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Abstract

We consider the problem of allocating multiple units of an indivisible object

among agents and collecting payments. Each agent can receive multiple units of

the object, and his (consumption) bundle is a pair of the units he receives and

his payment. An agent’s preference over bundles may be non-quasi-linear, which

accommodates income effects or soft budget constraints. We show that the general-

ized Vickrey rule is the only rule satisfying efficiency, strategy-proofness, individual

rationality, and no subsidy for losers on rich domains with nondecreasing marginal

valuations. We further show that if a domain is minimally rich and includes an

arbitrary preference exhibiting both decreasing marginal valuations and a positive

income effect, then no rule satisfies the same four properties. Our results suggest

that in non-quasi-linear environments, the design of an efficient multi-unit auction

mechanism is possible only when agents have nondecreasing marginal valuations.
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1 Introduction

1.1 Purpose

The most important goal of many government auctions is to allocate public resources

efficiently. The examples of government auctions include spectrum licenses,1 the rights to

vehicle ownership,2 etc. The winning bids of spectrum license auctions are often larger

than annual profits of mega firms such as major mobile operators.3 The winning bids of

vehicle ownership auctions are typically as much as citizens’ annual income. An impor-

tant feature of such large-scale auctions which has been ignored in the literature is the

non-quasi-linearity of preferences. Most existing studies on auctions assume quasi-linear

preferences, which implies that bidders’ payments are less than their cash balances and

are so small that income effects are negligible. However, if a payment exceeds a bidder’s

cash balance, then he will need to borrow cash. The cost of borrowing from financial

markets is typically non-linear to the borrowings. This factor makes bidders’ preferences

non-quasi-linear. Another factor of non-quasi-linearity is complementary goods to utilize

the auctioned objects effectively. If a bidder pays a large amount in an auction, he cannot

afford to purchase sufficient complementary goods. In such situations, bidders’ valua-

tions on the auctioned objects change as their payments change. Thus, the existence

of complementary goods causes non-quasi-linearity. In this paper, we take account of

non-quasi-linear preferences but focus on multi-unit auctions where objects are identical.

Then, we investigate the possibility of designing auction mechanisms that allocate objects

efficiently.

1.2 Main results

We consider the problem of allocating multiple units of an indivisible object among agents

and collecting payments from them. Each agent can receive multiple units of the object,

and his (consumption) bundle is a pair specifying the units he receives and his payment.

Each agent has a (possibly) non-quasi-linear preference over bundles. An allocation spec-

ifies each agent’s bundle. An allocation rule, or a rule for short, is a function from the

set of preference profiles (the domain) to the set of allocations. An allocation is efficient

for a given preference profile if no other allocation makes some agent better off without

making any agent worse off or decreasing the auctioneer’s revenue. A rule satisfies ef-

ficiency if it chooses an efficient allocation for each preference profile. A rule satisfies

1As of 2020, all OECD countries except for Japan conduct auctions to allocate spectrum licenses.
2Singapore Transportation Authority conducts auction to allocate COEs (Certificate of En-

titlement), which are necessary to own and use a vehicle in Singapore. For the de-
tails, see the following: https://www.onemotoring.com.sg/content/onemotoring/home/buying/

upfront-vehicle-costs/certificate-of-entitlement--coe-.html.
3For the example of UK spectrum auction, see Ofcom’s website: https://www.ofcom.org.uk/.
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strategy-proofness if no agent has an incentive to misreport his preference regardless of

other agents’ reports. A rule satisfies individual rationality if no agent is worse off than

receiving nothing and making no monetary transfer. A rule satisfies no subsidy for losers

if an agent who receives nothing cannot receive money. This condition eliminates “fake”

agents whose only interest is the participation subsidy. We regard these four properties

as desiderata.

A characteristic of a preference is captured by marginal valuations. A preference

exhibits nondecreasing (resp. nonincreasing) marginal valuations if a marginal willingness

to pay at each bundle is weakly greater than (resp. less than) the marginal willingness

to sell at the bundle.4 A preference exhibits constant marginal valuations if a marginal

willingness to pay at each bundle coincides with the marginal willingness to sell at the

bundle. Because of non-quasi-linearity, both marginal willingness to pay and to sell may

vary depending on the payments. The domain with nondecreasing (resp. nonincreasing)

marginal valuations is the class of preference profiles which exhibit nondecreasing (resp.

nonincreasing) marginal valuations. The domain with constant marginal valuations is the

class of preference profiles which exhibit constant marginal valuations.

First, we consider the situation where agents’ preferences exhibit nondecreasing marginal

valuations. Such a situation is typical in some spectrum auctions. An example is the

Germany 3G auction held in 2000. As Ausubel (2004) writes, “ten licenses for virtually

homogeneous spectrum were offered to the four German mobile phone incumbents.” An-

other example is the Spanish 5G auction held in July 2018. The Spanish government

divided the 3.6–3.8 GHz band into 40 small blocks of 5MHz.5 In those auctions, because

of economies of scale, as firms obtain more blocks, they can utilize them better. Thus, it

is natural that firms have nondecreasing marginal valuations.

A domain is rich if it includes all quasi-linear preferences with constant marginal

valuations. We require a domain to be rich as a minimal condition. The generalized

Vickrey rule is a natural extension of the Vickrey rule for quasi-linear preferences to non-

quasi-linear preferences. Our first main result (Theorem 1) is: on any rich subdomain

of the domain with nondecreasing marginal valuations, the generalized Vickrey rule is the

only rule satisfying efficiency, strategy-proofness, individual rationality, and no subsidy

for losers .

Most of the literature on multi-unit auctions rather assume preferences exhibiting

decreasing (or weaker nonincreasing) marginal valuations.6 Thus, we next investigate

the possibilities of desirable rules on the domain with decreasing marginal valuations.

A preference exhibits the positive income effects if the demand for the object increases

4A preference exhibiting decreasing or increasing marginal valuations can be defined analogously.
5Since all the blocks are equally sized and have similar frequencies, as in German 3G auction, the

blocks can be regarded as virtually homogeneous.
6See Subsection 1.3.1.
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as the payment decreases. Our second main result (Theorem 2) is: if a domain is rich

and includes a preference exhibiting both decreasing marginal valuations and a positive

income effect, then no rule satisfies efficiency, strategy-proofness, individual rationality,

and no subsidy for losers .7 Note that the smaller a domain is, the weaker the four desirable

properties are, and the higher the possibilities of finding desirable rules are. A rich domain

can be “minimal” in that it includes only quasi-linear preferences with constant marginal

valuations. Also note that the factor of complementary goods makes the demand for the

auctioned object increase as the payment decreases. Thus, preferences exhibiting both

decreasing marginal valuations and positive income effects are plausible. Thus, the second

result says that if one arbitrary plausible preference is added to a minimally rich domain,

it is impossible to design a rule satisfying the desirable properties.

1.3 Related literature

1.3.1 Multi-unit auctions

Most of the vast literature on multi-unit auctions assume quasi-linear preferences with

decreasing marginal valuations (Perry and Reny, 2002, 2005; Ausubel, 2004; Ausubel et

al., 2014, etc.).8 Such literature includes two standard texts on auction theory (Milgrom,

2004; Krishna, 2009). Our results are different from this strand of research in covering

the case of nondecreasing or nonincreasing marginal valuations in environments of non-

quasi-linear preferences.

In the literature on multi-object auctions (Kelso and Crawford, 1982; Gul and Stac-

chetti, 1999, 2000; Milgrom, 2000; Ausubel, 2004, 2006, etc.), substitutability among

objects is the key to the possibility of designing efficient auction mechanisms. Note that

substitutability corresponds to nonincreasing marginal valuations in multi-unit auction

models. Thus, our results (Theorems 1 and 2) make a striking contrast to the above liter-

ature in suggesting that in non-quasi-linear environments, it is possible to design efficient

auction mechanisms only when preferences exhibit nondecreasing marginal valuations.

1.3.2 Efficient object allocation

The efficient object allocation problem with monetary transfer has been studied exten-

sively. For quasi-linear preferences, Holmström (1979) and Chew and Serizawa (2007)

characterize the Vickrey rule by efficiency, strategy-proofness, individual rationality, and

no subsidy for losers on rich quasi-linear domains. In particular, the result by Holm-

ström (1979) implies that the Vickrey rule is the only rule satisfying the four desirable

properties on the quasi-linear domain with nondecreasing marginal valuations. Thus, our

7Precisely, our negative result depends on the number of units. See Section 5.
8We also refer to Baranov et al. (2017), who remove the assumption of decreasing marginal valuations

while maintaining quasi-linearity in the procurement auction model.
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characterization theorem on rich subdomains of the domain with nondecreasing marginal

valuations can be seen as an extension of his result to non-quasi-linear domains.

There is a small but expanding literature on the object allocation problem with non-

quasi-linear preferences. They are roughly classified into two categories: papers on agents

with unit-demand and those on agents with multi-demand, as in ours.

The minimum price Warlasian rule (Demange and Gale, 1985) plays a central role

in the papers in the first category. Morimoto and Serizawa (2015) show that it is the

only rule on the unrestricted classical domain satisfying efficiency, strategy-proofness,

individual rationality, and no subsidy for losers. Zhou and Serizawa (2018) extend the

characterization of Morimoto and Serizawa (2015) to the restricted domain where objects

are ranked according to the common tiers.

In the single-object environment, the generalized Vickrey rule coincides with the min-

imum price Walrasian rule, and is characterized by the same four properties (Saitoh

and Serizawa, 2008; Sakai, 2008). When preferences exhibit nondecreasing marginal val-

uations, it is efficient to bundle all the units and allocate them to a single agent. This

bundling makes efficient allocations for nondecreasing marginal valuations similar to those

of the single-object environment. Thus, our first result seems to be obtained as an appli-

cation of the characterization for the single-object case. However, we emphasize that our

result is not a trivial extension of theirs since several agents may receive the object in our

environment.9

In contrast, the papers in the latter category typically obtain impossibility theorems.

Kazumura and Serizawa (2016) show that in the heterogeneous objects model, if a domain

contains a rich unit-demand domain and includes one arbitrary multi-demand preference,

then no rule satisfies efficiency, strategy-proofness, individual rationality, and no subsidy

for losers.

Malik and Mishra (2019) consider dichotomous preferences in the heterogeneous ob-

jects environment. They show that on the dichotomous domain, no rule satisfies efficiency,

strategy-proofness, individual rationality, and no subsidy. They further show that the

generalized Vickrey rule is the only rule satisfying the four properties on the dichotomous

domain with nonnegative income effects. Since they treat heterogeneous objects, their

results are independent of ours.

Baisa (2020) is one of the most closely related papers to ours. He considers the

same model as ours, and shows that on the domain with decreasing marginal valuations,

positive income effects, and the single-crossing property, there is a rule satisfying efficiency,

strategy-proofness, individual rationality, and no subsidy for losers if preferences are of

one-dimensional types. He also shows that on the same domain no rule satisfies the

four properties if preferences are of multi-dimensional types. Both of his results are

9Subsection 6.2.1 discusses this point in detail.
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independent of ours. We give a detailed discussion on the relationship between his results

and ours in Subsection 6.1.

1.4 Organization

The remainder of the paper is organized as follows. Section 2 sets up the model. Section 3

introduces the generalized Vickrey rule. Section 4 provides the characterization theorem.

Section 5 provides the impossibility theorem. Section 6 discusses the relationship between

our results and the related results obtained by other authors, and explains the difficulty

of our proofs. Section 7 concludes. Most proofs are in Appendix, while missing ones can

be found in the supplementary material.

2 The model and definitions

There are n agents andm units of an identical object, where 2 ≤ n < ∞ and 2 ≤ m < ∞.

We denote the set of agents by N ≡ {1, . . ., n}. Let M ≡ {0, . . .,m}. Further, given

m′ ∈ M , let M(m′) ≡ {0, . . .,m′}.
Each agent i ∈ N receives xi ∈ M units of the object. The amount of money paid by

agent i is denoted by ti ∈ R. For each agent i ∈ N , his consumption set is M × R,
and his (consumption) bundle is a pair zi ≡ (xi, ti) ∈ M × R. Let 0 ≡ (0, 0).

2.1 Preferences

Each agent i ∈ N has a complete and transitive preference relation Ri overM × R. Let Pi

and Ii be the strict and indifference relations associated with Ri, respectively. Throughout

this paper, we assume that a preference Ri satisfies the following four properties.

Money monotonicity. For each xi ∈ M and each pair ti,t
′
i ∈ R with ti < t′i, we have

(xi, ti) Pi (xi, t
′
i).

Object monotonicity. For each pair xi, x
′
i ∈ M with xi > x′

i and each ti ∈ R, we have

(xi, ti) Pi (x
′
i, ti).

Possibility of compensation. For each zi ∈ M × R and each xi ∈ M , there is a pair

ti, t
′
i ∈ R such that (xi, ti) Ri zi and zi Ri (xi, t

′
i).

Continuity. For each zi ∈ M × R, the upper contour set at zi, {z′i ∈ M × R : z′i Ri zi},
and the lower contour set at zi, {z′i ∈ M × R : zi Ri z

′
i}, are both closed.
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A typical class of preferences satisfying the above four properties is denoted by R.

For each i ∈ N , each Ri ∈ R, each zi ∈ M × R, and each xi ∈ M , possibility of com-

pensation and continuity together imply that there is a payment Vi(xi, zi) ∈ R such

that (xi, Vi(xi, zi)) Ii zi.
10 By money monotonicity, such a payment is unique. We call

the payment Vi(xi, zi) the valuation of xi at zi for Ri, where zi specifies the bun-

dle at which xi is evaluated. We define the net valuation of xi at zi for Ri as

vi(xi, zi) ≡ Vi(xi, zi) − Vi(0, zi). Note that for each zi ∈ M × R, vi(0, zi) = 0. More-

over, by Vi(0,0) = 0, vi(xi,0) = Vi(xi,0) for each xi ∈ M .

Remark 1. Let i ∈ N and Ri ∈ R. (i) Let zi, z
′
i ∈ M × R be such that zi Ii z

′
i. Then

for each xi ∈ M , Vi(xi, zi) = Vi(xi, z
′
i). (ii) Let zi ∈ M × R be such that zi Ii 0. Then

for each xi ∈ M , vi(xi, zi) = vi(xi,0). (iii) For each zi ≡ (xi, ti) ∈ M × R, ti = Vi(xi, zi).

Definition 1. A preference Ri is quasi-linear if for each pair (xi, ti), (x
′
i, t

′
i) ∈ M × R

and each δ ∈ R, (xi, ti) Ii (x
′
i, t

′
i) implies (xi, ti + δ) Ii (x

′
i, t

′
i + δ).

Let RQ denote the class of quasi-linear preferences.

Remark 2. Let Ri ∈ RQ. (i) For each xi ∈ M , vi(xi, ·) is independent of a bundle zi,

and we simply write vi(xi) instead of vi(xi, zi). (ii) For each pair (xi, ti), (x
′
i, t

′
i) ∈ M × R,

(xi, ti) Ri (x
′
i, t

′
i) if and only if vi(xi)− ti ≥ vi(x

′
i)− t′i.

Payment
0

𝑥𝑖

𝑥𝑖
′

𝑥𝑖
′′

𝑅𝑖

𝑡𝑖

𝑡𝑖
′′

𝟎

𝑉𝑖 0, 𝑧𝑖

𝑣𝑖 𝑥𝑖
′, 𝑧𝑖

𝑧𝑖 ≡ (𝑥𝑖 , 𝑡𝑖)

(𝑥𝑖
′′, 𝑡𝑖

′′)

𝑉𝑖 𝑥𝑖
′, 𝑧𝑖

Figure 1: An illustration of the consumption set and indifference curves.

In our paper, the graphical illustrations of the consumption set and indifference curves

might help the readers better understand the concepts and discussions. Figure 1 illus-

trates the consumption set of agent i ∈ N and an indifference curve of his preference

10For the formal proof of the existence of such a payment, see Lemma 1 of Kazumura and Serizawa
(2016).
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Ri ∈ R. Each horizontal line corresponds to some consumption level of the object. The

intersections of the horizontal lines and the vertical line are the points at which payments

are zero. Each point on a horizontal line indicates the amount of money that he pays

(if it is on the right side of the vertical line) or receives (if it is on the left side of the

vertical line). A solid line is an indifference curve of his preference Ri. By money mono-

tonicity, a bundle is more preferable as it goes to the left on a horizontal line. Thus,

(x′′
i , t

′′
i ) Pi zi = (xi, ti).

2.2 Marginal valuations

In the multi-unit object setting with money, the property of marginal valuations deter-

mines the characteristic of a preference. Given Ri ∈ R, zi ∈ M × R, and xi ∈ M\{m},
the marginal valuation of xi at zi for Ri is vi(xi + 1, zi)− vi(xi, zi).

Definition 2. (i) A preference Ri exhibits nondecreasing (resp. increasing) marginal

valuations if for each zi ∈ M × R and each xi ∈ M\{0,m},

vi(xi + 1, zi)− vi(xi, zi) ≥ (resp. >) vi(xi, zi)− vi(xi − 1, zi).

(ii) A preference Ri exhibits nonincreasing (resp. decreasing) marginal valuations

if for each zi ∈ M × R and each xi ∈ M\{0,m},

vi(xi + 1, zi)− vi(xi, zi) ≤ (resp. <) vi(xi, zi)− vi(xi − 1, zi).

(iii) A preference Ri exhibits constant marginal valuations if for each zi ∈ M × R
and each xi ∈ M\{0,m},

vi(xi + 1, zi)− vi(xi, zi) = vi(xi, zi)− vi(xi − 1, zi).

In words, the definition of nondecreasing (resp. nonincreasing) marginal valuations is

that for each bundle zi, the marginal valuation at zi for Ri is nondecreasing (resp. nonin-

creasing) in the number of units of the object, and that of constant marginal valuations

says that for each bundle zi, the marginal valuation at zi for Ri is constant in the number

of units. Our definitions of properties of marginal valuations are natural generalizations

of the corresponding definitions for quasi-linear preferences.

Let RND, RNI , and RC denote the classes of preferences that exhibit nondecreas-

ing, nonincreasing, and constant marginal valuations, respectively. Clearly, we have

RND ∩ RNI = RC . Further, let RD and RI denote the classes of preferences which ex-

hibit decreasing and increasing marginal valuations, respectively. Note that RD ⊊ RNI ,

RD ∩ RC = ∅, RI ⊊ RND, RI ∩ RC = ∅, and RD ∩ RI = ∅.
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Graphically, a preference exhibits nondecreasing (resp. nonincreasing) marginal val-

uations if all indifference curves are convex upward (resp. downward), and a preference

exhibits constant marginal valuations if all indifference curves are flat.

Remark 3 (Upward convexity). Let m′ ∈ M with m′ > 0. Let i ∈ N , Ri ∈ RND,

and zi ∈ M × R. (i) For each xi ∈ M(m′), xi

m′vi(m
′, zi) ≥ vi(xi, zi). (ii) If there is

xi ∈ M(m′)\{0,m′} such that xi

m′vi(m
′, zi) > vi(xi, zi), then for each x′

i ∈ M(m′)\{0,m′},
x′
i

m′vi(m
′, zi) > vi(x

′
i, zi).

Figure 2 below illustrates Remark 3 in the case where m′ = 3 and xi = 2.

Payment

1

0

𝑚′ = 3

𝑥𝑖 = 2

𝑧𝑖

𝑅𝑖

𝑥𝑖
𝑚
𝑣𝑖 𝑚, 𝑧𝑖

𝑣𝑖 𝑥𝑖 , 𝑧𝑖

Convex

Figure 2: An illustration of Remark 3.

Although Remark 3 is graphically apparent from Figure 2, its formal proof can be

found in the supplementary material.

2.3 Allocations and rules

LetX ≡ {(x1, . . . , xn) ∈ Mn : 0 ≤
∑

i∈N xi ≤ m}. A (feasible) allocation is an n-tuple

z ≡ (z1, . . . , zn) ≡ ((x1, t1), . . . , (xn, tn)) ∈ (M × R)n such that (x1, . . . , xn) ∈ X. Let Z

denote the set of feasible allocations. We denote the object allocation and the payments

at z ∈ Z by x ≡ (x1, . . . , xn) and t ≡ (t1, . . . , tn), respectively. We write z ≡ (x, t) ∈ Z.

Given N ′ ⊆ N and m′ ∈ M , let

X(N ′,m′) ≡ {x ∈ X : 0 ≤
∑
i∈N ′

xi ≤ m′ and xi = 0 for each i ∈ N\N ′}

and Z(N ′,m′) ≡ {z ≡ (x, t) ∈ Z : x ∈ X(N ′,m′)}. These sets correspond to the sets of

feasible object allocations and feasible allocations in the reduced economy, where the set

of agents is N ′ and there are m′ units of the object, respectively.
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We call Rn a domain. The partial list of domains to appear in this paper is as follows:

• The quasi-linear domain: (RQ)n.

• The domain with nondecreasing marginal valuations: (RND)n.

• The domain with nonincreasing marginal valuations: (RNI)n.

• The domain with constant marginal valuations: (RC)n.

A preference profile is an n-tuple R ≡ (R1, . . . , Rn) ∈ Rn. Given R ∈ Rn and

N ′ ⊆ N , let RN ′ ≡ (Ri)i∈N ′ and R−N ′ ≡ (Ri)i∈N\N ′ . Specifically, for each distinct pair

i, j ∈ N , we may write R−i ≡ (Rk)k∈N\{i} and R−i,j ≡ (Rk)k∈N\{i,j}.

An allocation rule, or simply a rule, on Rn is a function f : Rn → Z. With a slight

abuse of notation, we may write f ≡ (x, t), where x : Rn → X and t : Rn → Rn are the

object allocation and the payment rules associated with f , respectively. We denote agent

i’s outcome bundle under a rule f at a preference profile R by fi(R) = (xi(R), ti(R)),

where xi(R) and ti(R) are the consumption level of the object and the payment made by

agent i, respectively.

We now introduce the properties of a rule. The efficiency condition takes the auction-

eer’s preference into account, and we assume that he is only interested in his revenue.

An allocation z ≡ (x, t) ∈ Z is (Pareto-)efficient for a given preference profile R ∈ Rn

if there is no other allocation z′ ≡ (x′, t′) ∈ Z such that (i) z′i Ri zi for each i ∈ N , (ii)∑
i∈N t′i ≥

∑
i∈N ti, and (iii) some agent has the strict relation in (i) or the inequality in

(ii) is strict.

Note that if R ∈ (RQ)n, then an allocation z ≡ (x, t) ∈ Z is efficient for R if and only

if
∑

i∈N vi(xi) = maxx′∈X
∑

i∈N vi(x
′
i). Remark 4 below generalizes this property to non-

quasi-linear preferences. Since the (net) valuations depend on the bundles, an efficient

allocation under non-quasi-linear preferences should depend on the payments, unlike an

efficient allocation under quasi-linear preferences.

Remark 4. Let R ∈ Rn and z ≡ (x, t) ∈ Z. Then z is efficient for R if and only if∑
i∈N vi(xi, zi) = maxx′∈X

∑
i∈N vi(x

′
i, zi).

By Remark 4, we obtain another characterization of an efficient allocation under pref-

erences with nonincreasing marginal valuations.

Remark 5. Let N ′ ⊆ N and m′ ∈ M . Let RN ′ ∈ (RNI)|N
′| and z ≡ (x, t) ∈ Z(N ′,m′).

Then
∑

i∈N ′ vi(xi, zi) = maxx′∈X(N ′,m′)

∑
i∈N ′ vi(x

′
i, zi) if and only if for each pair i, j ∈ N ′

with xi < m′ and xj > 0, we have Vi(xi + 1, zi) − ti ≤ tj − Vj(xj − 1, zj). In particular,

by Remark 4, z is efficient for R if and only if for each pair i, j ∈ N with xi < m and

xj > 0, we have Vi(xi + 1, zi)− ti ≤ tj − Vj(xj − 1, zj).
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The first property states that a rule should select an efficient allocation.

Efficiency. For each R ∈ Rn, f(R) is efficient for R.

The second property is a dominant strategy incentive compatibility. It states that no

agent would be better off by misrepresenting his preference.

Strategy-proofness. For eachR ∈ Rn, each i ∈ N , and eachR′
i ∈ R, fi(R) Ri fi(R

′
i, R−i).

The third property is a participation constraint. It states that a rule never selects an

allocation at which some agent is worse off than if he had received no object and paid

nothing.

Individual rationality. For each R ∈ Rn and each i ∈ N , fi(R) Ri 0.

The fourth and fifth properties are both concerned with nonnegativity of payments.

No subsidy. For each R ∈ Rn and each i ∈ N , ti(R) ≥ 0.

No subsidy for losers. For each R ∈ Rn and each i ∈ N , if xi(R) = 0, then ti(R) ≥ 0.

Clearly, no subsidy implies no subsidy for losers.

3 The generalized Vickrey rule

In this section, we introduce the Vickrey rule for quasi-linear preferences (Vickrey, 1961)

and its generalization for non-quasi-linear preferences (Saitoh and Serizawa, 2008; Sakai,

2008).

Given i ∈ N , R−i ∈ Rn−1, and xi ∈ M , define the maximum sum of net valuations at

0 for agents other than agent i, given that agent i has already obtained xi units, as

σi(R−i;xi) ≡ max
x∈X(N\{i},m−xi)

∑
j∈N\{i}

vj(xj,0).

Note that if R−i ∈ (RQ)n−1, then σi(R−i;xi) = maxx∈X(N\{i},m−xi)

∑
j∈N\{i} vj(xj).

We first introduce the Vickrey rule for quasi-linear preferences.

Definition 3. Let R ⊆ RQ. A rule f ≡ (x, t) on Rn is a Vickrey rule if the following

two conditions hold:

11



(i) for each R ∈ Rn,

x(R) ∈ arg max
x∈X

∑
i∈N

vi(xi),

(ii) for each R ∈ Rn and i ∈ N ,

ti(R) = σi(R−i; 0)− σi(R−i;xi(R)).

Condition (i) says that the object is allocated so as to maximize the sum of net

valuations, and condition (ii) says that each agent must pay the externality that he

imposes on other agents.

Remark 2 (i) states that the net valuations are independent of bundles under quasi-

linear preferences, and so we do not have to care about the address of the net valuations

in the definition of the Vickrey rule. However, the net valuations may vary depending on

payments under non-quasi-linear preferences, and we must pin down net valuations before

defining a Vickrey rule on a non-quasi-linear domain. The generalized Vickrey rule picks

the net valuations at 0, and apply the Vickrey rule to these valuations.

Definition 4. A rule f ≡ (x, t) on Rn is a generalized Vickrey rule if the following

two conditions hold:

(i) for each R ∈ Rn,

x(R) ∈ arg max
x∈X

∑
i∈N

vi(xi,0),

(ii) for each R ∈ Rn and each i ∈ N ,

ti(R) = σi(R−i; 0)− σi(R−i;xi(R)).

Remark 6. Let f ≡ (x, t) be a generalized Vickrey rule on Rn. Let R ∈ Rn and

z ≡ (xi(R), vi(xi(R),0))i∈N . Note that vi(xi(R),0) = Vi(xi(R),0) for each i ∈ N as

Vi(0,0) = 0. Thus, for each i ∈ N , zi Ii 0, and by Remark 1 (ii), vi(xi(R), zi) =

vi(xi(R),0). Then by Remark 4, the first condition (i) of the generalized Vickrey rule

implies that z is efficient for R.

Note that Remark 6 simply states that the allocation (xi(R), vi(xi(R),0))i∈N is efficient

for each preference profile R ∈ Rn, and it does not imply that the generalized Vickrey

rule satisfies efficiency.

4 Characterization theorem

In this section, we provide a characterization theorem on domains contained by the domain

with nondecreasing marginal valuations.

12



Our result requires a domain to be rich in the sense defined below.

Definition 5. A domain Rn is rich if R ⊇ RC ∩ RQ. We call the domain (RC ∩ RQ)n

the minimally rich domain.

The following theorem states that on any rich subdomain of the domain with non-

decreasing marginal valuations, the generalized Vickrey rule is the only rule satisfying

efficiency, strategy-proofness, individual rationality, and no subsidy for losers.

Theorem 1. Let R be a class of preferences such that RC ∩ RQ ⊆ R ⊆ RND. A rule

on Rn satisfies efficiency, strategy-proofness, individual rationality, and no subsidy for

losers if and only if it is a generalized Vickrey rule on Rn.

Note that Theorem 1 immediately implies that the generalized Vickrey rule satisfies

efficiency, strategy-proofness, individual rationality, and no subsidy for losers on any

subdomain of the domain with nondecreasing marginal valuations.

Since a domain in Theorem 1 might include non-quasi-linear preferences, the existence

of a rule satisfying desirable properties such as efficiency and strategy-proofness is not

trivial. Indeed, Theorem 1 is not an immediate consequence of the existing results on the

quasi-linear domain (Holmström, 1979; Chew and Serizawa, 2007). We further emphasize

that our result is not a trivial extension of the characterization of the generalized Vickrey

rule for the single-object environment (Saitoh and Serizawa, 2008; Sakai, 2008) since we

allow preferences to have constant marginal valuations. A detailed discussion can be

found in Subsection 6.2.1.

The independence of properties in Theorem 1 is demonstrated in the examples below.

In the examples, we fix a rich class of preferences at R satisfying R ⊆ RND.

Example 1 (Dropping efficiency). Let f be the no-trade rule on Rn such that each

agent receives 0 for each preference profile. Then f satisfies all the properties in Theorem

1 other than efficiency.

Example 2 (Dropping strategy-proofness). Let f ≡ (x, t) be the generalized pay-as-

bid rule on Rn such that for each preference profile R ∈ Rn, (i) the object is allocated

so as to maximize the sum of net valuations at 0, and (ii) each agent has to pay his net

valuation of xi(R) at 0. By Remark 6, f satisfies efficiency. Further, it satisfies individual

rationality and no subsidy for losers, but violates strategy-proofness.

Example 3 (Dropping individual rationality). Let f be the generalized Vickrey rule

with fixed and common entry fee e > 0 on Rn. Then f satisfies all the properties in

Theorem 1 other than individual rationality.

Example 4 (Dropping no subsidy for losers). Let f be the generalized Vickrey

rule with fixed and common participation subsidy s < 0 on Rn. Then f satisfies all the

properties in Theorem 1 other than no subsidy for losers.
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5 Impossibility theorem

In this section, we address the following question: if a rich domain includes some non-

quasi-linear preferences with decreasing marginal valuations, then is there a rule satisfying

efficiency, strategy-proofness, individual rationality, and no subsidy for losers on the

domain?

To answer this question formally, we have to introduce a class of preferences which

describe a reasonable pattern of income effects. Although our model does not take into

account income explicitly, the zero payment can be regarded as initial income. Then

the increase of income by δ > 0 induces the shift of the origin of the consumption space

to the right by δ. If we fix the origin of the original consumption space, then this shift

corresponds to the decrease of payments of all the bundles by δ. Then positive (resp. non-

negative) income effect requires that the increase of income (or equivalently, the decrease

of payments) by δ increase (resp. do not decrease) the demand of the object.

Definition 6. A preference Ri exhibits the positive (resp. nonnegative) income effect

if for each pair (xi, ti), (x
′
i, t

′
i) ∈ M × R with xi > x′

i and ti > t′i, and each δ ∈ R++,

(xi, ti) Ii (x
′
i, t

′
i) implies (xi, ti − δ) Pi (x

′
i, t

′
i − δ) (resp. (xi, ti − δ) Ri (x

′
i, t

′
i − δ)).

Let R++ and R+ denote the classes of preferences that exhibit positive and nonnega-

tive income effects, respectively. Note that R++ ⊊ R+, R++ ∩ RQ = ∅, and RQ ⊊ R+.

Remark 7. Let Ri ∈ R++. (i) Let xi ∈ M\{m} and h+(·;xi) : R → R++ be such that

h+(ti;xi) = Vi(xi+1, (xi, ti))−ti for each ti ∈ R. Then h+(·;xi) is strictly decreasing in ti.

(ii) Let xi ∈ M\{0} and h−(·;xi) : R → R++ be such that h−(ti;xi) = ti−Vi(xi−1, (xi, ti))

for each ti ∈ R. Then h−(·;xi) is strictly decreasing in ti as well.

The proof of Remark 7 can be found in the supplementary material.

We are now ready to state our main result in this section. The following theorem gives

a markedly negative answer to the above question: in the case of an odd number of units,

if a rich domain includes one arbitrary preference with decreasing marginal valuations

and a positive income effect, then no rule satisfies the four desirable properties on the

domain.

Theorem 2. Assume m is odd. Let R0 ∈ RD ∩ R++ and R be a class of preferences sat-

isfying R ⊇ (RC ∩ RQ) ∪ {R0}. No rule on Rn satisfies efficiency, strategy-proofness,

individual rationality, and no subsidy for losers.

Note that Theorem 2 does not cover the case wherem is even. Indeed, ifm is even, then

for some R0 ∈ RD ∩ R++, we find that a rule which we call inverse-demand-based gen-

eralized Vickrey rule on the domain ((RC ∩ RQ) ∪ {R0})n satisfies efficiency, strategy-

proofness, individual rationality, and no subsidy for losers (Proposition 4 in Appendix D).
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Although we relegate the formal definition of the inverse-demand-based generalized

Vickrey rule to Appendix D, let us sketch it informally here. Note that when quasi-linear

preferences exhibit nonincreasing marginal valuations, valuation functions are equivalent

to inverse-demand functions.11 We adopt the parallel identification to non-quasi-linear

preferences with nonincreasing marginal valuations as well, and the inverse-demand-based

generalized Vickrey rule applies the Vickrey rule to inverse-demand functions of such

preferences. Note that when preferences may not be quasi-linear, the rule does not coincide

with the generalized Vickrey rule.

For other R0 ∈ RD ∩ R++, no rule on ((RC ∩ RQ) ∪ {R0})n satisfies the four desir-

able properties even ifm is an even number (Proposition 5 in Appendix D). In Appendix D,

we will identify a necessary and sufficient condition of R0 ∈ RD ∩ R++ for the existence

of a rule satisfying the desirable properties when m is even and n = 2 (Corollary 2 in

Appendix D).

An interesting question arising naturally is whether the positive result in the case of

an even number of units is robust or not. Although the answer depends on the precise

meaning of “robustness”, one reasonable way of investigation is to expand the minimally

rich domain. To slightly expand the minimally rich domain, we introduce the perturbation

of quasi-linear preferences with constant marginal valuations.12

Definition 7. Given a quasi-linear preference R0 ∈ RC ∩ RQ with constant marginal

valuation v0 > 0 and a positive number ε > 0, a preference Ri is the ε-perturbation of

R0 if for each xi ∈ M\{m} and each ti ∈ R,

|v0 − (Vi(xi + 1, (xi, ti))− ti)| < ε.

Given R0 ∈ RC ∩ RQ and ε > 0, letRC(R0, ε) denote the class of preferences that are

ε-perturbation of R0. Let RC(ε) ≡
∪

R0∈RC∩RQ RC(R0, ε). Clearly, for each pair ε, ε′ > 0

with ε < ε′, we haveRC(ε) ⊊ RC(ε′), andRC ∩ RQ ⊊ RC(ε) ∩ RQ. Note that as ε → 0,

RC(ε) ∩ RQ converges to RC ∩ RQ, that is,
∩

ε∈R++
(RC(ε) ∩ RQ) = RC ∩ RQ.

The next proposition states that if a domain contains the quasi-linear domain with

slightly perturbed constant marginal valuations, and includes one arbitrary preference

with decreasing marginal valuations and a positive income effect, then no rule satisfies

the desirable properties on the domain regardless of the number of units . This means that

the positive result in the case of an even number of units is vulnerable.

Proposition 1. Let R0 ∈ RD ∩ R++ and ε ∈ R++. Let R be a class of preferences satis-

fying R ⊇ (RC(ε) ∩ RQ) ∪ {R0}. No rule on Rn satisfies efficiency, strategy-proofness,

individual rationality, and no subsidy for losers.

11For a detailed discussion, see, for example, Chapter 12 of Krishna (2009).
12Kazumura et al. (2020a) also introduce perturbation of quasi-linear preferences, although their notion

is different from ours.

15



6 Discussion

6.1 Comparison to Baisa (2020)

We compare our results to the related results obtained by Baisa (2020). He considers the

same setting as ours, and obtains the results for preferences exhibiting decreasing marginal

valuations. He parametarizes preferences by type. His first two results (Theorems 1

and 2 of Baisa (2020)) state that in two-agent or two-unit case, if preferences are of

single-dimensional types, then there is a rule on the domain with decreasing marginal

valuations, positive income effects, and the single-crossing property satisfying efficiency,

strategy-proofness, individual rationality, and no subsidy for losers.13

His results are different from ours (Theorem 1) in many points. Firstly, his results

are for the case of two-agent or two-unit. Secondly, they are for the case of preferences

of single-dimensional types. This means not only that the planner needs to know that

preferences are of single-dimensional types, but also what preference each type has. Our

result is free from those assumptions. However, his results involve technical discussions,

such as a fixed-point argument, to show that the Vickrey rule can be generalized in a

quite novel way so that it satisfies the desirable properties. In contrast, we characterize

a natural generalization of the Vickrey rule by only elementary argument. Thus, the two

results are mutually and completely independent.

Baisa (2020) also shows that if a class of preferences admits multi-dimensional types,

then no rule on the domain satisfies efficiency, strategy-proofness, individual rationality,

and no subsidy for losers (Theorem 3 of Baisa (2020)).14 This result is different from ours

(Theorem 2 and Proposition 1) in terms of domains. The domain of his result includes

only non-quasi-linear preferences with decreasing marginal valuations. In contrast, the

domain of our result includes the class of quasi-linear preferences with constant marginal

valuations, and one preference exhibiting decreasing marginal valuations and a positive

income effect. Thus, these two results can be applied to different environments.

6.2 Difficulty of the proofs

We explain the difficulty of the proofs and discuss the factors that make our proofs

challenging.

13A class of preferences exhibits single-crossing property if the marginal valuation at each bundle is
increasing in a type.

14To be precise, he shows that no rule satisfies efficiency, strategy-proofness, individual rationality, and
no deficit. A rule f on Rn satisfies no deficit if for each R ∈ Rn, we have

∑
i∈N ti(R) ≥ 0. However, his

proof can be directly applied to the proof of the impossibility theorem stated in the body.
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6.2.1 Characterization theorem

As we explained in Subsection 1.3.2, our characterization theorem (Theorem 1) cannot

be obtained simply by bundling all the units and applying the characterization of the

generalized Vickrey rule in the single-object environment (Saitoh and Serizawa, 2008;

Sakai, 2008) although preferences exhibit nondecreasing marginal valuations.

To illustrate this point, consider a preference profile such that two agents have the

same quasi-linear preference with constant marginal valuations, and their net valuations

of m are the highest. For such a profile, any allocation is efficient if the two agents

share all the units, and so an efficient allocation does not necessarily bundle all the units.

By the first condition (i) of the generalized Vickrey rule, all units are allocated so as

to maximize the sum of net valuations at 0. For the above profile, any allocation also

maximizes the sum of valuations at 0 if the two agents share all the units, and so the

generalized Vickrey rule does not necessarily bundle all the units either. Thus, the proof

of our characterization theorem inevitably treats non-bundling efficient allocations and

non-bundling generalized Vickrey rules, and requires different logics from applying the

characterization of the generalized Vickrey rule in the single-object environment.

6.2.2 Minimally rich domain

The larger the domain of rules, the stronger the implications of the properties of rules on

the domain. Unless domains include a sufficient variety of preferences, that is, domains

are rich enough, the implications of the properties are too weak to yield meaningful con-

clusions. Indeed, since the beginning of mechanism design theory and social choice theory,

authors assume rich domains to establish characterization or impossibility theorems (e.g.,

Arrow, 1951; Hurwicz 1972; Holmström, 1979; Moulin 1980, etc.). However, if a domain

is so large that it includes even non-natural preferences, the conclusions from properties

on the domain can be applied only to limited situations. This motivates the concept

of minimal richness of domains. Many authors explicitly or implicitly assume minimal

richness.

Chew and Serizawa (2007) and Malik and Mishra (2019) are such examples in the

auction literature. The minimally rich domain of the first corresponds to the additive

quasi-linear domain;15 and that of the second to the quasi-linear dichotomous domain.16

In these papers, for a given bundle (or an object), their respective minimally rich domains

include a preference such that the valuation for the bundle is sufficiently large but those

for other bundles are small. Then, the property of efficiency implies that an agent who

15A preference is additive if the valuation at each bundle is an additive function.
16A preference is dichotomous if it divides the set of bundles into the acceptable and the unacceptable

sets, and given a payment, it assigns a positive value to any bundle in the acceptable set while any bundle
in the unacceptable set is valueless.
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has such a preference should get the given bundle. In a similar way, it is possible to

construct a preference profile such that the implications of the properties pin down the

outcome of the constructed profile.

Remember that our minimally rich domain includes only quasi-linear preferences with

constant marginal valuations.17 This weak requirement of the minimally rich domain

makes it possible to apply our results to various situations. At the same time, it also

makes the property of efficiency unable to pin down the units an agent receives, and only

implies that an agent receives all the units or nothing. Our proofs need to overcome such

weak implications of properties. This point makes our proofs challenging.

7 Conclusion

We have considered the multi-unit object allocation problem with money. The distin-

guishing feature of our model is to allow agents to have general preferences that may not

be quasi-linear. Our results give a new insight into the design of an efficient multi-unit

auction mechanism in non-quasi-linear environments: it is possible only when agents have

nondecreasing marginal valuations.

Although we regard efficiency as the goal of an auction in this paper, another impor-

tant goal is revenue maximization. Recently, Kazumura et al. (2020b) establish that the

minimum price Warlasian rule maximizes the ex-post revenue among the class of rules

satisfying strategy-proofness, individual rationality, and other mild properties in the set-

ting of unit-demand and (possibly) non-quasi-linear preferences. We leave the ex-post

revenue maximization problem in our setting for future research.

Appendix

A Preliminaries

In this section, we provide some basic lemmas that will be used to prove the theorems.

The proofs of all the lemmas in this section are trivial, and we omit those.

The following lemma immediately follows from efficiency and object monotonicity.

Lemma 1 (No remaining object). Let R ∈ Rn and z ≡ (x, t) ∈ Z be efficient for R.

Then
∑

i∈N xi = m.

The next lemma is immediate from individual rationality and no subsidy for losers.

17Note that domains in Proposition 1 include a little bit more preferences.
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Lemma 2 (Zero payment for losers). Let f ≡ (x, t) be a rule on Rn satisfying indi-

vidual rationality and no subsidy for losers. Let R ∈ Rn and i ∈ N . If xi(R) = 0, then

ti(R) = 0.

The following lemma gives useful implications of individual rationality.

Lemma 3. Let f ≡ (x, t) be a rule on Rn satisfying individual rationality. Let R ∈ Rn

and i ∈ N . We have (i) Vi(0, fi(R)) ≤ 0, (ii) ti(R) ≤ Vi(xi(R),0) = vi(xi(R),0), and

(iii) for each xi ∈ M , Vi(xi, gi(R)) ≤ Vi(xi,0) = vi(xi,0).

Let f be a rule on Rn. Let i ∈ N . Given R−i ∈ Rn−1, agent i’s option set under f

for R−i is defined by

ofi (R−i) ≡ {zi ∈ M × R : ∃Ri ∈ R s.t. fi(Ri, R−i) = zi}.

Further, given R−i ∈ Rn−1, let M f
i (R−i) ≡ {xi ∈ M : ∃Ri ∈ R s.t. xi(Ri, R−i) = xi}.

Let f be a rule onRn satisfying strategy-proofness. Let i ∈ N and R−i ∈ Rn−1. Given

xi ∈ M f
i (R−i), let t

f
i (R−i;xi) ∈ R be a payment such that (xi, t

f
i (R−i;xi)) ∈ ofi (R−i). By

strategy-proofness, such a payment must be unique. Further, given xi ∈ M f
i (R−i), let

zfi (R−i;xi) ≡ (xi, t
f
i (R−i;xi)). Then agent i’s option set ofi (R−i) under f for R−i can be

expressed as follows:

ofi (R−i) = {(xi, ti) ∈ M f
i (R−i) × R : ti = tfi (R−i;xi)} = {zfi (R−i;xi) : xi ∈ M f

i (R−i)}.

The following lemma is an immediate implication of strategy-proofness.

Lemma 4. Let f be a rule on Rn satisfying strategy-proofness. Then, for each i ∈ N ,

each R−i ∈ Rn−1, and each xi ∈ M f
i (R−i), fi(R) Ri z

f
i (R−i;xi).

B Proof of the characterization theorem

In this section, we provide the proof of Theorem 1.

B.1 Preliminary

We first show some preliminary results related to nondecreasing marginal valuations.

The following lemma says that bundling is one way to allocate the object efficiently.

Lemma 5 (Optimality of bundling). Let N ′ ⊆ N and m′ ∈ M be such that m′ > 0.

Then for each RN ′ ∈ (RND)|N
′| and each z ∈ Z(N ′,m′), we have maxi∈N ′ vi(m

′, zi) =

maxx∈X(N ′,m′)

∑
j∈N ′ vj(xj, zj).
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Proof. For each x ∈ X(N ′,m′),

max
i∈N ′

vi(m
′, zi) ≥

∑
j∈N ′

xj

m′ max
i∈N ′

vi(m
′, zi) ≥

∑
j∈N ′

xj

m′vj(m
′, zi) ≥

∑
j∈N ′

vj(xj, zj),

where the first inequality follows from x ∈ X(N ′,m′), and the last one fromRN ′ ∈ (RND)|N
′|

and Remark 3 (i).

The next lemma states that under an efficient allocation (resp. the outcome of the

generalized Vickrey rule), if an agent’s net valuation of m at his bundle (resp. 0) is not

the highest one, then he can receive no object.

Lemma 6. Let R ∈ (RND)n and i ∈ N . (i) Let z ≡ (x, t) ∈ Z be efficient for R. If

vi(m, zi) < maxj∈N vj(m, zj), then xi = 0. (ii) Let g(R) ≡ (x(R), t(R)) be an outcome of

the generalized Vickrey rule for R. If vi(m,0) < maxj∈N vj(m,0), then xi(R) = 0.

Proof. (i) Suppose vi(m, zi) < maxj∈N vj(m, zj) and xi > 0. Then,

max
j∈N

vj(m, zj) =
∑
k∈N

xk

m
max
j∈N

vj(m, zj) >
∑
k∈N

xk

m
vk(m, zk) ≥

∑
k∈N

vk(xk, zk),

where the equality follows from Lemma 1, the first inequality follows from xi > 0 and

maxj∈N vj(m, zj) > vi(m, zi), and the second one follows from R ∈ (RND)n and Remark 3

(i). By Remark 4, this contradicts efficiency.

(ii) Next, let g(R) ≡ (x(R), t(R)) be an outcome of the generalized Vickrey rule for

R. By Remark 6, z ≡ (zj)j∈N ≡ (xj(R), vj(xj(R),0))j∈N = (xj(R), Vj(xj(R),0))j∈N is

efficient for R. For each j ∈ N , by zj Ij 0, Remark 1 (ii) gives vj(m, zj) = vj(m,0).

Thus, we can show Lemma 6 (ii) in the same way as Lemma 6 (i) by using the efficient

allocation z for R.

Given x ∈ X, let N+(x) ≡ {i ∈ N : xi > 0}.
Note that Lemma 6 implies that if there are at least two agents who receive the object

under an efficient allocation (resp. the outcome of the generalized Vickrey rule), then

their net valuations of m at their bundles (resp. 0) must coincide. The following lemma

further says that in such a case, the indifference curves of agents who receive the object

through the bundles are flat.

Lemma 7 (Flat indifference curves). Let R ∈ (RND)n. (i) Let z ≡ (x, t) ∈ Z be

efficient for R. If |N+(x)| ≥ 2, then for each i ∈ N+(x) and each x′
i ∈ M , we have

vi(x
′
i, zi) =

x′
i

m
vi(m, zi). (ii) Let g(R) ≡ (x(R), t(R)) be an outcome of the generalized

Vickrey rule for R. If |N+(x(R))| ≥ 2, then for each i ∈ N+(x(R)) and each xi ∈ M ,

we have vi(xi,0) =
xi

m
vi(m,0).
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Proof. (i) Suppose there is x′
i ∈ X\{0,m} such that

x′
i

m
vi(m, zi) ̸= vi(x

′
i, zi). By Ri ∈ RND

and Remark 3 (i),
x′
i

m
vi(m, zi) > vi(x

′
i, zi). By |N+(x)| ≥ 2 and i ∈ N+(x), xi ∈ M\{0,m}.

Thus, by Ri ∈ RND, Remark 3 (ii) gives xi

m
vi(m, zi) > vi(xi, zi). Then

vi(m, zi) =
∑
j∈N

xj

m
vi(m,xi) =

∑
j∈N

xj

m
vj(m, zj) >

∑
j∈N

vj(xj, zj),

where the first equality follows from Lemma 1, the second one, from R ∈ (RND)n and

Lemma 6 (i), and the inequality follows from xi ∈ M\{0,m}, xi

m
vi(m, zi) > vi(xi, zi),

R−i ∈ (RND)n−1, and Remark 3 (i). By Remark 4, this contradicts efficiency.

(ii) We can show Lemma 7 (ii) similarly to Lemma 7 (i), but by using Lemma 6 (ii)

instead of Lemma 6 (i) and the efficient allocation (xj(R), vj(xj(R),0))j∈N for R instead

of z.

The following proposition identifies the form of the payments under the generalized

Vickrey rule for preferences with nondecreasing marginal valuations.

Proposition 2 (The generalized Vickrey rule payments). Let R ⊆ RND. Let

g ≡ (x, t) be a generalized Vickrey rule on Rn. Let R ∈ (RND)n. Then for each i ∈ N ,

ti(R) = xi(R)
m

maxj∈N\{i} vj(m,0). Moreover, if |N+(x(R))| ≥ 2, then ti(R) = vi(xi(R),0)

for each i ∈ N .

Proof. By the definition of the generalized Vickrey rule, for each i ∈ N , if xi(R) = 0,

then ti(R) = 0. Thus, we only have to consider an agent i ∈ N+(x(R)).

First, suppose |N+(x(R))| = 1. Note that by |N+(x(R))| = 1 and Remark 6,

Lemma 1 implies xi(R) = m. By R−i ∈ (RND)n−1 and Lemma 5, ti(R) = σi(R−i; 0) =

maxj∈N\{i} vj(m,0).

Suppose instead |N+(x(R))| ≥ 2. For each j ∈ N+(x(R)), each xj ∈ M , and each

k ∈ N ,

vj(xj,0) =
xj

m
vj(m,0) ≥ xj

m
vk(m,0) ≥ vk(xj,0), (1)

where the equality follows from R ∈ (RND)n and Lemma 7 (ii), the first inequality follows

from R ∈ (RND)n and Lemma 6 (ii), and the second one comes from Rk ∈ RND and

Remark 3 (i). By |N+(x(R))| ≥ 2, there is j ∈ N+(x(R))\{i}. By (1), for each xi ∈ M ,

vi(xi,0) = vj(xi,0) = max
k∈N\{i}

vk(xi,0). (2)
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Then

ti(R) = σi(R−i; 0)− σi(R−i;xi(R))

= max
k∈N\{i}

vk(m,0)− max
k∈N\{i}

vk(m− xi(R),0) (by Lemma 5)

= vi(m,0)− vi(m− xi(R),0) (by (2))

=
xi(R)

m
vi(m,0) (by Lemma 7 (ii))

=
xi(R)

m
max

k∈N\{i}
vk(m,0). (by (2))

Further, by R ∈ (RND)n and Lemma 7 (ii), ti(R) = xi(R)
m

vi(m,0) = vi(xi(R),0).

B.2 Proof of the “if” part

Let R be a class of preferences such that RC ∩ RQ ⊆ R ⊆ RND and g ≡ (x, t) be a

generalized Vickrey rule on Rn. Since individual rationality and no subsidy for losers are

immediate from the definition of the generalized Vickrey rule, we omit the proofs.

Efficiency. Let R ∈ Rn. We show g(R) is efficient for R.

Suppose |N+(x(R))| = 1. By Remark 6 and Lemma 1, xi(R) = m for i ∈ N+(x(R)).

By R ⊆ RND, Proposition 2 gives gi(R) = (m,maxj∈N\{i} vj(m,0)) and gj(R) = 0 for

each j ∈ N\{i}. By Remark 1 (ii), ti(R) = maxj∈N\{i} vj(m, gj(R)). Then by Remark 1

(iii) and Lemma 3 (i),

vi(m, gi(R)) = max
j∈N\{i}

vj(m, gj(R))− Vi(0, gi(R)) ≥ max
j∈N\{i}

vj(m, gj(R)). (1)

For each x ∈ X,

vi(m, gi(R)) ≥
∑
j∈N

xj

m
vi(m, gi(R)) ≥

∑
j∈N

xj

m
vj(m, gj(R)) ≥

∑
j∈N

vj(xj, gj(R)),

where the second inequality follows from (1), and the last one follows from R ∈ (RND)n

and Remark 3 (i). By Remark 4, g(R) is efficient for R.

Suppose instead |N+(x(R))| ≥ 2. ByR ⊆ RND and Proposition 2, ti(R) = vi(xi(R),0)

for each i ∈ N . Thus, Remark 6 implies that g(R) is efficient for R.

Strategy-proofness. Let R ∈ Rn, i ∈ N , and R′
i ∈ R. By R ⊆ RND, Proposition 2

implies gi(R
′
i, R−i) = (xi,

xi

m
maxj∈N\{i} vj(m,0)), where xi ≡ xi(R

′
i, R−i). We show that

gi(R) Ri (xi,
xi

m
maxj∈N\{i} vj(m,0)).
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Suppose first xi(R) = m. Let si ≡ Vi(0, gi(R)). By Lemma 3 (i), si ≤ 0. Then

Vi(xi, gi(R)) = vi(xi, gi(R)) + si ≤
xi

m

(
vi(m, gi(R)) + si

)
=

xi

m
max

j∈N\{i}
Vj(m,0),

where the inequality follows from Ri ∈ RND, Remark 3 (i), and si ≤ 0, and the last

equality follows from Remark 1 (iii), R ⊆ RND, and Proposition 2.

Next, suppose xi(R) < m. By Lemma 1, there is j ∈ N+(x(R))\{i}. By R ∈ (RND)n

and Lemma 6 (ii), vj(m,0) = maxk∈N vk(m,0). Then

vi(m,0) ≤ vj(m,0) = max
k∈N\{i}

vk(m,0). (2)

We have

Vi(xi, gi(R)) ≤ vi(xi,0) ≤
xi

m
vi(m,0) ≤ xi

m
max

k∈N\{i}
vk(m,0),

where the first inequality follows from Lemma 3 (iii), the second one follows fromRi ∈ RND

and Remark 3 (i), and the last one, from (2).

In either case, we obtain gi(R) Ri (xi,
xi

m
maxj∈N\{i} vj(m,0)). ■

B.3 Proof of the “only if” part

In this section, we provide the proof of the “only if” part. Throughout the subsection,

we fix a class of preferences R such that RC ∩ RQ ⊆ R ⊆ RND and a rule f on Rn

satisfying efficiency, strategy-proofness, individual rationality, and no subsidy for losers.

We first set up the following lemma.

Lemma 8. Let R ∈ Rn and i ∈ N . If vi(m,0) < maxj∈N vj(m,0), then xi(R) = 0.

Proof. The proof is in two steps.

Step 1. LetR ∈ Rn and i ∈ N be such thatRi ∈ RC ∩ RQ and vi(m) < maxj∈N vj(m,0).

We show xi(R) = 0. Suppose by contradiction that xi(R) > 0.

Let j ∈ arg max
k∈N

vk(m,0). We show xj(R) > 0. Suppose xj(R) = 0. By Lemma 2,

fj(R) = 0. By vi(m) < Vj(m,0) and R ∈ (RND)n, Lemma 6 (i) implies xi(R) = 0, a

contradiction. Thus, xj(R) > 0.

Next, we show tj(R) ≥ vi(xj(R)). Suppose tj(R) < vi(xj(R)). Let R′
j ∈ RC ∩ RQ

be such that tj(R) < v′j(xj(R)) < vi(xj(R)). By R′
j ∈ RC , v′j(xj(R)) < vi(xj(R)), and

Ri ∈ RC ,

v′j(m) =
m

xj(R)
v′j(xj(R)) <

m

xj(R)
vi(xj(R)) = vi(m).

ByR ∈ (RND)n, Lemmas 2 and 6 (i) together imply fj(R
′
j, R−j) = 0. By tj(R) < v′j(xj(R)),

fj(R) P ′
j 0 = fj(R

′
j, R−j), contradicting strategy-proofness. Thus, tj(R) ≥ vi(xj(R)).
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Note that by individual rationality, fj(R) Rj 0. If fj(R) Ij 0, then by Remark 1 (ii),

vj(m, fj(R)) = vj(m,0) > vi(m).

Instead, if fj(R) Pj 0, then Vj(0, fj(R)) < 0, and so

vj(m, fj(R)) =
m

xj(R)

(
tj(R)− Vj(0, fj(R))

)
>

m

xj(R)
vi(xj(R)) = vi(m),

where the first equality follows from R ∈ (RND)n, Lemma 7 (i), and Remark 1 (iii),

the inequality follows from tj(R) ≥ vi(xj(R)) and Vj(0, fj(R)) < 0, and the last equality

follows from Ri ∈ RC . In either case, by R ∈ (RND)n, Lemma 6 (i) implies xi(R) = 0.

But this contradicts xi(R) > 0.

Step 2. Let R ∈ Rn and i ∈ N be such that vi(m,0) < maxj∈N vj(m,0). Suppose

xi(R) > 0. Let R′
i ∈ RC ∩ RQ be such that vi(m,0) < v′i(m) < maxj∈N vj(m,0). By

Step 1, xi(R
′
i, R−i) = 0. By Lemma 2, fi(R

′
i, R−i) = 0. Then,

ti(R) ≤ vi(xi(R),0) ≤ xi(R)

m
vi(m,0) <

xi(R)

m
v′i(m) = v′i(xi(R)),

where the first inequality follows from Lemma 3 (ii), the second one follows fromRi ∈ RND

and Remark 3 (i), the third one follows from vi(m,0) < v′i(m) and xi(R) > 0, and the

equality follows from R′
i ∈ RC . Thus, fi(R) P ′

i 0 = fi(R
′
i, R−i), contradicting strategy-

proofness.

We now show that f is a generalized Vickrey rule on Rn.

Step 1. We first show that the payments under f coincide with those of the generalized

Vickrey rule. Let R ∈ Rn and i ∈ N . Note that by R ⊆ RND and Proposition 2, we

only have to show that ti(R) = xi(R)
m

maxj∈N\{i} vj(m,0). Suppose not. By Lemma 2, we

must have xi(R) > 0. We divide the argument into two cases.

Case 1. ti(R) > xi(R)
m

maxj∈N\{i} vj(m,0).

We have

vi(m,0) ≥ m

xi(R)
vi(xi(R),0) ≥ m

xi(R)
ti(R) > max

j∈N\{i}
vj(m,0),

where the first inequality follows from Ri ∈ RND and Remark 3 (i), the second one fol-

lows from Lemma 3 (ii), and the last one comes from ti(R) > xi(R)
m

maxj∈N\{i} vj(m,0).
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Thus, by Lemma 8, xj(R) = 0 for each j ∈ N\{i}. By Lemma 1, xi(R) = m. Thus,

by ti(R) > xi(R)
m

maxj∈N\{i} vj(m,0), ti(R) > maxj∈N\{i} vj(m,0). Let R′
i ∈ RC ∩ RQ be

such that maxj∈N\{i} vj(m,0) < v′i(m) < ti(R). Again, by Lemmas 1 and 8, xi(R
′
i, R−i) =

m. Thus, by Lemma 3 (ii), ti(R
′
i, R−i) ≤ v′i(m) < ti(R), which implies fi(R

′
i, R−i) Pi fi(R).

However, this contradicts strategy-proofness.

Case 2. ti(R) < xi(R)
m

maxj∈N\{i} vj(m,0).

Let R′
i ∈ RC ∩ RQ be such that ti(R) < v′i(xi(R)) < xi(R)

m
maxj∈N\{i} vj(m,0). By

R′
i ∈ RC and v′i(xi(R)) < xi(R)

m
maxj∈N\{i} vj(m,0),

v′i(m) =
m

xi(R)
v′i(xi(R)) < max

j∈N\{i}
vj(m,0).

Thus, Lemmas 2 and 8 together imply fi(R
′
i, R−i) = 0. However, by ti(R) < v′i(xi(R)),

fi(R) P ′
i 0 = fi(R

′
i, R−i), contradicting strategy-proofness.

Step 2. Let R ∈ Rn. We show
∑

i∈N vi(xi(R),0) = maxx∈X
∑

i∈N vi(xi,0).

Suppose |N+(x(R))| = 1. Let i ∈ N+(x(R)). By |N+(x(R))| = 1 and Lemma 1,

xi(R) = m. Thus, xj(R) = 0 for each j ∈ N\{i}. Then∑
j∈N

vj(xj(R),0) = vi(m,0) = max
j∈N

vj(m,0) = max
x∈X

∑
j∈N

vj(xj,0),

where the second equality follows from Lemma 8, and the last one comes fromR ∈ (RND)n

and Lemma 5.

Next, suppose |N+(x(R))| ≥ 2. We show fi(R) Ii 0 for each i ∈ N . By individual

rationality, fi(R) Ri 0 for each i ∈ N . Suppose there is i ∈ N such that fi(R) Pi 0.

Then ti(R) < Vi(xi(R),0) = vi(xi(R),0). Thus, by Ri ∈ RND, Remark 3 (i), and Step 1,

xi(R)

m
vi(m,0) ≥ vi(xi(R),0) > ti(R) =

xi(R)

m
max

j∈N\{i}
vj(m,0).

This implies vi(m,0) > maxj∈N\{i} vj(m,0). By Lemma 8, xj(R) = 0 for each j ∈ N\{i}.
But this contradicts |N+(x(R))| ≥ 2.

Thus, fi(R) Ii 0 for each i ∈ N . By Remark 1 (ii), vi(xi, fi(R)) = vi(xi,0) for each

i ∈ N and xi ∈ M . Thus, we have∑
i∈N

vi(xi(R),0) =
∑
i∈N

vi(xi(R), fi(R)) = max
x∈X

∑
i∈N

vi(xi, fi(R)) = max
x∈X

∑
i∈N

vi(xi,0),

where the second equality follows from Remark 4 and efficiency. ■
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C Proofs of the impossibility theorems

In this section, we provide the proofs of Theorem 2 and Proposition 1.

C.1 Preliminary

We first show the following lemma, which states the existence and uniqueness of some

payments.

Lemma 9. Let R0 ∈ RD ∩ R++. For each x ∈ M\{0,m}, there is a unique payment

t∗(x) ∈ (0, V0(x,0)) such that

V0(x+ 1, (x, t∗(x)))− t∗(x) =
t∗(x)

x
.

Proof. Let x ∈ M\{0,m}. Let h : R+ → R be such that for each t ∈ R+, h(t) =

V0(x+ 1, (x, t))− t− t
x
. By object monotonicity, (x+ 1, 0) P0 (x, 0). This implies h(0) =

V0(x+ 1, (x, 0)) > 0. By Remark 1 (i), R0 ∈ RD, and x ∈ M\{0},

h(V0(x,0)) =
(
V0(x+ 1,0)− V0(x,0)

)
−V0(x,0)

x
< 0.

By continuity of R0, the function h+(t) ≡ V0(x+1, (x, t))−t is continuous on [0, V0(x,0)].
18

Thus, h(·) is continuous on [0, V0(x,0)] as well. Then, by the intermediate value theorem,

there is a payment t∗(x) ∈ (0, V0(x,0)) such that h(t∗(x)) = 0. Thus,

V0(x+ 1, (x, t∗(x)))− t∗(x) =
t∗(x)

x
.

By Remark 7 (i), h(·) is strictly decreasing. Thus, such a payment t∗(x) is unique.

GivenR0 ∈ RD ∩ R++, by Lemma 9, we can define a function t∗(·;R0) fromM\{0,m}
to R++ such that for each x ∈ M\{0,m}, t∗(x;R0) is in (0, V0(x,0)) and satisfies the

equation in Lemma 9. We simply write t∗(·) instead of t∗(·;R0) unless there is no risk of

confusion.

Lemma 10. Let R0 ∈ RD ∩ R++ and x ∈ M\{0,m}. (i) For each t ∈ R+,

t < t∗(x) if and only if V0(x+ 1, (x, t))− t >
t

x
.

(ii) For each t ∈ R+,

t <
x+ 1

x
t∗(x) if and only if t− V0(x, (x+ 1, t)) >

t

x+ 1
.

18For the formal proof of this statement, see Lemma 1 of Kazumura and Serizawa (2016).
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Proof. Let R0 ∈ RD ∩ R++ and x ∈ M\{0,m}.
(i) Let h : R+ → R be such that for each t ∈ R+, h(t) = V0(x + 1, (x, t)) − t − t

x
.

By Remark 7 (i), h(·) is strictly decreasing. By Lemma 9, h(t∗(x)) = 0. Thus, for

each t ∈ R+, t < t∗(x) is equivalent to h(t) > h(t∗(x)) = 0, which is also equivalent to

V0(x+ 1, (x, t))− t > t
x
.

(ii) Let g : R+ → R be such that g(t) = t− V0(x, (x+1, t))− t
x+1

. We first claim that

g(x+1
x
t∗(x)) = 0. We have

V0

(
x, (x+ 1,

x+ 1

x
t∗(x))

)
= V0

(
x, (x+ 1, Vi(x+ 1, (x, t∗(x))))

)
= V0(x, (x, t

∗(x)))

= t∗(x), (1)

where the first equality follows from Lemma 9, the second equality follows from Remark

1 (i), and the last equality follows from Remark 1 (iii). Thus,

g
(x+ 1

x
t∗(x)

)
=

x+ 1

x
t∗(x)− V0

(
x, (x+ 1,

x+ 1

x
t∗(x))

)
− 1

x+ 1

x+ 1

x
t∗(x)

=
x+ 1

x
t∗(x)− t∗(x)− t∗(x)

x
(by (1))

= 0.

Since g(·) is strictly decreasing by Remark 7 (ii), for each t ∈ R+, t <
x+1
x
t∗(x) is

equivalent to g(t) > g(x+1
x
t∗(x)) = 0, which is equivalent to t−V0(x, (x+1, t)) > t

x+1
.

The following lemma shows that the per-unit payments t∗(x)
x

specified in Lemma 9 are

strictly decreasing in the number of units.

Lemma 11. For each R0 ∈ RD ∩ R++,

V0(1,0) > t∗(1) >
t∗(2)

2
> · · · > t∗(m− 1)

m− 1
.

Proof. By R0 ∈ RD ∩ R++, Lemma 9 gives t∗(1) < V0(1,0). Suppose that there is

x ∈ M\{0,m − 1,m} such that t∗(x)
x

≤ t∗(x+1)
x+1

. By R0 ∈ RD ∩ R++ and Lemma 9,
x+1
x
t∗(x) = V0(x+ 1, (x, t∗(x))). Thus,(

x+ 1,
x+ 1

x
t∗(x)

)
=

(
x+ 1, V0(x+ 1, (x, t∗(x)))

)
I0 (x, t∗(x)).

Thus, by Remark 1 (i),

V0

(
x+ 2, (x+ 1,

x+ 1

x
t∗(x))

)
= V0(x+ 2, (x, t∗(x))). (1)
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Then

V0

(
x+ 2, (x+ 1,

x+ 1

x
t∗(x))

)
−x+ 1

x
t∗(x)

= V0(x+ 2, (x, t∗(x)))− V0(x+ 1, (x, t∗(x))) (by (1) and Lemma 9)

< V0(x+ 1, (x, t∗(x)))− t∗(x) (by R0 ∈ RD and Remark 1 (iii))

=
t∗(x)

x
(by Lemma 9)

≤ t∗(x+ 1)

x+ 1
(by assumption)

= V0(x+ 2, (x+ 1, t∗(x+ 1)))− t∗(x+ 1). (by Lemma 9)

However, by R0 ∈ R++ and x+1
x
t∗(x) ≤ t∗(x+ 1), this contradicts Remark 7 (i).

Figure 3 below illustrates the payments t∗(·) described in Lemmas 9, 10, and 11.

Payment
0

1

2

3
𝑅0𝑅0𝑅0

𝑡∗(1)

𝑡∗(2)

2

𝟎

1, 𝑡∗ 1

2, 𝑡∗ 2

Figure 3: An illustration of t∗(·).

Here, we provide an interpretation of the per-unit payments t∗(x)
x

specified in Lemma 9.

Let Ri ∈ R and xi ∈ M . Then, the inverse-demand set at xi for Ri is defined

as P (xi;Ri) ≡ {p ∈ R+ : (xi, pxi) Ri (x
′
i, px

′
i) for each x′

i ∈ M}. The inverse-demand

function for Ri is a function p(·;Ri) : M → R+ ∪ {∞} such that for each xi ∈ M ,

p(xi;Ri) = inf P (x;Ri).
19

The next proposition identifies the inverse-demand sets of a preferenceR0 ∈ RD ∩ R++.

Proposition 3 (The inverse-demand sets). Let R0 ∈ RD ∩ R++. Then (i) P (0;R0) =

[V0(1,0),∞), (ii) P (1;R0) = [t∗(1), V0(1,0)], (iii) P (x;R0) = [ t
∗(x)
x

, t
∗(x−1)
x−1

] for each

x ∈ M\{0, 1,m}, and (iv) P (m;R0) = [0, t
∗(m−1)
m−1

].

19If P (xi;Ri) = ∅, then set p(xi;Ri) ≡ ∞.
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The proof of Proposition 3 can be found in the supplementary material.

The following corollary of Proposition 3 states that the per-unit payment t∗(x)
x

spec-

ified in Lemma 9 is exactly the image of the inverse-demand function p(x;R0) for each

x ∈ M\{0,m}.

Corollary 1 (The inverse-demand function). Let R0 ∈ RD ∩ R++. We have (i)

p(0;R0) = V0(1,0), (ii) p(x;R0) =
t∗(x)
x

for each x ∈ M\{0,m}, and, (iii) p(m;R0) = 0.

Corollary 1 gives the redefinition of the inverse-demand function of a preference

R0 ∈ RD ∩ R++, and hereafter we will repeatedly use the implication of Corollary 1

without referring to it.

C.2 Proofs of Theorem 2 and Proposition 1

We are now in a position to prove Theorem 2 and Proposition 1. Both the proofs have

many parts in common, and we do not distinguish them for a while. Before providing the

proofs, we invoke the following fact.

Fact 1 (Holmström, 1979). Let R be such that R ∩ RQ is convex.20 Let f be a rule

on Rn satisfying efficiency, strategy-proofness, individual rationality, and no subsidy for

losers. Then, for each i ∈ N , each R−i ∈ (R ∩ RQ)n−1, and each xi ∈ M f
i (R−i),

tfi (R−i;xi) = σi(R−i; 0)− σi(R−i;xi).

Note that RC ∩ RQ and RC(ε) ∩ RQ are both convex for each ε > 0. This allows us

to use Fact 1 in the subsequent proof.

Let R0 ∈ RD ∩ R++ and ε ∈ R++. Let

R ∈
{
(RC ∩ RQ) ∪ {R0}, (RC(ε) ∩ RQ) ∪ {R0}

}
.

Suppose that there is a rule f on Rn satisfying efficiency, strategy-proofness, individual

rationality, and no subsidy for losers.21

Step 1. For notational convenience, we expand the domain of p(·;R0) from M to

M ∪ {−1}, and define p(−1;R0) ≡ ∞. By R0 ∈ RD ∩ R++, Lemma 11 implies that

p(x− 1;R0) > p(x;R0) for each x ∈ M . For each x ∈ M\{m}, let

R(x) ≡ {Ri ∈ RC ∩ RQ : vi(1) ∈ (p(x;R0), p(x− 1;R0))}.
20A class of preferences R ⊆ RQ is convex if for each pair Ri, R

′
i with valuations functions vi(·), v′i(·)

and each λ ∈ [0, 1], a preference Rλ
i with valuation function vλi (·) = λvi(·) + (1− λ)v′i(·) is in R.

21Note that an impossibility theorem on a domain implies the impossibility theorem on any superdo-
main. Thus, to show Theorem 2, we only have to show the impossibility on ((RC ∩ RQ) ∪ {R0})n. The
parallel discussion applies to Proposition 1.
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Let δ > 0 be such that δ < min{p(m− 1;R0), V0(m,0)− V0(m− 1,0)}.22 Let

R(m) ≡ {Ri ∈ RC ∩ RQ : vi(1) ∈ (δ, p(m− 1;R0))}.

Note that
∪

x∈M R(x) ⊊ RC ∩ RQ ⊊ R.

Let R1 ≡ R0. For each i ∈ N\{1, 2}, let Ri ∈ RC ∩ RQ be such that vi(xi) = δxi for

each xi ∈ M . Then, efficiency, in conjunction with individual rationality, δ < V1(m,0)−
V1(m− 1,0), and R1 ∈ RD ∩ RD, implies that for each R2 ∈ R and each i ∈ N\{1, 2},
xi(R) = 0.23 Further, for each R2 ∈

∪
x∈MR(x), since v2 > δ and R−1 ∈ (RNI)n−1, Re-

mark 5 implies σ1(R−1;x1) = (m−x1)v2 for each x1 ∈ M , where v2 is a constant marginal

valuation associated with R2. Thus, for each R2 ∈
∪

x∈MR(x) with constant marginal val-

uation v2 and each x1 ∈ M f
1 (R−1), Fact 1 gives

tf1(R−1;x1) = v2x1. (1)

Step 2. Let x1 ∈ M and Rx1
2 ∈ R(x1). Let R

x1 ≡ (R1, R
x1
2 , R−1,2). We show x1(R

x1) =

x1 and x2(R
x1) = m − x1. By Lemma 1 and xi(R

x1) = 0 for each i ∈ N\{1, 2}, we only

have to show x1(R
x1) = x1. Let v

x1
2 be a constant marginal valuation associated with Rx1

2 .

Case 1. 1 ≤ x1 ≤ m.

We show x1(R
x1) = x1. Suppose by contradiction that xi(R

x1) ̸= x1.

Suppose first x1(R
x1) > x1. Then,

t1(R
x1) = vx1

2 x1(R
x1) > p(x1;R1)x1(R

x1) ≥ p(x1(R
x1)− 1;R1)x1(R

x1), (2)

where the equality follows from (1), the first inequality follows from Rx1
2 ∈ R(x1), and

the second follows from R1 ∈ RD ∩ R++, x1(R
x1) > x1, and Lemma 11. Note that by

0 < x1(R
x1) − 1 < m, p(x1(R

x1) − 1;R1)x1(R
x1) = x1(Rx1 )

x1(Rx1 )−1
t∗(x1(R

x1) − 1). Thus, by

R1 ∈ RD ∩ R++, Lemma 10 (ii), (2), and (1), we have

t1(R
x1)− V1(x1(R

x1)− 1, f1(R
x1)) <

t1(R
x1)

x1(Rx1)
=

vx1
2 x1(R

x1)

x1(Rx
1)

= vx1
2 .

22By Lemma 9, p(m−1;R0) =
t∗(m−1)
m−1 > 0. Moreover, by object monotonicity, V0(m,0) > V0(m−1,0).

Thus, we can pick such δ.
23The formal argument is as follows. Suppose xi(R) > 0 for some i ∈ N\{1, 2}. Then, x1(R) < m,

and
V1(x1(R) + 1, f1(R))− t1(R) ≥ V1(x1(R) + 1,0)− V1(x1(R),0) > δ,

where the first inequality follows from R1 ∈ R++, Lemma 3 (ii), and Remarks 7 (i) and 1 (i), and the
second one follows from R1 ∈ RD and δ < V1(m,0)−V1(m− 1,0). However, this contradicts Remark 5.
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By Rx1 ∈ (RNI)n, this contradicts Remark 5.

Suppose 0 < x1(R
x1) < x1. Then

t1(R
x1) = vx1

2 x1(R
x1) < p(x1 − 1;R1)x1(R

x1) ≤ p(x1(R
x1);R1)x1(R

x1) = t∗(x1(R
x1)),

where the first equality follows from (1), the first inequality follows from Rx1
2 ∈ R(x1), the

second follows from R1 ∈ RD ∩ R++, x1 > x1(R
x1), and Lemma 11, and the last equality

follows from 0 < x1(R
x1) < m. Thus, by R1 ∈ RD ∩ R++, Lemma 10 (i), and (1),

V1(x1(R
x1) + 1, f1(R

x1))− t1(R
x1) >

t1(R
x1)

x1(Rx1)
=

vx1
2 x1(R

x1)

x1(Rx1)
= vx1

2 . (3)

By Rx1 ∈ (RNI)n, this contradicts Remark 5.

Suppose finally x1(R
x1) = 0. Then t1(R

x1) = 0 by Lemma 2. By Rx1
2 ∈ R(x1),

R1 ∈ RD ∩ R++, and Lemma 11, vx1
2 < p(x1−1;R1) ≤ p(0;R1) = V1(1,0). However, by

f1(R
x1) = 0 and Rx1 ∈ (RNI)n, this contradicts Remark 5.

Case 2. x1 = 0.

We show x1(R
0) = 0. Suppose by contradiction that x1(R

0) > 0. Then

V1(x1(R
0),0) ≤ x1(R

0)V1(1,0) = x1(R
0)p(0;R1) < x1(R

0)v02, (4)

where the first inequality follows from R1 ∈ RD, and the last one follows from x1(R
0) > 0

and R0
2 ∈ R(0). By (4) and (1),

0 I1 (x1(R
0), V1(x1(R

0),0)) P1 (x1(R
0), x1(R

0)v02) = f1(R
0).

However, this contradicts individual rationality.

Step 3. Note that Step 2 implies that for each x2 ∈ M and each Rm−x2
2 ∈ R(m − x2),

x2(R
m−x2
2 , R−2) = x2. Thus, M

f
2 (R−2) = M , and the domain of the function tf2(R−2; ·) is

M . In this step, we show that for each x2 ∈ M ,

tf2(R−2;x2) =

x2∑
x=0

p(m− x;R1).

By Lemma 2, tf2(R−2; 0) = 0 = p(m;R1). Thus, it suffices to show that for each

x2 ∈ M\{m}, tf2(R−2;x2 + 1) − tf2(R−2;x2) = p(m − x2 − 1;R1). Let x2 ∈ M\{m}.
Suppose by contradiction that tf2(R−2;x2 + 1)− tf2(R−2;x2) ≠ p(m− x2 − 1;R1).
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Case 1. tf2(R−2;x2 + 1)− tf2(R−2;x2) < p(m− x2 − 1;R1).

Let Rm−x2
2 ∈ R(m− x2) be such that

tf2(R−2;x2 + 1)− tf2(R−2;x2) < vm−x2
2 < p(m− x2 − 1;R1),

where vm−x2
2 is a constant marginal valuation associated with Rm−x2

2 . By Step 2, we have

x2(R
m−x2) = x2. By vm−x2

2 > tf2(R−2;x2 + 1)− tf2(R−2;x2),

(x2 + 1)vm−x2
2 − tf2(R−2;x2 + 1) > x2v

m−x2
2 − tf2(R−2;x2).

Thus, zf2 (R−2;x2 + 1) Pm−x2
2 zf2 (R−2;x2) = f2(R

m−x2), which contradicts Lemma 4.

Case 2. tf2(R−2;x2 + 1)− tf2(R−2;x2) > p(m− x2 − 1;R1).

Let Rm−x2−1
2 ∈ R(m− x2 − 1) be such that

p(m− x2 − 1;R1) < vm−x2−1
2 < tf2(R−2;x2 + 1)− tf2(R−2;x2),

where vm−x2−1
2 is a constant marginal valuation associated with Rm−x2−1

2 . By Step 2, we

have x2(R
m−x2−1) = x2 + 1. By vm−x2−1

2 < tf2(R−2;x2 + 1)− tf2(R−2;x2),

x2v
m−x2−1
2 − tf2(R−2;x2) > (x2 + 1)vm−x2−1

2 − tf2(R−2;x2 + 1).

Thus, zf2 (R−2;x2) P
m−x2−1
2 zf2 (R−2;x2 + 1) = f2(R

m−x2−1), which contradicts Lemma 4.

C.2.1 Proof of Theorem 2

We complete the proof of Theorem 2. Suppose m is odd and R = (RC ∩ RQ) ∪ {R0}.
Let R2 ≡ R0. Let α ≡ m−1

2
. Note that as m is odd, α ∈ M . Let x2 ∈ M be such that

0 < x2 ≤ α. We show that zf2 (R−2;x2 + 1) P2 zf2 (R−2;x2). We have

tf2(R−2;x2) =

x2∑
x=1

p(m− x;R1) ≤ p(m− x2;R1)x2 < p(x2;R1)x2 = t∗(x2;R1),

where the first equality follows from Step 3, the first inequality follows fromR1 ∈ RD ∩ R++

and Lemma 11, the second inequality comes fromR1 ∈ RD ∩ R++, x2 ≤ α, and Lemma 11,

and the last equality follows from 0 < x2 < m. Thus, by R2 ∈ R++ and Remark 7 (i),

V2(x2 + 1, zf2 (R−2;x2))− tf2(R−2;x2) > V2(x2 + 1, (x2, t
∗(x2;R1)))− t∗(x2;R1). (5)
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We also have

tf2(R−2;x2 + 1)− tf2(R−2;x2) = p(m− x2 − 1;R1)

≤ p(x2;R1)

=
t∗(x2;R1)

x2

= V2(x2 + 1, (x2, t
∗(x2;R1)))− t∗(x2;R1),

where the first equality follows from Step 3, the inequality follows from R1 ∈ RD ∩ R++,

x2 ≤ α, and Lemma 11, the second equality follows from 0 < x2 < m, and the last one,

from R2 = R1 ∈ RD ∩ R++ and Lemma 9. This, together with (5), implies

V2(x2 + 1, zf2 (R−2;x2))− tf2(R−2;x2) > tf2(R−2;x2 + 1)− tf2(R−2;x2),

or V2(x2 + 1, zf2 (R−2;x2)) > tf2(R−2;x2 + 1). Thus, zf2 (R−2;x2 + 1) P2 zf2 (R−2;x2).

We then show that zf2 (R−2; 1) P2 zf2 (R−2; 0). By Step 3, R2 = R1 ∈ RD ∩ R++, and

Lemma 11, tf2(R−2; 1) = p(m− 1;R1) < V2(1,0). Thus, z
f
2 (R−2; 1) P2 0 = zf2 (R−2; 0).

We have established zf2 (R−2;α+ 1) P2 zf2 (R−2;x2) for each x2 ∈ M with x2 < α+ 1.

By Lemma 4, x2(R) ≥ α + 1. Since both agents 1 and 2 have the same preferences R0,

the name of agents does not matter in the above discussion. Thus, a symmetric argument

implies x1(R) ≥ α + 1. Therefore,

x1(R) + x2(R) ≥ 2(α + 1) = m+ 1.

However, this contradicts feasibility. ■

C.2.2 Proof of Proposition 1

Next, we complete the proof of Proposition 1. Suppose R = (RC(ε) ∩ RQ) ∪ {R0}.
Recall that δ < p(m− 1;R1). Let 0 < ε1 < min{ ε

2
, p(m−1;R1)−δ

2
}. Then

V1(m, (m− 1, t∗(m− 1)− ε1))− (t∗(m− 1)− ε1)

> V1(m, (m− 1, t∗(m− 1)))− t∗(m− 1) (by Remark 7 (i))

=
t∗(m− 1)

m− 1
(by Lemma 9)

= p(m− 1;R1).

Thus,

ε2 ≡ V1(m, (m− 1, t∗(m− 1)− ε1))− (t∗(m− 1)− ε1)− p(m− 1;R1) > 0.
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Let ε3 > 0 be such that

ε3 < min
{ε
2
,
p(m− 1;R1)− δ

2
, ε2

}
.

LetR2 ∈ RC(ε) ∩ RQ be such that v2(1) = p(m−1;R1)+ε3, and for each x2 ∈ M\{0,m},

v2(x2 + 1)− v2(x2) = p(m− 1;R1)−
ε1 + ε3
m− 1

.

Note that by ε1, ε3 < ε
2
, R2 is ε-perturbation of R′

2 ∈ RC ∩ RQ whose constant marginal

valuation is p(m − 1;R1). Note also that R2 ∈ RNI . By δ < p(m − 1;R1), v2(1) > δ.

Further, by ε1, ε3 < p(m−1;R1)−δ
2

, v2(x2 + 1) − v2(x2) > δ for each x2 ∈ M\{0,m}. Thus,

by R−1 ∈ (RNI)n−1, Remark 5 implies σ1(R−1;x1) = v2(m− x1) for each x1 ∈ M . Then

by Fact 1, for each x1 ∈ M f
1 (R−1),

tf1(R−1;x1) = v2(m)− v2(m− x1). (6)

By Step 3, v2(1)− tf2(R−2; 1) = (p(m− 1;R1) + ε3)− p(m− 1;R1) = ε3 > 0. For each

x2 ∈ M\{0, 1},

v2(x2)− v2(1) = (x2 − 1)
(
p(m− 1;R1)−

ε1 + ε3
m− 1

)
< (x2 − 1)p(m− 1;R1) (by ε1, ε3 > 0)

<

x2∑
x=2

p(m− x;R1) (by Lemma 11)

= tf2(R−2;x2)− tf2(R−2; 1), (by Step 3)

or v2(1) − tf2(R−2; 1) > v2(x2) − tf2(R−2;x2). Hence, zf2 (R−2; 1) P2 zf2 (R−2;x2) for each

x2 ∈ M\{1}. By Lemma 4, we obtain f2(R) = zf2 (R−2; 1). By Lemma 1, x1(R) = m− 1.

By (6), t1(R) = t∗(m− 1)− (ε1 + ε3). Therefore,

V1(x1(R) + 1, f1(R))− t1(R)− (v2(x2(R))− v2(x2(R)− 1))

= V1(m, (m− 1, t∗(m− 1)− (ε1 + ε3)))− (t∗(m− 1)− (ε1 + ε3))− (p(m− 1;R1) + ε3)

> V1(m, (m− 1, t∗(m− 1)− ε1))− (t∗(m− 1)− ε1)− (p(m− 1;R1) + ε3)

= ε2 − ε3

> 0,

where the first inequality follows from R1 ∈ R++, ε3 > 0, and Remark 7 (i), the second

equality follows from the definition of ε2, and the second inequality follows from ε2 < ε3.

By R ∈ (RNI)n, this contradicts Remark 5. ■
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D Even number of units of the object

In this section, we provide the results in the case of even number of units omitted in the

main text.

Let R0 ∈ RD ∩ R++ and R ≡ (RC ∩ RQ) ∪ {R0}. We will assume that R0 satisfies

the following condition:

V0(β + 1, (β, t∗))− t∗ ≤ p(β − 1;R0), (1)

where β ≡ m
2
and t∗ ≡

∑β
x=1 p(m− x;R0).

Given a preference Ri ∈ RNI ∩ R+, let Rinv
i ∈ RNI ∩ RQ be such that for each

xi ∈ M\{m}, vinvi (xi + 1) − vinvi (xi) = p(xi;Ri).
24 Note that if Ri ∈ RC ∩ RQ, then

Rinv
i = Ri. Given a preference profile R ∈ (RNI ∩ R+)n, let Rinv ≡ (Rinv

i )i∈N . Further,

given i ∈ N and R−i ∈ (RNI ∩ R+)n−1, let Rinv
−i ≡ (Rinv

j )j∈N\{i}.

Definition 8. Let R ⊆ RNI ∩ R+. A rule f on Rn is an inverse-demand-based

generalized Vickrey rule if the following two conditions hold:

(i) for each R ∈ Rn,

x(R) ∈ arg max
x∈X

∑
i∈N

vinvi (xi),

(ii) for each R ∈ Rn and each i ∈ N ,

ti(R) = σi(R
inv
−i ; 0)− σi(R

inv
−i ;xi(R)).

Note that given a preference profile R ∈ Rn, the inverse-demand-based generalized

Vickrey rule produces an outcome of the Vickrey rule for the preference profile Rinv

induced by the original preference profile R.

Assume n = 2. Then we obtain the following positive result.25

Proposition 4. Assume n = 2 and m is even. Let R0 ∈ RD ∩ R++ satisfy (1). Let

R ≡ (RC ∩ RQ) ∪ {R0}. An inverse-demand-based-generalized Vickrey rule on R2 sat-

isfies efficiency, strategy-proofness, individual rationality, and no subsidy for losers.

The proof of Proposition 4 can be found in the supplementary material.

24By identifying some payments that have the similar properties to those in Lemmas 9 and 11, we can
show P (xi;Ri) ̸= ∅ for each xi ∈ M\{m}. Moreover, we have p(xi;Ri) ≥ vi(xi + 1) − vi(xi) > 0 and
p(xi;Ri) ≥ p(xi + 1;Ri) for each xi ∈ M\{m}. Thus, Rinv

i is well-defined.
25One might expect that when n ≥ 3, the inverse-demand-based generalized Vickrey rule on

((RC ∩ RQ) ∪ {R0})n satisfies the four properties for some R0 ∈ RD ∩ R++. However, when n ≥ 3 and
m = 6a − 2 for some a ∈ N, it violates strategy-proofness regardless of the choice of R0 ∈ RD ∩ R++.
The supplementary material contains the example that demonstrates this fact.
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If m = 2, the condition (1) holds for any R0 ∈ RD ∩ R++.26 Thus, Proposition 4

implies that for any R0 ∈ RD ∩ R++, the inverse-demand based generalized Vickrey rule

on ((RC ∩ RQ) ∪ {R0})2 satisfies the four properties if n = m = 2.

The next proposition states that when m ≥ 4, the condition (1) is a necessary condi-

tion for the existence of a rule satisfying the desirable properties.

Proposition 5. Assume m ≥ 4 is even. Let R0 ∈ RD ∩ R++ violate (1). Let R be

a class of preferences satisfying R ⊇ (RC ∩ RQ) ∪ {R0}. No rule on Rn satisfies effi-

ciency, strategy-proofness, individual rationality, and no subsidy for losers.

The proof of Proposition 5 is almost same as that of Theorem 2, and we relegate it to

the supplementary material.

Propositions 4 and 5 together imply that when n = 2 and m is even, (1) is a necessary

and sufficient condition for the existence of a rule on ((RC ∩ RQ) ∪ {R0})2 satisfying the

desirable properties.

Corollary 2 (Necessary and sufficient condition). Assume n = 2 and m is even.

Let R0 ∈ RD ∩ R++. Let R ≡ (RC ∩ RQ) ∪ {R0}. There is a rule on R2 satisfying

efficiency, strategy-proofness, individual rationality, and no subsidy for losers if and only

if R0 satisfies (1).
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