). The calculations are performed using a discretized strategy space

of 51 strategies (0, 1, . . . , 50) in standard treatments and 17 strategies (8, 9, . . . , 24) in

normalized treatments. Payoffs used in the calculations are converted into monetary euro

amounts (in experiments, the exchange rate was 150 ECU = 1 euro).

3.1 QRE in Standard Treatments

We start by evaluating how QRE predictions respond to changes in market size in standard

treatments and move to the normalized treatments in subsection 3.2. First, we illustrate
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Figure 1: QRE distribution with λ � 1.5 in standard treatments. Vertical dashed lines
indicate Nash equilibrium in S4 (16) and S2 (26.7).

the QRE predictions by calculating the choice probabilities for a specific value of the noise

parameter (λ � 1.5, very close to the value in the best-fitting QRE model estimated in

section 5.1) and then show how the predictions respond to changes in λ.

Figure 1 shows the calculated QRE probability distributions in treatments S2 and

S4. Dashed lines mark the corresponding Nash equilibrium output (26.7 and 16). Both

distributions are centered around the Nash equilibrium, but more choices exceed the Nash

equilibrium prediction in S4 than in S2 (59%, compared to 51%), largely because in S4

the Nash equilibrium is located at the bottom of the strategy space. Consequently, the

average QRE output is very close to the Nash equilibrium in S2 (26.8, compared to 26.7),

but exceeds the Nash equilibrium in S4 (20.6, compared to 16).

Next, we introduce two measures to quantify the degree of collusion and compare them

across a range of parameter values. The first measure is the ratio of average output to Nash

equilibrium output (Huck et al., 2004), calculated as r � q̂pλq
qN

, where q̂pλq is the average

output in a QRE with parameter value λ, and qN is the Nash equilibrium prediction.

Figure 2 plots r in S2 and S4 for values λ P r0, 10s. If the sensitivity to payoff differences is

high, QRE approaches Nash equilibrium and thus r Ñ 1. If the sensitivity is low, average

16
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Figure 2: Ratio of average QRE output to Nash equilibrium output in standard treatments
with 2 and 4 firm markets.

output is below Nash equilibrium in two-firm markets and above it in four-firm markets,

predicting more collusive behavior in smaller markets.

The second measure is the frequency of collusive or competitive choices. It is common

to classify choices by identifying the outcome that is closest to the chosen output (see Huck

et al., 2004). We partition the strategy space into actions that are closest to either collusive

outcome, Nash equilibrium or Walrasian equilibrium, and compare the QRE predictions

about the frequency of each category across treatments. We find that smaller markets are

predicted to have more collusive and less competitive choices, for a wide range of λ values

(Figure 3).

Overall, QRE predicts more collusive behaviour in smaller markets when the market

size is manipulated using the standard Cournot payoff function. This finding indicates

that the experimental result of lower collusion rates in smaller markets could in principle

be driven by changes in the incentive structure or the locations of the key outcomes.
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Figure 3: Fraction of choices classified as collusive (closer to the collusive outcome than to
the other two outcomes) or competitive (closer to the Walrasian equilibrium than to the
other two outcomes) in standard treatments.

3.2 QRE in Normalized Treatments

Next, we calculate QRE in normalized treatments. The normalized payoff function was

designed to keep the incentives similar across different market sizes. We therefore expect

smaller differences in predicted collusion rates between normalized treatments.

Figure 4 illustrates the QRE distribution for λ � 1.5. The markets with 3 and 4 firms

are similar, but the 2-firm market is somewhat shifted towards more competitive output.

This shift is caused by a difference in how the distribution of beliefs about average output

is constructed. In N2, beliefs coincide with the QRE distribution, since players face only

one opponent. In N3 and N4, the distribution of beliefs about the average output will have

a lower variance because extreme values of average output are less likely in larger markets.

Higher variance of the belief distribution in N2 makes higher output more attractive because

such output is on average more profitable when the average output chosen by the opponents

is more extreme (see the payoffs in Table E.1, Appendix E).
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Figure 4: QRE distribution in normalized treatments at λ � 1.5. Vertical dashed line
indicates Nash equilibrium output.

We quantify collusion using the two measures introduced in the previous section: a

ratio of average output to Nash equilibrium output and the frequency of output classified

as either collusive or competitive. Figures 5 and 6 show how these measures are predicted

to depend on the market size.

Figure 5 plots the ratio of average QRE output to Nash equilibrium output. In contrast

to the standard treatments (Figure 2), we find that smaller markets are predicted to be

slightly less collusive. However, the treatment difference is much smaller compared to the

standard treatments: the ratio differs by at most 5%, in contrast to the differences of up

to 60% in the standard treatments.

Figure 6 shows that the slightly less collusive output in markets with two firms is

primarily driven by a higher frequency of competitive choices in this treatment. The

predicted fraction of collusive choices is nearly identical across the different market sizes,

and much smaller than the differences in the standard treatments.

Overall, the QRE prediction that smaller markets will be more collusive holds only

in the standard but not in the normalized treatments. The comparison of the group size

effect under both designs can therefore identify whether the results found in the Cournot
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Figure 5: Ratio of average QRE output to Nash equilibrium output in normalized treat-
ments with 2, 3 and 4 firm markets.
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Figure 6: Fraction of choices classified as collusive (closer to the collusive outcome than to
the other two outcomes) or competitive (closer to the Walrasian equilibrium than to the
other two outcomes) in normalized treatments.
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literature are primarily driven by the pure number effect, or by the changes in the incentive

structure or the focality of key outcomes.

4 Results

First, we will compare the two designs (standard and normalized) in whether they alter the

effect of the market size on the aggregate levels of collusion. Afterwards, we will compare

the distributions of output and classify behavior to identify how the market size affects the

frequency of collusive output.

4.1 Aggregate Output

In the standard treatments, theoretical predictions change with the market size, therefore

average output (q̄i) needs to be normalized before treatments can be compared. We do so

using two measures of collusion: the ratio of actual to predicted output and a collusion

index.

Ratio of actual to predicted output. A simple way to normalize output is to

calculate the ratio of chosen output to Nash equilibrium output: r � q̄i{q
N
i . Values below

1 indicate that output is more collusive than the equilibrium prediction, values above 1

indicate competitive output. Figure 7 shows the dynamics of the across markets average r.

To compare across treatments, we calculate r separately for each market, aggregated either

across all rounds (1-20) and only the last five rounds (15-20), following the convention in

the literature (e.g. Huck et al., 2004). We use a Mann-Whitney U (MWU) test to test

whether the ratio of output is significantly affected by market size.

In standard treatments, there is a significant difference between the markets with 2

and 4 firms (MWU p   0.0001 if all rounds are used, p � 0.001 if last 5 rounds are used).

This result replicates the finding from the literature that smaller markets tend to be more
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Figure 7: Ratio of average output to equilibrium output by treatment over time.

collusive (Huck et al., 2004). In the normalized treatments, there is no difference between

markets with 2, 3 or 4 firms (MWU p-values for the pairwise comparison are at least 0.5826

if all rounds are used and 0.3123 if the last 5 rounds are used).

Collusion index. Used in Horstmann et al. (2018), Engel (2007) and Suetens and

Potters (2007), the collusion index measures where the market output falls in the range

between the collusive outcome and the Nash equilibrium or the Walrasian equilibrium:

ϕN � pq̄i � qNi q{pq
C
i � qNi q and ϕW � pq̄i � qWi q{pq

C
i � qWi q. Both indexes would be

equal to 1 if market output was equal to the collusive output; the first index would be

equal to 0 if output was equal to the Nash equilibrium, the second would be equal to 0 if

output was equal to the Walrasian equilibrium. Note that in the normalized treatments,

the treatment comparison is identical for all three indexes because the key outcomes are

invariant to market size. We find that in the standard treatments, 2-firm markets are

more collusive than 4-firm markets, as measured by ϕN (MWU p � 0.0001 for all rounds,

p � 0.0103 for last 5 rounds) or by ϕW (MWU p   0.0001 for all or only the last 5 rounds).

In the normalized treatments, there is no difference between the markets with 2, 3 or 4

firms (MWU p ¡ 0.5786 for all rounds and p ¡ 0.3123 for the last 5 rounds).

From a policy perspective, it is important to know whether firms in more concen-

trated markets receive higher profits. Nash equilibrium predicts identical profits in all
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Table 2: Three measures of collusion and profits across treatments. First number is the
average in rounds 1-20, the number in brackets is the average in rounds 15-20.

Index S2 S4 N2 N3 N4
r 1.02 1.30 0.98 0.99 1.00

[1.05] [1.23] [0.99] [1.02] [1.02]
ϕN -0.10 -0.80 0.05 0.02 -0.002

[-0.20] [-0.62] [0.02] [-0.06] [-0.04]
ϕW 0.63 -0.08 0.43 0.41 0.40

[0.60] [0.03] [0.41] [0.36] [0.37]
πi 340.0 230.1 387.3 371.1 372.4

[338.8] [243.9] [381.9] [348.0] [361.9]

five treatments. Table 2 shows that in the standard treatments, profits are significantly

higher in 2-firm markets, both overall (MWU p   0.0001) and in the last 5 rounds (MWU

p � 0.0001). There is, on the other hand, no significant difference among three market

sizes in the normalized treatments (the lowest MWU p-value is 0.2323 in all rounds and

0.1450 in the last 5 rounds).

Additionally, we evaluate the treatment effects using a panel data GLS regression with

a random effect on the market level, taking into account the inter-temporal dependence

of decisions as well as the dependence among the outputs of firms in the same market.

Standard errors are clustered on the market level. As dependent variables, we use the

three collusion indexes (r, ϕN , ϕW ). The main independent variables are dummy variables

indicating market size. For the normalized treatments, we also include an indicator of the

strategy space labeling. A variable equal to the inverse of a round is included to capture

changes in collusion due to experience. Table 3 shows that, in the standard treatments,

markets with four firms are significantly less collusive than markets with two firms, for all

three indexes. The coefficients of the inverse round variable indicate increasing collusion

over time. In the normalized treatments, the 3-firm and 4-firm markets are not different

from the 2-firm markets. The “decreasing labels” variable indicates treatments in which

higher output was labeled with lower numbers. The coefficient of this variable is signifi-
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Table 3: Random effects GLS regression. Standard errors clustered on the market level.

Standard Normalized
DV: r DV: ϕN DV: ϕW DV: r DV: ϕN DV: ϕW

3-firm market – – – 0.0109 -0.0291 -0.0175
(0.42) (-0.42) (-0.42)

4-firm market 0.277*** -0.705*** -0.716*** 0.0189 -0.0504 -0.0303
(6.37) (-4.96) (-11.02) (1.04) (-1.04) (-1.04)

1/Round 0.206** -0.501* -0.340*** -0.0382* 0.102* 0.0611*
(2.49) (-1.96) (-2.68) (-1.75) (1.75) (1.75)

Decreasing -0.0903*** 0.241*** 0.144***
labels (-5.19) (5.19) (5.19)
Constant 0.988*** -0.00840 0.695*** 1.034*** -0.0907* 0.346***

(32.33) (-0.07) (16.45) (58.88) (-1.94) (12.30)
N 1920 1920 1920 5280 5280 5280

t statistics in parentheses

* p   0.10, ** p   0.05, *** p   0.01

cantly different from 0, indicating the importance of labeling. The effect is largely driven

by action “10” being focal; in the increasing treatments, this action is more competitive

than the Nash equilibrium but in decreasing treatments it is more collusive. We note that

the labeling of the strategy space has a significant and consistent effect on collusion rates,

which is even stronger than the effect of market size.15

These results are robust to different specifications. Table C.3 in Appendix C shows the

estimated treatment effects using data only from the last 5 rounds, when participants would

have accumulated experience. The treatment effects remain qualitatively the same. Results

also do not change if we remove decisions that were implemented because participants fail

to make a decision within the time limit. In the normalized treatments, we ran regressions

separately for the decreasing and increasing strategy space and found no significant number

effects (Table C.2 in Appendix C). Including age and gender does not change the results,

and coefficients for these two variables are not significantly different from zero.

Result 1. In standard treatments, aggregate output is more collusive in smaller markets.

15Further details on the effect of strategy space labeling are in Appendix A.
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Figure 8: Kernel density of individual output, pooled across rounds.

In normalized treatments, market size has no effect on aggregate output.

4.2 Distribution of Output

Comparing treatments in terms of aggregate outcomes is important to compare our results

to the previous literature and for policy reasons, as regulators care about the average

profits and prices in the markets. But we are also interested in how and why the market

size affects the distribution of output and the frequency of collusive output.

Figure 8 shows the kernel density estimate of individually chosen output in the standard

and normalized treatments. In standard treatments, a larger market size decreases output

but the adjustment is not as strong as predicted by Nash equilibrium. Consequently, the

average output is close to the equilibrium prediction in 2-firm markets, but exceeds it

in 4-firm markets. In normalized treatments, distributions are centered around the Nash

equilibrium but the variance is notably lower in larger markets: the standard deviation of

chosen output is 4.9 in N2, 4.2 in N3 and 3.7 in N4. We evaluate the statistical significance

of these differences by calculating the standard deviation for each market and comparing

their distribution across treatments. In normalized treatments, we find that the standard

deviation is significantly higher in two-firm markets, compared to the markets of larger

size (Mann-Whitney U test p � 0.0041 comparing N2 vs N3 and p � 0.0017 comparing
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Figure 9: Standard deviation of choices by treatment over time.

N2 vs N4). In standard treatments, market size has no significant effect on the standard

deviation. Figure 9 plots the evolution if the standard deviation, calculated using all choices

in each round. In standard treatments, there is no difference between the two market sizes.

In normalized, there is no difference at the start of the game, but a gap between the three

treatments appears and grows over time.

Differences in the choice distributions affect the fraction of choices classified as collusive.

We use two methods to identify the frequency of collusion. First, we use collusion counts

(Waichman et al., 2014), defined as the number of rounds in which quantities are in the

collusive region, that is closer to the collusive outcome than to the Nash equilibrium. Unlike

Waichman et al. (2014), we perform the classification using individual rather than total

market output, because aggregating choices over a larger number of firms decreases the

likelihood that the group would be classified as collusive.16 The average number of rounds

in which individual output is classified as collusive is 5.1 in S4 and 5.2 in S2, a difference

that is not significant (MWU p � 0.49). In normalized treatments, collusion counts go up

from 3.0 in N4 to 4.1 in N3 and 5.8 in N2; there is significantly more collusion in 2-firm

16Classification using the market output replicates the usual finding of more collusive choices in smaller
markets: in standard treatments, the average collusion counts go up from 5.1 to 10.3; in normalized
treatments, from 3.7 to 8.1 to 9.0. The difference between 2 and 4-firm markets is significant in both
standard (MWU p � 0.0084) and normalized treatments (MWU p � 0.0009). The 3-firm market is not
significantly different from the other two.
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Figure 10: Classification of choices according to which outcome they are closest to. Data
from last 5 rounds.

markets than in 3-firm markets (MWU p � 0.0299) or 4-firm markets (MWU p � 0.0018).

The comparison of collusion counts indicates a higher incidence of collusion in smaller

markets, in contrast to the results based on aggregate output. The reason behind this

difference can be seen by inspecting the output distributions. In standard treatments, a

decrease in market size primarily lowers the frequency of above-equilibrium output, low-

ering the average output but not increasing the share of collusive choices. In normalized

treatments, an increased variance in smaller markets does not change the average output

but increases the frequency of choices that are close to the collusive output.

Next, we classify individual output based on the outcome it is closest to. We follow Huck

et al. (2004), but use output from individual firms rather than the total market output.

We aim to identify the outcome to which choices converge, therefore we use the average

output of each firm in the last 5 rounds. Figure 10 shows that in standard treatments,

a larger market size increases the fraction of choices classified as Walrasian (competitive)

but has no effect on the frequency of collusive choices. In normalized treatments, a larger
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market size decreases the frequency of collusive choices but has a non-monotonic effect on

the frequency of Walrasian or Nash choices.

Result 2. In normalized treatments, the frequency of collusive output and the variance of

output are higher in smaller markets. In standard treatments, market size has no effect on

the frequency of collusion or the variance of output.

5 Model Estimation

Our standard treatments replicate the previous literature, finding more collusion in smaller

markets. In the normalized treatments, we find no effect of the market size on the aggregate

output or profits. However, in these treatments smaller markets tend to have a higher

variance of output, an effect that is not found in the standard treatments. This section

will test whether models of bounded rationality can explain these data patterns.

5.1 Quantal Response Equilibrium

First, we test whether the data patterns can be explained by QRE. In section 3, we showed

that QRE correctly predicts that the number of competitors makes output less collusive

in the standard treatments, but does not affect it in the normalized treatments. But QRE

also makes a prediction about the entire distribution of choices, therefore we can test

whether it can explain the differences in variance observed in the normalized treatments.

We estimate the logit QRE using a method adapted from Bajari and Hortacsu (2005):

we calculate the noisy best-response to the empirical choice distribution, and use a grid

search procedure to find a precision parameter (λ) that maximizes the likelihood of data

in the experiment. This method produces an unbiased estimate of the precision parameter

under the assumption that QRE is correct because in QRE beliefs would coincide with the

empirical distribution. In practice, QRE will never fit the data perfectly, so there will be
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Table 4: Goodness of fit and estimated parameter values in QRE.

Separate estimation Combined estimation

Treatment λ̂ LL λ̂ LL
S2 1.395 -2739.97 1.497 -2740.34
S4 1.535 -4561.56 1.497 -4561.65
N2 -0.292 -5436.98 1.497 -5531.25
N3 2.507 -4014.05 1.497 -4024.05
N4 4.686 -5161.69 1.497 -5281.54
Total -21914.25 -22138.83

a discrepancy between this method and the tracing procedure we used to compute QRE

in section 3.17

When estimating QRE, we either fit a separate model for each treatment, or fit a single

model, combining data from all five treatments. In the literature, it is common to estimate

a separate model for each game (e.g. Lim et al., 2014), but it implicitly assumes that

the sensitivity to payoff differences is changing with market size. Since the normalized

treatments were designed to be comparable with each other, allowing the noise parameter

to vary with the market size would lead to overfitting. If very different values of λ are

needed to explain the number effect, results would be driven not by the elements in QRE,

but by some other unmodeled factors. The second method therefore tests whether all

the treatment differences could be explained by a model with a single value of the noise

parameter.18

Table 4 provides an overview of the estimated parameter values and goodness of fit (log

17There are two main benefits of using the estimation procedure from Bajari and Hortacsu (2005). First,
it gives the flexibility to perform a combined estimation using multiple treatments with different payoff
function, which is not possible with the standard tracing procedure. Second, the computational complexity
of the estimation procedure is greatly reduced, since it is no longer necessary to compute the fixed point
for a large number of parameter values. Computational complexity is especially problematic for the games
with many participants and a large strategy space, such as our S4 treatment (51 strategies for each of the
4 participants).

18We also estimated QRE separately for normalized and standard treatments, requiring λ to be the same
across different market sizes but allowing them to differ between standard and normalized treatments. This
is justified by the important differences between standard and normalized treatments, such as the range
of payoffs or the size of the strategy space, which affect the QRE predictions. In practice, the estimates
are very close to the combined estimation. We report these results and goodness of fit in Appendix C.
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Figure 11: Best-fitting QRE estimated separately for each treatment (vs kernel density).

likelihood) for each method. When a separate model is fit for each game, the estimated

values of the noise parameter are similar in the two standard treatments (λ̂ � 1.4 and

λ̂ � 1.5), but very different in the three normalized treatments. That indicates that QRE

can explain the number effect in standard treatments (result 1), but cannot explain the

increased variance in smaller markets of the normalized treatments (result 2), unless it is

assumed that sensitivity to expected payoff differences significantly decreases in smaller

markets. In fact, the estimated value of λ is negative in N2, indicating that the output

distribution in this treatment could be explained by participants choosing actions with

lower expected payoffs.

Figure 11 illustrates the goodness of fit by comparing the kernel density estimation of

experimental data to the choice probabilities predicted by the best-fitting QRE. In the

standard treatments, QRE can explain the shift in the choice distribution that results

from a different market size. In the normalized treatments, the fit is less good as QRE

underestimates the frequency of focal outcomes, such as the Nash equilibrium and the

endpoints of the strategy space.
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Figure 12: Best-fitting QRE estimated for all treatments (compared to kernel density).

The additional requirement for the noise parameter to be constant across treatments

in the second method hardly changes the fit in the standard treatments, but decreases

the fit in the normalized treatments, especially in N2 and N4. Figure 12 shows the choice

probabilities estimated by a model with a single value of λ̂ � 1.497. The fit remains good

in the standard treatments, but QRE fails to predict any difference in the distribution of

choices among the three normalized treatments.

Overall, QRE can explain why output is on aggregate more collusive in smaller mar-

kets in standard treatments and why there is no difference in the normalized treatments

(result 1). QRE can also explain the overall change in the shape of the choice distribution

in standard treatments, but it cannot explain why variance decreases in market size in the

normalized treatments (result 2).

5.2 Frequent Response Equilibrium

The finding that variance is decreasing in market size only in the normalized treatments

could be explained by the difference in how the output of the opponents is aggregated.
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In the standard treatments, the sum of opponents’ output is mapped into the same best-

response, regardless of the market size. In the normalized treatments, the average of

opponents’ output is mapped into the same best-response, regardless of the market size.

An increase in market size increases the variance of the sum of output chosen by the

other firms, but decreases the variance of the average output. Therefore, for a given best-

response correspondence, the variance of the best-response distribution would increase in

market size in the standard treatments, but decrease in normalized treatments (for more

details and an illustration, see Appendix B).

We can test these predictions by comparing the incentives to respond to the observed

feedback in experiments. First, we test the prediction that the variance of total output of

the opponents is increasing in market size, but the variance of average output is decreasing.

For each participant, we calculate the standard deviation of either the total or the mean

opponents’ output across all 20 rounds and then compute the standard deviation in each

treatment. As predicted, the standard deviation of the total opponents’ output increases

from 10 in S2 to 19 in S4 in standard treatments. In normalized treatments, the standard

deviation of the average opponents’ output decreases from 4.2 in N2 to 2.3 in N3 and 1.9

in N4.

These differences affect the shape of the best-response distribution. Figure 13 shows

the distribution of best responses to the output of the opponents observed in that round,

aggregated across all participants and all rounds. These distributions of ex-post rational

output would have been observed if participants always had correct beliefs and optimally

responded to them. Standard deviation of the best-response distribution is increasing in

market size in the standard treatments (5.7 in S2 and 8.1 in S4) but decreasing in the

normalized treatments (5.8 in N2, 4.4 in N3 and 3.1 in N4). This result shows that the

observation of variance decreasing in market size only in the normalized treatments could

be explained by participants responding to observed feedback.
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Figure 13: Kernel density of ex-post rational actions, pooled across all rounds.

We use the results about the difference in observed feedback to propose a modification

of QRE, which we will refer to as the Frequent Response Equilibrium (FRE). QRE assumes

that each player chooses a noisy best response to the choices that everyone else is expected

to make; therefore, the choice probabilities are a function of expected payoffs. FRE assumes

that each player (noisily) chooses the action that is most likely to be the best response, so

the choice probabilities are a function of the expected likelihood to be the best response.19

QRE could emerge as the long-run outcome of logit response dynamics (Alós-Ferrer and

Netzer, 2010; Cason et al., 2021), as players form beliefs from observed history and choose

stochastic best-responses. Instead, FRE could emerge as the long-run outcome if players

favor actions that are frequent best-responses to the observed history, in a manner similar to

probability matching (Vulkan, 2000). It has been shown that when decisions are made from

experience, participants are not very sensitive to the average payoff an action generates,

but are sensitive to how frequently an action provides the highest payoff (Erev and Barron,

19There is a difference between the action that generates the highest expected payoff and an action that
is most likely to provide the highest payoff, because the former does not take the magnitude of payoffs
into account. For example, consider our treatment N2 and suppose that players expect the opponent to
draw their action from a uniform distribution. Compare the attractiveness of the equilibrium output of
16 to the lowest possible output of 8. Producing 16 provides a higher expected payoff than 8 because it
generates high profits when the opponent is choosing a low or an intermediate output level (Table E.1).
However, 16 is rarely the exact best-response – it is the best response only if the other player chooses 16
as well, whereas 8 is the best response to any output above 21. When evaluated based on the likelihood
to be the best response, output of 8 would therefore outperform 16, while 16 would outperform 8 based
on the expected payoff.
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2005; Yechiam and Busemeyer, 2006).

We wanted FRE to differ from QRE only in the way the attractions are determined

(based on the likelihood of being a best-response rather than expected payoff), therefore

we retained the assumption that attractions are mapped into choice probabilities using a

softmax function with a λ parameter. If λÑ 8, FRE approaches Nash equilibrium because

the action that has the highest likelihood to be the best response must also provide the

highest expected payoff.

We define FRE formally by extending the definition of QRE from section 3. Let q�i �

tq1, . . . , qi�1, qi�1, . . . , qnu be the pure strategy profile of all players other than i. Then

p�i P ∆�i is the mixed strategy profile of all others players, where ∆�i is the the set

of all possible mixed strategy profiles. The likelihood that q�i will be played in p�i is

p�ipq�iq. Denote the set of strategies that are best responses to a pure strategy profile q�i

by Bpq�iq � tqk P Qi : @qj P Qi : πipqk, q�iq ¥ πipqj, q�iqu. Then the likelihood that qk is

the best-response to q�i is calculated by bpqk, q�iq, defined as:

bpqk, q�iq �

$''&
''%

1
|Bpq

�iq|
if qk P Bpq�iq

0 if qk R Bpq�iq

The likelihood that action qk is the best-response conditional on probabilistic belief

p�i is calculated by rpqk, p�iq �
°
q
�i
bpqk, q�iqp�ipq�iq. FRE assumes that player are

maximizing the probability that the action will be the best response; therefore, the utility

function defined in equation (2) is replaced by:

uipqk, p�iq � rpqk, p�iq � εik (4)

The definition of the solution concept follows the one of QRE, detailed in section 3,

with the choice probabilities determined by equation (3). We evaluate the fit of FRE and
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Figure 14: FRE distribution with λ � 8. Vertical dashed lines indicate symmetric Nash
equilibria.

compare it to QRE by calculating the FRE choice distribution at various values of λ and

then evaluating the goodness of fit by fitting FRE to the experimental data.

FRE is calculated using the same tracing procedure used for QRE, but instead of

using the game’s payoffs πipqk, q�iq, we use the likelihood that an action is a best response,

calculated by bpqk, q�iq. Note that this modification leads to a significant loss of information

about the incentives faced by the players.20

Figure 14 shows the FRE choice probabilities for λ � 8. In standard treatments, S4

stands out due to the high predicted frequency of producing nothing, which is the best

response when the total output of the other firms exceeds 80. In normalized treatments,

the FRE choice distribution has a higher variance in smaller markets. N2 is notable due

to a high predicted frequency of the two most extreme output levels. This prediction is

explained by a higher likelihood of observing extreme average output in N2 than in N3 or

N4, and a best-response function that makes the output of 8 optimal when the average

20It should be possible to develop a hybrid model of QRE and FRE, in which attractions are a convex
combination of the monetary payoff and the best-response likelihood. However, such a model is beyond
the scope of this paper.
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Figure 15: Standard deviation of output in estimated FRE distributions for λ P r0, 15s.

output of the other firms exceeds 21, while 24 is optimal when it falls below 11. Overall,

the direction of change in FRE choice distributions in normalized treatments reflects the

empirical pattern.

We further explore the differences in variance across market sizes by calculating the

standard deviation of the choice distribution for λ values between 0 and 15. Figure 15

shows that FRE correctly predicts higher standard deviation in smaller markets for all λ

values in this range, but only in the normalized treatments.

Next, we fit FRE to the data using the method originally developed by Bajari and

Hortacsu (2005). First, for each action, we calculate the expected likelihood of being the

best response, assuming that the strategy profile of other players is generated by each player

independently drawing their strategy from the empirically observed output distribution.

The expected likelihoods are mapped into choice probabilities using the softmax function

with parameter λ. We fit the model by estimating the value of λ that maximizes the

likelihood of the empirical choice distribution.21

21Note that the value of λ estimated in FRE cannot be compared to the λ values in QRE because the
attractions in FRE are measured in likelihood (ranging from 0 to 1) while attractions in QRE represent
the expected monetary earnings.
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Table 5: Goodness of fit and estimated parameter values in QRE and FRE.

QRE FRE
Separate Combined Separate Combined

λ̂ LL λ̂ LL λ̂ LL λ̂ LL
S2 1.395 -2739.97 1.497 -2740.34 13.63 -2665.76 7.84 -2701.296
S4 1.535 -4561.56 1.497 -4561.65 4.42 -4701.504 7.84 -4715.934
N2 -0.292 -5436.98 1.497 -5531.25 4.98 -5324.712 7.84 -5369.582
N3 2.507 -4014.05 1.497 -4024.05 14.68 -4001.647 7.84 -4018.677
N4 4.686 -5161.69 1.497 -5281.54 15.32 -5045.288 7.84 -5136.418
Total -21914.25 -22138.83 -21738.91 7.84 -21941.91
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Figure 16: Best-fitting FRE estimated separately for each treatment.
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Figure 17: Best-fitting FRE estimated for all treatments.
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Table 5 extends the results from Table 4, comparing the estimated values and goodness

of fit for QRE and FRE. Figures 16 and 17 illustrate the fit by comparing the choice

probabilities in the best-fitting FRE to the kernel density estimates of the experimental

data. Overall, FRE has a higher total log-likelihood than QRE, both when a separate model

is estimated for each treatment and when a single model is estimated for all treatments.

FRE also fits better in each individual game, except for S4. FRE fails to explain choices in

S4 because it overestimates the frequency of choosing 0. In the experiment, participants

would have maximized their round earnings by producing 0 each time the total output

by other participants exceeded 80 (which happened in over 20% of the rounds), yet 0

was chosen only about 2% of the time. In the normalized treatments, predicted choice

probabilities are close to the empirical data, although the estimated λ value is much lower

in N2 than in N3 or N4. The higher estimated level of noise in N2 is again caused by FRE

overestimating the frequency of the most extreme output levels. When λ is required to be

the same in all five games, FRE can explain the increased variance in smaller markets of

the normalized treatments, although the higher noise level needed to reduce the predicted

frequency of the extreme choices in S4 and N2 reduces the goodness of fit in the other

three treatments.

Overall, we conclude that the increased variance in smaller markets, found in the nor-

malized treatments, can be explained by a static solution concept based on the frequency

with which each action is the best response. This model also provides a better fit than

QRE, although it overestimates the frequency of extreme output levels in N2 and S4.

6 Concluding Remarks

Previous Cournot oligopoly experiments found higher rates of tacit collusion in smaller

markets. We demonstrate that this result could be explained by changes in the payoff
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structure that occur when the market size is manipulated using the standard Cournot

payoff function. We propose an alternative way to manipulate the market size, which

makes markets with a different number of competitors more comparable. This normalized

design is used to identify whether differences in collusion rates are driven by the market

size itself, or by the changes in incentives or the focality of key outcomes. We replicate

the finding of more collusive output in smaller markets using the standard treatments, but

find no effect of market size in the normalized treatments. These results suggest that the

number effect is largely driven by the changes in incentives or focality, instead of purely

the number of interacting firms.

In the normalized treatments, we also find that the variance of individual output is

decreasing in market size. This effect cannot be explained by the Quantal Response Equi-

librium. Instead, it could be explained by the difference in feedback caused by the im-

plemented aggregation rule: total output in standard treatments, average output in nor-

malized treatments. The variance of average output decreases when the market size goes

up, making extreme responses more costly. Instead, the variance of total output increases

in larger markets. This difference has consequences beyond the average rates of collusion.

Interestingly, increased variance in smaller markets in the normalized treatments provides

some support for the original result of higher frequency of collusion in smaller markets,

although the frequency of competitive choices goes up as well.

A better understanding of how the number of competitors affects collusion rates could

improve the design of competition policy. When deciding whether to approve a merger, reg-

ulators evaluate whether the resulting increase in market concentration would significantly

lessen competition. The practices used by the Department of Justice and the Federal Trade

Commission, two agencies in charge of enforcing antitrust law in the U.S., are explained in

the Horizontal Merger Guidelines.22 The guidelines identify two channels through which

22U.S. Department of Justice & Federal Trade Commission, Horizontal Merger Guidelines (2010), avail-

39



mergers could enhance market power: “unilateral effects” and “coordinated effects”.23 Uni-

lateral effects refer to the higher incentives to increase prices in more concentrated markets;

for example, a merger of firms that sell similar products increases the incentive to raise

prices because the lost sales that would have been diverted to the competitor’s products are

now diverted to the products sold by other divisions of the same firm. Coordinated effects

refer to the increased likelihood of implicit or explicit coordination on higher prices in more

concentrated markets. Successful coordination requires the ability to detect and punish

the firms that deviate from collusive agreements,24 which is easier when there are fewer

firms and the behavior of rivals is more predictable. These two channels correspond to the

two mechanisms studied in this paper: individual incentives and the pure number effect.

Just as the real firms, participants in Cournot oligopoly could collude more in smaller mar-

kets because of higher incentives or because implicit coordination is easier when there are

fewer participants. Identifying the mechanism is critical to select the appropriate strategy

for regulating mergers. If collusion is driven primarily by coordinated effects, regulators

should focus on market concentration, as was advocated in the 1968 and 1982 guidelines

(Shapiro, 2010). But if, instead, it is primarily driven by the unilateral effects, regulators

should instead estimate the value of diverted sales by evaluating the degree of product dif-

ferentiation, market elasticity of demand or costs of output suppression. Recent versions

of the guidelines advocate this view, introducing the concept of unilateral effects in the

1992 guidelines and accentuating it in 2010 (Shapiro, 2010). Consequently, the guidelines

have focused more on the economic factors and techniques to estimate the value of diverted

sales rather than the market concentration.25 The results of our experiments support this

able at http://www.justice.gov/atr/public/guidelines/hmg-2010.pdf
23The European Commission provides similar guidelines, naming the two channels “coordinated effects”

and “non-coordinated effects”, see Guidelines on the Assessment of Horizontal Mergers under the Council
Regulation on the Control of Concentrations between Undertakings, 2004 O.J. (L 24) 1 (EC), available at
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2004:031:0005:0018:EN:PDF

24U.S. Department of Justice & Federal Trade Commission, Commentary on the Horizontal Merger
Guidelines (2006), available at http://www.justice.gov/atr/public/guidelines/215247.pdf

25Section 4 of the 2010 Guidelines: “The measurement of market shares and market concentration is
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shift, providing evidence that collusion in small markets occurs not because of a smaller

number of competitors, but because of the increased incentives to collude. Mergers that do

not create additional incentives to collude (e.g. in markets with a low diversion ratio and

low margins, Farrell and Shapiro, 2010) might not need to be blocked even if they increase

market concentration.

Our study has several limitations that would be interesting to address in future research.

We focused only on implicit collusion, but it would be interesting to compare our results to

a framework in which explicit collusion is possible, perhaps by adding communication. On

one hand, coordination problem might be more important when communication is possible;

on the other hand, evidence shows that with communication, even large groups manage to

collude, therefore the number effect is not found even with the standard Cournot payoff

function (Waichman et al., 2014; Fonseca et al., 2018). It would also be interesting to extend

the setup to other games, for example, Bertrand competition, where a similar number effect

has been observed for both tacit and explicit collusion (Fonseca and Normann, 2012).

not an end in itself, but is useful to the extent it illuminates the merger’s likely competitive effects”.
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Roux, C. and Thöni, C. (2015). Collusion among many firms: The disciplinary power of

targeted punishment. Journal of Economic Behavior & Organization, 116:83–93.

Shapiro, C. (2010). The 2010 horizontal merger guidelines: From hedgehog to fox in forty

years. Antitrust Law Journal, 77(1):49–107.

Suetens, S. and Potters, J. (2007). Bertrand colludes more than cournot. Experimental

Economics, 10(1):71–77.

Turocy, T. L. (2005). A dynamic homotopy interpretation of the logistic quantal response

equilibrium correspondence. Games and Economic Behavior, 51(2):243–263.

46



Valenzuela, A. and Raghubir, P. (2009). Position-based beliefs: The center-stage effect.

Journal of Consumer Psychology, 19(2):185–196.

Van Huyck, J. B., Battalio, R. C., and Beil, R. O. (1990). Tacit coordination games, strate-

gic uncertainty, and coordination failure. The American Economic Review, 80(1):234–

248.

Van Koten, S. and Ortmann, A. (2013). Structural versus behavioral remedies in the

deregulation of electricity markets: An experimental investigation motivated by policy

concerns. European Economic Review, 64:256–265.

Vega-Redondo, F. et al. (1997). The evolution of walrasian behavior. Econometrica,

65(2):375–384.

Vives, X. (1984). Price and quantity competition in a differentiated duopoly. The RAND

Journal of Economics, 15(4):546–554.

Vulkan, N. (2000). An economist’s perspective on probability matching. Journal of Eco-

nomic Surveys, 14(1):101–118.

Waichman, I., Requate, T., et al. (2014). Communication in cournot competition: An

experimental study. Journal of Economic Psychology, 42:1–16.

Yechiam, E. and Busemeyer, J. R. (2006). The effect of foregone payoffs on underweighting

small probability events. Journal of Behavioral Decision Making, 19(1):1–16.

Zelmer, J. (2003). Linear public goods experiments: A meta-analysis. Experimental Eco-

nomics, 6(3):299–310.

47



Appendix

A Strategy Space Labeling

Figure A.18 shows the distribution of choices in the normalized treatment, comparing the

two different labeling schemes. In the increasing scheme, quantities from 8 to 24 were

labeled from 0 to 24. In the decreasing scheme, the labeling was reversed, with the choice

of 0 corresponding to the output of 24 and the choice of 16 corresponding to the output of 8.

Figure A.18 shows that labeling has some effect on the distribution of choices. The original

labels seen by participants are displayed on the two axes. Data shows that participants

make competitive choices more often in the increasing treatments, for all market sizes.

In part, this is explained by action “10” being more focal and frequently chosen in all

treatments. In increasing treatments, the action labeled as “10” is midway between the

Nash and Walrasian equilibria, but in decreasing treatments it is more collusive than the

Nash equilibrium prediction. However, there are other differences as well. With all three

market sizes, action 16 is chosen more often than action 0, regardless of whether it is

mapped into output 8 or 24. There is some evidence that the distribution of choices is

shifted towards the actions with higher labels, especially in the 3-firm market. Thus it

seems that the effect of labeling is driven both by the focality of action “10” and by a

preference for choosing actions labeled with higher numbers.

The right column of Figure A.18 shows the distribution of choices only in the last 5

rounds. The effect of labeling persists in 2 and 3 firm markets, although the magnitude of

the effect is lower.

We evaluate the effect of labeling formally by comparing the ratio of average output

to Nash equilibrium prediction. Table A.6 shows that on average, the chosen output

is above NE prediction in increasing treatments, but below it in decreasing treatments.
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Figure A.18: Output distributions in normalized treatments for the increasing and deceas-
ing labeling schemes.
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Table A.6: Comparison of the ratio of average output to NE prediction and average profit
per round. The number in brackets shows the values averaged across rounds 15-20.

N2I N3I N4I N2D N3D N4D
qi{q

N
i 1.03 1.07 1.03 0.94 0.92 0.98

[1.02] [1.10] [1.02] [0.97] [0.95] [1.02]
πi 366.4 322.8 354.2 408.3 419.5 390.6

[377.5] [299.5] [363.4] [386.3] [396.6] [360.3]

Mann-Whitney U test shows that choices are significantly more collusive in the decreasing

treatments (MWU p � 0.0111 in 4-firm treatments, p � 0.0085 in 3-firm treatments and

p � 0.0296 in 2-firm treatments). If we look only at the last 5 rounds, the difference

is significant only in 3-firm market (p � 0.0178). A similar result is found in terms

of the generated profits, which are significantly higher in decreasing treatments (MWU

p � 0.0153 in 4-firm treatments, p � 0.0056 in 3-firm treatments and p � 0.0392 in 2-firm

treatments). In the last 5 rounds, the difference is significant only in 3-firm treatments

(MWU p � 0.0243).

The manipulation of labels allows us to more accurately assess the baseline aggregate

levels of collusion. Had we run only the increasing treatments, as is done in all the previous

literature, we would likely conclude that there is a tendency to behave more competitively

than predicted by the Nash equilibrium, especially in treatments with the market size of 3

and 4. But the comparison to the decreasing treatments reveals that this tendency is driven

in part by the labeling rather than the incentive scheme. By combining the data from two

different labeling schemes, we can evaluate and eliminate the effect of focal locations.
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B Response to Feedback

The finding that variance is decreasing in market size only in the normalized treatments

could be explained by the difference in how the output of the opponents is aggregated in

the two designs. In the standard treatments, the sum of opponents’ output is mapped

into the same best-response, regardless of the market size. In the normalized treatments,

the average of opponents’ output is mapped into the same best-response, regardless of the

market size. The distribution of the total and average output varies with the market size,

affecting the variance of the best-response distribution. As an illustration, suppose that

each opponent chooses their output qi from a normal distribution N pµ, σ2q. Then the sum

of the total output chosen by pn � 1q opponents is the sum of pn � 1q random variables

drawn from normal distributions. The probability distribution of the total output is a

normal distribution with the following parameters:

n�1̧

j�1

qj � N ppn� 1qµ, pn� 1qσ2q

The probability distribution of the average output chosen by pn� 1q opponents is:

1

n� 1

n�1̧

j�1

qj � N pµ,
1

n� 1
σ2q

Note that as the market size increases, the variance of the total output goes up, but the

variance of the average output goes down. This difference is subsequently translated into

a difference in the variance of the best-response distribution, as illustrated in Figures B.1

and B.2. The curves inside the figures display the probability distributions of the payoff-

relevant statistics – total output for standard treatments and average output for normalized

treatments. The distributions are plotted assuming that the mean of the distribution is

equal to the Nash equilibrium and the standard deviation is equal to 8 in standard and 3
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Figure B.1: Best-response curve, probability distribution of average output of the oppo-
nents and the resulting probability distribution of the best response (on the left). Standard
deviation equals to 8.

in normalized treatments (close to the standard deviations seen in experiments, as shown

in Figure 9). The variance of the total opponents’ output is increasing in market size

(Figure B.1), but the variance of the mean output is decreasing in market size (Figure B.2).

The black line in each figure shows how the total or mean output chosen by opponents

(which is on the x-axis) is mapped into the best response. The curves on the left side of the

figure show the resulting distribution of best-responses to the corresponding distribution

of either the sum or the mean output of the opponents. As one can observe, a higher

variance of the latter distribution translates into a higher variance of the best-response

distribution. We conclude that the variance of the best-response distribution would be

predicted to increase in market size in standard treatments, but decrease in market size in

normalized treatments.
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Figure B.2: Best-response curve, probability distribution of average output of the oppo-
nents and the resulting probability distribution of the best response (on the left). Standard
deviation equals to 3.
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C Additional Results

Table C.1: Structure of all treatments that were run. This paper uses data only from the
first block of 20 rounds. In games marked with I, the strategy space 8-24 was mapped into
0-16. In games marked with D, the strategy space was reversed before mapping into 0-16.
Games marked with S use a standard Cournot oligopoly incentive structure with a strategy
space 0-50. SC3 is a 3-person game of strategic complements, with either a strategy space
0-16 (SC3) or 0-50 (SC’).

Treatment 1 2 3 4 5 6 7 8
Rounds 1-20 N2I N4I N3I N2D N4D N3D S2 S4
Rounds 21-40 N3I N3I SC3 N3D N3D SC3 S3 S3
Rounds 41-60 SC3 SC3 - SC3 SC3 - SC3’ SC3’
# Sessions 4 4 3 4 4 3 3 5
# Participants 48 48 36 48 48 36 36 60
# Markets in B1 24 12 12 24 12 12 18 15

Table C.2: Random effects GLS regression. Standard errors clustered on the group level.
Data from all rounds.

Increasing Decreasing
DV: r DV: ϕN DV: ϕW DV: r DV: ϕN DV: ϕW

3-firm market 0.0412 -0.110 -0.0659 -0.0193 0.0516 0.0309
(1.61) (-1.61) (-1.61) (-0.44) (0.44) (0.44)

4-firm market 0.000326 -0.000868 -0.000521 0.0375 -0.1000 -0.0600
(0.01) (-0.01) (-0.01) (1.33) (-1.33) (-1.33)

1/Round 0.00697 -0.0186 -0.0112 -0.0834*** 0.222*** 0.133***
(0.23) (-0.23) (-0.23) (-2.82) (2.82) (2.82)

Constant 1.024*** -0.0651 0.361*** 0.953*** 0.124* 0.475***
(49.51) (-1.18) (10.90) (34.52) (1.69) (10.74)

N 2640 2640 2640 2640 2640 2640

t statistics in parentheses

* p   0.10, ** p   0.05, *** p   0.01
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Table C.3: Random effects GLS regression. Standard errors clustered on the group level.
Data from rounds 15-20.

Standard Normalized
DV: r DV: ϕN DV: ϕW DV: r DV: ϕN DV: ϕW

3-firm market – – – 0.0322 -0.0858 -0.0515
(0.85) (-0.85) (-0.85)

4-firm market 0.182*** -0.418** -0.571*** 0.0256 -0.0683 -0.0410
(3.79) (-2.56) (-8.07) (0.93) (-0.93) (-0.93)

1/Round 1.861 -6.749 -2.619 -1.574 4.197 2.518
(0.43) (-0.53) (-0.39) (-1.15) (1.15) (1.15)

D Treatments -0.0612** 0.163** 0.0979**
(-2.40) (2.40) (2.40)

Constant 0.943*** 0.187 0.750* 1.112*** -0.300 0.220*
(3.64) (0.24) (1.87) (13.82) (-1.40) (1.71)

N 576 576 576 1584 1584 1584

t statistics in parentheses

* p   0.10, ** p   0.05, *** p   0.01

Table C.4: Goodness of fit and estimated parameter values in QRE and FRE, separately
for standard and normalized treatments.

QRE FRE

Treatment λ̂ LL λ̂ LL
S2 1.482 -2740.24 8.28 -2696.34
S4 1.482 -4561.73 8.28 -4720.376
N2 1.526 -5534.16 7.70 -5365.159
N3 1.526 -4023.46 7.70 -4019.388
N4 1.526 -5279.18 7.70 -5139.97
Total -22138.77 -21941.23
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Figure C.1: Best-fitting QRE estimated separately for standard and normalized treatments
(compared to kernel density).
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D Instructions

The original French version of instructions is available on request. We provide an English

translation below. We reproduce only the instructions for the treatments with the “nor-

malized” design. The only difference in the instructions for the “standard” design is the

cardinality of the strategy space: number “16” in highlighted places was replaced by “50”.

GENERAL INSTRUCTIONS

Welcome to the Laboratory of Experimental Economics of Nice (LEEN – Nice Lab).

By agreeing to participate in this experiment, you agree with the regulations of the labo-

ratory, which are available on our website or on request.

In this experiment your decisions will be anonymous and will partly determine your final

payment, therefore read the following instructions carefully. The participation fee of 5 EUR

is included in the payoff function. Your earnings will be paid to you individually and

confidentially private once you complete a short questionnaire at the end of the experiment.

In this experiment you can earn money. During the experiment we will refer to ECU

(Experimental Currency Unit) instead of EUR. The total amount of ECU that you will

have earned during the experiment will be converted into cash and paid individually at

the end of the experiment. The conversion rate used to convert your ECU into your cash

payment will be 150 ECU = 1 EUR.

We ask you not to communicate or to disturb the other participants. We also ask you to

turn off your mobile phones and not use them during the experiment.

In these rules are not followed, the experiment may be stopped and all payments canceled.
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If you encounter a technical problem, we ask you to raise your hand silently and wait for

the experimenter.

All the participants with whom you interact during this experiment will receive the same

instructions and participate in the same experiment.

DESCRIPTION OF THE EXPERIMENT

The experiment will have several parts. Each part will consist of 20 rounds. At the end

of the experiment one round from each part will be randomly selected for payment. All

rounds have an equal chance to be selected. Your earnings from the selected rounds will

be added up, converted into cash and paid to you in private.

In each round you will be matched with other participants. At the start of each part you

will be informed about how many participants you will be playing with. You will choose

a number (between 0 and 16), which we will call “your action”. Every other participant

will choose an action at the same time. Your payoff will depend on your action and on the

average action of all other participants with whom you were matched. In each round, you

will have 30 seconds to make a decision. To make a choice, you must enter your action

into the field at the top and click “OK” before the time runs out. The participants with

whom you will interact will face the same task as you and will have the same information

and payoff function. The task, the payoff function and the participants with whom you

will interact will be the same in each round of one part. In each new part, you will play

against participants with whom you did not interact in previous parts.

The exact way of how your payoff depends on your action and on the average action of

other participants will be explained using a payoff table and a payoff calculator, which will

be available on the computer screen when you will be making your decision.
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• The payoff table shows your payoffs for some combinations of your action and the

average action of other participants.

• The payoff calculator allows you to enter any action for yourself and an average

action of other participants, and displays a payoff that you would receive in that

case.

Starting from round 2, you will also be informed about your payoff in the previous round.

Furthermore, you will have an option to view the following additional information:

1. Average choices and their history. This option gives you information about the

average choice of other participants and your payoff in the previous round, as well as

in all earlier rounds of that part.

2. Individual choices and payoffs. This option gives you information about the

choices and payoffs of each member in your group, including yourself.

You will be able to switch between these options using buttons on your computer screen.

In addition, after the first round of each part we will ask you to guess the average action

of other participants in that round. The closer your guess is to the average choice of

other participants, the higher will be your payment. If your guess is G and the actual

average action of other participants is D, your payment will be higher the smaller is the

absolute difference between G and D (denoted |G � D|). In particular, your payoff will

be:
�

1 � |G�D|
16

	
�100 ECU. Notice that if your guess is exactly equal to the average choice

(G�D � 0), you will receive 100 ECU. At the end of the experiment one of these tasks will

be randomly chosen. The payment from the chosen task will be added to your earnings.
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At the end of all parts you will be informed about your payoff in ECU from the rounds

that were randomly selected for payment. Payoff from these rounds will be summed up,

converted into EUR and paid in private once you complete a short questionnaire. In the

questionnaire you will have a chance to make additional income which will be added to

your earnings. Please stay seated until we ask you to come to receive the earnings.

If you have any further questions, please raise your hand now. The experiment will start

once everyone has finished reading the instructions.
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E Payoff Tables

Table E.1: Payoffs in N2, N3 and N4 treatments.

Average output chosen by opponents
Output 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

8 514 490 466 442 418 394 370 346 322 298 274 250 226 202 178 154 130
9 553 526 499 472 445 418 391 364 337 310 283 256 229 202 175 148 121
10 590 560 530 500 470 440 410 380 350 320 290 260 230 200 170 140 120
11 625 592 559 526 493 460 427 394 361 328 295 262 229 196 163 130 119
12 658 622 586 550 514 478 442 406 370 334 298 262 226 190 154 118 118
13 689 650 611 572 533 494 455 416 377 338 299 260 221 182 143 117 117
14 718 676 634 592 550 508 466 424 382 340 298 256 214 172 130 116 116
15 745 700 655 610 565 520 475 430 385 340 295 250 205 160 115 115 115
16 770 722 674 626 578 530 482 434 386 338 290 242 194 146 114 114 114
17 793 742 691 640 589 538 487 436 385 334 283 232 181 130 113 113 113
18 814 760 706 652 598 544 490 436 382 328 274 220 166 112 112 112 112
19 833 776 719 662 605 548 491 434 377 320 263 206 149 111 111 111 111
20 850 790 730 670 610 550 490 430 370 310 250 190 130 110 110 110 110
21 865 802 739 676 613 550 487 424 361 298 235 172 109 109 109 109 109
22 878 812 746 680 614 548 482 416 350 284 218 152 108 108 108 108 108
23 889 820 751 682 613 544 475 406 337 268 199 130 107 107 107 107 107
24 898 826 754 682 610 538 466 394 322 250 178 106 106 106 106 106 106

Table E.2: Payoffs in S2 treatment.

Average output chosen by opponents
Output 0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0

0 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130
2.5 200 197 195 193 191 188 186 184 182 179 177 175 173 170 168 166 164 161 159 157 155
5 265 260 256 251 247 242 238 233 229 224 220 215 211 206 202 197 193 188 184 179 175

7.5 326 319 312 305 299 292 285 278 272 265 258 251 245 238 231 224 218 211 204 197 191
10 382 373 364 355 346 337 328 319 310 301 292 283 274 265 256 247 238 229 220 211 202

12.5 434 422 411 400 389 377 366 355 344 332 321 310 299 287 276 265 254 242 231 220 209
15 481 467 454 440 427 413 400 386 373 359 346 332 319 305 292 278 265 251 238 224 211

17.5 524 508 492 476 461 445 429 413 398 382 366 350 335 319 303 287 272 256 240 224 209
20 562 544 526 508 490 472 454 436 418 400 382 364 346 328 310 292 274 256 238 220 202

22.5 596 575 555 535 515 494 474 454 434 413 393 373 353 332 312 292 272 251 231 211 191
25 625 602 580 557 535 512 490 467 445 422 400 377 355 332 310 287 265 242 220 197 175

27.5 650 625 600 575 551 526 501 476 452 427 402 377 353 328 303 278 254 229 204 179 155
30 670 643 616 589 562 535 508 481 454 427 400 373 346 319 292 265 238 211 184 157 130

32.5 686 656 627 598 569 539 510 481 452 422 393 364 335 305 276 247 218 188 159 130 118
35 697 665 634 602 571 539 508 476 445 413 382 350 319 287 256 224 193 161 130 117 117

37.5 704 670 636 602 569 535 501 467 434 400 366 332 299 265 231 197 164 130 117 117 117
40 706 670 634 598 562 526 490 454 418 382 346 310 274 238 202 166 130 116 116 116 116

42.5 704 665 627 589 551 512 474 436 398 359 321 283 245 206 168 130 115 115 115 115 115
45 697 656 616 575 535 494 454 413 373 332 292 251 211 170 130 114 114 114 114 114 114

47.5 686 643 600 557 515 472 429 386 344 301 258 215 173 130 113 113 113 113 113 113 113
50 670 625 580 535 490 445 400 355 310 265 220 175 130 112 112 112 112 112 112 112 112
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Table E.3: Payoffs in S4 treatment.

Average output chosen by opponents
Output 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130
2 286 274 262 250 238 226 214 202 190 178 166 154 142 130 128 128 128 128 128 128 128 128 128 128 128 128
4 434 410 386 362 338 314 290 266 242 218 194 170 146 126 126 126 126 126 126 126 126 126 126 126 126 126
6 574 538 502 466 430 394 358 322 286 250 214 178 142 124 124 124 124 124 124 124 124 124 124 124 124 124
8 706 658 610 562 514 466 418 370 322 274 226 178 130 122 122 122 122 122 122 122 122 122 122 122 122 122
10 830 770 710 650 590 530 470 410 350 290 230 170 120 120 120 120 120 120 120 120 120 120 120 120 120 120
12 946 874 802 730 658 586 514 442 370 298 226 154 118 118 118 118 118 118 118 118 118 118 118 118 118 118
14 1054 970 886 802 718 634 550 466 382 298 214 130 116 116 116 116 116 116 116 116 116 116 116 116 116 116
16 1154 1058 962 866 770 674 578 482 386 290 194 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114
18 1246 1138 1030 922 814 706 598 490 382 274 166 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112
20 1330 1210 1090 970 850 730 610 490 370 250 130 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110
22 1406 1274 1142 1010 878 746 614 482 350 218 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108
24 1474 1330 1186 1042 898 754 610 466 322 178 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106
26 1534 1378 1222 1066 910 754 598 442 286 130 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104
28 1586 1418 1250 1082 914 746 578 410 242 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102
30 1630 1450 1270 1090 910 730 550 370 190 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
32 1666 1474 1282 1090 898 706 514 322 130 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98
34 1694 1490 1286 1082 878 674 470 266 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
36 1714 1498 1282 1066 850 634 418 202 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94
38 1726 1498 1270 1042 814 586 358 130 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92
40 1730 1490 1250 1010 770 530 290 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
42 1726 1474 1222 970 718 466 214 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88
44 1714 1450 1186 922 658 394 130 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86
46 1694 1418 1142 866 590 314 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84
48 1666 1378 1090 802 514 226 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82
50 1630 1330 1030 730 430 130 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
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F Screenshots

Figure F.1: Payoff table in normalized treatments.

Figure F.2: Payoff calculator in normalized treatments.

63



Figure F.3: Feedback about individual choices and payoffs in normalized treatments.

Figure F.4: Feedback about the history of own choices and payoffs in previous rounds.
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