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Franck Portier
University College London and CEPR

March 2019

Abstract

In SVARs, identification of structural shocks can be subject to nonfundamentalness, as the
econometrician may have an information set smaller than the economic agents’ one. How se-
rious is that problem from a quantitative point of view? In this paper we propose a simple
diagnostic for the quantitative importance of nonfundamentalness in structural VARs. The di-
agnostic is of interest as nonfundamentalness is not an either/or question, and its quantitative
implications can be more or less severe. As an illustration, we apply our diagnostic to the iden-
tification of TFP news shocks and we find that nonfundamentalness is of little quantitatively
importance in that context.
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Introduction

Since Sims [1980], Structural Vector AutoRegressions (SVARs) have become a popular tool for

macroeconomists, as they allow to identify the structural shocks that affect the macroeconomy

as well as the response to those shocks (see Ramey [2016] and Kilian and Lütkepohl [2017] for

a complete review). In a comment on Blanchard and Quah’s [1989] SVAR exercise, Lippi and

Reichlin [1993] raised the question of the nonfundamentalness of some structural moving average

representations. When the econometrician has less information than the agents in the economy,

she might not recover the structural shocks from the present and past observations of the econ-

omy regardless the identification strategy. In such a case, the moving average representation is

nonfundamental. The example given by Lippi and Reichlin [1993] and further developed by Lippi

and Reichlin [1994] is the one of a technological diffusion process, for which economic agents act

knowing the future development of technology while the econometrician does not have such an

information.

If one believes that Dynamic Stochastic General Equilibrium (DSGE) models are a good ap-

proximation of the true data generating process, then nonfundamentalness might be more than a

theoretical curiosity. Indeed, Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson [2007]

have shown that DSGE models may not have a fundamental moving average representation in the

structural shocks, so that a SVAR cannot recover the structural shocks. From a quantitative per-

spective, Sims [2012] then shown that nonfundamentalness is not so much of a either/or problem:

there are models in which one can pretty well, if not perfectly, recover structural shocks even with

nonfundamentalness, as the information of the econometrician “almost” includes the one of the

economic agents.

The questions then becomes an empirical one: can we test whether or not a structural repre-

sentation of the data is fundamental? Forni and Gambetti [2014] and Forni, Gambetti, and Sala

[2014] have suggested to answer this question by testing for the orthogonality of SVAR residuals

to a large information set that is well captured by the main factors of a Factor Augmented VAR

(FAVAR) model – i.e. a VAR model to which is added the main factors of a large model with

hundreds of macroeconomic variables, that is likely to contain all the information possessed by

economic agents. The “sufficient information” test can detect wether or not the SVAR suffers from

nonfundamentalness (under the assumption that the factors contain all the information that is used

by the economic agents).1

1Canova and Hamidi Sahneh [2016] have investigated the robustness of the Forni and Gambetti [2014] approach.
Tests of fundamentalness have also been proposed by Chen, Choi, and Escanciano [2012] and Hamidi Sahneh [2015]
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But as for theory, an either/or test for nonfundamentalness is of limited interest, as it does not

tell whether the consequences of nonfundamentalness are severe or not. The paper first proposes

an empirical diagnostic of the nonfundamentalness severity. We show that the coefficient of de-

termination (hereafter R2) of the projection of innovations of SVARs on factors is indeed a proper

measure on that severity. The problem is to judge how large theR2 has to be for the consequence of

nonfundamentalness to be severe. Simulation experiments conducted in Sections 2.2 and 2.3 show

that autoregressions yields accurate dynamic responses for a R2 below 0.25. Interestingly, this R2

has some tight connections with some previous literature on VARs and identification, as we will

show that it is a measure of the “anticipation rate” discussed in linear rational expectations models

by Ljungqvist and Sargent [2004] and Mertens and Ravn [2010]. It is also directly related to the

“Poor Man’s Invertibility Condition” of Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Wat-

son [2007], more specifically to the largest eigenvalue of A−BD−1C matrix (using the “ABCD”

language of these scholars). An additional contribution of the paper is to explicitly characterize

the bias in estimated dynamic responses obtained from a misspecified SVARs (in the sense that it

omits the relevant state variables, represented as a set of factors) in terms of R2. We analytically

determine the link relation between the R2 and the upper bounds of the relative bias in estimated

impact responses obtained from a bivariate SVAR setup with the very commonly used Cholesky

decomposition.

We then implement our R2 diagnostic in the case of the identification of technological news

shocks. The connection between news shocks and nonfundamentalness is tight: if agents receive

some information about future technological improvements, this information might not be em-

bedded in the current information set of the econometrician. The running example of Lippi and

Reichlin [1994] when they illustrated nonfundamentalness was indeed a technological diffusion.

A key insight of the “news” VARs of Beaudry and Portier [2006] is that the use of asset prices

might overcome the nonfundamentalness problem, as they are likely to react strongly to agents’

changing views of the future. As Forni, Gambetti, and Sala [2014] have questioned this property

and shown that such identified technological news might be tested as nonfundamental, it is of in-

terest to implement our R2 diagnostic in this case. As we will show, relevant R2 range between

3% and 21% depending on the specification, and the consequences of nonfundamentalness appear

to be of relative minor importance in practice.

Two modeling issues deserve additional comments. First, we consider that factors (estimated

by the econometrician) span the true state of the economy, as usual in that literature (see Stock and

for non-Gaussian structural shocks. See Kilian and Lütkepohl [2017] for a discussion of the non-Gaussian case.
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Watson [2016]). Under this assumption, we are armed with a simple diagnostic about potential

misspecification of the SVAR model. As shown in Forni, Giannone, Lippi, and Reichlin [2009],

this augmented setup is less (if not) affected by the nonfundamentalness problem, because it in-

cludes a sufficient amount of information. Second, our procedure assumes that the omitted factors

are known and one may wonder why they are not directly included in the VAR model. Our ap-

proach has the advantage of maintaining a parsimonious (small scale) VAR model and thus does

not require estimating a large number of parameters. A small scale VAR model allows minimiz-

ing the root mean square errors of the estimated impulse responses. This is why it is preferred

by applied researchers. However, it can suffer from an omitted variables problem and thus yield

inconsistent estimates of shocks (see Canova [2007]). With our pre-test procedure, we avoid this

problem because our diagnostic allows to check if a small-scale SVAR model is a proper approx-

imation of the true dynamic structure. In addition, the R2 diagnostic could be employed as an

information criterion to properly select a limited set of relevant variables in the VAR model and

thus to recover the structural shocks of interest.

As related literature, Soccorsi [2016] develops a global measure of nonfundamentalness with

respect to DSGE models. The measure is a distance based in covariances between the true non-

fundamental innovations and the innovations resulting from the unique fundamental representa-

tion obtained by flipping the problematic roots of the MA (Moving Average) structural represen-

tation. Forni, Gambetti, and Sala [2016] also develop a measure of nonfundamentalness for a

specific structural shock by projecting this shock onto the VAR innovation. Both measures are

implemented to evaluate the severity of the nonfundamentalness problem respective to specific

theoretical macroeconomic models and have the property to disentangle the nonfundamentalness

bias from the lag truncation bias resulting from a finite VAR. However, the application of these

measures of nonfundamentalness necessitates the knowledge of the DSGE model. We develop a

similar population measure of the severity of the nonfundamentalness for the whole system or for

a single structural shock for macroeconomic models that can be expressed in state-space repre-

sentation. The original contribution of the paper is to show that our R2 diagnostic can be directly

implemented on observable data using SVARs without specifying any DSGE models, under the

assumption that the factors well capture the state variables of the economy. The R2 diagnostic can

then detect empirically the severity of nonfundamentalness and/or lag truncation problems of the

finite VAR model.

The paper is organized as follows. In a first section, we expound the ABCD/AKCΣ setups

and the R2 diagnostic. We also illustrate the merits of this diagnostic using a simple Lucas’ tree

4



model. In a second section, we perform quantitative and simulation experiments. A third section

connects the bias that arises from a misspecified VAR model to the R2. In the fourth section, we

implement theR2 diagnostic in the case of the identification of technological news shocks with US

data. A last section concludes. Proofs are reported in appendix.

1 ABCD/AKCΣ Setups and the R2 Diagnostic

In this section, we introduce notations for a structural model, its VAR representation and the con-

ditions under which that model is invertible, so that its structural moving average representation

is fundamental.2 We will use the “ABCD” language of Fernández-Villaverde, Rubio-Ramı́rez,

Sargent, and Watson [2007]. Then we will introduce a simple economic example and show how a

properly defined R2 statistics can be informative of the nonfundamentalness severity.

1.1 ABCD/AKCΣ Setups

Let us consider the following state-space representation

xt = Axt−1 +Bεt (1)

yt = Cxt−1 +Dεt, (2)

where xt is a vector of state variables, yt a vector of observed variables and εt a vector of a white

noise structural shocks distributed as a normal distribution with normalized variance. Here we

assume that D is invertible.3 The question is then whether or not one can retrieve the true dynamic

and stochastic structure of (1)–(2) from the observation of yt only. We use here an important result

from Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson [2007].

Proposition 1 A sufficient condition for invertibility is that all the eigenvalues of (A − BD−1C)

are less than one in modulus.

This sufficient condition that all the eigenvalues of (A − BD−1C) are less than one in modulus

is the “poor man invertibility” condition given in Fernández-Villaverde, Rubio-Ramı́rez, Sargent,

and Watson [2007]. If Proposition 1 is satisfied, the model (1)–(2) has a VAR representation in yt
2Fundamentalness is closely related to the concept of invertibility. Invertibility requires that no root of the deter-

minant of the moving-average representation is on or inside the unit circle. Fundalmentalness requires that no root is
inside the unit circle.

3There exist different situations for which the matrixD is noninvertible. For example, if we assume that shocks are
imperfectly observed by private agents, i.e. they receive a noisy signal on the fundamentals, they can not disentangle
the true shock from the noise and the matrix D is singular.
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and it is possible to uncover the structural shocks.4 However, using optimal forecasts of the state

variables from the vector of observed variables, we can construct a VAR representation of yt. We

denote this representation as theAKCΣ innovation representation. K and Σ represent the Kalman

gain and the variance of the forecast error Σ = E ((xt − x̂t)(xt − x̂t)′), i.e. the optimal forecast of

the state vector xt given the observations up to yt. The matrices K and Σ are given by

K = (AΣC ′ +BD′)(CΣC ′ +DD′)−1 (3)

Σ = (A−KC)Σ(A−KC)′ +BB′ +KDD′K ′ −BD′K ′ −KDB′. (4)

From A, C and K, the optimal forecast of xt is

x̂t = (A−KC) x̂t−1 +Kyt. (5)

Under weak conditions Hansen and Sargent [2013] show that (A − KC) is a stable matrix, so

that this new representation writes as an infinite MA representation in terms of innovations. The

measurement equation (2) rewrites as

yt = Cx̂t−1 + ut, (6)

where the innovations vector ut is then given by

ut = C (xt−1 − x̂t−1) +Dεt. (7)

The innovations vector ut is composed of two orthogonal components and the associated covari-

ance matrix Σu is immediately deduced to be

Σu = CΣC ′ +DD′. (8)

Using a matrix decomposition such that Σu = SS ′ (for example a Cholesky decomposition of Σu),

it comes

I = S−1CΣC ′S−1
′
+ S−1DD′S−1

′
. (9)

Under the assumption that the factors perfectly account for the forecast errors of the state vector ,5

i.e. (xt−1 − x̂t−1), the R2
i resulting from the linear projection of the ith (standardized) residuals of

the AKCΣ representation on these factors is given by the (i, i) entries of

S−1CΣC ′S−1
′
(≡ I − S−1DD′S−1′). (10)

4If we consider a minimal ABCD form such as defined in Franchi and Paruolo [2015] the condition in Proposition
1 is necessary and sufficient. For non-minimal state-space systems, unstable eigenvalues of the (A−BD−1C) matrix
still allow for a VAR representation in the observables provided a milder rank requirement is fulfilled (see Franchi and
Paruolo [2015]).

5We will always maintain this assumption that it exists a set of relevant factors that perfectly reveal the state
variables of the economy. See Stock and Watson [2016]
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When the system is invertible, the observations on yt perfectly forecast the state vector xt and

Σ = 0. It follows immediately that all the R2
i are zero. The matrix norm ‖S−1CΣC ′S−1

′‖ is a

measure of the nonfundamentalness problem for the whole system.6 This measure for the whole

system differs from the one proposed by Soccorsi [2016] which is instead based on distance in

covariances between the true nonfundamental innovations and innovations for its unique Wold

representation. We can also look at each R2
i and thus isolate which type of shocks is more or less

subject to nonfundamentalness and thus obtain a population measure for a specific shock in the

same spirit that the one develops by Forni, Gambetti, and Sala [2016].7 However, our contribution

is to show that the R2 diagnostic can be implemented on observable data under the assumption that

factors well capture the state variables of the economy without conditioning on a specific model.8

In fact, the implementation of the R2 diagnostic on observable data gives a measure of the severity

of the nonfundamentalness problem and the lag truncation bias. In this sense, the R2 diagnostic is

a broader measure of the finite VAR misspecification. The empirical R2 can then be considered as

an upper bound measure of the nonfundamentalness problem.9

1.2 A Lucas’ Tree Model Example

We consider a simple formulation of the Lucas’s tree model, with a single (unexpected or news)

shock. The dividend of a tree, denoted at, is assumed to follow the process:

at = θ0εt + θ1εt−1, (11)

where θ0, θ1 ∈ [0, 1], E(εt) = 0 and V (εt) = σ2
ε . Without loss of generality, we omit a relevant

constant term in dividend for simplicity. Since we will consider later a univariate representation,

we can normalize the variance of the shock to unity without loss of generality. In what follow, two

polar cases are alternatively investigated: i) θ0 = 1 and θ1 = 0, in this case changes in dividends

only result in an unexpected shock; ii) θ0 = 0 and θ1 = 1, dividends are governed by a news shock

only.

6The matrix norm is defined here as ‖M‖ =
√

trace (M ′M)).
7As in Soccorsi [2016] and Forni, Gambetti, and Sala [2016], we can also compute in our framework a measure

which disentangle the part from the nonfundamentalness problem and the VAR lag truncation problem but it is not the
object of the paper.

8It is crucial to understand that the nonfundamentalness measures proposed by Soccorsi [2016] and Forni, Gam-
betti, and Sala [2016] are only applicable in the context where the macroeconomic model is known. Consequently,
those measure can not be readily adapted with observable data without knowing the true macroeconomic model.

9With a finite VAR of order p according to the state-space representation (1)–(2), one can show for the innovation
vector upt that Σp

u = CΣpC ′ +DD′ where Σp ≥ Σ in the matrix sense and Σp is the variance of the forecast error of
the state variables xt−1 conditioning on yt−1, yt−2, . . . , yt−p.
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The representative consumer seeks to maximize

Et

∞∑
i=0

βict+i,

subject to the constraint

ct + ptnt+1 = (pt + at−1)nt (12)

where Et is the expectation operator conditional on the information set in period t, β ∈ (0, 1)

is the subjective discount factor, ct denotes consumption, pt is the price of a tree and nt is the

number of trees held in period t. The supply of tree is one. The equilibrium asset price is given by

pt = βEt(pt+1 + at) and using the transversality condition we deduce the present value equation

pt = βEt

∞∑
i=0

βiat+i. (13)

From the stochastic process (11), we obtain

Etat+1 = θ1εt and Etat+i = 0 ∀i > 1.

After replacement into (13), we get

pt = βat + β2θ1εt. (14)

Using (11), we deduce a MA(1) process for the price

pt = β(θ0 + βθ1)εt + βθ1εt−1. (15)

In terms of the ABCD representation, equations (11) and (15) rewrite

xt =

(
0 θ1
0 0

)
xt−1 +

(
θ0
1

)
εt (16)

and

yt = (0, βθ1)xt−1 + β(θ0 + βθ1)εt , (17)

where xt = (at, εt)
′ and yt = pt. Here, we assume that the econometrician only observes the price

pt, but does not observe the dividends at. This assumption will simplify our computation, while

keeping the main idea.

Let us first consider θ0 = 1 and θ1 = 0. In terms of ABCD, we have

A−BD−1C =

(
0 0
0 0

)
(18)
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so the two eigenvalues are zero. In this case, there is no information problem (fundamental case)

for the econometrician and the observed price perfectly reveals the state of the economy, i.e. pt =

βat ≡ βεt.

Second, we consider the case where θ0 = 0 and θ1 = 1. In terms of ABCD, we obtain

A−BD−1C =

(
0 1
0 − 1

β

)
(19)

In this case, the eigenvalues are 0 and −1/β. For β < 1, one eigenvalue exceeds unity in modulus

and the representation is nonfundamental. Using only the price pt, the econometrician cannot

perfectly uncover the true state of the economy. The question is now to investigate how the severity

of the nonfundamentalness problem varies with the value of β. Intuitively, small values of β makes

the problem more severe as the modulus of the largest root is well above unity. Conversely, for

β → 1, the modulus of the largest root is close to unity, which mitigates the information problem

for the econometrician. We now connect the eigenvalue (or β) to our simple R2 diagnostic, when

the econometrician performs the linear regression of the residual onto the past relevant variables

(factors lagged once, i.e. (xt−1 − x̂t−1)) and then compute the R2 associated to that regression.

If she obtains a large R2, this indicates that the residuals of the regression are not orthogonal to

past realization of the factor. Thus, the information problem may be severe and the identification

of shocks be seriously biased. In the following proposition, we connect the value of β to the

measurement error on the state variables and the R2 diagnostic in the AKCΣ setup.

Proposition 2 The R2 of the projection of ut (as defined in equation (7)) on the lagged forecast

errors of the state variables, i.e. (xt−1 − x̂t−1), is a decreasing concave function of β and is given

by

R2 = 1− β2.

With news shock (θ0 = 0, θ1 = 1), the process is always nonfundamental as long as β < 1. We see

from Proposition 2 a clear link between the severity of nonfundamentalness (the distance between

the unstable root 1/β and unity) and the R2 diagnostic. When β is small, the unstable root is large

in modulus and theR2 close to unity. This means in this simple example that theR2 provides useful

information about nonfundamentalness. Conversely, for β → 1, the modulus of the unstable root

tends to unity and the R2 tends to zero. Notice that β measure the anticipation rate (see Ljungqvist

and Sargent [2004] and Mertens and Ravn [2010]), i.e. the amount of which future information

about future dividends are incorporated in today prices. If β is small (or close to zero), the current

price contains little future information and this reflects into the high value (close to one) of the R2
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diagnostic. Conversely, if β → 1, current prices do contain almost all the useful information about

future dividends, and the R2 is close to zero.

2 Quantitative Experiments and Simulation Results

In this section, we quantitatively illustrate how the R2 defined section 1.1 can be a useful guide

for VAR modeling. We first revisit the DSGE examples of Sims [2012]. We then next perform

Monte Carlo simulations in finite sample using the Lucas’ tree model of section 1.2. Finally, we

investigate the relevance of our R2 diagnostic from Monte Carlo simulations in finite sample using

again the Lucas’ tree model of section 1.2 and the DSGE models of section 2.1 in a bivariate SVAR

setup.

2.1 Small Scale DSGE Models

We use the DSGE models of Sims [2012] to assess the reliability of SVARs. More precisely, Sims

considers four model versions. The first, labeled “Full Model” features both real (under the form of

habit formation and investment adjustment costs) and nominal (price rigidity) frictions. A second

version (“Sticky Price”) shuts down real frictions, but includes price rigidity. A third version

(“RBC”) is a frictionless representation of the economy. These three models are hit by two shocks:

an unexpected shock and a news shock on TFP with an anticipation lag of three periods (meaning

that the news comes three periods before it is implemented). A fourth version is the full model but

with one period anticipation lag for the news shock. For the first three versions, Sims [2012] shows

that the the “poor man’s invertibility” condition is not satisfied when the econometrician observes

TFP growth and (the log of) output (in deviation from stochastic trend). Conversely, with one lag

in the news shocks, he finds that condition is satisfied. Even though the condition for invertibility

is not satisfied for the first three models, Sims shows that SVARs yield reliable impulse responses

for the structural shocks. We want to relate this result with our R2 measure. To do so, we use

the state-space representation and the parametrization as reported in the Appendix of Sims [2012]

and we compute the corresponding ABCD representation. The R2 is directly obtained from the

ABCD/AKCΣ representation and the equation (10) in Section 1.1. We also compute the modulus

of the largest eigenvalue of the matrix (A−BD−1C), that we denote |λ|. Table 1 reports |λ| when

it is above one and theR2 associated to the unexpected and news shock on TFP. As the table makes

clear, there exists a strong relationship between the modulus of largest eigenvalue and the R2. For

example, in the case of the full model for which the problem of noninvertibility is the most severe,

10



the R2 are 0.08 and 0.14. Conversely, the RBC model yields a modulus of largest eigenvalue

close to unity and the R2 become very close to zero. Note also that in the case of a one period

anticipation, the condition for invertibility are satisfied and the R2 are zero. The small value of

the R2 diagnostic coincides with the accuracy of SVAR impulse response functions as reported in

Sims [2012].

Table 1: Modulus of the Largest Eigenvalue above one |λ| and R2

Model Modulus of the largest eigenvalue R2

above one Unexpected shock News shock
Full 1.32 0.08 0.14
RBC 1.06 0.04 0.00
Sticky Price 1.24 0.08 0.01
Full, One Period News - 0 0

Notes: The models are the ones presented in Sims [2012]. The full version is a DSGE model with both real and
nominal frictions. The RBC model is a version with no real and nominal frictions. The sticky price model is a
version without real friction. For these three versions, the news comes three periods in advance.

We also explore the sensitivity of the modulus of the largest eigenvalue and the R2 to the dis-

count factor β. We do that in the frictionless RBC model of Sims [2012]. As in the Lucas’ tree

model, high values (close to one) for β put more weights on future expectations and thus help

the econometrician to better identify news shocks. We consider of values for β in the interval

[0.95, 0.999]. Results are reported in Figure 1. Panel (a) shows that the modulus of the largest

eigenvalue of A−BD−1C monotonically decreases as β increases. Panel (b) reports the relation-

ship between this eigenvalue and the R2 (for the news shock). As β increases, the R2 goes down

as the nonfundamentalness problem is les severe. These quantitative results extend the analytical

results of Proposition 2, that were obtained from the Lucas’ tree model.

2.2 Simulation Results in a Univariate Setup

We now evaluate the reliability of our R2 diagnostic and the previous analytical results of section

1.2 using simulation experiments. In our Monte–Carlo study, we generate 1000 data samples from

the Lucas’ tree model of section 1.2 (equations (11) and (14)). Every data sample consists of 200

observations and corresponds to the typical sample size of empirical studies. In order to reduce the

effect of initial conditions, the simulated samples include 500 initial points which are subsequently

discarded in the estimation.
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Figure 1: Discount Factor (β), Modulus of the Largest Eigenvalue |λ| and R2

(a) |λ| vs β (b) |λ| vs R2: news shock
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Notes: The model used as the Data Generating Process is the RBC model of Sims [2012]. |λ| is the modulus of
the largest eigenvalue of A−BD−1C
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The econometrician observes the price pt and estimates am autoregressive process of order q

pt =

q∑
i=1

γipt−i + νt (20)

and then estimates by OLS the autoregressive parameters as well as the standard–error of the

residuals. We then compare the Impulse Response Function (IRF) from the estimations and with

true ones that are obtained from equation (15), and compute the cumulative Root Mean Square

Errors (RMSE) for a given horizon.10 The RMSE accounts for both bias and dispersion of the

estimated IRFs.

We vary the model’s parameters11 and compute the modulus of the largest eigenvalue of (A−
BD−1C), |λ|, which is between 0.1 and 1.9. We also normalize the standard deviation of the shock

such that the response of the price pt to the shock εt on impact is one.

We also assume that the econometrician can estimate a factor s̃t (or possibly more than one)

than spans the true state of the economy. This factor is obtained from a panel of N times series.

We assume that the practitioner observes

si,t = εt + αζi,t i = 1, · · · , N , (21)

where ζi,t is a measurement error. The ζi,t were produced according to a multivariate autoregressive

process

ζi,t = Mζi,t−1 + ζ̃i,t , (22)

with M = ρIN and the scalar |ρ| ≤ 1. The ζ̃i,t are Gaussian white noises (orthogonal to the

structural shock εt at all leads and lags) with a covariance matrix Σζ̃ given by

Σζ̃ =



1 τ . . . . . . τ
τ 1 τ . . . . . . τ

τ τ
. . . ...

... . . . ...

... . . . τ
τ . . . . . . τ 1


,

with |τ | ≤ 1. We adopt this particular representation for the M (same autoregressive parameter ρ)

and Σζ̃ (same correlation structure) matrices to maintain parsimony in the parametrization of our

10This measure is defined as crmse(k) =
∑k

i=0 rmsei where k denotes the selected horizon, rmsei =

((1/1000)
∑1000

j=1 (irfi(model)− irfi(svar)j)2)1/2 the RMSE at horizon i, irfi(model) the true impulse response func-
tion of pt given by equation (15) and irfi(svar)j the impulse responses function of pt from autoregressions for the jth

draw.
11More precisely, we set β = 0.5 and θ1 = 1 and we select a grid of values for θ0 between 0.026 and 9.5.
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possible large panel. Following Forni and Gambetti [2014], each ζ̃i,t (i = 1, ..., N ) is associated to

a random standard deviation σi uniformly distributed between 0 and 1. In addition, the parameter

α can vary to control for the size of the measurement errors. For example, if α is close to zero, the

estimated factor almost perfectly coincides with εt.

In our benchmark simulations, the econometrician estimates the factor s̃t as the first principal

component of {si,t}. The number of lags q in (20) is equal to six for all our experiments. The

R2 diagnostic is obtained in the following way. We estimate equation (20) and recover estimated

residuals ν̂t. These residuals are linearly projected on the current and lagged estimated factor s̃t.

The cumulative RMSE is computed for a horizon k = 5, since after 3 periods the true response is

zero. Finally, the panel of si,t contains N = 20 series.12

Our benchmark results are obtained for α = 0.001, so the correlation between the true state and

the first principal component is almost one. We will further assess the reliability of ourR2 diagnos-

tic when α increases. Let the (A− BD−1C) largest eigenvalue in modulus |λ| varies between 0.1

and 1.9 and compute the cumulative RMSE to evaluate the accuracy of regression (20). As Figure

2-(a) makes clear, the cumulative RMSE is small and stable when |λ| < 1. As |λ| becomes larger

than one (the nonfundamental representation) and increases, the cumulative RMSE continuously

grows up: nonfundamentalness clearly deteriorates the reliability of the autoregressive represen-

tation. We know turn to Figure 2-(b) that reports our R2 diagnostic with respect to |λ|. When

|λ| < 1, the R2 is very close to zero (and stable), meaning that the observations of the current

and lagged values of pt allow to properly identify the effect of the shock. As |λ| exceeds unity,

the R2 continuously increases with |λ|. Therefore, the R2 is a good indicator of the accuracy of

autoregressions. It displays a very similar pattern as the one of the cumulative RMSE: it is flat for

|λ| < 1 and progressively increases when |λ| > 1. As such, the R2 is almost a sufficient statistic to

assess the reliability of autoregressions. Finally, note that we do not see any strong variations in the

neighborhood of |λ| = 1, which confirms that nonfundamentlaness is not always a quantitatively

relevant feature.

We also use our simulations to assess Proposition 2 in finite sample. Figure 3 reports the

results. As this figure shows, Proposition 2 is highly supported by our finite sample experiments.

The estimated R2 tends to over-estimate the theoretical one near and above the unstable root of the

MA representation. However, these two R2 are closer and closer as the unstable root increases.

Moreover, when we include a very large number of lags in the autoregression (q = 30), the two

figures also perfectly coincides (see Figure 10 in Appendix B). With a large number of lags, the

12We have also investigated larger panels without altering our findings.
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Figure 2: Cumulative RMSE, R2 and Nonfundamentalness

(a) |λ| vs Cumulative RMSE
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(b) |λ| vs R2
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Notes: The two panels of this Figure are obtained from the simulations of the Lucas’ tree model (equations (11)
and (14)) of section 1.2. We vary parameter θ0 such that the model solution maximum eigenvalue in modulus
|λ| varies between .1 and 1.9. For each θ0, the model is simulated 1000 times and each simulation is 200
observations long. Equation (20) cumulative RMSE (panel (a)) and model’s R2 diagnostic (panel (b)) are then
plot against |λ|, the modulus of the largest eigenvalue of A−BD−1C.
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autoregressive model better capture the moving average representation, but the model with q = 6

lags delivers very reliable results.

Figure 3: Theoretical R2 and Simulated One in Finite Sample
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Notes: This Figure is obtained from the simulations of the Lucas’ tree model (equations (11) and (14)) of section
1.2. We vary parameter θ0 such that the model solution maximum eigenvalue in modulus |λ| varies between 1
and 1.9. For each θ0, the model is simulated 1000 times and each simulation is 200 observations long. The solid
line corresponds to the R2 diagnostic obtained from simulations and the dashed line to the theoretical R2 of
Proposition 2.

In our setup, in order to obtain some indications about a threshold R2 above which the autore-

gression (20) is unreliable, we perform the following computation. We select the threshold R2

such that the true impulse response function after one period lies within the 95% confidence inter-

val of the estimated responses. In our benchmark case, this yields a value around 0.24 . Notice that

autoregressions still deliver reliable results when |λ| > 1, as our threshold R2 = 0.24 is associated

with |λ| = 1.12. Obviously, this threshold R2 can not be used as a general result as it depends

on many factors (the setup, the number of variables, the selected confidence interval). However,

we will find similar threshold using additional simulation experiments in a bivariate setup (see the

next section) and VARs estimated on actual US data in section 4.

We also compare our R2 diagnostic to the orthogonality test proposed by Forni and Gambetti

[2014], which is a test of nonfundamentalness.13 To do so, we report in Figure 4 the rejection

rate of the test statistics (at 5%) with the R2. We obtain that the orthogonality test appears very

13See Proposition 3 in Section 3.3 for an exposition and the related discussion.
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Figure 4: R2 and the Rejection Rate of Forni and Gambetti’s [2014] Test
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Notes: This Figure is obtained from the simulations of the Lucas’ tree model (equations (11) and (14)) of section
1.2. We vary parameter θ0 such that the model solution maximum eigenvalue in modulus |λ| varies between .1
and 1.9. For each θ0, the model is simulated 1000 times and each simulation is 200 observations long. The
solid line corresponds to the R2 diagnostic and the dashed line to the rejection rate of the the orthogonality test
proposed by Forni and Gambetti [2014].
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sensitive to the parametrization, as it over-rejects the null hypothesis in the fundamental case (when

the eigenvalue is within the range (0.7, 1)). For example, when the eigenvalue is 0.89, the R2 is

equal to 5% whereas the rejection rate is around 58%. Moreover, the threshold R2 (around 0.25)

below which autoregressions yield accurate IRFs is associated to a 100% rejection rate.14 Because

it smoothly varies in the neighborhood of |λ| = 1, the R2 seems to be, in finite sample, a better

measure of nonfundamentalness severity than the orthogonality test.

Now, we investigate the robustness of our previous findings to the case of N times series (See

the discussion above about equation (21)). We conduct four experiments (See Exp. (a) to Exp. (d)

in Figure 5). First, we consider a panel of N uncorrelated (and serially uncorrelated) measurement

errors where τ = ρ = 0. Second, we correlate these measurement errors (τ = 0.9) without

serial correlation (ρ = 0). Third, we consider serial correlation (ρ = 0.9), but measurement

errors are mutually uncorrelated (τ = 0). Finally, we set τ = ρ = 0.9, so that measurement

errors both display mutual correlation and serial dependance. We modify the value of α, such

that the measurement errors ζi,t account more and more for the variance of the N variables si,t.

Consequently, the first principal component of si,t (i = 1, ..., N ) is less and less a proper measure

of the state of the economy. To measure the reliability of the estimated factor to span the true state

of the economy, we compute the correlation15 between εt (the true state of the economy) and the

first principal component s̃t for different values of α.

At the same time, we compute the threshold R2 such that the true impulse response lies in the

95% confidence interval. As Figure 5 shows, in the four case we consider (See Exp. (a) to (d) in

Figure 5), our R2 diagnostic is only slightly affected, as it appears almost flat regarding the change

in the parameter α (inversely reflecting by the correlation between the true state and the estimated

one, or the contribution of the first factor to the panel.). This shows that a threshold value for theR2

diagnostic around 0.25 seems to be good reference for accuracy in that context. Moreover, the R2

sensitivity can be reduced by increasing the number of principal components used. When we use

the first four principal components isntead of the first one only, we obtain a threshold value for the

R2 that is slightly higher (around 0.30), but less polluted by measurement errors and unsensitive

to the different alterations of the benchmark case. Our simulation experiments then confirm the

usefulness of our R2 diagnostic to assess the reliability of small-scale autoregressions.

14When the R2 is equal to 0.15 we already get a 100% rejection rate.
15Another measure is related to the contribution of the first factor to the set of N variables. We obtain the same

results, as the the contribution of the first component decreases (as our R2 diagnostic) when the value of α increases.
We thank a referee for pointing out this quantitative issue.
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Figure 5: R2 when the Econometrician Observes the State with Noise
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Notes: This Figure is obtained from the simulations of the Lucas’ tree model (equations (11) and (14)) of section
1.2. We vary parameter α and for each α, the model is simulated 1000 times and each simulation is 200
observations long. For each simulation, we compute the correlation between the true state of the model and the
estimated first factor, which is directly a function of α. We then compute our proposedR2 with the first estimated
factor.
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2.3 Simulation Results in a Bivariate SVAR Setup

Let us repeat the above analysis when the DGP contains two shocks, so that a bivariate SVAR

should be used to estimate IRFs. We first consider a slight modification of the Lucas’ tree model

that includes both unexpected and news shocks to dividends. Second, we investigate a RBC model

with a similar stochastic structure. For both experiments, we maintain the sample sample size,

initial conditions and number of simulations as in Section 2.2. We also inspect the orthogonality

test proposed by Forni and Gambetti [2014] and we obtain a strong rejection rate.

Lucas’ tree model with news and surprise on dividends: We first consider the Lucas’ tree

model presented in section 1.2, except that the process of a is now a random walk and has a news

component ε and a surprise one u:

at = at−1 + εt−2 + ut,

where εt and ut are gaussian with unit variance.16 In that case, the equilibrium price p of a tree is

given by

pt =
β

1− β
at +

β

1− β
(βεt + εt−1) .

The structural moving average representation of the solution is given by(
∆at
∆pt

)
=

(
L2 1

β2

1−β + βL β
1−β

)(
εt
ut

)
. (23)

The determinant of the moving average coefficients matrix in (23) is − β2

1−β − βL + β
1−βL

2. The

roots of that determinant are 1 and −β. Therefore, if we assume that only current and past values

of a and p are observed by the econometrician, the shocks εt and ut are nonfundamental for the

variables ∆at and ∆pt, and cannot be recovered by an econometrician, because |β| < 1. The basic

setup of Beaudry and Portier’s [2006] is therefore always non-fundamental. However, by varying

the discount factor β, we can evaluate the severity of the problem. We therefore use the model

as the DGP and simulate data. The news shock is then identified as the shock that has no effect

on impact on dividends in a (∆at,∆pt) Vector Error Correcting Model with one cointegrating

relation.17 We then compare the estimated IRF of the asset price p to a news shock, and perform

the Forni and Gambetti’s [2014] sufficient information test for nonfundamentalness. In our context,
16Our results are robust to a change of the dividend process (longer or shorter news) and to the relative size of the

variances.
17See Beaudry and Portier [2006] and Beaudry and Portier [2014] for a discussion. We will consider in more details

this identification scheme in the statistical setup of Section 3.
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the test consists in projecting the estimated news shock on a constant and the past of the true εt

and ut that have been used to generate the data. As the shocks are i.i.d. and orthogonal one to each

other, the R2 of that regression should be 0 if the estimated shock was indeed equal to εt. Figure

6 (from (a) to (f)) reports the results of our Monte-Carlo experiments, when we vary the discount

factor β from 0.1 to 0.99 (so the unstable root from 10 to almost 1). The figure also includes our

R2 diagnostic. The figure clearly shows that when β is small (future values of dividends does

not matter a lot), the accuracy of the SVAR model is small, as the estimated IRF is outside the

confidence interval. However, as β increases the SVAR model uncovers more and more the true

response. As in the univariate case, it appears that SVARs yields proper estimates when the R2

diagnostic is around 0.25.

RBC model with news and surprise on TFP: As a final Monte-Carlo investigation, consider

the RBC model of Sims [2012] that we used in section 2.1. Assume TFP is a random walk with

a surprise and a three-period ahead news shock. Notice that in this simple RBC framework, the

response of GDP is negative in the short run18. The VAR model includes TFP growth and the

(log of) de-trended output (from the non-stationary TFP). The VAR is estimated with 8 lags, as

in Sims [2012].19 As in the previous case, news shocks are identified using a zero restriction on

impact on TFP. Figure 7 reports the results of our experiments for the response of output to a news

TFP shock. In this figure, we consider different values of the discount factor β. Notice that with

3 lags in the news shock, the RBC model always admits a non-fundamental representation in the

associated (TFP growth, De-trended Output) VAR representation, but the severity of nonfunda-

mentalness varies with the discount factor as emphasized in the two previous sub-sections (See the

reported value of |λ| in each figure). As discussed above, lowering the discount rate increases the

largest eigenvalue and lowers the weight on forward-looking component, rendering the nonfun-

damentalness problem more severe. For low values of β (around 0.95), the accuracy of SVARs is

small as the bivariate model faces difficulty to properly reproduce the responses of output to a news

TFP shock in the short run. However, when we increase β, the SVAR model better uncovers the

true responses. This finding immediately echoes the results reported in Figure 1 obtained from the

ABCD/AKCΣ setups. For example, when β = 0.985, the SVAR model produces a confidence

interval for IRFs that includes the true one. We again obtain that a value for the R2 around 0.25 is

18Despite controversies about the empirical response of output to news TFP shocks (See Beaudry and Portier [2014]
for a discussion), this framework remains useful for our quantitative analysis, as we just want to investigate the relia-
bility of our R2 diagnostic (See Barsky and Sims [2011] and Sims [2012] for a similar quantitative investigation).

19We investigate the sensitivity of the results to other lags selection. When the number of lags is reduced, the SVAR
model uncovers less likely the true IRFs.
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Figure 6: Response of the Asset Price to the Identified News and R2 when Using the Lucas’ Tree
Model as the DGP
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Notes: For this Figure, the Lucas’ tree model with two shocks of section 1.2 has been simulated 1000 times
over 250 period for various levels of β. A dimension two Vector Error Correcting model with five lags and one
cointegrating relation has been estimated using simulated dividends a and asset price p. The Figure shows the
response to a shock that does not affect dividends a on impact, as estimated using the VECM (dashed line for
the median response, 95% confidence band for the grey area), together with the theoretical response to a news
shock ε. This Figure includes the setting value for β and the associated R2.
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Figure 7: Response of Output to the Identified News and R2 when Using the RBC Model as the
DGP
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Notes: This Figure is obtained from the simulations of the RBC model of Section 2.1. We vary parameter β
and for each β, the model is simulated 1000 times and each simulation is 250 observations long. For each
simulation, we compute the correlation between the estimated shock and the true state vector of the model. The
solid line corresponds to the true IRF, the dashed line to the estimated (from the SVAR model) IRFs. Grey areas
correspond to the 95% confidence band. This Figure includes the setting value for β, the associated R2 and the
largest eigenvalue in modulus|λ| of (A−BD−1C).
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associated with a very accurate estimation of the true IRFs from SVARs.

For these two simulation experiments, we perform the orthogonality test proposed by Forni and

Gambetti [2014]. We obtain a strong rejection rate for all the cases we investigated, even when the

SVAR model properly uncovers the true IRFs. This result provides additional evidences against

the usefulness of this test and favors our simple R2 diagnostic.20

3 The R2 Diagnostic in the SVAR Setup

The previous section has set the scene by showing the relevance of our R2 diagnostic in order

to assess the consequences of nonfundamentalness in the estimation context of VAR models. In

this section, we formally make the connection. We could consider a factor model as in Forni,

Giannone, Lippi, and Reichlin [2009] but as argued by Forni and Gambetti [2014] the most natural

solution is to extend the VAR by adding principal components corresponding to a FAVAR model.

We then recast the state-space representation (1) and (2) as a FAVAR model by considering that the

factors are a proper approximation of the true state variables. We investigate a misspecified VAR

representation that would omit the factors and thus not fully capture dynamics of the state variables.

Using that misspecified model to identify structural shocks, we show that the bias in recovering

these shocks is of the size of the R2. The R2 is obtained from the projection of (misspecified)

structural shocks on the past of the factors orthogonal to the lagged values of the variables included

in the VAR, which corresponds to testing the orthogonality of the estimated structural shock with

respect to the lags of the factors (Forni and Gambetti [2014]).

3.1 The Econometric Setup

Assume the well-specified model labeled asM0 corresponding to the following FAVAR:

yt = By(L)yt−1 +Bf (L)ft−1 + εyt,

ft = Cf (L)ft−1 + εft,
(M0)

where the vector yt contains n variables of interest and ft is a vector of (observed) relevant q factors

and By(L), Bf (L) and Cf (L) are matrices of finite polynomials in lag operator. We suppose that

the variance of each factor is normalized to unity.21 Our goal is to assess the quantitative effects

of omitting the relevant set of factors ft at the estimation stage and thus when identifying the true

20See the previous Section 2.2 and the Corollary 1.
21This representation adds factors in a VAR representation of the data and thus differs from a more general repre-

sentation of dynamic factor models (see Stock and Watson [2005] and [2016]).
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structural shocks. The analysis is then similar to a standard omitting variable problem in linear

regression.

Now define the vector of Wold innovations εt =
(
ε′yt ε

′
ft

)′ and εt = Aηt where ηt is the vector

of the structural shocks. The dimension of the vector ηt can be different than the dimension of the

vector εt. Assume that there is a unique linear transformation that maps innovations εy,t into the

subset of structural shocks of interest ηy,t according to

εyt = A0ηyt, (24)

where A0 is a nonsingular matrix. We then consider here the square case, namely, the number of

structural shocks of interest ηyt equals the dimension of the vector εyt. As usual, we impose the

normalization assumption thatE(ηytη
′
yt) = In. This orthogonality/normalization assumption is not

sufficient (except if n = 1) to identify the structural shocks, since E(εytε
′
yt) = A0A

′
0 is symmetric.

At least n(n − 1)/2 restrictions must be imposed to identify A0. To fix ideas, we assume that

identification is achieved by imposing point restrictions in the form

Γ vec (A0) = γ, (25)

where Γ is a (m×n2) selection matrix and γ a (m× 1) vector of m restrictions greater or equal to

n(n−1)/2. These restrictions can be generalized to other identification schemes. Combining with

the covariance matrix, these additional restrictions allow to identify each elements of A0. γ = 0

corresponds to a case of zero impact restriction, which is one of the most commonly used in the

SVAR literature (see Ramey [2016]). In what follows, we do not need to be explicit about the

identifying restrictions Γ, and will keep the matrix A0 unspecified.

3.2 The Misspecified Model

Now, suppose that the econometrician estimates the following misspecified VAR modelM1:

yt = B̃y(L)yt−1 + ε̃yt, (M1)

where B̃y(L) is a matrix of finite polynomials of lag operator . We further assume that the econo-

metrician uses the restrictions (25) to identify the structural shocks.

This model improperly ignores the role played by the factors ft. We are in a typical case of

missing relevant variables in VARs.22 The omitted variables problem will affect the misspecified

22See Stock and Watson [2001], [2005], Canova [2006], Canova [2007] and Lütkepohl [2005] for a discussion of
this issue.
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VAR model M1 in various ways. First, by omitting the lagged factors, the VAR model will not

properly uncover the size of the shocks, because part of the identified structural shocks will be

polluted by the missing lagged factors. Second, the omitting of lagged factors will affect the

dynamics of yt and the polynomial matrices B̃y(L) do not properly summarize the true dynamic

structure of the observables yt. Third, the covariance structure of the variables yt and ft can affect

the proper measurement of the auto-regressive matrices B̃y(L) at the estimation stage. In what

follows, we explicitly measure the bias of the identified structural shocks by omitting the factors.

The restricted structural shocks (the ones obtained from M1) are denoted ε̃yt = Ã0η̃y,t. We

impose the same normalization assumption E(η̃y,tη̃
′
y,t) = In and the same additional restrictions

Γ vec
(
Ã0

)
= γ, (26)

where Γ and γ are the same as in model M0. Denoting Σ̃ = E(ε̃ytε̃
′
yt) and Σ = E(εytε

′
yt), we

deduce Ã0Ã
′
0 = Σ̃ ≥ Σ = A0A

′
0 in the matrix sense and ‖Ã0‖ ≥ ‖A0‖, because the error term

ε̃y,t omits the factor ft−1. We now examine in more details the effects of omitting the factors in the

estimation of modelM1 and for the identification of structural shocks.

3.3 Testing for Nonfundamentalness

Testing for nonfundamentalness for a particular structural shock is achieved by performing an

orthogonality test of the estimated structural shock η̃it with respect to the lags of the factors as

proposed by Forni and Gambetti [2014]. As previously discussed in the introduction, the testing

procedure implies that the econometrician observes the factors.

Proposition 3 For a given sample of size T , the following relation holds between the Wald statis-

ticsWT of the orthogonality test and theR2
i of the projection of the (misspecified) structural shocks

η̃it on the lags of the factors orthogonal to yt−1:

WT = T
R2
i

(1−R2
i )
.

The Wald statistic is composed of two terms. The first term T (the size of the sample) refers

to the precision of the estimation, since the covariance matrix of the factors has been normalized

to identity. The second term R2
i accounts for the explanatory power of the lagged factors for the

(misspecified) structural shocks η̃it.

Corollary 1 Suppose that the Wald statistics is greater than its critical value, so that the test

rejects the fundamentalness of the residuals (or of identified structural shocks from the wrong
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model). Such a a rejection is compatible with arbitrarily low level of the R2
i , and therefore with

little quantitative importance on the nonfundamentalness problem, as long as the sample size T is

large enough.

Let us illustrate Corollary 1. Consider a single factor (q = 1) in the regression and a sample

of size T = 200, as very usual in applied time series macroeconomics. In this case, the limiting

distribution of the Wald statistic under the null hypothesis that the identified shock η̃it is orthogonal

to the lagged factor is a chi-square statistic with one degree of freedom. Its critical value at 5%

is 3.84. This implies an associated critical R2 equals to 0.0192. In words, it is possible to reject

fundamentalness even though the lagged factor explains only less than 2% of the variance of the

identified structural shock.23

Proposition 4 formalizes the relationship between the R2 of the projection of (misspecified)

structural residuals and the distance to the true model.

Proposition 4 The R2
i statistic is :

(i) a consistent estimator of the distance between the misspecified structural shock η̃it and the

true structural shock ηit = e′iηyt. Indeed, when R2
i is small, η̃it is close to ηit. Moreover, when

R2
i = 0 for all i = 1, . . . , n, ‖Ã0 − A0‖ = 0.24

ii) a consistent estimator of the distance between the misspecified impulse responses of i-th

misspecified structural shock η̃it and the true impulse responses of the i-th structural shock ηit.

(iii) a consistent estimator of the distance between the misspecified variance decomposition on

impact and the true one.

The meaning of Proposition 4 is that if R2 is small for a specific (misspecified) structural

shock, the distance between the well-specified modelM0 and the misspecified modelM1 for this

shock is small even if the Wald test rejects fundamentalness. In this sense, the R2 is a measure of

incomplete parametric encompassing of the modelM0 by the modelM1 as defined by Mizon and

Richard [1986].

3.4 Characterization of Biases on Impact

As a simple characterization of biases, we use a bivariate SVAR model. Anticipating our empiri-

cal results (see section 4), we consider the benchmark VAR model of Beaudry and Portier [2006]

23In Section 2.2 and 2.3, we have already shown from our Monte-Carlo experiments in finite sample that the R2 is
a better diagnostic of nonfundamentalness than the orthogonality test.

24The matrix norm is defined as in footnote 6.
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with a short run restriction to identify a news shock on technology. The results expounded here

are not specific to their setup. As discussed in Ramey [2016], this triangular representation intro-

duced by Sims [1980] (using a Cholesky decomposition) is the most commonly used identification

method in macroeconomics (for example, for monetary policy or government spending shocks).

The following results thus apply to many other SVARs.

The bivariate model of Beaudry and Portier [2006] includes Total Factor Productivity (TFP )

and a measure of Stock Prices (SP ). The technological news η2,t is the shock that is orthogonal

to current TFP . The well-specified model is M0 with yt = (TFPt, SPt)
′ and other relevant

factors, while the econometrician is estimatingM1 with only these two variables. According to

the structural assumption, A0 is lower triangular and given by

A0 =

[
a0,11 0
a0,21 a0,22

]
. (27)

Under the misspecified model M1, we maintain the same identifying restriction, such that the

misspecified impact matrix Ã0 is given by

Ã0 =

[
ã0,11 0
ã0,21 ã0,22

]
. (28)

Using the same logic than before, we can derive proposition 5.

Proposition 5 For small R2
1 and R2

2 , the relative biases of the impact response for the identified

structural shocks satisfy: ̂̃a0,11 − a0,11
a0,11

' 1

2
R2

1,̂̃a0,22 − a0,22
a0,22

≤ 1

2
R2

2.

The proposition characterizes the relative biases for the estimated impact responses of the TFP

to an unexpected technology shock and the stock prices to a news shock. In particular, the relative

bias impact response of the stock price to a news shock is smaller than half of the R2
2. This

proposition makes explicit that from a quantitative point of view, it is not the value of the Wald

statistics but the size of the R2 that matters for the bias caused by nonfundamentalness.

4 Application to the Identification of TFP News Shocks with
U.S. Data

As an illustration, we apply the R2 diagnostic to the results of Beaudry and Portier [2006] and

[2014].
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4.1 Baseline Results

In the following, we use the same sample as used by Forni, Gambetti, and Sala [2014] and use

the data described in Beaudry and Portier [2014]. Note that the results of our VARs are robust

to a longer sample (1946-2013), but the factors are only available on the shorter sample. TFP is

corrected for utilisation, consumption is total consumption (including durable) and investment is

total investment (see the data appendix F).

We first consider the basic Beaudry and Portier’s [2006] bivariate VAR. Whereas the small

dimension of the VAR might be a weakness, this VAR has the advantage of being simple and, as

discussed in Beaudry and Portier [2014], gives results that are robust to various extensions. The

two variables in the system are TFP and Stock Prices. The single identifying restriction is that

the identified news has no impact effect on TFP, which correspond to a Choleski decomposition

in which TFP is the first variable and the news shock the second shock. Figure 8 shows that we

indeed identify a diffusion news. TFP does not increase for about 10 quarters 25, but does in the

long run.

Figure 8: Response to a News Shock in the Beaudry and Portier’s [2006] VAR 2

(a) TFP (b) Stock Prices
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Notes: Data are described in the appendix and the sample period in 1960Q1-2012Q2. The news shock is the one
that does not affect TFP on impact. The VAR include 4 lags. The unit of the vertical axis is percentage deviation
from the situation without shock. Grey areas correspond to the 66% confidence band. The distribution of IRF
is the Bayesian simulated distribution obtained by Monte-Carlo integration with 10,000 replications, using the
approach for just-identified systems discussed in Doan [1992].

We now extend the VAR to add three extra variables: consumption, investment and hours. To

identify a TFP news shock, we follow the identification strategy set out in Beaudry and Portier

25TFP actually decreases, which might be the consequence of an excessive correction for utilization.
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[2014] which is a natural extension to that introduced in Beaudry and Portier [2006]. This identi-

fication strategy identifies two technology shocks as the only ones that are allowed affect TFP in

the long run. One of them is unrestricted, while the other one is constrained not to affect TFP on

impact. That second shock is potentially a technology news shock. The other shocks in the VAR

remain unnamed. The identifying restrictions is therefore: (i) all the shocks but the unrestricted

technology shock have zero impact effect on TFP, (ii) the news and the unrestricted technology

shock are the only permanent shocks to TFP. In Beaudry and Portier [2014] it is shown that this

identification gives robust results when one varies either the information set, the sample period and

the specification.

Impulse responses are presented in Figure 9. The plain line shows the point estimates. We

observe all the characteristic of a news driven economic expansion. TFP does not move in the

short run, the stock market reacts instantaneously to the news, consumption, investment and hours

do increase on impact and subsequently, before any sizable increase in TFP. In panels (a) and (b),

we also represent the responses of TFP and SP obtained from the VAR 2 (dashed-dotted gray line).

Note that the response of TFP is very similar, while the response of SP is now purged from some

non-news related variations.

These results suggest that there are indeed news in the business cycle, but it might be the case,

as pointed out by Forni, Gambetti, and Sala [2014], that the estimation suffers from nonfundamen-

talness. This is what we check now.

4.2 The Quantitative Unimportance of Nonfundamentalness

In order to test for nonfundamentalness, we follow Forni, Gambetti, and Sala [2014]. The authors

use a dataset composed of 107 US quarterly macroeconomic series, and estimate the principal

components of this data set. They show that essentially all the information is contained in the first

three factors. We therefore use these first three factors. We project the estimated news shock of

the VAR 2 and of the VAR 5 on one lag or four lags of the first three factors, and test for the

orthogonality of our news shocks to the factors. The Wald statistics and the p-values are reported

in Table 2. In all cases, the p-value is less that 5%. We therefore do agree with Forni, Gambetti,

and Sala [2014] that our identified strategy is likely subject to the nonfundamentalness problem.

However, does it matter for the estimation of the impulse response functions to a news shock? The

answer is no, or at least not very much. A first element suggestive of this negative answer comes

from the inspection of the R2 associated with specification test. These are displayed in Table

2. The R2 are never larger than .2: even though our estimated news shocks are not orthogonal
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Figure 9: Comparison of the VAR 5 Responses With the Ones of the VAR 5 Augmented With the
First Three Factors

(a) TFP (b) SP
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(c) Consumption (d) Investment
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Notes: Data are described in the appendix and the sample period is 1960Q1-2012Q2. In the VAR 5 (the plain
line), the news shock is restricted to have no impact effect on TFP but is not restricted in the long run. The
dotted lines correspond to the VAR 8, that is the VAR 5 augmented with the first three factors of Forni, Gambetti,
and Sala [2014]. The dashed-dotted gray lines of panels (a) and (b) are the responses to a news shock in the
VAR 2 of Figure 8. The VARs include 4 lags. The unit of the vertical axis is percentage deviation from the
situation without shock. Grey areas correspond to the 66% confidence band of the VAR 5. The distribution of
IRF is the Bayesian simulated distribution obtained by Monte-Carlo integration with 10,000 replications, using
the approach for just-identified systems discussed in Doan [1992].
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Table 2: Test for Nonfundamentalness and Associated R2s

Model One lag Four lags
R2 F-test p-value R2 F-test p-value

VAR 2 .06 .04 .18 .05
VAR 5 .09 .01 .22 .01

Notes: This Table presents the results of the sufficient information test proposed by Forni and Gambetti [2014].
For each VAR, the news shock is projected on one or four lags of the first three factors of Forni, Gambetti, and
Sala [2014]. Table includes the p-value for the orthogonality test, as well as the R2 of those regressions. Data
are described in the appendix and the sample period in 1960Q1-2012Q2. In the VAR 2, the news shock is the
one that does not affect TFP on impact.In the VAR 5 , the news shock is only restricted to have no impact effect
on TFP but is not restricted in the long run. The VARs are estimated in levels and with 4 lags.

to the factors, those factors explain less than 20% of the variance of the news. The theoretical

results and the simulation experiments of the previous section suggest that in such a case, the

nonfundamentalness should not be much of a quantitative problem.26

We then re-estimate our VAR 5 by adding the three factors, so that we end up estimating a

VAR 8. We use the same identification strategy, that is, : (i) all the shocks but the unrestricted

technology shock have zero impact effect on TFP, (ii) the news and the unrestricted technology

shock are the only permanent shocks to TFP. The estimated responses to the newly identified news

shock are the black dashed lines of Figure 9. Except for the Stock Price whose response has a

similar shape but is divided by a factor two, the responses of TFP, consumption, investment and

hours are all very similar to that obtained in the absence of including the factors. This contrasts

with Forni, Gambetti, and Sala [2014] finding that is based on the identification strategy of Barsky

and Sims [2011], which itself is not very supportive of the news shocks view of business cycles.

Hence, these results suggests that our chosen means of identifying news shocks generate impulse

responses with properties that are robust to the nonfundamentalness critique. There may remain

debate about how best to identify new shocks, but that is an issue entirely different form the issue

of nonfundamentalness emphasized in Forni, Gambetti, and Sala [2014].27 We therefore infer that

nonfundamentalness is not likely an important factor in evaluating whether or not news shocks are

relevant for business cycles.

26See also Beaudry, Fève, Guay, and Portier [2015]
27See Beaudry, Nam, and Wang [2011] for some answers to that question.
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5 Conclusion

In this paper, we have proposed a simpleR2 diagnostic to asses the severity of nonfundamentalness

in SVARs. Building on the ABCD and AKCΣ setups, we have shown how the R2 allows to

measure the distance between the structural models and SVARs. Using a simple Lucas’s tree model

with news shock, we have connected the R2 with the discount factor. We have also performed

simulation experiments to highlight how the R2 can be a useful guide for VAR modelling. We

then have developed a FAVAR setup and characterized the bias when factors are omitted. We have

notably shown that the relative bias in recovering the true structural shocks is of the order of half

the R2 of the projection of the misspecified structural shocks on the true ones. An application to

news shock with US data indicates that nonfundamentalness is present, but it does not appear to

matter quantitatively (the R2 is small). This is not of course a general result that would apply to

all SVARs exercises. In fact, the test proposed by Forni and Gambetti [2014] is a useful one that

macro-econometricians should systematically perform when nonfundamentalness may be present.

However, this test should be accompanied with the computation of the R2 associated to the test, in

order to assess whether nonfundamentalness is likely to be quantitative important.
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LÜTKEPOHL, H. (2005): New Introduction to Multiple Time Series Analysis. Springer.

MERTENS, K., AND M. RAVN (2010): “Measuring the Impact of Fiscal Policy in the Face of
Anticipation: A Structural VAR Approach,” Economic Journal, 120(544), 393–413.

MIZON, G. E., AND J.-F. RICHARD (1986): “The Encompassing Principle and Its Application to
Testing Non-nested Hypotheses,” Econometrica, 54(3), 657–678.

RAMEY, V. (2016): Macroeconomic Shocks and Their Propagationvol. 2 of Handbook of Macroe-
conomics, chap. 2, pp. 71–162. Elsevier.

SIMS, C. A. (1980): “Macroeconomics and Reality,” Econometrica, 48(1), 1–48.

SIMS, E. R. (2012): “News, Non-Invertibility, and Structural VARs,” in Advances in Economet-
rics. DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments, ed.
by N. Balke, F. Canova, F. Milani, and M. A. Wynne, vol. 28. Emerald Group Publishing Lim-
ited,.

SOCCORSI, S. (2016): “Measuring nonfundamentalness for structural VARs,” Journal of Eco-
nomic Dynamics and Control, 71(C), 86–101.

STOCK, J., AND M. WATSON (2001): “Vector Autoregressions,” Journal of Economic Perspec-
tives, 15(4), 101–116.

(2005): “Implications of Dynamic Factor Models for VAR Analysis,” NBER Working
Papers 11467, National Bureau of Economic Research, Inc.

(2016): Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Struc-
tural Vector Autoregressions in Macroeconomicsvol. 2 of Handbook of Macroeconomics,
chap. 8, pp. 415–525. Elsevier.

35



Appendix

A Proof of Proposition 2
Using A, B, C and D, we have to solve for the Kalman gain K and the matrix Σ of forecast errors:

K =

(
k1
k2

)
≡ (AΣC ′ +BD′)(CΣC ′ +DD′)−1

and

Σ =

(
V (at − ât) Cov(at − ât, εt − ε̂t)

Cov(εt − ε̂t, at − ât) V (εt − ε̂t)

)
≡
(
σaa σae
σea σee

)
Using the innovation representation, the matrix Σ is given by:

Σ = (A−KC)Σ(A−KC)′ +BB′ +KDD′K ′ −BD′K ′ −KDB′

Let us first consider the vector K. Using A, B, C and D and given Σ, we deduce

k1 =
σee

β(σee + β2)
and k2 =

1

σee + β2

Now, we insert K into the covariance matrix Σ and we use again A, B, C and D. We obtain

σaa =
β4σee

(σee + β2)2
+

β2σ2
ee

(σee + β2)2

σae = σea = − βσee
(σee + β2)2

σee =
β2σee

(σee + β2)2
+ 1 +

β4

(σee + β2)2
− 2β2

σee + β2

σaa and σae depends on σee, whereas σee can be solved independently. After some algebra, we
obtain σee = 1− β2 and we immediately deduce the covariance matrix of forecast errors:

Σ = (1− β2)

(
β2 −β
−β 1

)
and the Kalman gain K

K =

(
1−β2

β

1

)
Now the variance of the residual ut in the infinite order AR representation of the observed variable
yt is given by

σ2
u = CΣC ′ +DD′

= β2(1− β2) + β4

= β2

So the linear regression of ut on xt−1− x̂t−1 (or a factor that accurately represents the state vector)
yields a coefficient of determination

R2 =
CΣC ′

σ2
u

≡ 1− β2

This completes the proof.
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B Additional Simulation Experiments

Figure 10: Theoretical R2 and Simulated One in Finite Sample with a Large Number of Lags
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Notes: This Figure are obtained from the simulations of the Lucas’ tree model (equations (11) and (14)) of
section 1.2. We vary parameter θ0 such that the model solution maximum eigenvalue in modulus |λ| varies
between 1 and 1.9. For each θ0, the model is simulated 1000 times and each simulation is 200 observations
long. The solid line corresponds to the R2 diagnostic obtained from simulations and the dashed line to the
theoretical R2 of Proposition 2.

C Proof of Proposition 3 :
To simplify the exposition of the proof, we consider a FAVAR model with one lag only. Results can
be easily extended to a more general lags structure. Moreover any FAVAR(p) (or VAR(p)) can be
recasted as a FAVAR(1) (or VAR(1)). We first characterize the relationship between the identified
misspecified structural shock and the factors ft. The vector of the residuals from the estimation of
modelM1 is given by

̂̃εy = MY ε̃y = MY Y,

where ε̃y is the T × n of error terms for each of the n equations, Y is the T × n matrix of the
corresponding yt and MY = I − Y−1

(
Y ′−1Y−1

)−1
Y ′−1 is the orthogonal projection matrix to Y−1,

i.e. the matrix containing the lagged values of Y . Using modelM0 and the same notations, we
deduce

MY Y = MY F−1B
′
f +MY εy,
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where F−1 is a T × q matrix containing the lagged values of the factors. This implies for the
estimated misspecified structural shocks

̂̃ηŷ̃A0

′
= MY F−1B

′
f +MY εy.

where the vector η̃y contains the elements η̃yt. Since ̂̃εyt = ε̃yt + op(1), ̂̃ηy = η̃y + op(1) and̂̃A0 = Ã0 + op(1), we obtain 28

η̃yÃ
′
0 = MY F−1B

′
f +MY εy + op(1).

By MY εy = εy + op(1), we can write

η̃y = MY F−1B
′
f

(
Ã′0

)−1
+ εy

(
Ã′0

)−1
+ op(1).

Using the linear relation between innovations εy,t and the structural shocks ηyt, this finally yields

η̃y = MY F−1B
′
f

(
Ã′0

)−1
+ ηyA0

(
Ã′0

)−1
+ op(1).

Now suppose for the sake of exposition that we are interested in one specific structural shock
ηit. By the above expression, one gets

η̃it = e′iη̃yt ≡ e′iÃ
−1
0 Bf f̂t−1 + e′iÃ

−1
0 A0ηyt + op(1), (C.1)

with ei a selecting vector that is composed of zeros and one at the ith element. The variable f̂t−1
is the orthogonal projection of the lags of the ft−1 onto the space generated by yt−1, namely

f̂ ′t−1 = f ′t−1 − y′t−1

(
T∑
t=2

yt−1y
′
t−1

)−1 T∑
t=2

yt−1f
′
t−1.

We can rewrite equation (C.1) under the form

η̃it = e′iη̃yt = δ′if̂t−1 + e′iÃ
−1
0 A0ηyt + op(1). (C.2)

We now define vit = e′iÃ
−1
0 A0ηyt. In a matrix form, equation (C.2) rewrites:

η̃i = MY F−1δi + vi + op(1).

with vi the vector containing individual vit.
Testing for nonfundamentalness for a particular structural shock is achieved by performing

an orthogonality test of the estimated structural shock with respect to the lags of the factors as
proposed by Forni and Gambetti [2014]. Formally, an orthogonality test is performed with the
following LMT statistic :

LMT = T

( ̂̃ηi′X0(X0
′X0)−1X0

′ ̂̃ηî̃ηi′ ̂̃ηi
)

28This holds for each element of the matrix Ã0. The expression op(1) means that this term converges in probability
to zero
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where X0 is the matrix containing the lagged values of the variable in the VAR (namely yt−1)
augmented by the lags of the factors ft−1. The tests is carried out by regressing the estimated
structural shock ̂̃ηit on yt−1 and ft−1 and the statistic is equal to TR2 of the regression. The
statistic is asymptotically distributed as a chi-squared distribution with a number of degree of
freedom equals to the dimension of ft−1. The test is equivalent to regressing the structural shocks
η̃it on the lags of the factors orthogonal to yt−1, namely MY F−1.

The corresponding Wald statistic WT for the orthogonality test is:

WT =
δ̂′i
(
F ′−1MY F−1

)
δ̂i

σ̂2
vi

,

where δ̂i is the consistent estimator of δi and σ̂2
vi is the estimator of the variance of vit, i.e. the error

term of the regression of ˆ̃ηit on f̂t−1. The R2
i associated to the linear regression of ˆ̃ηit on f̂t−1 is

given by:

R2
i =

δ̂′i
(
F ′−1MY F−1

)
δ̂i

δ̂′i
(
F ′−1MY F−1

)
δ̂i + v̂′iv̂i

.

Using v̂′iv̂i = T × σ̂2
vi, we obtain the desired result.

D Proof of Proposition 4:

The first part of proposition 4 is obtained by using that V (̂̃ηit) = 1 = δ̂′i
(
F ′−1MY F−1

)
δ̂i + σ̂2

vi,
so that variance of ˆ̃ηit can be rewritten as 29 V (̂̃ηit) = R2

i + σ̂2
vi. The estimator σ̂2

vi = (1 − R2
i )

is a consistent estimator of the expression e′i

(
Ã0

)−1
A0A

′
0

(
Ã0

)−1′
ei using the fact that vit =

e′iÃ
−1
0 A0ηt and equation (C.2). Thus, R2

i is an estimator of the distance between the misspecified
structural shock η̃i and the true structural shock ηit = e′iηt. When R2

i = 0 for all i = 1, . . . , n,
‖Ã0 − A0‖ = 0.

To prove the second part of proposition 4, consider the true structural moving average repre-
sentation of yt :

yt = A(L)ηt = Ai(L)ηit + A−i(L)η−i,t. (D.1)

where η−i,t is the vector containing the true structural shock except ηit. By assumption, the vector
η−i,t is orthogonal to all leads and lags of ηit. First suppose that R2

i = 0, the i-th structural shock
is then correctly identified with the misspecified model. The corresponding structural moving
average representation is then given by:

yt = Ã(L)η̃t = Ãi(L)ηit + Ã−i(L)η̃−i,t. (D.2)

since η̃it = ηit where Ãi(L) is the i-th column of Ã(L) and Ã−i(L) is the matrix polynomial Ã(L)
after eliminating the its i-column. The vector η̃−i,t is the structural shocks vector containing the
structural shocks other than the i-th structural shock identified with the misspecified model.30 By

29The unit variance of ̂̃ηit is just the consequence of the normalization assumption of the structural shocks.
30Note that in general the vectors η−i,t and η̃−i,t are not of the same dimension because under the true model yt is

also function of the vector of reduced form error terms εft.
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construction η̃−i,t is also orthogonal to all leads and lags of the structural shock ηit. Representations
(D.1) and (D.2) directly imply that Ãi(L) = Ai(L). Indeed, consider that this is not the case such
as Ã(L)η̃it 6= A(L)ηit, (D.1) and (D.2) implies that

yt = A(L)ηt = Ãi(L)ηit +
(
Ai(L)− Ãi(L)

)
ηit + A−i(L) η−i,t. (D.3)

which violates the fact that the component Ãi(L)ηit is orthogonal to all leads and lags of the η̃−i,t
in (D.2). Consequently, the impulse response functions for the i-th identified structural shock from
the misspecified model are equal to the true ones.

Now, by eq. (C.2), the R2
i is a continuous function of the vector parameters βf = vec(Bf ).

By the data generating process, true impulse response functions are continuous respective to the
parameters model and in particular continuous in respect to βf . We can easily show that the im-
pulse response functions Ã(L) depends continuously on the true second moments of YT which
are continuous function of the well-specified model parameters. As consequence, the bias of
the individual impulse responses for the structural shock i for each variable k and lag l, namely,
biasi,k,l = |Ãi,k,l − Ai,k,l| is a continuous function of βf . By continuity, when R2

i is small, the
biasi,k,l is small for any variable and lag.

To prove the third part of proposition 4, consider the variance of a variable j attributable
to structural shock ηit. On impact, it is given by: e′jÃ0eiV ar(η̃it)e

′
iÃ
′
0e
′
j = e′jÃ0eiR

2
i e
′
iÃ
′
0e
′
j +

e′jÃ0ei(1−R2
i )e
′
iÃ
′
0e
′
j + op(1) with (1−R2) a consistent estimator of e′i

(
Ã0

)−1
A0A

′
0

(
Ã0

)−1′
ei

as aforementioned. The R2
i is then a consistent empirical measure of the discrepancy between the

misspecified variance on the impact attributable to a particular shock and its true one.

E Proof of Proposition 5 :
Applying the previous computations to this simple two–variable example yields the following ex-
pression for the first structural shock : η̃1t = δ′1f̂t−1+e′1Ã

−1
0 A0ηt+op(1) = δ′1f̂t−1+ a0,11

ã0,11
η1t+op(1)

and e′1
(
Ã0

)−1
A0A

′
0

(
Ã0

)−1′
e1 =

(
a0,11
ã0,11

)2
. Consequently, (1 − R2

1) is a consistent estimator of

this term. Hence, V
(̂̃η1t) = δ̂′1

(
F ′−1MY F−1

)
δ̂1 +

(̂
a0,11
ã0,11

)2
≡ R2

1 + (1−R2
1). For R2

1 small, a first

order expansion this implies that ̂̃a0,11 ' (1 + 1
2
R2

1

)
a0,11. So, the relative bias is

̂̃a0,11−a0,11
a0,11

' 1
2
R2

1.
Consider now the second structural shock η2t. Again, using our calculations above yields η̃2t =

δ′2f̂t−1 + e′2Ã
−1
0 A0ηt + op(1) = δ′2f̂t−1 +

[
a0,21
ã0,22
− a0,11

ã0,11

ã0,21
ã0,22

]
η1t + a0,22

ã0,22
η2t + op(1). The expression

for η̃2t is a function of the relative bias for the three terms in the matrix A0. This implies the fol-

lowing variance of the second structural shock V
(̂̃η2t) = δ̂′2

(
F ′−1MY F−1

)
δ̂2 + Θ̂2 +

(̂
a0,22
ã0,22

)2
≡

R2
2 + (1 − R2

2) where Θ =
[
a0,21
ã0,22
− a0,11

ã0,11

ã0,21
ã0,22

]
. This implies that Θ̂2 +

(̂
a0,22
ã0,22

)2
= (1 − R2

2)

Consequently, ̂̃a0,22 ≤ (1−R2
2)
−1/2a0,22 ≤

(
1 + 1

2
R2

2

)
a0,22 + o (R2

2) a0,22 and Θ̂ ≤ (1−R2
2)

1/2.
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F Data
- Hours: BLS, Series Id: PRS85006033, Nonfarm Business sector, 1947Q1-2012Q3, season-

ally adjusted, downloaded: 12/2012

- Consumption: BEA, Table 1.1.3. Real Gross Domestic Product, Quantity Indexes, 1947Q1-
2012Q3, seasonally adjusted, downloaded: 12/2012

- Investment: BEA, Table 1.1.3. Real Gross Domestic Product, Quantity Indexes, 1947Q1-
2012Q3, seasonally adjusted, downloaded: 12/2012

- TFP: Utilization-adjusted quarterly-TFP series for the U.S. Business Sector, produced by
John Fernald, series ID: dtfp util, 1947Q1-2012Q3, downloaded: 12/2012

- Stock Prices: S&P500 index deflated by CPI, obtained from the homepage of Robert J.
Shiller.
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