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1 Introduction

We study the slot allocation problem of deciding how to assign slots to agents
and how much each agent should pay. We focus on the case where agents have
quasi-linear single-peaked preferences over slots, represented by the single-peaked
valuations of slots. We allow the possibility that some agent cannot get a slot,
due to the facility capacity. The allocation of time slots in the gym or golf games
matches our settings. For example, each gym member or golfer may have her most
preferred starting time, and the preferred starting time may be different across
gym members or golfers. Moreover, the capacity of gym or gold club may not be
suffi cient enough to accommodate all members.
We try to identify the rule satisfying effi ciency, strategy-proofness, and indi-

vidual rationality. An allocation specifies how slots are assigned to agents and
how much each agent should pay. A rule is a mapping from the domain, i.e., the
class of valuation profiles, to the set of allocations. An allocation is effi cient if
the assignment of slots maximizes the sum of all agents’valuations. Effi ciency
describes the property of a rule that for each valuation profile, the rule always
selects an effi cient allocation. Strategy-proofness states that for each agent and
each valuation profile, revealing one’s true valuation is a weakly dominant strat-
egy. Individual rationality states that for each agent and each valuation profile,
everyone should not be worse off than receiving no slot and paying nothing. This
property guarantees the agents’voluntary participation.
On the quasi-linear domain, the Vickrey rule, originated by Vickrey (1961),

Clarke (1971) and Groves (1973), satisfies the above-mentioned three properties.
Holmström (1979) establishes a stronger result: on the smoothly connected do-
main, the Vickrey rule is the only rule satisfying those three properties. Since
the quasi-linear domain is smoothly connected, the Holmström’s characterization
holds.
On the other hand, we are interested in the quasi-linear single-peaked domain,

i.e., the class of single-peaked valuation profiles, which is a proper subdomain of
the quasi-linear domain. The smaller a domain is, the weaker the properties of
rules are, such as effi ciency and strategy-proofness. Thus, smaller domains imply
the possibility of better rules tailored to our problems. Although the Vickrey
rule is effi cient, strategy-proof, and individually rational in the quasi-linear single-
peaked domain, it is not clear whether it is the only rule satisfying the three
properties. In fact, since the quasi-linear single-peaked domain is not smoothly
connected, the Holmström’s technique cannot be applied in our setting to establish
the characterization.
In this paper, we show that the Holmström’s result still holds on our domain:

on the quasi-linear single-peaked domain, the Vickrey rule is the only rule satisfying
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effi ciency, strategy-proofness, and individual rationality.
On the quasi-linear domain with the identical objects, Ashlagi and Serizawa

(2012) characterize the Vickrey rule in terms of strategy-proofness, anonymity in
welfare, and individual rationality. In the task-assignment settings where indi-
vidual rationality may not be respected, Yengin (2012) characterizes the class of
egalitarian-equivalent Groves mechanisms and studies different fairness properties
of the Groves mechanisms. In the queueing setting,1 Chun et al. (2014) charac-
terize the VCG mechanisms in terms of queue effi ciency, strategy-proofness, and
egalitarian equivalence. Kayıand Ramaekers (2010) and Chun et al. (2019) fo-
cus on the symmetrically balanced Vickrey mechanisms and characterize it by
outcome effi ciency, and strategy-proofness, together with some fairness axioms.
Yengin and Chun (2020) characterize some subfamilies of the VCG mechanisms
in terms of no-envy or solidarity properties.
On the non-quasi-linear domain, the minimum price (MP) rule is a natural

extension of the Vickrey rule, which associates each preference profile to a MP
equilibrium. Notice that on the quasi-linear domain, the MP equilibrium coincides
with the Vickrey allocation (Leonard, 1983). However, on the non-quasi-linear
domain, the MP equilibrium price in general has no closed-form expression as
the Vickrey payment. In the settings of identical objects, Saitoh and Serizawa
(2008) and Sakai (2008) characterize the MP rule by Pareto-effi ciency, strategy-
proofness, individual rationality, and non-negative payments. In the setting of
heterogenous objects, Morimoto and Serizawa (2015) characterize the MP rule
by Pareto-effi ciency, strategy-proofness, individual rationality, and no subsidy for
losers. In the generalized queuing settings, i.e., agents have the non-quasi-linear
common-object-ranking preferences, Zhou and Serizawa (2018) characterize the
MP rule by using the same axioms as Morimoto and Serizawa (2015).2

It is worth mentioning that Schummer and Vohra (2013), Hougaard et al.
(2014), and Chun and Park (2017) also study the slot allocation problems. Schum-
mer and Vohra (2013) study the reassignment of landing slots without transfers
and focus on the mechanisms with incentive and property rights properties. They
provide a new reassignment mechanism that respects these properties, and dis-
cuss the pros and cons between their mechanism and the reassignment algorithm
currently used by the Federal Aviation Administration. Hougaard et al. (2014)
consider the problem of assigning agents to slots on a line where each agent prefers
to be served as close as possible to her target. They consider the aggregate gap
minimizing methods that minimize the total gap between targets and assigned
slots, in terms of both deterministic and probabilistic assignments. Chun and

1Chun (2016) gives a detailed survey of the queueing problem.
2In this paper, we do not impose no subsidy or the non-negative payment as an axiom.

Instead, we assume that the payment in an allocation is always non-negative.
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Park (2017) consider a problem of assigning slots to a group of agents with the
identical unit cost. They form such a problem in the setting of bipartite graph,
and present a simple way of identifying all effi cient assignments. In addition, they
also introduce the leximin and the leximax rules and discuss their properties.
The remainder is organized as follows: Section 2 defines the model. Section

3 defines the Vickrey rule. Section 4 shows the characterization result, together
with its proof. Section 5 concludes.

2 The model

There is a non-empty finite set of agents N and a non-empty finite set of slots M .
Not getting a slot is called receiving the dummy, denoted by 0. Let L be the set
of slots, together with the dummy, i.e., L ≡ M ∪ {0}. Each agent either receives
a slot or the dummy. We denote the slot that agent i ∈ N receives by xi ∈ L. We
denote the amount that agent i pays by ti ∈ R. A generic bundle for agent i is a
pair zi ≡ (xi, ti) ∈ L× R.
Each agent has a quasi-linear preference over L × R: There is a valuation

function vi : L→ R+ such that (i) vi(0) = 0, (ii) for each m ∈M , vi(m) > 0, and
(iii) for each pair (m, t), (m′, t′) ∈ L×R, (m, t)Ri (m

′, t′) if and only if vi(m)− t ≥
vi(m

′)−t′. Let Vi be the class of agent i’s valuation functions. Let V ≡ V1×· · ·×Vn
be the quasi-linear domain. A valuation profile is an element v ≡ (vi)i∈N ∈ V .
Given v ∈ V and N ′ ⊆ N , let vN ′ ≡ (vi)i∈N ′ and v−N ′ ≡ (vi)i∈N\N ′ .
Let m∗ be the cardinality of M . Let π ≡ (π(1), . . . , π(m∗)) be a permutation

of slots in M where π(1) denotes the first slot, π(2) denotes the second slot, and
so forth. For each pair m,m′ ∈M , m >π m

′ means that slot m has a higher rank
than slot m′ according to π.

Definition 1: A valuation function vi ∈ Vi is single-peaked according to π if
there is k ∈M such that
(i) for each pair m,m′ ∈M such that k >π m >π m

′, vi(k) > vi(m) > vi(m
′).

(ii) for each pair m,m′ ∈M such that m′ >π m >π k, vi(k) > vi(m) > vi(m
′).

Let V SP
i (π) be the class of agent i’s valuation functions satisfying single-

peakedness according to π. Let V SP (π) ≡ V SP
1 (π)× · · · × V SP

n (π) be the quasi-
linear single-peaked domain according to π. It is easily seen that V SP (π)  
V . We assume that the slot permutation π is exogenously given and commonly
known by all agents, and agents’valuation functions are privately known by them-
selves.
An assignment is an n-tuple (x1, . . . , xn) ∈ Ln such that for each pair i, j ∈ N ,

if xi 6= 0 and i 6= j, then xi 6= xj, i.e., each slot is assigned to at most one agent. We
denote the set of assignments byX. An allocation is an n-tuple z ≡ (z1, . . . , zn) ≡
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((x1, t1), . . . , (xn, tn)) ∈ [L × R+]n such that (x1, . . . , xn) ∈ X. In an allocation,
the payment for each slot is non-negative. We denote the set of allocations by
Z. Given z ∈ Z, we denote its assignment and payment (components) at z by
x ≡ (x1, . . . , xn) and t ≡ (t1, . . . , tn), respectively.
A rule on V is a mapping f from V to Z. Given a rule f and v ∈ V , we denote

the bundle assigned to agent i by fi(v) ≡ (xi(v), ti(v)), where xi(v) denotes the
assigned object and ti(v) the associated payment. We write

f(v) ≡ (fi(v))i∈N , x(v) ≡ (xi(v))i∈N , and t(v) ≡ (ti(v))i∈N .

We focus on the following three properties of a rule, “effi ciency,” “strategy-
proofness,”and “individual rationality.”
First, we define the notion of effi ciency. An allocation z ∈ Z for v ∈ V

is effi cient if its assignment maximizes the sum of agents’ valuations, i.e., x ∈
argmax
x′∈X

∑
i∈N vi(x

′
i).

Effi ciency of a rule states that for each valuation profile, the rule chooses an
effi cient allocation.

Effi ciency: For each v ∈ V , x(v) is effi cient for v.
Remark 1: An allocation z ∈ Z for v ∈ Rn is Pareto-effi cient if there is no
allocation z′ ≡ (x′, t′) ∈ [L×R]n such that (i) for each i ∈ N , vi(x′i)−t′i ≥ vi(xi)−ti
with at least one strict relation, and (ii)

∑
i∈N

ti ≤
∑
i∈N

t′i.
3 A rule is Pareto-effi cient

if for each valuation profile, it selects a Pareto-effi cient allocation. On the quasi-
linear domain, effi ciency is independent of payments. A rule is effi cient if and only
if it is Pareto-effi cient.4 This result does not hold if agents have non-quasi-linear
preferences.

3There are two equivalent ways to define the Pareto-effi cient allocation: (1) An allocation
z ∈ Z for v ∈ Rn is Pareto-effi cient if there is no allocation z′ = (x′, t′) ∈ [L×R]n such that (i)
for each i ∈ N , vi(x′i)− t′i ≥ vi(xi)− ti with at least strict inequality, and (ii)

∑
i∈N

ti =
∑
i∈N

t′i; (2)

An allocation z ∈ Z for v ∈ Rn is Pareto-effi cient if there is no allocation z′ = (x′, t′) ∈ [L×R]n
such that (i) for each i ∈ N , vi(x′i)− t′i = vi(xi)− ti, and (ii)

∑
i∈N

ti <
∑
i∈N

t′i.

4Let f be a rule on V . First, we show that if f is effi cient, then f is Pareto-effi cient. By
contradiction, suppose that f is not Pareto-effi cient. By (1) in footnote 3, there is a valuation
profile v and an allocation z′ ∈ Z such that (i) for each i ∈ N , vi(x′i)− t′i ≥ vi(xi(v))− ti(v), (ii)
there is j ∈ N such that vj(x′j)− t′j > vj(xj(v))− tj(v), and (iii)

∑
i∈N t

′
j =

∑
i∈N ti(v). If we

sum up (i) side-by-side for all the agents, then by (ii) and (iii),
∑

i∈N vi(x
′
i) >

∑
i∈N vi(xi(v)),

contradicting that f is effi cient.
Second, we show that if f is Pareto-effi cient, then f is effi cient. We prove the contra-positive

argument: If f is not effi cient, then f is not Pareto-effi cient. If f is not effi cient, then there is a
valuation profile v ∈ V and an assignment x∗ ∈ X such that

∑
i∈N vi(x

∗
i ) >

∑
i∈N vi(xi(v)). Let

z′ ≡ (x′, t′) ∈ Z be such that for each i ∈ N , x′i ≡ x∗i and t
′
i ≡ vi(x

∗
i )− vi(xi(v)) + ti(v). Then,

for each i ∈ N , vi(x∗i )− t′i = vi(xi(v))− ti(v). Note that
∑

i∈N t
′
i =

∑
i∈N ti(v)+

∑
i∈N vi(x

∗
i )−
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Second, we define the incentive property of a rule. Strategy-proofness states
that no agent ever benefits from misrepresenting her valuation function.

Strategy-proofness: For each v ∈ V , each i ∈ N , and each v′i ∈ Vi, vi(xi(v)) −
ti(v) ≥ vi(xi(v

′
i, v−i))− ti(v′i, v−i).

Individual rationality states that no agent is ever assigned a bundle that makes
her worse off than she would be if she had received the dummy and paid nothing.

Individual rationality: For each v ∈ V and each i ∈ N , vi(xi(v))− ti(v) ≥ 0.

3 The Vickrey rule

In this section, we define the “Vickrey rule,”and show the famous characterization
of Vickrey rule in terms of effi ciency, strategy-proofness, and individual rationality
by Holmström (1979). In addition, we argue that Holmström’s result cannot be
applied to the quasi-linear single-peaked domain.

Definition 2: A rule f on V is called a Vickrey rule if
(i) for each v ∈ V , x(v) ∈ argmax

x′∈X

∑
i∈N vi(x

′
i).

(ii) for each i ∈ N , ti(v) ≡ σ−i(v) − σ∗−i(v) where σ−i(v) ≡ max
x∈X

∑
j∈N\{i} vj(xj)

and σ∗−i(v) ≡
∑

j∈N\{i} vj(xj(v)).

Remark 2: Let f and f ′ be two Vickrey rules. Then we have (i)
∑

i∈N vi(xi(v)) =∑
i∈N vi(x

′
i(v)), and (ii) for each i ∈ N , ti(v) = t′i(v). (i) follows from Definition

2(i) that the Vickrey assignment is effi cient. However, it may not be unique
since two assignments can be welfare-equivalent. On the other hand, the Vickrey
payment t(v) is always unique.

In the following, we define the “smooth connectedness”property of a domain,
which is introduced by Holmström (1979).

Definition 3: A domain V ′ ≡ V ′1 × · · · × V ′n ⊆ V is smoothly connected
if for each i ∈ N , each v−i ∈ V ′−i, each vi ∈ V ′i , and each v′i ∈ V ′i , there is
one-dimensional parameterized family Vi(vi, v′i) ≡ {vi(·; y) ∈ V ′i : y ∈ [0, 1]} of
valuation functions such that:
(i) for each x ∈ L, vi(x; 0) = vi(x), and vi(x; 1) = v′i(x).
(ii) for each x ∈ L and each y ∈ [0, 1], ∂vi(x; y)\∂y exists.
(iii) for each y ∈ [0, 1] and each x̂ = (x̂i, x̂−i) ∈ X∗(vi, v′i; v−i), there isK ∈ (0,+∞)
such that |∂vi(x̂i; y)\∂y| ≤ K, where X∗(vi, v′i; v−i) ≡ {x̂ ∈ X : ∃y ∈ [0, 1] s.t.
vi(x̂i; y) +

∑
j∈N\{i} vj(x̂j) = maxx̃∈X{vi(x̃i; y) +

∑
j∈N\{i} vj(x̃j)}}.∑

i∈N vi(xi(v)). Since
∑

i∈N vi(x
∗
i ) >

∑
i∈N vi(xi(v)), then

∑
i∈N t

′
i >

∑
i∈N ti(v). Thus, by

(2) in footnote 3, (x(v), t(v)) is not Pareto-effi cient, which implies that f is not Pareto-effi cient.
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It is not hard to verify that the quasi-linear domain V is smoothly connected.
Although Holmström (1979) studies the public good model, his result implies that
in our model, when each agent has quasi-linear preferences and receives at most
one slot, Theorem H holds.

Theorem H (Holmström, 1979): Let V ′ ⊆ V be smoothly connected. Then, a
rule f on V ′ satisfies effi ciency, strategy-proofness, and individual rationality if
and only if it is a Vickrey rule.

However, the quasi-linear single-peaked domain V SP (π) is not smoothly con-
nected. The following example details this point.

Example 1. Let N = {1}, M = {m1,m2}, and π = (π(1), π(2)) = (m1,m2). Un-
der our assumption on the quasi-linear domain, it holds that V SP (π) = V SP

1 (π) =

{v1(·) ∈ V1 : v1(0) = 0 and v1(m1), vi(m2) > 0 such that v1(m1) 6= v1(m2)}.
A domain V ′ ⊆ V is path connected if for each i ∈ N , each v−i ∈ V ′−i,

each vi ∈ V ′i , and each v
′
i ∈ V ′i , there is one-dimensional parameterized family

Vi(vi, v
′
i) ≡ {vi(·; y) ∈ V ′i : y ∈ [0, 1]} of valuation functions such that (i′) Condi-

tion (i) of Definition 3 holds and (ii′) for each x ∈ L and each y ∈ [0, 1], vi(x; y)
is continuous with respect to y. It is easy to see that smooth connectedness im-
plies path connectedness. Thus, the violuation of path connectedness implies the
violation of smooth connectedness.
In the following, we show that V SP (π) is not path connected. By contradiction,

suppose that V SP (π) is path connected. Now consider two valuation functions
v1(·) and v′1(·) such that v1(0) = 0, v1(m1) = 2, and v1(m2) = 1; v′1(0) = 0,
v′1(m1) = 1, and v′1(m2) = 2. Then, there is one-dimensional parameterized family
V1(v1, v

′
1) ≡ {v1(·; y) ∈ V SP (π) : y ∈ [0, 1]} of valuation functions satisfying (i′)

and (ii′).
For each y ∈ [0, 1], let h(y) ≡ v1(m1; y) − v1(m2; y). Then, by (ii′), h(·) is

continuous. Moreover, by (i′), h(0) = 1 and h(1) = −1. Thus, by the intermediate-
value theorem, there is y ∈ [0, 1] such that h(y) = v1(m1; y)− v1(m2; y) = 0, i.e.,
v1(m1; y) = v1(m2; y), contradicting v1(·; y) ∈ V SP (π). Thus, V SP (π) is not path
connected, and so it is not smoothly connected.

Example 1 implies that on the quasi-linear single-peaked domain, Theorem H
cannot be applied. The next section provides a characterization of the Vickrey
rule on the quasi-linear single-peaked domain. The following remark uses Example
1 to show that Theorem H cannot be applied to the “quasi-linear single-dipped
domain”and “the linear preference domain with two extreme peaks,”either.

Remark 3: (i) A valuation function vi ∈ Vi is single-dippedness according to π if
there is k ∈ M such that (i) for each pair m,m′ ∈ M such that k >π m >π m

′,
vi(k) < vi(m) < vi(m

′), and (ii) for each pair m,m′ ∈M such that m′ >π m >π k,
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vi(k) < vi(m) < vi(m
′). Let V SD

i (π) be the class of agent i’s valuation functions
satisfying single-dippedness according to π. Let V SD(π) ≡ V SD

1 (π)×· · ·×V SD
n (π)

be the quasi-linear single-dipped domain according to π. In Example 1, V SD(π) =

V SP (π) and so Theorem H cannot be applied to V SD(π).
(ii) A single-peaked domain V SP (π) satisfies the two-common-extreme-peakedness
of slots according to π if for each i ∈ N and each vi ∈ V SP

i (π), either vi(π(1)) >π

· · · >π vi(π(m
∗)) or vi(π(m∗)) >π · · · >π vi(π(1)). That is, the slots π(1) and π(m)

are two peaks across all the agents. Let V L(π) ⊆ V SP (π) be the linear preference
domain with two extreme peaks according to π. In Example 1, V L(π) = V SP (π)

and so Theorem H cannot be applied to V L(π).

We end this section by providing two remarks. The first remark illustrates
two proper subdomains of the quasi-linear single-peaked domains that satisfy the
smooth connectedness condition.

Remark 4: (i) A single-peaked domain V SP (π) satisfies the common-peakedness
of slots according to π if there is k ∈M such that for each i ∈ N , each vi ∈ V SP

i (π),
and each m ∈ M\{k}, vi(k) > vi(m). It means that the “peak” of valuations
over slots is the same across all the agents. The single-peaked domain with the
common-peakedness satisfies the smooth connectedness condition. Thus Theorem
H can be applied.
(ii) A single-peaked domain V SP (π) satisfies the common-ranking of slots according
to π if for each i ∈ N , each vi ∈ V SP

i (π), and each pair m,m′ ∈M with m >π m
′,

vi(m) > vi(m
′). It means that there is a common ranking of slots across all the

agents. The single-peaked domain with the common-ranking property satisfies the
smooth connectedness condition. Thus Theorem H can be applied.

The second remark illustrates a proper superdomain of the quasi-linear single-
peaked domain that satisfy the smooth connectedness condition.

Remark 5: For each pair m,m′ ∈ M , m ≥π m′ means that slot m is ranked as
high as slot m′ according to π. A valuation function vi ∈ Vi is single-plateaued
according to π if there are k, k′ ∈M with k ≥π k′ such that:
(i) for each m ∈M such that k ≥π m ≥π k′, vi(k) = vi(m) = vi(k

′).
(ii) for each m,m′ ∈M such that k′ >π m >π m

′, vi(k) > vi(m) > vi(m
′).

(ii) for each m,m′ ∈M such that m′ >π m >π k, vi(k) > vi(m) > vi(m
′).

Let V SPL
i (π) be the class of agent i’s valuation functions satisfying single-

plateauedness according to π. Let V SPL(π) ≡ V SPL
1 (π) × · · · × V SPL

n (π) be
the quasi-linear single-plateaued domain according to π. It is easily seen that
V SP (π)  V SPL(π). The quasi-linear single-plateaued domain satisfies the smooth
connectedness condition. Thus Theorem H can be applied. We conjecture that
this is the minimal domain that includes the single-peaked domain where Theorem
H can be applied.
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4 Main result

We are ready establish our main result.

Theorem 1: A rule f on V SP (π) satisfies effi ciency, strategy-proofness, and in-
dividual rationality if and only if it is a Vickrey rule.

On the quasi-linear domain, a Vickrey rule satisfies the three properties (Holm-
ström, 1979). Thus the “if”part holds. We only need to show the “only if”part:
A rule f on V SP (π) satisfying effi ciency, strategy-proofness, and individual ratio-
nality is a Vickrey rule. We borrow the proof technique from Chew and Serizawa
(2007) and apply it to our setting. We establish four lemmas to complete the
proof.
Lemma 1 follows from individual rationality. It says that an agent who gets

the dummy pays nothing. Lemma 2 follows from effi ciency. It says that any
effi cient rule selects an assignment satisfying Definition 2(i). Lemma 3 follows from
strategy-proofness. It says that if an agent truncates her valuations by following
the “zi-favoring transformation,”the new bundle that the agent gets remains the
same as her original bundle. Lemma 4 says that if a rule satisfies effi ciency,
strategy-proofness, and individual rationality, then the payment of each agent is
equal to the expression given in Definition 2(ii). In consequence, Lemmas 2 and
4 together establish the “only if”part. We relegate the complete proof to Section
4.1.
A rule f on V satisfies budget balance if for each v ∈ V ,

∑
i∈N ti(v) = 0. In

general a Vickrey rule on the quasi-linear domain does not satisfy budget balance.
It is also easy to see that a Vickrey rule on V SP (π) does not satisfy budget balance
either. Therefore, from Theorem 1, we have the following result.

Corollary 1: There is no rule f on V SP (π) satisfying effi ciency, strategy-proofness,
individual rationality, and budget balance.

In the following, we discuss the indispensability of the three axioms. We show
that the “only if”part of Theorem 1 fails if one of the axioms is dropped.

Example 2: (i) (Dropping effi ciency) Let f be the “no-trade rule” such that
for each v ∈ V SP (π), it assigns (0, 0) to each agent. This rule satisfies strategy-
proofness and individual rationality, but not effi ciency.

(ii) (Dropping strategy-proofness) A rule f on V SP (π) is the zero-payment rule if
for each v ∈ V SP (π), x(v) ∈ argmax

x′∈X

∑
i∈N vi(x

′
i), and for each i ∈ N , ti(v) = 0.

This rule satisfies effi ciency and individual rationality, but not strategy-proofness.

(iii) (Dropping individual rationality) Let n = m + 1 and e = (ei)i∈N ∈ RN
++. A

rule f on V SP (π) is a Vickrey rule with a positive entry fee e if for each v ∈ V ,
x(v) ∈ argmax

x′∈X

∑
i∈N vi(x

′
i), and for each i ∈ N , ti(v) ≡ σ−i(v) − σ∗−i(v) + ei. A
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Vickrey rule with positive entry fee e satisfies effi ciency and strategy-proofness.
Since n = m+1, there is i ∈ N such that xi = 0. Since i pays a positive entry fee
ei > 0, then 0 > vi(0)− ei = −ei, violating individual rationality.

4.1 Proof of Theorem 1

In the following, we state four lemmas and show their proofs to formally establish
the “only if”part of Theorem 1.
Since it is easy to verify that Lemma 1 and Lemma 2 hold, we omit their

proofs.

Lemma 1: Let f satisfy individual rationality. Let v ∈ V SP (π). Then, for each
i ∈ N , if xi(v) = 0, then ti(v) = 0.
Lemma 2: Let f satisfy effi ciency. Let v ∈ V SP (π). Then x(v) ∈ argmax

x′∈X

∑
i∈N vi(x

′
i).

Lemma 3 shows the implication of strategy-proofness via “zi-favoring transfor-
mation.”

Definition 4: Given zi = (xi, ti) ∈ M × R+ and vi ∈ V SP (π), v′i ∈ V SP (π) is a
zi-favoring transformation of vi at zi if for each y ∈M\{xi}, v′i(xi)− v′i(y) > ti.

Let I(vi, zi) be the set of zi-favoring transformations of vi at zi.

Lemma 3: Let f satisfy strategy-proofness. Let v ∈ V SP (π). Let i ∈ N , xi(v) ∈
M , and v′i ∈ I(vi, fi(v)). Then fi(v′i, v−i) = fi(v).

Proof : Let v′ = (v′i, v−i) and y = xi(v
′). Strategy-proofness implies

vi(xi(v))− ti(v) ≥ vi(y)− ti(v′). (1)

v′i(y)− ti(v′) ≥ v′i(xi(v))− ti(v). (2)

In the following, we show that xi(v) = y. By contradiction, suppose that xi(v) 6= y.
Since

ti(v)− ti(v′) ≥ v′i(xi(v))− v′i(y) (by (2))

> ti(v) (by v′i ∈ I(vi, fi(v)))

then ti(v′) < 0, contradicting f(v′) ∈ Z.
Thus xi(v) = y. Then by (1), ti(v′) ≥ ti(v), and by (2), ti(v) ≥ ti(v

′). Thus
ti(v) = ti(v

′) and so fi(v′i, v−i) = fi(v). Q.E.D.

Lemma 4: Let f satisfy effi ciency, strategy-proofness, and individual rationality.
Let v ∈ V SP (π). Then, for each i ∈ N , ti(v) = σ−i(v)− σ∗−i(v).
Proof : Let i ∈ N . If xi(v) = 0, by effi ciency, it is easy to see that σ−i(v) =
σ∗−i(v). By individual rationality and Lemma 1, ti(v) = 0 = σ−i(v) − σ∗−i(v).
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Let xi(v) ∈ M . To show ti(v) = σ−i(v) − σ∗−i(v), we show the impossibility of
σ−i(v)− σ∗−i(v) < ti(v) (Case 1) or 0 ≤ ti(v) < σ−i(v)− σ∗−i(v) (Case 2).
Case 1: σ−i(v)− σ∗−i(v) < ti(v)

By Definition 2, σ−i(v)− σ∗−i(v) ≥ 0. Let v′i ∈ V SP
i be such that:

(1-i) 0 ≤ σ−i(v)− σ∗−i(v) < v′i(xi(v)) < ti(v),
(1-ii) for each y ∈M\{xi(v)}, 0 < v′i(y) < v′i(xi(v))− σ−i(v) + σ∗−i(v).

5

Let v′ = (v′i, v−i) and y = xi(v
′). In the following, we show that xi(v) = y. By

contradiction, suppose that xi(v) 6= y. We consider two cases.
Case A: y = 0.
In this case, v′i(y) = 0, and so v

′
i(y)+

∑
j∈N\{i} vj(xj(v

′)) =
∑

j∈N\{i} vj(xj(v
′)).

Since ∑
j∈N\{i}

vj(xj(v
′)) ≤ σ−i(v) (by v−i′ = v−i)

< σ∗−i(v) + v′i(xi(v)) (by (1-i))

≤ max
x∈X

(
∑

j∈N\{i}

vj(xj) + v′i(xi)),

then v′i(y) +
∑

j∈N\{i} vj(xj(v
′)) < max

x∈X
(
∑

j∈N\{i} vj(xj) + v′i(xi)), contradicting

that x(v′) is effi cient.
Case B: y ∈M\{xi(v)}.
In this case, we have

v′i(y) +
∑

j∈N\{i}

vj(xj(v
′)) ≤ v′i(y) + σ−i(v)

< v′i(xi(v)) + σ∗−i(v) (by (1-ii))

≤ max
x∈X

(
∑

j∈N\{i}

vj(xj) + v′i(xi)).

Thus v′i(y) +
∑

j∈N\{i} vj(xj(v
′)) < max

x∈X
(
∑

j∈N\{i} vj(xj) + v′i(xi)), contradicting

that x(v′) is effi cient.
Altogether, it holds that xi(v) = y = xi(v

′). By individual rationality, ti(v′) ≤
v′i(xi(v)). By (i), ti(v

′) ≤ v′i(xi(v)) < ti(v). Thus vi(y)− ti(v′) > vi(xi(v))− ti(v),
contradicting strategy-proofness.
Case 2: 0 ≤ ti(v) < σ−i(v)− σ∗−i(v)
In such a case, there is δ > 0 such that ti(v) + δ < σ−i(v)− σ∗−i(v). It is easy

to see that there is v′i ∈ V SP
i such that

(2-i) v′i(xi(v)) = ti(v) + δ,

(2-ii) for each y ∈M\{xi(v)}, 0 < v′i(y) < δ.

5Note that by (i), v′i(xi(v))− σ−i(v) + σ∗−i(v) > 0.
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Thus, for each y ∈M\{xi(v)}, we have v′i(xi(v))− v′i(y) > ti(v). Since ti(v) ≥
0, v′i ∈ I(vi, fi(v)). By Lemma 3, fi(v) = fi(v

′) where v′ = (v′i, v−i).
First, we show that

∑
j∈N\{i} vj(xj(v

′)) ≤ σ∗−i(v). By contradiction, sup-
pose that

∑
j∈N\{i} vj(xj(v

′)) > σ∗−i(v). Recall that xi(v) = xi(v
′). Let x =

(xi(v), x−i(v
′)) ∈ X. Then we have∑

i∈N
vi(xi) =

∑
j∈N\{i}

vj(xj(v
′)) + vi(xi(v)) > σ∗−i(v) + vi(xi(v)),

which implies that x(v) /∈ argmax
x′∈X

∑
i∈N vi(x

′
i), contradicting effi ciency.

Thus we have∑
j∈N\{i}

vj(xj(v
′)) + v′i(xi(v)) ≤ σ∗−i(v) + v′i(xi(v))

< σ−i(v) (by (2-i))

≤ max
x∈X

(
∑

j∈N\{i}

vj(xj) + v′i(xi))

Thus x(v′) /∈ argmax
x∈X

(
∑

j∈N\{i} vj(xj) + v′i(xi)), contradicting effi ciency. Q.E.D.

5 Concluding remarks

We consider the problem of deciding how to assign slots to agents and how much
each agent should pay, with particular attention to the situation where agents
have single-peaked valuations of slots. We aim at identifying the rules satisfying
effi ciency, strategy-proofness, and individual rationality. Holmström (1979) shows
that in the domain satisfying the smooth connectedness condition, the Vickrey
rule is the unique rule that satisfies above-mentioned three properties. Since quasi-
linear domain is a smoothly connected domain, Holmström’s characterization can
be applied. Nevertheless, the quasi-linear single-peaked domain is not connected.
Therefore it is not clear whether the above characterization still holds. We es-
tablish that on the quasi-linear single-peaked domain, the Vickrey rule is still the
only rule satisfying effi ciency, strategy-proofness, and individual rationality.
Demange et al. (1986) provide two forms of auctions which implement an

allocation selected by the Vickrey rule in the quasi-linear environment. These
auctions work as well for the quasi-linear single-peaked domain. It is interesting
to see whether the single-peakedness helps design auctions with a simpler form.
Morimoto and Serizawa (2015) show that the minimum price rule is a natural
extension of the Vickrey rule to the non-quasi-linear environment, which can be
implemented by the Serial Vickrey mechanism of Zhou and Serizawa (2020). It is
open to see whether the minimum price rule is still the only rule that satisfies our
three axioms on the non-quasi-linear singled-peaked domain.
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