
Kusuda, Koji

Working Paper

Existence, Uniqueness, and Determinacy of Equilibria
in Complete Security Markets with Infinite Dimensional
Martingale Generator

Discussion Paper, No. 316

Provided in Cooperation with:
Department of Economics - Center for Economic Research, University of Minnesota

Suggested Citation: Kusuda, Koji (2002) : Existence, Uniqueness, and Determinacy of Equilibria in
Complete Security Markets with Infinite Dimensional Martingale Generator, Discussion Paper, No.
316, University of Minnesota, Center for Economic Research, Minneapolis, MN

This Version is available at:
https://hdl.handle.net/10419/23494

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/23494
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Discussion Paper Series

Existence, Uniqueness, and Determinacy
of Equilibria in Complete Security Markets

with Infinite Dimensional Martingale Generator

by

Koji Kusuda

Discussion Paper No. 316, December 2002

Center for Economic Research

Department of Economics

University of Minnesota

Minneapolis, Minnesota 55455



Existence, Uniqueness, and Determinacy
of Equilibria in Complete Security Markets

with Infinite Dimensional Martingale Generator

by

Koji Kusuda

Department of Economics
University of Minnesota
271 19th Avenue South
Minneapolis, MN 55455
kusuda@econ.umn.edu.

http://www.econ.umn.edu/~kusuda

December 2002

Abstract. There is a strong evidence that most of financial variables are better
described by a combination of diffusion and jump processes. Considering such evi-
dence, researchers have studied security market models with jumps, in particular,
in the context of option pricing. In most of their models, jump magnitude is spec-
ified as a continuously distributed random variable at each jump time. Then, the
dimensionality of martingale generator, which can be interpreted as the “number
of sources of uncertainty” in markets is infinite, and no finite set of securities can
complete markets. In security market economy with infinite dimensional martin-
gale generator, no equilibrium analysis has been conducted thus far. We assume
approximately complete markets (Björk et al. [10] [11]) in which a continuum of
bonds are traded and any contingent claim can be approximately replicated with
an arbitrary precision. We introduce the notion of approximate security market
equilibrium in which an agent is allowed to choose a consumption plan approxi-
mately supported with any prescribed precision. We prove that an approximate
security market equilibrium in approximately complete markets can be identified
with an Arrow-Debreu equilibrium. Then, we present sufficient conditions for the
existence of equilibria in the case of stochastic differential utilities with Inada con-
dition, and for the existence, uniqueness, and determinacy of equilibria in the case
of additively separable utilities.
JEL No. C62, D51, G10.
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1. Introduction

Many empirical studies have shown that the dynamics of most financial pro-
cesses such as equity prices, interest rates, and exchange rates are better described
by a combination of diffusion and jump processes (Akgiray and Booth [2], Ander-
sen, Benzoni, and Lund [3], Bakshi, Cao, and Chen [6], Bates [8] [9], Jorion [28],
etc.). Considering such studies, researchers have studied security market models
(Ahn and Thompson [1], Back [5], Bakshi, Cao, and Chen [6], Bates [7] [8], Björk,
Kabanov, and Runggaldier [10], Duffie, Pan, and Singleton [20], Naik and Lee [37],
etc.) with jumps, in particular, in the context of derivative asset pricing. In most of
their models, jump magnitude is specified as a random variable with a continuous
distribution at each jump time. Then, the dimensionality of martingale generator,1

which can be interpreted as the “number of sources of uncertainty” in markets is
infinite, and no finite set of continuously traded securities can complete markets. In
security market economy with infinite dimensional martingale generator, no equi-
librium analysis has been conducted thus far.2 The purpose of this paper is to
develop equilibrium analysis of security market economy with infinite dimensional
martingale generator.

Björk, Kabanov, and Runggaldier [10] introduce approximately complete security
markets with an infinite dimensional martingale generator consisting of a jump pro-
cess given by the marked point process (see Appendix A.1) and a Wiener process. In
approximately complete markets, a continuum of bonds are traded and any contin-
gent claim can be approximately replicated with an arbitrary precision by a suitable
portfolio of bonds. In this paper, we introduce the notion of approximate security
market equilibrium in which an agent is allowed to choose any consumption plan
that can be approximately supported with any prescribed precision by a budgetary
admissible portfolio. We present sufficient conditions for the existence of approxi-
mate security market equilibria in approximately complete markets in the case of
stochastic differential utilities (SDUs) with Inada condition, and for the existence,
uniqueness, and determinacy of approximate security market equilibria in the case
of additively separable utilities (ASUs). In a companion paper (Kusuda [34]), us-
ing the framework of this paper, we have derived the Consumption-Based Capital
Asset Pricing Model (CCAPM) under jump-Wiener and non-Markovian informa-
tion in each case of heterogeneous agents with ASUs and of homogeneous agents
with a common SDU.3 We have also derived explicit formulas for market prices
of risks, and presented an economic framework of jump-diffusion option pricing

1For example, if the filtration, which can be interpreted as the “information,” in markets is
generated by d-dimensional Wiener process, then a martingale generator is the Wiener process

and its dimensionality is d.
2In security market economy in which the filtration is generated by finite dimensional Wiener

process, Duffie [16], Duffie and Zame [22], and Huang [25] show sufficient conditions for the

existence of equilibria, and Karatzas, Lakner, Lehoczky, and Shreve [29], and Karatzas, Lehoczky,

and Shreve [30] present sufficient conditions for the existence and uniqueness of equilibria. Dana
and Pontier [15], and Duffie [16] show sufficient conditions for the existence of equilibria in security
markets in which the filtration is not restricted to the one generated by finite dimensional Wiener
process. However, in the security markets, martingale generator is assumed to be still finite

dimensional.
3The CCAPM says that the risk premium between a risky security and the nominal-risk-free

security can be decomposed into two groups of terms. One is related to the price fluctuation of the

risky security, and the other is related to that of the commodity. Each group can be decomposed

into two terms related to consumption volatility and consumption jump in the case of ASU, and
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models. Moreover, in subsequent two papers (Kusuda [32] [33]), we have proposed
jump-diffusion LIBOR rate models using the framework of Kusuda [34].

We first prove that an approximate security market equilibrium in approxi-
mately complete markets can be identified with an Arrow-Debreu equilibrium. To
implement Arrow-Debreu equilibria in security markets, Dana and Pontier [15],
Duffie [16], Duffie and Zame [22], and Huang [25] assume that every nominal bond
price is one at every date, or equivalently the nominal-risk-free rate is always zero.
We do not specify nominal bond prices like this. We introduce a class of nomi-
nal bond prices at which markets are arbitrage-free and approximately complete.
We prove that for every nominal bond prices in the class, an approximate security
market equilibrium can be identified with an Arrow-Debreu equilibrium.

Next, we present sufficient conditions for the existence of Arrow-Debreu equilib-
ria in the case of SDUs (Stochastic Differential Utilities). Duffie and Epstein [18]
introduce the notion of SDU, and show that any SDU can be normalized under
Wiener information. Duffie, Geoffard, and Skiadas [19] present sufficient condi-
tions for the existence of Arrow-Debreu equilibria in the case of normalized SDUs.
It is not true that any SDU can be normalized under jump-Wiener information.
We present a necessary and sufficient condition for an SDU to be normalized un-
der jump-Wiener information. Then, we can apply the results of Duffie, Geoffard,
and Skiadas [19] on the existence of Arrow-Debreu equilibria, to our class of SDUs
satisfying the necessary and sufficient condition. Our class of SDUs is a subclass
of SDUs, but still includes the standard ASU (Additively Separable Utility), the
Uzawa utility (Uzawa [40]), the Kreps-Porteus utility (Kreps and Porteus [31]),
etc. However, sufficient conditions for the existence of Arrow-Debreu equilibria
given by Duffie, Geoffard, and Skiadas [19] include Inada condition, so we need to
present sufficient conditions for the existence of Arrow-Debreu equilibria in the case
of general ASUs.

Finally, we present sufficient conditions for the existence, uniqueness, and de-
terminacy of Arrow-Debreu equilibria in the case of ASUs. We extend results of
Dana [13] [14] from static economy to our continuous-time economy. Her proof
uses the Negishi approach (Negishi [38]) and consists of the following steps. (1) An
Arrow-Debreu equilibrium can be identified with a representative agent equilibrium.
(2) There exists a representative agent equilibrium under a regularity condition. In
addition, (3) if every agent’s risk tolerance coefficient satisfies an integrability con-
dition and every agent’s endowment process is bounded away from zero, then the
set of equilibria is generically finite, and (4) if every agent’s relative risk aversion
coefficient is less than or equal to one, then the representative agent equilibrium is
unique.

Our proof of the existence of Arrow-Debreu equilibria in the case of ASUs is
similar to the one given in Dana and Pontier [15], but their condition that the
aggregate endowment process is bounded away from zero is stronger than ours.
Also, in order to show the existence of Arrow-Debreu equilibria, we could assume
strictly monotonic, continuous, convex, and uniformly proper preferences instead
of assuming SDUs with Inada condition or ASUs. However, uniform properness

into three terms related to consumption volatility, utility volatility, and jumps of consumption

and utility in the case of SDU.
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of preferences is a restrictive condition in the sense that it does not allow Inada
condition on utilities.4

Björk, Masi, Kabanov, and Runggaldier [11] and Jarrow and Madan [27] consider
approximately complete security markets5 with a slightly more general information
than ours. The equivalence of ASM and Arrow-Debreu equilibria could be extended
to economies with their security markets, but it would not be necessary to do so
from viewpoints of applications such as deriving the CCAPM and constructing
option pricing models.

This paper is organized as follows. In Section 2, we provide a specification of
security market economy with infinite dimensional martingale generator. In Section
3, we review arbitrage-free approximately complete security markets following Björk
et al. [10] [11]. In Section 4, we introduce the notion of approximate security market
equilibrium, and prove that an approximate security market equilibrium can be
identified with an Arrow-Debreu equilibrium. In Section 5, we introduce a class
of SDUs, and present that the results of Duffie, Geoffard, and Skiadas [19] on the
existence of Arrow-Debreu equilibria can be applied to the class of SDUs. In Section
6, we show sufficient conditions for the existence, uniqueness, and determinacy of
Arrow-Debreu equilibria in the case of ASUs.

2. Security Market Economy with Jump-Diffusion Uncertainty

In this section, we provide a specification of security market economy with jump-
diffusion uncertainty.

We consider a continuous-time frictionless security market economy with time
span T def= [0, T †] for a fixed horizon time T † > 0. Agents’ common subjective
probability and information structure is modeled by a complete filtered probability
space (Ω,F ,FW,ν ,P) where FW,ν = (Ft)t∈T is the natural filtration generated by
a d1-dimensional Wiener process W and a marked point process ν(dt × dz) on a
Lusin space (Z,Z) (in usual applications, Z = R

d2 , or Nd2 , or a finite set) with
the P-intensity kernel λt(dz) (for marked point process, see Appendix A.1). Note
that Martingale Representation Theorem (see Chapter III Corollary 4.31 in Jacod
and Shiryaev [26]) shows that martingale generators in this economy is (W, (ν(dt×
{z})− λt({z}))z∈Z). Thus, if the mark set Z is infinite, then the dimensionality of
martingale generator is infinite.

There is a single perishable consumption commodity. The commodity space is a
Banach space L2 def= L2(Ω×T,P, µ) where P is the predictable σ-algebra on Ω×T,
µ is the product measure of P and Lebesgue measure on T.

There are I agents, and each of them is represented by (U i, c̄i), where U i is a
strictly increasing and continuous utility on the positive cone L2

+ of consumption
process and c̄i ∈ L2

+ is an endowment process which is assumed to be nonzero, for

i ∈ I def= {1, 2, · · · , I}.
The economy is described by a collection

E def= ((Ω,F ,FW,ν ,P), (U i, c̄i)i∈I).

4Araujo and Monteiro [4] and Duffie and Zame [22] show the existence of Arrow-Debreu equi-

libria in a static economy with non-uniformly proper preferences. However, they assume ASUs to
prove the existence of Arrow-Debreu equilibria in a dynamic economy.

5To be exact, Jarrow and Madan [27] introduce the notion of quasicomplete markets, but it is

similar to the notion of approximately complete markets.
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There are markets for the consumption commodity and securities at every date
t ∈ T. The traded securities are nominal-risk-free security (NOT the risk-free se-
curity) called the money market account and a continuum of zero-coupon bonds
whose maturity dates are (0, T †], each of which has $1 payoff (NOT one unit payoff
of the commodity) at its maturity date. Let p, B, and (BT )T∈(0,T †] denote the con-
sumption commodity price process, nominal money market account price process
and nominal bond price processes, respectively. We write B = (B, (BT )T∈(0,T †])
and call it bond price family.

3. Approximately Complete Markets

In this section, we briefly review approximately complete markets given in Björk
et al. [10] [11] and introduce the notion of implementable approximately complete
bond price family.

Let n ∈ N. Let Ln denote the set of real-valued P-measurable process X

satisfying the integrability condition
∫ T †

0
|Xs|n ds < ∞ P-almost surely. Also let

Ln(λt(dz)× dt) denote the set of real-valued P ⊗Z-measurable process H satisfy-

ing the integrability condition
∫ T †

0

∫
Z
|Hs(z)|n λs(dz) ds <∞ P-a.s.

We say that a bond price family B is regular if and only if the following conditions
hold:

1. For every T ∈ (0, T †], the dynamics of nominal bond price process BT satisfies
the following stochastic differential equation (SDE)

dBTt
BTt−

= rTt dt+ vTt · dWt +
∫
Z

HT
t (z) { ν(dt× dz)− λt(dz) dt } ∀t ∈ [0, T )

with BTT = 1 and BTt = 0 for every t ∈ (T, T †] for some rT ∈ L1, vT ∈∏d1
j=1 L2, and HT ∈ L1(λt(dz)× dt). Moreover, it follows that:

(a) For every (ω, t) ∈ Ω×T, r ·t (ω), v ·t (ω) ∈ C1((t, T †]) and for every (ω, t, z) ∈
Ω×T× Z, H ·t (ω, z) ∈ C1((t, T †]).

(b) For every T ∈ (0, T †], HT
t (ω, z) is bounded.

(c) The processes (BT )T∈T are regular enough to allow for the differentiation
under the integral sign and the interchange of integration order.6

2. The dynamics of nominal money market account price process B satisfies the
following SDE

dBt
Bt

= rBt dt ∀t ∈ [0, T †)

with B0 = 1 where rBt is given by rBt = −∂ lnBTt
∂T

∣∣∣∣
T=t

.

When the number of traded securities is finite, we set the portfolio of securities
a predictable process of corresponding dimension. In our economy, the continuum
of bonds are traded and each agent is allowed to hold a portfolio of the continuum
of bonds, so we set the portfolio component of continuum of bonds a signed finite
Borel measure on [t, T †] for every event ω ∈ Ω and time t ∈ T.

6For the marked point process integrals, we can apply the ordinary Fubini Theorem, and for
the interchange of integration with respect to dW and dt, we can apply the Stochastic Fubini

Theorem (see Protter [39]).



5

Definition 1. A portfolio is a stochastic process ϑ = (ϑ0, ϑ1(·)) that satisfies:
1. The component ϑ0 is a real-valued P-measurable process.
2. The component ϑ1 is such that:

(a) For every (ω, t) ∈ Ω×T, the set function ϑ1
t (ω, · ) is a signed finite Borel

measure on [t, T †].
(b) For every Borel set A, the process ϑ1(A) is P-measurable.

Let the bond price family B be regular. We say that a portfolio ϑ is feasible at
B if and only if the following integrability conditions are satisfied:∫ T †

t

|BTt | |ϑ1
t (dT )| <∞ P-a.s. ∀t ∈ T,

Btr
B
t ϑ

0
t ,

∫ T †

t

|BTt rTt | |ϑ1
t (dT )| ∈ L1,

∫ T †

t

|BTt vTt |ϑ1
t (dT )| ∈ L2,∫ T †

t

|BTt HT
t (z)| |ϑ1

t (dT )| ∈ L1(λt(dz)× dt).

Let Θ(B) denote the set of all feasible portfolios at B. The value process V B(ϑ) of
a feasible portfolio ϑ ∈ Θ(B) at B is given by

V B
t (ϑ) = Bt ϑ

0
t +

∫ T †

t

BTt ϑ
1
t (dT ) ∀t ∈ T.

We say that a feasible portfolio ϑ ∈ Θ(B) at B is self-financing at B if and only if

V B
t (ϑ) = V B

0 (ϑ) +
∫ t

0

ϑ0
s dBs +

∫ t

0

∫ T †

s

ϑ1
s(dT ) dBTs ∀t ∈ T.

Also, we say that a self-financing portfolio ϑ ∈ Θ(B) at B is an arbitrage portfolio
at B if and only if either of the following condition holds:

1. V B
0 (ϑ) ≤ 0, and V B

T †(ϑ) > 0, i.e. V B
T †(ϑ) ≥ 0 P-a.s. and P({V B

T †(ϑ) > 0}) > 0.
2. V B

0 (ϑ) < 0, and V B
T †(ϑ) ≥ 0 P-a.s.

For a real-valued P-measurable process X, the discounted process of X at B is de-
noted by X̃. Thus, X̃ = X

B . We write B̃ = (B̃, (B̃T )T∈T). To eliminate unrealistic
portfolios such as those based on doubling strategy (see Chapter 6 in Duffie [17]), we
restrict the space of portfolios to the space of credit-constrained portfolios proposed
in Dybvig and Huang [23].

Definition 2. Let B be regular. A feasible portfolio ϑ ∈ Θ(B) at B is admissible
at B if and only if the discounted value process Ṽ B(ϑ) is bounded below P-a.s.

Let Θ(B̃) denote the set of all admissible portfolios at B. We give definitions of
arbitrage-free markets and the spot martingale measure.

Definition 3. Let B be regular.
1. Markets are arbitrage-free at B if and only if there exists no admissible arbi-

trage portfolio at B.
2. A probability measure P̃B on (Ω,F) is a spot martingale measure at B if and

only if P̃B is equivalent to P and the discounted bond price family B̃ is a local
martingale under P̃B.

One can see that the existence of spot martingale measures implies that markets
are arbitrage-free.
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Lemma 1. Let B be regular. If there exists a spot martingale measure at B, then
markets are arbitrage-free at B.

Proof. See the proofs of Theorem 6.F and Corollary 6.F in Duffie [17].

Suppose that the bond price family B is regular. Then, the following lemma
shows a necessary and sufficient condition on B for the existence of spot martingale
measures.

Lemma 2. Let B be regular. Then it follows that:
1. There exists a spot martingale measure P̃B at B if and only if there exists a

martingale process ΛB such that

dΛB
t

ΛB
t−

= −vB
t · dWt −

∫
Z

HB
t (z) { ν(dt× dz)− λt(dz) dt } ∀t ∈ [0, T †)

with ΛB
0 = 1 where (vB,HB) ∈

(∏d1
j=1 L2

)
× L1(λt(dz) × dt) satisfies the

following equation

rTt = rBt + vB
t · vTt +

∫
Z

HB
t (z)HT

t (z)λt(dz) ∀t ∈ [0, T †).

2. If there exists a martingale process ΛB satisfying the above conditions, then
it follows that:
(a) The probability measure P̃B given by the Radon-Nikodym derivative

dP̃B = ΛB
T † dP

is a spot martingale measure at B.
(b) The process W̃B given by

W̃B
t = Wt +

∫ t

0

vB
s ds ∀t ∈ T

is a P̃B-Wiener process.
(c) The marked point process ν(dt× dz) has the P̃B-intensity kernel λ̃B

t (dz)
such that

λ̃B
t (dz) = (1−HB

t (z))λt(dz) ∀(t, z) ∈ T× Z.(3.1)

Proof. The result immediately follows from Ito’s formula (see Appendix B.1) and
Girsanov’s Theorem (see Appendix B.2).

Remark 1. We call vB and HB market price of nominal volatility risk and market
price of nominal jump risk, respectively. In incomplete markets, it is difficult to
obtain a tractable market price of nominal risks, especially market price of nominal
jump risk. The formula (3.1) shows that if the market price of nominal jump risk
HB is intractable then the CCAPM becomes intractable, and it becomes hard to
construct a tractable intensity under the spot martingale measure P̃B at B, which
makes it difficult to price derivative assets. As shown below, we can construct
approximately complete markets in our security markets. In a companion paper
(Kusuda [34]), using the framework of this paper, we have derived the tractable
CCAPM in each case of heterogeneous agents with ASUs and of homogeneous
agents with a common SDU. We have also derived explicit formulas for market prices
of risks, and presented an economic framework of jump-diffusion option pricing
models.
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Let B denote the set of all regular bond price families satisfying conditions in
Lemma 2. A process ΛB is called the density process of P̃B relative to P. Note
that the density process ΛB of P̃B relative to P is not necessarily unique for ev-
ery B ∈ B, which implies that spot martingale measures at B are not necessarily
unique. In order to make markets complete, we need to impose a condition under
which ΛB is unique, since the market completeness implies the uniqueness of spot
martingale measures. The converse, i.e. the proposition that the uniqueness of spot
martingale measures implies the market completeness, is also true for security mar-
kets with Wiener information. Unfortunately, this is not true for our bond markets
with jump-Wiener information, that is, even if spot martingale measures are unique
then markets are not necessarily complete. However, Björk, Kabanov, and Rung-
galdier [10] show that the uniqueness of spot martingale measures are equivalent to
the market approximate completeness, which is defined in the following.

Definition 4. Let B ∈ B.
1. For every T ∈ (0, T †], a contingent T -claim is a FT -measurable random vari-

able XT such that X̃T
def= XT

Bt
∈ L∞+ (Ω,FT ) where L∞(Ω,FT ) is the space of

almost surely bounded FT -measurable random variables.
2. A contingent T -claim XT is replicable at B if and only if there exists an ad-

missible self-financing portfolio ϑ ∈ Θ(B̃) such that the value process satisfies
V B
T (ϑ) = XT .

3. Markets are complete at B if and only if every T -contingent claim XT is
replicable for every T ∈ (0, T †].

4. Markets are approximately complete at B if and only if for any T ∈ (0, T †]
and any T -contingent claim XT , there exists a sequence of replicable claims
(XTn)n∈N converging to XT in L2(Ω,FT , P̃B) where P̃B is a spot martingale
measure at B.

Let B ∈ B. Björk, Masi, Kabanov, and Runggaldier [11] prove that if the
mark set Z is infinite, then spot martingale measures are unique at B if and only
if markets are approximately complete at B, and that if Z is finite, then spot
martingale measures at B are unique if and only if markets are complete at B.

Proposition 1. Let B ∈ B.
1. If the mark set Z is infinite, then each of the following conditions7 is necessary

and sufficient for B to have a unique spot martingale measure.
(a) Markets are approximately complete at B.
(b) For every (ω, t) ∈ Ω×T, the equation

Õ∗t (ω)ϑ1
t (ω) =

(
vt(ω)

Ht(ω, · )

)
(3.2)

can be solved on a dense proper subset of Rd1×L2(Z,Z, λ̃B
t (ω, dz)) where

the operator Õ∗t (ω) : C∗T → R
d1 × L2(Z,Z, λ̃B

t (ω, dz)) is defined by

Õ∗t (ω) : ϑ1
t (ω) 7→

( ∫ T †
t
B̃Tt−(ω) vTt (ω)ϑ1

t (ω, dT )∫ T †
t
B̃Tt−(ω)HT

t (ω, · )ϑ1
t (ω, dT )

)
.

7The conditions 1.(b) and 2.(b) in Proposition 1 are utilized to implement an Arrow-Debreu

equilibrium.
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2. If the mark set Z is finite, then each of the following conditions is necessary
and sufficient for B to have a unique spot martingale measure.
(a) Markets are complete at B.
(b) For every (ω, t) ∈ Ω × T, the equation (3.2) can be solved on R

d1 ×
L2(Z,Z, λ̃B

t (ω, dz)).

Proof. See the proof of Proposition 6.10 in Björk, Masi, Kabanov, and Rung-
galdier [11].

We introduce the notion of implementable bond price family.

Definition 5. A bond price family B ∈ B is an implementable bond price family
if and only if the following two conditions hold:

1. Spot martingale measures at B are unique.
2. The discounted density process Λ̃B of P̃B relative to P is bounded above and

bounded away from zero µ-a.e.

Let B̄ denote the set of all implementable bond price families.

4. Approximate Security Market Equilibrium

and Implementation of Arrow-Debreu Equilibria

In this section, we first introduce the notion of approximate security market
equilibrium, and then we show a general implementation method of Arrow-Debreu
equilibria. Finally, we prove that for every implementable bond price family, an
approximate security market equilibrium can be identified with an Arrow-Debreu
equilibrium.

4.1. Approximate Security Market Equilibrium. Before introducing the ap-
proximate security market equilibrium, we consider the security market equilibrium
defined as follows.

Definition 6. A collection ((ĉi)i∈I, p,B) ∈
∏
i∈I L2

+×L2×B constitutes a security
market equilibrium for E if and only if:

1. For every i ∈ I , ĉi solves the problem

max
ci∈Ci(p,B)

U i(ci)

where

Ci(p,B) =
{
ci ∈ L2

+ : ∃ϑi ∈ Θ(B̃) s.t.

V B
t (ϑi) =

∫ t

0

ϑi0s dBs +
∫ t

0

∫ T †

s

ϑi1s (dT ) dBTs +
∫ t

0

ps(c̄is − cis) ds ∀t ∈ T,

V B
T †(ϑ

i) = 0
}
.

2. The commodity market is cleared as
∑
i∈I ĉ

i =
∑
i∈I c̄

i.

Note that if ((ĉi)i∈I, p,B) constitutes a security market equilibrium for E, then
the security market clearing condition is satisfied in the sense that there exists a
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(ϑ̂i)i∈I ∈
∏
i∈IΘ(B̃) with

∑
i∈I ϑ̂

i = 0 such that ϑ̂i supports ĉi, i.e.,

V B
t (ϑ̂i) =

∫ t

0

ϑ̂i0s dBs +
∫ t

0

∫ T †

s

ϑ̂i1s (dT ) dBTs +
∫ t

0

ps(c̄is − ĉis) ds ∀t ∈ T,

V B
T †(ϑ̂

i) = 0

for every i ∈ I. This immediately follows from the commodity market clearing
condition and linearity of value process. Hence, we have removed the security
market clearing condition out of the definition of security market equilibrium.

Suppose that the mark set Z is infinite. Then, markets may not be complete
but approximately complete at any B ∈ B̄ as shown in Proposition 1. In this
case, for some price system (p,B) ∈ L2

+ × B̄, an agent’s maximization problem
may not be well defined since the consumption plan that should be a maximizer
ĉi ∈ L2

+ may not be exactly supported by any portfolio in the budget constraint
set Ci(p,B). However, as shown later, such a consumption plan can always be
approximately supported with any prescribed precision by an budgetary admissible
portfolio. Hence, we allow an agent to choose any consumption plan that can be
approximately supported with any prescribed precision by budgetary admissible
portfolio, and introduce the notion of approximate security market equilibrium.

Definition 7. A collection ((ĉi)i∈I, p,B) ∈
∏
i∈I L2

+ × L2 × B constitutes an ap-
proximate security market equilibrium for E if and only if:

1. For every i ∈ I, ĉi solves the problem

max
ci∈C̄i(p,B)

U i(ci)

where

C̄i(p,B) =
{
ci ∈ L2

+ : ∃(ϑin)n∈N ∈
∏
n∈N

Θ(B̃) s.t.

V B
t (ϑin) =

∫ t

0

ϑi0ns dBs +
∫ t

0

∫ T †

s

ϑi1ns(dT ) dBTs +
∫ t

0

ps(c̄is − cis) ds ∀(n, t) ∈ N×T,

lim
n→∞

V B
T †(ϑ

i
n) = 0

}
.

2. The commodity market is cleared as
∑
i∈I ĉ

i =
∑
i∈I c̄

i.

We refer to approximate security market equilibrium as ASM equilibrium, here-
after.

4.2. Implementation of Arrow-Debreu Equilibria. Let L(L2
+) denote the

space of bounded linear functionsΠ : L2
+ → R. We say that a collection ((ĉi)i∈I,Π) ∈∏

i∈I L2
+ × L(L2

+) constitutes an Arrow-Debreu equilibrium for E if and only if:

1. For every i ∈ I, ĉi solves the problem

max
ci∈Ci(Π)

U i(ci)

where Ci(Π) = {ci ∈ L2
+ : Π(c̄i − ci) = 0}.

2. The commodity market is cleared as
∑
i∈I ĉ

i =
∑
i∈I c̄

i.
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We want to implement an Arrow-Debreu equilibrium ((ĉi)i∈I,Π) into a unique
ASM equilibrium, or a finite number of ASM equilibria, otherwise we would face
an indeterminacy problem in which there exist an infinite number of ASM even if
the Arrow-Debreu equilibrium is unique. To avoid such an indeterminacy problem,
Dana and Pontier [15], Duffie [16], Duffie and Zame [22], and Huang [25] assume
that every nominal security price process S(D) with a nominal cumulative dividend
process D given by

St(D) = E [DT † −Dt|Ft] ∀t ∈ T.

One can show that this assumption is equivalent to the one that every nominal
bond price is one at every date or that the nominal-risk-free rate is always zero.

Instead of specifying nominal bond prices like this, we just pick an implementable
bond price family B ∈ B̄.8 Then, we present that for B, an approximate security
market equilibrium can be identified with an Arrow-Debreu equilibrium.

4.3. Equivalence of ASM and Arrow-Debreu Equilibria. We prove that for
every implementable bond price family B ∈ B̄, an ASM equilibrium ((ĉi)i∈I, p,B)
for E can be identified with an Arrow-Debreu equilibrium ((ĉi)i∈I,Π) for E under
the relation Λ̃Bp = π where Λ̃B is the discounted density process of P̃B relative to
P and π is the Riesz kernel of Π. We also show that if the mark set Z is finite, then
any ASM equilibrium is reduced to be an security market equilibrium. To see these,
we prove the following proposition using Martingale Representation Theorem and
Proposition 1.

Proposition 2. Let i ∈ I. It follows that:

1. Let Π ∈ L(L2
+) be given by a Riesz kernel π ∈ L2

++ and ci ∈ Ci(Π). Let
B ∈ B̄ and p = (Λ̃B)−1π. Then, ci ∈ C̄i(p,B). Moreover, if the mark set Z
is finite then ci ∈ Ci(p,B).

2. Conversely, let ci ∈ C̄i(p,B) where (p,B) ∈ L2
++ × B. Define Π by the Riesz

kernel π = Λ̃Bp. If Λ̃B is bounded µ-a.e., then ĉi ∈ Ci(Π).

Proof. Let i ∈ I. First, it follows from Bayes’ rule and integration by part that

Ẽ
B

[∫ T †

0

p̃s(c̄is − cis) ds
]

=
1
ΛB

0

E

[
ΛB
T †

∫ T †

0

p̃s(c̄is − cis) ds
]

= E

[∫ T †

0

ΛB
s p̃s(c̄

i
s − cis) ds+

∫ T †

0

∫ s

0

p̃s1(c̄is1 − c
i
s1) ds1 dΛ

B
s

+
∫ T †

0

d

[
ΛB
s ,

∫ s

0

p̃s1(c̄is1 − c
i
s1) ds1

] ]
= E

[∫ T †

0

πs(c̄is − cis) ds
]
.

(4.1)

8Such an exogenously given nominal bond price family can be interpreted as agents’ common

subjective probability for term structure process of nominal-interest-rates. Considering that a
central bank controls term structures process of nominal-interest-rates in order to control the

commodity price process, we might justify such an agents’ common subjective probability for

term structure process of nominal-interest-rates.
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Define C̃i(p,B) for every p ∈ L2
+ by

C̃i(p,B) =
{
ci ∈ L2

+ | ∃(ϑin)n∈N ∈
∏
n∈N

Θ(B̃) s.t.

Ṽ B
t (ϑin) =

∫ t

0

∫ T †

s

ϑi1ns(dT ) dB̃Ts +
∫ t

0

p̃s(c̄is − cis) ds ∀(n, t) ∈ N×T

lim
n→∞

Ṽ B
T †(ϑ

i
n) = 0

}
.

Step 1 – C̄i(p,B) = C̃i(p,B) where p ∈ L2
+: See Appendix C.1.

Step 2 – Proof of 2 : See Appendix C.1.
Step 3 – Proof of 1 : Let Π ∈ L(L2

+) be given by a Riesz Kernel π ∈ L2
++ and

ci ∈ Ci(Π). Then, we have

E

[∫ T †

0

πs(c̄is − cis) ds
]

= 0.(4.2)

Let B ∈ B̄ and define p = (Λ̃B)−1π. Then, we have p ∈ L2
++, since (Λ̃B)−1 is

bounded µ-a.e. It follows from (4.1) and (4.2) that

Ẽ
B

[∫ T †

0

p̃s(c̄is − cis) ds
]

= 0.(4.3)

On the other hand, ẼB
t

[∫ T †
0
p̃s(cis − c̄is) ds

]
is a P̃B-martingale, so it follows from

Martingale Representation Theorem and (4.3) that there exists a unique (vi,Hi) ∈(∏d1
j=1 L2

)
× L1(λt(dz)× dt) such that

Ẽ
B

[∫ T †

0

‖vis‖2 ds
]
<∞, Ẽ

B

[∫ T †

0

∫
Z

|Hi
s(z)|2 λt(dz) ds

]
<∞,

and such that for every t ∈ T

Ẽ
B
t

[∫ T †

0

p̃s(cis − c̄is) ds
]

= Ẽ
B

[∫ T †

0

p̃s(cis − c̄is) ds
]

+
∫ t

0

vis · dW̃B
s +

∫ t

0

∫
Z

Hi
s(z) {ν(ds× dz)− λ̃B

s (dz) ds }

=
∫ t

0

vis · dW̃B
s +

∫ t

0

∫
Z

Hi
s(z) {ν(ds× dz)− λ̃B

s (dz) ds }.

(4.4)

Since B ∈ B̄, by Proposition 1 there exists a pair of sequences (vin,H
i
n)n∈N ∈∏

n∈N

((∏d1
j=1 L2

)
×L1(λt(dz)×dt)

)
such that (vint(ω),Hi

nt(ω)) converging to (vit(ω),Hi
t(ω))

in Rd1 × L2(Z,Z, λ̃B
t (ω, dz)) as n→∞ for every (ω, t) ∈ Ω×T and such that for

every n ∈ N there exists ϑi1n ∈ C∗T satisfying

Õ∗t (ω)ϑi1nt(ω) =

( ∫ T †
t
B̃Tt−(ω) vTt (ω)ϑi1t (ω, dT )∫ T †

t
B̃Tt−(ω)HT

t (ω, · )ϑi1t (ω, dT )

)
=
(

vint(ω)
Hi
nt(ω, · )

)
(4.5)
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for every (ω, t) ∈ Ω×T. Thus, it follows from (4.4) that

∫ t

0

∫ T †

s

ϑi1ns(dT ) dB̃Ts

=
∫ t

0

∫ T †

s

B̃Ts v
T
s ϑ

i1
ns(dT ) · dW̃B

s +
∫ t

0

∫ T †

s

∫
Z

B̃Ts H
T
s (z)ϑi1ns(dT ) {ν(ds× dz)− λ̃B

s (dz) ds }

=
∫ t

0

vins · dW̃B
s +

∫ t

0

∫
Z

Hi
ns(z) {ν(ds× dz)− λ̃B

s (dz) ds }

→
∫ t

0

vis · dW̃B
s +

∫ t

0

∫
Z

Hi
s(z) {ν(ds× dz)− λ̃B

s (dz) ds }

(4.6)

in L2(Ω,Ft, P̃B) as n→∞ for every t ∈ T. Define (ϑi0n )n∈N by

ϑi0nt = −
∫ T †

t

B̃Tt ϑ
i1
nt(dT ) +

∫ t

0

∫ T †

s

ϑi1ns(dT ) dB̃Ts +
∫ t

0

p̃s(c̄is − cis) ds ∀(n, t) ∈ N×T.

Substituting this into Ṽ B
t (ϑin) = ϑi0nt +

∫ T †
t
B̃Tt ϑ

i1
nt(dT ) yields

Ṽ B
t (ϑin) =

∫ t

0

∫ T †

s

ϑi1ns(dT ) dB̃Ts +
∫ t

0

p̃s(c̄is − cis) ds ∀(n, t) ∈ N×T.

(4.7)

Finally, it follows from (4.4), (4.6), and (4.7) that

lim
n→∞

Ṽ B
T †(ϑ

i
n) = lim

n→∞

{∫ T †

0

∫ T †

s

ϑi1ns(dT ) dB̃Ts +
∫ T †

0

p̃s(c̄is − cis) ds
}

= lim
n→∞

{∫ T †

0

vins · dW̃B
s +

∫ T †

0

∫
Z

Hi
ns(z) {ν(ds× dz)− λ̃B

s (dz) ds }
}

+
∫ T †

0

p̃s(c̄is − cis) ds

=
∫ T †

0

vis · dW̃B
s +

∫ T †

0

∫
Z

Hi
s(z) {ν(ds× dz)− λ̃B

s (dz) ds }+
∫ T †

0

p̃s(c̄is − cis) ds

= Ẽ
B
T †

[∫ T †

0

p̃s(cis − c̄is) ds
]

+
∫ T †

0

p̃s(c̄is − cis) ds = 0.

(4.8)

Equations (4.7) and (4.8) show ci ∈ C̃i(p,B), and therefore ci ∈ C̄i(p,B). Next let
us consider the case when the mark set Z is finite. First, we can obtain (4.4) for
some unique (vi,Hi) ∈

(∏d1
j=1 L2

)
× L1(λt(dz) × dt). Then, since B ∈ B̄ and Z is

finite, by Proposition 1 there exists a supporting portfolio ϑi1 ∈ C∗T such that

∫ t

0

∫ T †

s

ϑi1s (dT ) dB̃Ts =
∫ t

0

∫ T †

s

B̃Ts v
T
s ϑ

i1
s (dT ) · dW̃B

s

+
∫ T †

s

∫
Z

B̃Ts H
T
s (z)ϑi1s (dT ) {ν(ds× dz)− λ̃B

s (dz) ds }

=
∫ t

0

vis · dW̃B
s +

∫ t

0

∫
Z

Hi
s(z) {ν(ds× dz)− λ̃B

s (dz) ds }
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for every t ∈ T. Define ϑi0 by

ϑi0t = −
∫ T †

t

B̃Tt ϑ
i1
t (dT ) +

∫ t

0

∫ T †

s

ϑi1s (dT ) dB̃Ts +
∫ t

0

p̃s(c̄is − cis) ds ∀t ∈ T.

Then, we can show ci ∈ C̃i(p,B) = C̄i(p,B) in the same way as before.

Using Proposition 2, we can show the following theorem.

Theorem 1. It follows that:
1. Let ((ĉi)i∈I,Π) be an Arrow-Debreu equilibrium for E. Let B ∈ B̄ and
p = (Λ̃B)−1π where π ∈ L2

++ is the Riesz kernel of Π. Then, ((ĉi)i∈I, p,B)
is an ASM equilibrium for E. Moreover, if the mark set Z is finite then
((ĉi)i∈I, p,B) is a security market equilibrium for E.

2. Conversely, let ((ĉi)i∈I, p,B) be an ASM equilibrium for E. Define Π by
the Riesz kernel π = Λ̃Bp. If Λ̃B is bounded µ-a.e., then ((ĉi)i∈I,Π) is an
Arrow-Debreu equilibrium for E.

Proof. Proof of 1. Let ((ĉi)i∈I,Π) be an Arrow-Debreu equilibrium for E. Then,
since agents’ utilities are strictly increasing, Π is strictly increasing. Thus, by Riesz
Representation Theorem, there uniquely exists a Riesz kernel π ∈ L2

++. Let B ∈ B̄
and define p = (Λ̃B)−1π. First, by definition of Arrow-Debreu equilibrium, (ĉi)i∈I

satisfies the commodity market clearing condition in ASM equilibrium. Let i ∈ I.
It follows from Proposition 2.1 that ĉi ∈ C̄i(p,B). Suppose that ĉi is not a utility
maximizer in C̄i(p,B), Then, Proposition 2.2 implies that ĉi is not a utility maxi-
mizer in Ci(Π), which contradicts that ((ĉi)i∈I,Π) is an Arrow-Debreu equilibrium
for E. Thus, ĉi is not a utility maximizer in C̄i(p,B), and hence ((ĉi)i∈I, p,B) is an
ASM equilibrium for E.

Proof of 2. Let ((ĉi)i∈I, p,B) be an approximate security market equilibrium for
E. Then, since agents’ utility functions are strictly increasing, p ∈ L2

++. Define
Π by the Riesz kernel π = Λ̃Bp. Let i ∈ I. It suffices to show that ĉi is a utility
maximizer in Ci(Π). First, it follows from Proposition 2.2 that ĉi ∈ Ci(Π). Suppose
that ĉi is not a utility maximizer in Ci(Π). Then, Proposition 2.1 implies that ĉi

is not a utility maximizer in C̄i(p,B). This is a contradiction, and therefore ĉi is a
utility maximizer in Ci(Π).

We obtain the following corollary, which says that for every implementable bond
price family B ∈ B̄, an ASM equilibrium can be identified with an Arrow-Debreu
equilibrium.

Corollary 1.1. For every B ∈ B̄, ((ĉi)i∈I, p,B) is an ASM equilibrium for E if
and only if ((ĉi)i∈I,Π) is an Arrow-Debreu equilibrium for E where Π is given by
the Riesz kernel π = Λ̃Bp.

5. Existence of Equilibria in Case of

SDUs with Inada Condition

In this section, we present sufficient conditions for the existence of ASM equi-
libria in the case of SDUs (Stochastic Differential Utilities) with Inada condition.
It is enough to show sufficient conditions for the existence of Arrow-Debreu equi-
libria since for every implementable bond price family, an ASM equilibrium can
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be identified with an Arrow-Debreu equilibrium as shown in Corollary 1.1. Duffie
and Epstein [18] introduce the notion of SDU, and show that any SDU can be
normalized under Wiener information. Duffie, Geoffard, and Skiadas [19] present
sufficient conditions for the existence of Arrow-Debreu equilibria in the case of nor-
malized SDUs. It is not true that any SDU can be normalized under jump-Wiener
information. We present a necessary and sufficient condition for an SDU to be
normalized under jump-Wiener information. Then, we can apply the results of
Duffie, Geoffard, and Skiadas [19] on the existence of Arrow-Debreu equilibria, to
our class of SDUs satisfying the necessary and sufficient condition. Our class of
SDUs is a subclass of SDUs, but still includes the standard ASU (Additively Sepa-
rable Utility), the Uzawa utility (Uzawa [40]), the Kreps-Porteus utility (Kreps and
Porteus [31]), etc. However, sufficient conditions for the existence of Arrow-Debreu
equilibria given by Duffie, Geoffard, and Skiadas [19] include Inada condition, so we
need to present sufficient conditions for the existence of Arrow-Debreu equilibria in
the case of general ASUs.

We consider security market economy in which agents’ common subjective prob-
ability and information structure is modeled by a complete filtered probability space
(Ω,F ,F,P), where F = (Ft)t∈T is a filtration satisfying usual conditions.

The notion of an SDU was first shown in Epstein and Zin [24] in discrete-time
setting, and then extended to continuous-time setting in Duffie and Epstein [18].
An SDU is a utility with expected recursive utility representation, and an extension
of the standard ASU (Additively Separable Utility). It is well known that in the
standard ASU, both of risk aversion and intertemporal substitution depend on the
curvature of the von-Neumann Morgenstern utility function, for instance, relative
risk aversion is reciprocal of elasticity of intertemporal substitution in the CRRA
utility. These two properties of utility can be independently given in some SDUs
such as the Kreps-Porteus utility (Kreps and Porteus [31]).

5.1. Normalizable SDUs under Jump-Wiener Information. We first review
the notion of SDU for Wiener information given in Duffie and Epstein [18] (for
definitions of aggregator, certainty equivalent, and its local gradient representation,
see Duffie and Epstein [18]).

Definition 8. Let F = F
W . Then, a utility Ū : L2

+ → R is an SDU for Wiener
information if and only if U is characterized by an aggregator (f̄ , m̄) such that
Ū(c) = Ȳ0 for every c ∈ L2

+ where Ȳ is the unique square-integrable process satis-
fying the following SDE

dȲt = µȲt dt+ σȲt · dWt ∀t ∈ T

with ȲT † = 0 where µȲ ∈ L1, σȲ ∈
∏d
j=1 L2, and

µȲt = −f̄(cs, Ȳs)−
1
2
M̄11(Ȳs, Ȳs) ‖σȲs ‖2

where M̄ : R2 → R is the local gradient representation (LGR) of certainty equiva-
lent m̄, and satisfies M̄ ∈ C2,0 and M̄1(x, x) = 1 for every x ∈ R.

We introduce the notion of SDU for jump-Wiener information, which is a natural
extention of the notion of SDU for Wiener information.

Definition 9. Let F = F
W,ν . Then, a utility Ū : L2

+ × R → R is an SDU for
jump-Wiener information if and only if Ū is characterized by an aggregator (f̄ , m̄)
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such that Ū(c) = Ȳ0 for every c ∈ L2
+ where Ȳ is the unique square-integrable

process satisfying the following SDE

dȲt = µȲt dt+ σȲt · dWt + Ȳt−

∫
Z

H Ȳ
t (z) { ν(dt× dz)− λt(dz) dt } ∀t ∈ T

with ȲT † = 0 where µȲ ∈ L1, σȲ ∈
∏d1
j=1 L2, H Ȳ ∈ L1(λt(dz)× dt), and

(5.1) µȲt = −f̄(cs, Ȳs)−
1
2
M̄11(Ȳs, Ȳs) ‖σȲs ‖2

−
∫
Z

{
M̄((1 +H Ȳ

s (z))Ȳs, Ȳs)− M̄(Ȳs, Ȳs)− ȲsH Ȳ
s (z)

}
λs(dz)

where M̄ is the LGR of m̄, and satisfies M̄ ∈ C2,0 and M̄1(x, x) = 1 for every
x ∈ R..

Remark 2. Equation (5.1) is derived from definitions of the aggregator (f̄ , m̄) and
LGR M̄ of m̄:

f̄(ct, Ȳt) =− lim
∆↓0

1
∆
Et

[
M̄(Ȳt, Ȳt−∆)− M̄(Ȳt−∆, Ȳt−∆)

]
=− lim

∆↓0

1
∆
Et

[∫ t

t−∆

{
M̄1(Ȳs, Ȳs)µȲs +

1
2
M̄11(Ȳs, Ȳs) ‖σȲs ‖2

+
∫
Z

{
M̄((1 +H Ȳ

s (z))Ȳs, Ȳs)− M̄(Ȳs, Ȳs)− M̄1(Ȳs, Ȳs)ȲsH Ȳ
s (z)

}
λs(dz)

}
ds

]
=− µȲt −

1
2
M̄11(Ȳt, Ȳt) ‖σȲt ‖2

−
∫
Z

{
M̄((1 +H Ȳ

t (z))Ȳt, Ȳt)− M̄(Ȳt, Ȳt)− ȲtH Ȳ
t (z)

}
λt(dz).

Here we use the property M̄1(Ȳs, Ȳs) = 1.

Remark 3. We have the following expected recursive utility representation of Ū :

Ȳt = −Et
[∫ T †

t

µȲs ds

]
= Et

[∫ T †

t

{
f̄(cs, Ȳs) +

1
2
M̄11(Ȳs, Ȳs) ‖σȲs ‖2 ds

+
∫
Z

{
M̄((1 +H Ȳ

t (z))Ȳt, Ȳt)− M̄(Ȳt, Ȳt)− ȲtH Ȳ
t (z)

}
λt(dz)

}]
∀t ∈ T.

(5.2)

The expected recursive utility representation (5.2) of Ū is intractable. Exploiting
the notion of ordinally equivalent utility,9 Duffie and Epstein [18] introduce the
notion of an normalizable SDU, which is defined for every F.

9We say that a utility U : L2
+ → R is an ordinally equivalent utility to a utility Ū : L2

+ → R
if and only if there exists a strictly increasing and continuous function ϕ : R→ R with ϕ(0) = 0
such that U = ϕ ◦ Ū .
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Definition 10. A utility Ū : L2
+ → R is a normalizable SDU if and only if there

exists an ordinally equivalent utility U that is characterized by an aggregator (f,m)
such that U(c) = Y0 for every c ∈ L2

+ where Y is the unique square-integrable
process satisfying

Yt = Et

[∫ T †

t

f(cs, Ys) ds
]

∀t ∈ T.(5.3)

We call (f,m) or f the normalized aggregator. The class of normalizable SDUs
depends on F, so let it be denoted by USD(F). Let F be generated by a Wiener
process. Then, by definition, any normalizable SDU is an SDU for Wiener infor-
mation. Duffie and Epstein [18] show that any SDU for Wiener information can be
normalized. Next, let F = F

W,ν . Then, it is not true that any SDU for jump-Wiener
information can be normalized. We present a necessary and sufficient condition for
an SDU for jump-Wiener information to be normalized.

Proposition 3. Let F = F
W,ν . Let Ū be an SDU for jump-Wiener information

characterized by an aggregator (f̄ , m̄). Then, Ū ∈ USD(FW,ν) if and only if Ū
satisfies

M̄1(x, y) = exp
[∫ x

y

B̄(x1) dx1

]
∀(x, y) ∈ R2(5.4)

for some continuous function B̄ : R→ R where M̄ is the LGR of m̄.

Remark 4. Let UW,νSD denote the class of SDUs for jump-Wiener information satis-
fying the condition (5.4). The class UW,νSD is a subclass of SDUs for jump-Wiener
information, but still includes the class of SDUs, each of which is characterized by
an expected-utility certainty equivalent (for definition, see Duffie and Epstein [18]).
This class of SDUs includes the Kreps-Porteus utility and the Uzawa utility (Uzawa [40])
as well as the standard ASU.

Proof. Suppose that a utility Ū : L2
+ → R is characterized by an unnormalized

aggregator (f̄ , m̄) such that Ū(c) = Ȳ0 for every c ∈ L2
+ where Ȳ is the unique

square-integrable process satisfying the SDE (9) with (5.1).
Step 1 – Ū is normalized if and only if there exists a continuous function B̄ :

R → R satisfying (5.4): Let ϕ : R → R be a strictly increasing and C2 function
with ϕ(0) = 0 and let Yt = ϕ(Ȳt) for every t ∈ T and f(x, ϕ(y)) = ϕ′(y)f̄(x, y).
Applying Ito’s formula to Yt = ϕ(Ȳ ) yields

dYt = µYt dt+ ϕ′(Ȳt)σȲt · dWt +
∫
Z

{
ϕ((1 +H Ȳ

t−(z))Ȳt−)− ϕ(Ȳt−)
}
{ ν(dt× dz)− λt(dz) dt }

(5.5)

for every t ∈ T where

(5.6) µYt = ϕ′(Ȳt)
{
µȲt − Ȳt

∫
Z

H Ȳ
t (z)λt(dz)

}
+

1
2
ϕ′′(Ȳt) ‖σȲt ‖2

+
∫
Z

{
ϕ((1 +H Ȳ

t (z))Ȳt)− ϕ(Ȳt)
}
λt(dz).
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Substituting ϕ′(Ȳt)f̄(ct, Ȳt) = f(ct, Yt) and (5.1) into (5.6) yields

µYt =− ϕ′(Ȳt)f̄(ct, Ȳt)−
1
2
ϕ′(Ȳt) M̄11(Ȳt, Ȳt) ‖σȲt ‖2

−ϕ′(Ȳt)
∫
Z

{
M̄((1 +H Ȳ

t (z))Ȳt, Ȳt)− M̄(Ȳt, Ȳt)− ȲtH Ȳ
t (z)

}
λt(dz)

+
1
2
ϕ′′(Ȳt) ‖σȲt ‖2 +

∫
Z

{
ϕ((1 +H Ȳ

t (z))Ȳt)− ϕ(Ȳt)− ϕ′(Ȳt)ȲtH Ȳ
t (z)

}
λt(dz)

=− f(ct, Yt)−
1
2

{
ϕ′(Ȳt) M̄11(Ȳt, Ȳt)− ϕ′′(Ȳt)

}
‖σȲt ‖2

−
∫
Z

[
ϕ′(Ȳt)

{
M̄((1 +H Ȳ

t (z))Ȳt, Ȳt)− M̄(Ȳt, Ȳt)
}
−
{
ϕ((1 +H Ȳ

t (z))Ȳt)− ϕ(Ȳt)
}]

λt(dz).

(5.7)

Thus, Ū can be normalized if and only if the set of conditions hold:

ϕ′′(y) = M̄11(y, y)ϕ′(y),(5.8)

ϕ(x)− ϕ(y) = ϕ′(y){M̄(x, y)− M̄(y, y)}(5.9)

for every (x, y) ∈ R2. However, twice partial differentiating both sides of (5.9) with
respect to x and substituting x = y yields (5.8). Hence, Ū is normalized if and
only if the condition (5.9) holds. Considering M̄1(y, y) = 1 for every y ∈ R, the
condition (5.9) is equivalent to

ϕ̃′(x) = ϕ̃′(y)M̄1(x, y) ∀(x, y) ∈ R2.(5.10)

Taking log and partial differentiating both sides of (5.10) with respect to x, we have

ϕ̃′′(x)
ϕ̃′(x)

=
M̄11(x, y)
M̄1(x, y)

∀(x, y) ∈ R2.(5.11)

Conversely, we can obtain (5.10) from (5.11) using M̄1(y, y) = 1. Thus, the condi-
tion (5.11) is equivalent to the condition (5.10). It is straightforward to see that the
condition (5.11) holds if and only if there exists a continuous function B̄ : R → R

satisfying the condition (5.4). Then, a function ϕ satisfying (5.11) is given by

ϕ(x) =
∫ x

0

exp
[∫ x2

0

B̄(x1) dx1

]
dx2 ∀x ∈ R.(5.12)

Step 2 – USD(FW,ν) ⊃ UW,νSD : Let Ū ∈ UW,νSD be characterized by an unnormalized
aggregator (f̄ , m̄). Then, it immediately follows from Step1 that Ū ∈ USD(FW,ν).

Step 3 – USD(FW,ν) ⊂ UW,νSD : Let Ū ∈ USD(FW,ν) be characterized by an ag-
gregator (f̄ , m̄). We assume w.l.o.g. that (f̄ , m̄) is an unnormalized aggregator.
Then, it follows from Step 1 that there exists a continuous function B̄ : R → R

satisfying (5.4), and therefore Ū ∈ UW,νSD .

5.2. Existence of Equilibria. In Definition 10, we postulate the existence and
uniqueness of square-integrable process Y satisfying (5.3) for every c ∈ L2

+. Let
f : R+ × R → R be a measurable function. Duffie and Epstein [18] show a set
of sufficient conditions on the aggregator f for the existence and uniqueness of
square-integrable process Y satisfying (5.3) for every c ∈ L2

+.

Proposition 4. Let f : R+ × R → R be a measurable function. Suppose that f
satisfies
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1. a growth condition in consumption, in the sense that there exist constants k0

and k1 such that for every x ∈ R+, we have |f(x, 0)| ≤ k0 + k1‖c‖, and
2. a uniform Lipschitz condition in utility, in the sense that there exists a con-

stant k such that for every x ∈ R+ and every (y1, y2) ∈ R2, we have |f(x, y1)−
f(x, y2)| ≤ k‖y1 − y2‖.

Then, for every c ∈ L2
+, there exists a unique square-integrable process Y satisfy-

ing (5.3).

Proof. See Duffie and Epstein [18].

We assume that every agent’s utility is a normalized SDU for jump-Wiener
information.

Assumption 1. For every i ∈ I, U i ∈ UW,νSD is characterized by a normalized
aggregator (f i,mi) where f i satisfies the growth condition in consumption and the
uniform Lipschitz condition in utility.

We introduce the following set of assumptions to ensure the existence of equilib-
ria.

Assumption 2. 1. For every i ∈ I, it follows that:
(a) For every y ∈ R, f i( · , y) is strictly increasing.
(b) The aggregator f i is continuously differentiable on the interior of its do-

main.
(c) The aggregator f i is concave.
(d) For every x > 0, supy∈R f ic(x, y) <∞.
(e) The aggregator f i satisfies limx↓0 infy∈R f ic(x, y) =∞.

2. The aggregate endowment is bounded away from zero µ-a.e.

Remark 5. Consider a standard ASU of the form

U(c) = E

[∫ T †

0

e−ρsu(cs) ds
]
.

Then, it follows from Ito’s formula that U can be interpreted as an SDU of the
form

Yt = Et

[∫ T †

t

(
u(c)− ρy

)
ds

]
∀t ∈ T.

It is straightforward to see that the condition 2.1.(e) is equivalent to the Inada
condition in the case of ASU. Thus, we need to present sufficient conditions for the
existence of Arrow-Debreu equilibria in the case of general ASUs.

Under Assumptions 1 and 2, Duffie, Geoffard, and Skiadas [19] prove the ex-
istence of Arrow-Debreu equilibria exploiting the Negishi approach (Negishi [38])
and results given in Duffie and Epstein [18], Duffie and Zame [22], and Mas-Collel
and Zame [36].

Proposition 5. Under Assumptions 1 and 2, there exists an Arrow-Debreu equi-
librium ((ĉi)i∈I, π) for E. Moreover, (ĉi)i∈I is a Pareto optimal allocation.

Proof. See Duffie, Geoffard, and Skiadas [19].

Combining Proposition 5 with Corollary 1.1, we obtain the following proposition.



19

Proposition 6. Let F = F
W,ν . Under Assumptions 1 and 2, for every B ∈ B̄,

there exists an ASM equilibrium ((ĉi)i∈I, p,B) for E. Moreover, (ĉi)i∈I is a Pareto
optimal allocation.

6. Existence, Uniqueness, and Determinacy

of Equilibria in Case of ASUs

In this section, we show sufficient conditions for the existence, uniqueness, and
determinacy of Arrow-Debreu equilibria in the case of ASUs (Additively Separable
Utilities). To do so, we extend results given in Dana [13] [14] for a static economy
with ASUs, to the results for our continuous-time economy. Her proof uses the
Negishi approach (Negishi [38]) and consists of the following steps. (1) An Arrow-
Debreu equilibrium can be identified with a representative agent equilibrium. (2)
There exists a representative agent equilibrium under a regularity condition. In
addition, (3) if every agent’s risk tolerance coefficient satisfies an integrability con-
dition and every agent’s endowment process is bounded away from zero, then the
set of equilibria is generically finite, and (4) if every agent’s relative risk aversion
coefficient is less than or equal to one, then the representative agent equilibrium is
unique.

We suppose that every agent’s utility has an additively separable utility repre-
sentation.

Assumption 3. For every agent i ∈ I, the utility U i is an additively separable
utility of the form

U i(c) = E

[∫ T †

0

ui(t, cit) dt
]

where the von Neumann-Morgenstern (VNM) utility function ui is a real-valued
C1,2 function on T×R+ such that ui(t, · ) is strictly increasing and strictly concave
on R+ for every t ∈ T.

6.1. Equivalence of Arrow-Debreu and Representative Agent Equilibria.
We consider the aggregate utility to use the Negishi approach. Let α ∈ ∆I

+ where
∆I

+ = {α ∈ RI+ |
∑
i∈I αi = 1} and define the aggregate utility Uα : L2

+ → R by

Uα(c) = max
(c1,c2,··· ,cI)∈

Q
i∈I L2

+

∑
i∈I

αiU
i(ci) s.t.

∑
i∈I

ci ≤ c.

We also define a function c∗ : T× R+ × RI+ → R
I
+ by

(c∗i (t, x, α))i∈I = argmax{ (x1,x2,··· ,xI)∈RI+ :
P
i∈I xi≤x }

∑
i∈I

αiu
i(t, xi).

Then, we have

Lemma 3. Under Assumption 3, the aggregate utility Uα has an additively sepa-
rable expected utility representation

Uα(c) = E

[∫ T †

0

u(t, ct, α) dt
]

where u(t, x, α) =
∑
i∈I

αiu
i(t, c∗i (t, x, α)).(6.1)

Moreover, u and (c∗i )i∈I satisfy the following conditions.
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1. (a) The function u is a real-valued C1,1,0 function on T × R+ × RI+ such
that u(t, · , α) is strictly increasing and strictly concave on R+ for every
(t, α) ∈ T× RI+.

(b) Let i ∈ I. For every (t, x, α) ∈ T × R+ × RI+ satisfying c∗i (t, x, α) > 0,
the first partial derivative with respect to x denoted by uc(t, x, α) satisfies

uc(t, x, α) = αiu
i
c(t, c

∗
i (t, x, α)).(6.2)

2. Let i ∈ I.
(a) The function c∗i is continuous on T× R+ × RI+.
(b) For every (t, x) ∈ T × R++, the function c∗i (t, x, · ) is homogeneous of

degree zero.
(c) For every (t, α) ∈ T× RI+, c∗i (t, 0, α) = 0.

3. Let t ∈ T and i ∈ I. Functions uc(t, · , · ) and c∗i (t, · , · ) are:
(a) differentiable off the set of Lebesgue zero measure:

D = { (t, x, α) ∈ T×R++×RI++ : uc(t, x, α) = αiu
i
c(t, c

∗
i (t, 0, α)) for some i ∈ I },

and
(b) Lipschitz continuous on compact subsets of R+ × RI+.
(c) Let (t, x, α) ∈ Dc. Assume that c∗i (t, x, α) > 0 for every i ∈ I. Then, it

follows that for every i, j ∈ I

∂c∗i
∂αj

(t, x, α) =
ujc(t, c

∗
j (t, x, α))

αiαjuicc(t, c∗i (t, x, α))ujcc(t, c∗j (t, x, α))η(t, x, α)
(6.3)

where

η(t, x, α) =
∑
i∈I

1
αiuicc(t, c∗i (t, x, α))

.

Proof. Proofs of 1 and 2 are easy. For the proofs of 3.(a)(b), see the proof of
Proposition 2.3 in Dana [13]. We can obtain 3.(c) differentiating the first order
condition

α1u
i
c(t, c

∗
i (t, x, α)) = α2u

2
c(t, c

∗
2(t, x, α)) = · · · = αIu

I
c(t, c

∗
I(t, x, α))

and the relation
∑
i∈I c

∗
i (t, x, α) = x with respect to αj .

We introduce the notion of representative agent equilibrium for E.

Definition 11. A utility weight α̂ constitutes a representative agent equilibrium
for E if and only if α̂ ∈ ∆I

+ satisfies T (α̂) = 0 where T : RI++ → R
I is the weighted

transfer payment function10 defined by

Ti(α) =
1
αi
E

[∫ T †

0

uc(s, c̄s, α)(c∗i (s, c̄s, α)− c̄is) ds
]

∀i ∈ I.

For a representative agent equilibrium α̂ ∈ ∆I
+, (c∗i (s, c̄s, α̂)) is a Pareto optimal

allocation without transfer payments under the supporting price uc(s, c̄s, α̂). We
can show that a representative agent equilibrium for E can be identified with an
Arrow-Debreu equilibrium for E. To do so, we need the following lemma.

10Dana [13] [14] calls T the “excess utility map.” For each i ∈ I, Ti is the agent i’s transfer

payment weighted with α−1
i . Thus, we call T the weighted transfer payment function.
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Lemma 4. Under Assumption 3, for any Pareto optimal allocation (ci)i∈I for E,
there exists a utility weight α̂ ∈ ∆I

+ such that

c∗(t, c̄t(ω), α̂) = (cit(ω))i∈I ∀µ-a.e.

Proof. See Huang [25].

Proposition 7. Under Assumption 3, it follows that:

1. Let α̂ be a representative agent equilibrium for E. Define ((ĉi)i∈I,Π) by
(ĉit(ω))i∈I = c∗(t, c̄t(ω), α̂) and the Riesz kernel πt = uc(t, c̄t(ω), α̂) for ev-
ery (ω, t) ∈ Ω × T. Then, ((ĉi)i∈I,Π) is an Arrow-Debreu equilibrium for
E.

2. Conversely, let ((ĉi)i∈I,Π) be an Arrow-Debreu equilibrium for E. Then,
there exists a representative agent equilibrium α̂ for E such that c∗(t, c̄t(ω), α̂) =
ĉt(ω) µ-a.e.

Proof. See Appendix C.2.

6.2. Existence of Representative Agent Equilibria. Now our task is reduced
to show the existence of representative agent equilibria. To prove the existence of
representative agent equilibria, we introduce the following assumption.11

Assumption 4.

max
α∈∆I

uc(t, c̄t(ω), α) def= π̄t(ω) ∈ L2
+(6.4)

Then, the weighted transfer payment function has the following desired proper-
ties for proving the existence of representative agent equilibria.

Lemma 5. Under Assumptions 3 and 4, it follows that:

1. The weighted transfer payment function T is homogeneous of degree zero, and
satisfies α · T (α) = 0 for every α ∈ RI+, and bounded above on RI+.

2. The weighted transfer payment function T is continuous on RI++, and Ti(α)→
−∞ whenever αi → 0 for some i ∈ I.

Proof. The proof of 1 is easy, so we prove 2.
Step 1 – Continuity on RI++: We use the proof given in Dana [13]. Let S be

a compact subset of RI++ bounded away from the boundary. It suffices to show
the continuity of T on S. Since T and c∗ are homogeneous of degree zero on α, it

11In static economy, the assumption
Z

Ω
| max
α∈∆I

uc(c̄(ω), α)|2µ(dω) <∞

is proven to be the minimal assumption (see Theorem 11.1 in Mas-Collel and Zame [36]).
In continuous-time economy, Dana and Pontier [15], Duffie and Zame [22], Karatzas, Lakner,

Lehoczky, and Shreve [29], and Karatzas, Lehoczky, and Shreve [30] assume that the aggregate
endowment is bounded away from zero, i.e. c̄ > b µ-a.e. for some b > 0. This assumption is

stronger than Assumption 4, since

max
α∈∆I+

uc(t, c̄t(ω), α) ≤ max
α∈∆I+

uc(t, b, α)

and uc( · , b, α) is continuous on T.
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follows that for every i ∈ I,

∣∣∣∣ 1
αi
uc(t, c̄t(ω), α) {c∗i (t, c̄t(ω), α)− c̄it(ω)}

∣∣∣∣ ≤
√
I ‖α‖
αi

max
α∈∆I

+

[uc(t, c̄t(ω), α) ] c̄t(ω).

Thus, the continuity of T on S from Assumption (4), c̄ ∈ L2
+, Cauchy-Schwartz

Inequality in L2, and Lebesgue Dominated Convergence Theorem.
Step 2 – Boundary condition: Let i ∈ I. Recall that every agent’s endowment

process is not zero, so there exists A ∈ P such that µ(A) > 0 and c̄it(ω) > 0 for
every (ω, t) ∈ A. Then, it follows that

Ti(α) ≤ 1
αi

[
‖ max
α∈∆I

uc(t, c̄t(ω), α) ‖L2 ‖ c∗i (t, c̄t(ω), α) ‖L2

−
∫

A

uc(s, c̄s(ω), α) c̄is(ω) ν(dω × ds)
]

→ −∞

as αi → 0.

6.3. Uniqueness of Representative Agent Equilibria. To prove uniqueness
of equilibria, we impose the following two assumptions.

Assumption 5. 1. For every i ∈ I, the agent i’s relative risk aversion coeffi-
cient satisfies

γi(t, x) def= −xu
i
cc(t, x)

uic(t, x)
≤ 1 ∀(t, x) ∈ T× R+.

2. Either of the following two conditions is satisfied:
(a) Every agent’s endowment is positive µ-a.e., i.e. c̄i > 0 µ-a.e. for every

i ∈ I.
(b) Every agent’s utility satisfies the Inada condition, i.e. limx↓0 u

i
c(t, x) =∞

for every i ∈ I.

Then, the weighted transfer payment function has the strong gross substitution
in the following.

Lemma 6. Under Assumptions 3-5, the weighted transfer payment function T is
strongly gross substitute, i.e.:

1. For every (i, j) such that i 6= j, Ti(α1, α2, · · · , αj−1, · , αj+1, · · · , αI) is non-
increasing and for every i, Ti(α1, · · · , αi−1, · , αi+1, · · · , αI) is non-decreasing.

2. If c∗i (t, c̄t(ω), α) > 0 on some A ∈ P with µ(A) > 0, then for every j 6= i,
Ti(α1, · · · , αj−1, · , αj+1, · · · , αI) is strictly decreasing on a neighborhood of
α.

Proof. See the proof of Theorem 3.1 in Dana [13].

6.4. Determinacy of Representative Agent Equilibria. Unfortunately, we
do not have any strong evidence which supports Assumption 5. Thus, we show
that under more reasonable assumptions, the determinacy of equilibria is a generic
property of our economies using the Negishi approach given in Dana [13] for static
economies. First, we fix agents’ common subjective probability and information
structure as (Ω,F ,F,P). We parameterize the space of economies by keeping utili-
ties and the aggregate endowment fixed and varying the distribution of individual
endowments. We introduce the following assumptions.



23

Assumption 6. For every i ∈ I, the VNM utility function satisfies

− uic(t, x)
uicc(t, x)

≤ βi1x+ βi2 ∀(t, x) ∈ T× R+

for some βi ∈ R2
+.

Assumption 7. There exists δ ∈ RI
++ such that c̄it > δi µ-a.e. on T×Ω for every

i ∈ I.

We consider the following space of economies.

Eδ
def=
{

(c̄i)i∈I ∈
∏
i∈I

(
R

2
+ × L2

+

) ∣∣∣∑
i∈I

c̄i = c̄, and (c̄i)i∈I satisfies Assumption 7 for δ
}

We define a function T̂ : ∆I
+ × Eδ → R

I by

T̂i(α,E) =
1
αi
E

[∫ T †

0

uc(s, c̄s, α)(c∗i (s, c̄s, α)− c̄is) ds
]

∀i ∈ I.

It follows from Dominated Convergence Theorem that T̂ is continuous on ∆I
+×Eδ.

We have

Lemma 7. Under Assumptions 3, 4, 6, and 7, T̂ is differentiable with respect to
α on ∆I

++ and its derivative is continuous on ∆I
++ × Eδ.

Proof. See Appendix C.3

Let us recall that for every α ∈ ∆I
+,
∑
i∈I T̂i(α,E) = 0, thus rankDαT̂ (α,E) ≤

I − 1. We say that the economy E is regular if and only if T̂ (α̂,E) = 0 implies
rankDαT̂ (α,E) = I − 1. We know that any equilibrium in the regular economy is
locally unique (see Mas-Collel, Whinston, and Green [35]).

Define the correspondence {α̂}(E) : Eδ → ∆I
+ by

{α̂}(E) = {α ∈ ∆I
+ : T̂ (α,E) = 0 }.

Lemma 8. Under Assumptions 3, 4, 6, and 7, it follows that:
1. The correspondence {α̂} is u.h.c., and for every E ∈ Eδ, {α̂}(E) is compact.
2. If E is regular then {α̂}(E) is finite.

Proof. The proof of 1 immediately follows from the continuity of T̂ . Let E be a
regular economy. Suppose {α̂}(E) is infinite. Then, since {α̂}(E) is compact, it
has an accumulation point α̂ ∈ {α̂}(E). This implies that α̂ is not locally unique.
This is a contradiction.

6.5. Existence, Uniqueness, and Determinacy of Equilibria. Now we are
ready to prove the existence, uniqueness, and determinacy of ASM equilibria.

Proposition 8. Under Assumptions 3 and 4, it follows that for every B ∈ B̄:
1. There exists an ASM equilibrium ((ĉi)i∈I, p,B) for E. In particular, if the

mark set Z is finite, then ((ĉi)i∈I, p,B) is a security market equilibrium for
E. The equilibrium ((ĉi)i∈I, p,B) is characterized by the corresponding repre-
sentative agent equilibrium α̂ for E, i.e. (ĉi)i∈I and p satisfies (ĉit(ω))i∈I =
c∗(t, c̄t(ω), α̂) and

pt(ω) =
Bt(ω)
ΛB
t (ω)

uc(t, c̄t(ω), α̂)(6.5)
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for every (ω, t) ∈ Ω × T, respectively. Moreover, (ĉi)i∈I is a Pareto optimal
allocation.

2. If Assumption 5 is satisfied, then the ASM equilibrium is unique.
3. If Assumptions 6 and 7 are satisfied, then the set of regular economies Rδ of
Eδ is open and dense in Eδ.

Proof. Step 1 – Existence: It follows from Lemma 5 and Fixed Point Theorem
that there exists an α̂ ∈ ∆I

+ such that T (α̂) = 0, i.e., there exists a represen-
tative agent equilibrium α̂ for E (for the proof, see pp. 585-587 in Mas-Collel,
Whinston, and Green [35]). Define (ĉi)i∈I and p by (ĉit(ω))i∈I = c∗(t, c̄t(ω), α̂) and
pt(ω) = (Λ̃B

t (ω))−1uc(t, c̄t(ω), α̂) for every (ω, t) ∈ Ω × T, respectively. Then, by
Corollary 1.1 and Proposition 7, ((ĉi)i∈I, p,B) is an ASM equilibrium for E, and
(ĉi)i∈I is a Pareto optimal allocation. Suppose that the mark set Z is finite. Then,
it follows from Theorem 1, Corollary 1.1, and Proposition 7 that ((ĉi)i∈I, p,B)
constitutes a security market equilibrium for E.

Step 2 – Uniqueness: By Corollary 1.1 and Proposition 7, it is sufficient to
show that the representative agent equilibrium is unique. We use the proof given
in Dana [13]. Assume that there exist two non-collinear solutions for T (α) = 0
and let them α̂ and α̌. Since E is homogeneous of degree zero by Lemma 5, let
w.l.o.g. α̂ < α̌ with α̂i = α̌i for some i ∈ I. As α̌ is a solution for T (α) = 0,
c∗i (t, c̄t(ω), α̌) 6= 0 for every j. Therefore, Ti is strictly increasing at α̌. Let α̂ <
α < α̌. Then, 0 = Ti(α̂) < Ti(α) < Ti(α̌) = 0, which is a contradiction.

Step 3 – Determinacy : See Appendix C.4.

Appendix A. Marked Point Process and Integration Theorem

A.1. Marked Point Process. We consider a double sequence (sn, Zn)n∈N where
sn is the occurrence time of nth jump and Zn is a random variable taking its values
on a measurable space (Z,Z) at time sn. Define the random counting measure
ν(dt× dz) by

ν([0, t]×A) =
∑
n∈N

1{sn≤t, Zn∈A} ∀(t, A) ∈ [0, T †]×Z.

This counting measure ν(dt× dz) is called the Z-marked point process.
Let λ be such that

1. For every (ω, t) ∈ Ω×(0, T †], the set function λt(ω, · ) is a finite Borel measure
on Z.

2. For every A ∈ Z, the process λ(A) is P-measurable and satisfies λ(A) ∈ L1.

If the equation

E

[∫ T †

0

Ys ν(ds×A)
]

= E

[∫ T †

0

Ysλs(A) ds
]

∀A ∈ Z

holds for any nonnegative P-measurable process Y , then we say that the marked
point process ν(dt× dz) has the P-intensity kernel λt(dz).

A.2. Integration Theorem. Let ν(dt×dz) be a Z-marked point process with the
P-intensity kernel λt(dz). Let H be a P ⊗ Z-measurable function. It follows that:
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1. If we have

E

[∫ T †

0

∫
Z

|Hs(z)|λs(z) ds
]
<∞,

then the process
∫ t

0

∫
Z
Hs(z){ ν(ds× dz)− λs(dz) ds } is a P-martingale.

2. If H ∈ L(λt(dz)× dt), then the process
∫ t

0

∫
Z
Hs(z){ ν(ds× dz)− λs(dz) ds }

is a local P-martingale.

Proof. See p. 235 in Brémaud [12].

Appendix B. Ito’s Formula and Girsanov’s Theorem

B.1. Ito’s Formula. Let X = (X1, ..., Xd)′ be a d-dimensional semimartingales,
and g be a real-valued C2 function on Rd. Then, g(X) is a semimartingale of the
form

g(Xt) = g(X0) +
d∑
i=1

∫ t

0

∂

∂xi
g(Xs−) dXi

s +
1
2

d∑
i=1

d∑
j=1

∫ t

0

∂2

∂xi∂xj
g(Xs−) d〈Xic, Xjc〉

+
∑

0≤s≤t

{
g(Xs)− g(Xs−) +

d∑
i=1

∂

∂xi
g(Xs−) ∆Xi

s

}
where Xic is the continuous part of Xic and 〈Xic, Xjc〉 is the quadratic covariation
of Xic and Xjc.

B.2. Girsanov’s Theorem.

1. Let v ∈
∏d
j=1 L2 and H ∈ L1(λt(dz)× dt). Define a process Λ by

dΛt
Λt−

= −vt · dWt −
∫
Z

Ht(z) { ν(dt× dz)− λt(dz) dt} ∀t ∈ [0, T †)

with Λ0 = 1, and suppose E [ΛT † ] = 1. Then there exists a probability
measure P̃ on (Ω,F ,F) given by the Radon-Nikodym derivative

dP̃ = ΛT † dP

such that:
(a) The measure P̃ is equivalent to P.
(b) The process given by

W̃t = Wt +
∫ t

0

vs ds ∀t ∈ T

is a P̃-Wiener process.
(c) The marked point process ν(dt× dz) has the P̃-intensity kernel such that

λ̃t(dz) = (1−Ht(z))λt(dz) ∀(t, z) ∈ T× Z.

2. Every probability measure equivalent to P has the structure above.
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Appendix C. Proofs

C.1. Proofs of Steps 1 and 2 in Proof of Proposition 2. Step 1 – C̄i(p,B) =
C̃i(p,B) where p ∈ L2: First, let ci ∈ C̄i(p,B). Then, we have limn→∞ Ṽ B

T †(ϑ
i
n) =

1
B t

limn→∞ V B
T †(ϑ

i
n) = 0. Also applying integration by part yields for every (n, t) ∈

N×T,

Ṽ B
t (ϑin) = Ṽ B

0 (ϑin) +
∫ t

0

B−1
s dV B

s (ϑin) +
∫ t

0

V B
s (ϑi) dB−1

s +
∫ t

0

d[V B
s (ϑn), B−1

s ]

=
∫ t

0

B−1
s

{
ϑi0ns dBs +

∫ T †

s

ϑi1ns(dT ) dBTs + ps(c̄is − cis) ds
}

+
∫ t

0

{
ϑi0nsBs +

∫ T †

s

BTs ϑ
i1
ns(dT )

}
dB−1

s

=
∫ t

0

ϑi0ns
{
B−1
s dBs +Bs dB

−1
s

}
+
∫ t

0

∫ T †

s

ϑi1ns(dT )
{
B−1
s dBTs +BTs dB

−1
s

}
+
∫ t

0

p̃s(c̄is − cis) ds

=
∫ t

0

ϑi0ns dB̃s +
∫ t

0

∫ T †

s

ϑi1ns(dT ) dB̃Ts +
∫ t

0

p̃s(c̄is − cis) ds

=
∫ t

0

∫ T †

s

ϑi1ns(dT ) dB̃Ts +
∫ t

0

p̃s(c̄is − cis) ds

(C.1)

where [X1, X2] is the optional quadratic covariation of X1 and X2. Thus, we
have ci ∈ C̃i(p,B). Second, let ci ∈ C̃i(p,B). Then, in the same way, we obtain
ci ∈ C̄i(p,B).

Step 2 – Proof of 2 : Let ci ∈ C̄i(p,B) where (p,B) ∈ L2
++ × B̄. Then, ci ∈

C̃i(p,B) follows from Step 1. Define Π by the Riesz kernel π = Λ̃Bp. Then,
π ∈ L2

++ since Λ̃B is bounded µ-a.e. Also it follows from ci ∈ C̃i(p,B) that

E

[∫ T †

0

p̃s(c̄is − cis) ds
]

= Ẽ
B

[
lim
n→∞

Ṽ B
T †(ϑ

i
n)− lim

n→∞

∫ T †

0

∫ T †

s

ϑi1ns(dT ) dB̃Ts

]
= 0.

(C.2)

Combining (C.2) with (4.1), we obtain E [
∫ T †

0
πs(c̄is − cis) ds] = 0, and therefore

ci ∈ Ci(Π).

C.2. Proof of Proposition 7. Proof of 1. Assume that α̂ is a representative agent
equilibrium for E. Let ĉit(ω) = c∗i (t, c̄t(ω), α̂) and πt(ω) = uc(t, c̄t(ω), α̂). Then, it
follows that

∑
i∈I ĉ

i = c̄ by definition of c∗ and that ĉit satisfies the necessary and
sufficient condition for every agent’s optimality uic(t, ĉ

i
t) = 1

α̂i
πt for every i ∈ I.

Proof of 2. Assume that ((ĉi)i∈I,Π) is an Arrow-Debreu equilibrium for E. Since
(ui)i∈I are strictly increasing by Assumption 3, (ĉi)i∈I is Pareto optimal by First
Welfare Theorem (see Mas-Collel and Zame [36]). Then, by Lemma 4, there exists
α̂ ∈ ∆I

+ such that

c∗(t, c̄t(ω), α̂) = (ĉit(ω))i∈I µ-a.e.(C.3)



27

by Lemma 4. Combining (6.2) with (C.3), we have for every i ∈ I,

uc(t, c̄t(ω), α̂) = α̂iu
i
c(t, ĉ

i
t(ω)) µ-a.e.(C.4)

On the other hand, the optimality of consumption plans implies that there exists
a rescaled Lagrange multiplier α̂− ∈ {α ∈ R++ |

∑
i∈I

1
α̂−i

= 1} such that for every
i ∈ I and

uic(t, ĉ
i
t) = α̂−i πt µ-a.e.(C.5)

Comparing (C.4) with (C.5) yields uc(t, c̄t(ω), α̂) = πt(ω), which implies T (α̂) = 0.

C.3. Proof of Lemma 7. We exploit the proof given in Dana [13]. Let S be a
compact subset of ∆I

+ bounded away from the boundary. It suffices to prove the
differentiability of T̂ with respect to α on S. Define a function τ : T×R+×S → R

I

by

τi(t, c̄t, α) =
1
αi
uc(t, c̄t, α)(c∗i (t, c̄t, α)− c̄it).

Then, we have

∂τi
∂αj

(t, c̄t, α) =
∂c∗i
∂αj

(t, c̄t, α){uicc(t, c∗i )(c∗i (t, c̄t, α)− c̄it) + uic(t, c
∗
i )}.(C.6)

It follows from (6.3) that

∂c∗i
∂αj

(t, c̄t, α)uicc(t, c
∗
i ) ≤

1
αi
ujc(t, c

∗
j ) =

1
αiαj

uc(t, c̄t, α).(C.7)

It follows from (C.6),(C.7), and Assumptions 6 and 7 that∣∣∣∣ ∂τi∂αj
(t, c̄t, α)

∣∣∣∣ ≤ 1
αiαj

max
(α′)∈∆I

[uc(t, c̄t(ω), α′)]{(βi1 + 2)c̄t + βi2}.(C.8)

It follows from Lebesgue Dominated Convergence Theorem that T̂ is differentiable
with respect to α on S, and its derivative is

∂T̂i
∂αj

(α,E) = E

[∫ T †

0

∂c∗i
∂αj

(s, c̄s, α)

×
{
uicc(s, c

∗
i (s, c̄s, α)(c∗i (s, c̄s, α)− c̄is) + uic(t, c

∗
i (s, c̄s, α)

}
ds

]
Since c̄ is fixed,

∣∣∣ ∂Fi∂αj

∣∣∣ are bounded independently of (α,E) on S. Therefore, ∂T̂i
∂αj

is

continuous on ∆I
++ × Eδ.

C.4. Proof of Proposition 8.3. We use the proof given in Dana [13]. We first
show the openness ofRδ. Let E0 ∈ Rδ. Then, for any α0 ∈ δI such that T̂ (α0,E0) =
0, and that rank DαT̂ (α0,E0) = I − 1. Since {α̂}(E) is compact and DαT̂ is
continuous, there exists neighborhoods V ⊂ Eδ of E0 and V ⊂ ∆I

+ of α0 such that
DαT̂ (α,E) = I−1 for every (α,E) ∈ V ×V. Since {α̂} is u.h.c., there exists V ′ ⊂ V
such that {α̂}(V ′) ⊂ V. Thus, if E ∈ V ′, then rank DαT̂ (α0,E0) = I − 1 for every
α ∈ {α̂}(E). Therefore, V ′ ⊂ Rδ and Rδ is open in Eδ. Second, we prove the
denseness of Rδ. Let E ∈ Eδ. Pick ε > 0 such that c̄i − ε > δi µ-a.e. for every
i ∈ {1, 2, · · · , I − 1}. Let (Xε

i )i∈{1,2,··· ,I−1} such that max{‖Xi‖L2 , ‖Xi‖L∞} ≤
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ε ∀i ∈ {1, 2, · · · , I − 1}. Let A = {(ai)i∈{1,2,··· ,I−1} ∈ RI−1 : 0 ≤ ai ≤ 1 ∀i ∈
{1, 2, · · · , I − 1}}. Define a function h : ∆I ×A→ R

I by

hi(α, a) = E

[∫ T †

0

uc(s, c̄s, α)(c∗i (s, c̄s, α)− c̄is− aiXε
is) ds

]
∀i ∈ {1, 2, · · · , I − 1},

and

hI(α, a) = E

[∫ T †

0

uc(s, c̄s, α)(c∗I(s, c̄s, α)− c̄Is +
I−1∑
i=1

aiX
ε
is) ds

]
.

One easily checks that rank Dag(α, a) = I − 1. By Transversality Theorem, there
exists a ∈ A such that 0 is a regular value of h( · a) that is 0 is a regular value of
the economy in E , (c̄1 + a1X

ε
1 , c̄

2 + a2X
ε
2 , · · · , c̄I−1 + aI−1X

ε
I−1, c̄

I −
∑I−1
i=1 aiX

ε
i ),

arbitrarily close to E, since ε can be chosen arbitrarily close to zero.
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