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Abstract

We estimate a stochastic life-cycle model of endogenous health spending, asset accu-
mulation and retirement to investigate the causes behind the increase in health spending
and longevity in the U.S. over the period 1965-2005. We estimate that technological
change and the increase in the generosity of health insurance on their own may explain
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in technology. Technological change, taking the form of increased health-care produc-
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1 Introduction

The growth of health spending is a constant preoccupation of policy makers around the

world. In the United States, real per capita personal health-care spending in 2005 was 10

times what it was in 1965 (in constant dollars $5,738 vs. $570). As a fraction of per capita

GDP, health spending in the U.S. has grown from 4% to 16%.

What accounts for this rise? The usual suspects are income growth, the spread of health

insurance and its generosity and, finally, technological progress in health care (Newhouse,

1992). A simple accounting exercise using back-of-the-envelope calculations shows that

income and insurance fall short of explaining the rise and thus that technology must play

a role. Evidence on the long-run income elasticity of health spending suggests that it is

close to 1 (Gerdtham and Jonsson, 2000), and per capita GDP in 2005 was 4 times that of

1965. Hence, income growth would account for at most 40% of the 10-fold increase in health

spending. Similarly, insurance coverage and generosity both expanded over the period. In

1965, consumers paid for 53% of personal health care expenditures, compared to less than

20% in 2005, according to aggregate National Health Expenditure Accounts. The RAND

Health Insurance Experiment suggest a price elasticity of -0.2 to -0.3 for medical spending

(Manning et al., 1987). Hence, insurance growth would explain roughly 12-18% of the

growth in spending. Taken together, income and insurance generated approximately half

of the growth. According to Newhouse (1992), the other half must be due to technology.1

Technology may also have significantly improved longevity. In 2005, a new-born male

could expect to live 7.3 additional years, according to figures from the Human Mortality

Database (77.7 in 2005, compared to 70.4 in 1965). Most of that rise is due to lower mortality

rates at older ages as the increase in remaining life expectancy at age 50 is 5.8 years. There

is plenty of evidence that technological innovation has saved lives. Cutler at al. (2006a)

suggest that 70% of the decline in mortality rates can be attributed to declining mortality

from cardio-vascular risk, an area where technological innovation has drastically changed

1Newhouse (1992) also reviews other explanations such as aging, factor productivity (price) and supply
induced-demand.
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the way patients are treated. Skinner and Staiger (2015) investigate the evolution of survival

across hospitals with di↵erent levels of technology for treating heart attacks and show that

the largest gains were observed in hospitals where di↵usion of technology, measured by the

use of new and more e�cient treatments, was the fastest. Cutler et al. (2006b) argue that

technological change is the leading explanation for the increase in longevity witnessed after

1950.

Technological progress may therefore lead to both higher spending and longevity. But

preferences must be consistent with higher spending when technology improves (Hall and

Jones, 2007). New treatments can be more costly than older ones but yield better health

outcomes, in which case health spending will increase if individuals accept to pay the ad-

ditional cost. This will depend on preferences. Newer technologies can also be less costly

and more productive than older ones, leading to both cost savings and improved health

outcomes. Still, even less costly technologies might increase spending as a result of two

important e↵ects. First, they may allow new subgroups of patients to be treated e↵ectively,

perhaps as a result of the inability of older treatments to do so. Cutler and McClellan

(2001) argue that treatment expansion is an important channel through which technolog-

ical change may have led to more spending. Second, new treatments for one disease may

raise the value of health investments for the population that does not have the disease due to

the complementarity in health investments. For example, finding a cure for cancer increases

the value of health investments for individuals currently without cancer because it increases

their life expectancy, and thus the length of time over which they can reap benefits from

their investments. Murphy and Topel (2006) argue that this type of complementarity may

be important for understanding the social value of technological progress in health care.

Hall and Jones (2007) build a model of the U.S. economy where agents optimally allocate

resources between health and consumption. They show that preferences alone can generate

a rise of the income share devoted to health if the marginal utility of consumption declines

faster than the marginal product of health spending as income rises. But for income alone to

explain the same rise without help from technology, the income elasticity of health spending
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must be above 3, which is at odds with empirical evidence (Gerdtham and Jonsson, 2000).

In this paper, we analyze the growth of health-care spending using an estimated life-

cycle model that is consistent with empirical elasticity estimates. In our model agents make

consumption, health investment, saving and labor-supply decisions in a rich environment

that includes several sources of uncertainty and many of the institutions faced by agents

over the life-cycle, such as Social Security, taxation and health insurance. This framework

allows us to integrate in a single model the determinants of both health spending and

health/longevity, and to perform counterfactual simulations that allow for welfare compar-

isons. We use longitudinal micro data from the Panel Study of Income Dynamics (PSID)

and the Medical Expenditure Panel Study (MEPS) to estimate parameters of the model.

Preference and technology parameter estimates are then used to perform counterfactual

simulations. The estimates imply that health spending is relatively inelastic to income and

price (co-insurance rates). We calibrate productivity growth and mortality trends due to

other factors such that we match the 1965 to 2005 experience in terms of health spending

and longevity. The counterfactual simulations show that income, insurance and technology

are complements in explaining the rise of health spending and longevity. The important

implication of this result is that technology per se is not responsible for the rise in health

spending. Holding constant the economic resources available in 1965, agents would not

have increased by much the share of resources spent on health as a result of new tech-

nology becoming available. Only as resources grew, health insurance coverage expanded,

and new productive treatments were becoming available, did the demand for health care

grow as much as it did. We also investigate the welfare implications of these changes using

compensating variation in expected utility and find that the 2005 economic, health and

technological environment, when compared to the environment in 1965, is worth to agents

as much as 67% of their 2005 consumption. Although this estimate may appear to be large,

we show that it is consistent with common estimates of the value of life extension.

A number of recent papers also feature endogeneous health investments. These models

di↵er in important respects from ours, in particular in formulation, methods employed,
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and research questions investigated. DeNardi, French and Jones (2010) assume survival is

exogeneous to health investments. In order to simultaneously model health spending and

survival, our model explicitly endogenizes the e↵ect of health spending on survival. Macro

models such as Suen (2005) are calibrated and focus on representative agents. Instead,

we estimate preferences and technology, using micro-data, which allows us to quantify the

sources of growth in spending and longevity. Hugonnier et al. (2013) and Pelgrin and

St-Amour (2016) estimate models of health investments using micro-data. In this paper,

we allow for a rich environment which features detailed Social Security rules along with a

retirement decision (Social security claiming and labor force participation). Allowing for

retirement may be important as it is another margin of adjustments for agents (Galama et

al., 2013).2

The rest of the paper is structured as follows. In section 2, we illustrate how income

growth and technological improvements can be complements when it comes to explaining

the rise of health spending. In section 3, we present the richer model, which we estimate

in section 4 on micro-data. In section 5, we perform counterfactual simulations. Section 6

concludes.

2 Stylized Model

Consider the stylized model of Hall and Jones (2007). The agent receives a constant income

y and chooses how to allocate it between consumption c and health expenditures m. His life

expectancy L(z,m) increases with health spending m, is strictly concave in m, and depends

on a technology parameter z. The agent derives utility u(c) from consumption c, where

utility is strictly concave in c. Lifetime utility is the product of length of life and period

2Other papers are more distantly related to ours. Blau and Gilleskie (2008) consider a model of retirement
choices where health investments are modeled using doctor visits. They focus on understanding the role
of changes in health insurance on employment of older males. Their model does not include savings nor
endogenous longevity. Halliday, He and Zhang (2009) assume survival is exogeneous to health investments.
Yogo (2009) consider the problem of portfolio choice and health spending after retirement. Khwaja (2010)
estimates the willingness to pay, or the value to the individual, of Medicare, developing a model for the
demand for health insurance over the life-cycle. Scholz and Seshadri (2010) estimate a model of retirement
and health expenditures and focus on the age 50+ population. They examine the e↵ect of Medicare on
patterns of wealth and mortality.
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utility, v(m, z, y) = L(z,m)u(y �m) (see Hall and Jones, 2007).

The agent’s problem is to maximize v(m, z, y) with respect to m. Optimal health expen-

ditures m⇤(z, y) satisfy the first-order condition (FOC), L
m

(z,m)u(y�m) = L(z,m)u
c

(y�

m), which equates the marginal benefit of life extension (left-hand side), consisting of years

of utility gained, with its marginal cost (right-hand side), consisting of utility lost from

lower consumption y �m, due to higher expenditures m⇤(z, y).

Taking the derivative of the FOC with respect to income y and technology z, we obtain
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The direct e↵ect of income y (see numerator) is to increase the marginal benefit and to

decrease the marginal cost of health expenditures m. Hence @m⇤

/@y > 0.3

Whether technology z increases health spendingm is less obvious. If health expenditures

are more e�cient through better technology it may be optimal to spend less and consume

more. Since longevity increases in technology z, the direct e↵ect of z (see numerator) is to

increase the marginal cost of health expenditures m. Only if technology reinforces health

spending in extending life, i.e. L

mz

(z,m⇤) > 0, to such an extent that it increases the

marginal benefit of health expenditures more than its marginal cost, i.e. L

mz

(z,m⇤)u(y �

m

⇤) > L

z

(z,m⇤)u
c

(y�m

⇤), will technology increase health spendingm⇤(z, y). As discussed,

there are many reasons to believe that some of the improvements that occurred suggest

L

mz

(z,m) > 0. However, this e↵ect must be large enough to yield increased spending.

A simple calibration exercise shows that complementarity e↵ects (such as between in-

come and technology in health spending) can be important. Life expectancy at birth in the

US rose from 70.4 to 77.7 years between 1965 and 2005 (Human Mortality Database [HMD])

and average personal health spending from $570 to $5,738 (in 2005 dollars; National Health

3The denominators in both expressions are identical and positive for increasing and strictly concave utility
u(c) and life extension L(z,m) functions. It can also be shown that @c

⇤

/@y > 0 so that higher income is
used both to extend life and increase utility.
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Expenditure Accounts [NHEA] data). To illustrate, take the same utility function as in

Hall and Jones (2006), u(c) = b + c

1��

1��

, and a simple functional semi-log specification for

the production function, L(z,m) = L

min

+ z log(m).

Although L

mz

(z,m) = 1/m > 0 implies technology and income are complements,

whether technology increases spending will depend on parameter values. For the simple

functional forms assumed one can derive the condition for which @2m⇤

/@z@y = @

2

m

⇤

/@y@z >

0 (see equation 19 in Appendix A). We calibrate parameter values to match the rise in

longevity and health spending over the period 1965-2005.4 These values are consistent with

the condition for @2m⇤

/@z@y = @

2

m

⇤

/@y@z > 0 for both the 1965 and 2005 income and

health spending data. Thus complementarity in income and technology should lead to a

total e↵ect that is larger than the sum of the separate contributions of improvements in

technology and increases in income.

With 1965 technology we can solve for optimal health expenditures given income in 2005.

Health expenditures increase by $3,108. In a second counterfactual, we keep income constant

at its 1965 level and bring the technology to its 2005 level. Optimal health expenditures

increase by a mere $354: technology does not appear to play a role in increasing health

spending. More importantly, the sum of those two independent e↵ects is $3,461, which

falls short of the observed (and predicted) $5,168 increase in health expenditures over the

period. The di↵erence is due to a complementarity e↵ect: an additional $1,860 increase in

health spending arises from technology and income improving concurrently. Optimal health

spending is more sensitive to income with a more productive technology.

This illustrative and simplified example shows that complementarity e↵ects between

technology and income may be important. But the static model may not be su�ciently

realistic. For example health expenditures are not constant over the life cycle. They increase

4We use somewhat arbitrary numbers to calibrate Lmin. We take the 1950 life expectancy, 68 years, as
an estimate of Lmin in 1965. We assume that 50% of the rise in longevity is due to factors other than health
spending (Hall and Jones assume 40%) which yields Lmin in 2005 of 71.7 years. Using these numbers we
can solve for z in 1965 and 2005, which yields 0.38 in 1965 and 0.70 in 2005. The annual rate of growth in
the technology parameter z is thus 1.5%. Using the two instances of the first-order condition above (1965
and 2005), income per capita in each period, we can solve for the preference parameters consistent with the
observed growth in health expenditures. Per capita income in 1965 is $11,704 while it is $42,482 in 2005 (all
2005 dollars) according to Penn World Tables. We obtain b = 0.228 and � = 1.424.
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rapidly toward the end of life. The static model may also not be best suited to study other

factors, such as the expansion of health insurance, which has changed the marginal cost of

spending on health. The marginal cost also varies over the life-cycle (for example due to

Medicare), as do mortality risks and income. There might be other benefits to investing in

health, such as the ability to enjoy leisure (which may be di�cult when one is sick). Income

may depend on health through labor supply, which is not modeled in the stylized model.

Finally, since the strength of complementarity e↵ects will depend on both technology and

preference parameters, we may want to estimate these parameters from micro-data. Hence,

we construct - and subsequently estimate on micro-data - a more sophisticated model that

includes many realistic features of the decision environment faced by agents. This more

sophisticated model allows one to assess simultaneously the e↵ect of each factor on health

spending and longevity, and examine welfare e↵ects.

3 Model

3.1 Environment

Consider a household head who starts his life-cycle at age t = 25. He has wealth, w
t

, and

health status, h
t

, the latter taking three possible values corresponding to the self-reported

health status scale we will use {1 = poor or fair, 2 = good, 3 = very good or excellent}.5

Initial wealth and health status are given by w

25

and h

25

. He has a main job, with health

insurance, f
t

, taking three possible values {1 = no coverage, 2 = employer-tied coverage, 3

= retiree coverage} and earnings, ye
t

.

The agent chooses consumption, c
t

, and medical expenditures, m
t

, at each age. His

earnings, ye
t

, are stochastic. The agent can choose whether or not to participate in the

5In principle, one could consider multiple dimensions of health. Other health measures in our data include
more objective measures such as the number of medical conditions, or limitations in activities of daily living.
As will become clear when discussing the estimation of the model, only self-reported health is available
for the di↵erent inputs required by the model and modeling many dimensions of health renders the model
almost unsolvable. Self-reported health is commonly used in life-cycle models of labor supply and savings
(e.g., French, 2005).
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labor market (q
t

= 1 if working, q
t

= 0 if not).6 At age 62, he becomes eligible for Social

Security benefits, yss
t

, which he may claim or not, ss
t

(ss
t

= 1 if benefits are claimed, zero

if not). At age 65, he becomes eligible for Medicare. After age 70, there is no work nor

claiming decision (and everyone is retired).

Health follows a persistent stochastic process, which depends on age, current health, and

medical expenditures. Medical expenditures are incurred voluntarily and improve health.

This improvement process has two benefits. First, it increases the amount of time available

for leisure and work (by reducing time being sick) and thereby increases the quality of life

in future periods. Second, it lengthens life. Longevity is endogenous in the model. But

there is a practical limit on human life, set at age 120.7 If the agent has insurance, medical

expenditures are partially paid for by an insurer, either non-governmental (employer-tied

or retiree) or governmental (Medicaid or Medicare). Agents with employer-tied coverage

loose coverage if they quit before the age of Medicare eligibility. We follow French and

Jones (2011) who assume that the employer does not o↵er insurance if the agent returns to

work at a later date. This is not the case for jobs with retiree insurance coverage. Those

workers retain coverage even if they quit their job. Finally, if resources are su�ciently low,

the agent qualifies for Medicaid. 8

3.2 Preferences

The agent derives utility from consumption and leisure. The amount of leisure time available

depends on whether the agent works and on his health status. We specify the following

6We do not model hours of work for two reasons. First, di↵erences in hours of work by health are small
conditional on working for males. Di↵erences in participation are much larger. Second, this would introduce
a third continuous decision variable and add considerable computational burden.

7The maximum age is set at 120 for computational reasons. Solutions to the model are insensitive to this
choice for higher maximum ages.

8We do not model the decision to move to a nursing home and associated expenditures. Those expen-
ditures are of a di↵erent nature than medical expenditures a↵ecting both health and life expectancy. This
is also consistent with the data we use which does not include the institutionalized. LTC spending did not
grow faster than other health spending over the period we cover. According to National Health Expenditures
Accounts (NHEA), LTC spending represented 3.3% of total health spending in 1965 compared to 5.4% in
2005.
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utility function

u(c
t

, h

t

, q

t

) = ↵

h

+
(c�

t

(L� &

q

q

t

� �

h

)(1��))(1��)

(1� �)
(1)

where L is the maximum annual amount of leisure available (set to 4000 hours), and &
q

=

2000 is the number of hours worked when working full-time (q
t

= 1). The parameter ↵
h

is

the baseline utility level in health state h

t

which governs the utility benefit of living longer.

Leisure time depends on health through a leisure penalty, �
h

, with �

3

= 0 imposed as a

normalization (L thus represents the maximum amount of leisure available in very good /

excellent health). The agent’s discount factor is �, the coe�cient of risk aversion is �, and

� governs how consumption is valued relative to leisure. Following French (2005), the agent

derives utility from leaving wealth w

t

to heirs if he dies at age t which is represented by a

bequest function given by

b(w
t

) = ⇠

(w
t

+K)�(1��)

1� �

(2)

where we fix K = $500,000 as in French (2005). Hence, ⇠ measures the strenght of the

bequest motive. For ease of reference, collect the preference parameters to be estimated in

the vector ✓ = (↵
1

,↵

2

,↵

3

, �,�

1

,�

2

,�,�, ⇠).

3.3 Resources

The agent has four potential sources of income. First, the agent has earnings if he works,

y

e

t

. Second, the agent has other income which includes spousal earnings as well as private

pension income (annuities, etc), yo
t

. Third, the agent can collect social security benefits,

y

ss

t

, if eligible. Finally, he earns interest income on his non-pension wealth, rw
t

, where r is

the real rate of return and w

t

is current wealth. Total net income is given by

y

t

= ⌧

n

(ye
t

, y

o

t

, y

ss

t

, rw

t

) (3)
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The net income function, ⌧
n

, takes account of Federal taxes as well as Social Security and

Medicare contributions (see Appendix B for details).

Resources available for spending (on either consumption or medical expenditures) are

given by

x

t

= w

t

+ y

t

. (4)

If those resources fall below a floor, x
min

, government transfers are provided. The formula

for transfers is given by

tr

t

= max(0, x
min

� x

t

) (5)

Out-of-pocket medical expenditures are given by

oop

t

=  (f
t

, t, tr

t

)m
t

(6)

where the co-insurance rate,  , depends on insurance coverage f
t

, age t and transfer receipt

tr

t

. Prior to age 65, the agent who does not have insurance and receives transfers is assumed

to be on Medicaid. He faces a lower co-insurance rate than without insurance.9

The resource constraint is completed with the equation for wealth accumulation. Agents

cannot end the period with negative private wealth. Wealth at the end of the period is given

by

w

t+1

= x

t

+ tr

t

� c

t

� oop

t

(7)

with w

t+1

� 0. The earnings process is quadratic in age and features an AR(1) error

9We did not allow for a deductible and co-insurance rate structure. Deductibles are heterogeneous,
not available in the data, and we cannot construct them on the basis of available data, such as total and
out-of-pocket medical expenditures. Hence, a two-part pricing schedule cannot be implemented.
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structure:

log ye
t

= ⇡

0

+ ⇡

1

t+ ⇡

2

t

2 + ⌘

t

(8)

where the earnings shock is given by ⌘
t

= ⇢⌘

t�1

+ "

t

, "

t

⇠ N(0,�2
"

).10

Other income, yo
t

, which includes spousal earnings and private pension income, is also

quadratic in age and depends on the sum of earnings and Social Security income of the

agent head. This is done to preserve the correlation between own and other income at the

household level.11 Because cohort e↵ects will be present in the data and institutions di↵er

across cohorts, the model will be constructed for an agent born in 1940. That agent was 25

in 1965. We do not model changes in the tax, insurance and Social Security systems over

time. Instead, we assume the 1990 environment prevails. The Social Security system he

faces was shaped almost entirely by the 1983 Social Security reform.12

The earnings base for computing Social Security income is the average indexed monthly

earnings (AME), ame

t

, which takes the average of the highest 35 years of earnings. Details

on the modeling of Social Security and the application process are found in Appendix B.

3.4 Health Process

Health follows a dynamic process that depends on current health, h
t

= k (k = 1, 2, 3), age,

t, and medical expenditures, m
t

. We specify the following dynamic multinomial model for

10In principle, earnings could depend on health status. However that e↵ect likely occurs through labor
supply rather than wages (Currie and Madrian, 1997). Since workers choose labor supply, (lifetime and
current) earnings will e↵ectively depend on health. Fixed e↵ect regressions of earnings on health in the data
we use reveal non-statistically significant e↵ects of health on earnings (results available upon request).

11In principle, the model could account for changes in family composition over time and decisions within
the household which are important for capturing life-cycle decisions (see for example Lise and Seitz, 2011).
Michaud and van Soest (2008) estimate causal feedback e↵ects between the health of both spouses and
wealth. However, the computational burden imposed by modelling individual decisions and outcomes within
households are too great to make this feasible in our setting.

12An alternative would be to build on changes over time in tax and pension rules. Assuming agents
anticipated these would not create a drastically di↵erent world than what is assumed here since the important
decisions agents make occur after age 50. Thus agents would anticipate the same Social Security and tax
system we use. Of course, changes to taxes are likely unanticipated but this is harder to build into the model
as it would require to model expectations. Our approach of a fixed tax and Social Security system is similar
to that followed by a number of authors (e.g., French, 2005 or DeNardi, French and Jones, 2010).
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health transitions

Pr(h
t+1

= j|h
t

= k, t,m

t

) =
e

�0jk+�1jt+�2j logmt+�3j logm
2
t

P
j

0

e

�0j0k+�1j0 t+�2j0 logmt+�3j0 logm
2
t
. (9)

where j = 1 is the base category (fair or poor health).13 The productivity of medical ex-

penditures will thus depend on the parameters {�
2,j

, �

3,j

}
j=2,3

. Health is persistent, which

is captured by the parameters, �
0,jk

, and is also a function of age, �
1,j

, which captures

changes in health over the life-cycle independent of how much is spent on health. This

health-production function is consistent with the view that health is a stock which depreci-

ates over time (depends on age) and can be replenished by investments (Grossman, 1972).

The dependence on medical expenditures is flexible and in particular allows for a concave

relationship between health and medical expenditures.

The likelihood of death depends on age and health and follows a Gompertz hazard

p

dh,t
= Pr(d

t+1

= 1|h
t+1

= k, t) = 1� e

�e

�6t
e

�7,k
. (10)

Thus mortality depends indirectly on medical expenditures through their e↵ect on health

status. The endogenous nature of medical care is an important and distinct feature of our

model as other papers, such as DeNardi, French and Jones (2010), typically assume that

medical spending does not a↵ect future health.

3.5 Maximization Problem

Denote the state space at age t as s
t

= (h
t

, ⌘

t

, ss

t

, f

t

, ame

t

, w

t

). Subject to the law of motion

for wealth in equation 7 and the transition probabilities for earnings, health and mortality

(equations 8, 9 and 10), the agent’s maximization problem can be written as a Bellman

13We use log(1 +mt) instead of log(mt) so that the production function is defined for mt = 0.
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equation

V

t

(s
t

) = max
ct,mt,qt,sst+1

u(c
t

, h

t

, q

t

) + �

X

h

(1� p

dh,t
)p

h,t

E

⌘t+1Vt+1

(s
t+1

) (11)

where p

dh,t
is the mortality probability given health and age, and p

h,t

is the probability

of transitioning to state h given age, current health and medical expenditures. The term

E

⌘t+1 is the expectation operator with respect to the distribution of earnings shocks given

current earnings. This optimization problem is subject to the law of motion for w
t

, ame

t

,

constraints on the transitions of other state variables, and constraints on the choice set. We

solve for optimal decision rules by backward recursion. Details on the solution method are

given in Appendix F.

4 Data and Estimation

We focus on males in order to avoid dealing with career interruptions and important changes

to female labor supply over the period. We use two main longitudinal datasets to estimate

auxiliary processes and parameters of the model. First, we use the Panel Study of Income

Dynamics (PSID) for data on income, wealth and work. We use the 1984 to 2005 waves as

well as the wealth surveys of 1984 to 2005 (7 waves). Details on sample selection and the

construction of the variables used in the PSID are given in Appendix C.

The PSID has data on health but not on total medical expenditures of the agent.

Furthermore, mortality follow-up in the public version of the data is incomplete and leads to

low mortality rates (French, 2005). Instead, we use the Medical Expenditure Panel Survey

(MEPS) to estimate the health process and obtain measures of total medical expenditures.

Members of the panel are initially drawn from National Health Interview Survey (NHIS)

respondents and remain in the panel for two years. Self-reported health is measured on

a 5-point scale (poor, fair, good, very good, excellent); we group these in 3 categories

to save on the dimension of the state-space {poor or fair, good, very good or excellent}.

Data on medical expenditures include the cost of medical visits, inpatient, outpatient as
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well as drug expenditures. It does not include nursing home expenditures. Since nursing

home expenditures are conceptually closer to consumption than to investment in health,

this omission is consistent with the model. The MEPS dataset is also used to estimate the

co-insurance rates,  (). Details on sample selection and the construction of variables used

in MEPS are given in Appendix C.14

Following recent papers estimating life-cycle models similar to the one presented here

(e.g., French, 2005), we use a two-step estimation strategy to estimate the parameters of

the model. We first estimate auxiliary processes (earnings, health, etc.) and then estimate

preferences using the method of simulated moments.

4.1 Auxiliary Processes

4.1.1 Resources

The earnings and “other income” processes are estimated using PSID data. Parameters of

the earnings process are estimated by fixed e↵ects regression. The AR(1) term is estimated

from the residuals of the process using minimum distance estimator. Earnings are hump-

shaped and peak around age 49 years. The estimate of the autocorrelation coe�cient ⇢

is 0.953 and the variance of the innovation is �2
"

= 0.024 (see Appendix D for details on

the estimation). The “other income” process is estimated by instrumental variables using

education as an instrument for measurement error (French, 2005). “Other income” is also

hump-shaped, with a peak at age 51. A ten dollar change in earnings and Social Security

benefits of the agent head translates into a $3.25 change in other income. We report more

details in Appendix D.

14Both PSID and MEPS (public version), despite having information on insurance, lack information on
retiree health insurance coverage. The model assumes this coverage is constant prior to retirement. We use
the Health and Retirement Study (HRS) to compute retiree health insurance coverage rates for those born
between 1935 and 1945 when they were age 50 to 55.
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4.1.2 Health and Mortality

Estimating directly the production function for health may lead to biased estimates. Indeed,

estimating parameters by multinomial logit yields a negative e↵ect of medical expenditures

on health. One concern is the potential endogeneity of medical expenditures when esti-

mating the health process. Indeed, medical expenditures may depend on the incidence of

a health shock between waves (reverse causality). On the other hand, unobserved hetero-

geneity is unlikely to be a large source of bias as the health process controls for current

health. Nevertheless, we add controls for risk factors when estimating the production func-

tion (smoking and obesity).15 As detailed in Appendix E, we use a control function approach

(Petrin and Train, 2010). In this context, a valid exclusion restriction is a variable that

1) predicts medical spending 2) but is uncorrelated with the incidence of a health shock

given current health and risk factors. Lagged income is a candidate. Due to the persistence

of income, it predicts future income and thus future medical spending as found in studies

looking at the e↵ect of income on spending. However, it is unlikely to be correlated with

the incidence of a health shock given current health and risk factors. Current income is

not a valid instrument due to the potential for health shocks to a↵ect current earnings. We

illustrate in Figure 1 the exact timing of the variables. We first estimate an equation for

the log of medical expenditures given current health, risk factors and the log of past in-

come. The estimated income elasticity is 0.151 and is highly statistically significant (partial

F=106.22). A measure of the unobservables that may be correlated with future health is

the residual from that regression, which we then plug into the health process. We estimate

the multinomial logit by maximum likelihood. We account for first-step estimation noise

by bootstrapping the entire procedure to compute standard errors. The estimates reveal

moderate positive e↵ects of medical expenditures on health and the relationship is concave.

A 50% increase in medical expenditures increases the probability of being in very good or

excellent health in the next period by 6.5 percentage points at $5,000 of spending (22%

15We have also estimated the production function with a large vector of health and socio-demographic
measures. Results were largely insensitive to these additional controls. Hence, we retained the simpler
specification with controls for current self-reported health, smoking and obesity.
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are in very good or excellent health in the estimation sample). Since the e↵ect of medical

expenditures on health is quadratic in log(m), there may be a point above which medical

expenditures have a negative e↵ect on health. However, given the estimates, the level of

spending above which medical spending increases the probability of being in poor health is

$1.73 million. Hence, this is unlikely to occur when solving the model. Estimation results

are reported in Appendix E.16

Not surprisingly, the maximum likelihood estimates of the mortality process reveal that

better health is associated with lower mortality risk. Combining the mortality and health

process estimates, we estimate the marginal e↵ect of medical expenditures on mortality

risk. Figure 2 shows the resulting mortality rates by medical spending level and current

health status for individuals age 65+. Mortality falls with increased spending, but the e↵ect

diminishes as the level of spending increases. The first dollars of medical expenditures are

more productive in almost all states, in particular in good health.

4.1.3 Other Institutional Parameters

The resource floor is set at $13, 735 which is the average welfare transfer over this period ac-

cording to the Welfare Benefit Database (http://www.econ2.jhu.edu/people/moffitt/

datasets.html). The real rate of return is set at 0.04. We construct co-insurance rates,

 (), using MEPS data. We take the ratio of out-of-pocket medical expenditures to total

medical expenditures as our estimate of the co-insurance rate (see French and Jones, 2011,

for a similar methodology). This yields a median co-insurance rate of 25% for individuals

with tied-employer insurance, 7% for those receiving government transfers (i.e. those on

Medicaid), 100% for those without insurance and ineligible for Medicaid and 20% for those

on Medicare. Appendix B provides details on the construction of these shares and other

institutional parameters.

16When solving and simulating from the model we use the cohort-age average value for obesity and smoking
rather than individual level data. Allowing for additional state variables that track these behaviors would
be computationally prohibitive.
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4.2 Preference Parameters

The remaining parameters to estimate are ✓ = (↵
1

,↵

2

,↵

3

, �,�

1

,�

2

,�,�, ⇠). We estimate

these parameters by the method of simulated moments (MSM) (Gourinchas and Parker,

2002; French, 2005). This is done by matching moments from the data with moments

obtained from simulations of the model. The moments chosen are: average wealth at each

age between ages 35 and 84; average medical expenditures at each age between ages 35 and

84; proportion of individuals working, by health status, at each age from 35 to 69 (agents

cannot work beyond 70 in the model) and mortality from Social Security mortality tables

from ages 35 to 84. These profiles are constructed using the methodology outlined in French

(2005) and accounting for cohort e↵ects. Appendix F gives details on the construction of

each profile.

The wealth profile primarily provides information on �, � and ⇠ following the usual

identification arguments. The labor-force participation moments by health status provide

information on �, �
1

and �

2

, keeping � and � constant. Assuming (�,�) are determined

by previous information, the medical expenditures profile helps determining (↵
1

,↵

2

,↵

3

)

given that the health process is estimated in the first step. The mortality profile provides

an overidentifying restriction that allows to test whether our mapping between medical

spending and health is well specified.

We have 254 moments for 9 parameters. We use the inverse of the covariance matrix

of the adjusted data from PSID and MEPS as the optimal weighting matrix for the MSM

estimator. More details on the properties of the estimator are found in Appendix F. 17

17Since the baseline utility levels are quite sensitive to the choice of other parameters, we rescale as

↵

⇤

h = �↵h
(x�

minL
1��)(1��)

(1� �)
, h = 2, 3

Hence, the estimates of ↵2 and ↵3 should be interpreted in units of baseline utility measured at xmin and
maximum leisure. Similarly, for �1 and �2 we rescale as �

⇤

j = �j(L � &p). Hence, �j is interpreted as the
fraction of residual leisure, when working, which is lost due to health state j relative to very good/excellent
health.
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4.2.1 Estimation Results

The first column of Table 1 reports baseline parameter estimates along with standard errors.

We obtain an estimate for the general curvature of the utility function, b� = 3.3824 (se =

0.5795). Given our estimate of the consumption share in the utility function, b� = 0.6507

(se = 0.005), we obtain the coe�cient of risk aversion, keeping labor supply fixed, as

�(b�(1�b�)�1) = 2.55 (French, 2005). We estimate that agents are patient, with a discount

factor estimate of b� = 0.9598 (se = 0.0054) which given R = 1.04 yields R� ⇡ 1. This

estimate is lower than the parameter estimate of 0.992 used in Hall and Jones (2007).

These parameters are statistically significant at the 1% level. The estimates of the fraction

of residual leisure time lost when in poorer health are b�
2

= 0.4803 (se = 0.0603) and b�
1

=

0.7826 (se = 0.0259). Estimates of ↵
1

, ↵
2

and ↵
3

are respectively �0.1705 (se = 0.1117),

0.7625 (se = 0.1801) and �0.4003 (se = 0.1659), the latter two being statistically significant

from zero. Overall, once combined with the leisure penalty for bad health, utility increases

with health, which has an impact on the desire of agents to invest in health. Finally, we

estimate a sizeable bequest motive with an estimate of ⇠ = 1.1067 (se = 0.6119), statistically

significant at the 10% level. Using a specification of utility and bequest motive similar to

ours, French (2005) estimates a parameter of 1.69, a value we cannot reject statistically.

4.2.2 Model Fit

The baseline specification of the model fits the data well given that we only have 9 pref-

erence parameters and none of these parameters depend on age. The Chi-square statistic

for overidentifying restrictions gives a value of 172.78 while the critical value at a 5% level

is 210.7. Inspection of the simulated profiles in Figure 3 shows a relatively close fit. The

simulated moments are for the most part within the confidence intervals of the moments

estimated from the data. One exception is labor force participation of those in very good

health (green line), which are higher in the simulated profiles than in the data. One pos-

sibility for this departure is that we did not model private defined-benefit pensions, which

may provide an incentive to stop work early, in particular for those in good and in very

19



good health. The model is able to capture the overall patterns of declining labor force

participation without any direct dependence of utility on age.

4.2.3 Income and Insurance Elasticities

Since the response of medical spending to income and co-insurance rate variation is central

to the questions we ask, it is worth investigating the elasticities the model generates. To

this end, we use simulated data generated by the model. We first assess how medical

expenditures vary with the co-insurance rate. We assume all individuals face the same

co-insurance rate, independent of insurance coverage. We vary this co-insurance rate with

values 0.25, 0.5, 0.75 and 0.95. In Table 2, we report arc elasticities by age groups comparing

average medical spending for each of these scenarios. We obtain estimates, which suggest

an inelastic demand for medical expenditures. The estimates range between -0.23 to -0.40

prior to age 50 and from -0.42 to -0.62 after that age. Despite very di↵erent methods,

these estimates are remarkably close to those obtained from the RAND Health Insurance

Experiment, which are approximately -0.2 to -0.3 depending on the type of care (Manning

et al., 1987).

In a similar exercise to gauge how medical spending reacts to changes in income, we

increase (and reduce) potential earnings by 25% relative to the baseline scenario. As Table

3 shows, the income elasticities range from slightly negative at younger ages to levels above

0.5 after age 50. These elasticities are close to micro estimates of the income elasticity of

health spending (0.2-0.4) (Gerdtham and Jonsson, 2000). Hall and Jones (2007) obtain

much higher elasticities (higher than 2) as they require a high elasticity to explain the rise

in the fraction of income devoted to health as a result of income growth.

5 Counterfactual Simulations

With the estimates of preferences and technology obtained in section 4, we simulate the ex-

perience of a particular cohort under various counterfactual scenarios. We ask the question:
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how would the 1940 cohort, which was 25 years old in 1965, have fared had changes a↵ect-

ing financial resources, insurance coverage, technology and risk factors not taken place? To

answer this question, we look back at some of the important factors that may have changed

over the period up to 2005 and that may have a↵ected both health spending and longevity.

We roll those factors back to 1965 levels, which we call the 1965 environment. We then

successively introduce those changes and evaluate their e↵ect.

5.1 The 1965 compared to the 2005 environment

Changes between 1965 and 2005 can broadly be grouped into four areas of change: financial

resources, the generosity of health insurance, technology, and “other” factors.

Financial resources: The income available for consumption and health spending has

increased over the years. As in Hall and Jones (2007) we use growth in real per capita GNP,

which averaged 2% annually over this period. A↵ecting after-tax income, taxes were higher

in 1965. Gouveia and Strauss (2000) compute average tax rates by income from 1966 to

1989. We use the 1966 tax function instead of the 1989 tax function in our 1965 environment.

Finally, the generosity of Social Security benefits has increased over time, primarily due to

two e↵ects. First, generosity has increased due to changes in the computation of the primary

insurance amount (PIA), which went from replacing 30% to 40% of the ame. Second, the

1983 Social Security reform expanded the delayed retirement credit to 7% for those born in

1940. We eliminate this credit in the 1965 environment.

The generosity of health insurance: After the introduction of Medicare, three key

changes have increased the generosity of health insurance in the United States. First, there

has been a decline in the uninsured among the non-Medicare population, from 26% in 1962

to 20% in 2005. Second, there has been an expansion of the generosity of employer provided

health insurance. We calculate that co-payments decreased from an average of 60% in 1965

to 20% in 2005. Third, changes in Medicare coverage have increased the generosity of

benefits. A few years after Medicare’s 1965 introduction, out-of-pocket expenditures were
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equal to 30% of the program’s total spending. In 2005, they represented 20% of total outlays

according to our calculations.

There are two other sets of factors that may have a↵ected both health and spending: tech-

nology and “other factors”. Both are hard to measure from outside sources. Hence, we

review the relevant evidence and resort to a calibration exercice.

Technology: Cutler and McClellan (2001) give various examples of important changes in

productivity that may have improved survival with overall positive benefits. They point

to a 1.5% annual decline in the quality-adjusted price of treating heart attacks as a mea-

sure of technological progress. Similarly, Skinner and Staiger (2009) show that in treating

heart attacks there is roughly a 3 percentage point di↵erence in survival between hospitals

with rapid di↵usion of new treatments and those with low di↵usion. Improvements in risk

adjusted survival average 0.5% year over the period 1985-2004.18

Other factors: At the same time, other factors have likely a↵ected the health of this

cohort. The first obvious candidate is smoking, which has large impacts on mortality. The

relevant measure for understanding its e↵ect on life expectancy is the lifetime exposure of a

given cohort rather than point-in-time prevalence of smoking (Preston, Glei and Wilmoth,

2011). The former increased until the mid 1980s while the latter declined over the period.

Estimates of mortality from smoking range from 10% of all deaths in 1965 to 24% of all

deaths in 1985 (those would not have happened were it not for smoking). Preston, Glei and

Wilmoth (2011) estimate that life expectancy among men at age 50 would have been 0.9

years higher in 2002 if the increase in lifetime smoking had not taken place. Another key

factor is the increased prevalence of obesity, starting in the mid 1970s. Ruhm (2007) uses

NHANES data from 1961-62 to 2004 to estimate comparable obesity rates for males and

females, using measured rather than self-reported weight and height. For males, obesity

18Medical prices, as measured by the medical CPI, have increased at a rate close to 2% per year. However,
as discussed in Berndt et al. (2001), this increase in prices likely reflects changes in type and quality of
procedures. In this paper, we make the assumption that medical prices, relative to consumption goods,
remain constant between 1965 and 2005.
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rose from 13.4% to 31.5%, or roughly 2.1% per year. Both these factors tend to support the

view that factors other than financial resources, health insurance and technology may have

had an e↵ect on survival rates over the period 1965-2005 - in this case, a negative one.

We model technology and “other” factors in terms of changes in two parameters of the

model. Technological change is modeled as a change in the productivity parameters of the

production function �
2,j

(see section 3.4). Let 
1

be the rate of growth in productivity. Thus,

�

1965

2,j

= e

�140
�

2,j

. Of course, this is a coarse modelling of improvements in productivity. For

example, improvements may have resulted in expansion of treatments to untreated groups

or disease-specific. Yet, given the summary measure of health we use, this provides a good

approximation to overall improvements in medical technology. We define the annual rate of

growth of mortality due to “other factors” as 
2

. Hence, we rewrite, P 1965

dh,t
= e

�240
P

dh,t
.19

There are no micro-data sources that would allow us to directly estimate 
2

and 
1

. If panel

data of the type used in MEPS existed in 1965, we could estimate the 1965 production

function directly. Cross-sectional data featuring health and total spending measures is

available during that period. However, it does not include the self-reported health measure

we use in MEPS. Hence, we resort to a calibration exercise using the model and aggregate

data in 1965. We have two unknown parameters (
1

,

2

). We consider an environment

with financial resources and insurance as they were in 1965. Let the simulated average

medical expenditures from the model in that scenario with values 
1

and 

2

be defined

as em
1965

(
1

,

2

). Similarly, simulated life expectancy is given by ee
1965

(
1

,

2

). We use the

percentage change in medical spending and life expectancy over that period, using life tables

and National Health Account data to deflate our 2005 simulated average medical spending

19Two additional assumptions are made for trends in technology and other factors. First, we assume
constant exponential growth for both trends. Improvements in life expectancy have been steady over this
entire period. If both drive the increase in life expectancy, growth is likely to be steady over time. Of
course, medical technology has improved in di↵erent domains over time. For example, progress treating
heart attacks was achieved in the second part of the observation period (Skinner and Staiger, 2016). The
second important assumption is that of rational expectations. Agents in the model take these trends into
account when making decisions. Given steady progress in life expectancy, we think it is reasonable to assume
that agents expect life expectancy for their cohort to be larger than period life expectancy. We are not aware
of research that has examined whether agents correctly perceive improvements (changes) in life expectancy.
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and life expectancy. Hence, we obtain the targets m
1965

= 470 and e

1965

= 67.1. We solve

for the values of 
1

and 
2

such that we match these values. These are separately identified.

Relative to 2005, an increase in 

1

tends to lower both health spending and longevity in

1965 while an increase in 

2

increases longevity while decreasing health spending. The

values which solve this system of two equations are b
1

= 0.0172 and b
2

= 0.003.

5.2 Contributions to Historical Growth in Spending and Longevity

We now perform the following counterfactual experiment. Imagine that starting from 1965

we introduce each of the changes separately and observe health spending and longevity.

We can then compute the contribution of each factor to the growth of health spending

and longevity observed over the period. As we show in section 2, there is potential for

complementarity e↵ects. Hence, under the assumption that the model captures the most

important factors to growth in spending and longevity, the residual growth unexplained by

the sum of each contributing factor reflects such e↵ects.

In Table 4, we report the results of the simulations in terms of total medical expenditures,

out-of-pocket medical expenditures and life expectancy at age 25 and age 50. We also report

a welfare measure based on the comparison of average expected lifetime utility at age 25 in

each scenario. For scenarios where expected utility is larger than in the 1965 environment,

we estimate the fraction of annual consumption in the 2005 environment which would have

to be taken away for this average individual to be as well o↵ as in the 1965 environment.

Hence, it is a measure of compensating variation (CV).

When letting income grow at 2% per year from the 1965 baseline and implementing

tax and Social Security changes, health expenditures increase to $681.7 from $487.1 at

baseline. We estimate that life expectancy increases very little due to income growth alone.

Because the share of income devoted to health care does not rise (it decreases), consumption

expenditures increase. This leads to a substantial welfare gain, representing 37% of average

consumption expenditures in the 2005 environment.

Improvements in insurance from the 1965 baseline do not increase medical expenditures
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by a large amount. With 2005 insurance parameters, average medical expenditures increase

to $700.1. Longevity increases by 0.2 years due to the expansion of insurance. The welfare

gains from the expansion of insurance are modest. They represent 2% of annual consumption

expenditures in the 2005 environment.

Hence, both the growth of insurance and income independently cannot explain the rise

in health spending and longevity. Technological change has much larger e↵ects. Allowing

for productivity growth in the 1965 environment increases health spending from $487.1 to

$1877.8. The increase in longevity at age 25 is large: 7.9 years. Welfare gains, as a result

of technological change represent 47% of annual consumption in the 2005 environment. We

can compare this result to estimates of the value of life. Aldy and Viscusi (2004) suggest

that $200,000 is a reasonable estimate for the value of a life year. This suggests that

the additional 7.9 years are worth roughly $1.58 million. Lifetime consumption (without

discounting) is $2.66 million in the 2005 environment. Using the compensating variation

estimate of 47%, we obtain a willingness to pay of $1.25 million, consistent in order of

magnitude with the rule-of-thumb estimate.

The negative mortality e↵ect of other factors on longevity in 1965 is large (2 years).

However, an interesting comparison is the one between the technology scenario and the

2005 scenario which imposes all trends (income, insurance, technology and other trends,

including complementarity). Longevity is 0.9 years lower in this scenario, compared to the

technology only scenario. This is remarkably similar to the estimate of Preston, Glei and

Wilmoth (2011) who report that male life expectancy would be 0.9 years higher without

the trend in smoking alone.

These separate individual contributions leave 59% for complementarity e↵ects in medical

expenditures since by construction allowing for all factors yields the 2005 spending level. In

other words, the estimates suggest that the observed growth in health-care spending would

not have occurred if these factors had not changed together. A di↵erent story emerges for

life expectancy, where most of the observed increase appears to be due to technological

change. Other health trends (obesity and smoking) have considerably slowed down the
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growth of longevity, but were substantially outweighed by improvements in technology.

To understand how these complementarity e↵ects lead to higher spending, we run sce-

narios that combine some of these changes. First, we consider changes to insurance and to

technology to occur jointly. This accounts for 45.6% of the total change in medical expendi-

tures compared to 36.3% if we add the separate contributions of each factor. Hence, there is

some complementarity between insurance and technological change. We then do the same

with changes to income. When we implement both productivity growth and income growth,

we can explain 77.9% of the increase in total spending. We can compare this to the sum

of each change, 35.9%. Finally, we consider both changes to income and insurance keeping

technology constant to 1965 level. This yields only a slight complementarity e↵ect. Hence,

most of the complementarity e↵ect appears to come from the complementarity between

income and technology.

Overall, the welfare gains from higher health-care spending appear substantial. The

estimates suggest that the benefits in terms of better health and longevity, valued at $1.58

million, far outweigh the costs in terms of higher health spending, about $4,400 per year, or

$330,000 over the lifetime of someone living to age 75. The rise of longevity is mostly the

result of improvements in the productivity of health care while the rise in health spending

would have been more modest if incomes had risen more slowly.

6 Conclusion

In this paper, we present a life-cycle model of health-care spending, savings and retirement

in an environment with uncertainty regarding health, earnings and mortality. The model

is built on the idea that health is a stock that agents invest in because it provides utility

benefits (e.g., it increases the amount of leisure available each year) and because it prolongs

life. The model parameters are estimated on data for a representative cohort that lives

through a period of rapid growth in health-care spending. Estimates of preference param-

eters such as risk aversion and time preference are consistent with existing evidence from
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savings and retirement models. Other parameter estimates yield very sensible estimates

of price and income elasticities of health spending and value of a life year estimates are

consistent with evidence from the literature. The estimated model enables counterfactual

exercises to reconstruct the changes experienced over the period 1965 to 2005.

We first considered a set of scenarios aimed at computing the contribution of various

factors to growth in health-care spending and longevity. We implemented a calibration

procedure to estimate the changes in technology and other factors a↵ecting mortality which

could rationalize the observed growth. We found, in the parameterization of the health-

production function, that improvements in productivity of 1.7% per year, along with an

independent adverse e↵ect on mortality rates from smoking and obesity at a rate of 0.3%

per year, could rationalize the growth observed in income and health insurance generosity

over the period.

Starting from 1965, we estimated that trends in income growth, the generosity of health

insurance, technology and other factors (e.g., trends in smoking and obesity) independently

could not explain the observed growth in health-care spending. But, when introduced

together, their mutual reinforcement led to rapid growth in spending. Put simply, growth

in income and insurance is not worth much without access to a more productive health-

production technology. According to our estimates, such complementarity e↵ects accounted

for more than half of the increase observed in medical expenditures over the period. For

longevity, the estimates suggest that technological progress is the main driver of growth

over the period. Together they have produced important welfare benefits that may be

worth as much as 67% of 2005 consumption expenditures. Similar to health-care spending,

complementarity e↵ects are also important for explaining the growth in longevity, with an

estimated one third coming from that source.

The presence of complementarity e↵ects is potentially important for understanding how

relatively small di↵erences in income and insurance growth across countries may lead to

large aggregate di↵erences in health-spending when technological progress is potentially

growing at the same pace across countries. Complementarity between factors may exacer-
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bate small di↵erences. The U.S. has had both large income growth and a large expansion of

health insurance coverage. Even if technological progress occurred at the same pace across

countries, complementarity e↵ects may explain why U.S. health spending growth has out-

paced that of other countries, despite health spending being relatively inelastic to income

and insurance. If one does not account for complementarities it is di�cult to reconcile the

observed growth with low income and low co-pay elasticities. Furthermore, there is much

insight to be gained from analyzing, within a structural framework, whether the growth

in medical spending observed over the recent period was “worth it”. Our estimates sug-

gest that the rise of health-care spending increased welfare a great deal, with the largest

contribution coming from technological progress.
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A Condition for Complementarity in Stylized Model

Using the utility function as in Hall and Jones (2007), and a simple functional semi-log

specification for the production function

u(c) = b+
c

1��

1� �

(12)

L(z,m) = L

min

+ z log(m), (13)

the first-order condition becomes

bc

� +
c

1� �

=
m

z

[L
min

+ z log(m)] . (14)

Di↵erentiate (14) w.r.t. y (and note that c = y �m) to obtain


L

min

z

+ log(m) + 1 + �bc

��1 +
1

1� �

�
@m

@y

= �bc

��1 +
1

1� �

. (15)

For the calibrated parameters and values for investment m, income y and consumption c of

section 2, we have u(c) > 0 for both 1965 and 2005 values and hence bc

��1 + 1/(1� �) > 0

and �bc��1 + 1/(1� �) > 0 (since � = 1.424 > 1). Thus @m/@y > 0.

Likewise, di↵erentiating (14) w.r.t. z we obtain


L

min

z

+ log(m) + 1 + �bc

��1 +
1

1� �

�
@m

@z

=
mL

min

z

2

. (16)

Thus @m/@z > 0.

To better understand interactions between income y and technology z, di↵erentiate (15)

w.r.t. z (or alternatively, di↵erentiate (16) w.r.t. y) to obtain:


L

min

z

+ log(m) + 1 + �bc

��1 +
1

1� �

�
@m

2

@y@z

= ��(� � 1)bc��2

@m

@z

+
L

min

z

2

@m

@y

+


�(� � 1)bc��2 � 1

m

�
@m

@z

@m

@y

. (17)
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Complementarity of income y and technology z in health spendingm requires @m2

/@y@z > 0

and hence

��(� � 1)bc��2

@m

@z

+
L

min

z

2

@m

@y

+


�(� � 1)bc��2 � 1

m

�
@m

@z

@m

@y

> 0. (18)

Substituting expressions (15) and (16) into (18) we obtain


L

min

z

+ log(m) + 1 + �bc

��1 +
1

1� �

�⇢
��(� � 1)bc��2

m+

✓
�bc

��1 +
1

1� �

◆�

+
⇥
�(� � 1)bc��2

m� 1
⇤✓

�bc

��1 +
1

1� �

◆
> 0.

Further simplifying this expression we obtain the condition


L

min

z

+ log(m)

�⇢
��(� � 1)bc��2

m+

✓
�bc

��1 +
1

1� �

◆�

+

✓
�bc

��1 +
1

1� �

◆
2

� �(� � 1)bc��2

m > 0, (19)

It is somewhat tedious but straightforward to show that for the calibrated parameters and

values for investment m, income y and consumption c, condition (19) holds for both 1965

and 2005. Thus @m2

/@y@z > 0.
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B Institutional Details

Taxes

Taxes are the sum of federal taxes, ⌧
f

(y), the employee portion of the Social Security

earnings tax and the Medicare tax. Federal tax is modeled using the following formula from

Gouveia and Strauss (2000):

⌧

f

(y) = a

0

[y � (y�a1 + a

2

)�1/a1 ],

where y is the sum of all income sources. We use the 1989 parameters, a
0

= 0.258, a
1

= 0.768

and a

2

= 0.031. The Social Security earnings tax is 6.2% up to a maximum of $97,500 in

earnings. The Medicare tax is 1.5% of earnings and there is no maximum.

Social Security

The formula for updating the average indexed monthly earnings (AME) prior to age 60 is

given by

ame

t+1

= ame

t

+min(ye
t

, ssmax)/(35⇥ 12)

where ssmax = 97, 500. After age 60, the formula is given by

ame

t+1

= ame

t

+ (min(ye
t

, ssmax)� �

t

ame

t

)/(35⇥ 12)

where �
t

is the probability that the AME will not be updated (French, 2005). This proba-

bility is computed by simulating earnings histories from the earnings process in the model

and counting occurence of updating using the true ame formula (i.e. the highest 35 years

of earnings). This probability is 9.1% at age 60, and it reaches 59% by age 69.

The primary benefit is a piece-wise linear function of ame

t

. The bendpoints for someone

born in 1940 are $477 and $2,875: each dollar counts for 0.9 below the first bendpoint, for

0.32 in the second segment, and for 0.15 above the second bendpoint.

35



The full retirement age (FRA) for someone born in 1940 is 65 and 6 months which we

round to 65. If the agent claims prior to the FRA, he is penalized with a 6.7% reduction per

year. Someone claiming at age 62 will receive 82% of his primary insurance amount (PIA).

But if the agent claims after the FRA, he is granted a delayed retirement credit which for

someone born in 1940 is 7% per additional year, compounded. Hence, someone claiming at

age 70 will receive see his benefits increase by 40%. We denote this age adjustment by ⇣(t).

The actuarially fair rate will vary across agents depending on their survival prospects.

At the time of claiming benefits, we adjust the ame

t+1

such that

ame

t+1

= PIA

�1(⇣(t)PIA(ame

t

))

This will permanently set ame

t+1

to a value such that PIA(ame

t+1

) = ⇣(t)PIA(ame

t

).

Hence, we do not need to keep track of the age when someone claimed, t, in the state space.

The agent is allowed to work while collecting benefits. But he will su↵er a benefit

reduction if his earnings are above a limit, which we set at $10,000 for this cohort. The

penalty will depend on age. Prior to the FRA, the penalty is 50%. Hence, each dollar above

the earnings limit cuts back current benefits by 50 cents. After the FRA, the penalty is

33%.

Government Transfers

We use theWelfare Benefit Database (http://www.econ2.jhu.edu/people/moffitt/datasets.

html) constructed by Robert Mo�tt. We transform amounts into 2005 dollars using the

CPI. We use the average over the period 1965 to 2005, 13,735$. Figure B.1 shows the

evolution of the resource floor over this period.
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Figure B.1: Resource Floor 1965-2005 (2005 dollars): Estimates from the Welfare Benefits
Database (Mo�tt, 2002).

Health Insurance

We use MEPS data to calibrate the co-insurance rate function  (). We use MEPS reports

of out-of-pocket and total medical expenditures. In the model, we use estimates of the

median co-insurance rate for each insurance plan. Insurance takes three value in MEPS

public data: not insured, government insurance and private health insurance. We assume

all respondents age 65+ with government insurance are on Medicare and that prior to age

65 those with government insurance are on Medicaid. We use medians because they are less

a↵ected by outliers. This yields a co-insurance rate of 1 for those without health insurance,

0.083 for those on Medicaid, 0.256 for those with employer plans and 0.215 for those age

65+ (on Medicare). The distribution of these co-insurance rates by insurance plan is given

below.

Parameters 25th median 75th mean
No insurance 0.425 1.000 1.000 0.734
Medicaid 0.013 0.083 0.335 0.228
Private 0.111 0.256 0.510 0.348
Medicare 0.069 0.215 0.484 0.312
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C Data Sources

Panel Study of Income Dynamics

We use the PSID version created by the Cornell Equivalent File Project (CNEF).20 These

files include consistent variables for the years 1980 to 2005. The PSID interviews are done

each year up to 1997 and every two years afterwards. We keep male agent heads and drop

respondents from the oversample of low-income agents. We keep ages 25 to 84. Some of the

analysis further restricts the sample. Sample weights are used whenever possible in order to

make the sample representative of this population. We also use the wealth surveys of 1984,

1989, 1994, 1999, 2001, 2003 and 2005. This data is obtained directly from PSID. Finally,

additional information on labor force status, pension income and health insurance status is

obtained from the individual and family files from the PSID. A total of 57,261 observations

are available across all years. Below is information on the variables used in the analysis.

Wealth

We use the variable SX17, which is the sum of values of seven asset types, net of debt value

plus home equity (X refers to wave). Values above $1e6 are recoded as missing. Wealth is

converted to 2005 dollars using the CPI.

Earnings

We use the variable i11110 from the CNEF. Earnings set to missing if above $250,000 or

below $5,000 or if hours worked are too low or too high. We convert earnings to 2005 dollars

using the CPI.

20The files can be obtained at the CNEF homepage
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Other Income

We set other income to the sum of spousal earnings plus the sum of agent private pension

and annuity income. We exclude values above $250,000. We convert to 2005 dollars using

the CPI.

Health

We use self-reported health from the CNEF. This variable is available from 1984 to 2005

on a scale going from 1 (excellent) to 5 (poor). We create three categories (poor-fair, good,

very good-excellent).

Education

Education is used as an instrument for estimating the equation for other income. It is

defined as a 0/1 variable equal to one if the respondent has a college degree.

Birth Year

Birth year is recoded in 6 groups: earlier than 1925, 1926-1934, 1935-1944, 1945-1954,

1955-1964 and after 1966. The reference group in the various analysis we run is 1935-1944.

Table C.1 provides descriptive statistics on the master sample from PSID.
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obs. Mean Std. Dev Min Max
Age 57,261 45.48103 14.47063 25 84
Education (college) 54,630 .50108 .5000034 0 1
Work 57,261 .8397339 .3668559 0 1
Earnings 56,469 42272.73 37077.41 0 249951.1
Other Income 56,937 17521.27 23027.49 0 248947.3
Wealth 24,196 208155.1 308670.5 0 1999702

Health obs. Percentage
Poor-fair 7,007 12.24
Good 14,334 25.03
Excellent 35,920 62.73

Birth Year obs. Percentage
1925 and less 5,783 10.10
1926-1934 6,059 10.58
1935-1944 7,755 13.54
1945-1954 16,773 29.29
1955-1964 14,481 25.29
1966 and more 6,410 11.19

Table C.1: Descriptive Statistics for PSID 1984 - 2005

Medical Expenditure Panel Study

We use data from years 1996 to 2008 from the Medical Expenditure Panel Study (MEPS).

We use data from the agent component full year consolidated data files. We select male

respondents age 25 to 84 for the analysis. The MEPS interviews respondents over a 2

year span. Each panel, initially drawn from the National Health Interview Survey (NHIS)

is surveyed 5 times. One panel starts each year. Our main analysis file contains 54,159

person-year. For the estimation of the health-production function, the sample is reduced

to 14,202 respondents in large part because information on smoking comes from the NHIS

sample adult files merged with MEPS.

Mortality

The MEPS indicator for mortality leads to an underestimate of mortality. But MEPS re-

spondents are drawn from the NHIS. The NHIS has linked records of respondents with

National Death Records for years 1985 to 2011. Hence, we link the MEPS record to the

mortality follow-up conducted in NHIS. We then define mortality as occuring if the respon-

dent died within the year following his interview. To validate the quality of mortality data,
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we merge these records period with period life tables for males by year and age (obtained

from the Human Mortality Database) as well as cohort mortality rates for those born in

1940 from the Social Security Administration. Figure C.1 shows the close correspondence

although the small sample size beyond age 75 yields more volatile mortality rates.
0

.0
5

.1

25 30 35 40 45 50 55 60 65 70 75 80 85

age of respondent

period mx cohort mx

MEPS−NHIS mx

one−year mortality rate

Figure C.1: Comparison of Mortality Rates with MEPS: Period mx and Cohort mx refer
to life table estimates from the Social Security Administration. Estimates from the MEPS-
NHIS matched mortality follow-up study.

Total Medical Expenditures

We use MEPS for the total medical expenditures over the calendar year using the CPI in

2005 dollars. We make three adjustments to this variable. First, we scale it up to the

level of per capita personal health-care spending from the National Health Expenditures

(NHE) report for the years 1996 to 2008, excluding long-term care (LTC) expenditures since

MEPS surveys the non-institutionalized population. Finally we cap medical expenditures

at $100,000 to limit the influence of outliers.
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Other Variables

Household income is taken from the household component of the MEPS data files. Obesity is

defined as a body-mass index of more than 30. A variable indicating whether the respondent

ever smoked is also constructed and used as a control for estimating the health-production

function. Information on smoking is not available in MEPS. Since each MEPS panel is

randomly drawn from the National Health Interview Survey of the previous year, we use

NHIS information on smoking. However, not all NHIS respondents answer those questions.

Only one sample adult per household is given the questionnaire on smoking. Hence, from

a total sample of 54,159 in MEPS, we have 19709 respondents with valid information on

smoking.

Table C.2 provides descriptive statistics on the sample.

obs. Mean Std. Dev Min Max
Age 54,159 47.88698 14.76017 25 84
Household Income 54,157 34569.06 31495.72 0 426266
Obesity (BMI>30) 39,230 .2808565 .4494233 0 1
Ever Smoke 19,709 .5372672 .4986219 0 1
Mortality rate 39,403 .0108586 .0172435 .0012 .12114
Med. Exp. 53,835 4747.627 10700 0 99724.8
Insurance Coverage obs. Percentage
Private 37,551 69.33
Public 7,179 13.26
Uninsured 9,429 17.41
Health obs. Percentage
Poor-fair 7,795 14.48
Good 15,684 29.13
Excellent 30,360 56.39

Table C.2: Descriptive Statistics MEPS 1996- 2008
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D Auxiliary Processes and Initial Conditions

Earnings

We select PSID men aged 25 to 65 working full-time prior to 1997 (2-year gap between waves

after 1997). The estimation sample is an unbalanced panel consisting of 4,100 workers. The

specification for annual real gross earnings of the household head is given by

E[log ye
it

|⇡
i0

, t] = ⇡

i0

+ ⇡

1

t+ ⇡

2

t

2

where the earnings shocks for the individual i ⌘
it

= log ye
it

�E[log ye
it

|⇡
i0

, t] follows an AR(1)

process ⌘
it

= ⇢⌘

it�1

+ "
it

, "

it

⇠ N(0,�2
"

). We first estimate parameters ⇡
1

,⇡

2

by fixed e↵ect

regression (within estimator). We set the constant term to the average of the fixed e↵ect for

those born between 1935 and 1945. Earnings peak around the age of 48 years old. We then

use the residuals (including the fixed e↵ects) to estimate the covariance parameters (⇢,�
"

)

by minimum distance. The covariance parameter estimates are b⇢ = 0.953 and b�2
"

= 0.024.

Hence, earnings shocks are quite persistent. Figure D.1 reports the average earnings profile

along with plus or minus 2 standard deviations using the unconditional variance of ⌘
it

.
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Figure D.1: Earnings predictions from PSID: Predicted mean along with +- 2 standard
deviation based on unconditional variance of permanent shock.

We have tested whether health was predictive of earnings conditional on age with the

fixed e↵ect regresion. We could not reject the null hypothesis that health was not predictive

of earnings (results available upon request).

Other Income

We select PSID respondents from all waves, age 25 and over. We define other income as

the sum of private pension income, spouse earnings and spouse Social Security benefits. We

define the income of the household head, yh
it

, as his earnings plus his social security benefits.

The econometric model is

y

o

it

= ⇡

3

+ ⇡

4

y

h

it

+ ⇡

5

t+ ⇡

6

t

2 + �

c

+ "

it

where �
c

denotes cohort dummies. We instrument income of the household head y

h

it

with

education (a dummy for a college educated head) as in French (2005). We use the predicted
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profile of a household head born between 1935 and 1945. Table D.1 gives the parameter

estimates. The profile is hump-shaped and there is a moderate correlation between income

of the household head and other income. Using actual income of the household head in the

PSID panel, we also plot the distribution of predicted other income by age in Figure D.2.

Parameters Estimates Std. Error
⇡

3

-24887.7** 1726.7
⇡

5

1012.6** 73.5
⇡

6

-8.668** 0.739
⇡

4

0.325** 0.010
Obs. 53508

Table D.1: Estimates of Other Income Process from PSID.

0
1
0

2
0

3
0

4
0

5
0

o
th

e
r 

in
co

m
e
 (

0
0
0
)

25 30 35 40 45 50 55 60 65 70 75 80 85
age of household head

95th pct mean 5 pct

Figure D.2: Other Income from PSID: Spouse earnings and Social Security benefits. Pre-
dicted mean along with 5th and 95th percentile generated from variation in respondent’s
earnings.
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Initial Distribution of State Variables

We select male household heads aged 25 to 28 (to boost sample size). There are minor

cohort di↵erences in initial real earnings, health and assets. We neglect those. The initial

insurance coverage state is missing in PSID. For that, we use RAND HRS respondents aged

50 to 55 and born between 1935 and 1945 to estimate the extent of employer-tied and retiree

coverage. We estimate that 20.8% of respondents do not have employer provided insurance,

39.2% have employer-tied coverage and 40.0% have retiree coverage. We use those estimates

to draw initial health insurance coverage. By construction, there is no correlation between

other initial state variables and insurance state. We sample with replacement to obtain an

initial population of 5,000. Initial earnings are used to initialize the error term ⌘

25

. Since

we do not have data on ame

25

, we fix it to zero.
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E Estimation of Health Processes

We use MEPS to estimate health and mortality processes. We use data on males aged 25

to 85. In Figure E.1, we report one year transition rates from health states at (t) to health

states at (t+1) from all waves of MEPS.
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Figure E.1: MEPS One-Year Transition Rates Across Health States

Health

Let h

it+1

= j be the health status at age t + 1, j = 1, 2, 3 . Current health status is

h

it

= k, k = 1, 2, 3. We specify the following dynamic multinomial model with controls for

risk factors, x
it

(smoking and obesity status) where

Pr(h
it+1

= j|h
it

= k, t,m

it

, x

it

) =
e

�0jk+�1jt+�2j logmit+�3j logm
2
it+xit�4j

P
j

0

e

�0j0k+�1j0 t+�2j0 logmit+�3j0 logm
2
it+xit�4j0

We normalize parameters of health state j = 1 to zero. One might be worried that m

it

is

endogeneous. The vector x
it

is included in the specification we estimate as control variables.

It includes an indicator for ever smoking and one for obesity (BMI>30), which alleviates

some of the concerns with respect to common factors (such as socio-economic status) a↵ect-

ing both medical spending (and health). Current health state h

it

= k captures the history

of the health process assuming it is Markovian. This also helps alleviate concerns about
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unobserved heterogeneity since we are comparing people with the same health status. How-

ever, there might be simultaneity if the current health shock increases medical spending.

This would bias downward the e↵ect of health spending on health. In fact, direct estimation

reveals negative e↵ects of medical spending on health.

We use a control function approach to correct for the simultaneity of m
it

(Petrin and

Train, 2010). At time t, determinants of medical spending that are uncorrelated with

the health shock, conditional on h

it

and x

it

, are good candidates for instruments. Given

the model, the log of current household income should be correlated with current medical

spending but not with next year’s health status. Hence, we first run the following regression

logm
it

= '

1

+
X

k>1

'

k

I(h
it

= k) + z

it

'

6

+ x

it

'

7

+ '

8

t+ ⌫

it

where z

it

is the log of household income. Results are presented in Table E.1. A partial

F-test on the instruments yields a value that indicates the instruments are not weak.

Parameters Estimate Robust Std. Err.
'

1

(constant) 1.604** 0.185
'

2

(good) -0.992** 0.077
'

3

(>good) -1.435** 0.074
'

6

(log income) 0.151** 0.014
'

7,1

(obese) 0.372** 0.056
'

7,2

(smoking) -0.146** 0.052
'

8

(age) 0.083** 0.001
N 14308
R-squared 0.184
Partial-F log income 106.22

Table E.1: First-step Estimate of Production Function: OLS coe�cients along with stan-
dard errors. ** denotes p < 0.05.

We compute residuals b⌫
it

, which we plug into the health process:

Pr(h
it+1

= j|h
it

= k, t,m

it

, x

it

, b⌫
it

) =
e

�0jk+�1jt+�2j logmit+�3j logm
2
it+xit�4j+b⌫it�5j

P
j

0

e

�0j0k+�1j0 t+�2j0 logmit+�3j logm
2
it+xit�4j0+b⌫it�5j0
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Standard errors are computed by bootstrap to account for the estimation noise from esti-

mating ⌫
it

. We report the results of estimation by maximum likelihood in Table E.2. Health

decreases with age; there is considerable state-dependence in health as revealed by the cur-

rent health e↵ects, particularly in good health states. Obesity and smoking are negatively

correlated with health.

Parameters Good >Good
Par Std.Err Par Std.Err

�

0

(constant: <good) -1.220** 0.309 -3.187** 0.4211
�

0

(good) 2.487** 0.115 3.476** 0.186
�

0

(>good) 3.037** 0.148 5.964** 0.225
�

1

(age) -0.046** 0.008 -0.096** 0.011
�

2

(logm
it

) 0.610** 0.101 1.267** 0.132
�

3

(logm2

it

) -0.021** 0.003 -0.038** 0.003
�

4,1

(obese) -0.343** 0.089 -0.773** 0.106
�

4,2

(smoking) -0.223** 0.067 -0.346** 0.087
�

5

(b⌫
it

) -0.523** 0.092 -1.067** 0.126
N 14202

Table E.2: Estimates of Production Function: multinomial logit coe�cients along with
bootstrap standard errors. ** denotes p < 0.05.

The parameter estimates of �
5j

are jointly significantly di↵erent from zero which reveals

that m
it

is endogeneous. The estimates reveal that health spending has a positive e↵ect on

health, increasing the likelihood of good health states.

Mortality

Mortality depends on age and health status and follows a Gompertz hazard function. The

probability of death over a one-year interval is given by

Pr(d
it+1

= 1|h
it

= k, t) = 1� exp(� exp(�
6

t) exp(�
7,k

))

Parameters are estimated by maximum likelihood. Parameter estimates are reported in
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Table E.3.

Parameters Estimate Std. Error
�

7,1

(constant) -7.712** 0.244
�

7,2

(good) -1.356** 0.108
�

7,3

(>good) -1.873** 0.117
�

6

(age) 0.074** 0.003
N 45885

Table E.3: Mortality Process Estimates with Standard Errors.

There is one issue with the estimated mortality process. Given the limited number of

years, it was not possible to include cohort e↵ects. But the model requires a cohort life-table

for those born between 1935 and 1945. Hence, we use cohort mortality rates from Social

Security to construct a correction factor such that average mortality rates computed from

the mortality process are equal to the Social Security mortality rates.
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F Solution Method and Estimation of Preference Parame-

ters

Solution Method

Starting at the last age, which we set at T = 120, mortality is certain in the following period.

Therefore, the agent consumes all resources left at that point. This means we know V

T

(s
T

).

Proceeding recursively, we discretize the continuous variables of the state-space with more

points at lower values (assets and average indexed monthly earnings). We use 48 asset points

and 24 AME points. To solve for optimal consumption and medical expenditures, we use

golden section search. We first condition on a choice of consumption and then find optimal

m

⇤(c) conditional on that choice of consumption. We then do golden-section search on c

using m

⇤(c). We use bi-linear intrapolation for next period’s value function. For integration

of earnings shocks, we follow the discrete approximation approach of Tauchen (1986) and

use 9 points. The solution method produces reasonable decision rules.

Once we have solved for optimal decision rules, we simulate the life paths of 5,000 agents

using draws of earnings, health, mortality and initial conditions from the data (described

in the next section).

Construction of Moment Conditions

There are four sets of moment conditions. Each compares a statistic computed from the

data to one computed from simulations. We first describe how we compute the statistics

from the data.

First, we seek to construct a mean wealth profile by age from the PSID, which is not

contaminated by cohort e↵ect and household composition. We follow French (2005) and

estimate a fixed-e↵ect regression with an unrestricted set of age dummies. We then construct

the profile by using the average of the fixed e↵ects for those born between 1935 and 1945.

Next, the average medical expenditures by age are computed from MEPS. We follow the

same strategy. We then predict average medical expenditures for someone born between
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1935 and 1945.

Labor-force participation by age is predicted separately for those in poor-fair health

and those with good and very good-excellent health. We use regressions, which control for

cohort e↵ects and unrestricted age dummies. When predicting we set the cohort e↵ects for

someone born between 1935 and 1945.

Finally, we seek to match mortality rates for this cohort. We know from lifetables that

there are significant cohort e↵ects in mortality. We use cohort mortality rates for those

born in 1940 from the Social Security Administration. For each respondent in MEPS and

PSID, we complement mortality data from PSID and MEPS by imputing mortality so as

to match SSA mortality rates.

Estimator

Denote by N the total sample size of PSID and MEPS. As in French (2005), we treat the

combined PSID and MEPS dataset using a missing data analogy. The total sample is that

of PSID and MEPS but respondents only respond to one of the surveys and contribute

to moments unequally depending on age, etc. We assume that this missing data problem

is random and therefore can construct the jth moment condition involving the variable z

using

eg
j

(✓) =
1

N

X

i2nj

 
z

i,j

(✓
0

)� 1

S

X

s

ez
s,j

(✓)

!

where z

i,j

(✓
0

) is the adjusted data of respondent i contributing to the moment condition

(there are n

j

such respondents), and finally ez
s,j

(✓) simulated data from draw s of shocks

(earnings and health). S denotes the number of simulations. The data is by assumption

generated from the model at the true value of the parameters ✓
0

. Stacking these moment

conditions, we obtain a vector eg
N

(✓) which has expectation zero at ✓ = ✓

0

. The Method of

Simulated Moment (MSM) estimator is given by

b
✓

MSM

= argmin
✓

N

1 + ⌧

eg
N

(✓)0W
N

eg
N

(✓)
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where W
N

is the inverse of the covariance matrix of the adjusted data and ⌧ = N/S. Given

some regularity conditions, the MSM estimator is consistient for ✓
0

for fixed S when N

goes to infinity. It is also asymptotically normal. An estimate of the variance matrix of the

estimates is given by

V (✓
MSM

) = (1 + ⌧)
�
G

0

N

W

N

G

N

�
�1

where G
N

is the matrix of derivatives of the moment vector with respect to the parameters.

Since the objective function is generally not smooth and has local minima, we use the

Nelder-Mead algorithm to find the minimum. We tried various starting values until we

found a global minimum.
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Figures

Figure 1: Timing of the Variables for the Estimation of the Production Function
in MEPS.
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Figure 2: Mortality Rates by Current Health Status and Level of Medical Expen-
ditures, Age 65+: E↵ects are obtained by combining the marginal e↵ects from the health
process weighted by the conditional mortality probabilities by health status and averaged
over the population age 65+.

55



Figure 3: Age Profiles from Data and Simulations: The solid lines show the average
profile from the simulation. The dashed lines show the profiles from Data; PSID for wealth
and work, MEPS for medical expenditures and SSA life tables for mortality. For the top-
right figure, the fraction working is shown by health status (poor health is shown in blue,
good health in red and very good health in green).
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Tables

Parameter Estimates
� 3.3824

(0.5795)
� 0.6507

(0.0152)
�

2

0.4803
(0.0603)

�

1

0.7826
(0.0259)

� 0.9598
(0.0054)

↵

1

-0.1705
(0.1117)

↵

2

0.7625
(0.1801)

↵

3

-0.4003
(0.1659)

⇠ 1.1067
(0.6119)

Criterion 172.780
D.F. 246

Table 1: Preference Parameter Estimates by Method of Simulated Moments:
Standard errors computed at the solution using the formula shown in Appendix E. The
overidentifcation test value is given by the value of the criterion function of the MSM

estimator at the minimum and is distributed as a chi-square with degrees of freedom equal
to the number of moments minus the number of parameters to estimate.
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Age m(95) m(75) m(50) m(25) ✏

p

(95) ✏

p

(75) ✏

p

(50)
30-34 234.3 247.8 273.9 319.8 -0.238 -0.25 -0.232
35-39 422.9 452.5 500.6 588.3 -0.287 -0.252 -0.242
40-44 736.3 796.8 906.4 1097.8 -0.335 -0.322 -0.286
45-49 1255.6 1377.0 1594.9 2037.1 -0.392 -0.367 -0.365
50-54 1975.8 2194.8 2603.3 3457.3 -0.446 -0.426 -0.423
55-59 3003.6 3380.7 4102.8 5604.3 -0.502 -0.483 -0.464
60-64 4230.1 4766.1 5789.9 7642.8 -0.506 -0.485 -0.414
65-69 5132.5 5773.7 6970.7 9019.1 -0.5 -0.47 -0.384
70-74 6993.1 7863.9 9443.6 12066.3 -0.498 -0.456 -0.366
75-79 8098.6 9203.6 11143.5 14549.6 -0.543 -0.477 -0.398
80-84 8854.4 10245.0 12698.7 17274.2 -0.619 -0.535 -0.458

Table 2: Co-insurance Elasticities of Health-Care Spending with Di↵erent Co-
insurance scenarios: The first four columns report average total medical spending by age
group, m( ) for four levels of co-insurance  =(95%,75%,50%,25%). These rates apply to
all forms of coverage (Employer provided, individual, Medicare and Medicaid). The last
three columns report arc elasticities, ✏

p

( ) for changes from 95% to 75%, from 75% to 50%
and from 50% to 25%.
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Age m(�50) m(ref) m(+50) ✏

y

(�50) ✏

y

(+50)
30-34 332.1 309.8 305.2 -0.366 -0.125
35-39 568.9 553.7 560.1 -0.101 0.061
40-44 958.9 1001.1 1051.3 0.125 0.213
45-49 1577.7 1772.3 1996.2 0.29 0.443
50-54 2356.4 2890.5 3512.4 0.455 0.63
55-59 3437.7 4517.3 5844.5 0.555 0.726
60-64 4494.8 6071.5 7913.6 0.562 0.653
65-69 7209.8 9127.2 11047.6 0.645 0.556

Table 3: Earnings Elasticities of Health-Care Spending with Di↵erent Levels of
Earnings: The first four columns report average total medical spending by age group,
m(x) for 3 levels of earnings x =(Baseline - 50%, Baseline, Baseline + 50%). The last two
columns report arc elasticities, ✏

y

(x) for a 50% change from each point.
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Outcome m oop e

25

e

50

CV(%)
1965 487.1 356.0 42.3 22.5
Income 681.7 480.3 42.5 22.7 0.37

�% Total 0.044 0.127 0.034 0.027
Insurance 700.1 248.3 42.5 22.7 0.02

�% Total 0.048 -0.11 0.034 0.027
Technology 1877.8 942.7 50.2 28.3 0.47

�% Total 0.315 0.6 1.127 1.076
Other 501.7 368.3 40.3 21.0 0.04

�% Total 0.003 0.013 -0.279 -0.273
Insurance+Technology 2499.0 729.5 50.4 28.6 0.48

�% Total 0.456 0.382 1.162 1.118
Income+Technology 3928.9 1764.5 51.0 29.3 0.65

�% Total 0.779 1.44 1.249 1.258
Income+Insurance 902.0 319.9 42.5 22.7 0.38

�% Total 0.094 -0.037 0.036 0.026
2005 4902.8 1333.8 49.3 27.9 0.67

Table 4: Simulation Scenario Results 1965-2005: Average medical spending (m), aver-
age out-of-pocket medical spending (oop) and remaining life expectancy at age x = (25, 50)
(e

x

) is reported for each scenario. The last column computes the fraction of consumption
in each scenario which would need to be taken away from consumers such that they enjoy
the same welfare at age 25 as in the 1965 environment (measure of compensating variation
CV). Results in the first row pertain to the 1965 environment. The second row implements
the 2005 income scenario keeping insurance and technology at their 1965 level. The third
row implements the 2005 insurance scenario keeping 1965 income and technology constant.
The fourth row implements the 2005 technology scenario keeping income and insurance at
their 1965 level. The fifth row implements the change in mortality due to other factors.
The sixth to eight row implement two changes simultaneously for growth in productivity,
insurance and income. Finally, the last row reports results for the baseline scenario in 2005.
Below each row we also report the fraction of the total change from 1965 to 2005 explained
by each factor.
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