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1 Introduction

Governments in many countries conduct auctions to allocate social resources. The
most important and innovative examples are spectrum license auctions in many
countries including most of the OECD. They auction off several licenses simulta-
neously and often generate enormous revenue. For instance, in the 2000 British
3G spectrum license auctions, the revenue from selling five licenses amounted to
2.5% of the UK’s GNP (Binmore and Klemperer, 2002). Those auctions also have
considerable impacts on industry development, and so it is vitally important to
design governments’auctions to achieve their goals. However, such large-scale auc-
tions cause violations of quasi-linearity and small (or continuous) price increment.
These are the basic assumptions of auction theory on which auction designs are
based. We analyze the effects of these violations on the performance of well-known
auctions and the implications for auction design.
Effi ciency is a central goal of government auctions. It requires that objects

be given to those who value them most. However, in many cases, information
such as preferences over objects is only privately known by agents. Thus, to
attain effi ciency, it is indispensable for auction mechanisms to directly or indirectly
extract true information from agents. Strategy-proofness is such a requirement for
direct mechanisms, and it gives agents no incentive to manipulate information in
the sense that revealing true information is a dominant strategy for each agent.
We focus on the setting in which each agent has unitary demand. In this

setting, there is a minimum price equilibrium (MPE) whose price (vector) is a
unique and coordinate-wise minimum among all equilibrium prices. The MPE
mechanism, the direct mechanism choosing an MPE allocation for each profile
of agents’ preferences, is the only mechanism that satisfies effi ciency, strategy-
proofness and other essential requirements such as individual rationality and no
subsidy (Holmstrom, 1979; Morimoto and Serizawa, 2015). Moreover, the MPE
mechanism maximizes revenue among mechanisms satisfying strategy-proofness,
individual rationality, no subsidy and equal treatment of equals for each preference
profile (Kazumura et al., 2020). Thus, if an auction mechanism duplicates the
outcome of the MPE mechanism, it achieves important goals for governments.
In quasi-linear environments where agents’preferences are quasi-linear, there

are three representative formats of auctions that find the MPEs. These auctions
are fundamental to the auction theory literature and provide the basic ideas of
many auction designs in an even more general environment, e.g., agents have
multi-unit demand (Gul and Stacchetti, 2000; Ausubel, 2006; Sun and Yang,
2009). The first one is a sealed-bid auction, called the “Vickrey mechanism.”̇The
MPE coincides with the Vickrey allocation under quasi-linearity (Leonard, 1983).
Demange et al. (1986) provide another two auction formats, exact ascending
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(EA) auction and approximate ascending (AA) auction. For the EA auction, they
assume that the price increment coincides with the unit of agents’valuations, for
example, agents’valuations and price increments are both integers and show that
under such an assumption, the EA auction generates an MPE. For the AA auction,
originating from the salary adjustment process in Crawford and Knoer (1981), they
assume that the increment is small and find that the AA auction generates a price
that deviates the MPE price coordinate-wise within some bounds. In other words,
the AA auction approximately duplicates the MPE mechanism.
However, the assumption of quasi-linearity is dubious for the government auc-

tions cited above. A preference satisfies quasi-linearity with respect to a good if
the expenditure on the good is so much smaller than an agent’s income or wealth
that its income effect is negligible. However, in many government auctions, bid-
ders pay enormous amounts and face financial constraints. These factors make
their preferences far from quasi-linear.
The assumption that the increment is small and coincides with the valuation

unit is also unreasonable. Agent valuations are primitive data independent of
auctions and can be any real numbers or any amounts measured by monetary
units. In contrast, price increments are set in advance, as a part of auction design.
The speed of auctions crucially depends on the price increments, and in practice,
they are set large enough that the auction concludes within a reasonable time.
Typically, the price increments are much larger than the unit of agents’valuations.
Many auction mechanisms in the literature and practice are based on the

implicit conjecture that even without quasi-linearity and the coincidence of
increment and valuation units, the above three auction formats duplicate or ap-
proximate the MPE mechanism, and preserve effi ciency and strategy-proofness.
However, we demonstrate that such a conjecture is far from validated.
First, to analyze the Vickrey mechanism, we generalize agents’valuations over

objects for non-quasi-linear environments. We define the generalized valuation of
an object as an agent’s willingness to pay for the object from the point where
she obtains no object and pays nothing. Then, we define the generalized Vickrey
mechanism by replacing the valuations in the formula of the Vickrey allocation
with the generalized valuations. We show that in non-quasi-linear environments,
the generalized Vickrey mechanism fails to find the MPE, is far from effi cient, and
provides agents with strong incentives to manipulate.
Second, we analyze whether an EA auction will work without the coincidence

of increment and valuations’unit. We exemplify that even in quasi-linear envi-
ronments, for any price increment larger than the units of agents’valuations, the
EA auction overshoots the MPE prices by an arbitrarily large distance, generates
allocations that are far from effi cient, and provides agents with strong incentives
to manipulate. The auction mechanisms targeting MPEs in quasi-linear environ-
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ments, as proposed by, e.g., Mishra and Parkes (2009), Andersson and Erlanson
(2013), and Liu and Bagh (2019), are all based on the coincidence of increment
and valuation units. Our negative results extend to their auction mechanisms by
constructing similar examples.
Third, we analyze whether an AA auction will work without quasi-linearity and

the coincidence of increment and valuation units. We exemplify that in non-quasi-
linear environments, the AA auction overshoots and undershoots the MPE prices
by an arbitrarily large distance. Thus, in contrast to the quasi-linear environments,
the AA auction fails to approximate the MPE mechanism. We also exemplify that
the AA auction generates allocations that are far from effi cient and provides agents
with strong incentives to manipulate.
In addition, we also discuss the implications of our negative results for multi-

object auction models with agents with multi-unit demand and matching with
contracts models at the end of this paper.
The remainder is organized as follows: Section 2 defines the model and MPEs.

Section 3 defines conditions for ineffi ciency, manipulability, effi ciency and strategy-
proofness. Section 4 reviews the auctions for MPEs in the quasi-linear environ-
ment. Section 5 exemplifies that without quasi-linearity and the coincidence of
increment and valuation units, the auctions shown in Section 4 fail to identify the
MPEs and are substantially ineffi cient and manipulatable. Section 6 concludes
the paper and discusses the implications of the results obtained in Section 5.

2 The model and minimum price equilibrium

There is a finite set of agents N and a finite set of heterogeneous objects M . Not
receiving an object is called receiving the dummy, denoted by 0. Let L ≡M ∪{0}.
Each agent either receives an object or the dummy.
Agents have preferences on the consumption space L×R. We abuse language

and identify a preference of agent i with her utility representation ui.

Definition 1: A utility function ui : L× R→ R is general if:
(i) For each l ∈ L, ui(l, ·) is continuous and strictly decreasing in R.
(ii) For each pair l, l′ ∈ L, each t ∈ R, there is t′ ∈ R such that ui(l, t) = ui(l

′, t′).

Let U be the set of general utility functions and u ≡ (ui)i∈N ∈ Un be a utility
profile.

Definition 2: A utility function ui ∈ U is quasi-linear if there is a valuation
function vi : L→ R such that for each (l, pl) ∈ L× R, ui(l, pl) = vi(l)− pl.
Each quasi-linear utility function ui can be represented by a valuation function

vi. We assume, w.o.l.g., that for each i ∈ N , vi(0) = 0. Let UQL be the set of
quasi-linear utility functions. Notice that UQL  U .
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For each agent i ∈ N , let xi ∈ L be her assigned object. An assignment
x ≡ (xi)i∈N ∈ LN is a list of individually assigned objects such that except for the
dummy, no two agents obtain the same object, i.e., if xi 6= 0 and i 6= j, xi 6= xj.
Let X be the set of assignments.
Agent i′s demand set at price p ∈ RL+ is defined as Di(p) ≡ {l ∈ L : ui(l, pl) ≥

ui(l
′, pl′),∀l′ ∈ L}. We assume, w.o.l.g., that the price of the dummy is zero and

the reserve prices of all the objects are zero.

Definition 3: A pair (x, p) ∈ X × RL+ is an equilibrium if:
(i) For each i ∈ N , xi ∈ Di(p).
(ii) For each l ∈M , if pl > 0, there is i ∈ N such that xi = l.

When agents have general utility functions, there is an equilibrium, and the set
of equilibrium prices is a complete lattice (Demange and Gale, 1985). Thus, there
is aminimum price equilibrium (MPE) whose price is unique and coordinate-
wise minimum among all equilibrium prices. For each utility profile u ∈ Un, let
pmin(u) be the MPE price. Although the MPE price is unique, the corresponding
assignment may not be unique since indifference is allowed. However, for each
agent, her assignment at any MPE is welfare-equivalent: given a utility profile u,
if (x, pmin(u)) and (x′, pmin(u)) are two MPEs, then ui(xi, pminxi

) = ui(x
′
i, p

min
x′i
).

3 Effi ciency and incentive-compatibility

This section studies the properties of (direct) mechanisms, which are shown to be
cornerstones of practical auction design.
An allocation z ≡ (xi, ti)i∈N ∈ X×RN is a list of individually assigned objects,

paired with the corresponding payments. Let Z be the set of allocations. A
mechanism f is defined as a function from Un to Z that maps to each utility profile
u an allocation z. For each agent i ∈ N , let xi(u) be the object assigned and ti(u)
be the associated payment specified by mechanism f , and let fi(u) = (xi(u), ti(u)).
First, we introduce effi ciency.

Effi ciency: An allocation z ∈ Z is effi cient for u ∈ Un if there is no z′ ∈ Z such
that.
(i) for each i ∈ N , ui(z′i) ≥ ui(zi) with at least one strict inequality,
(ii)
∑
i∈N

ti ≤
∑
i∈N

t′i.

A mechanism f is effi cient if for each u ∈ Un, f(u) is effi cient for u.
A mechanism f on (UQL)n is effi cient if and only if for each u ∈ (UQL)n,

x(u) ∈ argmax
x∈X

∑
i∈N vi(xi).

1 However, this result typically does not hold for

general utility functions (Zhou and Serizawa, 2018).

1See footnote 29 in Zhou and Serizawa (2018) for a complete proof of this statement.
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We introduce variants of effi ciency. It allows the allocation to be ineffi cient
but per capita ineffi ciency to be bounded.

r-effi ciency:2 Given r ∈ R+, an allocation z ∈ Z is r−ineffi cient for u ∈ Un if
there is z′ ∈ Z such that
(i) for each i ∈ N , ui(z′i) > ui(zi), and
(ii)

∑
i∈N

ti + r · |N | ≤
∑
i∈N

t′i,

and z are r−effi cient if no such z′ exists. A mechanism f is r−ineffi cient if there
is u ∈ Un such that f(u) is r−ineffi cient for u, and f is r−effi cient if for each
u ∈ Un, f(u) is r−effi cient for u.
In the case of r = 0, r−effi ciency coincides with effi ciency. For a small r > 0,

r−effi ciency is “approximate effi ciency.”However, given a large r > 0, r−effi ciency
is a rather weak requirement.
Next, we define the incentive properties of mechanisms. “Manipulability”

states that an agent benefits from misrepresenting her utility function, i.e., a
mechanism f on Un is manipulable if there are a utility function profile u ∈ Un,
an agent i ∈ N and u′i ∈ U such that ui(fi(u′i, u−i)) > ui(fi(u)). Strategy-proofness
states that a mechanism is not manipulable.

Strategy-proofness: For each ui ∈ U , each i ∈ N , and each u′i ∈ U , ui(fi(u)) ≥
ui(fi(u

′
i, u−i)).

We also introduce variants of manipulability and strategy-proofness. Given
r ∈ R+, “r-manipulability”states that an agent benefits more than r from mis-
representing her utility function, in terms of the payment, paired with the object
under truth telling.

r-manipulability: Given r ∈ R+, a mechanism f on Un is r-manipulable if
there are a utility function profile u ∈ Un, an agent i ∈ N and u′i ∈ U such that
ui(fi(u

′
i, u−i)) > ui(xi(u), pi(u)− r).

r−strategy-proofness: Given r ∈ R+, a mechanism f on Un is r−strategy-proof
if f on Un is not r-manipulable.
If r = 0, r−strategy-proofness is exactly strategy-proofness. For a small

r > 0, r−strategy-proofness is “approximate strategy-proofness,” that is, each
agent has only a small incentive to manipulate. However, given a large r > 0,
r−manipulability states that an agent may have a strong incentive to manipulate
and thus implies that the mechanism cannot be implemented.
An MPE mechanism is a function that maps to each utility profile an MPE.

When agents have quasi-linear utility functions, the MPE mechanism is equivalent
to the Vickrey mechanism, which associates with each quasi-linear utility profile

2Our definition is in the spirit of that of the approximate core in classical general equilibrium
theory, when the size of the coalition is the set of all agents; see, e.g., Hildenbrand et al. (1973).
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a Vickrey assignment and payment (Leonard, 1983). The MPE (Vickrey) mecha-
nism is the unique mechanism satisfying effi ciency, strategy-proofness, individual
rationality, and no subsidy (Holmstrom, 1979). Such a characterization of MPE
mechanism holds for the general utility functions (Morimoto and Serizawa, 2015).

4 Auctions for MPEs with quasi-linear utility functions

In this section, we introduce three well-known auction formats designed to imple-
ment MPEs under various assumptions in the quasi-linear environment.

4.1 The sealed-bid auction

In the quasi-linear environment, the MPE allocation coincides with the Vickrey
allocation (Leonard 1983). Thus, the MPE can be characterized by a closed-form
expression. Formally, we have the following results.

Fact 1: Let u ∈ (UQL)n and (x∗, pmin(u)) be an MPE. Then,
(i) x∗ ∈ argmax

x∈X

∑
i∈N vi(xi).

(ii) If l ∈ M is unassigned, pminl (u) = 0, and if l ∈ M is assigned to agent i,
pminl (u) = max

x∈X

∑
j∈N\{i} vj(xj)−

∑
j∈N\{i} vj(x

∗
j).

Fact 1 indicates that a sealed-bid auction can be used to implement an MPE
(Leonard, 1983). In the auction, each bidder reports all her valuations of the
objects to the auctioneer. Then, the auctioneer specifies the assignment and price
to bidders in the formula presented in Fact 1.
The mechanism induced by this sealed-bid auction is exactly the MPE mech-

anism, and so it is effi cient and strategy-proof.
In Section 5.1, we show that the sealed-bid auction or its generalized variant

fails to find the MPE and to be effi cient and strategy-proof.

4.2 The exact ascending auction

Demange et al. (1986) provide an exact ascending auction that finds an MPE
price. The idea of this auction is to iteratively eliminate the set of objects that
are “overdemanded”by raising their prices.

Definition 4: A nonempty set of objects M ′ ⊆M is overdemanded at p if

|{i ∈ N : Di(p) ⊆M ′}| > |M ′| .

A set of objects M ′ is minimally overdemanded at p if M ′ is overdemanded at p
and no proper subset of M ′ is overdemanded at p.

Now, we define the exact ascending auction.
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The exact ascending (EA) auction: Let d > 0 be the increment.
Starting with reserve prices, each agent reports her demand set at the current

price. If there is a set of objects that are minimally overdemanded, then the
auctioneer raises the prices of those objects by d. Otherwise, the auctioneer stops
the auction at the current price.

Demange et al. (1986) assume that agents’valuations are discrete and mul-
tiples of the increment, i.e., the increment coincides with unit of valuation unit.
(Hereafter, coincidence assumption) In other words, they focus on the class of
utility functions, UQLd ≡ {ui ∈ UQL : vi(L) ⊆ d · N}. They obtain the following
result for utility profiles in this class.

Fact 2: Let d > 0 and u ∈ (UQLd)n. Then, the EA auction with increment d finds
an MPE price for u in a finite number of steps.

The EA mechanism with increment d is a function that maps to each
utility profile the outcome of the EA auction with increment d for that profile.

Fact 3: Let d > 0. The EA mechanism with increment d on (UQLd)n coincides
with the MPE mechanisms on (UQLd)n, and so it satisfies effi ciency and strategy-
proofness.

Compared with sealed-bid auctions, one merit of EA auctions is that the
price formation process is transparent to all bidders, i.e., all bidders can see how
prices change in the auction and where the prices stop changing. Researchers
design different formats of auctions to improve the speed of finding an MPE in
the quasi-linear environment, see, e.g., Mishra and Parkes (2009) and Anders-
son and Erlanson (2013). They explicitly assume that agents’ valuations and
increment\decrement are both integers.
Note that the coincidence assumption is crucial to find the MPE price in above-

mentioned works. We discuss these points in Section 5.2.

4.3 The approximate ascending auction

Demange et al. (1986) propose another type of auction, the approximate ascending
auction, that finds an “approximate”equilibrium price coordinate-wise close to the
MPE price. This auction is introduced by Crawford and Knoer (1981).

The approximate ascending (AA) auction: Let d > 0 be the increment.
Initially, all the agents are uncommitted and stand in a queue. Agents are called
one by one to bid. When agent i is called, she has the following three options.
Option 1 is to bid on an unassigned object l. This option commits agent i to
object l at its reserve price.
Option 2 is to bid on an object l that is tentatively assigned to some other agent
j at price pl. This option increases the price of object l by d, commits agent i to
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object l at price pl + d and drives agent j back into the queue of uncommitted
agents.
Option 3 is to drop out by bidding on the dummy.
The auction terminates when all uncommitted agents drop out.

Note that the bidding queue can be formed in many ways. In essence, it contains
two parts. The first part is the initial order when agents stand in a queue. The
permutations of agents make n! variants. The second part concerns treating agents
when driven back into the queue of uncommitted agents. A natural rule is to place
an agent at the end of the queue when driven back. Other rules include placing the
driven back agent first in the queue, second in the queue, and so forth. Moreover,
different agents may be treated differently. Thus, the number of variants of queues
is much more than n!. The outcomes of the AA auction also depend on how we
form the bidding queue.
Additionally, note that when a bidder is called, she is supposed to bid on an

object from her demand set at the price she faces. Her demand set may contain
several objects. In that case, she needs to choose one object among them on which
to bid. The outcomes of the AA auction depend on such choices of bidders even
if the utility function profile is fixed.
It is known that when prices vary discretely and agents’valuations of objects

are arbitrary real numbers, an equilibrium may not exist. Moreover, the outcome
of the AA auction may not be an equilibrium even if it exists. Thus, we introduce
a concept of approximate equilibrium, the “ε−equilibrium.”
Given ε ≥ 0, agent i’s ε−demand set at p is given by:

Dε
i (p) ≡ {l ∈ L : ui(l, pl) ≥ ui(0, 0), and ∀l′ ∈M,ui(l, pl) ≥ ui(l

′, pl′ + ε)}.

An object in Dε
i (p) approximately maximizes agent i’s welfare at price p for small

ε, and when ε = 0, Dε
i (p) = Di(p).

Definition 5: A pair (x, p) ∈ X × ε · NL+ is an ε−equilibrium if:
(i) For each i ∈ N , xi ∈ Dε

i (p).
(ii) For each l ∈M , if pl > 0, there is i ∈ N such that xi = l.

Definition 5(i) states that each agent receives an object in her ε−demand set.
Definition 5(ii) coincides with Definition 3(ii). When ε = 0, an ε−equilibrium is
an equilibrium. In Definition 5, p ∈ ε ·NL+ and so prices vary discretely for ε > 0.
In general, any ε−equilibrium is ε−effi cient.3
In the following, we set ε = d, where d represents the increment, and replace

the ε−equilibrium with the d−equilibrium.
3Suppose that there is an ε−equilibrium that is not ε−effi cient. Thus there is z′ ∈ Z such

that (i) for each i ∈ N , ui(z′i) > ui(zi), and (ii)
∑
i∈N

ti + ε · |N | ≤
∑
i∈N

t′i. By (ii), there is i ∈ N

such that t′x′i ≥ px′i + ε. Thus by (i), ui(x
′
i, px′i + ε) ≥ ui(z

′
i) > ui( zi), contradicting xi ∈ Dε

i (p).
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Fact 4: Let u ∈ (UQL)n, d > 0, and the bidding queue q be given. Suppose that
each uncommitted agent arbitrarily bids on an object from her demand set at the
price proposed to her.
(i) The AA auction with increment d and bidding queue q finds an d−equilibrium
in finitely many steps.
(ii) (Deviation bound) Let p(u) be the price generated by the AA auction in
(i). For each l ∈M ,

∣∣pl(u)− pminl (u)
∣∣ ≤ d ·min{|M | , |N |}.

In contrast to Fact 2, Fact 3 allows agents’ valuations to be arbitrary real
numbers and hence can have different measurement units from the increment.
As noted above, the outcomes of the AA auction depend on the queueing rules

and bidders’choices from their demand sets even if the utility function profile is
fixed. Fact 4 (ii) states that for any quasi-linear utility profile, the deviation∣∣pl(u)− pminl (u)

∣∣ is bounded by d ·min{|M | , |N |} regardless of queueing rules and
bidders’choices from their demand sets. Thus, as d goes to zero, the outcome of
the AA auction with increment d converges to an MPE price.
TheAA mechanism with increment d and bidding queue q is a function

that maps to each utility profile the outcome of the AA auction with increment d
and bidding queue q for that profile. The AA mechanism is neither effi cient nor
strategy-proof. However, Fact 5 holds.

Fact 5 (Roughgarden, 2014): Let d > 0, k = 2min{|M | , |N |}, and a bidding
queue q be arbitrarily given. The AA mechanism with increment d and bidding
queue q on (UQL)n is d−effi cient and k · d−strategy-proof.

Fact 5 implies that the AA auction works well for quasi-linear utility functions
even without the assumption of the same measurement unit. Nevertheless, it fails
to work without assuming quasi-linearity. We discuss this point in Section 5.3.

5 Implementability of MPE for general utility functions

5.1 The sealed-bid auction

First, we investigate the possibility of generalizing the sealed-bid auction of Fact
1 to implement MPEs for general utility functions. The formula in Fact 1 is based
on valuations. Thus, to conduct the sealed-bid auction using this formula for
general utility function profiles, the valuations need to be generalized. A natural
generalization of the valuation of an object is the agent’s willingness to pay for
that object from the dummy with no payment. Formally, for each i ∈ N , each
ui ∈ U , and each l ∈ L, let Vi(l) ∈ R be the generalized valuation of an object l
such that ui(l, Vi(l)) = ui(0, 0). For a quasi-linear utility function, for each l ∈ L,
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Vi(l) = vi(l), an Vi(0) = vi(0) = 0. “Generalized Vickrey allocations” employ
generalized valuations to reformulate Fact 1.

Definition 6: A pair (xV , pV ) ∈ X × RL+ is a generalized Vickrey allocation if
(i) xV ∈ argmax

x∈X

∑
i∈N Vi(xi),

(ii) if l ∈ M is unassigned, pVl = 0 and if l ∈ M is assigned to agent i, pVl =
max
x∈X

∑
j∈N\{i} Vj(xj)−

∑
j∈N\{i} Vj(x

V
j ).

Let pV (u) be the generalized Vickrey payment for utility profile u.

Proposition 1: There is u ∈ Un such that (i) the MPE price pmin(u) is differ-
ent from the generalized Vickrey payment pV (u), and (ii) no MPE assignment
coincides with the generalized Vickrey assignment xV (u).

We demonstrate Proposition 1 by Example 1 below. This 2-object and 3-agent
example can be easily generalized to the cases of more agents and objects.

Example 1: Let M = {a, b} and N = {1, 2, 3}. Let r > 0 and u ∈ U3 be such
that:
(1) V1(a) = r and V1(b) = 2r.
(2) V2(a) = 20r, V2(b) = 10r, u2(a, r) = u2 (b, 0) = u2(0,−3r), and u2(0,−1) =
u2(a, 3r) = u2(b, 2r) = u2(0,−r).
(3) V3(a) = 10r, V3(b) = 30r, u3(a, 3r) = u3(b,−2r), and u3(a, 8r) = u3(b, 2r).
By the generalized valuations in (1), (2), and (3), pV (u) = (pV0 , p

V
a , p

V
b ) =

(0, r, 2r), and there is a unique generalized Vickrey assignment xV = (xV1 , x
V
2 , x

V
3 ) =

(0, a, b).
By the generalized valuations in (1) and utility functions in (2) and (3),

pmin(u) = (pmin0 , pmina , pminb ) = (0, 3r, 2r) and x = (x1, x2, x3) = (0, b, a) is the
unique MPE assignment. Thus, pmin(u) 6= pV (u) and x 6= xV . 4

Proposition 1 states that the sealed-bid auction for the generalized Vickrey
allocation may not be an MPE, and in some cases, it is even not an equilibrium;
see, e.g., (xV , pV ) in Example 1.
In the following, we discuss r−effi ciency and r−strategy-proofness of the gen-

eralized Vickrey mechanism.
Given r > 0, consider the economy in Example 1. Let z1 = (0,−0.5r), z2 =

(b,−0.5r), and z3 = (a, 7.5r). For each i ∈ {1, 2, 3}, ui(zi) > ui(x
V
i , p

V
xVi
), and

7.5r− 0.5r− 0.5r = 6.5r > 2r+ r+3r. Thus (xV , pV ) is not r−effi cient for u, and
so the generalized Vickrey mechanism is not r−effi cient.
Suppose that agent 3 has a utility function u′3 such that V

′
3(a) = 35r, V

′
3(b) =

8r, and u′3(a, 10r) = u′3(b, 4r). For the utility profile (u1, u2, u
′
3), agent 3 obtains

(a, 12r) under the generalized Vickrey allocation. Since u′3(b, 2r) > u′3(b, 4r) =
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u′3(a, 10r) > u′3(a, 12r), agent 3 benefits from reporting u3 when her true util-
ity function is u′3. Thus, the generalized Vickrey mechanism is r−manipulable.
Therefore, the following holds.

Proposition 2: For an arbitrarily large r > 0, the generalized Vickrey mechanism
is r−ineffi cient and r−manipulable on Un.

5.2 The exact ascending auction

In this subsection, we study whether the EA auction works without the coincidence
assumption but in the quasi-linear environment.
Example 2 below illustrates the large overshooting of the EA auction without

the coincidence assumption even if utility functions are quasi-linear.

Example 2: Let d > 0 be an increment and r > d be a large number. Let t ∈ N++
be such that t ·d > r > (t−1) ·d. LetM = {a, b} and N = {1, 2}. Let u ∈ (UQL)2
be represented by a valuation profile (v1(·), v2(·)) such that:
(1) v1(a) = (t+ 0.1) · d and v1(b) = (t+ 0.5) · d.
(2) v2(a) = (t+ 0.2) · d and v2(b) = (t+ 0.8) · d.
Note that

v1(b)− v1(a) = 0.4d and v2(b)− v2(a) = 0.6d, (∗)
Note further that pmin(u) = (pmin0 , pmina , pminb ) = (0, 0, 0.4d) and the MPE assign-
ment is xmin = (a, b).
We illustrate how the EA auction proceeds. The auction starts from round

0 with the initial price p0 = (0, 0, 0). By (∗), D1(p
0) = D2(p

0) = {b}. Since
only b is overdemanded at p0, its price p0b is raised by d. Let p

1 = (0, 0, d). By
(∗), D1(p

1) = D2(p
1) = {a}. Since only a is overdemanded at p1, its price p1a is

raised by d. Let p2 = (0, d, d). The EA auction repeats this process until prices
exceed agents’valuations, i.e., until p2t+2 = (0, (t + 1) · d, (t + 1) · d). However,
D1(p

2t+2) = D2(p
2t+2) = {0}. Thus, both bidders simultaneously drop out, and

the auction terminates at p2t+2. That is, the outcome of the EA auction is that
the price is p2t+2 and each agent receives the dummy and pays nothing. 4
Example 2 demonstrates that the EA auction may fail to find an MPE price.

Since r is arbitrarily large, the auction may substantially overshoot an MPE price.
This 2-object and 2-agent example can be easily generalized to the cases of more
agents and objects. Thus, Proposition 3 holds.

Proposition 3: (Large overshooting) For each d > 0 and arbitrarily large
r > 0, there is u ∈ (UQL)n such that the EA auction with increment d generates
a price p with pl > pminl (u) + r for each l ∈M .
Since prices vary only discretely with increment d > 0, no equilibrium exists

for the utility profile u in Example 2. The nonexistence of equilibrium may be
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a fundamental factor of the above problems. Thus, we consider approximate
equilibria and focus on d−equilibria. The d−equilibria for the utility profile u are
prices p such that p = (0, k ·d, k ·d) for k = 0, 1, . . . , t. However, the outcome price
of the EA auction for u in Example 2 is not among them. Thus, the EA auction
may fail to find even an d−equilibrium price. Moreover, the assignment in the EA
auction outcome for u is not a d−equilibrium assignment. Thus, the EA auction
may also fail to find a d−equilibrium assignment.
Note that in Example 2, p0 = (0, 0, 0) is the closest d−equilibrium price to

pmin(u) among all d−equilibrium prices, and so p0 is an approximate MPE price.
Formally, an d−equilibrium price pA is called the closest d−equilibrium price
to pmin(u) if there is no other d−equilibrium price p′ such that for each l ∈ M ,∣∣pAl − pl∣∣ ≥ |p′l − pl| with at least one strict inequality. The price pA approximates
the MPE price among d−equilibrium prices.
Based on the insight from Example 2, we generalize it to the case with more

agents and objects and obtain the following result.

Proposition 4: For each d > 0 and arbitrarily large r > 0, there is u ∈ (UQL)n
such that the EA auction with increment d generates a price p with pl ≥ pAl + r

for each l ∈M .
Finally, we study r−effi ciency and r−strategy-proofness of the EA mechanism.
Given r > 0, consider the economy in Example 2. Let z1 = (a, td) and z2 =

(b, td). For each i ∈ {1, 2}, ui(zi) > ui(0, 0) = 0, and by t · d > r, it holds that
t · d + t · d > 0 + 2r. Thus, the EA mechanism with increment d fails to find an
r−effi cient allocation for u.
Let u′2 ∈ UQL be represented by a valuation function v′2(·) such that v′2(a) =

(t+0.3) · d and v′1(b) = (t+0.1) · d. Then, agent 2 with u′2 demands only object a
at the initial price p0 = (0, 0, 0). In this case, the EA auction concludes instantly,
and agents 1 and 2 receive objects b and a with no payment. Since td > r, it
holds that u2(a, 0) = (t + 0.2) · d > u2(0,−r) = r. Thus, agent 2 benefit more
than r from misreporting u′2 when her true utility function is u2. Thus the EA
mechanism with increment d is r−manipulable.
The above discussion can be easily generalized to the cases of more agents and

objects, which indicates the following result.

Proposition 5: For each d > 0 and an arbitrarily large r > 0, the EA mechanism
with increment d is r−ineffi cient and r−manipulable on (UQL)n.
Propositions 3, 4 and 5 imply that the EA auction fails to work without the

coincidence assumption even in the quasi-linear environment. Note that in Ex-
ample 2, if one of two agents is given a priority to obtain object b at p0 at the
beginning of the auction, each agent obtains some object at a low price. This out-
come is close to the MPE allocation and makes both agents much better off than
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the outcome of the EA auction. This raises the question of whether the above
negative results on the EA auction might be due to the lack of a priority rule that
should be applied when several agents demand the same object. We discuss this
point in Subsection 5.3 since the AA auction has such a priority rule.
Mishra and Parkes (2009), Andersson and Erlanson (2013), and Liu and Bagh

(2019), among others, propose auctions targeting MPEs in a quasi-linear envi-
ronment with the coincidence assumption. By constructing similar examples, the
above negative results extend to their auctions.

5.3 The approximate ascending auction

In this subsection, we study whether the AA auction works as predicted by Facts
4 and 5 when agents have general utility functions. In the following, we set ε = d,
where d represents the increment in the auction.
First, we show that for a given general utility profile, if the increment is

suffi ciently small, the outcome price of an AA auction will be suffi ciently close to
the MPE price.

Proposition 6: Let u ∈ Un be given. Suppose that each uncommitted agent
arbitrarily bids on an object from her demand set at the price proposed to her
and the bidding queue is arbitrarily given. Let {dn} be a decreasing sequence such
that for each n ∈ N, dn > 0 and limn→∞ dn = 0. Let pdn be the price generated
by the AA auction with increment dn. Then, limn→∞ p

dn = pmin(u).

The proof of Proposition 6 is relegated to the Appendix. Proposition 6 implies
that at the limit, i.e., as d goes to zero, the induced mechanism is indeed the
MPE mechanism. This proposition assumes that when the utility profile u ∈ Un
is fixed, the AA auction works well for a suffi ciently small increment d. Note that
how fast auctions conclude depends on d.
However, it is common in practice for d to be set large enough in advance so

that the auction can terminate reasonably fast, without knowing the utility profile
u. Thus, it is necessary to analyze whether the AA auction works for any utility
profile when d is fixed.
In an economy with two objects and three agents, Example 3 below illustrates

that the AA auction substantially undershoots the MPE price for any bidding
queue if only one agent has the non-quasi-linear utility function. The insight can
be easily generalized to the cases of more agents and objects.

Example 3: LetM = {a, b} and N = {1, 2, 3}. The bidding queue is in the order
of agent 1, 2 and 3, without any specification about how uncommitted agents are
driven back into the queue in the auction. Let d > 0 be an increment and r > 0
be a large number. Let t ∈ N++ be such that t · d > r.
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(1) Let u1 ∈ UQL be such that u1(a, pa) = td− pa and u1(b, pb) = 3td− pb.
(2) Let u2 ∈ U be such that4

u2(a, 0) > u2(b, d) > u2(a, 0.5d) = u2(b, 2td) > 0.

(3) Let u3 ∈ UQL be such that u3(a, pa) = 0.5d− pa and u3(b, pb) = 0.6d− pb.
For this profile u, pmin = (0, 0.5d, 2td), and x = (x1, x2, x3) = (b, a, 0) is a

unique MPE assignment.
We illustrate how the AA auction proceeds. The auction starts in round 0

with the initial price p0 = (0, 0, 0). By D1(p
0) = {b}, agent 1 bids on b and is

tentatively assigned (b, 0). Then, agent 2 is called. If she bids on b, the price of b
that agent 2 faces is d. Thus, let p1 = (0, 0, d). By D2(p

1) = {a}, agent 2 bids on
a and is tentatively assigned (a, 0).
Then, agent 3 is called. If agent 3 bids on a, the price of a that she faces is d.

If agent 3 bids on b, the price of b that she faces is also d. Thus, let p2 = (0, d, d).
By D3(p

2) = {0}, agent 3 drops out by biding 0 and is assigned (0, 0).
There is no uncommitted agent in the queue, and so the auction terminates at

a price p = (0, 0, 0) and an allocation where agents 1, 2 and 3 get (b, 0), (a, 0) and
(0, 0), respectively. Note that pminb − pb = 2td > r. Thus, the outcome price of the
AA auction can be smaller than pminb by an arbitrarily large amount r. 4
Next, we provide Example 4 to show that in an economy with two objects and

three agents, the AA auction may substantially overshoot the MPE price.

Example 4:5 Let M = {a, b} and N = {1, 2, 3}. The bidding queue is such that
the initial order of agents is 1, 2 and 3, and when driven back, the uncommitted
agent is placed last in the queue. Let d > 0 be an increment and r > 0 be a large
number. Let t ∈ N++ be such that t = 3k for some odd number k ∈ N++ and
(t− 2) · d > r. Let u = (u1, u2, u3) ∈ UQL × U × U satisfy the following6:

u1(a, pa) = −pa, and u1(b, pb) = (t+ 0.1)d− pb,
u2(b, (t− 0.3)d) > u2(a, 0) and

u2(a, 0.5d) = u2(b, (t+ 0.1)d) > u2(0, 0) = u2(a, (t− 0.5)d) = u2(b, (t+ 0.5)d),

u3(b, (t− 0.4)d) > u3(a, 0) and

u3(a, 0.6d) = u3(b, td) > u3(0, 0) = u3(a, (t− 0.4)d) = u3(b, (t+ 0.4)d).

4For example, we can have that u2(a, pa) = 20td−(20t−1.8)pa and u2(b, pb) = (12t+0.9)d−pb.
5Liu and Bagh (2019) provide a hybrid format of the EA and AA auctions that finds an MPE

for quasi-linear utility functions. When applying their auction to the economy in Example 4,
overshooting also occurs.

6The conditions for u2 and u3 are satisfied by the following utility functions: u2(0, p0) = −p0,
u2(a, pa) = (t − 0.5) · d − pa, and u2(b, pb) = (2.5t − 2.5) · [(t + 0.5) · d − pb]; u3(0, p0) = −p0,
u3(a, pa) = (t− 0.4) · d− pa, and u3(b, pb) = (2.5t− 2.5) · [(t+ 0.4) · d− pb].
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For this profile u, the MPE price is pmin = (0, 0.5d, (t + 0.1) · d) and the unique
MPE assignment is xmin = (xmin1 , xmin2 , xmin3 ) = (0, b, a).
We illustrate how the AA auction proceeds. The auction starts from round 0

with the initial price p0 = (0, 0, 0). By D1(p
0) = {b}, agent 1 bids on b and is

tentatively assigned (b, 0). Then agent 2 is called. If she bids on b, the price of b
that agent 2 faces is d. Thus, let p1 = (0, 0, d). By D2(p

1) = {b}, agent 2 bids on
b and is tentatively assigned (b, d). Then, agent 1 is placed last in the queue, and
agent 3 is called. If agent 3 bids on b, the price of b that agent 3 faces is 2d. Thus,
let p2 = (0, 0, 2d). By D3(p

2) = {b}, agent 3 bids on b and is tentatively assigned
(b, 2d). Then, agent 2 is placed last in the queue, and agent 1 is called. Note that
similarly the three agents bid only on b until round t and pt = (0, 0, td). Then, by
t = 3k, agent 1 is tentatively assigned (b, td).
At round t+1, since agent 2 is first in the queue, she is called. If she bids on b,

the price of b that agent 2 faces is (t+1) · d. Thus, let pt+1 = (0, 0, (t+1) · d). By
D2(p

t+1) = {a}, agent 2 bids on a and is tentatively assigned (a, 0). Then agent
3 is called. Let pt+2 = (0, d, (t + 1) · d). By D3(p

t+2) = {a}, agent 3 bids on a
and is tentatively assigned (a, d). Note that agents 2 and 3 bid only on a until
round 2t. In round 2t with price p2t = (0, (t− 1) · d, (t+ 1) · d), since t is an odd
number, agent 2 is called, bids on a and is tentatively assigned (a, (t− 1) · d). Let
p2t+1 = (0, td, (t + 1) · d). Then agent 1 is called. By D3(p

2t+1) = {0}, agent 3
drops out by biding 0 and is assigned (0, 0).
Since there is no uncommitted agent in the queue, the auction terminates at

price p = (0, (t− 1) · d, t · d) and assignment x = (x1, x2, x3) = (b, a, 0). Note that
pa − pmina = (t− 1.5) · d > r can be arbitrarily large. 4
The insight of Example 4 can be easily generalized to the cases with more

agents and objects with an arbitrary bidding queue. We summarize the insights
of Examples 3 and 4 by Proposition 7.

Proposition 7: Let an increment d > 0 and a bidding queue be given in the
AA auction. Suppose that each uncommitted agent bids on an object from her
demand set at the price proposed to her. Then, the following results hold for
arbitrarily large r > 0.
(i) (Substantial undershooting) There is u ∈ Un such that the AA auction
generates the price p with pa < pmina − r for each a ∈M .
(ii) (Substantial overshooting) For each a ∈ M , there is u ∈ Un such that the
AA auction generates the price p with pa > pmina + r.

In contrast to Fact 4(ii), Proposition 7 implies that there is no increment
across all the general utility profiles such that the AA auction neither sub-
stantially overshoots nor undershoots the MPE price.

Corollary 1: Let pd(u; q) be the price generated by the AA auction with increment
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d and a bidding queueing q for u ∈ Un. Then, there are no d > 0 and a bidding
queue q such that for each u ∈ Un and each l ∈M ,

∣∣pdl (u)− pminl (u)
∣∣ ≤ d.

Finally, we discuss the incentive issue of AA auctions. Let u′3 ∈ UQL be
such that v′3(a) = 1.5d and v′3(b) = 2d in Example 4. Then when agent 3 is
called in round 2 with price p2 = (0, 0, 2d), v′3(b) − v′3(a) < p2b − p2a = 2d, and so
D3(p

2) = {a}. Then, agent 3 bids on a and is tentatively assigned (a, 0). Next,
agent 1 is called and faces price p3 = (0, d, 2d). By D1(p

3) = {b}, agent 1 bids
on b and is tentatively assigned (b, 2d). Then, agent 2 is called and faces price
p4 = (0, d, 3d). Agents 1 and 2 bid only on b until round t + 1. In round t + 1
with the price pt+1 = (0, d, td), since t is an odd number, agent 2 is called. Since
D2(p

t+1) = {b}, agent 2 bids on b and is tentatively assigned (b, td). In round
t + 2, agent 1 faces a price pt+2 = (0, d, (t + 1)d), since D1(p

t+2) = {0}, agent 1
drops out by biding 0 and is assigned (0, 0). Since there is no uncommitted agent
in the queue, the auction terminates, and generates a price p′ = (0, 0, td) and an
assignment x′ = (x′1, x

′
2, x
′
3) = (0, b, a) where agent 3 obtains (a, 0).

Recall that in Example 4, under the utility profile (u1, u2, u3), agent 3 obtains
(0, 0). Since t = 3k ≥ 3 and u3(a, 0) > u3(a, (t− 0.4)t) = u3(0, 0), when agent 3’s
true utility function is u3, she has the incentive to misreport u′3.
The insight of Example 4 and above discussion can be extended to show the

following result.

Proposition 8: For each d > 0 and arbitrarily large r > 0, the AA mechanism
with increment d and an arbitrary bidding queue q is r−manipulable Un.

6 Concluding remarks

We conclude by discussing the implications of our negative insights. First, in the
one-object auction model, existing work also studies a different auction format,
called a “clock auction.”It is the continuous variant of the ascending price auction.
The price rises continuously at a rate kept by a clock, and bidders drop out at
some point in time. The auction stops when there is only one bidder remaining
and generates a price at which the winning bidder obtains the object and pays that
price. Since it is a dominant strategy for each bidder to drop out at her valuation,
this auction is simple and expeditious but also duplicates the MPE mechanism for
one object. In Appendix B, we demonstrate the impossibility of extending such a
clock auction to multi-object cases with general utility functions.
Second, consider multi-object auction models with agents who have multi-unit

demand quasi-linear utility functions. In such models, the Vickrey payment is not
anMPE price, but the Vickrey mechanism is strategy-proof and effi cient. However,
our result in Subsection 5.1 indicates that when agents have multi-unit demand
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general utility functions, the generalized Vickrey mechanism that is defined in
parallel to ours is far from effi cient and incentive-compatible.
If agents’multi-unit demand quasi-linear utility functions further satisfy cer-

tain substitutable and complementary properties, the MPE is well defined, and
the MPE mechanism is effi cient, although not strategy-proof. Assuming the co-
incidence of the increment and the unit of agents’valuations, Gul and Stacchetti
(2000), Ausubel (2006), and Sun and Yang (2009) propose auctions that identify
the MPEs. Note that unit-demand quasi-linear utility functions are special cases
of their utility functions. When applied to the unit-demand settings, the auctions
in those three papers are essentially the same as the EA auction. Thus, our re-
sults in Subsection 5.2 also imply that for any price increment larger than the unit
of agents’valuations, the auctions proposed by those papers also overshoot the
MPE prices by an arbitrarily large distance, generate allocations far from effi cient
outcomes and provide agents with strong incentives to manipulate.
Third, we examine the matching with contracts models with transfers. In the

one-to-one setting, if agents are buyers and each object is owned by one seller whose
utility only depends on the transfer, then those models coincide with ours, and
their buyer-optimal outcomes coincide with the MPE. If transfers are discretized
and sellers and buyers have strict preferences over contracts, the cumulative offer
process of buyers coincides with the AA auction and finds the buyer-sided optimal
outcome. Thus, our results in Subsection 5.3 also imply that in non-quasi-linear
environments, the cumulative offer process overshoots or undershoots the MPE
prices by an arbitrarily large distance, which generates an outcome far from ef-
ficiency and provides agents with strong incentives to manipulate. This insight
extends to the many-to-one matching with contracts models and trading network
models for general utility functions; see, e.g., Fleiner et al. (2019) and Schlegel
(2020): the one-sided optimal outcome with continuous transfers cannot be ap-
proximated by the one-sided optimal outcome obtained with discretized transfers
and induced strict preferences through variants of the cumulative offer process.
Overall, our results inspire new techniques to study effi cient and incentive-

compatible auction design when agents have general utility functions.

Appendix A: Proof of Proposition 6

First, we introduce the following characterization.
A setM ′ ⊆M of objects is weakly underdemanded at p if [∀x ∈M ′, px > 0]⇒

|{i ∈ N : Di(p) ∩M ′ 6= ∅}| ≤ |M ′|.
Lemma (Morimoto and Serizawa, 2015): p is an MPE price if and only if no set
of objects is overdemanded and no set of objects is weakly underdemanded at p.

Let (xdn , pdn) be the assignment and price generated by the AA auction with
increment dn. The proof consists of five steps.
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Step 1: For each dn > 0, (xdn , pdn) is an dn−equilibrium.
Consider an agent i who drops out. She bids 0 either at the price lower than

pdn or at the price pdn ≡ (pdn1 + dn, . . . , p
dn
1 + dn). Thus, 0 ∈ Ddn

i (p
dn). Consider

an agent i who obtains xdni ∈M . She bids object xdni just at the price pdn
xdni
, where

the price of other object l is equal or less than pdnl + dn. Thus, x
dn
i ∈ Ddn

i (p
dn).

Thus, Definition 5(i) holds.
In the AA auction, whenever an object is bided on by some agent, it will keep

assigned till the end. Thus, Definition 5(ii) holds.
Step 2: There is a convergent subsequence {pd′n} in {pdn} whose assignments
remain the same.
For each l ∈M and each n, 0 ≤ pdnl ≤ maxi∈N Vi(l)+2dn. Thus, {pdn} contains

a convergent subsequence {pd′′n}. Since agents and objects are both finite, {pd′′n}
contains a subsequence {pd′n} whose assignments remain the same.
Step 3: (x, p) ≡ limn→∞(x

d′n , pd
′
n) is an equilibrium.

By Definition 5(ii), Definition 3(ii) holds. Thus, we show Definition 3(i). For
each n and each i ∈ N , xi ∈ Ddn(pdn) implies that for each y ∈ M , ui(xi, pdnxi ) ≥
ui(y, p

dn
y + dn) and ui(xi, pdnxi ) ≥ ui(0, 0). Thus, for each y ∈ M , limn→∞ p

d′n = p

implies ui(xi, pxi) ≥ ui(0, 0) and ui(xi, pxi) ≥ ui(y, py). Thus xi ∈ Di(p).
Step 4: Let (x, p) be the equilibrium at Step 3. Then p = pmin.
Suppose p 6= pmin. Since (x, p) is an equilibrium, by Lemma, there is a

weakly underdemanded set M ′ ⊆ M at p, that is, for each l ∈ M ′, pl > 0

and |{i ∈ N : Di(p) ∩M ′ 6= ∅}| = |M ′|. Let N ′ ≡ {i ∈ N ′ : xi ∈ M ′}. Then,
N ′ = {i ∈ N : Di(p) ∩ M ′ 6= ∅} and for each i ∈ N\N ′ and each l ∈ M ′,
ui(xi, pxi) > ui(l, pl). Thus, since for each l ∈ M ′, pl > 0, Definition 1(i) implies
that there is δ > 0 such that for each l ∈M ′, pl − δ > 0, and for each i ∈ N\N ′,

ui(xi, pxi + δ) > ui(l, pl − 2δ). (a)

Since limn→∞ d
′
n = 0 and limn→∞ p

d′n = p, for some d′′n ∈ {d′n},
(b) d′′n ≤ δ and
(c) pd

′′
n
l ≥ pl − δ > 0 for each l ∈M ′.
Thus for each i ∈ N\N ′ and each l ∈M ′,

ui(xi, p
d′′n
xi
) ≥
Step 1

ui(xi, pxi + d′′n)

≥
(b)
ui(xi, pxi + δ) >

(a)
ui(l, pl − 2δ) ≥

(c)
ui(l, p

d′′n
l − δ) ≥

(b)
ui(l, p

d′′n
l − d′′n).

Thus, no agent in N\N ′ bids an objects in M ′ when the price of l ∈ M ′ reaches
p
d′′n
l − d′′n. In contrast, by (c), l is assigned to some i ∈ N ′ at price pd

′′
n
l − d′′n.

Thus, by |N ′| = |M ′|, the price of any object l ∈ M ′ cannot be increased to pd
′′
n
l ,

contradicting that pd
′′
n is the outcome of auction with increment d′′n.
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Step 5: limn→∞ p
dn = pmin(u).

Recall that a bounded sequence converges if and only if any of its convergent
subsequence has the same limit. Thus, we prove that any convergent subsequence
in {pdn} has the same limit. Let {pd′n} and {pd′′n} be two convergent subsequences
in {pdn} such that limn→∞ p

d′n = p′ and limn→∞ p
d′′n = p′′.

Analogous to Step 2, there is a subsequence of {pd′n} converging to p′ whose
assignments remain the same, say x′. Similarly, there is a subsequence of {pd′′n}
converging to p′′ whose assignments remains the same, say x′′. Analogous to Steps
3 and 4, we can show p′ = pmin and p′′ = pmin. Thus, since the MPE price is
unique, p′ = p′′.

Appendix B: Clock auction for multiple objects with non-quasi-linearity

Let M = {a, b} and N = {1, 2, 3}. Let u ∈ (UQL)3 be such that v1(a) = 3,

v1(b) = 1, v2(a) = 1, v2(b) = 3, v3(a) = v2(b) = 2. Then pmin(u) = (0, 2, 2) and
xmin(u) = (a, b, 0).
One possible extension of the clock auction is that each agent chooses an object

from her demand set given a price, and bids on it. The prices of overdemanded
objects are increased. At p0 = (0, 0, 0), D1(p(0)) = {a}, D2(p(0)) = {b}, and
D3(p(0)) = {a, b}. Thus agent 1 bids on a, agent 2 bids on b, and agent 3 bids on
a or b. When the price of a or b, say a, increases higher than b, agents 3 bids on
b. Thus, starting from (0, 0, 0), if the price is raised continuously, agents 3 needs
to move between a and b continuously until the price reaches pmin(u) = (0, 2, 2).
Such a bidding behavior is physically impossible, and moreover, the price path in
the auction is not well-defined.
Another possible extension is that each agent reports her demand set at a given

price, and the prices of minimally overdemanded objects are increased. Indeed,
this is the continuous variant of the EA auction. In this extended clock auction, if
the prices increase continuously along the path p(t) = (t, t) where t ∈ [0, 2], agents
1, 2 and 3 keep reporting D1(p(t)) = {a}, D2(p(t)) = {b}, and D3(p(t)) = {a, b},
respectively. Finally, the price reaches pmin(u) = (0, 2, 2).
However, consider a general utility function of agent 3, u′3 ∈ U such that (i)

u′3(0, 0) = u′3(a, 1) = u′3(b, 2), and (ii) u
′
3(a, t) = u′3(b, 2t) for each t ∈ [0, 1]. Let

u′ = (u1, u2, u
′
3). Then, p

min(u′) = (0, 1, 2) and xmin(u′) = (a, b, 0). Note that for
pa ∈ [0, 1], D3(p) = {a} if pb > 2pa, D3(p) = {b} if pb < 2pa, D3(p(0)) = {a, b}
if pb = 2pa. Thus, starting from (0, 0, 0), if the prices of minimally overdemanded
objects increase continuously with the same rate, agents 3 needs to move between
{a, b} and {b} continuously, which is physically impossible. Note that in such a
case, the price path to pmin(u) = (1, 2) is not well-defined either.
Overall, it is both theoretically and practically impossible to extend the clock

auction for multiple objects with general utility profiles to duplicate or approxi-
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mate the MPE mechanism.
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