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Supplementary material for “Efficient and

strategy-proof multi-unit object allocation with

money: (Non)decreasing marginal valuations without

quasi-linearity”

Hiroki Shinozaki, Tomoya Kazumura, and Shigehiro Serizawa

August 6, 2020

In this supplementary material, we provide the proofs and the example omitted in the

main text (Shinozaki et al., 2020).

1 Proofs of Remarks

In this section, we give the proofs of some remarks in the main text.

Remark 3 (Upward convexity). Let m′ ∈ M with m′ > 0. Let i ∈ N , Ri ∈ RND,

and zi ∈ M × R. (i) For each xi ∈ M(m′), xi

m′vi(m
′, zi) ≥ vi(xi, zi). (ii) If there is

xi ∈ M(m′)\{0,m′} such that xi

m′vi(m
′, zi) > vi(xi, zi), then for each x′

i ∈ M(m′)\{0,m′},
x′
i

m′vi(m
′, zi) > vi(x

′
i, zi).

Proof. (i) Let xi ∈ M(m′). Then

m′vi(xi, zi) = m′
(xi−1∑

x=0

(vi(x+ 1, zi)− vi(x, zi))
)

≤ xi

(m′−1∑
x=0

(vi(x+ 1, zi)− vi(x, zi))
)

(by Ri ∈ RND)

= xivi(m
′, zi).

(ii) Suppose there is xi ∈ M(m′)\{0,m′} such that xi

m′vi(m
′, zi) > vi(xi, zi). Then

there is x ∈ M(m′)\{0,m′} such that vi(x+1, zi)−vi(x, zi) > vi(x, zi)−vi(x−1, zi). Let

x′
i ∈ M(m′)\{0,m′}. Then the inequality above holds strictly for x′

i.
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Remark 7. Let Ri ∈ R++. (i) Let xi ∈ M\{m} and h+(·;xi) : R → R++ be such that

h+(ti;xi) = Vi(xi+1, (xi, ti))−ti for each ti ∈ R. Then h+(·;xi) is strictly decreasing in ti.

(ii) Let xi ∈ M\{0} and h−(·;xi) : R → R++ be such that h−(ti;xi) = ti−Vi(xi−1, (xi, ti))

for each ti ∈ R. Then h−(·;xi) is strictly decreasing in ti as well.

Proof. (i) Let ti, t
′
i ∈ R be such that t′i < ti. Note that (xi+1, Vi(xi+1, (xi, ti))) Ii (xi, ti).

Thus, by ti − t′i > 0, Ri ∈ R++ implies

(xi+1, Vi(xi+1, (xi, ti))−(ti−t′i)) Pi (xi, ti−(ti−t′i)) = (xi, t
′
i) Ii (xi+1, Vi(xi+1, (xi, t

′
i))).

Thus, Vi(xi +1, (xi, ti))− (ti − t′i) < Vi(xi +1, (xi, t
′
i)), or h

+(ti;xi) = Vi(xi +1, (xi, ti))−
ti < Vi(xi + 1, (xi, t

′
i))− t′i = h+(t′i;xi).

(ii) We can show (ii) in a symmetric way, and we omit the proof.

2 Proof of Proposition 3

In this section, we give the proof of Proposition 3.

Proposition 3 (The inverse-demand sets). Let R0 ∈ RD ∩ R++. Then (i) P (0;R0) =

[V0(1,0),∞), (ii) P (1;R0) = [t∗(1), V0(1,0)], (iii) P (x;R0) = [ t
∗(x)
x

, t
∗(x−1)
x−1

] for each

x ∈ M\{0, 1,m}, and (iv) P (m;R0) = [0, t
∗(m−1)
m−1

].

Before proving Proposition 3, we show the following two lemmas.

Lemma 12. Let R0 ∈ RD ∩ R++. (i) Let x ∈ M\{0,m} and p ∈ P (x;R0). Then

p ≥ t∗(x)
x

. (ii) Let x ∈ M\{0, 1} and p ∈ P (x;R0). Then p ≤ t∗(x−1)
x−1

.

Proof. (i) Suppose p < t∗(x)
x

. Then px < t∗(x), and by R0 ∈ RD ∩ R++, Lemma 10 (i)

implies V0(x + 1, (x, px))− px > px
x
= p, or V0(x

′, (x, px)) > px′, where x′ ≡ x + 1. This

implies (x′, px′) P0 (x, px), which contradicts p ∈ P (x;R0).

(ii) We can show (ii) in the same way as (i) by using Lemma 10 (ii) instead of Lemma 10

(i).

Lemma 13. Let R0 ∈ RD and p ∈ R+. (i) Let x ∈ M\{0}. If p ≥ t∗(x)
x

, then for each

x′ ∈ M with x′ > x, (x, px) R0 (x′, px′). (ii) Let x ∈ M\{m}. If p ≤ t∗(x−1)
x−1

, then for

each x′ ∈ M with x′ < x, (x, px) R0 (x′, px′).

Proof. (i) Suppose p ≥ t∗(x)
x

. Then px ≥ t∗(x). Thus, by R0 ∈ RD ∩ R++, Lemma 10 (i)
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implies V0(x+ 1, (x, px))− px ≤ px
x
= p. Let x′ ∈ M with x′ > x. Then

V0(x
′, (x, px))− px =

x′−1∑
x′′=x

(
V0(x

′′ + 1, (x, px))− V0(x
′′, (x, px))

)
(by Remark 1 (iii))

≤ (x′ − x)
(
V0(x+ 1, (x, px))− V0(x, (x, px))

)
(by R0 ∈ RD)

= (x′ − x)
(
V0(x+ 1, (x, px))− px

)
(by Remark 1 (iii))

≤ (x′ − x)p (by V0(x+ 1, (x, px))− px ≤ p)

= px′ − px,

or V0(x
′, (x, px)) ≤ px′. This implies (x, px) R0 (x′, px′).

(ii) By using Lemma 10 (ii) instead of Lemma 10 (i), we can show (ii) in a symmetric

way.

We now proceed to the proof of Proposition 3.

(i) First, we show P (0;R0) ⊆ [V0(1,0),∞). Let p ∈ P (0;Ri). Then 0 R0 (1, p), which

implies p ≥ V0(1;0).

Next, we show [V0(1,0),∞) ⊆ P (0;R0). Let p ∈ [V0(1,0),∞). Then by p ≥ V0(1,0),

0 R0 (1, p). By R0 ∈ RD ∩ R++, Lemma 11 implies that p ≥ V0(1,0) > t∗(1). Thus,

by R0 ∈ RD ∩ R++, Lemma 14 (i) implies (1, p) R0 (x, px) for each x ∈ M with x > 1.

Thus, by 0 R0 (1, p), 0 R0 (x, px) for each x ∈ M with x > 0. Thus, p ∈ P (0;R0).

(ii) We show P (1;R0) = [t∗(1), V0(1,0)]. Note that by R0 ∈ RD ∩ R++, Lemma 11

implies t∗(1) < V0(1,0), and the interval is well-defined.

We first show P (1;R0) ⊆ [t∗(1), V0(1,0)]. Let p ∈ P (1;R0). By (1, p) R0 0, p ≤ V0(1,0).

Also, by R0 ∈ RD ∩ R++, Lemma 12 (i) implies p ≥ t∗(1).

Then, we show [t∗(1), V0(1,0)] ⊆ P (1;R0). Let p ∈ [t∗(1), V0(1,0)]. By p ≤ V0(1,0),

(1, p) R0 0. Also, by R0 ∈ RD ∩ R++ and p ≥ t∗(1), Lemma 14 (ii) gives (1, p) P0 (x, xp)

for each x ∈ M with x > 2. Thus, p ∈ P (1;R0).

(iii) Let x ∈ M\{0, 1,m}. We show P (x;R0) = [ t
∗(x)
x

, t
∗(x−1)
x−1

]. By R0 ∈ RD ∩ R++

and Lemma 11, the interval is well-defined. By R0 ∈ RD ∩ R++, Lemma 12 (i) and (ii)

imply P (x;R0) ⊆ [ t
∗(x)
x

, t
∗(x−1)
x−1

], and Lemma 14 (i) and (ii) give [ t
∗(x)
x

, t
∗(x−1)
x−1

] ⊆ P (x;R0).

(iv) Finally, we show P (m;R0) = [0, t
∗(m−1)
m−1

]. Note that by R0 ∈ RD ∩ R++, Lemma 9

gives that t∗(m−1)
m−1

> 0. Thus, the interval is well-defined. By R0 ∈ RD ∩ R++, Lemma 12

(ii) implies that P (m;R0) ⊆ [0; t
∗(m−1)
m−1

]. Also, by R0 ∈ RD ∩ R++, Lemma 14 (ii) implies

that [0, t
∗(m−1)
m−1

] ⊆ P (m;R0). ■
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3 Proof of Proposition 4

In this section, we provide the proof of Proposition 4.

Proposition 4. Assume n = 2 and m is even. Let R0 ∈ RD ∩ R++ satisfy

V0(β + 1, (β, t∗))− t∗ ≤ p(β − 1;R0), (1)

where β ≡ m
2
and t∗ ≡

∑β
x=1 p(m − x;R0). Let R ≡ (RC ∩ RQ) ∪ {R0}. An inverse-

demand-based generalized Vickrey rule on R2 satisfies efficiency, strategy-proofness, indi-

vidual rationality, and no subsidy for losers.

Let g ≡ (x, t) be an inverse-demand-based generalized Vickrey rule on R2.

Lemma 14. Let R ∈ R2 and i, j ∈ N be a pair such that Ri = R0 and Rj ∈ RC ∩ RQ.

Let vj > 0 be a constant marginal valuation associated with Rj. (i) If xi(R) > 0, then

ti(R)−Vi(xi(R)−1, gi(R)) ≥ vj. (ii) If xi(R) < m, then Vi(xi(R)+1, gi(R))−ti(R) ≤ vj.

Proof. By the definition of the inverse-demand-based generalized Vickrey rule andR ∈ (RNI)2,

p(xi(R);Ri) ≤ vj ≤ p(xi(R)− 1;Ri) and ti(R) = vjxi(R).

(i) Suppose xi(R) = 1. Then vj ≤ p(0;Ri) = Vi(1,0), where the inequality follows

from vj ≤ p(xi(R)−1;Ri). Then we have gi(R) = (1, vj) Ri (1, Vi(1,0)) Ii 0. This implies

Vi(0, gi(R)) ≤ 0. Thus, by ti(R) = vj, ti(R)− Vi(0, gi(R)) ≥ vj.

Suppose instead xi(R) > 1. By 0 < xi(R) − 1 < m, p(xi(R) − 1;Ri) = t∗(xi(R)−1)
xi(R)−1

.

Thus, by vj ≤ p(xi(R)− 1;Ri),

ti(R) = vjxi(R) ≤ p(xi(R)− 1;Ri)xi(R) =
xi(R)

xi(R)− 1
t∗(xi(R)− 1).

Thus, by Ri ∈ RD ∩ R++, Lemma 10 (ii), and ti(R) = vjxi(R),

ti(R)− Vi(xi(R)− 1, gi(R)) ≥ ti(R)

xi(R)
= vj.

(ii) If xi(R) = 0, then Vi(xi(R) + 1, gi(R)) − ti(R) = Vi(1,0) = p(0;Ri) ≤ vj, where

the fist equality follows from gi(R) = 0, and the inequality follows from vj ≥ p(xi(R);Ri).

Suppose instead xi(R) > 0. By 0 < xi(R) < m, p(xi(R);Ri) = t∗(xi(R))
xi(R)

. Thus, by

vj ≥ p(xi(R);Ri),

ti(R) = vjxi(R) ≥ p(xi(R);Ri)xi(R) = t∗(xi(R)).

Thus, by Ri ∈ RD ∩ R++, Lemma 10 (i), and ti(R) = vjxi(R)

Vi(xi(R) + 1, gi(R))− ti(R) ≤ ti(R)

xi(R)
= vj,
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as desired.

We now proceed to the proof of Proposition 4. Since no subsidy for losers is immediate

from the definition of the rule, we here show the other three properties.

Individual rationality. LetR ∈ R2 and i, j ∈ N be a distinct pair. IfRi ∈ RC ∩ RQ,

then Ri = Rinv
i . Since gi(R) is the outcome of the Vickrey rule for Rinv, gi(R) Ri 0 by

individual rationality of the Vickrey rule. Thus, we assume Ri = R0. We consider the

following two cases.

Case 1. Rj = R0.

By the definition of the inverse-demand-based generalized Vickrey rule andR ∈ (RD)2,

xi(R) = β and

ti(R) =
m−1∑
x=0

p(x;Rj)−
β−1∑
x=0

p(x;Rj) =
m−1∑
x=β

p(x;Rj) =

β∑
x=1

p(m− x;Rj) = t∗.

Then

ti(R) =

β∑
x=1

p(m− x;Rj) ≤ βp(β;Rj) = t∗(β;Rj) < Vi(β,0),

where the first inequality follows from Rj ∈ RD ∩ R++, β = m
2
, and Lemma 11, and the

second inequality follows from Ri = Rj ∈ RD ∩ R++ and Lemma 9. Thus, gi(R) Pi 0.

Case 2. Rj ∈ RC ∩ RQ.

By the definition of the inverse-demand-based generalized Vickrey rule, ti(R) = vjxi(R),

where vj > 0 is a constant marginal valuation associated with Rj. If xi(R) > 0, then

ti(R)− Vi(0, gi(R)) =

xi(R)∑
x=1

(
Vi(x, gi(R))− Vi(x− 1, gi(R))

)
(by Remark 1 (iii))

≥ xi(R)
(
Vi(xi(R), gi(R))− Vi(xi(R)− 1, gi(R))

)
(by Ri ∈ RD)

≥ xi(R)vj (by Lemma 14 (i))

= ti(R),

or Vi(0, gi(R)) ≤ 0. Thus, gi(R) Ri 0. On the other hand, if xi(R) = 0, then gi(R) = 0.

Strategy-proofness. Let R ∈ R2 and i, j ∈ N be a distinct pair. If Ri ∈ RC ∩ RQ,
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then since g(R) and g(R′
i, Rj) are both the outcomes of the Vickrey rule, strategy-

proofness of the Vickrey rule implies that gi(R) Ri gi(R
′
i, Rj). Thus, we assume Ri = R0.

Let R′
i ∈ R. Let xi ≡ xi(R

′
i, R−i). We show gi(R) Ri (xi, ti(R

′
i, Rj)). If xi = 0, then

ti(R
′
i, Rj) = 0 by Lemma 2. Thus, by individual rationality of g, suppose xi > 0.

Case 1. Rj = R0.

By the definition of the inverse-demand-based generalized Vickrey rule andR ∈ (RD)2,

gi(R) = (β, t∗) and ti(R
′
i, Rj) =

∑xi

x=1 p(m− x;Rj).

First, suppose xi > xi(R). Then

ti(R
′
i, Rj) =

xi∑
x=1

p(m− x;Rj) = t∗ +

xi∑
x=β+1

p(m− x;Rj). (2)

For each x ∈ M with x ≥ β + 1, we have

p(m− x;Rj) ≥ p(β − 1;Ri)

≥ Vi(β + 1, gi(R))− t∗

= Vi(β + 1, gi(R))− Vi(β, gi(R))

≥ Vi(x, gi(R))− Vi(x− 1, gi(R)), (3)

where the first inequality follows from Ri = Rj ∈ RD ∩ R++, x ≥ β+1, and Lemma 11,

the second one follows from (1), Ri = R0, and gi(R) = (β, t∗), the equality follows from

t∗ = ti(R) and Remark 1 (iii), and the last inequality comes from Ri ∈ RD and x ≥ β+1.

Then

ti(R
′
i, Rj) = t∗ +

xi∑
x=β+1

p(m− x;Rj) (by (2))

≥ t∗ +

xi∑
x=β+1

(
Vi(x, gi(R))− Vi(x− 1, gi(R))

)
(by (3))

= Vi(xi(R), gi(R)) +
(
Vi(xi, gi(R))− Vi(xi(R), gi(R)

)
(by gi(R) = (β, t∗) and Remark 1 (iii))

= Vi(xi, gi(R)),

which implies gi(R) Ri (xi, ti(R
′
i, Rj)).
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Suppose instead xi < xi(R). Then

ti(R
′
i, Rj) =

xi∑
x=1

p(m− x;Rj) = t∗ −
β−1∑
x=xi

p(m− x− 1;Rj). (4)

Note that by β = xi(R) > xi > 0, β − 1 > 0. Thus, by Ri ∈ RD ∩ R++ and Lemma 9,
β

β−1
t∗(β − 1;Ri) = Vi(β, (β − 1, t∗(β − 1;Ri))). This implies

(
β,

β

β − 1
t∗(β − 1;Ri)

)
=

(
β, Vi(β, (β − 1, t∗(β − 1;Ri)))

)
Ii (β − 1, t∗(β − 1;Ri)).

Thus, by Remark 1 (i) and (iii),

Vi

(
β − 1, (β,

β

β − 1
t∗(β − 1;Ri))

)
= Vi(β − 1, (β − 1, t∗(β − 1;Ri))) = t∗(β − 1;Ri). (5)

By Ri ∈ RD ∩ R++ and β = m
2
, Lemma 11 implies

t∗ =

β∑
x=1

p(m− x;Ri) < βp(β − 1;Ri) =
β

β − 1
t∗(β − 1;Ri). (6)

Then

t∗ − Vi(β − 1, (β, t∗)) >
β

β − 1
t∗(β − 1;Ri)− Vi

(
β − 1, (β,

β

β − 1
t∗(β − 1;Ri))

)
=

β

β − 1
t∗(β − 1;Ri)− t∗(β − 1;Ri)

=
t∗(β − 1;Ri)

β − 1

= p(β − 1;Rj), (7)

where the inequality follows from Ri ∈ R++, (6), and Remark 7 (ii), the first equality

follows from (5), and the last one follows from Ri = Rj. Then for each x ∈ M with

x ≤ β − 1,

Vi(x+ 1, gi(R))− Vi(x, gi(R)) ≥ Vi(β, gi(R))− Vi(β − 1, gi(R))

= t∗ − Vi(β − 1, (β, t∗))

> p(β − 1;Rj)

> p(m− x− 1;Rj), (8)

where the first inequality follows from Ri ∈ RD and x ≤ β − 1, the equality follows from

gi(R) = (β, t∗) and Remark 1 (iii), the second inequality follows from (7), and the last
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one comes from Rj ∈ RD ∩ R++, x ≤ β − 1, and Lemma 11. Thus,

ti(R
′
i, Rj) = t∗ −

β−1∑
x=xi

p(m− x− 1;Rj) (by (4))

> t∗ −
β−1∑
x=xi

(
Vi(x+ 1, gi(R))− Vi(x, gi(R))

)
(by (8))

= Vi(xi(R), gi(R))−
(
Vi(xi(R), gi(R))− Vi(xi, gi(R))

)
(by gi(R) = (β, t∗) and Remark 1 (iii))

= Vi(xi, gi(R)),

which implies gi(R) Pi (xi, ti(R
′
i, Rj)).

Case 2. Rj ∈ RC ∩ RQ.

By the definition of the inverse-demand-based generalized Vickrey rule, ti(R) = vjxi(R)

and ti(R
′
i, Rj) = vjxi, where vj > 0 is a constant marginal valuations associated with Rj.

If xi > xi(R), then xi(R) < m, and

Vi(xi, gi(R))− ti(R)

=

xi−1∑
x=xi(R)

(
Vi(x+ 1, gi(R))− Vi(x, gi(R))

)
(by Remark 1 (iii))

≤ (xi − xi(R))
(
Vi(xi(R) + 1, gi(R))− Vi(xi(R), gi(R))

)
(by Ri ∈ RD)

≤ (xi − xi(R))vj (by Lemma 14 (ii))

= ti(R
′
i, Rj)− ti(R),

or Vi(xi, gi(R)) ≤ ti(R
′
i, Rj). Thus, gi(R) Ri (xi, ti(R

′
i, Rj)).

The other case can be treated symmetrically.

Efficiency. Let R ∈ R2. If R ∈ (RC ∩ RQ)2, then by efficiency of the Vickrey rule,

g(R) is efficient for R. Thus, we consider the following two cases.

Case 1. R1 = R2 = R0.

By the definition of the inverse-demand-based generalized Vickrey rule andR ∈ (RD)2,

g1(R) = g2(R) = (β, t∗). By g1(R) = g2(R) and Remark 1 (iii), R1 = R2 ∈ RD gives

Vi(xi(R) + 1, gi(R))− ti(R) < tj(R)− Vj(xj(R)− 1, gj(R)) for each pair i, j ∈ N . Thus,

by R ∈ (RNI)2 and Remark 5, g(R) is efficient for R.
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Case 2. Ri = R0 and Rj ∈ RC ∩ RQ for some pair i, j ∈ N .

Without loss of generality, let i = 1 and j = 2. By the definition of the inverse-

demand-based generalized Vickrey rule, t1(R) = v2x1(R), where v2 > 0 is a constant

marginal valuation associated with R2.

If x1(R) = 0. then by Lemma 14 (ii), v2 ≥ V1(1, g1(R)) − t1(R). If 0 < x1(R) < m,

then by Lemma 14 (i) and (ii),

V1(x1(R) + 1, g1(R))− t1(R) ≤ v2 ≤ t1(R)− V1(x1(R)− 1, g1(R)).

Finally, if xi(R) = m, then by Lemma 14 (i), t1(R) − V1(m − 1, g1(R)) ≥ v2. In either

case, by R ∈ (RNI)2, Remark 5 implies that g(R) is efficient for R. ■

Remark 8. In the proof of Proposition 4, we use the condition (1) only when we

prove that an agent has no incentive to misreport his preference at the preference profile

(R1, R2) = (R0, R0). Indeed, all the remaining parts of the proof remain valid without

the condition (1) and even the assumption that m is even.

4 Proof of Proposition 5

In this section, we prove Proposition 5.

Proposition 5. Assume m ≥ 4 is even. Let R0 ∈ RD ∩ R++ violate

V0(β + 1, (β, t∗))− t∗ ≤ p(β − 1;R0), (1)

where β ≡ m
2

and t∗ ≡
∑β

x=1 p(m − x;R0). Let R be a class of preferences satisfying

R ⊇ (RC ∩ RQ) ∪ {R0}. No rule on Rn satisfies efficiency, strategy-proofness, individ-

ual rationality, and no subsidy for losers.

Let R ≡ (RC ∩ RQ) ∪ {R0}. Suppose by contradiction that there is a rule f on Rn

satisfying efficiency, strategy-proofness, individual rationality, and no subsidy for losers.

Note that Steps 1 to 3 in the proof of Theorem 2 depend on neither the number

of agents nor the choice of a preference R0, and so the discussion is valid here as well.

Thus, we hereafter take over the results and the notations in Steps 1 to 3 in the proof of

Theorem 2.

As in the proof of Theorem 2, letR2 ≡ R0. First, we show zf2 (R−2; β+1) P2 zf1 (R−2; β).
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Note that by Step 3, zf2 (R−2; β) = (β, t∗). Further,

tf2(R−2; β + 1)− tf2(R−2; β) = p(m− (β + 1);R1)

= p(β − 1;R1)

< V2(β + 1, zf2 (R−2; β))− tf2(R−2; β),

where the first equality follows from Step 3, the second one follows from β = m
2
, and the

inequality follows since R2 = R1 = R0 violates (1) and zf2 (R−2, β) = (β, t∗). Thus, we

have tf2(R−2; β + 1) < V2(β + 1, zf2 (R−2; β)). This implies zf2 (R−2; β + 1) P2 zf2 (R−2; β).

By the same argument as in the proof of Theorem 2, we can show that for each x2 ∈ M

with x2 < β, zf2 (R−2;x2+1) P2 zf2 (R−2;x2). Thus, we have z
f
2 (R−2; β+1) P2 zf2 (R−2;x2)

for each x2 ∈ M with x2 ≤ β, and Lemma 4 implies x2(R) ≥ β + 1. Since both agents 1

and 2 have the same preferences R0, a symmetric argument gives x1(R) ≥ β + 1. Thus,

x1(R) + x2(R) ≥ 2(β + 1) = m+ 2,

contradicting feasibility. ■

5 Even number of units and more than two agents

In this section, we give an example which demonstrates that when n ≥ 3 and m = 6a−
2 for some a ∈ N, the inverse-demand-based generalized Vickrey rule violates strategy-

proofness on Rn ≡ ((RC ∩ RQ) ∪ {R0})n for any R0 ∈ RD ∩ R++.

Example 5. Let n ≥ 3 and m = 6a − 2, where a ∈ N is an arbitrary natural number.

Let R0 ∈ RD ∩ R++ and R = (RC ∩ RQ) ∪ {R0}. Let g ≡ (x, t) be an inverse-demand-

based generalized Vickrey rule on Rn.

Let R ∈ Rn be such that for each i ∈ {1, 2, 3}, Ri = R0, and for each j ∈ N\{1, 2, 3},
Rj ∈ RC ∩ RQ be such that vj < p(m−1;R0), where vj is a constant marginal valuation

associated with Rj. By the definition of the inverse-demand-based generalized Vickrey

rule and R{1,2,3} ∈ (RD)3, xi(R) = xj(R) = 2a−1 and xk(R) = 2a for some distinct triple

i, j, k ∈ {1, 2, 3}, xl(R) = 0 for each l ∈ N\{1, 2, 3},

ti(R) = tj(R) = p(2a− 1;R0) + 2
3a−2∑
x=2a

p(x;R0), tk(R) = 2
3a−2∑

x=2a−1

p(x;R0),

and tl(R) = 0 for each l ∈ N\{1, 2, 3}.1 Without loss of generality, let i = 1, j = 2, and

1Note that when a = 1, i.e., m = 4, ti(R) = tj(R) = p(2a − 1;R0) = p(1;R0). In the subsequent
discussion, we consider the case where a ≥ 2, but the same discussion can be applied to the case where
a = 1.
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k = 3. Let R′
1 ∈ RC ∩ RQ be such that p(2a;R0) < v′1 < p(2a − 1;R0), where v′1 is a

constant marginal valuation associated with R′
1. By the definition of the inverse-demand-

based generalized Vickrey rule andR{2,3} ∈ (RD)2, g1(R
′
1, R−1) = (2a, 2

∑3a−2
x=2a−1 p(x;R0)).

Note that by R0 ∈ RD ∩ R++ and Lemma 11,

t1(R) = p(2a− 1;R0) + 2
3a−2∑
x=2a

p(x;R0) < (2a− 1)p(2a− 1;R0) = t∗(2a− 1).

Thus,

V1(2a, g1(R))− t1(R) > V1(2a, (2a− 1, t∗(2a− 1)))− t∗(2a− 1) (by Remark 7 (i))

=
t∗(2a− 1)

2a− 1
(by Lemma 9)

= p(2a− 1;R0)

= t1(R
′
1, R−1)− t1(R),

or V1(2a, g1(R)) > t1(R
′
1, R−1). This implies g1(R

′
1, R−1) P1 g1(R). Thus, g violates

strategy-proofness.
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