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Abstract

Using micro-level commodity flow data and micro-geographic plant-level data,

we construct industry-specific ad valorem trucking rate series and measures of geo-

graphic concentration to provide evidence on the relationship between transport

costs and agglomeration. We find that low transport cost industries display sig-

nificantly more geographic concentration in the cross-sectional dimension, and that

falling transport costs agglomerate industries in the panel dimension. The effects

are large: the fall in trucking rates between 1992 and 2008 implied a 20% increase in

geographic concentration on average, all else equal.
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1 Introduction

Transport and communication costs fell precipitously during the last century, leading

many observers to posit that the world has ‘become flat’, that locational differences no

longer matter. With the help of cheap transport and communication, business can be

done almost anywhere, or so the story goes, leaving policymakers with the impression

that we have entered ‘brave new frictionless’ world. But, if this were true, the costs of

transporting goods should no longer influence firms’ location choices and, thereby, the

spatial structure of economic activity. Why is then the tendency for economic activity

to cluster in space still strong? Why do many industries still exhibit strong geographic

patterns, including new entrants that should a priori face few locational constraints?

We address this seeming contradiction head-on by identifying the causal effect of

transport costs on the geographic concentration of industries in Canada, both in the

cross-sectional and the panel dimensions. Focussing on trucking—the main transport

mode for freight in North America—we find that low transport cost industries display

significantly more geographic concentration than high transport cost industries.1 De-

creasing transport costs also tend to agglomerate industries—especially at small spatial

scales—and increase regional specialization. Our qualitative results, which are in line

with those of Krugman’s (1991) celebrated ‘core-periphery’ model, hold up to a large

variety of robustness checks and to instrumental variables estimations that deal with

potential endogeneity concerns. Furthermore, the quantitative effects are large. In our

preferred cross-sectional specification, an industry with twice as high ad valorem trans-

port costs than another industry is on average 5.13% less geographically concentrated at

50 kilometers distance. In terms of changes over time, the fall in trucking rates between
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1992 and 2008 implied a 20% increase in the geographic concentration of the average

manufacturing industry, all else equal. In a nutshell, the world is not yet flat: Transport

costs matter!

Assessing empirically the effect of transport costs on the geographic concentration of

industries is important for several reasons. First, despite their fundamental theoretical

role in spatial modeling, little is still known empirically on how transport costs drive the

geographic structure of industries, especially at the regional level. Second, among the

possible determinants of clustering, transport costs have been studied the least, much

less than the ‘Marshallian’ forces such as input-output links, labor market pooling, and

knowledge spillovers (see Rosenthal and Strange, 2004; Combes and Gobillon, 2015). We

thus have little quantitative evidence on the impact of those costs on geographic pat-

terns. Third, changes in transport costs driven by, e.g., infrastructure investments, bear

on the local composition of economic activity and inform us on how that composition

may change (e.g., Duranton, Morrow, and Turner, 2014). These changes affect regional

exposure to international trade shocks that have direct repercussions in local labor mar-

kets, a topic of great policy importance (e.g., Autor, Dorn, and Hanson, 2013).

Assessing empirically the effect of transport costs on the geographic concentration

of industries is also a difficult task. First, we need fine measures of geographic concen-

tration to look at the cross section, and enough time-series variation in those measures

to look at changes. In this paper, we construct—for the first time to our knowledge—a

long panel of continuous measures of geographic concentration, computed from micro-

geographic plant-level data using the Duranton and Overman (2005) approach. Our

micro-geographic data exhibit enough time-series variation so that they can be meaning-

fully used in a panel context.
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Second, we need detailed measures of industry-specific transport costs and how they

relate to output prices. We devote substantial effort to the calculation of domestic ad val-

orem trucking rates for 257 manufacturing industries. Most of the literature has looked

at infrastructure as a proxy for transport costs (see Redding and Turner, 2015). By con-

trast, we build our trucking rates directly from micro-data files on truck shipments from

Canada and the export values of goods. These ad valorem trucking rates can be extended

to a 20 years time series using industry-specific output price indices.

Last, we need to deal with the possible endogeneity of ad valorem transport costs.

For example, if the productivity gains from geographic concentration are passed on to

consumers in the form of lower prices—which increases ad valorem trucking rates—the

causality may run from agglomeration to transport costs and not the other way round.

We deal with this issue by purging our ad valorem trucking costs of productivity effects.

We also use ‘binning instruments’ in the cross section and U.S. industry price indices

in the panel to construct external instruments for our trucking rate series. As predicted

by theory, there is an upward bias in the ols estimates of the transport cost coefficients,

which reinforces our baseline results. Low transport cost industries are significantly

more concentrated than high transport cost industries, and falling transport costs drive

more geographic concentration.

The remainder of the paper is structured as follows. In Section 2, we briefly review

the theoretical and empirical literatures on the effects of changes in transport costs on

geographic concentration. We also develop a parsimonious conceptual framework of

endogenously determined transport costs. Section 3 documents our data, explains the

calculation of our key variables, and provides a first look at geographic concentration

and transport costs. In Section 4, we explain our empirical approach and discusses
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various identification concerns. Our empirical results are summarized in Section 5, and

Section 6 concludes. We relegate many additional results and technical details to an

extensive set of appendices.

2 Conceptual framework

2.1 Transport costs and geographic concentration: Theory

The geographic concentration of economic activity is determined by the balance be-

tween agglomeration and dispersion forces. In most regional models, agglomeration forces

arise from a combination of transport costs and firm-level increasing returns to scale

(Krugman, 1991), or from vertical buyer-supplier links (Krugman and Venables, 1995).

Geographic concentration expands the size of the local market, thereby attracting firms

that can serve a larger share of their final and intermediate demands—and purchase a

larger share of their supplies—locally at lower cost. The cost savings are naturally larger

the more expensive it is to ship goods. The strength of the agglomeration force thus

depends on the level of transport costs: if transporting goods is cheap enough, it vanishes

since firms no longer need to be close to final or intermediate customers and suppliers.

All else equal, lower transport costs make economic activity more footloose and hence

weaken the agglomeration forces.

How the equilibrium geographic concentration changes with transport costs depends

on the interplay between agglomeration and dispersion forces. Different models of geo-

graphic concentration rely on different dispersion forces. In Krugman’s (1991) model,

there is a spatially dispersed immobile demand that industries must serve. If transport

costs are high, this immobile demand exerts a strong pull so that economic activity
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disperses to follow it. The strength of this dispersion force depends on the level of transport

costs. If the latter are low enough, the immobile demand can be served at virtually no

cost from every location and thus no longer influences geographic patterns. Hence, in

the Krugman model, both agglomeration and dispersion forces get weaker as transport

costs fall. Yet, the dispersion force vanishes more quickly than the agglomeration forces,

so that agglomeration of economic activity occurs for low levels of transport costs (see,

e.g., Fujita, Krugman, and Venables, 1999). In Helpman’s (1998) version of the model,

the dispersed immobile demand is replaced with a fixed stock of regional housing. As

economic activity concentrates in a location the price of housing increases, because of

its inelastic supply, which tends to disperse economic activity since workers are better

off when they can relax housing costs. Contrary to the Krugman model, the strength of

this dispersion force does not depend on the level of transport costs. Hence, in the Helpman

model, only the agglomeration force gets weaker as transport costs fall, so that dispersion

of economic activity occurs for low levels of transport costs.2

2.2 Transport costs and geographic concentration: Evidence

While models of geographic concentration have proven useful to better understand spa-

tial equilibrium patterns, different models generate different equilibria because they rely

on different agglomeration and dispersion forces. These forces operate at varying spa-

tial scales, and which one is the most relevant largely depends on the phenomenon

one wants to analyze. While Helpman-type dispersion forces due to urban costs seem

more relevant at the city level, Krugman-type dispersion forces due to a geographically

dispersed demand seem more relevant at larger regional or national scales. The ques-

tion of how transport costs—and changes in these costs—affect geographic patterns thus
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becomes essentially an empirical one and depends on the spatial scale of the analysis.

Starting with the city level, the empirical literature has used carefully designed iden-

tification strategies to establish the causal links between infrastructure and city structure,

composition, and growth. It has convincingly shown that more infrastructure, a proxy

for decreasing transport costs for people and goods, causes: (i) population and economic

activity to disperse within cities or to suburbanize (see, e.g., Baum-Snow, 2007; Garcia-

López, Holl, and Viladecans-Marsal, 2015; Baum-Snow, Brandt, Henderson, Turner, and

Zhang, 2017); (ii) cities to grow (Duranton and Turner, 2012); and (iii) cities to special-

ize in ‘heavy industries’, i.e., industries with a low value-to-weight ratio (Duranton et

al., 2014). In a nutshell, lower transport costs tend to disperse economic activity within

cities, in line with the Helpman model, but tend to concentrate specific industries across

cities, in line with the Krugman model.

While the city-level evidence is rich, little is known on whether it translates to larger

regional or national scales and how it applies to individual industries. This is firstly

due to the fact that there is generally much less empirical work at those scales. Fur-

thermore, much of the existing work is embedded in structural models that feature

standard Krugman-type agglomeration forces. We have little evidence about the effect

of transport costs on the regional organization of economic activity that does not come

through the filter of a structural model that has the answer somewhat ‘baked-in’.3 We

also have little evidence for individual industries. Since most agglomeration models

have a macroeconomic flavor and focus on ‘aggregate economic activity’, they are silent

on how transport costs affect the geographic concentration of individual industries. This

is problematic since even when the overall geographic concentration of economic ac-

tivity decreases (e.g., spreads across cities), individual industries can still agglomerate
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(e.g., within cities) in response to changing transport costs. Ideally, we need to under-

stand how transport costs affect the absolute geographic concentration of industries (i.e.,

spatial agglomeration), as well as their relative geographic concentration (i.e., regional

specialization, conditional on overall concentration).

To link absolute and relative geographic patterns with industry-specific transport

costs requires good estimates of the latter. Yet, there are surprisingly few empirical stud-

ies on geographic concentration that exploit direct measures of transport costs. Extant

studies have mostly looked at changes in ‘market access’ broadly defined, stemming

either from changes in international borders (e.g., the fall of the Iron Curtain; Redding

and Sturm, 2008; Brülhart, Carrère, and Trionfetti, 2012) or large-scale infrastructure

investments (e.g., Chandra and Thompson, 2000; Baum-Snow, 2007; Michaels, 2008;

and Duranton et al., 2014). This literature relies on either natural experiments (e.g.,

the fall of the Iron Curtain) or historical instruments (e.g., planned interstate highway

system) to obtain credible identification at the expense of indirect transport cost mea-

sures. One problem with market access or infrastructure is that they do not provide

industry-specific variation in transport costs, thereby complicating an analysis of how

individual industries tend to agglomerate or disperse and of how regional specialization

changes.4 Another problem with infrastructure is that it does not exploit information on

the value of the goods shipped. Yet, it is known since at least Alchian and Allen (1964)

that transport costs are especially relevant in relation to the prices of the goods shipped.

There is not much difference in shipping gold or gravel border-to-border across the city,

but the difference will be crucial when shipping them coast-to-coast across the country.

Hence, both per-unit transport costs and the prices of the goods shipped are required

to investigate how ad valorem transport costs, and changes therein, affect the equilibrium
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geographic concentration of industries. To our knowledge, this has not been done.

Our aim is to estimate industry-specific measures of ad valorem transport costs and

to relate them to the absolute and relative geographic concentration of industries. To do

so, we now lay out a simple framework that is useful for conceptualizing transport costs

and for pinpointing various endogeneity concerns.

2.3 Modeling transport costs

Models of geographic concentration usually subsume transport costs by an exogenous

parameter. Yet, in reality, transport costs are prices that are set to clear markets and as

such reflect supply and demand conditions. While the assumption of exogenous trans-

port costs is useful in some contexts, it masks a number of endogeneity concerns that

are important to address in empirical work, especially when using ad valorem transport

costs. To guide our subsequent analysis, we develop in Appendix A a simple two-region

model based on Behrens and Picard (2011) and Behrens and Brown (2017) where ad

valorem transport costs are endogenously determined by the interplay of manufactur-

ing shippers (demand) and competitive carriers (supply). We show that the ad valorem

transport costs for industry i between regions r and s can be expressed as

τ irs =
1

1 +M−1/σi

[

1 +
σi

σi − 1

(
mi

s

p
i,prod
r

+
2γ(Yc, drs)

p
i,prod
r

)]

, (1)

which depend on the producer price p
i,prod
r and the demand elasticity σi of industry i; on

the relative market size M of region r to region s; on the cost mi
s of producers in industry

i in region s; and on the carriers’ cost function γ(Yc, drs). The latter depends on the

distance drs of a one-way trip and a vector Yc of carrier- and commodity-specific factors

(carrier’s productivity, diesel prices, commodity-specific packaging and handling etc.)
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Expression (1) highlights several key features. First, freight rates are heterogeneous

along many dimensions. They depend on the type c of commodity shipped (e.g., dry

bulk, liquid bulk, container), the industry i of the product that is shipped (which de-

termines demand conditions that the shippers face), the distance drs shipped, shippers’

production costs mi
s (and characteristics that correlate with those costs), carriers’ pro-

ductivity as per Yc, and the spatial distribution M of demand. Controlling for all those

dimensions is important when estimating freight rates.

Second, freight rates are endogenous: they are prices that are set to clear markets and

thus reflect supply and demand conditions. Even if freight rates are largely determined

by suppliers’ costs in a competitive market, these costs are endogenous to the spatial

structure of the economy. For example, imbalances in the geographic distribution of

economic activity create imbalances in shipping patterns and influence freight rates via

backhaul problems and density economies. Freight rates also depend on factor costs

and on the distance shipped, both of which are endogenous to the geographic structure

of the economy. The key message is that freight rates and the spatial distribution of

economic activity are jointly determined in equilibrium. Dealing with that simultaneity

is key to assess the causal effect of transport costs on geographic concentration.

Last, and most importantly, as shown by (1) the importance of transport costs also

depends on the value p
i,prod
r of the goods being shipped. When prices are high, trans-

port costs become less important for firms and consumers compared to the value of the

goods: it is more profitable to ship gold (expensive or high-quality goods) than gravel

(cheap or low-quality goods), all else equal. Changes in prices also affect the impor-

tance of transport costs. It may, e.g., be profitable to ship crude oil over long distances

when a barrel costs 100$ but not when it costs 30$, thus affecting regional production
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patterns.5 This dependence of ad valorem transport costs on producer prices has two

important consequences. On the negative side, there is a simultaneity problem. Geo-

graphic concentration in region r may increase productivity because of agglomeration

economies or the spatial sorting of firms along productivity (see Combes and Gobillon,

2015). In turn, a higher manufacturing productivity maps into lower prices p
i,prod
r for

manufactured goods and thus affects the importance of freight rates—and possibly the

spatial organization of the economy. On the positive side, fluctuations in output prices

provide a source of variation that allows to understand the importance of transport costs

for geographic concentration independently of changes in unit transport costs. Denote

the latter by trs. As shown in Appendix A,

τrs = 1 +
σi − 1
σi

(
trs/pi,prod

r

)
. (2)

Hence, changes in ad valorem transport costs depend on changes in the unit transport costs

trs relative to the producer price p
i,prod
r . Fluctuations in prices have a direct effect on ad

valorem transport costs τrs. This point is important since prices can fluctuate substan-

tially over medium time horizons (e.g., natural resources such as crude oil), even if per

unit transport costs trs do not change much. In any case, prices introduce an industry-

specific component into transport costs, and that component is important to analyze the

relationship between transport costs and geographic concentration.

3 Data, measurement, and descriptive evidence

Our analysis requires two key pieces of industry-level information: (i) measures of (ab-

solute and relative) geographic concentration; and (ii) measures of ad valorem transport

costs. We now discuss our data and measures, and take a first look at the evidence.

10



3.1 Data sources

Our primary data source for geographic concentration is the Annual Survey of Manu-

facturers (asm) Longitudinal Microdata file from 1992 to 2009. This confidential dataset

contains between 32,000 and 53,000 manufacturing plants per year, covering 257 naics

6-digit industries. For every plant we have information on: its primary 6-digit naics

code (the codes are consistent over the whole period); its year of establishment; its total

employment; whether or not it is an exporter in selected years; its sales; the number of

non-production and production workers, and the hours they worked; its ownership sta-

tus and whether it belongs to a multiunit firm; its intramural research and development

expenditures; and its 6-digit postal code. The latter, when combined with the Postal

Code Conversion files (pccf), allow us to effectively geo-locate the plants using latitude

and longitude coordinates of postal code centroids, which are spatially very fine-grained

in Canada (see Figure 6 in the appendix). We use the latitude and longitude information

to estimate our measures of geographic concentration. We use the remaining informa-

tion to construct various controls related to industry structure by aggregating to the

industry level. Additional industry-level information from the klems database is used

to construct proxies for natural advantage and industries’ labor force composition. A

summary and descriptive statistics is provided in Table 5 in Appendix B, as well as more

detailed information on the pccfs and the sampling frame of the asm.

We turn next to the data required to estimate ad valorem transport costs (τrs − 1)

at the industry level. We need information on the revenue to carriers (trs) and on the

producer unit price of goods (pi,prod
r ). Statistics Canada’s Trucking Commodity Origin-

Destination Survey (tcod) includes both domestic and cross border shipments and cov-

ers the period from 1994 to 2009. It provides most of the information required for the
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measurement of transport costs. Although it reports revenues to carriers on a shipment

basis, it does not report the value of goods shipped. The latter is estimated by multiply-

ing the tonnage of the commodity shipped—reported by the tcod—by the commodity’s

value per tonne estimated using an ‘experimental export trade file’ produced in 2008

(see Brown, 2015, for details). We leave it to Section 3.3 to describe how these data are

used to construct a panel of industry-level ad valorem transport rates.

3.2 Geographic concentration

We measure the geographic concentration of industries using the Duranton and Over-

man (2005; henceforth, do) K-densities. These measures are independent of any arbi-

trary spatial division of the economy and comparable across industries and time.6

We estimate the K-density (probability density function, pdf) of the distribution of

bilateral distances between n plants in an industry as follows:

K̂(d) =
1

hn(n− 1)/2

n−1

∑
i=1

n

∑
j=i+1

f

(
d− dij

h

)
, (3)

where d is the distance at which the K-density is evaluated; h is Silverman’s optimal

bandwidth; and f is a Gaussian kernel. The distance dij between plants i and j is

computed using the great circle formula. Note that (3) does not weight plants by any

measure of size. Rather than using a plant-count based measure, we can also compute

the geographic concentration of employment or sales in an industry. This can be done

by adding appropriate employment or sales weights to (3) as follows:

K̂W (d) =
1

h∑
n−1
i=1 ∑

n
j=i+1(ei + ej)

n−1

∑
i=1

n

∑
j=i+1

(ei + ej)f

(
d− dij

h

)
, (4)

where ei and ej are the value of employment or sales of plants i and j, respectively.7 The

weighted K-density thus describes the distribution of bilateral distances between either
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employees or dollars of sales in a given industry.

We measure absolute geographic concentration of industries by looking at their location

patterns up to some distance d. This information can be obtained from the cumulative

distribution (cdf) of the K-densities:

CDF(d) =
∫ d

0
K̂(i)di and CDFW (d) =

∫ d

0
K̂W (i)di. (5)

The cumulative (5) at distance d provides a measure of the share of plants (or of em-

ployees or sales, in the weighted case) in an industry that are located at most at distance

d from each other. For example, a value of 0.18 at 50 kilometers for for ‘Motor Vehicle

Metal Stamping’ in 1999 (see panel (B) of Table 8 in Appendix D) means that 18% of plant

pairs in that industry were located less than 50 kilometers from each other. Larger val-

ues of the cumulative K-densities are associated with more geographic concentration of

the industry. However, this measure does not tell us anything about specialization, i.e.,

about the relative concentration of the industry compared to manufacturing in general.

We measure relative geographic concentration by comparing the K-density pdfs (3) or

(4) with an appropriately defined benchmark distribution. We follow the procedure de-

veloped by Duranton and Overman (2005) to construct such a benchmark. The idea is

to use Monte Carlo simulations, where plants in an industry are randomly reshuffled

1,000 times across all locations containing manufacturing plants to compute counterfac-

tual distributions of K-densities. The distribution of these K-densities is then used to

derive upper and lower bounds, K(d) and K(d), of confidence bands at every distance

d. The latter can be used for statistical testing of the significance of geographic concen-

tration patterns: if the K-density lies above the upper bound of the confidence band

(K̂(d) > K(d)), the industry is significantly more concentrated than manufacturing in

general at distance d; and if the K-density lies below the lower bound of the confidence
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band (K̂(d) < K(d)), the industry is significantly more dispersed at distance d. We im-

plement this approach to assess the significance of geographic concentration using a 90%

confidence band. We further use it to construct two measures of relative concentration.

First, we create a dummy variable that takes value one if the industry is significantly lo-

calized, and zero otherwise. Second, we create a variable that is the difference between

the K-density and the upper bound of the confidence band or zero otherwise:

Γ̂ (d) =
∫ d

0
max

{
K̂(i)−K(i), 0

}
di. (6)

This variable measures the excess agglomeration of an industry compared to manufac-

turing in general and provides a natural measure for relative geographic concentration.

We provide detailed results of our K-density estimations in Table 6 of Appendix D.

The evidence points to a significant decrease in the absolute geographic concentration

of manufacturing industries in Canada over the last 20 years, no matter whether that

concentration is measured in terms of plant counts, employment, or sales. Furthermore,

albeit less pronounced, there were also changes in the relative geographic concentration

of industries, i.e., patterns of geographic specialization have evolved, with slightly less

specialization overall. Table 1 provides summary statistics of our K-density estimates.

As expected, there is substantial variation between industries in their degree of geo-

graphic concentration. There is also substantial time-series variation, especially at short

distances. Although the bulk of the variation in the K-densities is cross sectional, the

rapid churning of plants also provides substantial temporal variation, especially at close

proximity. Similar patterns hold for our relative concentration measures. This varia-

tion helps with the identification of the effect of changes in the importance of transport

costs on changes in geographic concentration using the panel dimension of our data.

Understanding those changes is the objective of the remainder of this paper.
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Table 1: Summary statistics for different geographic concentration measures and transport costs.

Industry Mean Standard deviation

Variable detail Overall Between Within

Duranton-Overman K-density cumulative (cdf) at 10 km 6-digit 0.015 0.031 0.023 0.021

Duranton-Overman K-density cumulative (cdf) at 50 km 6-digit 0.065 0.060 0.050 0.034

Duranton-Overman K-density cumulative (cdf) at 100 km 6-digit 0.120 0.085 0.074 0.042

‘Significant concentration’ dummy 6-digit 0.352 0.478 0.384 0.284

Excess concentration Γi 6-digit 0.029 0.080 0.069 0.041

Ad valorem trucking rates as share of the value of the goods shipped 6-digit/L-level 0.034 0.035 0.030 0.005

Notes: Based on the sample that we use in our regression analysis, which includes 4,369 = 257×17 industry-year observations.

The standard deviation is decomposed into between and within components, which measure the cross-sectional and the time-

series variation, respectively. The ‘Ad valorem trucking rates as share of the value of the goods shipped’ is for an average

load. They are estimated using 6-digit level detail in the cross-section, and the industry price indices are at the L-level. The

‘Significant concentration’ dummy is a variable that takes value one if industry i is significantly geographically concentrated

in year t, and zero otherwise. The ‘Excess concentration Γi’ variable is defined in (6). We restrict these two variables

to the 1,802 industry-year pairs for industries that are at least once significantly concentrated over the 1992–2008 period.

Additional information regarding our data sources and the construction of our key variables are provided in Section 3.1 and

in Appendix B.
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3.3 Transport costs

Our second key ingredient is an industry-specific measure of ad valorem transport costs.

Contrary to most existing studies, we use a direct measure constructed from detailed

micro-data files on shipments within Canada. To estimate ad valorem rates, as noted

above, we require information on freight rates and the unit price of the goods shipped.

We first model freight rates using shipment (waybill) data from the tcod. We assume

carrier m sets freight rates for shipment l such that both fixed and variable (linehaul)

costs are just covered: tm,l = α+ βdl, where α is the fixed price component, β is the

rate per kilometer, and dl is the distance shipped. In the context of our conceptual

framework in Appendix A, tm,l/wl is an estimate of the per unit freight rate (trs) of

a shipment, where units are measured by weight in tonnes (w). Firms may also price

on a per tonne-km basis and this is taken into account by assuming firms set prices

based on an unknown average tonnage w∗ shipped, which implies that the rate is tm,l =

α+ (β/w∗)dlw∗. This provides a flexible functional form that permits firms to price on

a per tonne-km or per km basis. If firms price using the latter, for loads less (greater)

than w∗ the price per tonne-km will be scale upward (downward). This is captured by

the following function:

tm,l = α+

[
β

w∗ + φ(w∗ −wl)

]
dlwl = α+

(
β

w∗ + φw∗
)
dlwl − φdlw

2
l , (7)

where wl is the observed tonnage shipped and φ(w∗ − wl) is the scaling factor. Fac-

toring out the known tonnage wl results in an estimable function that allows firms to

price using either rule or some hybrid of the two. Equation (7) is estimated from the

tcod across three types of carriers—truck-load, less-than-truck load, and specialized—

for which variable and fixed costs are expected to vary due to differences in technology
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or business model employed.8 We also allow fixed and linehaul costs to vary across

time in a flexible way. Additional controls include distance and its square to take into

account backhaul effects on prices, a diesel price index (that is highly correlated with

rates through time), and commodity-carrier fixed effects to control for time costs and the

quality/nature of the transportation service.9 We use (7) to predict freight rates t̂yc,ξ by

carrier type ξ and commodity c in year y using the average tonnage of a shipment.

The predicted rates t̂yc,ξ are converted to ad valorem rates—expressed as a proportion

of the value of the good shipped—by using the value of shipments by commodity. Since

that value is not reported by the tcod, it is estimated from the ‘experimental export

trade file’ produced in 2008 (see Brown, 2015, for details). Let v̂2008
c denote the value

of the average tonnage of a shipment of commodity c in 2008, which will serve as our

estimate of ‘producer unit prices’, pi,prod
r . Weighting the t̂yc,ξ across carrier types ξ, using

as weights the value of the goods shipped by each carrier type, the ad valorem estimate

at the commodity level in 2008 is τ̂2008
c − 1 = t̂2008

c /v̂2008
c . Finally, using an industry-

commodity concordance, the ad valorem transport rates for commodities are aggregated

to an industry basis (τ̂2008
i − 1) using the value of commodities shipped as weights.

As stated above, the value per ton estimates allow us to construct our ad valorem

trucking costs for 2008 only. To generate an industry time series, yearly trucking indus-

try price indices (Pt
trans) and manufacturing industry price indices (Pt

i) from Statistics

Canada’s klems database are used to project the ad valorem rates backwards and for-

wards in time, thereby creating an industry-specific transportation rate time series:

τ̂ ti − 1 =
Pt

trans
Pt
i

(
τ̂2008
i − 1

)
. (8)

Cross-sectional variation in industry ad valorem transport rates will depend on: (i) vari-

ation in the value per tonne of the good, which can vary by orders of magnitude across
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commodities; (ii) average tonnage shipped, which affects both the value of the shipment

and the transport rate; and (iii) the nature and level of service provided, which affects

rates and will vary, for instance, by carrier type. We provide a full set of 4-digit indus-

try freight rates in Table 12 in Appendix D. The time-series variation comes from the

changes in the industry- and transport price indices. As explained above, these capture

relevant changes in the importance of transport costs to suppliers and customers. We

return to this important point in more detail later.

Panel (a) of Figure 1 depicts the year-on-year changes in the (unweighted 6-digit

level) industry average ad valorem trucking costs. As can be seen from that figure,

transport costs are first decreasing—due essentially to decreasing labor costs at constant

fuel prices—and then increasing—due essentially to increasing fuel prices at constant

labor costs. They range from about 3.8% of the value of the shipments in the early

nineties, to about 3.2% in the mid-nineties, with an average value of 3.4% (see Table 1 for

summary statistics on our estimated ad valorem trucking rates). These figures are fairly

close to the average ad valorem rates of 4.6% reported by Glaeser and Kohlhase (2004,

p.206) using more aggregated 2002 U.S. data. As in their case, there is significant cross-

industry variation in our data. Between 1990 and 2008, the average rate of the ten most

expensive-to-ship industries is between 12.2%–14.3%, while that of the ten cheapest-

to-ship industries is between 0.34%–0.40% (see Tables 11 and 12 in Appendix D). As

expected, the highest ad valorem transport costs are for industries with low value-to-

weight ratios (e.g., cement and gypsum product manufacturing and breweries), with an

average rate across the top 10 industries in 2008 of 14%. The lowest ad valorem transport

costs are for industries with high value-to-weight ratios (e.g., computer and peripheral

equipment manufacturing, and medical equipment and supplies manufacturing), with
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Figure 1: Changes in ad valorem trucking costs in Canadian manufacturing.

(a) Mean across all industries. (b) ‘Petroleum and coal product manufacturing’.
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Notes: Panel (a) depicts the unweighted average across 6-digit naics industries. These correspond to the estimates that we use in the

remainder of this paper. Panel (b) depicts an example estimated for an industry at the 4-digit level. For confidentiality reasons, we

cannot disclose detailed 6-digit estimates (see Appendix D.4 for additional details). We report summary results at the 6-digit level in

Table 11 and an additional full set of 4-digit estimates in Table 12 in Appendix D.
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an average rate across the bottom 10 industries in 2008 of barely 0.39%.

Table 1 shows that, although the bulk of the variation in trucking rates is cross-

sectional, we also have time-series variation due to changes in prices. This is further

illustrated by panel (b) of Figure 1 for ‘Petroleum and coal product mfg.’ (naics 3241).

As can be seen from that figure, the ad valorem trucking costs in that industry fell

from more than 7% in 1994 to less than 3% during the ramp up to the 2008 spike in

oil prices. These changes show that the effects of trucking costs are likely to crucially

depend on industry prices and on how those prices change over time. Large changes

over time provide variation that will be useful to identify how transport costs affect

geographic patterns in the panel dimension; while large differences across industries

will be useful to understand whether high or low transport cost industries are more or

less agglomerated in the cross-sectional dimension. We now estimate these effects.

4 Empirical approach

We provide both cross-sectional and panel estimates of the effect of ad valorem transport

costs on the geographic concentration of industries. There are two reasons for providing

both types of estimates. First, the cross-sectional and the panel estimates answer two dif-

ferent questions. While the cross section tells us whether high transport cost industries

are more or less geographically concentrated in a given spatial equilibrium, the panel

evidence provides ‘comparative statics’ of whether falling transport costs tend to ag-

glomerate or disperse industries between different spatial equilibria. While related and

equally interesting, these are two different questions that require different specifications

to be answered. Second, as explained in Section 3.3, the cross-sectional variation in our
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ad valorem transport costs comes from estimates of unit costs from the tcod and from

unit prices of goods using the special exporter files in 2008; whereas the time-series vari-

ation stems from changes in industry price indices. While this variation is sizable, and

should therefore allow us to assess the effects of changes in transport costs on changes in

geographic concentration, some may worry that we are picking up special effects due to

the use of price indices. Because we find robust results between the 2008 and the pooled

cross sections and the panel—both for absolute and relative geographic concentration—

our results are unlikely to depend on the way we construct our measures.

4.1 Specification

In what follows, we estimate different versions of the following model, both in its

(pooled) cross-sectional and panel versions:

CDFi,t(d) = (τi,t − 1)βτ + Xi,tβX + αt + µi + εi,t, (9)

where CDFi,t(d) is the K-density cdf for industry i in year t at distance d (either un-

weighted or weighted); (τi,t − 1) is our measure of ad valorem transport costs (8) of

industry i in year t; Xi,t is a vector of time-varying industry controls; αt and µi are year

and (in the panel) industry fixed effects, respectively; and εi,t is an i.i.d. error term.

As Figure 8 in Appendix D shows, the distributions of CDFi,t(d) and (τi,t − 1) are both

right-skewed and look relatively normal once log-transformed. Hence, we apply a log

transformation to all variables in our estimations, except for trade shares which we keep

in levels, to obtain a distribution of error terms that is closer to a normal distribution.

In the panel version of (9), we include industry and year fixed effects. The for-

mer soak up unobserved time-invariant industry characteristics that can map into siz-
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able cross-sectional differences in geographic concentration patterns (see Table 1, which

shows that much of the variance in the K-densities is cross sectional). The latter control

for general trends that affect the geographic concentration of industries, like improve-

ments in informations and communications technologies that could have made economic

activity more footloose over our study period. Turning to our controls Xi,t, we first con-

struct two proxies, one for the proximity to customers and suppliers, and the other for

exposure to international trade. The former is important since changes in the transport

costs of one industry may induce changes in the location patterns of vertically linked in-

dustries (see, e.g., Fujita, Krugman, and Venables, 1999, for a model). The latter is impor-

tant since the theoretical literature has shown that international trade costs interact with

domestic transport costs to affect geographic concentration patterns (see Brülhart, 2011,

for a review). We proxy access to customers and suppliers using our microgeographic

data to construct input-output share weighted distance measures. These measures cap-

ture how close an industry is to other vertically linked industries from which it buys

or to which it sells. We measure industry-level trade exposure (exports and imports),

broken down by broad country groups—nafta, oecd excluding nafta, and low-cost

countries. Appendices B.5 and B.6 provide details, descriptive statistics, and discuss a

number of additional concerns related to these measures.

The urban economics literature has substantiated the existence of other agglomera-

tion forces that are independent of the costs of transporting goods but depend on the

costs of transporting people and ideas. For example, firms benefit from localized knowl-

edge spillovers and local pools of specialized labor if they locate close to one another.

When transport costs are low enough, firms no longer need to be close to their customers

and suppliers, which can lead to more geographic concentration of specific industries to

22



exploit those agglomeration forces.10 Industries also display different agglomeration pat-

terns, depending on characteristics linked to industry structure (Rosenthal and Strange,

2003). We provide more details on our controls related to agglomeration forces and

industry structure in Appendix B.4.

Our coefficient of interest, βτ , captures whether high ad valorem transport cost in-

dustries are more or less geographically concentrated in a given spatial equilibrium (in

the cross section); or whether industries with falling transport costs experience more or

less geographic concentration between two equilibria (in the panel). Observe that, as

explained in Section 2.1, the sign of the coefficient βτ also provides information about

whether the Krugman or the Helpman model offers a better description of the geo-

graphic concentration process: if βτ < 0, industries with lower transport costs or indus-

tries that see their transport costs fall concentrate more geographically, as in Krugman

(1991); whereas if βτ > 0, industries with lower transport costs or industries that see

their transport costs fall disperse more geographically, as in Helpman (1998).

4.2 Identification

For βτ to capture the causal effect of transport costs on geographic concentration, we

need to address a number of identification problems. A first problem is due to agglom-

eration economies: the geographic concentration of an industry may decrease producer

prices, which affects ad valorem transport costs. A second related problem arises because

geographic concentration leads to imbalances in shipping patterns, and the latter in-

crease transport costs due to ‘backhaul’ of empty trucks (for evidence see, e.g., Jonkeren,

Demirel, van Ommeren, and Rietveld, 2009; and Tanaka and Tsubota, 2017). To sum-

marize, our ad valorem transport costs (2) are potentially endogenous to the geographic
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concentration of an industry via both trs and p
i,prod
r . Thus, the ols estimate of βτ is likely

to be upward biased.11 We discuss these problems more formally in Appendix A.

In the cross section, the choice of instruments is unfortunately limited. We rely on

‘binning instruments’, i.e., we use the rank of the cross-sectional ad valorem rates as

an instrument, with either quintile bins or tertile bins. The underlying idea is that the

potential endogeneity bias in the ad valorem rates is less likely to change the ranks of

industries in the distribution than the magnitude of transport costs, and even less likely

to push transport costs across bins of the ranking.

In the panel regressions, we have more options to deal with the above-mentioned

problems. In what follows, we use the following strategies. First, we clear out the

productivity effects—one presumed source of endogeneity—on prices by regressing our

transport cost series (8) on industry multi-factor productivity indices from the klems

database. We then use the residual from that regression as a proxy for the transportation

cost series. By definition, that residual is orthogonal to any productivity-driven price

changes that could stem from the changing geographic concentration of industries and

affect Pi,t in (8). We refer to these as the ‘ad valorem transport cost residuals’ (avtcr).

This strategy does not deal directly with the transportation price index Ptrans,t.

Second, we use U.S. industry price indices as external instruments to construct our

transport costs series. The underlying idea is the following. Assume that the geographic

concentration of an industry increases over time because of unobserved factors. This in-

creasing geographic concentration then raises ad valorem transport costs via decreases

in producer prices and increases in trucking rates. Provided that the U.S. changes are

not driven by the same unobserved factors than in Canada, but that the U.S. series

PUS
trans,t/PUS

i,t are correlated with the Canadian series Ptrans,t/Pi,t, this yields valid instru-
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ments for the Canadian transport cost series. One potential problem arises if the geo-

graphic concentration of an industry in Canada directly affects the productivity—and

thus the price indices—in the U.S. While we cannot completely rule out this possibility,

it does not strike us as very plausible: Canada is ten times smaller than the U.S., so

that changes in the geographic distribution of Canadian industries are unlikely to drive

changes in the U.S. industry price indices. As an additional check, we run iv regressions

that exclude industries (e.g., automobile) with high nafta trade shares.

Last, we also use internal instruments in the estimation of (9) using the method of

Lewbel (2012) that exploits heteroscedasticity and variance-covariance restrictions to ob-

tain identification with 2sls when some variables are endogenous and when external

instruments are either weak or not available. See Appendix C for details. This approach

deals with endogeneity concerns of our trade exposure and input-output distance mea-

sures (see Appendices B.5 and B.6 for a discussion). We continue to use the external

U.S. instrument for transport costs. We view this approach as a an additional robustness

check on top of the two strategies that rely on ‘filtering’ and external instruments.

5 Results

5.1 Spatial equilibrium: Cross-sectional evidence

Table 2 shows our cross-sectional estimates of specification (9), which provide evidence

on whether high or low transport cost industries are more or less geographically con-

centrated in a given spatial equilibrium. We pool all years of our data to increase the

number of observations and include year fixed effects. Results for the individual cross

section in 2008—the year that provides our purely cross-sectional variation—are pro-
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vided in Table 13 of Appendix E. The results are qualitatively similar and robust across

the pooled cross section and the individual cross section, so we report only the former.

Model (X1) reports our basic cross-sectional estimates without any controls. As

shown, the coefficient on ad valorem trucking costs is negative and highly significant. In

words, low transport cost industries are on average geographically more concentrated

than high transport cost industries. We then progressively add in Models (X2) to (X5) our

controls for international trade exposure, input-output links, and other industry charac-

teristics. Starting with (X2), import and export exposure do not significantly correlate

with geographic equilibrium patterns in the cross section. The estimated coefficients

(not reported) are almost all insignificant. In (X3), we add our input-output distances.12

The estimated coefficients on both variables are negative and highly significant. In-

dustries that locate close to their suppliers and customers—i.e., small values of those

distances—tend to be more geographically concentrated in the cross section. Note that

the coefficient on the ad valorem transport costs decreases substantially when including

our measures for access to suppliers and customers. This shows that controlling for equi-

librium cross-industry structure is important and that the dispersion of high transport

cost industries in equilibrium is partly explained by the dispersion of supplier and client

industries. However, the coefficient on the transport costs remains negative and signifi-

cant. Model (X4) shows that the joint inclusion of both trade and input-output controls

does not significantly change our estimates. Last, Model (X5) adds various industry

controls that may influence the geographic concentration of industries. Our results are

robust to the inclusion of these controls, although the coefficient on transport cost drops

in absolute terms a bit and is less precisely estimated. In our preferred specification,

(X5), if an industry has 100% higher ad valorem transport costs than another industry, it
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Table 2: Estimation results for specification (9) in the pooled cross section.

(X1) (X2) (X3) (X4) (X5) (X6) (X7) (X8) (X9)

Base Trade IO-links Trade&IO Controls Purged First stage iv-2sls Q5 First stage iv-2sls Q3 Lewbel

AVTC -0.266a -0.250a -0.085a -0.098a -0.076b

(0.042) (0.043) (0.027) (0.030) (0.034)

AVTC residual -0.076b -0.120a -0.121a -0.087a

(0.034) (0.039) (0.041) (0.034)

AVTC residual, binning instrument 0.504a 0.762a

(0.0123) (0.030)

Input distance -0.257a -0.264a -0.323a -0.323a -0.106 -0.322a -0.171 -0.322a -0.311a

(0.084) (0.084) (0.071) (0.071) (0.057) (0.071) (0.072) (0.071) (0.109)

Output distance -0.416a -0.422a -0.391a -0.391a 0.163 -0.393a 0.217 -0.393a -0.466a

(0.084) (0.085) (0.069) (0.069) (0.055) (0.069) (0.064) (0.070) (0.090)

Industry controls included No No No No Yes Yes Yes Yes Yes Yes Yes

Trade shares included No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations (naics× years) 4,369 4,369 4,369 4,369 4,369 4,369 4,369 4,369 4,369 4,369 4,369

R2 0.149 0.202 0.652 0.654 0.725 0.725 0.880 0.823 0.327

F test of excluded instruments 1,667.73 661.70

Notes: a, b and c denote coefficients significant at the 1%, 5%, and 10% levels, respectively. Standard errors in parentheses are clustered at the industry level.

The dependent variable is the count-based Duranton-Overman K-density cdf at 50 kilometers distance. We have 17 years and 257 industries. All regressions

include year dummies. Our measures of input and output distances, as well as average minimum distance, are computed using N = 5 (see Appendices B.5 and

B.6 for details). A constant term is included but not reported. (X5)–(X9) include the following industry controls: Total industry employment; Firm Herfindahl

index (employment based); Mean plant size; Share of plants affiliated with multiplant firms; Share of plants controlled by foreign firms; Natural resource share

of inputs; Energy share of inputs; Share of hours worked by all workers with post-secondary education; In-house R&D share of sales. ‘AVTC residual’ denotes

the residual of the regression of ad valorem trucking costs on industry multi-factor productivity. (X6) reports bootstrapped standard errors. (X7) and (X8) use

the rank-bin of the cross-sectional rates as an instrument, with quintile bins (Q5) in the former and tertile bins (Q3) in the latter. (X9) follows Lewbel (2012) to

instrument input-output distances and trade shares (see Appendix C for details). We still use quintile bins (Q5) as external instrument for transport costs.
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is on average 100%× (2−0.076 − 1) = −5.13% less concentrated at 50 kilometers distance.

As discussed in Sections 2.3 and 4.2, our measure of ad valorem transport costs is po-

tentially endogenous. Table 2 reports a number of estimates that address this problem.

Starting with Model (X6), we use the residual transport cost obtained from a regres-

sion of that cost on industry multi-factor productivities.13 The results are virtually the

same as in (X5). In Models (X7) and (X8), we report iv-2sls results where we instru-

ment our ad valorem transport costs by their rankings in the cross section, using either

their quintile bins (in (X7)) or tercile bins (in (X8)). In line with our expectations, the

coefficient on transport costs indeed significantly drops when instrumenting using rank-

ing bins, whereas the standard errors hardly change. This suggests that our results are

robust to controlling for endogeneity and that doing so is important in the cross sec-

tion. Furthermore, the effects of transport costs on geographic concentration are sizable.

In Model (X8), industries with 100% higher ad valorem transport costs are on aver-

age 100% × (2−0.121 − 1) = −8.04% less concentrated at 50 kilometers distance. Finally,

Model (X9) addresses remaining endogeneity concerns that could affect the trade vari-

ables and the input-output distance measures, while keeping the quintile-bin instrument

for transport costs. Our results are again robust to this instrumentation strategy.

5.2 Change in spatial equilibrium: Panel evidence

We now estimate the panel version of equation (9), which provides answers to the com-

parative statics question of how changes in transport costs change the geographic con-

centration of industries between two spatial equilibria. Table 3 summarizes our results.

Model (P1) reports our basic panel estimates without any controls. As can be seen,

the coefficient on the ad valorem trucking costs is negative and significant. In words,
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Table 3: Estimation results for specification (9) in the panel version.

(P1) (P2) (P3) (P4) (P5) (P6) (P7) (P8) (P9)

Variables Base Trade IO-links Trade&IO Controls Base First stage iv-2sls Lewbel version 1 Lewbel version 2

AVTC -0.337b -0.263b -0.250b -0.183b -0.208b

(0.155) (0.122) (0.098) (0.078) (0.088)

AVTC residual -0.261a -0.393a -0.197b -0.218b

(0.078) (0.096) (0.093) (0.092)

AVTC U.S. instrument 0.485a

(0.111)

Asian share of imports -1.639a -1.309a -1.132a -1.118a -0.056 -1.095a -1.592a -1.618a

(0.413) (0.379) (0.380) (0.383) (0.107) (0.381) (0.533) (0.501)

Input distance -0.359a -0.343a -0.361a -0.358a 0.035c -0.356a -0.143c -0.224a

(0.064) (0.059) (0.055) (0.055) (0.020) (0.055) (0.075) (0.075)

Output distance -0.262a -0.290a -0.313a -0.318a -0.011 -0.322a -0.386a -0.360a

(0.046) (0.044) (0.042) (0.043) (0.015) (0.042) (0.083) (0.087)

Industry controls included No No No No Yes Yes Yes Yes Yes Yes

Trade shares included No Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations (naics× years) 4,369 4,369 4,369 4,369 4,369 4,369 4,369 4,369 4,369 4,369

R2 0.054 0.096 0.442 0.473 0.516 0.518 0.628 0.319 0.330

F test of excluded instruments 19.07

Notes: a, b and c denote coefficients significant at the 1%, 5%, and 10% levels, respectively. Standard errors in parentheses are clustered at the industry

level. The dependent variable is the count-based Duranton-Overman K-density cdf at 50 kilometers distance. We have 17 years and 257 industries. Our

measures of input and output distances, as well as average minimum distance, are computed using N = 5 (see Appendices B.5 and B.6 for details).

A constant term is included in all regressions but not reported. (P5)–(P11) include the following industry controls: Total industry employment; Firm

Herfindahl index (employment based); Mean plant size; Share of plants affiliated with multiplant firms; Share of plants controlled by foreign firms;

Natural resource share of inputs; Energy share of inputs; Share of hours worked by all workers with post-secondary education; In-house R&D share

of sales. ‘AVTC residual’ denotes the residual of the regression of AVTC on industry multi-factor productivity. (P6) reports bootstrapped standard

errors. (P7) instruments the ‘AVTC residual’ using transport costs constructed with U.S. price indices. (P8) and (P9) follow Lewbel (2012) to instrument

input-output distances and trade shares. In (P8), only a subset of the trade shares is instrumented, while all trade shares are instrumented in (P9).
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falling ad valorem trucking costs within industries are associated with their geographic

concentration. We then progressively add in Models (P2) to (P5) our controls for inter-

national trade exposure, input-output links, and other industry characteristics. Start-

ing with (P2), rising import shares are across-the-board associated with falling geo-

graphic concentration. The (non-oecd) Asian share of imports—a proxy for low-wage

countries—has the largest estimated coefficient in absolute value and is the most sta-

tistically significant (the other import shares, though not reported, are negative and

significant too). One explanation for the dispersive effect of import competition is that

firms become more footloose as they source a larger share of their intermediates from

abroad and no longer rely on localized domestic suppliers. Another explanation is that

import competition leads to substantial exit of plants in geographic clusters, which re-

duces geographic concentration (see, e.g., Holmes and Stevens, 2014).14 In Model (P3),

we add our input-output distances (and our minimum distance control). The estimated

coefficients on the input and output distance measures are negative and highly signif-

icant: industries tend to follow their suppliers and customers, i.e., industries where

potential suppliers or clients disperse tend to also disperse. The coefficient on trucking

costs changes only slightly when including our measures for access to suppliers and

customers. Model (P4) shows that the joint inclusion of both trade and input-output

controls does not significantly change our baseline estimates. Although the coefficient

on transport cost drops in absolute terms, it remains negative and highly significant.

Last, (P5) adds our industry controls and our results are again robust.

How large are the effects of changes in transport costs on changes in geographic

concentration? First, in our preferred specification (P5), if transport cost in an industry

increase by 100%, then geographic concentration falls by 100%× (2−0.208 − 1) = −13.43%

30



at 50 kilometers distance. Clearly, these are large effects. Second, we can compute

the predicted change in the cdfs by holding the ad valorem trucking costs constant

at their 1992 values, while still allowing the other variables to change through time.

The observed change in the cross-industry average cdf between 1992 and 2008 at 50

kilometers is -23.37%. Holding transport costs fixed at their 1992 levels, the change

would have been -28.36%. Thus, had ad valorem trucking costs not fallen between 1992

and 2008, the average geographic concentration of industries would have fallen by about

5 percentage points more (about 20% of the overall change).15 These are sizable effects.

As in the cross section, Table 3 also reports estimations that address the potential

endogeneity of our transport costs. Model (P6) uses the residual transport cost obtained

from a first-stage regression of that cost on industry multi-factor productivities. The co-

efficient on transport costs becomes more negative when using the productivity-purged

residual (compare (P5) to (P6)). This is in line with our expectations that agglomeration

effects that reduce producer prices are likely to bias the coefficient upwards (towards

zero in this case). In what follows, we systematically use the residual measure of ad

valorem trucking costs in all of our regressions.

Although the residual transport cost is purged from productivity effects, endogeneity

concerns linked to, e.g., backhaul, remain. Hence, we run some instrumental variables

regressions to check the validity of our results. Model (P7) summarizes our iv-2sls re-

sults where we instrument the ad valorem trucking rate residual by replacing the Cana-

dian price indices with their U.S. counterparts. As can be seen, the instrument is strong,

with a first-stage F -test value of 19.07 and a first-stage R2 of 0.63. The instrumented

coefficient is substantially more negative than the coefficient for the residual ad valorem

trucking rate. ols estimates are therefore likely to underestimate the impact of changes
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in ad valorem transport costs on the geographic concentration of industries.16

Last, Models (P8) and (P9) address remaining endogeneity concerns that may affect

the trade variables and the input-output distance measures. We again use the Lewbel

(2012) estimator with internal instruments for the input-output distances and the trade

shares.17 The excluded external instrument is the U.S. price-based ad valorem trucking

cost residual, as before. As Table 3 shows, the instrumented coefficient on the Asian

share of imports increases (as do those on most of the other unreported trade shares),

while both the magnitude of transport costs and of the input and output distances de-

creases slightly. However, these variables remain significant and their magnitude is in

the same ballpark than in the case of ols, thus showing that our results are robust.

5.3 Extensions and robustness

We now report two extensions: (i) the relative geographic concentration of industries;

and (ii) the spatial extent of the effects that we estimate. We relegate many additional

robustness checks to Appendix E. In particular, we show there how coefficients vary

across industries that trade internationally using different transport modes (truck vs

ship) and how location patterns depend on import entry points.

Starting with specialization patterns, we first look at the geographic concentration of

industries controlling for the overall geographic concentration of manufacturing. There

are two reasons for doing so. First, we want to understand whether and how individual

industries can concentrate, irrespective of what happens to the overall distribution of

economic activity. Doing so provides answers to the question of whether falling trans-

port costs favor regional specialization. Second, one may be worried that our previous

results just pick up the downwards trend in Canadian manufacturing and are, therefore,
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just about the ‘deindustrialization of southern Ontario’. We will show that our results

are not driven by this downwards trend: even controlling for the fact that manufacturing

has been dispersing in general—and shrinking in importance—we find that high trans-

port cost industries are less geographically concentrated than manufacturing generally,

and that decreasing transport costs lead to regional specialization. Our results are thus

not specific to an economy in which manufacturing has been declining in relative terms,

since absolute and relative concentration patterns are similar.18

We use two different measures of relative geographic concentration. First, we create

an indicator variable yi,t that takes value one if industry i is significantly concentrated in

year t, and zero otherwise (see Section 3.2 for details). We include in our regressions only

industries that were at least once significantly concentrated over our study period, and

drop the remaining ones. We report linear probability results for both the cross section

and the panel.19 Second, we use a measure of the ‘excess concentration’ of an industry

(see expression (6) in Section 3.2). Again, we restrict our sample to industries that were

at least once significantly concentrated over our study period. Descriptive statistics for

both variables are reported in Table 1.

Table 4 shows our results, both for the cross section ((X10) and (X11)) and the panel

((P10) and (P11)). As shown, all coefficients on transport costs are negative and sig-

nificant, with the exception of (P11) where only the point estimate is negative. The

coefficient on the dummy variable for significant geographic concentration is large and

precisely estimated in both the panel and the cross section, which shows that high trans-

port cost industries tend to be more dispersed than manufacturing in general, and that

decreasing transport costs tend to concentrate industries geographically more strongly

than manufacturing in general. The results using the ‘strength of agglomeration’ vari-
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Table 4: Relative geographic concentration.

(X10) (P10) (X11) (P11)

Variables Significant concentration measure Excess concentration measure Γi

AVTC residual -0.124a -0.611a -0.025b -0.038

(0.040) (0.150) (0.010) (0.025)

Asian share of imports -0.500c -0.042 -0.167c -0.246

(0.333) (0.151) (0.253) (0.099)

Input distance -0.254a -0.412a -0.094a -0.043b

(0.084) (0.021) (0.092) (0.027)

Output distance -0.065 -0.210b -0.003 -0.029b

(0.089) (0.014) (0.085) (0.016)

Industry dummies No Yes No Yes

Observations (naics× years) 1,802 1,802 1,802 1,802

R2 0.351 0.209 0.437 0.238

Notes: a, b and c denote coefficients significant at the 1%, 5% and 10% levels, respectively. Stan-

dard errors are clustered at the industry level and given in parentheses. The dependent variable is

a dummy for ‘significant concentration’ in Models (X10) and (P10), and the excess concentration

measure Γi in Models (X11) and (P11). We retain only industries that are significantly geograph-

ically concentrated at least for one year during 1992–2008. Our measures of input and output

distances, as well as average minimum distance, are computed using N = 5 (see Appendices B.5

and B.6 for details). A constant term is included in all regressions but not reported. All models

include year dummies, the input-output distances, the minimum distance, and the following indus-

try controls: Total industry employment; Firm Herfindahl index (employment based); Mean plant

size; Share of plants affiliated with multiplant firms; Share of plants controlled by foreign firms;

Natural resource share of inputs; Energy share of inputs; Share of hours worked by all workers

with post-secondary education; In-house R&D share of sales. All models include all trade shares.
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able are similar, albeit weaker and less precisely estimated. Overall, the results linking

transport costs to relative geographic concentration are qualitatively similar to the re-

sults linking them to absolute geographic concentration, thus suggesting that they are

not driven by the relative decline in Canadian manufacturing and that agglomeration

and specialization patterns both respond in similar ways to levels of, and changes in, ad

valorem transport costs.

Turning next to the strength with which changes in transport costs operate at differ-

ent spatial scales, we estimate the marginal effects of ad valorem transport costs for 10

kilometer ‘distance bands’. To do so, we change the distance d at which the K-density

cdf is evaluated in our regressions and look at the additional increment in coefficients

by 10 kilometer windows: ∆γi(d1, d2) = CDFi(d2) − CDFi(d1), where d2 − d1 = 10

kilometers. Figure 2 and from Table 16 in Appendix E show that the strongest incre-

mental effects of transport costs on geographic concentration occur at short distances.

There are basically no additional effects beyond about 100 kilometers, with a shorter

distance in the cross section compared to the panel. The largest coefficients (in absolute

value) and statistically most significant results occur in the distance bands between 10

and 30 kilometers in the cross section, and 10 to 100 kilometers in the panel. These

results suggest that many of the agglomeration mechanisms linked to transportation op-

erate at the scale of metropolitan areas, either by influencing within-metro patterns or

between-metro specialization (see Duranton et al., 2014). At longer distances—beyond

about 100–200 kilometers—other factors drive the clustering of firms and the incremen-

tal effect of transport costs on geographic patterns vanishes. In a nutshell, differences in

transport costs map into differences in location patterns especially at small geographic

scales, whereas the patterns are less affected at larger geographic scales.
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Figure 2: Estimated ‘AVTC residual’ coefficients by distance.

(a) Cross-sectional estimates. (b) Panel estimates.
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Notes: Panels (a) and (b) report the marginal effects of ad valorem transport costs for 10 kilometer ‘distance bands’. The variables

included are the same as in models (X6) and (P6) but the dependent variable is defined as ∆γi(d1, d2) = CDFi(d2)− CDFi(d1), where

d2 − d1 = 10 kilometers. The dashed lines are the 90% confidence intervals. We begin with d2 = 10 kilometers and subsequently

increase d1 and d2 by 10 kilometer steps up to d2 = 150 kilometers. we limit the plot to a range of 150 kilometers since all coefficients

are statistically zero after that threshold.
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6 Conclusion

We use micro-level commodity flow data and micro-geographic plant-level data to build

continuous measures of geographic concentration and industry-level ad valorem truck-

ing rates. Using those measures, we provide cross-sectional and panel evidence on the

causal relationship between transport costs and geographic concentration for Canadian

manufacturing industries between 1992 and 2008. Our answer to the question whether

‘the world is flat’ is an emphatic, not yet! The key message of our findings is that the de-

gree of geographic concentration of industries differs systematically with transport costs

in the cross section, and that changes in the geographic concentration of industries due

to changes in transport costs are sizable. Low transport cost industries are significantly

more geographically concentrated, and falling transport costs lead to more agglomera-

tion and regional specialization. These findings are in line with Krugman’s (1991) model

of economic geography and they survive a battery of robustness checks, including ex-

tensive efforts to address inherent endogeneity issues that plague such estimations. We

should also add that, to the best of our knowledge, this is the first instance where direct

industry-level measures of ad valorem transport costs are used to assess their effects on

the geographic concentration of industries.

The lessons for researchers from this work are twofold. The first is that it is difficult

to contemplate investigating industry location (or co-location) without taking transport

costs explicitly into account. In a nutshell, investing in better measures of transport costs

is important and likely to pay substantial dividends. The second is that it is equally dif-

ficult to consider the effects of transport costs in isolation. Their general equilibrium

effects on input-output links and competition, and more generally their endogenous na-
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ture as market prices, have to be grappled with. This involves challenges—both theoret-

ical and empirical—with large investments required for both. While we believe we have

made some strides developing the necessary empirics, theoretical work that provides

full-blown analytical results on the interaction between transport costs and location is

still called for and needed.

The lesson for policy makers is simple: small changes in transport costs—e.g., due to

infrastructure projects or simply fluctuations in output prices—still impact the economic

geography of industries. Contrary to what seems a received wisdom in many policy

circles, the world is not yet a flat featureless plain. Even small changes in ad valorem

transport costs—combined with historically low levels of these costs—can strongly affect

geography because firms compete globally and their slim profit margins depend on

locational advantage. In the end, the debate surrounding the ‘flat world’ is a classical

instance of the fallacy consisting in equating ‘low’ with ‘unimportant’.20
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Notes

1According to the Canadian Trucking Alliance, 90% of final consumed goods are delivered by truck

and approximately two-thirds of Canada-U.S. trade is moved by truck.

2Other dispersive forces, such as idiosyncratic taste differences for regional amenities (e.g., Murata,

2003) or nontraded goods yield the same result. Some recent contributions combine different dispersion

forces like urban costs and idiosyncratic taste differences for regional amenities (see, e.g., Behrens, Murata,

Mion, and Suedekum, 2017). Another strand of agglomeration models relies on the Eaton and Kortum

(2002) framework. Although conceptually different, that framework relies on the same agglomeration

forces as Krugman (1991) and Helpman (1998). When combined with different dispersion forces—e.g.,

a limited housing supply and idiosyncratic taste differences—or a limited land supply (Donaldson and

Hornbeck, 2016) it makes the same predictions as to how transport costs shape geographic concentration.

3We thank a referee for pointing out this important issue.

4Even the scarce studies that use more direct measures of transport costs typically do not have industry-

level variation in those costs (e.g., Generalized Transport Costs in Combes and Lafourcade, 2005; or road

distances interacted with oil prices in Storeygard, 2016). Duranton et al. (2014) combine changes in

infrastructure at the city level with value-to-weight ratios—a proxy for transport costs—to show how

cities’ industrial specialization patterns change with infrastructure investments.

5Using the elimination of a transport subsidy for grain exports in the Canadian prairies in 1995 as a

natural experiment, Ferguson and Olfert (2016) and Brown, Ferguson, and Viju (2017) find strong evidence

of this effect. Farms further away from export ports that received a greater subsidy responded to its

elimination by shifting more of their production of low value per tonne wheat to high value per tonne

canola than farms located closer to ports that received a lower subsidy.

6Like any scalar measure of geographic concentration the K-densities are global in nature: for each

industry-year-distance triple, they provide a single measure of concentration. We can hence not talk about

‘local’ concentration, e.g., in the south-eastern part of Ontario or Quebec only. As Figure 6 in the appendix

shows, manufacturing is geographically concentrated, and the measure picks up that concentration. How-
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ever, it is silent about concentration in specific areas.

7The additive weighting scheme we use gives less weight to pairs of large plants and more weight to

pairs of smaller plants (see Behrens and Bougna, 2015). Using a multiplicative scheme implies that the

results can be strongly driven by a few very large plants. Canada is known to have a very skewed firm-size

distribution, which may be problematic.

8Truckload and specialized carriers typically move loads between points, while less-than-truckload

carriers ship multiple consignments between distribution centers. Specialized carriers use specialized

forms of equipment (e.g., tank trailers), while truckload and less-than-truckload carriers do not.

9In order to take into account the time costs of transportation that will be, at least partially, embedded

in the transport prices (which would capture quality of service for time-dependent trips) and the nature

of the transport service that will vary across commodities and carriers, commodity-carrier fixed effects are

included. See Brown (2015) for a more detailed discussion of the model and the data.

10See Akamatsu, Mori, Osawa, and Takayama (2017) for a discussion of models where falling transport

costs simultaneously cause agglomeration at a large spatial scale and dispersion at a small spatial scale.

11Geographically concentrated industries may ship their output over different distances than less ag-

glomerated industries. While this can be taken into account in (7) by predicting ad valorem rates over

a fixed distance, across commodities there was a 94% correlation between the fixed (500 kilometers) and

variable distance-based estimates. Given that correlation, and that our ‘binning’ instrument should ac-

count for any remaining endogeneity in the cross section, we utilize the variable distance-based estimates.

We also prefer these estimates because many goods are not shipped over a given fixed distance (e.g.,

cement is typically not shipped 500 kilometers), which may also bias the estimates. Note that our panel

estimates are, by construction, unaffected by this choice.

12Whenever we add these variables, we also add a ‘minimum distance’ control. See Appendix B.6.

13When using the ‘AVTC residual’ as our explanatory variable, we should bootstrap the standard errors

to control for the presence of an estimated regressor. We do this for Models (X6) and (P6) in Tables 2 and 3,

and it makes virtually no difference. We thus report non-bootstrapped standard errors (yet clustered by

industry) in all other specifications that use this variable.

14We cannot disentangle the impact of exit, entry, or relocation on the spatial structure. However,

we control for the size of the industry, which at least partly picks up entry and exit dynamics. Note
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that relocations are quite rare and should have little impact on our results. We are also silent on the

contribution of transportation costs to the creation of economic activity, although this is important to

consider (see Redding and Turner, 2015). As a tentative check, we ran panel regressions of industry size

(employment) on our measures of ad valorem transport costs. The coefficients were insignificant.

15We can repeat this exercise for import shares. Holding all import shares fixed at their 1992 level, the

change in the cdf would have been -14.63%. In words, had imports remained at their 1992 levels, the

geographic concentration would have fallen by about 9 percentage points (i.e., 60%) less.

16We also ran (P7) excluding the top 10% of industries by trade shares (exports and imports) with nafta

to minimize remaining endogeneity concerns. The instrumented coefficient on ‘AVTC residual’ drops to

-0.445 (standard error 0.111), whereas the other coefficients remain fairly stable.

17Since there is an insignificant correlation between the oecd export share and the squared residuals,

we did not include it. We substituted instead the nafta import share because it is consistently significant

in the baseline set of models and it meets the criteria for being internally instrumented (see Appendix C).

18Canada’s manufacturing sector has been shrinking, with total employment falling from 1,814.5 thou-

sand workers in 1992 to 1,694.8 thousand workers in 2016, a 7.06% decrease (see Table 10 in Appendix D).

Because of the growth in service industries, manufacturing fell more substantially as a share of overall

employment, from 14.25% in 1992 to 9.37% in 2016.

19Probit results are very similar. However, it is well known that the probit estimator is not consistent

when individual fixed effects are included because of the incidental parameters problem.

20See, e.g., the ‘kaleidoscopic comparative advantage’ debate in international trade (Jagdish Bhagwati,

“Why the world is not flat”, 2010; available at http://www.worldaffairsjournal.org/blog/jagdish-

bhagwati/why-world-not-flat). Last accessed on July 11, 2016.
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‘The world is not yet flat: Transport costs matter!
— Appendix material —

This set of appendices is structured as follows. Appendix A presents a simple framework
of endogenously determined ad valorem transport costs and discusses its usefulness
to highlight endogeneity problems. Appendix B documents additional data sources,
provides complementary information, and explains the construction of our controls for
trade exposure and input-output links. We also discuss potential endogeneity concerns
related to these controls. Appendix C provides details on the Lewbel (2012) estimator
and its implementation. Appendix D contains additional tables and results for geo-
graphic concentration patterns and transport costs. Last, Appendix E contains a large
number of additional estimation results and a battery of robustness checks.

Appendix A. Endogenous transport costs

We develop a simple framework to model transport costs and to highligh possible iden-
tification issues. We are parsimonious in introducing the super- and subscripts of the
model. In particular, we alleviate notation by suppressing subscripts when possible. Our
aim is to guide the empirical analysis, not to provide a full-fledged model with all the
bells and whistles.

A.1. A simple framework

Following Behrens and Picard (2011) and Behrens and Brown (2017), we consider a
spatial economy with two regions, r and s. There are Mr manufacturers (shippers) in
region r, and Ms manufacturers in region s. Without loss of generality, we assume that
M ≡ Mr/Ms ≥ 1, i.e., r is the larger region. Shipping goods requires the services of
freight carriers who charge a per unit freight rate trs to ship commodities from region r to
region s. In what follows, we focus on trucking as the shipping mode which is a highly
competitive sector in Canada.21 We hence assume perfect competition between carriers
who operate under constant returns to scale. We also abstract from market power that
manufacturers may exercise over the transport sector and assume that they take freight
rates as given.

Denote by mr the marginal cost of a manufacturer in region r. He faces demand
Qrs(mr) ≡ Q(prs(mr)) in market s when quoting a delivered price detnoted by prs(mr) ≡

p(mr(Xi
r), trs), where Xi

r is a vector of industry-region specific covariates like local factor
prices or agglomeration economies that affect production costs. A carrier who transports
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merchandise from r to s (the fronthaul part of the trip) needs to return from s to r (the
backhaul part of the trip), whether the truck is fully loaded or not. The carrier will thus
also transport merchandise from s to r conditional on its demand Q(psr(ms)) at the price
psr(ms) ≡ p(ms(Xi

s), tsr).22 Total demand for transport services from r to s and from s

to r, conditional on trs and tsr, is given by

Drs(trs) = Mr Q
(
prs(mr(X

i
r), trs)

)
and Dsr(tsr) = MsQ

(
p(ms(X

i
s), tsr)

)
. (A.1)

Since carriers need to return to their point of departure, they face a logistics problem:
they must commit to the capacity required by the largest demand on a return trip. Taking
into account this backhaul problem, the carriers’ profits are given by:

π(trs, tsr) = Srstrs + Ssrtsr − 2γ(Yc, drs)max{Srs,Ssr}, (A.2)

where Srs denotes the supply of transport services from r to s, and where 2γ(Yc, drs) is
the carriers’ cost of a return trip that they must commit to. The function γ(·) depends on
the distance drs of a one-way trip, and on a vector Yc of carrier- and commodity-specific
factors like the carrier’s productivity, diesel prices, wages, and the type c of commodity
being transported.

A competitive equilibrium in the transport market is given by non-negative freight
rates, trs and tsr, and supplies, Srs and Ssr, of transport services such that: (i) the carriers’
supply profit-maximizing quantities of transport services, taking freight rates, goods
prices, and the shippers’ demand schedules as given; (ii) demand for transport services
equals supply in each direction, i.e., Srs = Drs and Ssr = Dsr; and (iii) carriers’ profits
(A.2) are maximized and equal to zero because of free entry. Using expression (A.2),
profit maximization implies that if Srs > Ssr, then trs = 2γ(Yc, drs) and tsr = 0. The
reverse holds if Srs < Ssr (see Behrens and Picard, 2011, for details). Hence, trs > 0 and
tsr > 0 requires that Srs = Ssr and that trs + tsr = 2γ(Yc, drs). Put differently, transport
costs in both directions are strictly positive if and only if freight rates adjust to balance
flows: Drs(trs) = Dsr(tsr). When Drs(2γ) > Dsr(0), the difference in demand for
transport services is so large that freight rates on the backhaul part of the trip effectively
fall to zero. Zero freight rates are of course an extreme case in our simple model, but it
captures the idea that carriers are willing to transport at steep discounts in the direction
of substantial excess capacity.

To derive simple expressions for freight rates and ad valorem transport costs, assume
that manufacturers are monopolistically competitive and face constant elasticity (ces)
demand schedules. Their profit-maximizing prices on the fronthaul and the backhaul
parts of the trip, conditional on freight rates, are then given by:

pirs =
σi

σi − 1
(mi

r + trs), and pisr =
σi

σi − 1
(mi

s + tsr), (A.3)
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where mi
r ≡ mr(Xi

r) and mi
s ≡ ms(Xi

s) to alleviate notation; and where σi denotes the
industry-specific (constant) price elasticity of demand the manufacturers’ face.23

Given ces demands, we have Qi
rs = A · (pirs)

−σi and Qi
sr = A · (pisr)

−σi , where A is a
demand shifter.24 To balance flows in both directions thus requires that

M−1/σi
[
(mi

r + trs)
]
= mi

s + 2γ(Yc, drs)− trs, (A.4)

where we have used expressions (A.1), (A.3), and the condition trs + tsr = 2γ(Yc, drs).
Solving (A.4), we obtain the fronthaul freight rate:

trs =
1

1 +M−1/σi

[
mi

s −M−1/σimi
r + 2γ(Yc, drs)

]
. (A.5)

The backhaul freight rate can be recovered from the zero profit conditions trs + tsr =

2γ(Yc, drs). The ad valorem rate is given by τrs = 1 + trs/mi
r = 1 + σi−1

σi
trs/pi,prod

r ,

where p
i,prod
r = [σi/(σi − 1)]mr is the producer price of the good. We thus obtain:

τrs =
1

1 +M
− 1

σi

[
1 +

mi
s

mi
r

+
2γ(Yc, drs)

mi
r

]
=

1

1 +M
− 1

σi

[

1 +
σi

σi − 1

(
mi

s

p
i,prod
r

+
2γ(Yc, drs)

p
i,prod
r

)]

,

(A.6)
which is a key object in our empirical analysis and which is useful to highlight possible
identification issues that we need to take care of.

A.2. Identification issues

For βτ in our empirical analysis to capture the causal effect of transport costs on geo-
graphic concentration, we need to address a number of identification problems. The fore-
going framework is useful to understand these problems, which are essentially driven
by M , ms/mr, and γ(Yc, drs).

A first problem is due to agglomeration economies. Viewed through the lense of our
conceptual framework, if 1/mr > 1/ms — i.e., firms in region s are more productive
than firms in region r — and assuming that M = 1, we have trs > γ(Yc, drs) > tsr:
freight rates are larger on the fronthaul trip than on the backhaul trip, because of re-
gional productivity differences that map into regional producer price differences that
affect the flows of goods. The empirical literature has substantiated a significant causal
effect of regional size, Mr, on productivity, 1/mr.25 Geographic concentration may hence
affect transport costs: (i) either directly, by decreasing carriers’ costs γ(Yc, drs) through
density economies (see Mori and Nishikimi, 2002; Tanaka and Tsubota, 2017); (ii) or
through market interactions, by increasing demand for transport services (via productiv-
ity gains), which increases output of goods to be shipped; (iii) or indirectly by increasing
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productivity of manufacturers, which maps into lower prices and, therefore, larger ad
valorem rates (see equation (A.6)).

A second related problem arises because geographic concentration leads to imbal-
ances in shipping patterns, and the latter increase transport costs due to standard lo-
gistics problems like ‘backhaul’ of empty trucks (see, e.g., Jonkeren, Demirel, van Om-
meren, and Rietveld, 2009, and Tanaka and Tsubota, 2017, for empirical evidence). In
terms of our conceptual framework, if markets are symmetric—equal size M = 1 and
productivity mr = ms—then trs = tsr = γ(Yc, drs). In that case, freight rates are sym-
metric and equal to the marginal cost of the carriers on each leg of the trip. However,
when M > 1, i.e., M−1/σi < 1, then market r is larger than market s, so that there is
more demand for transport services from r to s than the reverse. Assume further that
mr = ms. Then we have from (1) that trs > γ(Yc, drs) > tsr. Freight rates are higher on
the fronthaul trip than on the backhaul trip, because of imbalances in shipping patterns
due to market size. These imbalances force carriers to slash rates on the backhaul in
order to fill their trucks. Yet, by doing so they change firms’ locational incentives, giving
a transport cost advantage to the smaller region (see Behrens and Picard, 2011, for a
theoretical analysis). Hence, the geographic concentration of industries, by decreasing
M , directly affects transport costs via the carriers’ backhaul problem.26

To summarize, τi,t in (9) is potentially endogenous to the geographic concentration of
an industry, with stronger concentration increasing transport costs due to a combination
of rising freight prices trs and lower industry output prices pi,prod

r . Thus, the ols estimate
of βτ is likely to be upward biased in our empirical model.

Appendix B. Additional information on data, variables, and

descriptives

B.1. Changes in the asm sampling frame

The survey frame of the asm has evolved over time. Early in the period, it was relatively
stable with, on average, about 32,000 plants per sample year. The sample of plants was
restricted to those that report employment and and have sales in excess of $30,000. Also,
aggregate records were excluded. These records represent multiple (typically small)
plants without latitudes and longitudes. In 2000, however, the number of plants in
the survey increased substantially as the asm moved from its own frame to Statistics
Canada’s centralized Business Register, increasing the sample to an average of 53,000

plants. In 2004, the number of plants in the frame was once again restricted, with many
of the small plants excluded, or included in aggregate records. With this in place, the
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sample returned to near previous levels, averaging about 33,000 plants between 2004

and 2009. We find in our analysis that the expanded survey scope in the early 2000s had
little effect on aggregate trends. Our analysis also deals with the change in the sample
frame through the inclusion of year dummies.

B.2. Additional information on the pccf

The Postal Code Conversion Files associate each postal code with different Standard
Geographical Classifications (sgc) that are used for reporting census data in Canada.
We match firm-level postal code information with geographic coordinates from the pccf.
Postal codes are less fine grained in predominantly rural areas, but the kernel smoothing
of our geographic concentration measures takes care of these variations (see Duranton
and Overman, 2005, for additional details). Figure 6 provides an illustration of the
granularity of our data, zooming onto the eastern part of Ontario and Quebec.

B.3. U.S. industry price indices

The U.S. price indices at the naics 6-digit level are from the nber-ces Manufacturing
Productivity Database (http://nber.org/data/nberces5809.html).

B.4. Controls for industry structure, other agglomeration effects, and

natural advantages

Various organizational industry characteristics—industry size, the mean plant size, the
size distribution of plants in the industry, the presence of multi-unit firms, or for-
eign ownership—are likely to affect geographic concentration (see, e.g., Rosenthal and
Strange, 2003). We use plant-level information from the asm to construct controls for: (i)
industry size and structure (‘total industry employment’; ‘mean plant size’; ‘Herfindahl
index of enterprise-level employment concentration’);27 and (ii) the industry’s ownership
structure (‘share of plants controlled by multiunit firms’; ‘share of foreign-controlled
plants’). All variables are constructed from plant-level data by aggregating to the indus-
try level. Table 5 summarizes the descriptive statistics for these variables.

We also use a proxy related to workers’ educational attainment to control for labor
market aspects and industries’ labor force composition. More specifically, we use the
share of hours worked by all workers with post-secondary education in the total number
of hours worked in the industry. This measure is constructed by aggregating plant-level
data.28
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Table 5: Summary statistics for the control variables and the instrument.

Variable names and descriptions Industry Mean Standard deviation
detail Overall Between Within

Share of industry imports from Asian countries (excluding oecd members) naics6 0.120 0.183 0.172 0.062

Share of imports from oecd member countries (excluding U.S. and Mexico) naics6 0.157 0.141 0.131 0.053

Share of imports from nafta countries (U.S. and Mexico) naics6 0.662 0.273 0.263 0.074

Share of industry exports to Asian countries (excluding oecd members) naics6 0.029 0.058 0.047 0.035

Share of exports to oecd member countries (excluding U.S. and Mexico) naics6 0.086 0.101 0.085 0.054

Share of exports to nafta countries (U.S. and Mexico) naics6 0.833 0.198 0.184 0.073

Industry mean of avg. distance to a dollar of inputs from 5 nearest plants (km) naics6 241 111 95 57

Industry mean of avg. distance to ship a dollar of output to 5 nearest plants (km) naics6 243 124 103 69.1
Minimum average distance to 5 × 257 closest plants naics6 64.7 44.5 42.1 14.4
Share of inputs from natural resource-based industries L-level 0.113 0.171 0.170 0.026

Sectoral energy inputs as a share of total sector output L-level 0.032 0.046 0.045 0.013

Total industry employment naics6 7,038 8,060 7,858.11 1,856

Herfindahl index of enterprise-level employment concentration naics6 0.101 0.097 0.092 0.032

Mean plant size naics6 73.7 145 139 41.8
Share of plants controlled by multi-plant firms naics6 0.212 0.193 0.183 0.061

Share of foreign controlled plants naics6 0.153 0.157 0.146 0.059

Share of hours worked by all workers with post-secondary education naics6 0.401 0.082 0.071 0.041

Intramural research and development expenditures as a share of industry sales L-level 0.011 0.039 0.027 0.005

Minimum distance from major container ports (km) naics6 414 110 103 48

Eastern share of plants naics6 0.749 0.133 0.124 0.047

Ad valorem trucking costs (instrument based on U.S. price indices) naics6 0.038 0.034 0.034 0.006

Notes: All descriptive statistics are for the sample that we use in the regression analysis, which includes 4,369 observations covering
257 industries and 17 years. The standard deviation is decomposed into a between and a within component, which measure the cross
sectional and the time series variation, respectively. Some industry-level data—especially in the klems database—are available at the
L-level only, which is the finest level of data for public release in Canada (between the naics 3- and 4-digit levels of aggregation).

Finally, additional industry-level information from the klems database is used to con-
struct proxies for knowledge spillovers and natural advantage. We control for knowl-
edge spillovers using as a proxy an industry’s research and development (R&D) intensity,
i.e., the ratio of R&D expenditure in an industry to its total output (see Rosenthal and
Strange, 2001). Furthermore, industries may also concentrate geographically because of
localized natural advantages (see, e.g., Ellison and Glaeser, 1999; and Ellison et al. 2010).
We control for industries’ reliance on natural advantages using the share of inputs from
natural resource-based industries, and the sectoral energy inputs as a share of total sector
output.

B.5. International trade exposure

Data sources. The industry-level trade data come from Innovation, Science and Eco-
nomic Development Canada’s Online Trade Database and cover the years 1992 to 2009.
The dataset reports imports and exports at the naics 6-digit level by province and by
country of origin and destination. We aggregate the data across provinces and compute
the shares of exports and imports that go to or originate from a set of country groups:
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Asian countries (excluding oecd), oecd countries (excluding nafta), and nafta coun-
tries. Since the trade data is only available from 1992 on, whereas the klems data is only
available until 2008, we restrict our sample to the 1992–2008 period in all estimations to
maintain comparability of results.

Construction. We use detailed yearly data on imports and exports by industry and
country of origin and destination to control for industries’ import and export exposure
(the ratio of industry imports or exports to industry sales). To somewhat disentangle
the different effects that depend on whether trade is in intermediates or final goods
(on which we have unfortunately no information in our data), and on whether trade is
‘North-North’ or ‘North-South’, we break these measures down by countries of origin:
low-cost Asian countries; oecd countries; and nafta countries. This break down is
also meaningful to distinguish between dominant modes of transportation (seaborne for
Asia, and land borne for nafta), an aspect we look at in Section 5.3 of the paper.

Figure 3: Changes in import- and export trade values (left), and import shares (right).
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The left panel of Figure 3 depicts the changes in the average import and export
values by industry over our study period. The right panel provides a snapshot of how
import and export shares change across broad groups of trading partners. As one can
see from Figure 3, the volume of international trade has increased—up to the great trade
collapse of 2008—and there has been an increasing re-orientation of trade towards Asian
countries (especially for imports, which have overtaken the oecd non-nafta share of
imports.

Endogeneity concerns. The geographic concentration of plants increases productivity
and, therefore, may increase the propensity of an industry to export or to import. For
example, the agglomeration of an industry may reduce prices, which makes import
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penetration harder. In that case, the dispersion of an industry may be associated with
increasing imports since productivity falls. Also, the agglomeration of an industry may
be associated with rising exports due to productivity gains—although the productivity
gains reduce unit export values, the total value of exports may still increase. Since
external instruments for import and export exposure of industries are difficult to find,
we deal with potential endogeneity issues of trade exposure using the Lewbel (2012)
estimator that relies on internal instruments.29

B.6. Input-output distances

Our proxies for input and output links are of the reduced-form type and not structural
(unlike, e.g., the ‘structural supplier and market access’ in Redding and Venables, 2004).
As pointed out by Combes and Gobillon (2015, p.274), there is generally no satisfying
solution to control for supplier and market access in empirical estimation. Either we use
a structural model, which requires many assumptions and has its own limitations, or we
use reduced-form proxies that aim at capturing those interactions. We choose the latter
approach.

Data sources. We use the L-level national input-output tables from Statistics Canada at
buyers’ prices to construct our plant-level proxies for the importance of input and out-
put linkages. These tables—which constitute the finest sectoral public release—feature
42 sectors at an aggregation level somewhere in between the naics 3- and 4-digit levels.
We keep the manufacturing portion only and break them down to the 6-digit level based
on industries’ weights in terms of sales. For each industry, i, we allocate total inputs
purchased or outputs sold in the L-level matrix to the corresponding naics 6-digit sec-
tors. We allocate total sales to each subsector in proportion to that sector’s sales in the
total sales to obtain a 257 × 257 matrix of naics 6-digit inputs and outputs, which we
use to construct the linkages.30

Construction. We construct novel proxies for distance to inputs and outputs that make
use of the micro-geographic nature of our data. Consider a plant ℓ active in industry
Ω(ℓ). Let Ω denote the set of industries and Ωi the set of plants in industry i. Let ki(r, ℓ)
denote the r-th closest industry-i plant to plant ℓ. Our micro-geographic measures of
input- and output linkages are constructed as weighted averages as follows:

Idist(ℓ) = ∑
i∈Ω\Ω(ℓ)

ωin
Ω(ℓ),i ×

1
N

N

∑
j=1

d(ℓ, ki(j, ℓ)), (B.1)
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for inputs, and

Odist(ℓ) = ∑
i∈Ω\Ω(ℓ)

ωout
Ω(ℓ),i ×

1
N

N

∑
j=1

d(ℓ, ki(j, ℓ)), (B.2)

for outputs, where d(·, ·) is the great circle distance between the plants’ postal code
centroids, and where ωin

Ω(ℓ),i and ωout
Ω(ℓ),i are sectoral input- and output shares computed

using the 6-digit versions of the L-level input-output tables described in the foregoing.
We exclude within-sector transactions where Ω(ℓ) = i as those may be capturing all
sorts of intra-sectoral agglomeration economies that are conducive to clustering but not
correlated with input-output linkages. Figure 4 illustrates the construction of the input-
and output links (B.1) and (B.2) for the case where N = 2 and with three industries
(labeled 1, 2, and 3).

Figure 4: Constructing input-output distances and ‘minimum distance’ measures.
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Observe that since ∑i ω
in
Ω(ℓ),i = ∑i ω

out
Ω(ℓ),i = 1 by construction, we can interpret

Idist(ℓ) as the minimum average distance of plant ℓ to a dollar of inputs from its N

closest manufacturing suppliers. Analogously, Odist(ℓ) is the minimum average dis-
tance plant ℓ has to ship a dollar of outputs to its N closest (industrial) customers.31

The larger are Idist(ℓ) or Odist(ℓ), the worse are plant ℓ’s input or output linkages – it
is, on average, further away from a dollar of intermediate inputs or a dollar of demand
emanating from the other industries. Note that our input and output linkages make
use of plant-level location information, but only of national input and output shares. The
latter is due to the fact that we do not directly observe input-output relationships at the
plant level. Yet, given this, our procedure has the advantage to sidestep obvious prob-
lems of endogeneity of those plant-level input-output relationships. Furthermore, our
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input-output measures are computed across all industries except the one the plant be-
longs to. Thus, our measures capture finely the whole cross-industry location patterns,
but do not pick up industrial localization of the sector itself since it is excluded from the
computation.

Figure 5: Changes in average input-output distances, 1990–2009.
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We compute (B.1) and (B.2) for all years and for all plants, using the N = 3, 5, 7,
and 10 nearest plants in each industry. We then average them across plants in each
industry i and each year to get an industry-year specific measure of both input and
output distances:

Odisti =
1

|Ωi|
∑
ℓ∈Ωi

Odist(ℓ) and Idisti =
1

|Ωi|
∑
ℓ∈Ωi

Idist(ℓ), (B.3)

where |Ωi| denotes the number of plants in industry i. As expected, (B.1) and (B.2) are
strongly correlated. Yet, despite that correlation we can include them simultaneously
into our regressions and still identify their effect on geographic concentration.

Figure 5 depicts the time-series changes in the (unweighted) average input and out-
put measures across all industries. As one can see, in 2000 for example, plants were on
average located about 235 kilometers from a dollar of inputs, and had to ship a dollar of
their output on average over a distance of 260 kilometers. Note that time-series changes
in the input- and output-distance measures may reflect three things: (i) entry or exit
of potential suppliers; (ii) changes in the geographic location of input suppliers and/or
clients; and (iii) changes in the input-output coefficients, i.e., the technological relation-
ships. We cannot disentangle the sources (i) and (ii) in our analysis, but, as explained in
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the paper, entry and exit are more important than relocation when looking at plant-level
data.

As can be seen from Figure 5, average input and output distances have fallen over
the 1990–2009 period in Canada, from about 260 kilometers to about 240 kilometers.
One may wonder how this result is compatible with our finding that industries have
geographically dispersed, as documented in Section 3.2. To understand that result, one
needs to keep in mind that the geographic dispersion we document in Section 3.2 is
for within-industry concentration, whereas the measures of input-output distances are
for between-industry concentration. Starting from a situation where industries are spa-
tially segregated would yield a large value of within-industry geographic concentration,
and large between-industry distances. As industries progressively disperse, the within-
industry measure falls, whereas the between-industry distance can fall too if there is
more ‘mixing’ of industries. In a nutshell, if there is less segregation and more mixing
between industries, the geographic concentration of industries would fall, but their dis-
tance to input suppliers and clients can decrease too. Hence, the two findings are not
incompatible.

Note, finally, that one potential problem with the measures in (B.3) is that they are
mechanically smaller in denser areas. To control for this fact, we also compute a ‘mini-
mum distance measure’, i.e., the distance of plant ℓ from the M = N × 257 closest plants,
regardless of their industry. Including that measure into our regressions then controls
for the overall plant density in a location, which implies that our input-output linkage
measures pick up the effect of being closer to a dollar of inputs or outputs conditional
on the overall density of the area the plant is located in. Formally, we compute for each
plant ℓ the following measure:

Mdist(ℓ) =
1
M

M

∑
j=1

d(ℓ, k\Ω(ℓ)(j, ℓ)), (B.4)

where d(ℓ, k\Ω(ℓ)(j, ℓ)) denotes the distance to the jth closest plant in any industry but

Ω(ℓ). We then average this measure across all plants in the same industry as before and
include it as an additional control into our regressions.

Endogeneity concerns. Our measures of input-output linkages are, by construction,
reasonably exogenous to the spatial stucture of a specific industry. First, observe that
we compute those measures using national input-output shares instead of plant-level
input-output shares. Hence, we do not pick up spuriously large values for inputs or
outputs—due to substitution effects—when plants are located in close proximity to
plants in related industries. Second, we exclude the own industry from the compu-
tation, so that the measures only pick up cross-industry links and not the geographic
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concentration of the industry itself (which is on the left-hand side of our regressions).32

Last, for each plant, the input and output distance is computed using all other 256 indus-

tries in Canadian manufacturing. For the geographic concentration of one industry to drive
the input-output linkage measure, that industry would need to substantially affect the
whole location patterns of most other related industries, which strikes us as fairly un-
likely (though we cannot completely rule out this possibility). Although the input- and
output-measures should be reasonably exogenous, we deal with potential endogeneity
issues of input-output links using the Lewbel (2012) estimator that relies on internal
instruments. External instruments are hard to find for these measures.

Appendix C. Applying the Lewbel (2012) method

To apply the Lewbel (2012) procedure, we need to verify two conditions: heteroscedas-
ticity and correlation. First, we regress the potentially endogeneous variables (input and
output distances, as well as trade shares) on all other exogeneous variables of the model.
We then predict the residuals of that regression and run a standard heteroscedasticity
test. We need to reject the homoscedasticity assumption for the Lewbel method to be
applicable. In our case, we strongly reject the null hypothesis of homoscedasticity for
all series of residuals (the p-value is zero in all tests). Second, we take the square of
the predict residuals from the foregoing regression, and check the correlation between
the dependent variable of the regression (input distances, or output distances, or the
different trade shares) and those squared residuals. The correlation needs to be ‘strong’
and statistically strongly significant for the instruments to work properly. In our case,
this condition holds true for the input and output distances, and for all import shares:
the correlation of the squared residuals with the variable itself is significant at 1% in all
cases. It is 0.141 for transportation costs, -0.081 for input distances, -0.089 for output dis-
tances, 0.130 for the Asian share of imports, and -0.079 for the nafta share of imports.
We find no statistically significant correlation for the export shares.

Since the two conditions—heteroscedasticity of the residuals and correlation of the
squared residuals with the variable—are met in our case, we can apply the Lewbel
estimator. Since fixed effects cannot be included in the estimation (see ivreg2h in Stata),
we de-mean all variables by industry first. The exogeneous variables are partialled-out
for the Lewbel estimator and so their coefficients are not reported. Since we have an
exogeneous instrument for transportation costs, we apply the Lewbel estimator only to
deal with potential endogeneity concerns of trade shares and input-output distances.
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Appendix D. Additional tables and results for geographic

concentration and ad valorem transport costs

We first provide additional results for geographic concentration patterns, especially for
employment- or sales-weighted measures. We then provide additional descriptive evi-
dence for ad valorem transport costs.

D.1. Geographic concentration

Data. Figure 6 illustrates the geographic nature of our data, with each red dot corre-
sponding to a manufacturing establishment in 2001. Note that the data we depict are
based on the manufacturing portion of the Scott’s Directories National All database, and
not on the asm Longitudinal Microdata file that we use. Both datasets draw on the busi-
ness register and are fairly comparable in terms of industry and geographic coverage
(see Behrens and Bougna, 2015). We use the Scott’s data to depict the spatial structure of
manufacturing in Figure 6 since confidentiality reasons preclude us from using the asm

Longitudinal Microdata file for that purpose.

Changes over time. Table 6 summarizes our results for all 6-digit industries year-by-
year from 1990 to 2009 and assess the significance of the geographic concentration pat-
terns.33 As can be seen from panel (A) of Table 6, the absolute geographic concentration
of manufacturing has substantially decreased in Canada between 1990 and 2009 (see also
Behrens and Bougna, 2015). While on average 7.6% of the bilateral distances between
plants in manufacturing industries were less than 50 kilometers in 1990, only 5.6% of
those distances still remained within that range in 2009, a 27.1% decrease.34 The results
using either employment or sales weights are very similar, with a little bit less decon-
centration. Geographic concentration is stronger in terms of employment than in terms
of plants, and even stronger in terms of sales than in terms of employment. Figure 7

further illustrates that point.
Panel (A) of Table 6 further shows that concentration has decreased more at shorter

distances, i.e., the incentives for plants to locate in very close spatial proximity to each
other has weakened over time. This likely reflects the fact that manufacturing has been
bid out of cities because of higher land and labor costs there (see, e.g., Henderson, 1997).
That trend also affects the employment-weighted and the sales-weighted measures, but
to a lesser extent.

Panel (B) of Table 6 shows that there is also some evidence that relative geographic
concentration has decreased over our study period, albeit by less than absolute geo-
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Figure 6: Geographic distribution of manufacturing establishments in the south-eastern part of Canada, 2001.

Notes: Spatial distribution of manufacturing establishments in Canada in 2001, based on the Scott’s Directories National All database (manufactur-

ing portion). Those data draw on the business register, as does the asm Longitudinal Microdata file, and are fairly comparable to the latter. We use

them to depict the spatial structure of manufacturing since confidentiality reasons preclude us from using the asm Longitudinal Microdata file.
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graphic concentration. While 34.63% of industries were significantly concentrated com-
pared to manufacturing in general in 1990, that share slightly decreased to 33.07% in
2009. The effects were a bit stronger, albeit qualitatively similar, when using either sales-
or employment-weighted measures.

Comparing the unweighted to either the employment- or the sales-weighted K-
densities reveals some interesting patterns. As can be seen from Figure 7, industries
are on average always more concentrated in terms of employment than in terms of plant
counts, and even more concentrated in terms of sales than in terms of employment. This
is a manifestation of agglomeration economies, and it is consistent with the findings
that more localized plants tend to be larger and more productive than less localized
plants (e.g., Holmes and Stevens, 2014). Note that the ratios are increasing until about
2004, and slightly decreasing afterwards. In 2009, within 50 kilometers distance, the
concentration of employment exceeds that of plant counts by about 13%, whereas the
concentration of sales exceeds that of plant counts by about 20%. Note further that
the de-concentration trend that we documented for the plant-count based measures also
affects the employment-weighted and the sales-weighted measures of geographic con-
centration (see Table 7). Yet, as can be seen from Figure 7, although industries have
in general become more geographically dispersed according to all three measures, the
size of plant pairs in close proximity has tended to increase in relative terms regardless
of whether size is measured by employment or by sales. Put differently, the process
of dispersion is less pronounced when geographic concentration is measured by either
employment or sales, thus suggesting that smaller plants drive a substantial part of the
dispersion process, either through entry and exit or through relocation.

Figure 7: Ratios of mean employment- and sales-based cdfs to count-based cdf by distance.

(a) In 1990. (b) In 2009.
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Table 8 below provides the (unweighted) K-density cdfs in 1990, 1999, and 2009 for
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Table 6: Summary of geographic concentration patterns of Canadian manufacturing industries, 1990–2009.

(1) Unweighted (2) Employment weighted (3) Sales weighted

(A) Mean of the cumulative K-densities across industries, 1990 and 2009: cdf at a distance of
Year 10 km 50 km 100 km 500 km 10 km 50 km 100 km 500 km 10 km 50 km 100 km 500 km
1990 0.020 0.076 0.139 0.420 0.021 0.083 0.151 0.449 0.022 0.086 0.156 0.453

2009 0.013 0.056 0.107 0.373 0.015 0.063 0.121 0.397 0.017 0.068 0.126 0.403

Mean 1990–2009 0.015 0.064 0.121 0.394 0.017 0.073 0.136 0.422 0.019 0.077 0.141 0.428

% change -36.0% -27.1% -22.6% -11.3% -28.7% -23.3% -20.3% -11.4% -21.5% -21.2% -19.3% -11.0%

(B) Share of industries with random, localized, and dispersed point patterns, 1990 and 2009.
Year Random Localized Dispersed Random Localized Dispersed Random Localized Dispersed
1990 52.53 34.63 12.84 52.53 36.96 10.51 54.86 37.35 7.78

2009 59.53 33.07 7.39 63.04 31.52 5.45 63.04 31.13 5.84

Notes: Authors’ computations based on the Annual Survey of Manufacturers Longitudinal Microdata file, 1990–2009. Panel (A): We report the values
for the starting and the end years only since the series in between change rather smoothly (see Table 7 in the supplemental appendix for the full set of
results). The means of the cumulative K-densities are based on 257 industries and are not weighted (but the cdfs for each industry are weighted by
either employment in the middle columns (2), or by sales in the right columns (3)). ‘Mean 1990–2009’ refers to the temporal mean of the K-densities over
the whole 1990–2009 period. ‘% change’ is the percentage change between 1990 and 2009. Panel (B): The statistical significance of the location patterns is
computed using Monte Carlo simulations with 1,000 replications following the procedure developped by Duranton and Overman (2005). We report the
values for the starting and the end years only since the series in between decrease rather smoothly (see Table 9 in the supplemental appendix for the full
set of results).
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the geographically most strongly concentrated industries in Canada. As can be seen,
textile and clothing related industries rank very high in that table, which thus explains
why we run robustness checks later to exclude them in Table 15. Table 9 summarizes
the year-on-year location patterns of industries based on the formal significance test of
Duranton and Overman (2005). As can be seen from the table, the number of signifi-
cantly localized industries has fallen over time, whereas the number of industries that
display location patterns that are not significantly different from random ones has in-
creased. These patterns hold for all geographic concentration measures (unweighted
and employement or sales weighted).

Table 7: Mean of the Duranton-Overman cdfs across industries, 1990 to 2009.

(1) Unweighted (2) Employment weighted (3) Sales weighted
Year 10 km 50 km 100 km 500 km 10 km 50 km 100 km 500 km 10 km 50 km 100 km 500 km
1990 0.020 0.076 0.139 0.420 0.021 0.083 0.151 0.449 0.022 0.086 0.156 0.453

1991 0.019 0.076 0.139 0.423 0.022 0.083 0.152 0.447 0.023 0.087 0.156 0.453

1992 0.020 0.074 0.135 0.418 0.020 0.079 0.147 0.442 0.022 0.084 0.151 0.448

1993 0.019 0.072 0.132 0.416 0.020 0.079 0.145 0.440 0.021 0.082 0.148 0.446

1994 0.017 0.071 0.131 0.413 0.020 0.077 0.143 0.438 0.021 0.081 0.147 0.443

1995 0.017 0.068 0.126 0.402 0.019 0.076 0.141 0.432 0.020 0.080 0.145 0.438

1996 0.016 0.065 0.122 0.402 0.019 0.073 0.136 0.428 0.020 0.076 0.140 0.435

1997 0.016 0.066 0.123 0.401 0.017 0.072 0.135 0.427 0.019 0.077 0.140 0.433

1998 0.016 0.064 0.120 0.396 0.019 0.074 0.135 0.425 0.019 0.078 0.141 0.433

1999 0.015 0.062 0.118 0.398 0.017 0.072 0.134 0.426 0.018 0.076 0.139 0.434

2000 0.014 0.063 0.120 0.383 0.016 0.073 0.135 0.411 0.016 0.075 0.140 0.421

2001 0.013 0.061 0.118 0.383 0.015 0.072 0.136 0.412 0.016 0.076 0.142 0.421

2002 0.013 0.062 0.119 0.383 0.016 0.073 0.137 0.413 0.017 0.078 0.143 0.422

2003 0.013 0.060 0.117 0.384 0.015 0.072 0.137 0.416 0.016 0.075 0.141 0.422

2004 0.013 0.060 0.115 0.379 0.015 0.070 0.132 0.412 0.017 0.074 0.137 0.418

2005 0.012 0.059 0.113 0.379 0.014 0.068 0.130 0.409 0.016 0.072 0.134 0.415

2006 0.013 0.061 0.116 0.378 0.015 0.069 0.131 0.406 0.015 0.072 0.135 0.412

2007 0.012 0.057 0.110 0.374 0.015 0.064 0.122 0.399 0.017 0.069 0.127 0.406

2008 0.012 0.057 0.110 0.376 0.017 0.067 0.125 0.400 0.017 0.069 0.128 0.405

2009 0.013 0.056 0.107 0.373 0.015 0.063 0.121 0.397 0.017 0.068 0.126 0.403

Mean 0.015 0.064 0.121 0.394 0.017 0.073 0.136 0.422 0.019 0.077 0.141 0.428

Change -36.0% -27.1% -22.6% -11.3% -28.7% -23.3% -20.3% -11.4% -21.5% -21.2% -19.3% -11.0%

Notes: Authors’ computations based on the Annual Survey of Manufacturers Longitudinal Microdata file, 1990–2009. The means of
the cdf are based on 257 industries and are not weighted. Column (1) reports the count-based measure, whereas columns (2) and
(3) report measures weighted by employment and by sales, respectively. See Section 3.2 for details. ‘Mean’ refers to the mean of the
K-densities over the 1990–2009 period. ‘Change’ is the percentage change between 1990 and 2009.

D.2. Changes in Canadian manufacturing

Table 10 summarizes broad trends in the Canadian manufacturing sector. As shown,
manufacturing fell substantially as a share of overall employment, although the absolute
decline over the 1992–2016 period was much more limited. Thus, our main results should
be viewed in the context of a shrinking manufacturing sector in relative terms, but not in
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Table 8: Ten most localized naics 6-digit industries (based on plant counts).

naics Industry descripition cdf

(A) 1990

315231 Women’s and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing 0.62

315233 Women’s and Girls’ Cut and Sew Dress Manufacturing 0.55

313240 Knit Fabric Mills 0.53

315292 Fur and Leather Clothing Manufacturing 0.42

315291 Infants’ Cut and Sew Clothing Manufacturing 0.32

315210 Cut and Sew Clothing Contracting 0.30

337214 Office Furniture (except Wood) Manufacturing 0.21

332720 Turned Product and Screw, Nut and Bolt Manufacturing 0.21

313110 Fibre, Yarn and Thread Mills 0.19

333511 Industrial Mould Manufacturing 0.18

(B) 1999

315231 Women’s and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing 0.63

313240 Knit Fabric Mills 0.47

315210 Cut and Sew Clothing Contracting 0.22

333220 Rubber and Plastics Industry Machinery Manufacturing 0.20

336370 Motor Vehicle Metal Stamping 0.18

332720 Turned Product and Screw, Nut and Bolt Manufacturing 0.18

336330 Motor Vehicle Steering and Suspension Components (except Spring) Manufacturing 0.17

333519 Other Metalworking Machinery Manufacturing 0.16

337214 Office Furniture (except Wood) Manufacturing 0.15

315291 Infants’ Cut and Sew Clothing Manufacturing 0.14

(C) 2009

315231 Women’s and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing 0.61

322299 All Other Converted Paper Product Manufacturing 0.29

337214 Office Furniture (except Wood) Manufacturing 0.17

336370 Motor Vehicle Metal Stamping 0.17

332720 Turned Product and Screw, Nut and Bolt Manufacturing 0.16

337215 Showcase, Partition, Shelving and Locker Manufacturing 0.15

321112 Shingle and Shake Mills 0.14

331420 Copper Rolling, Drawing, Extruding and Alloying 0.13

336360 Motor Vehicle Seating and Interior Trim Manufacturing 0.13

315110 Hosiery and Sock Mills 0.13

Notes: The cdf at distance d is the cumulative sum of the K-densities up to distance d. Results in this
table are reported for a distance d = 50 kilometers. To understand how to read that table, take ‘Women’s
and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing’ (naics 315231) as an
example. In 1990, 62 percent of the distances between plants in that industry are less than 50 kilometers.
Put differently, if we draw two plants in that industry at random, the probability that these plants are less
than 50 kilometers apart is 0.62. If we, however, draw two plants at random among all manufacturing
plants, that same probability would only be about 0.08. Clearly, this large difference suggests that
the location patterns of plants in the ‘Women’s and Girls’ Cut and Sew Lingerie, Loungewear and
Nightwear Manufacturing’ industry are very different from those of manufacturing in general. Plants in
that industry are much closer than they ‘should be’ if they were distributed like overall manufacturing.
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Table 9: Percentages of industries with random, localized, and dispersed patterns, 1990–2009.

(1) Unweighted (2) Employment weighted (3) Sales weighted
Year Random Localized Dispersed Random Localized Dispersed Random Localized Dispersed
1990 52.53 34.63 12.84 52.53 36.96 10.51 54.86 37.35 7.78

1991 51.36 36.19 12.45 52.92 38.52 8.56 55.25 36.19 8.56

1992 53.70 36.19 10.12 56.42 35.02 8.56 58.37 33.46 8.17

1993 53.70 34.24 12.06 58.37 33.46 8.17 59.53 31.52 8.95

1994 49.81 36.96 13.23 57.20 33.07 9.73 60.70 30.74 8.56

1995 55.25 33.46 11.28 58.37 33.07 8.56 59.53 32.30 8.17

1996 54.09 35.41 10.51 56.03 35.41 8.56 59.53 33.46 7.00

1997 55.25 35.41 9.34 60.70 32.30 7.00 61.09 32.68 6.23

1998 55.64 34.24 10.12 58.37 35.02 6.61 61.87 32.68 5.45

1999 55.25 34.63 10.12 58.75 35.41 5.84 61.48 32.30 6.23

2000 47.86 37.74 14.40 51.75 40.47 7.78 53.31 40.47 6.23

2001 43.58 41.25 15.18 52.92 40.86 6.23 50.58 42.41 7.00

2002 45.91 39.69 14.40 50.97 41.63 7.39 54.86 37.35 7.78

2003 47.47 36.58 15.95 50.58 40.86 8.56 55.64 35.41 8.95

2004 60.31 30.35 9.34 60.31 33.07 6.61 60.70 32.30 7.00

2005 58.75 33.46 7.78 62.65 31.13 6.23 64.20 31.52 4.28

2006 60.31 30.35 9.34 60.31 33.46 6.23 62.26 33.85 3.89

2007 57.59 33.46 8.95 60.70 33.85 5.45 62.65 32.30 5.06

2008 56.03 34.24 9.73 61.48 31.91 6.61 64.59 29.96 5.45

2009 59.53 33.07 7.39 63.04 31.52 5.45 63.04 31.13 5.84

Notes: Authors’ computations using Statistics Canada’s Annual Survey of Manufacturers Longitudinal Microdata file.
The statistical significance of the location patterns is computed using Monte Carlo simulations with 1,000 replications
following the procedure developped by Duranton and Overman (2005). See Section 3.2 for details.

absolute terms. The estimations in Section 5.3 deal with the issue of the relative decline
of manufacturing.

Table 10: Changes in the overall composition of employment in Canada, 1992–2016.

(1) Manufacturing sector (2) Goods-producing sector (3) Total, all industries
Year Employment Share of total Employment Share of total Employment
1992 1,814.5 14.25% 3,390.6 26.6% 12,730.9
2009 1,745.1 10.43% 3,720.1 22.2% 16,727.6
2016 1,694.8 9.37% 3,833.0 21.2% 18,079.9
% change (1992 – 2016) -7.06% +13.05% +42.02%

Notes: cansim Table 282-0008, ‘Labour force survey estimates (lfs), by North American Industry Classification System
(naics), sex and age group’ for ‘both sexes, 15 years and over’ (figures given in 1,000s of workers). (1) ‘Total, all
industries’ corresponds to naics codes 11 to 91; (2) ‘Goods-producing sector’ corresponds to naics codes 11 to 33; and
(3) ‘Manufacturing sector’ corresponds to naics codes 31 to 33.

D.3. Log-transformation of our key variables

Figure 8 depicts the kernel densities of our log-transformed measures of geographic
concentration (left panel) and ad valorem rates (right panel), pooled across all years
(individual cross sections do not look very different). As shown, the log-transformed
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distributions look fairly normal, which stems from the fact that the untransformed dis-
tributions are strongly right-skewed: there are a few strongly concentrated and a few
high transport cost industries. This feature of our data suggests that a log transforma-
tion is approriate.

Figure 8: Log-transformed key variables.

(a) Geographic concentration. (b) Ad valorem transport costs.
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D.4. Ad valorem transport costs

Table 11 shows summary statistics for the ad valorem transport costs of the top-10 and
the bottom-10 6-digit naics industries. As shown, the ten most expensive industries to
ship have on average an ad valorem transport cost of about 12–14%, whereas the ten
least expensive industries to ship have on average an ad valorem transport cost of about
0.3–0.4%. Clearly, there are enormous differences in the relative importance of shipping
costs across industries. As shown by Figure 1, there is also substantial change across
time as the prices of industry output and the general cost of the transport sector change.

Table 12 provides detailed results of ad valorem trucking costs for 2008 at the 4-digit
level. For confidentiality reasons, we cannot report the 6-digit estimates that we use in
this paper, but the 4-digit and the 6-digit estimates are very much in line with each other.
As Table 12 shows, there are a number of industries with high ad valorem transport
costs: ‘Cement and Concrete Product Mfg’, with 9.9%; ‘Lime and Gypsum Product Mfg’,
with 15.6%; and ‘Other Non-Metallic Mineral Product Mfg’, with 9.3%. These are two
orders of magnitude larger than the ad valorem transport costs for ‘Communications
Equipment Mfg’ with 0.1% or ‘Computer and Peripheral Equipment Mfg’ with 0.3%.
The simple average across 4-digit industries is 2.9%, with standard deviation of 2.39.
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Table 11: Highest and lowest ad valorem trucking costs.

Year Average top-10 Average bottom-10

1992 14.3% 0.40%
1993 13.8% 0.39%
1994 12.8% 0.37%
1995 12.5% 0.37%
1996 12.3% 0.36%
1997 12.7% 0.36%
1998 12.6% 0.35%
1999 12.2% 0.34%
2000 12.6% 0.36%
2001 12.8% 0.36%
2002 12.5% 0.34%
2003 12.9% 0.35%
2004 13.2% 0.37%
2005 13.2% 0.37%
2006 13.5% 0.38%
2007 13.3% 0.37%
2008 14.0% 0.39%

Notes: Statistics Canada, author’s calcula-
tions, based on naics 6-digit industries.

Appendix E. Additional estimation results and robustness

checks

E.1. Cross section in 2008

Table 13 provides detailed ols and iv results for the cross section of industries in 2008.
As can be seen from that table, all of our results reported using the pooled cross section
are robust in the simple cross section.

E.2. Results for employment-weighted, sales-weighted, and five-year

averages panel

Table 14 provides evidence for the robustness of our results to the choice of the depen-
dent variable, to the distance cutoff used for the cdf, and to the year-on-year volatility
of some variables included in the model Model (P6). It shows that the effect of trans-
port costs on geographic concentration is weaker—and the explanatory power of the
model slightly lower—when the latter is measured using either employment- or sales-
weighted cdfs. Although the key qualitative flavor of the results and the sign and
significance of our key coefficient remain unchanged, the estimates using employment-
or sales-weighted K-densities are slightly less sharp. Furthermore, the effect of import
competition tends to be more limited to imports from Asia, and the coefficient tends to
be smaller too. This suggests that much of the adaptation to import competition, partic-
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Table 12: Detailed industry-level ad valorem trucking costs for 2008.

naics Industry name % AVTC
3111 Animal Food Mfg 4.8
3112 Grain and Oilseed Milling 3.3
3113 Sugar and Confectionery Product Mfg 2.7
3114 Fruit and Vegetable Preserving and Specialty Food Mfg 6.2
3115 Dairy Product Mfg 2.1
3116 Meat Product Mfg 3.8
3117 Seafood Product Preparation and Packaging 2.3
3118 Bakeries and Tortilla Mfg 3.0
3119 Other Food Mfg 2.9
3121 Beverage Mfg 4.4
3122 Tobacco Mfg 0.6
3131 Fibre, Yarn and Thread Mills 4.1
3132 Fabric Mills 1.5
3133 Textile and Fabric Finishing and Fabric Coating 5.4
3141 Textile Furnishings Mills 3.8
3149 Other Textile Product Mills 3.2
3151 Clothing Knitting Mills 0.6
3152 Cut and Sew Clothing Mfg 0.6
3159 Clothing Accessories and Other Clothing Mfg 1.0
3161 Leather and Hide Tanning and Finishing 2.3
3162 Footwear Mfg 1.9
3169 Other Leather and Allied Product Mfg 0.9
3211 Sawmills and Wood Preservation 8.9
3212 Veneer, Plywood and Engineered Wood Product Mfg 5.0
3219 Other Wood Product Mfg 4.8
3221 Pulp, Paper and Paperboard Mills 6.3
3222 Converted Paper Product Mfg 5.8
3231 Printing and Related Support Activities 4.7
3241 Petroleum and Coal Products Mfg 2.6
3251 Basic Chemical Mfg 3.4
3252 Resin, Synthetic Rubber, and Artificial and Synthetic Fibres and Filaments Mfg 4.0
3253 Pesticide, Fertilizer and Other Agricultural Chemical Mfg 4.1
3254 Pharmaceutical and Medicine Mfg 1.7
3255 Paint, Coating and Adhesive Mfg 2.8
3256 Soap, Cleaning Compound and Toilet Preparation Mfg 4.2
3259 Other Chemical Product Mfg 2.2
3261 Plastic Product Mfg 2.4
3262 Rubber Product Mfg 2.9
3271 Clay Product and Refractory Mfg 2.7
3272 Glass and Glass Product Mfg 5.4
3273 Cement and Concrete Product Mfg 9.9
3274 Lime and Gypsum Product Mfg 15.6
3279 Other Non-Metallic Mineral Product Mfg 9.3
3311 Iron and Steel Mills and Ferro-Alloy Mfg 2.2
3312 Steel Product Mfg from Purchased Steel 4.0
3313 Alumina and Aluminum Production and Processing 2.4
3314 Non-Ferrous Metal (except Aluminum) Production and Processing 0.9
3315 Foundries 1.8
3321 Forging and Stamping 1.9
3322 Cutlery and Hand Tool Mfg 1.4
3323 Architectural and Structural Metals Mfg 3.8
3324 Boiler, Tank and Shipping Container Mfg 2.1
3325 Hardware Mfg 2.9
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Table 12 (continued)
3326 Spring and Wire Product Mfg 3.6
3327 Machine Shops, Turned Product, and Screw, Nut and Bolt Mfg 3.2
3329 Other Fabricated Metal Product Mfg 1.5
3331 Agricultural, Construction and Mining Machinery Mfg 1.2
3332 Industrial Machinery Mfg 1.5
3333 Commercial and Service Industry Machinery Mfg 0.6
3334 Ventilation, Heating, Air-Conditioning and Commercial Refrigeration Equipment Mfg 1.5
3335 Metalworking Machinery Mfg 1.0
3336 Engine, Turbine and Power Transmission Equipment Mfg 1.5
3339 Other General-Purpose Machinery Mfg 1.6
3341 Computer and Peripheral Equipment Mfg 0.3
3342 Communications Equipment Mfg 0.1
3343 Audio and Video Equipment Mfg 1.2
3344 Semiconductor and Other Electronic Component Mfg 0.7
3345 Navigational, Measuring, Medical and Control Instruments Mfg 0.4
3346 Mfg and Reproducing Magnetic and Optical Media 1.1
3351 Electric Lighting Equipment Mfg 3.5
3352 Household Appliance Mfg 3.3
3353 Electrical Equipment Mfg 1.7
3359 Other Electrical Equipment and Component Mfg 1.7
3361 Motor Vehicle Mfg 0.6
3362 Motor Vehicle Body and Trailer Mfg 1.1
3363 Motor Vehicle Parts Mfg 1.9
3364 Aerospace Product and Parts Mfg 0.7
3365 Railroad Rolling Stock Mfg 2.2
3366 Ship and Boat Building 2.7
3369 Other Transportation Equipment Mfg 1.7
3371 Household and Institutional Furniture and Kitchen Cabinet Mfg 1.9
3372 Office Furniture (including Fixtures) Mfg 4.1
3379 Other Furniture-Related Product Mfg 1.8
3391 Medical Equipment and Supplies Mfg 0.5
3399 Other Miscellaneous Mfg 2.7

Notes: Statistics Canada, author’s calculations.

ularly from low-wage countries which are responsible for the bulk of exit in Canadian
manufacturing, occurs for smaller plants and firms. The residual transport cost variable
remains significantly negative in all specifications that we estimate, irrespective of how
we construct the dependent variable and irrespective of the distance at which we evalu-
ate geographic concentration. Note that this differs from the results using count-based
measures, where the coefficients become insignificant after about 150 kilometer in the
panel specification. In a nutshell, changes in transport costs have a significant effect on
the geographic concentration of economic activity, no matter whether we consider plants,
employment, or sales to measure that concentration. Last, we also re-estimate the model
by averaging all variables over five year periods. Doing so reduces the year-on-year
volatility of some variables (e.g., the trade variables), and allows for slowly moving vari-
ables like R&D expenditures to be potentially better identified in the regressions. It also
deals with business cycle aspects that may drive the changes in the geographic concen-
tration of industries. The last three columns of Table 14 show that our basic qualitative
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Table 13: Estimation results for the cross section in 2008, ols and iv.

(X1’) (X2’) (X3’) (X4’) (X5’) (X6’) (X7’) (X8’) (X9’)

Variables Base Trade IO-links Trade&IO Controls Full Purged iv-2sls Q5 iv-2sls Q3

AVTC -0.219a -0.244a -0.041 -0.086a -0.128b -0.074b

(0.041) (0.048) (0.028) (0.032) (0.052) (0.036)
AVTC residual -0.074b -0.119a -0.103b

(0.036) (0.041) (0.050)
Asian share of imports 0.183 -0.372 -0.545c -0.547c -0.595c -0.577c

(0.451) (0.298) (0.316) (0.317) (0.306) (0.313)
oecd share of imports 0.359 0.007 -0.206 -0.207 -0.220 -0.215

(0.498) (0.320) (0.300) (0.263) (0.289) (0.291)
nafta share of imports -0.161a -0.022 -0.243 -0.245 -0.240 -0.242

(0.407) (0.273) (0.262) (0.263) (0.251) (0.251)
Asian share of exports -1.016b -0.238 0.232 0.234 0.202 0.214

(0.497) (0.401) (0.343) (0.344) (0.327) (0.326)
oecd share of exports -0.863c -0.116 0.438 0.440 0.424 0.430

(0.485) (0.403) (0.369) (0.370) (0.354) (0.354)
nafta share of exports 0.224 0.141 0.478c 0.480c 0.498c 0.491c

(0.381) (0.274) (0.262) (0.262) (0.252) (0.254)
Input distance -0.184c -0.343a -0.247b -0.247b -0.235b -0.239b

(0.103) (0.102) (0.112) (0.112) (0.107) (0.108)
Output distance -0.511a -0.290a -0.501a -0.501a -0.515a -0.510a

(0.105) (0.100) (0.111) (0.111) (0.106) (0.107)
Average minimum distance -0.266a -0.300a -0.317a -0.318a -0.305a -0.309a

(0.064) (0.066) (0.064) (0.064) (0.062) (0.063)
Industry controls included No No No No Yes Yes Yes Yes Yes
Observations (number of naics ind.) 257 257 257 257 257 257 257 257 257

R2 0.102 0.166 0.613 0.632 0.198 0.702 0.702 — —
First-stage R2 1008.95 550.41

First-stage F test of excluded instruments 0.883 0.826

Notes: a, b and c denote coefficients significant at the 1%, 5%, and 10% levels, respectively. Standard errors in parentheses are clustered at
the industry level. The dependent variable is the count-based Duranton-Overman K-density cdf at 50 kilometers distance. We have 257

industries. Our measures of input and output distances, as well as average minimum distance, are computed using N = 5 (see Appendices
A.1 and A.2 for details). A constant term is included but not reported. (X5’)–(X9’) include the following industry controls: Total industry
employment; Firm Herfindahl index (employment based); Mean plant size; Share of plants affiliated with multiplant firms; Share of plants
controlled by foreign firms; Natural resource share of inputs; Energy share of inputs; Share of hours worked by all workers with post-
secondary education; In-house R&D share of sales. ‘AVTC residual’ denotes the residual of the regression of ad valorem trucking costs on
industry multi-factor productivity. (X5’) only includes our industry-level controls. (X8’) and (X9’) use the rank-bin of the cross-sectional
rates as an instrument, with quintile bins (Q5) in the former and tertile bins (Q3) in the latter.
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findings are unchanged when replacing year-on-year variations with five-year averages.
Yet, the results are a bit sensitive to the volatility of some of the variables when using
year-on-year changes, as shown by the substantial decrease in the coefficient on transport
costs.

E.3. Excluding specific industries

Our results may be partly driven by a small number of sectors that were subject to
major changes over our study period. For example, the Canadian textile and clothing
industry experienced a remarkable downward trend in the number of plants and in its
geographic concentration in the wake of the end of the Multi-Fibre Arrangement in 2005

(see Behrens, Boualam, and Martin, 2017). Given that the textile and clothing industry
contains some of the initially most strongly agglomerated sectors in Canada (see Table 8

for details), the large changes in those sectors may drive some of our key results. That
this is not the case, and that all of our main findings in the panel regressions are robust
to the exclusion of those sectors, is shown in Table 15. We also run our panel regressions
by excluding the ‘high-tech’ sectors, and the results are qualitatively unchanged.

E.4. Incremental distance results

We run a variety of regressions to compute the incremental change in the ad valorem
transport cost coefficients for various distance bands. The left half of Table 16 summa-
rizes our results for the cross section, whereas the right half reports the same results for
the panel. To save space, we only report results for the full specifications with the resid-
ual transport cost measure (Models (X6) and (P6)). We define the incremental distance
of the cdf between distances d1 < d2 as ∆γi(d1, d2) = CDFi(d2) − CDFi(d1), with all
variables taken in logs. We estimate the marginal effects by ‘distance bands’. The results
in Table 16 complement those depicted by Figure 2 in the text.

E.5. Dependence on the transport mode

One may be worried that our results pick up the peculiar geography of Canada, where
seaborne trade occurs in a highly localized way through the major ports at the two coasts,
whereas land borne trade with the U.S. (and Mexico) occurs in a much more diffuse way
along the long southern border. This may, in turn, affect the transport cost coefficient.
To address this potential concern, we first include as a control the average minimum
distance of plants in each industry from one of the five major Canadian container ports.
As can be seen from Models (X12) and (P12) in Table 17, the ‘distance to major container
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Table 14: Estimation of (P6) using employment-weighted cdfs, sales-weighted cdfs, and five year averages.

(1) Employment weighted (2) Sales weighted (3) Unweighted, five year averages

Variables cdf 10km cdf 100km cdf 500km cdf 10km cdf 100km cdf 500km cdf 10km cdf 100km cdf 500km
AVTC residual -0.158b -0.150b -0.148a -0.134c -0.127c -0.137a -0.377a -0.361a -0.315a

(0.077) (0.072) (0.053) (0.076) (0.070) (0.045) (0.085) (0.076) (0.060)
Asian share of imports -0.684b -0.531b -0.241c -0.713b -0.604b -0.285c -1.463b -1.012a -0.383c

(0.312) (0.252) (0.145) (0.349) (0.276) (0.162) (0.579) (0.357) (0.202)
oecd share of imports -0.377 -0.232 0.008 -0.305 -0.186 0.043 -0.770 -0.351 -0.006

(0.264) (0.217) (0.164) (0.286) (0.236) (0.176) (0.566) (0.336) (0.236)
nafta share of imports -0.312 -0.208 -0.018 -0.262 -0.195 0.003 -0.821 -0.477 -0.104

(0.244) (0.198) (0.141) (0.276) (0.226) (0.159) (0.518) (0.317) (0.201)
Asian share of exports 0.264 0.368 0.065 0.217 0.299 0.082 0.322 0.366 0.051

(0.483) (0.389) (0.130) (0.507) (0.398) (0.106) (0.539) (0.439) (0.211)
oecd share of exports 0.212 0.330 0.181c 0.349 0.424c 0.280a 0.360 0.450 0.266

(0.295) (0.210) (0.094) (0.288) (0.216) (0.096) (0.386) (0.314) (0.191)
nafta share of exports 0.111 0.276 0.098 0.190 0.318 0.169b 0.265 0.442 0.180

(0.310) (0.206) (0.075) (0.303) (0.213) (0.076) (0.383) (0.296) (0.149)
Input distance -0.256a -0.238a -0.186a -0.256a -0.239a -0.180a -0.258a -0.246a -0.221a

(0.063) (0.054) (0.032) (0.064) (0.056) (0.033) (0.073) (0.059) (0.043)
Output distance -0.234a -0.222a -0.127a -0.200a -0.193a -0.113a -0.374a -0.383a -0.239a

(0.053) (0.048) (0.030) (0.056) (0.048) (0.029) (0.069) (0.062) (0.044)
Minimum distance -0.312a -0.246a -0.119a -0.327a -0.249a -0.131a -0.400a -0.297a -0.141a

(0.050) (0.039) (0.026) (0.054) (0.039) (0.026) (0.067) (0.043) (0.032)
Number of naics industries 257 257 257 257 257 257 257 257 257

Number of years 17 17 17 17 17 17 4 4 4

Observations (naics × years) 4,369 4,369 4,369 4,369 4,369 4,369 1,028 1,028 1,028

R2 0.318 0.371 0.381 0.294 0.359 0.376 0.517 0.599 0.598

Notes: a, b and c denote coefficients significant at the 1%, 5%, and 10% levels, respectively. Standard errors in parentheses are clustered at the
industry level. Our measures of input and output distances, as well as average minimum distance, are computed using N = 5 (see Appendices A.1
and A.2 for details). A constant term is included in all regressions but not reported. All regressions include industry and year dummies and the
following industry controls: Total industry employment; Firm Herfindahl index (employment based); Mean plant size; Share of plants affiliated
with multiplant firms; Share of plants controlled by foreign firms; Natural resource share of inputs; Energy share of inputs; Share of hours worked
by all workers with post-secondary education; In-house R&D share of sales. ‘AVTC residual’ denotes the residual of the regression of AVTC on
industry multi-factor productivity.
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Table 15: Estimation of (P6), excluding textile and high-tech industries.

(1) Excluding textiles industries (2) Excluding high-tech industries

Variables cdf 10km cdf 100km cdf 500km cdf 10km cdf 100km cdf 500km
AVTC residual -0.213a -0.210a -0.193a -0.396a -0.324b -0.205a

(0.077) (0.072) (0.049) (0.145) (0.128) (0.068)
Asian share of imports -0.568c -0.508c -0.211 -1.517a -1.035a -0.380b

(0.322) (0.282) (0.174) (0.554) (0.350) (0.155)
oecd share of imports -0.035 0.007 0.137 -0.860 -0.474 -0.084

(0.275) (0.241) (0.181) (0.530) (0.333) (0.177)
nafta share of imports -0.097 -0.062 0.076 -0.878c -0.531c -0.133

(0.251) (0.221) (0.156) (0.499) (0.317) (0.157)
Asian share of exports 0.627 0.505 0.096 0.468 0.469 0.111

(0.440) (0.358) (0.130) (0.490) (0.378) (0.121)
oecd share of exports 0.471b 0.413b 0.249b 0.346 0.424b 0.271a

(0.186) (0.161) (0.097) (0.236) (0.170) (0.098)
nafta share of exports 0.400b 0.348b 0.128 0.149 0.275 0.124

(0.196) (0.170) (0.080) (0.246) (0.179) (0.085)
Input distance -0.458a -0.439a -0.315a -0.387a -0.346a -0.245a

(0.051) (0.049) (0.036) (0.075) (0.057) (0.038)
Output distance -0.265a -0.245a -0.155a -0.333a -0.336a -0.216a

(0.043) (0.040) (0.029) (0.051) (0.044) (0.030)
Average minimum distance -0.289a -0.265a -0.142a -0.321a -0.257a -0.128a

(0.041) (0.038) (0.026) (0.053) (0.038) (0.026)
Number of naics industries 229 229 229 198 198 198

Number of years 17 17 17 17 17 17

Observations (naics × years) 3,893 3,893 3,893 3,366 3,366 3,366

R2 0.516 0.532 0.539 0.481 0.556 0.553

Notes: a, b and c denote coefficients significant at the 1%, 5%, and 10% levels, respectively. Standard
errors in parentheses are clustered at the industry level. Our measures of input and output distances, as
well as average minimum distance, are computed using N = 5 (see Appendices A.1 and A.2 for details).
A constant term is included in all regressions but not reported. All regressions include industry and
year dummies and the following industry controls: Total industry employment; Firm Herfindahl index
(employment based); Mean plant size; Share of plants affiliated with multiplant firms; Share of plants
controlled by foreign firms; Natural resource share of inputs; Energy share of inputs; Share of hours
worked by all workers with post-secondary education; In-house R&D share of sales. ‘AVTC residual’
denotes the residual of the regression of AVTC on industry multi-factor productivity. Our definition
of high-tech sectors is based on the us Bureau of Labor Statistics classification by Hecker (2005). This
definition of high-tech industries is ’input based’. An industry is ’high-tech’ if it employs a high proportion
of scientists, engineers or technicians. As shown by Hecker (2005), these industries are also usually
associated with a high R&D-to-sales ratio, and they also largely – but not always – produce goods that are
classified as ’high-tech’ by the Bureau of Economic Analysis.

ports’ variable is insignificant in the cross section, and significantly negative in the panel.
This suggests that industries that do move closer to import entry points tend to concen-
trate more geographically, because import entry points are few and themselves located
in a few specific places. As an additional and arguably cleaner test, we also estimate
heterogeneous effects for transport costs based on how much of an industry’s trade is
likely to be seaborne versus land borne. To this end, we compute the relative share of
the industry’s exports to (or imports from) nafta compared to those to Asia. Because
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Table 16: Effects of transport costs on geographic concentration at different spatial scales.

(1) Cross section (X6) by incremental change in the cdf (2) Panel (P6) by incremental change in the cdf

Variables ∆γi(10, 25) ∆γi(25, 50) ∆γi(50, 100) ∆γi(100, 500) ∆γi(10, 25) ∆γi(25, 50) ∆γi(50, 100) ∆γi(100, 500)
AVTC residual -0.072b -0.058c -0.046 -0.022 -0.254a -0.239a -0.230a -0.106

(0.034) (0.033) (0.031) (0.019) (0.078) (0.079) (0.069) (0.089)
Asian share of imports -0.296 -0.233 -0.122 0.265c -1.029b -0.724b -0.352 0.583

(0.289) (0.276) (0.229) (0.152) (0.434) (0.338) (0.235) (0.429)
oecd share of imports -0.235 -0.157 0.007 0.417b -0.450 -0.174 0.102 0.721

(0.281) (0.272) (0.228) (0.165) (0.374) (0.285) (0.211) (0.455)
nafta share of imports -0.184 -0.125 0.013 0.347a -0.526 -0.284 0.007 0.587

(0.244) (0.235) (0.196) (0.132) (0.359) (0.268) (0.190) (0.372)
Asian share of exports 0.592 0.502 0.250 -0.649 0.630 0.658 0.421 -0.782

(0.414) (0.397) (0.314) (0.397) (0.427) (0.405) (0.264) (0.714)
oecd share of exports 0.380 0.324 0.137 -0.307c 0.545a 0.662a 0.470a -0.112

(0.305) (0.297) (0.267) (0.185) (0.198) (0.224) (0.156) (0.304)
nafta share of exports 0.347 0.331 0.197 -0.259c 0.440b 0.541b 0.431a -0.191

(0.250) (0.234) (0.191) (0.139) (0.211) (0.215) (0.162) (0.274)
Input distance -0.302a -0.258a -0.231a -0.100c -0.332a -0.322a -0.315a -0.193a

(0.073) (0.071) (0.071) (0.056) (0.061) (0.056) (0.054) (0.041)
Output distance -0.407a -0.415a -0.378a -0.198a -0.341a -0.340a -0.302a -0.123a

(0.070) (0.068) (0.065) (0.052) (0.046) (0.045) (0.045) (0.039)
Minimum distance -0.361a -0.324a -0.267a -0.087b -0.298a -0.243a -0.204a -0.038

(0.047) (0.046) (0.048) (0.036) (0.041) (0.043) (0.038) (0.036)
Industry dummies No No No No Yes Yes Yes Yes
Observations 4,369 4,369 4,369 4,369 4,369 4,369 4,369 4,369

R-squared 0.712 0 .684 0.665 0.417 0.481 0.417 0.436 0 .168

Notes: a, b and c denote coefficients significant at the 1%, 5%, and 10% levels, respectively. The dependent variable is the change ∆γi(d1, d2) =

γi(d1)− γi(d2) in the unweighted (count based) Duranton-Overman K-density cdf between distance d1 and d2. We have 17 years and 257

industries. Standard errors in parentheses are clustered at the industry level. Our measures of input and output distances, as well as
average minimum distance, are computed using N = 5 (see Appendices A.1 and A.2 for details). A constant term is included in all
regressions but not reported. All regressions include industry and year dummies and the following industry controls: Total industry
employment; Firm Herfindahl index (employment based); Mean plant size; Share of plants affiliated with multiplant firms; Share of plants
controlled by foreign firms; Natural resource share of inputs; Energy share of inputs; Share of hours worked by all workers with post-
secondary education; In-house R&D share of sales. ‘AVTC residual’ denotes the residual of the regression of AVTC on industry multi-factor
productivity.
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trade with Asia is mostly seaborne, whereas trade with nafta is mosty land borne, a
higher value for that variable implies that a larger share of that industry’s international
trade goes by truck. We create a dummy variable for the top (Q1) and the bottom (Q4)
quartile of industries according to that measure, and interact it with our transport costs
variable. We also experimented with including directly all trade shares with the interac-
tion terms, but the resulting variables are too colinear to allow for meaningful estimation
of the effects.

Table 17: Port distance and heterogeneous effects by prevalence of mode.

(X12) (P12) (X13) (P13) (X14) (P14)

Variables Port distance Relative nafta exports Relative nafta imports
AVTC residual -0.068b -0.245a -0.092b -0.307a -0.068b -0.284a

(0.031) (0.082) (0.039) (0.104) (0.032) (0.108)
Distance to major container ports -0.160 -0.235b

(0.125) (0.098)
Relative nafta exports (Q1) -0.069 -0.052b

(0.042) (0.020)
AVTC × relative nafta exports (Q1) -0.095c 0.007

(0.052) (0.022)
Relative nafta imports (Q1) -0.029 -0.030c

(0.041) (0.017)
AVTC × relative nafta imports (Q1) -0.112b -0.022

(0.047) (0.156)
Trade shares included Yes Yes No No No No
Industry dummies No Yes No Yes No Yes
Observations (naics× years) 4,369 4,369 4,369 4,369 4,369 4,369

R2 0.728 0.525 0.728 0.499 0.728 0.498

Notes: a, b and c denote coefficients significant at the 1%, 5% and 10% levels, respectively. Standard errors
are clustered at the industry level and given in parentheses. The dependent variable is the count-based
Duranton-Overman K-density cdf at 50 kilometers distance. We have 17 years and 257 industries. Our
measures of input and output distances, as well as average minimum distance, are computed using
N = 5 (see Appendices A.1 and A.2 for details). A constant term is included in all regressions but
not reported. All models include year dummies, the input-output distances, the minimum distance,
and the following industry controls: Total industry employment; Firm Herfindahl index (employment
based); Mean plant size; Share of plants affiliated with multiplant firms; Share of plants controlled by
foreign firms; Natural resource share of inputs; Energy share of inputs; Share of hours worked by all
workers with post-secondary education; In-house R&D share of sales. Models (X13), (P13), (X14), and
(P14) include ‘Relative nafta imports (Q4)’ and ‘AVTC × relative nafta imports (Q4)’, but they turn
out insignificant.

Models (X13) and (X14) in Table 17 show that there are cross-sectional differences for
high- and low-seaborne-trade industries in terms of how trucking costs affect geographic
concentration. The interaction term for the top quartile is negative and significant for
both exports and imports, thus showing that high transport cost industries that trade
a lot with Asia are slightly more geographically concentrated than high transport cost
industries that trade a lot with nafta, all else equal. This effect may be due to the
difference in the geography of access to markets (sea vs land). The terms involving
the bottom quartile are never significant. A formal test rejects the null hypothesis of
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equality of the interaction terms Q1 and Q4 (not reported in the table) for both exports
and imports in the cross section at the 5% level.

As shown by (P13) and (P14), the same effect shows up in the panel in terms of
levels (the coefficient on the dummy variables being negative and significant for the top
quartile industries). The important point to note in all regressions is that our estimates
for transport costs remain very stable.

E.6. Other robustness checks

We ran a large number of additional robustness checks in our panel regressions, which
we do not reported in detail here. However, we provide a brief summary and description
of those checks.

Information and communication technologies. We investigate whether changes in in-
formation and communication technologies (ict) may lead to more geographic disper-
sion. To this end, we use the ict investment variables from the klems database, inter-
acted with the other variables of the model, to check whether changes in communication
costs have the same effect than changes in transport costs. We did not get any significant
coefficients—neither for the direct effects, nor for the interaction terms.

Heterogeneous transport cost coefficients. We deal with one aspect of this in Sec-
tion 5.3, where we estimate different coefficients by mode. We also estimated additional
models with heterogeneous coefficients since transport costs differ across industries. To
this end, we split our sample into high versus low transport cost industries, using a
‘below median’–‘above median’ criterion to define high and low. The two coefficients
were statistically identical. We also treated decreasing/increasing transport costs in an
asymmetric way as they may have asymmetric impacts. Again, the two coefficients were
fairly close.

Input-output links. We replaced our measures of input and output linkages with the
industry ‘material share to sales’ ratio, a proxy for reliance on intermediate inputs. That
variable turns out to be insignificant in our regressions, whereas the other coefficients are
largely unaffected. We also compute measures of ‘upstreamness’ of industries follow-
ing Antràs, Chor, Fally, and Hillberry (2012). Using those measures, we split industries
into the top quintile Q5 (most upstream industries) and the bottom quintile Q1 (most
downstream industries). We then reestimate the model by interacting the transport and
trade variables with those upstream-downstream dummies to capture potentially differ-
ent impacts on different industries in the vertical production chain. When including our
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input-output measures, splitting by upstreamness has virtually no effects on our main
coefficients, which suggests that our input-output measures capture quite well vertical
industry links. When excluding those measures, we find that more downstream indus-
tries are more sensitive to both transport costs and import competition, although the
differential effects are quite imprecisely estimated.

Labor intensity. We also run regressions where we control for the ‘labor intensity’ of an
industry (not just high-skilled workers vs low-skilled workers). We constructed different
measures using the quantity index of labor and the quantity index of capital from the
klems data, but these variables turned out again to be insignificant in our regressions.

Non-linear transport costs. We further experimented with different non-linear trans-
port cost specifications. More precisely, we estimated the effect of transportation costs
with a spline, allowing the coefficients to vary between ad valorem rates of 0 to 0.05%
(low), 0.05 to 15% (moderate), and 15% or greater (high). These are admittedly arbitrary
categories, but ones that we believe make intuitive sense. The results are, by and large,
consistent with the simpler specification that we use. Yet, we find that at low levels, the
effect of transportation costs is positive or insignificant. At moderate levels, the coef-
ficient is negative and always significant, and at high levels the coefficient is negative
and insignificant. Transport costs thus seem to matter most strongly in the intermediate
range.

Standardized non-log-transformed variables. Finally, we also ran the model using
non-log-transformed variables that we standardized to obtain beta coefficients. We did
this to check our key panel results when the 2008 cross-section estimates of transport
costs are not soaked up by the industry fixed effects. Our main results are robust to
this, however as expected, the estimates are less precise because of the right-skew in the
distribution of transport costs and geographic concentration measures (see Appendix C.3
and Figure 8). It is worth noting that the instrumentation works equally well in the
standardized variables case than in the log-transformed case. In a nutshell, although
the estimates are less precise, they remain qualitatively unchanged, especially in the iv

regressions where the coefficients remain highly significant.

Notes

21There are approximately 34,000 trucking firms in Canada, as measured by the mean over 2001 to
2009 from Statistics Canada’s Business Register. Let sm be the revenue share of firm m. The entropy
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E = ∑m sm log(1/sm) that measures the skewness in the distribution of revenues across firms has mean
E = 3.61 over the period. Using the ‘numbers equivalent’—which can be interpreted as the number of
firms that would be present if revenues were evenly spread across them—this is the equivalent to a market
served by 10E = 4, 070 firms. This large number of competitors suggests that the assumption of a perfectly
competitive industry is reasonable.

22For simplicity, we assume that carriers must ship the same commodity between the two regions in
both directions. We also abstract from ‘deadheading’ for cargo and from multistop pickups.

23Alternatively, we could assume that consumers pay the transport costs, i.e., the manufacturer max-
imizes (pirs − mi

r)Q
i
rs(p

i
rs + trs) instead of (pirs − mi

r − trs)Qi
rs(p

i
rs). With ces demands, this yields

pirs = σi

σi−1 (m+ t/σi) which is the free-on-board (fob) price that increases with shipping distance (Mar-
tin, 2012). In both cases, the cost-insurance-freight (cif) price is the same. In our case, consumers pay
transport costs T = [σ/(σ − 1)]t, whereas in the other case they pay T = t. By definition of the ad
valorem rate τ = pcif/pfob, we have τ irs = 1 + tirs/mi

r in our case and τ irs = (mi
r + tirs)/(mi

r + σ−1
i

tirs) in
the alternative case. As the qualitative behavior of τ irs is the same in both cases, we stick to the simpler
specification where the manufacturer pays the transport costs to the carrier.

24The shifter A could differ between regions. This amounts to replacing M ≡ Mr/Ms with M̃ ≡

(ArMr)/(AsMs) and it does not change our analysis if M̃ ≥ 1.
25See Rosenthal and Strange (2004) and Combes and Gobillon (2015) for the empirics of agglomeration

economies; and Duranton and Puga (2004) and Behrens and Robert-Nicoud (2015) for the theory.
26One can also imagine that the carriers’ cost c depends on the volume of trade between regions via, e.g.,

density economies. See Mori and Nishikimi (2002) and Behrens, Gaigné, and Thisse (2009) for theoretical
models.

27Estimates using a Herfindahl index of plant-level concentration are qualitatively similar.
28We also constructed proxies for labor market conditions using the non-production to production work-

ers ratio and other educational characteristics of the workforce. The latter are available at a more aggre-
gated industry level (L-level) from Statistics Canada’s klems database (e.g., the share of hours worked by
all workers with a university degree, and the labor productivity index). These measures, however, turned
out to be statistically insignificant.

29An alternative would be to use shift-share instruments as in Autor, Dorn, and Hanson (2014), but since
trade shares are controls and not our main variable of interest we do not further pursue this direction.

30Because of confidentiality reasons, we do not use the finer W -level matrices since this would make
disclosure of results more problematic. However, the tests we ran using those matrices yield very similar
results to the ones we report in this paper. Using the L-level matrix also provides smoother series of
input-output linkages than those obtained using the confidential W -level national input-output tables.

31We have no micro-geographic information on final demand and thus cannot include it in our output
linkage measures. Using a population-weighted market potential measure as a proxy is infeasible because
of the very strong persistence through time. However, our industry fixed effects are likely to control for
slow-changing final demand due to changes in the population distribution.

32Our dataset has the standard problem of reporting only a plant’s primary sector of activity. Hence, it
is possible that a plant operates in multiple sectors, so that our measures still partly pick up own-industry
location patters. There is not much we can do about this. We experimented with measures where we
exclude all plants within the same 4-digit industry, and the results do not change qualitatively.

33In computing the K-densities, we follow Behrens and Bougna (2015) and choose a cutoff distance of
800 kilometers. This means that, although we use all plants in each industry to compute the K-densities,
we do not evaluate them numerically beyond 800 kilometers.
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34Table 8 in the supplemental appendix provides a summary of the geographically most concentrated
industries in selected years. Various textile, machinery, and automotive related industries top that list.
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