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Abstract

We study a sender’s optimal choice of precision when he selects from a class

of random signals to persuade a receiver to accept his request, with higher costs

associated with higher precision. The receiver observes both the precision and

a random realization of the signal. We characterize plausible equilibria under

discretion, where the sender privately observes favourable or unfavourable in-

formation before choosing precision. In addition, we characterize the optimal

choice of precision under commitment, where he chooses it before observing his

private information. We then analyze optimal persuasion by comparing the

sender’s payo↵ from discretion and that from commitement. We demonstrate

that as the prior becomes more pessimistic, the sender is more likely to prefer

discretion to commitment.

Keywords: persuasion, costly signals, precision, signalling, D1 equilibrium,

strategic communication, optimal information provision.

JEL codes: D72, D82.
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1 Introduction

Consider an election in which a political challenger hopes to unseat an incumbent

politician. Let us focus on the quality of the candidate, over which the voters have

general agreement. In a general election, the candidate’s quality could mean the

competence of the politician in terms of making and implementing policy. In a

primary election, the candidate’s quality could mean the ability of the politician to

win a general election and advance his party’s agenda. While the incumbent’s quality

is typically well known to the public, the quality of the challenger is ex ante unknown

to voters, and may be the challenger’s private information. The challenger may spend

e↵ort and money on activities to increase his exposure–visiting his district, making

media appearances, buying campaign advertisements, etc. Higher exposure gives

people a better idea about the challenger’s quality but is more costly. Moreover, the

candidate cannot perfectly control the ramifications of his speeches or interviews,

or the information that voters actually internalize. Would a high level of exposure

signal a higher quality? If he had the choice, would the challenger prefer to commit

to a given level of exposure before learning his quality?

Alternatively, consider a newly elected political leader, who has had no previous

o�ce-holding experience. He, as well as the electorate, has an initial estimate but not

precise knowledge of his governing competence. He has to make a decision about the

level of transparency for his administration, with the goal of building his reputation

and securing reelection.1 Being more transparent gives people a better idea about the

leader’s competence, but it is more costly in terms of time (meeting with the press

and constituents) and resources (fulfilling information requests) devoted to providing

access to information.)

To study economic or political situations like the ones above, in this paper, we

build a theoretical model in which a sender (“he”) attempts to persuade a receiver

(“she”) to accept a request. We assume that there are two types of the sender, high

1In a recent example, Justin Trudeau, the newly elected Canadian Prime Minister, pushed for

more transparency in his new administration by lowering the fees for access to information requests

and promised to make appropriate changes to Access to Information Act (even though as of the

writing of this article, has not done so). This is a departure from the practices of his predecessor,

Stephen Harper. See [5].



or low. Throughout the paper, we also refer to the sender’s type as his quality.

Under full information, the receiver would accept the high type and reject the low

type. To capture the essence of the strategic interactions, we assume that the sender

may select from a class of signals that di↵er in their precision, namely, how well

the signal realization reflects the sender’s type. We assume that it is more costly to

send a more precise signal. Before making a decision, the receiver observes both the

sender’s signal choice and the signal realization.

We study two versions of the game – discretion, in which the sender chooses

precision after learning his type, and commitment,2 in which he does so before that.

We label the former persuasive signalling, because as the sender possesses private

information about his type, his choice of precision could itself signal his type, and

in the meantime the signal realization serves to persuade, i.e., to provide relevant

information to the receiver’s decision. We then consider optimal persuasion, in which

we compare the sender’s expected payo↵s under discretion and commitment.

In our analysis, we adopt the D1 refinement of perfect Bayesian equilibria in the

persuasive signalling game, i.e., the discretion case. When the common prior about

the sender’s type is pessimistic or neutral, that is, when it is commonly known that ex

ante the receiver prefers rejection of the sender or is indi↵erent between acceptance

and rejection, there is a unique plausible equilibrium, which is semi-separating. In

this equilibrium, the high type chooses a positive precision level and the low type

mixes between zero precision and that chosen by the high type. Furthermore, the

high type’s choice of precision level, the posterior about quality associated with that

precision, and both types’ payo↵s are uniquely determined, irrespective of the prior

distribution of types. In particular, the posterior associated with the higher precision

is optimistic, in that without observing the signal realization, the receiver would in

2We do not allow the sender to commit to levels of precision contingent on his realized type. This

is in contrast to the full commitment assumption of Kamenica and Gentzkow [26] and Genztkow and

Kamenica [18]. We believe our assumption of limited commitment is realistic in certain settings.

For example, when laws and regulations regarding transparency are written, they cannot be made

contingent on the performance of the administration. If a lobbying group commissions a truly

independent study of the social impact of a policy, it usually cannot dictate how results will be

released depending on his later knowledge of its true impact–because he will be inevitably tempted

to choose the option that benefits his interests.
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fact accept the sender. For all other combinations of precision and posterior, the

high type can convince the receiver of his quality by either being marginally more

or less precise. It follows that the expected payo↵s of both types of the sender are

fixed, regardless of the prior. This is reminiscent of the properties of the Riley [37]

outcome in a standard Spence [40, 41] job market signalling model. We also show

that in the optimistic case, there may exist multiple plausible equilibria, including

one in which the sender always chooses zero precision.

Based on our equilibrium characterization of the discretion case, we investigate

the optimal persuasion policy of the sender. When the common prior is optimistic,

the sender is indi↵erent between commitment and discretion, providing no informa-

tion in both cases, as it is the best plausible equilibrium for the sender under discre-

tion. The more interesting comparisons come from the neutral and pessimistic cases.

In both cases, the sender could prefer either commitment or discretion. However,

fixing everything else, as the receiver’s payo↵ from rejection increases, the sender’s

preference unambiguously moves from commitment to discretion. The key obser-

vation is that the sender’s expected payo↵ from discretion does not depend on the

receiver’s default payo↵ from rejection, while that from commitment is decreasing in

it.

Even though our setup is relatively stylized, our analysis and its conclusions have

the potential of providing economic insight into a number of similar environments,

which we discuss at the end of the paper.

Related literature. With our model, we aim at studying economic and polit-

ical environments where information transmission by a possibly privately informed

sender stems from both the means and the contents of communication. In this re-

spect, our paper belongs to a recent literature that deals with similar contexts, in a

variety of applications, including works by Li and Li [29], Gill and Sgroi [20, 21], and

Boleslavsky, Cotton, and Gurnani [4]. Li and Li [29] study two privately informed

political candidates who can choose the accuracy of a costly public signal (cam-

paign) about his own qualifications or his opponent’s. They interpret this choice as

that between positive and negative campaigns. Gill and Sgroi [20, 21] consider a

privately-informed producer submitting to a test designed to provide public infor-

mation about the type of his product, where he chooses the toughness of the test, or,
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how likely the product is to pass the test. Boleslavsky, Cotton, and Gurnani [4] study

a new-product producer’s timing decision on demonstrations to compete against an

established product. In contrast to our model, the information consumers obtain

through demonstrations are horizontal in nature, which reflects each consumer’s id-

iosyncratic preferences on the product’s characteristics.

Our model, as well as those cited above, can be viewed as an extension of Mil-

grom’s [30] persuasion game.3 The di↵erence between our model and the classic

persuasion game is that provision of information is no longer costless but involves a

cost that is increasing in the precision of information. If it were costless in our model,

then “unravelling” –full revelation of information– would occur, as in Milgrom’s [30]

setup.4

In a closely related paper, Perez-Richet [33] considers a setting that has a binary

type space for the sender and a binary action space for the receiver, but signals are

costless as assumed by Kamenica and Gentzkow [26] and the set of signals is poten-

tially restricted. He focuses on pure strategy perfect Bayesian equilibria and shows

that three di↵erent refinement concepts all select the high type optimal equilibrium

among such equilibria.5 In contrast, we identify the D1 equilibria, but also make a

comparison between commitment to a fixed precision and discretion.6

Our paper is also related to the Bayesian persuasion model of Kamenica and

Gentzkow [26], who assume signals to be costless and the sender can commit to which

signal to choose from an unrestricted set, before learning any private information.

In addition to Perez-Richet [33], Alonso and Cãmara [1], Hedlund [23], and Rayo

and Segal [36] also study Bayesian persuasion where the sender has private informa-

tion. In particular, our result that discretion is better for the sender for pessimistic

3See also Grossman [22] and Milgrom and Roberts [32]. Milgrom [31] provides a survey of the

literature on persuasion games.
4Koessler and Renault [27] generalize the full-revelation result to multi-dimensional settings and

Hedlund [24] to settings with costly information provision.
5In particular, this means that the high type would always be accepted if perfect revelation is

available as a signal.
6In our model, if signals were costless, then commitment would always weakly dominate dis-

cretion, given that full revelation would occur under discretion, while full revelation would also be

available to the sender under commitment.
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priors under costly signals is in contrast to the result of Alonso and Cãmara [1],

who observe that the sender cannot benefit from becoming privately informed if the

sender can commit to any signal from an unrestricted set at no cost. Bayesian per-

suasion with costly signals are studied by Gentzkow and Kamenica [18], who identify

assumptions under which the sender would benefit from persuasion even when signals

are costly.7

Our analysis of the “persuasive signalling” game, where the sender chooses the

precision of her signal under private information, is related to a few other papers

in the signalling literature. Daley and Green [11] consider a signalling game where

the receiver has an extra piece of information about the sender, which they call

grades. Their setup is closely modelled after that of the classic Spence [40, 41] job

market signalling model, in that the sender is paid a wage based on his expected

productivity. Due to assumptions that are di↵erent from ours, they obtain a unique

D1 equilibrium (pooling, semi-pooling, or separating) for all possible priors, while in

ours, there could exist multiple D1 equilibria. In another related paper, Feltovich,

Harbaugh, and To [14] analyse a model of signalling in which the receiver has access to

additional noisy information about the sender, which is not controlled by the sender.

They consider three types of senders and focus on the existence of counter-signalling

equilibria under appropriate assumptions on the distributions of the extra piece of

information.8 Chung and Esö [10] introduce career concerns into the framework and

also demonstrate that countersignalling occurs. Heufer [25] o↵ers an information

economic and evolutionary justification of social drinking, using a modified signalling

game.

Finally, there are a number of recent papers of persuasion where the sender has

private information, but uses di↵erent instruments to persuade the receiver, which

include papers by Chakraborty and Harbaugh [6], Che, Dessein, and Kartik [7], and

Perez-Richet and Prady [34].

7Other theoretical works that are variations of Kamenica and Gentzkow’s [26] model include

those of Kolotilin, Li, Mylovanov, and Zapechelnyuk [28] (private information of the receiver),

Taneva [42] and Wang [43] (multiple receivers), Gentzkow and Kamenica [19] (endogenous acquisi-

tion of information).
8The extension to three types and the analysis of counter-signalling equilibria in our “persuasive

signalling” game is the object of analysis of a companion paper.
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The rest of the paper is organized as follows: Section 2 introduces the model; Sec-

tion 3 characterizes equilibria under discretion; Section 4 investigates the sender’s

choice under commitment; Section 5 characterizes the sender’s optimal policy of per-

suasion; Section 6 concludes. The appendices contain proofs and omitted analytical

details from the main text.

2 Model

A sender (“he”) wants to convince a receiver (“she”) to take a certain action. The

sender has private information about a decision-relevant state, which we hereby refer

to as the sender’s quality. As is standard in the persuasion literature, the receiver

faces a binary action space. She choses an action y from Y = {0, 1}, where action

1 is favoured by the sender and can be interpreted as the receiver’s acceptance of a

request by the sender, and 0 her rejection of it. The quality of the sender, ✓, can

be high or low. It is drawn from the set ⇥ ⌘{✓L, ✓H}, according to the distribution

(1-p0,p0), where p0 2(0,1) is the probability of the high type. The receiver’s payo↵

is equal to the quality of the sender if he takes action 1, and to a default payo↵ ✓M

otherwise:

UR(✓, y) = y✓ + (1� y)✓M ,

where y 2 Y = {0, 1}. We assume ✓M 2 (✓L, ✓H), which means that the receiver

always rejects the low type and accepts the hight type when the sender’s quality is

known.

The sender chooses a normally distributed random signal with standard deviation

� 2 M = R+ ⌘ R+ [ {+1}:9

s(✓, �) = ✓ + �", (1)

where " is a random variable with the standard normal distribution N(0, 1). By

choosing a lower �, the sender selects a higher precision for the random signal s(✓, �)

with support S = R, which is directly informative about the quality of the sender.

Our choice of the normal signal structure allows us to isolate the precision component

from the level component of the information transmitted.

9Our analysis can be readily extended to the case in which M is a strict subset of R+.
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Throughout the paper, we will refer to the sender’s choice of � as a “signal,”

noting that it measures the standard deviation or, inversely, the precision,10 of a

stochastic distribution. The receiver makes a decision, after observing the sender’s

signal choice, �, and a realization of the signal, s.

The sender’s payo↵ is equal to the receiver’s action y minus the cost of the signal:

US(y, �) = y � C(�),

where C : M ! R+ is the cost function. All aspects of the game are common

knowledge except the sender’s quality.

Throughout the rest of the paper, we restrict our attention to the following cost

function:

C(�) = �
✓H � ✓L

�
⌘ �a, (2)

where a as defined is a measure of the precision of the signal and introduced to sim-

plify expressions, and � > 0 measures, up to scale, the marginal cost of precision.11

Our assumption that a more precise signal is costlier is analogous to that of Hed-

lund [24], though he defines precision di↵erently. We believe this assumption fits well

with certain applications, for example, those that we mentioned in the introduction

and those that we discuss in subsection 5.1.

We now turn to the discretion case, in which the sender privately learns his

quality before making his choice of signal. We will investigate the commitment case

in Section 4. We label the game in the discretion case as persuasive signalling because

the sender may signal to the receiver his type through the way he persuades her.12

10In statistics, “precision” typically refers to the inverse of the variance of the normal distribution

(see, for example, DeGroot [12]), but we believe our use of it to refer to the inverse of the standard

deviation does not create confusion.
11 The full characterization of the set of Perfect Bayesian Equilibria, which is available upon

request from the authors, requires only that the cost is nonincreasing in �, i.e., nondecreasing in

precision.

The specific cost function (2) is used only in the characterization of D1 equilibria.
12The feature of our model that the receiver observes both the precision of the distribution

and a realization of this distribution is also present in the persuasion setting of Kamenica and

Gentzkow [26], and Perez-Richet [33]. In the first, there is no information asymmetry between

the sender and the receiver, so there is no potential for signalling. In the second, signalling is not

costly.
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Note that we assume no “single-crossing” condition per se on the cost of precision,

as in standard signalling games.13 However, as we show in Lemma 2, the two types

derive di↵erent relative benefits from having a higher precision. In this sense, our

model enables a form of endogenous “single-crossing” condition. This feature is

common to Daley and Green [11] and is similar in spirit to results present in other

works in the literature, for example, those of Sobel [38] and Fang [13].

2.1 Strategies and equilibrium concept

With a slight abuse of notation, a behavioural strategy for the sender is a function

µS : ⇥ ! �M such that
P

� µ
S(�|✓) = 1 for all ✓ 2 ⇥, where µS(�|✓) is the

probability that a sender of type ✓ chooses signal �. A behavioural strategy for the

receiver is a function µR : M ⇥ S ! [0, 1], where µR(�, s) is the probability that a

receiver that observed signal � and signal realization s takes action y = 1.

First, we consider the standard Perfect Bayesian Equilibrium.

Definition 1. A Perfect Bayesian Equilibrium of the persuasive signalling game

consists of sender’s and receiver’s behavioural strategies, µS and µR respectively,

and the system of posterior beliefs p(✓|�, s), such that

(i) For all � 2 M and s 2 R, µR maximizes the receiver’s expected payo↵ given

beliefs p(·|�, s);
(ii) For all ✓ 2 ⇥ and � 2 M , µS(�|✓) > 0 only if � maximizes type-✓ sender’s

expected payo↵, given the receiver’s strategy µR;

(iii) The receiver’s posterior beliefs are computed using Bayes rule whenever appli-

cable and are consistent with the sender’s behavioural strategy:14

p(✓|�, s) = p0(✓)µR(�|✓)f(s|✓, �)
f(s, �)

=
p0(✓)µR(�|✓)f(s|✓, �)P

✓02⇥ p0(✓0)µR(�|✓0)f(s|✓0, �) ,

where f denotes the probability density functions of the signal.

13See Sobel [39] for a definition. Feltovich, Harbaugh, and To [14] also assume single crossing on

the cost of the signal.
14Since the joint distribution of � and s is hybrid, the Bayes’ rule has to be applied by using the

concept of “regular conditional probability distribution.”
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Similar to standard signalling games, our persuasive signalling game allows for

many perfect Bayesian equilibria. We adopt the solution concept of D1 equilibria,

which places restrictions on the receiver’s beliefs when the sender chooses an action

that is outside of the support of the sender’s equilibrium mixed strategies.15 Since

the sender can only control the standard deviation of the signal, �, but not its actual

realization, we apply the D1 refinement on interim posterior beliefs, i.e., the receiver’s

beliefs about the sender’s type based only on his choice of �, but not on the signal

realization.

Consider a deviation to a signal, �̃, which is chosen with zero probability in

equilibrium. LetD(✓, T, �̃) be the set of mixed-strategy best responses by the receiver

to action �̃ and beliefs concentrated on T ⇢ ⇥, so that a sender of type ✓ 2 ⇥ strictly

prefers �̃ to his equilibrium signal. Let D0(✓, T, �̃) be the set of mixed-strategy best

responses such that ✓ is indi↵erent between his equilibrium strategy and �.

Definition 2. An equilibrium satisfies D1 if for any signal �̃ not chosen in equilib-

rium, whenever

D(✓,⇥, �̃) [D0(✓,⇥, �̃) ( D(✓0,⇥, �̃) for some ✓0 2 ⇥, (3)

the receiver assigns a zero posterior probability to ✓, that is p(✓|�̃) = 0.

For intuition, the D1 refinement can be understood as follows. If there are more

circumstances under which one sender type finds it profitable to deviate to an o↵-

equilibrium action than another, then the receiver should assign zero probability to

the latter in her belief when she sees the action taken.

3 Equilibrium under discretion

Hereafter, we use the single word “equilibrium” to refer to “perfect Bayesian equi-

librium,” and the phrase “D1 equilibrium” to refer to a perfect Bayesian equilibrium

that satisfies the D1 criterion.
15See Fudenberg and Tirole [17] and Sobel [39] for a discussion of the refinement. The papers

that contain the initial idea are those by Banks and Sobel [3], Cho and Kreps [8], and Cho and

Sobel [9]. Recent applied work (see, for example, Ash, Morelli, and Van Weelden [2]; Fox and

Van Weelden [15]; Fu and Li [16]; Rayo [35]; Daley and Green [11] ) has made wide use of the D1

refinement and its variations.
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First, we solve the receiver’s optimization problem. Given her belief on the

sender’s type, p(·|�, s), which is conditional on the sender’s signal � and its real-

ization s, she must choose the probability of accepting the sender (action 1) in order

to maximize her expected utility

max
µR2[0,1]

EUR = max
µR2[0,1]

µREp[✓|�, s] + (1� µR)✓M ,

where the expectation is taken with respect to the receiver’s posterior about the

sender’s quality conditional on (�, s).

The solution to the receiver’s problem is straightforward–it involves the receiver’s

accepting the sender (µR(�, s) = 1) with probability one if his expected quality

is better than the default option, i.e., if Ep[✓|�, s] > ✓M and rejecting him with

probability one if Ep[✓|�, s] < ✓M . In case of indi↵erence, any µR(�, s) 2 [0, 1]

constitutes a best-response. We assume that in this case the receiver accepts the

sender with probability 1/2.

Let ⇡i(�, p) be the probability that the receiver accepts the sender, as perceived

by a sender of type i 2 {H,L} who chooses signal �, anticipating an interim belief

by the receiver p. The problem for the sender is to choose signal(s) � in order to

maximize his expected payo↵. That is, given the function ⇡, a signal � is chosen

with positive probability if and only if:

� 2 arg max
�02M

US(✓, �0) = arg max
�02M

⇡i(�
0, p)� C(�0) = arg max

�02M
E
⇥
µR(�0, s)

⇤
� C(�0).

We assert in the following lemma that for any signal, the receiver’s decision rule

must have a cuto↵ property, wherein the receiver accepts the sender’s request if and

only if the signal exceeds a cuto↵. This encompasses the trivial cases where the

receiver always or never accepts the sender’s request, where the cuto↵ is set to minus

or plus infinity respectively. With a slight abuse of notation, we denote by p the

receiver’s interim posterior about the probability that the sender is of high type,

given signal �.

Lemma 1. For any � 2 M and associated interim posterior p,

1. there exists a cuto↵ value s̄ 2 R ⌘ R [ {�1,+1}, such that the receiver

accepts the sender’s request if and only if s > s̄;

12



2. s̄ is decreasing in the interim posterior, p.

The proof of the above Lemma can be found in the appendix, but the key obser-

vation is that a higher signal realization is associated with a better posterior about

the sender’s quality, which gives the cuto↵ property of the receiver’s optimal decision.

In our particular context, the definition of s̄ is given by the following equation:

✓Hp�
�
s̄�✓H

�

�
+ ✓L(1� p)�

�
s̄�✓L
�

�

p�
�
s̄�✓H

�

�
+ (1� p)�

�
s̄�✓L
�

� = ✓M , (4)

which we may, using more compact notations, rearrange into

p(✓H � ✓M)�(x) + (1� p)(✓L � ✓M)�(x+ a) = 0, (5)

where

x =
s̄� ✓H

�
and a =

✓H � ✓L
�

,

where x is the high type’s cuto↵ point when normalized into standard normal distri-

bution and a, as defined in (2), equals the di↵erence between the normalized cuto↵

points of the high type and the low type. For compactness of notation, we frequently

use notations like s̄0, x0, and a0 defined for an alternative signal �0 and/or interim

posterior p0.

The signal realization threshold s is uniquely determined given signal � and

interim posterior p. The probability that a sender of type i is accepted by the

receiver is therefore the probability type i generates a signal realization above s̄.

Hence, the acceptance probability function ⇡i : M ⇥4⇥ ! [0, 1], i = H,L can be

written

⇡i(�, p)=Pr[s(✓i, �) � s̄(�, p)], (6)

= 1� �

✓
s̄(�, p)� ✓i

�

◆
.

Clearly, ⇡i(�, p) is non-decreasing in p and ⇡H(�, p) > ⇡L(�, p) for all � 2 (0,1)

and p 2 (0, 1), that is, when the high type and low type choose the same level of
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positive precision, the probability of the high type being accepted is strictly higher.

It is convenient to write

⇡H(�, p)= 1� �(x); (7)

⇡L(�, p)= 1� �(x+ a).

3.1 Types of D1 equilibria

In our setup, where the cost of precision does not depend on the type of the sender,

there exists a unique separating (perfect Bayesian) equilibrium, yet it fails D1.16 To

see this, note that in a separating equilibria the probabilities of acceptance for types

H and L are respectively 1 and 0. To satisfy incentive conditions, type L must choose

�L = +1 and type H must choose �H such that C(�H) = 1, so that both types get

a payo↵ of 0. Now, consider any o↵-equilibrium signal choice � > �H . For any best

response s of the receiver, type H is always more likely to benefit from deviation to

�. According to the D1 restriction on o↵-equilibrium beliefs, the receiver must then

assign probability 1 to type H being the deviating type, who, given this belief, would

then want to deviate. Therefore, the unique separating equilibrium in our model

fails D1, which implies that a D1 equilibrium, if any, must involve some degree of

pooling.

This result is in sharp contrast to a standard Spence [40, 41] job market signalling

model. If we consider its variation closest to our model, without the single-crossing

condition, then there exists a unique separating equilibrium where both types are

indi↵erent between choosing high and low education. This equilibrium survives D1

because types H and L have the same preferences. By the same reasoning, any pooling

equilibrium also satisfies D1. In our model, however, due to the additional signal

realization the receiver observes, the D1 criterion eliminates separating equilibria, as

well as many pooling equilibria, as we later show.

We first investigate when pooling on a particular level of precision, i.e., both

the high and the low type choosing it with a positive probability, is possible in

equilibrium. This includes pure pooling, where both types choose one particular

16See Appendix C for the formal statement and proof of this result. Similar results have also

been found by Daley and Green [11].
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level of precision with probability one; or semi-pooling, where, in addition to both

types pooling on a particular precision, at least one of the two types mixes between

di↵erent levels of precision.

To facilitate discussion, it is helpful to define three categories of interim posterior

beliefs, p, which will be used throughout the rest of the paper. Let Ep(✓) = p✓H +

(1� p)✓L be the sender’s expected quality associated with belief p. We denote by p

the belief p that makes it equal to the default quality ✓M , i.e., Ep(✓) = ✓M , which is

equivalent to

p(✓H � ✓M) + (1� p)(✓L � ✓M) = 0. (8)

If we consider the “weighted” relative likelihood of the low type, or the degree of

pessimism

� ⌘ (1� p)(✓M � ✓L)

p(✓H � ✓M)
, (9)

then p = p is equivalent to

� = 1.

The condition for the receiver’s optimal decision, (5), may therefore be rewritten as:

�(x) = ��(x+ a). (10)

Note that (10) implies that when � = 1, x = �(x+ a).

Definition 3. We say that the receiver’s belief p is:

1. optimistic if p > p (� < 1);

2. neutral if p = p (� = 1);

3. pessimistic if p < p (� > 1).

In other words, without any additional information, in the pessimistic case, the

receiver would have rejected the sender, while in the optimistic case, the receiver

would have accepted the sender.

Figures 1, 2, and 3 illustrate the probabilities of acceptance for the two types

and the cost function, in the three cases. Note that there is a symmetry between the

15



Figure 1: Sender’s payo↵s–optimistic case. Figure 2: Sender’s payo↵s–neutral case.

Figure 3: Sender’s payo↵s–pessimistic

case.
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optimistic case and the pessimistic case, in that the probability of acceptance for the

high type in the optimistic case behaves exactly as the probability of rejection for

the low type in the pessimistic case.

Two important properties of the probabilities of acceptance will be used in the

proofs and are therefore summarized in the following Lemma.

Lemma 2. The di↵erence between the high and low type probability of acceptance

⇡H(�, p)� ⇡L(�, p) :

1. is decreasing in � (increasing in a) for any p;

2. is increasing in p on [0, p̄] and decreasing in p on [p̄, 1], and therefore maxi-

mized at p for any �, with its maximum value being 2� [(✓H � ✓L)/(2�)] � 1,

or 2� (a/2)� 1, which is decreasing in �.

Part 1 of the lemma states that the payo↵ di↵erential between the high type and

the low type is increasing in the precision of the signal on which they pool. Part

2 states that their payo↵ di↵erential increases when the receiver’s interim posterior

moves towards neutrality. In essence, this means that signals are more useful for

di↵erentiating the two types when they are more precise and when the receiver’s

belief is closer to being neutral.

Note that in equilibrium, a signal � and interim posterior p can be part of a

pooling or semi-pooling equilibrium only if the low type’s associated payo↵ satisfies

⇡L(�, p)� C(�) � 0,

which in turn also guarantees that the high type’s payo↵ is non-negative.

In the neutral and optimistic cases, we have that ⇡L(�, p) � C(�) � 0 for all

� � �0, where �0 is the � (see Figures 1 and 2) that satisfies

C(�0) = ⇡L(�0, p). (11)

In the pessimistic case, the two curves ⇡L(�, p) and C(�) do not necessarily

intersect. In addition, for general cost functions, when � goes to infinity the relation

between the probability of acceptance and the cost function is not clear. However,
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for any cost function of the type in (2), in the pessimistic case, we can show that

whenever ⇡L(�, p) and C(�) intersect, they intersect twice.17 Let �1
0 and �2

0 denote

the smaller and the larger of these two intersections. We have that ⇡L(�, p)�C(�) � 0

if and only if � 2 [�1
0, �

2
0].

18

Among semi-pooling equilibria, we concentrate on semi-separating equilibria.

This is without loss of generality, as we will show that these are the only types

of semi-pooling equilibria satisfying the D1 refinement.

Definition 4. A semi-pooling equilibrium of the Persuasive Signalling game is said

to be semi-separating if at least one type chooses with a positive probability a signal

that is not chosen by any other type.

It is straightforward to demonstrate semi-separating equilibria always exist. In

particular, let the low type mix between +1 and a � < +1, such that ⇡L(�, p) �
C(�) = 0. Note that as long as the low type chooses +1 with a high enough

probability, the interim posterior p associated with signal � < +1 is optimistic,

and therefore there exists � = �0(p) as defined by (11) so as to make the low type

indi↵erent.

As is standard in signalling models, to best support an equilibrium, beliefs that

a deviating sender is a low type may be set to one. However, such beliefs are not

always plausible in the D1 sense. We develop a series of intermediate results that

will lead to our main propositions on D1 equilibria. We begin by introducing some

notations that are related to potential deviations from an equilibrium action. Let

� 2 (0,+1) be a signal chosen by both types in equilibrium, with associated interim

posterior p 2 (0, 1), and �0 be one chosen by neither. Denote by bpi(�0) (i = H,L)

the p0 that satisfies the following equality:

⇡i(�
0, p0)� ⇡i(�, p) = C(�0)� C(�). (12)

In other words, bpH(�0) is the interim posterior associated with �0 for which the high

type is indi↵erent between deviating to �0 and sticking to �. Similarly, bpL(�0) is

17See Appendix B. With a more general cost function, it would still be the case that for any

interim pessimistic posterior p, pooling on any signal � can be supported as part of a PBE if and

only if ⇡L(�, p)� C(�) � 0.
18See Appendix B.
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the counterpart for the low type. For notational simplicity, we have suppressed its

dependence on p. Type i (i = H,L) would find it strictly profitable to deviate to

�0 if its associated interim posterior is higher than the cuto↵ bpi(�0). Note then that

in our setting the D1 condition, (3), instead of being expressed in terms of sets of

best responses, could be stated in terms of belief thresholds bpi(�0). If there exists a

�0 such that

⇡H(�
0, bpH(�0))� ⇡H(�, p) > ⇡L(�

0, bpH(�0))� ⇡L(�, p); (13)

then the combination (�, p) cannot be part of a D1 equilibrium.

To rule out an outcome as D1 equilibrium, it therefore su�ces to show that

(13) holds for some �0. Given our assumptions, it is straightforward to see that

⇡i(�0, bpH(�0)) (i = H,L) is continuously di↵erentiable in �0 for all �0 2 (0,+1) and

p 2 (0, 1). When �0 = �, both sides of (13) are equal to 0, since bpH(�) = p. To

ensure that there does not exist a �0 such that (13) holds, it is necessary that

d[⇡H(�0, bpH(�0))� ⇡L(�0, bpH(�0))]

d�0 = 0 at �0 = �. (14)

If not, then either a slight upward (if the expression in (14) is positive) or downward

deviation (if it is negative) would disrupt the equilibrium.

Lemma 3. Consider any signal � chosen with positive probability by both types:

1. � can be part of a D1 equilibrium only if the associated interim posterior, p, is

optimistic, or � < 1.

2. � and an optimistic interim posterior p survives as part of a D1 equilibrium if

and only if

� =
�(x)

1� �
. (15)

The implications of the above lemma are striking: Part 1 states that in any D1

equilibrium, the pool of types that choose a particular signal can only be optimistic;

Part 2 further pinpoints the unique interim posterior for any precision in any D1

equilibrium.
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Part 1 of the lemma states that any pooling associated with a pessimistic or

neutral interim posterior cannot be part of a D1 equilibrium. The reason is that

it is ruled out by deviation to a marginally more precise signal. Two e↵ects drive

this result. The first e↵ect is due to the fact that, fixing any interim posterior, the

di↵erence between the high and the low type’s probability of acceptance is increasing

in the precision of the signal, by Part 1 of Lemma 2. Thus, according to the first

e↵ect, a deviation to a higher precision is more likely to benefit the high type. The

second e↵ect is zero for the neutral interim posterior but again favours the high type

being the deviating type for a pessimistic interim posterior. In order to make the

high type indi↵erent between adhering to the initial signal and deviating to a signal

with marginally higher precision, hence higher cost, the receiver’s belief at the latter

must be marginally higher than the equilibrium interim posterior. However, since

the interim posterior is pessimistic, an increase in the interim posterior would cause

the di↵erence between the high type’s probability of acceptance and the low type’s

to become marginally larger, by Part 2 of Lemma 2. So, the combination of these

two e↵ects implies that the high type is more likely to benefit from a deviation to

a more precise signal, and therefore such a deviation should be attributed to the

high type with probability one, which eliminates pooling on a neutral or pessimistic

interim posterior as part of any D1 equilibrium. If the prior is pessimistic or neutral,

any D1 equilibrium must be semi-separating and the low type must mix between no

precision and pooling with high type with a probability that leads to an optimistic

interim posterior.

To understand Part 2 of Lemma 3, recall that if the D1 condition (3) selected

against the low type, and probability one were attributed to the high type, then the

high type would want to deviate. Therefore, we need to ensure that for any deviation

�0, the D1 condition fail. As explained earlier, in our setup, this is equivalent to

showing that bpL(�0)  bpH(�0) or, as a su�cient condition, that for any p0, ⇡H(�0, p0)�
⇡L(�0, p0) < ⇡H(�, p)� ⇡L(�, p). For very high �0, this is always the case, because by

Part 1 of Lemma 2, the di↵erence between ⇡H(�0, p0)� ⇡L(�0, p0) is smaller that the

equilibrium di↵erence. On the other hand, we can disregard very low �0, for which

the high type would never want to deviate because it is too costly. For intermediate
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deviations it is important to define two levels of beliefs p0, p1 and p2, that satisfy:19

⇡H(�
0, p0)� ⇡L(�

0, p0) = ⇡H(�, p)� ⇡L(�, p),

where p1 < p < p2 < p. We provide here, with the support of Figure 4, an heuristic

explanation of how to obtain condition (15) for a deviation �0 > �. The two horizon-

tal lines represent the equilibrium payo↵s of the high and the low type, respectively.

The two increasing curves are their respective payo↵s corresponding to the deviation

�0 plotted as a function of the interim belief. From Part 2 of Lemma 2, we know that

the di↵erence between these two curves is first increasing, reaching a maximum at p

and then decreasing. In the graph, the two curves are below the equilibrium payo↵s

both at p1 and at p2. This means that the intersection between the high type’s payo↵

at deviation �0 and his equilibrium payo↵, bpH(�0), occurs to the right of p2. Since

p < p2, we have ⇡H(�0, bpH(�0))� ⇡L(�0, bpH(�0)) < ⇡H(�, p)� ⇡L(�, p). That is, when

the high type is indi↵erent, the low type strictly wants to deviate. In this situation,

the D1 condition (3) would not select against the low type and the deviation would

not disrupt the proposed equilibrium on the basis of the D1 refinement. The analo-

gous would hold when the two curves are above the equilibrium payo↵s both at p1

and at p2. Problems arise only when at p1 they are below the equilibrium payo↵ but

at p2 they are above. In this case, bpH(�0) would be in (p1, p2) and at bpH(�0) the

di↵erence in the high and low type payo↵ would be higher than the equilibrium dif-

ference, implying that when the high type is indi↵erent between the equilibrium and

�0, the low type strictly prefers to not deviate, disrupting the proposed equilibrium

as D1. To summarize, the signal-interim posterior pair (�, p) survives as part of a D1

equilibrium if and only if we are not in the last situation. Condition (15) is obtained

from considering marginal deviations to both higher and lower precision and using

the cost function (2). It turns out that marginal deviations are all what matters to

rule out that condition (3) selects against the low type. In particular, for marginally

higher deviations we need �  �(x)/(1� �), and for marginally lower deviations we

need � � �(x)/(1� �).

Our next lemma rules out pooling on more than one signal.

19To simplify notation we have omitted the dependence of these two beliefs on �

0.
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Figure 4: Example of D1 equilibrium.

Lemma 4. There exist no D1 equilibria where the high and low types both mix

between more than one signal.

Proof of Lemma 4: Consider the situation where both the low type and the high

type mix on two signals, � and �0, where � < �0, with respective interim posteriors

p and p0. In order to satisfy the D1 criterion, by Lemma 3, it must be the case that

both interim posteriors are optimistic p < p0 < p and that condition (15) holds for

each of them. That is,

� =
�(x)

1� �
=

�(x0)

1� �0 .

From the fact that p > p0 (� < �0), we would need that �(x) > �(x0). Since

both p and p0 are optimistic, x and x0 are both negative, this implies that x > x0 and

�(x) > �(x0), that is ⇡H(�, p) < ⇡H(�0, p0). However, this turns out to be inconsistent

with the conditions for mixing, because C(�) > C(�0).

The above Lemma rules out pooling on two di↵erent precision levels, because the

D1 requirement and the assumption that the cost function is decreasing in precision

are incompatible with each other.
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3.2 Characterization of D1 equilibria

We start by characterising the set of D1 equilibria in the pessimistic and neutral

cases using Lemma 3.

Proposition 1. In the pessimistic and neutral case there exists a unique D1 equilib-

rium and it is semi-separating. Its (optimistic) interim posterior ep and signal e�, are
independent of the prior, and satisfy e� = �0(ep) and

� =
�(x(�0(ep), ep))

1� �(ep) . (16)

Proof of Proposition 1. We have discussed in the previous section that the unique

separating equilibrium does not satisfy the D1 refinement. For analogous reasons no

equilibrium in which the high type partially separates from the low type satisfies the

D1 refinement. By Lemma 3, with pessimistic and neutral priors, no pooling equi-

librium satisfies the D1 refinement. Finally, by Lemma 4, there is no D1 equilibrium

where the two types pool on more than one signal. The only remaining possible D1

equilibrium is semi-separating: the high type chooses a signal �̃ < 1, while the low

type mixes between �̃ and +1 and obtains a payo↵ of zero.

By Lemma 3, �̃ and its associated interim posterior, p̃, must satisfy condition (15),

which becomes (16) in the semi-separating equilibrium. When p = p we know from

the Proof of Lemma 3 that the D1 condition (15) is not satisfied for low deviations,

because � < �(x)
1��

.

As p increases, say to p0 (by increasing the probability that low types choose

+1), from the zero payo↵ condition of the low type we have that �0 decreases to

�0
0. This implies that C(�0) increases and x + a (which is inversely related to the

probability that the low type is accepted) decreases. From the fact that �0
0 < �0,

we have a0 > a, and x0 + a0 < x+ a, which implies that x0 < x. Given that p and p0

are both optimistic, we have that |x|<|x0|, which in turns implies that �(x0) < �(x).

Therefore, the numerator of the RHS of (16) is decreasing in p, while, from the

definition of �, the denominator of the RHS of (16) is increasing. It follows that the

RHS of (16) is decreasing in p. When p goes to 1, x goes to �1 and the RHS of

(16) goes to zero. It follows that there is a unique ep 2 (p, 1), which does not depend
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on the prior, for which (16) is satisfied. The unique D1 equilibrium is therefore

the semi-separating equilibrium associated with this ep, with the low type’s mixing

probabilities constructed appropriately.⌅

The following corollary describes each type of sender’s expected payo↵ in the D1

equilibrium.

Corollary 1.1. Fix the cost function in (2). In the D1 equilibrium of the pessimistic

and neutral cases, the high and low types’ payo↵s are independent of all parameters

of the model except �.

Proof of Corollary 1.1: The three equations that uniquely determine the D1 equilib-

rium are:

�=
�(x)

1� �
;

�(x)=��(x+ a);

1� �(x+ a)= �a.

The only “free” parameter in the above equations is �, the parameter of the cost

function. Given �, we can uniquely solve for x (negative), a, and �. Given that the

low type’s payo↵ is 0 in any D1 equilibrium and that the high type’s is

1� �(x)� �a,

we conclude that neither type’s payo↵ depends on any parameters of the model

except �.

The results of the above Proposition and Corollary indicate that our model pro-

vides a unique prediction in the neutral and pessimistic cases and the resulting

precision choices are independent of the specific value of the prior. Furthermore, the

cost parameter pins down the payo↵s of each sender’s type. This is reminiscent of

the Riley outcome in the standard Spence signalling model.

We now consider the possible D1 equilibria in the optimistic case.

Proposition 2. In the optimistic case:
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1. pooling on no information is always a D1 equilibrium;

2. if p0 is below a certain threshold, there could be either one or two D1 pooling

equilibria on a finite signal, while if it is above that threshold, the only D1

equilibrium is pooling on no information;

3. if p0 < ep, the semi-separating equilibrium that satisfies (16) is also D1.

Intuitively, when the prior is optimistic, pooling on no information is a very robust

equilibrium. In fact, both types obtain the highest possible payo↵ and therefore

neither type would ever want to deviate. For very high priors, this is the only

D1 equilibrium. When the prior is below ep, the interim posterior associated with

the semi-separating equilibrium above, it is straightforward to construct the same

semi-separating equilibrium, which is D1. Finally, there exists a threshold below

which there could be one or two additional pooling equilibria that are D1. Di↵erent

from Daley and Green [11], our persuasive signalling game could have multiple D1

equilibria. For optimistic priors, not only there can be multiple D1 pooling equilibria

but pooling and semi-separating equilibria can coexist.20

The above propositions have implications about what the receiver should believe

in a D1 equilibrium depending on her prior belief and the signal chosen by the

sender. When the sender chooses an uninformative signal, the receiver believes that

the sender is of low quality if the equilibrium is semi-separating, which is always the

case if the prior is not optimistic and can be the case if the prior is optimistic. The

receivers believes that the sender is of high quality if the equilibrium is pooling on the

uninformative signal, which only and always exists when the prior is optimistic. On

the other hand, whenever the sender provides any informative signal to the receiver,

the receiver believes that the sender’s expected quality exceeds the default option’s

quality.

4 Commitment

20In Appendix C we provide an alternative analysis of the D1 condition (15) that uses, as proposed

by Daley and Green [11] the so called belief-indi↵erence curves.
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There are environments in which the sender may choose the precision of his signal be-

fore he learns his type. A newly elected politician can choose a policy of transparency

up front. A manufacturer rolling out a new product can commit to granting access

to the same reviewer or the same length of trial period regardless of the product to

be rolled out.

We call this scenario “commitment,” as opposed to the “discretion” scenario

considered in the previous section, in which the sender decides her precision level

after she learns her type. Note that the commitment we consider is di↵erent from

the case of full commitment considered by Kamenica and Gentzkow [26], where the

sender is allowed to make a type-contingent signal choice. Our analysis therefore is

more suitable for the contexts where there do not exist institutional or technological

arrangements that allow type-contingent signal choices to be made. For example,

it may be infeasible for a politician to sign a contract to advertise heavily on TV

only when he finds out himself to be a strong candidate. More typically, a politician

either commits to advertising buys at the beginning of a campaign (commitment in

our terminology), makes advertising buys after getting better information about his

strength (discretion).21

In the context of our setup, the sender’s choice of precision under commitment

boils down to solving

max
�2M

p0⇡H(�, p
0) + (1� p0)⇡L(�, p

0)� C(�), (17)

where ⇡i(�, p0) is as defined by (5) (or equivalently, (10)) and (6) (or equivalently, (7)).

Let �⇤ be the solution to this problem. Note that it always exists given the continuity

of the objective function and the compactness of the domain M . In addition, let u⇤

be the maximized payo↵ of the sender. Note that u⇤ is a function of p0, ✓H , ✓M ,

✓L, and the cost parameter �, given the cost function C in (2). Equivalently, this

21For example, in the Spring of 2016, Priorities USA, a super PAC supporting Hillary Clinton,

committed to advertising spots in the swing states in the general election in the fall, before her even

winning the Democratic nomination. In contrast, Marco Rubio increased his advertising heavily

in his home state, Florida, right before the Republican primary there, after learning that he was a

weaker candidate than expected from a string of losses in earlier states.
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problem can also be stated as

max
a2[0,1]

p0 [1� �(x)] + (1� p0) [1� �(x+ a)]� �a, (18)

For an interior solution to the optimization problem, a⇤ 2 (0,+1), the first order

condition has to hold, which, using previously derived conditions, simplifies into

p0�(x)
x+ a

a
+ (1� p0)�(x+ a)

x

a
� � = 0, (19)

which in the neutral case (because p0 = p̄ and �x = x+ a) simplifies to

1

2
(2p̄� 1)�(x)� � = 0. (20)

We now turn to the characterization of the sender’s optimal choice under Com-

mitment.

Proposition 3. Under Commitment, the sender’s optimal choice of precision is as

follows:

1. In the optimistic case, the sender commits to �⇤ = +1 (or a⇤ = 0).

2. In the neutral case,

(a) the sender commits to �⇤ = +1 (or a⇤ = 0) if ✓M  (✓H + ✓L)/2 or if

✓M > (✓H + ✓L)/2 and � � (2p̄� 1)�(0)/2;

(b) the sender commits to a finite �⇤ (or a⇤ > 0) if ✓M > (✓H + ✓L)/2 and

� < (2p̄� 1)�(0)/2, which is the unique solution to (19).

3. In the pessimistic case,

(a) the sender commits to �⇤ = +1 (or a⇤ = 0) if ✓M  (✓H + ✓L)/2;

(b) the sender commits to a finite �⇤ (or a⇤ > 0) if ✓M > (✓H + ✓L)/2 and

� is small enough such that (19) has a solution and such that the higher

precision among the two solutions to (19) gives the sender a positive pay-

o↵.
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In the optimistic case, the sender would like to commit to no information pro-

vision and therefore zero costs, because the receiver would then accept the sender’s

request. In the neutral and pessimistic cases, if the default option lies to the left of

the midpoint between high quality and low quality, (✓H + ✓L)/2, the sender would

again prefer to commit to no information revelation. Note that, regardless of signal

precision, given the symmetry of the Normal distribution, if the signal realization

is at the midpoint, the expected value of the sender’s quality is equal to the ex

ante expected quality, which is equal to the default quality in the neutral case and

strictly less than the default quality in the pessimistic case. Thus, in order to be

accepted, the sender must reach a signal realization above the midpoint, which in

turn implies that the conditional probability of the low type being rejected by the

receiver is always higher than (or equal to, in the neutral case) that of the high type

being accepted. When the low type’s quality is closer to the default quality, it means

that it is more likely that the sender will be low type. Thus, it does not benefit the

sender to provide information to the receiver. In contrast, if the default option is

relatively close to high quality, and if the cost of providing information is relatively

low, then, the sender would commit to a positive level of precision, because high

quality is very likely, and it is more likely for the sender to benefit from information

provision. Intuitively, if the sender anticipates a very likely but small improvement

over the receiver’s default option, he is willing to provide information; if the sender

anticipates a very unlikely but large improvement, he is unwilling to do so.

5 Optimal persuasion

In certain scenarios, the sender, when faced with an option to commit to a level

of precision, could either take the option or choose to “wait and see” instead. A

political challenger may commit to a certain level of campaigning from the outset, or

wait and increase intensity of campaigning after realizing that he himself is a more

viable candidate. The new political leader may commit to a transparency policy

at the beginning, or choose to disclose good news and hide bad news about his

administration. To o↵er a potential explanation of such phenomena, we compare the

sender’s expected payo↵s under discretion and commitment.

In the optimistic case, by Proposition 3, �⇤ = +1, as the sender finds it optimal
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to commit to sending a completely uninformative signal and always getting accepted.

In the meantime, when the prior is optimistic, pooling on +1 is also a D1 equilibrium

in our model when the sender chooses a signal after learning her type. So, assuming

the sender and receiver play this pooling equilibrium under discretion, which is the

best from the sender’s perspective, the sender is indi↵erent between commitment

and discretion.22

Consider now the neutral and pessimistic cases. By Proposition 1, under dis-

cretion the only D1 equilibrium is semi-separating, where the high type chooses

�̃ 2 (0,+1), while the low type mixes between +1 and �̃, where

�̃ = �0(p̃),

and p̃ is defined by (16). Let ũ be the sender’s ex ante expected payo↵ in this

equilibrium. To see if the sender’s expected payo↵ under commitment u⇤ is strictly

higher than that under discretion ũ, we need to determine whether or not

u⇤ ⌘ p0
⇥
⇡H(�

⇤, p0)� C(�⇤)
⇤
+ (1� p0)

⇥
⇡L(�

⇤, p0)� C(�⇤)
⇤

>p0 [⇡H(�̃, p̃)� C(�̃)] + (1� p0) [⇡L(�̃, p̃)� C(�̃)] ⌘ ũ. (21)

Since in the semi-separating equilibrium the low type’s expected payo↵ is zero, ũ can

be simplified into

ũ = p0 [⇡H(�̃, p̃)� C(�̃)] .

By Corollary 1.1, ⇡H(�̃, p̃) � C(�̃) is dependent only on the cost function (or �).

Therefore, as opposed to u⇤, ũ is a function of p0 and � only.

Lemma 5. In order for the sender to prefer commitment to discretion, there must

exist a pooling equilibrium under the prior p0.

Proof of Lemma 5: Condition (21) holds only if

⇡H(�⇤, p0)� C(�⇤) > ⇡H(�̃, p̃)� C(�̃)

or
22The sender would strictly prefer commitment to discretion if other D1 equilibria were played

under discretion.
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⇡L(�⇤, p0)� C(�⇤) > ⇡L(�̃, p̃)� C(�̃) = 0.

However, if only the first inequality was holding, condition (3) would hold agaist

the low type in the semi-separating equilibrium defined in Proposition 1. This would

contraddict the fact that the semi-separating equilibrium is D1. Therefore, given

that ⇡L(�̃, p̃)� C(�̃) = 0, �⇤ must be a pooling equilibrium under the prior p0.⌅

The proof utilizes the natural consequence of the D1 equilibrium under discretion.

If the sender can commit to a precision level that gives a higher expected payo↵ than

that under discretion, it must be that the low type is better o↵ under commitment.

If not, the high type would need to be better o↵. However, this would mean the

existence of a signal that breaks the D1 equilibrium under discretion, which is a

contradiction.

The intuition of the above result is that when it is common knowledge that the

sender’s quality is very likely to be low, such that there does not exist a pooling

equilibrium under discretion, the sender does not want to commit to an information

disclosure policy. By so doing, it would be very unlikely that she could reap the

benefit of information revelation, because the receiver would set the acceptance bar

very high due to the very pessimistic prior.

Now, let us consider the neutral case. By assumption, the sender is accepted

with probability 1/2, if no information is provided by the sender. An immediate

observation is therefore that as long as the probability of the high type, p0, is less

than or equal to 1/2, the sender prefers commitment to discretion, because in the

unique separating D1 equilibrium under discretion, the low type receives a zero

payo↵, yet the high type receives a payo↵ less than one. In fact, Proposition 3 states

that the sender will commit to no information provision when p0  1/2.

We now present the main results of this section, which are illustrated in Figure 5.

Proposition 4. In deciding an optimal persuasion policy, the sender’s payo↵ com-

parison between commitment and discretion is as follows:

1. When the prior is optimistic, the sender is indi↵erent between commitment and

discretion.
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Figure 5: Optimal persuasion: comparison between commitment and discretion. The

horizontal axis is the prior probability of H and the vertical axis is the receiver’s

default payo↵.

2. When the prior is neutral, the sender prefers commitment to discretion if and

only if the probability of high type, p0 = p̄, is lower than some p̄c 2 (1/2, 1].

3. When the prior is pessimistic, the sender prefers discretion to commitment if

the prior p0 is lower than some pc 2 (0, p̄).

4. When the prior is neutral or pessimistic, fixing p0, there exists a cuto↵ ✓⇤M 2⇥
✓̄M(p0), ✓H

⇤
, such that the sender prefers commitment to discretion if and only

if ✓M  ✓⇤M , where ✓̄M(p0) is the ✓M that makes the receiver neutral:

(1� p0)(✓M � ✓L)

p0(✓H � ✓M)
= 1.

Let us discuss below the implications of the above proposition.

In the optimistic case, as we have already discussed, pooling on no information

provision is both the best D1 equilibrium in the persuasive signalling game and
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the sender’s optimal choice under commitment. The sender is therefore indi↵erent

between discretion and commitment, assuming the sender-optimal D1 equilibrium

will be played under discretion.

In the neutral case, as the prior, p0, increases–which implies that, fixing ✓H and ✓L,

the default payo↵, ✓M , increases to maintain neutrality–the sender’s expected payo↵

under discretion increases linearly, while the one under commitment is nonlinear in

p0.23However, it can be shown that the sender prefers discretion to commitment if

and only if the prior p0 is above a certain threshold, if at all. Even though the neutral

case is knife-edge, this pattern is still interesting. This means that when the receiver

is ex ante indi↵erent between acceptance and rejection, the sender prefers discretion

to commitment if and only if his quality is very likely to be better than the default

but the quality di↵erence is relatively small.

In the pessimistic case, when the prior is very low, the sender strictly prefers

discretion to commitment owing to Lemma 5 and the fact that there does not exist

any pooling equilibrium for very low priors. The most interesting result on optimal

persuasion in our setup is in the neutral and pessimistic cases, fixing the prior p0:

as the default payo↵ of the receiver, ✓M , increases, which in a sense makes her more

pessimistic about the sender’s quality, the sender becomes more inclined to prefer

discretion. This result is implied by two facts. First, the sender’s expected payo↵ un-

der discretion is independent of ✓M by Corollary 1.1. Second, an envelope argument

demonstrates that the sender’s expected payo↵ under commitment is nonincreasing

in the receiver’s default payo↵, because for any precision choice by the sender, his

probability of acceptance is nonincreasing in the receiver’s default payo↵. There-

fore, as the receiver’s default payo↵ improves, the sender’s optimal persuasion policy

unequivocally moves from commitment to discretion.

Remark. The comparison above crucially depends on our modelling assump-

tions, in particular, that precision is costly and that the sender does not have full

commitment. In fact our “commitment” scenario is one where the sender is allowed

to commit to the same precision level regardless of his type, but not make precision

contingent on his realized quality. When signals are costless and the sender has full

commitment, as Kamenica and Gentzkow [26] assume, Alonso and Câmara [1] show

23Alternatively, one can think of shifting both ✓H and ✓L down by the same amount.
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that the sender would never benefit from learning his type before persuasion takes

place. Even if we dropped just the costly precision assumption, then unravelling (full

revelation) would occur in the persuasive signalling game. The sender would prefer

commitment because he could commit to perfect precision and replicate the outcome

under discretion.

5.1 Applications and discussion

There are many political and economic situations that broadly fit the descriptions of

our model. We first flesh out details of the two leading examples introduced at the

beginning of the paper, and briefly discuss other applications.

1. Political campaigning by a new challenger. Consider the example pro-

vided in the introduction where a political challenger hopes to unseat an in-

cumbent. The challenger’s quality ✓ 2 ⇥ is potentially his private information

and the incumbent has commonly known quality ✓M . Quality is an o�ce-

specific characteristic that positively a↵ects voters’ utilities. The challenger

(the sender) can use a political campaign to a↵ect voters’ (the receiver) assess-

ment about his quality. In political campaigns, the signal realization s is the

outcome of the candidate’s e↵ort and money spent on activities to increase his

exposure–attending town hall meetings, making visits to one’s district, mak-

ing media appearances, buying campaign advertisements, etc. More exposure

(lower �) corresponds to voters getting better information about the challenger.

In this setting, the receiver is the representative voter who must choose whether

to elect the new challenger or re-elect the incumbent.24

A potential interpretation of the optimal persuasion question we study is

whether a challenger without political experience would prefer to acquire ex-

24The assumption of a representative voter is without loss of generality in a context where voters

have common value preferences (the quality of the elected politician) and observe the same informa-

tion. It also applies to situations where voters have di↵erent political preferences, the candidates’

political positions are commonly known, and a voter’s utility derived from a candidate’s political

position and that from his quality is additively separable. In this case, it is su�cient to redefine the

incumbent’s quality as the sum of his quality and the incumbent’s positional (dis)advantage over

the challenger for the median voter.
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perience and therefore knowledge of his own quality before running for o�ce.

The political challenger, who faces an uphill battle to win an election because

the incumbent is perceived to be on average more suitable for the position,

may choose his campaign strategy after conducting polls, or he could com-

mit to a campaign strategy up front. In our model, the challenger’s expected

payo↵ under discretion will not be dependent on how strong his incumbent

opponent is. However, his expected payo↵ under commitment will deteriorate

as the incumbent becomes stronger. So, as the incumbent becomes stronger,

or, alternatively, the challenger becomes weaker, the challenger is more likely

to choose discretion.

2. Choice of transparency policy by a newly elected political leader.

Consider a newly elected political leader, who has had no previous experience

of holding o�ce. He has no private information about his governing compe-

tence ✓ 2 ⇥. He has to make a decision about the level of transparency for

his administration, with the goal of building his reputation and securing re-

election against a future challenger with expected competence ✓M .Being more

transparent (higher precision of the signal s) gives voters (the receiver) a bet-

ter idea about the leader’s competence, but it is more costly in terms of time

(meeting with the press and constituents) and resources (fulfilling information

requests, making data and records easily available to the public) devoted to

providing access to information. He could decide the level of transparency at

the beginning of his term, or do so later and be more transparent only when

he privately learns good news about his competence. Our model predicts that

as the policy initiatives he plans to undertake become worse for the public,

he would more likely prefer to announce how open his administration will be

about his policies after he learns more about their public support.

Other applications of our model include:

1. A lobbying group who wants to persuade a benevolent legislator to support

a policy that favours its interests through commissioning expert studies. The

precision of the signal is reflected in the quality of experts, or the number of

independent studies to commission.
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2. A producer with a new product wants to convince a buyer to switch to it from

a well established product through a free trial.25 The precision of the signal is

reflected in the length of the trial period.

3. An entrepreneur wants to convince potential investors to participate in its

IPO (initial public o↵ering) through an independent auditor’s approval of the

financials of his business. The precision of the signal is reflected in the prestige

of the auditing firm.26

We may take our results to the leading examples of our paper. The interpreta-

tion for the other settings are analogous. In our first leading example, the political

challenger may choose his campaign strategy after conducting polls, or he could com-

mit to a campaign strategy up front. This could be viewed both as comparisons of

di↵erent institutional scenarios or optimal choice by the political challenger. Proposi-

tion 2 tells us that, under discretion, a political challenger who ex ante has a higher

expected quality than the incumbent (optimistic case) is likely to devote minimal

campaign e↵ort or resources to persuade voters of his quality.27 This is true also in

the commitment scenario as Proposition 3 shows, which implies a strong challenger is

indi↵erent between commitment and discretion (Proposition 4). In contrast, if, per-

haps more typically, the political challenger faces an uphill battle to win an election

against a stronger incumbent, then in the discretion case, as Proposition 1 shows, he

will devote e↵ort and money to campaigning even if he is worse than the incumbent.

Corollary 1.1 further tells us that the challenger’s expected payo↵ under discretion

will not be dependent on how strong his incumbent opponent is. Under commitment,

as Proposition 3 shows, the challenger either commits to no information provision

or a positive precision, depending on how likely he is better than the incumbent.

If there is no information provision, his expected payo↵ does not change with the

incumbent’s quality, while if his optimal precision choice is positive, his expected

25This is prevalent in subscription-based products and services, like antivirus software products,

Amazon Prime, Apple Music, and most “software as a service” (SAAS) products.
26Weber and Willenborg [44] provide empirical evidence that larger and more costly auditors

typically provide better prediction about the post-IPO performance of companies.
27Note that, however, it is necessarily not the only plausible outcome in the D1 sense, unless the

challenger is very strong.
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payo↵ under commitment will deteriorate as the incumbent becomes stronger. So,

as the incumbent becomes stronger, or, alternatively, the challenger becomes weaker,

the challenger is more likely to choose discretion.28 Our results can also be applied

to the case of a newly elected leader, who can commit to a level of transparency

after coming into o�ce, or choose it later on at his discretion. Our model predicts

that as the policy initiatives he plans to undertake become worse for the public, he

would more likely prefer to announce how open his administration will be about his

policies after he learns more about their public support.

6 Conclusion

We have considered a model of persuasion between a privately informed sender and a

receiver, where (1) the sender aims to convince a receiver to take one of two possible

actions; (2) the sender chooses the precision of the information to be provided to

the receiver; (3) the receiver observes both the level of precision and a resulting

random realization of information. This setting potentially encompasses a variety

of political and economic situations, which, as alluded to previously, may include

an upstart political candidate’s intensity of campaigning, a new political leader’s

policy on transparency, a lobbying group’s commissioned studies, a new product

manufacturer’s length of free trial period, and an IPO firm’s choice of auditor.

We analyze two versions of the model: discretion, where the sender chooses his

precision before observing his quality, and commitment, where he does so before

learning about his quality.

Under discretion, using the standard D1 equilibrium selection criterion, we show

that in equilibrium, whenever any informative signal is chosen by the sender, it

must be an indication to the receiver that the sender’s information is optimistic, i.e.,

the receiver before observing the realization of the signal would accept the sender’s

request. In the pessimistic and neutral cases the equilibrium is unique and must be

semi-separating: the low type mixes between no information provision and the level

28We abstract from the possibility that the politician/sender influences the electorate/receiver

through lying or misrepresenting facts, as is arguably the case in many controversial policy debates.

We do so in order to highlight the role that information provision/persuasion plays in signalling

the sender’s quality.
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of precision o↵ered by the high type. In such an equilibrium, the level of precision

and the associated belief of the receiver is independent of the prior. Furthermore,

the high and low types’ payo↵s depend only on the cost of precision, but not on

the particular prior or how the default option compares with the two types. In the

optimistic case, pooling on no information provision is always a D1 equilibrium, while

there may also exist other D1 equilibria.

Under commitment, we show that the sender would commit to no information

provision in the optimistic case, and would commit to a positive precision in the

pessimistic and neutral cases when cost of precision is low and when the sender

o↵ers a relatively high probability of a small improvement over receiver’s default

option.

Using the above characterization results, we also provide an analysis of the

sender’s optimal policy of persuasion, namely, whether the sender would like to com-

mit to a level of precision before learning his type (commitment), or choose it after

(discretion). We show that, when the prior about the sender’s quality is optimistic,

the sender is indi↵erent between commitment and discretion as the best outcome for

the sender in both cases is to not provide information. However, interesting compar-

isons arise in the neutral and pessimistic cases. In both cases, the sender could either

prefer commitment or discretion. We show that the sender strictly prefers discretion

to commitment when the prior is so low that there does not exist a pooling (perfect

Bayesian) equilibrium. Furthermore, as the default option of the receiver improves,

the sender’s preference unambiguously move from commitment to discretion. This is

driven by the fact that the sender’s expected payo↵ from discretion is independent

of the receiver’s default option, while his commitment payo↵ is decreasing in it. This

implication is potentially testable.

We believe that, through our admittedly stylized model, we have provided fresh

insights on the choice of information provision strategies by privately informed eco-

nomic and political players. We show that the level of information provision (e.g.,

the length of free trial o↵ered by a software producer) has the potential to signal

quality, but only in a semi-separating equilibrium. Furthermore, the sender prefers

to choose an information provision policy before learning his quality only if he is

relatively confident about his quality vis-à-vis the receiver’s default option. General-
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izations of these results or empirical tests of these results are the natural next steps

for further research.

7 Appendix A: proofs

Proof of Lemma 1. Note that

1. For any � 2 M , ✓, and ✓0, where ✓ < ✓0, f(·|✓0, �) dominates f(·|✓, �) in the

sense of monotone likelihood ratio condition.

This follows directly from the fact that

f(s|✓0, �)
f(s|✓, �) = exp


2s(✓0 � ✓)� (✓02 � ✓2)

2�2

�
,

which is clearly strictly increasing in s given that ✓0 > ✓.

2. For any � 2 M , interim posterior p(·|�) 2 int(�⇥) and signal realizations s

and s0, where s < s0, the posterior p(·|�, s0) dominates p(·|�, s). In other words,
p(✓|�,s0)
p(✓|�,s) is increasing in ✓, or equivalently, for any ✓, ✓0 2 ⇥ and ✓ < ✓0,

p(✓0|�, s0)
p(✓0|�, s) >

p(✓|�, s0)
p(✓|�, s) .

To see that this is the case, re-arrange the above expression as

p(✓0|�, s0)
p(✓|�, s0) >

p(✓0|�, s)
p(✓|�, s) .

We now only have to show that

p(✓0|�, s)
p(✓|�, s) =

p(✓0|�)f(s|✓0, �)/f(s)
p(✓|�)f(s|✓, �)/f(s) ,

is strictly increasing in s, which is the case by Point 1.

3. The result of the lemma then follows, using the fact that dominance in terms of

monotone likelihood ratio condition implies first order stochastic dominance,

which in turns implies that Ep(✓|�, s) is a strictly increasing function of s

and p [in fact the same holds for Ep(v(✓)|�, s) where v is a strictly increasing

function].
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In order to prove most of the remaining results of the paper some preliminary notation

and results are essential.

From (4), which defines the threshold s, by the Implicit Function Theorem, we

have
@s̄

@�
=

p(✓H � ✓M)x2�(x) + (1� p)(✓L � ✓M)(x+ a)2�(x+ a)

D
,

where the term D = p(✓H � ✓M)x�(x) + (1 � p)(✓L � ✓M)(x + a)�(x + a), which,

using (5), is equal to �ap(✓H � ✓M)�(x) and a(1� p)(✓L � ✓M)�(x+ a). Since a > 0,

the term D is always negative. The expression for @s̄/@� can be simplified into

@s̄

@�
=

�x2

a
+

(x+ a)2

a
= 2x+ a. (22)

Given the definition of x and a in (5), we can conclude

@x

@�
=

@s̄/@� · � � (s̄� ✓H)

�2
=

x+ a

�
,

@(x+ a)

@�
=

x+ a

�
+

@a

@�
=

x

�
.

Alternatively, from (10), we may obtain explicit expressions for x and x+ a:

x=
ln�

a
� a

2
=

� ln�

✓H � ✓L
� ✓H � ✓L

2�
, (23)

x+ a=
ln�

a
+

a

2
=

� ln�

✓H � ✓L
+

✓H � ✓L
2�

, (24)

and, in fact,

s =
�2 ln�

✓H � ✓L
+

✓H + ✓L
2

. (25)

Notice that independent of the prior p, when � goes to 0, s converges to (✓H +✓L)/2.

From (22) and (23) we can also obtain the following explicit expressions:

@s̄

@�
=

2� ln�

✓H � ✓L
, (26)

@x

@�
=

x+ a

�
=


ln�

a
+

a

2

�
/� =

ln�

✓H � ✓L
+

✓H � ✓L
2�2

. (27)
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In the neutral and pessimistic cases, where ln� � 0, this is always positive (x

increasing in �). In the optimistic case, x is increasing in � if and only if

� <
✓H � ✓Lp
2(� ln�)

⌘ �opt(p).

It follows that x+ a = 0 at � = �opt(p).

@(x+ a)

@�
=

@x

@�
+

@a

@�
=

1

2


ln�

a
� a

2

�
=

ln�

(✓H � ✓L)
� ✓H � ✓L

2�2
=

x

�
. (28)

In the optimistic and neutral cases this is always negative (x+ a decreasing). In the

pessimistic case, this is negative (x+a decreasing) if and only if

� <
✓H � ✓Lp
2 ln�

⌘ �pes(p)

and positive (x + a increasing) otherwise. It follows that in the pessimistic case,

x = 0 at � = �pes(p).

The inspection of (23), (24), and (25) leads to the following Lemma.

Lemma 6. The threshold s and the terms x and a, have the following properties:
s x |x| vs |x+ a| @s/@�

if � < 1 < (✓H + ✓L)/2 < �a/2 |x| > |x+ a| < 0

if � = 1 = (✓H + ✓L)/2 = �a/2 |x| = |x+ a| = 0

if � > 1 > (✓H + ✓L)/2 > �a/2 |x| < |x+ a| > 0

Using (7) on Page 13 and (27) and (28) above, the derivatives of acceptance

probabilities for the low type and the high type with respect to � are:

@⇡L(�, p)

@�
=�� (x+ a)

x

�
,

@⇡H(�, p)

@�
=�� (x)

x+ a

�
.

The above results allow us to characterise the patterns of the probability of ac-

ceptance of each type in the following two Lemmas.

Lemma 7. The pattern of the probability of acceptance of the low type, can be de-

scribed as follows:
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1. For any interim posterior p: ⇡L(0, p) = 0.

2. When p � p, ⇡L(�, p) is strictly increasing in �.

3. When p < p, ⇡L(�, p) is strictly increasing in � for � <�pes, and strictly de-

creasing for � >�pes.

4. The limit lim
�!1

⇡L(�, p) is 1 when p > p, 1/2 when p = p, and 0 when p < p.

Proof of Lemma 7:

1. For any interim posterior, lim�!0(x+a) = 0. Therefore lim�!0 1��(x+a) = 0.

2. When p � p, x < 0, thererefore @⇡L(�,p)
@�

�� (x+ a) x
�
> 0.

3. When p < p, we have shown below (28) that x < 0 if � < �pes and x > 0 if

� > �pes. The sign of @⇡L(�,p)
@�

follows.

4. When p > p, lim�!+1(x + a) = �1; when p = p, lim�!+1(x + a) =

lim�!+1 a/2 = 0; when p < p, lim�!+1(x+ a) = +1. The result follows.

Lemma 8. The pattern of the probability of acceptance of the high type, can be

described as follows:

1. For any interim posterior: ⇡H(0, p) = 1.

2. When p > p, ⇡H(�, p) is strictly decreasing in � for � < �opt and strictly

increasing for � > �opt .

3. When p  p, ⇡H(�, p) is strictly decreasing in �.

4. The limit lim
�!+1

⇡H(�, p) is 1 when p > p, 1/2 when p = p, and 0 when p < p.

Proof of Lemma 8:

1. For any interim posterior, lim�!0 x = �1. Therefore lim�!0 1� �(x) = 1.
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2. When p > p,we have shown below (27) that x+ a is positive if � < �opt and

negative if � > �opt. The result follows from the expression of @⇡H(�,p)
@�

=

�� (x) x+a
�
.

3. When p  p, x+ a is positive. The sign of @⇡H(�,p)
@�

follows.

4. When p > p, lim�!+1 x = �1; when p = p, lim�!+1 x = lim�!+1 �a/2 =

0; when p < p, lim�!+1 x = +1.The results follow from the expression of

⇡H(�, p) = 1� � (x) .

Proof of Lemma 2: 1. Take the derivative with respect to � of the di↵erence in

the probability of being accepted for the high and the low type:

@⇡H

@�
� @⇡L

@�
=

� (x)

�


x� @s̄

@�

�
� � (x+ a)

�


(x+ a)� @s̄

@�

�
(29)

=�� (x)

�
(x+ a) +

� (x+ a)

�
x < 0,

where we have used (22).

In the neutral case, � (x) = � (x+ a) and x+ a = �x so

@⇡H

@�
� @⇡L

@�
= �� (x) a

�
< 0.

In the optimistic case, x < 0 and x + a can be positive or negative but |x| >
|x+ a|. When x + a > 0, (29) is clearly negative. It is also negative when

x + a < 0, because � (x) < � (x+ a) and the positive term has a smaller

absolute value. In the pessimistic case, x + a > 0 and x can be positive or

negative but |x| < |x+ a|. Clearly, (29) is negative when x < 0. It is also

negative when x > 0, because � (x) > � (x+ a) and the positive term has a

smaller absolute value.

2. Consider now the derivative with respect to p of the di↵erence in the probability

of being accepted for the high and the low type:

@⇡H

@p
� @⇡L

@p
= � [� (x)� �(x+ a)]

�z}|{
@x

@p
.
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Note that 0  |x| < x+ a when p is pessimistic and x < 0  |x+ a| when p is

optimistic. Therefore, the above expression is positive when p 2 [0, p̄], negative

when p 2 [p̄, 1], and is zero if and only if p = p, which implies x = �(x+a) and

s̄(�, p) = (✓H + ✓L)/2. The maximum value of ⇡H(�, p) � ⇡L(�, p) is therefore

reached at p = p̄ and is equal to

1� �

✓
�a

2�

◆�
�

h
1� �

⇣ a

2�

⌘i
= 2�

⇣ a

2�

⌘
� 1,

which is decreasing in �.

Proof of Lemma 3:

Part 1: Take a pooling equilibrium on +1. Consider first the optimistic case. The

sender is always accepted. Independent of his type he obtains a payo↵ of 1. A

deviation to any finite signal would provide a strictly lower payo↵ to either type. So

no type would want to deviate for any belief.

Consider now the neutral case, where both types are accepted with probability

1/2 (the argument would work for any other tie-breaking rule except the one that

calls for acceptance with probability one) and obtain the same payo↵. Any deviation

e� < 1 would more likely benefit the high type, because for any belief p 2 (0, 1) he

gets a strictly higher probability of acceptance. So, there are deviations, those with

very low cost, where condition (3) holds with the high type wanting to deviate in

more cases. If probability one is given to the high type, then he would indeed want

to deviate. The same argument applies to the pessimistic case.

Now, we argue that pooling on any � 2 (0,+1) cannot be associated with an

interim posterior that is pessimistic or neutral.

Pessimistic case: Let �M
i =argmax� ⇡i(�, p)�C(�), i = H,L, i.e., the signal that

maximizes type i’s expected payo↵. It can be shown that �M
H < �M

L < �2
0. Assume

the probability of acceptance of the low type, ⇡L(�, p), and the cost, C(�), intersect,

so that there exist pooling equilibria.

First, we consider the case �M
H > �1

0. This implies that �M
H can be supported as

a pooling equilibrium, because �M
H < �M

L < �2
0.

Step 1 : Consider any pooling equilibrium � 2 (�M
H , �M

L ]. We want to show that it
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does not satisfy D1. Take a deviation e� 2 [�M
H , �). Since

@(⇡H(�, p)� ⇡L(�, p))

@�
< 0,

we have that

[⇡H(e�, p)� ⇡L(e�, p)]� [⇡H(�, p)� ⇡L(�, p)]

= [⇡H(e�, p)� ⇡H(�, p)]� [⇡L(e�, p)� ⇡L(�, p)]

> 0.

That is, at p, whenever L (weakly) wants to deviate,H strictly does. For a deviation

e� in [�M
H , �), at p the high type wants to deviate but the low type does not. It must

be that bpH(e�) < bpL(e�). The D1 condition would select against the low type, and

therefore the high type would want to deviate to e� because ⇡H(e�, p) < 1.

Step 2 : Consider any pooling equilibrium � 2 (�M
L , �2

0]. We want to show that it

does not satisfy D1. Consider a deviation e� < �. As in Step 1 we have that at

interim posterior p, whenever L (weakly) wants to deviate, H strictly does. Now,

let �00 < �M
L be the signal such that at p the low type is getting the equilibrium

payo↵. That is: ⇡L(�00, p)�C(�00) = ⇡L(�, p)�C(�). Consider the deviation e� = �00.

From the argument above and the definition of �00 we know that at p, while the low

type is indi↵erent, the high type strictly prefers to deviate. This means that at this

specific deviation, bpL(�00) = p and that bpH(�00) < p. Therefore, the equilibrium does

not satisfy D1.

Step 3: We are left to check that no signal � 2 [�1
0, �

M
H ] satisfies D1.

Observe that

d[⇡H(�0, bpH)� ⇡L(�0, bpH)]
d�0

=
@[⇡H(�0, bpH)� ⇡L(�0, bpH)]

@bpH
· @bpH
@�0 +

@[⇡H(�0, bpH)� ⇡L(�0, bpH)]
@�0 . (30)

We want to determine the sign of the expression in (30) at �0 = � (bpH(�0) = p).

The first part of the first term is positive because at p0 = bpH(�0) = p < p̄,

⇡H(�0, p0)�⇡L(�0, p0) is increasing in the second argument p0. The second part of the
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first term is negative because, using the Implicit Function Theorem on (12):

@bpH(�0)

@�0 = �
@[⇡H(�0,bpH)�C(�0)]

@�0

@⇡H(�0,bpH)
@bpH

.

For slightly lower deviations �0 < �, the numerator is positive because ⇡H(�, p)�C(�)

is increasing in � until �M
H and we are considering equilibria �  �M

H . The denomi-

nator is also positive, because for any fixed signal, the probability of acceptance for

the high type is increasing in the receiver’s interim posterior.

The second term is always negative, because for any fixed interim posterior,

⇡H(�, p) � ⇡L(�, p) is decreasing in the signal �, or increasing in the precision. It

follows that for " small enough, if �0 2 (� � ", �), then

d[⇡H(�0, bpH)� ⇡L(�0, bpH)]
d�0 < 0.

This means that (14) is violated. So, the pooling equilibrium fails the D1 criterion.

In particular, a marginally more precise signal with �0 < � would be viewed as coming

from the high type for sure, which in turn would induce the high type to deviate. To

conclude, no equilibrium � 2 [�1
0, �

M
H ] would survive D1.

Second, consider the case where �M
H < �1

0 ( �
M
H is not a pooling equilibrium but �1

0

is well defined). Suppose the equilibrium is such that �  �M
L [recall that �M

L is the

point where the di↵erence ⇡L(�, p)� C(�) is maximized, and that �M
L > �M

H ]. Take

a deviation �0 < �. At the interim posterior p0 = p, the low type does not want to

deviate [his payo↵ decreases when going towards lower deviations] but the high type

does (his payo↵ increases going towards �M
H ), implying that the D1 condition selects

against the low type. So the receiver should believe with probability one that the

deviation comes from the high type, thereby disrupting the equilibrium. A similar

argument holds when � > �M
L .

Neutral case: the proof for the neutral case is analogous. The only di↵er-

ence is that we know that at p = p the di↵erence between the high and low types’

probabilities of acceptance is maximized for any signal �. Therefore, for marginal

deviations from the equilibrium signal � (�0 ! �), the first term in (30) is zero.

Therefore,
d[⇡H(�0, bpH)� ⇡L(�0, bpH)]

d�0 < 0.
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Again, a slightly lower deviation would be viewed as coming from the high type for

sure, so no signal � survives D1.

Part 2: In our set up type i would want to deviate to �0 if and only if the associated

belief p0 > bpi(�0). If condition (3) selected against the low type, bpH(�0) < bpL(�0),

the high type would want to deviate. We want to find a necessary and su�cient

condition for condition (3) not holding against the low type, which is equivalent

to there existing best responses (sequentially rational given some beliefs) by the

receiver that make it preferable for the low type to deviate but not for the high type.

In particular we want to show that condition D1 in (3) fails to select against the low

type (bpH(�0) � bpL(�0)) if and only if

� =
�(x)

1� �
.

We proceed in several steps.

Step 1: Given �, let b� > � be the value of sigma such that the maximum

di↵erence between ⇡H and ⇡L is equal to the equilibrium di↵erence, i.e.,

⇡H(p, b�)� ⇡L(p, b�) = ⇡H(�, p)� ⇡L(�, p),

that is,

2�

✓
✓H � ✓L

2b�

◆
� 1 = ⇡H(�, p)� ⇡L(�, p).

Note that b� is well defined because, given p > p, ⇡H(�, p)�⇡L(�, p) is lower than

its maximum ⇡H(�, p)� ⇡L(�, p). Since ⇡H(�, p)� ⇡L(�, p) is continuous, decreasing

in �, and goes to 0 as � goes to infinity, the results follow.

For any deviation �0 � b� the D1 condition would not hold against the low type.

In fact, for any such �0, ⇡H(�0, p)� ⇡L(�0, p)  ⇡H(�, p)� ⇡L(�, p) implying that for

any p0, ⇡H(�0, p0) � ⇡L(�0, p0)  ⇡H(�, p) � ⇡L(�, p). Whenever the high type wants

to deviate, the low type also does.

Step 2: We consider deviations �0 < b�. For any such deviation �0, let p1(�0) and

p2(�0) respectively be the beliefs p0 that satisfy

⇡H(�
0, p0)� ⇡L(�

0, p0) = ⇡H(�, p)� ⇡L(�, p) (31)
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The existence of p1 and p2, imposing p1 < p2 without loss of generality, is ensured by

the fact that �0 < b�(�), which implies that ⇡H(�0, p)�⇡(�0, p) > ⇡H(�, p)�⇡L(�, p).

In addition, we must have p1 < p < p2 < p.

Given the definitions of p1 and p2, at these beliefs, either both high and low types

receive a greater payo↵ than their equilibrium payo↵s, or neither does.

Consider first the case p0 = p1. If both types strictly prefer to deviate to �0, bpL
and bpH are both lower than p1. Since the di↵erence ⇡0

H � ⇡0
L is increasing in p0 up

to p̄ and decreasing afterwards, it means that bpL < bpH . If both types are indi↵erent,

then clearly, bpL = bpH = p1.

Now, consider the case p0 = p2. If both types strictly prefer to stick to �, then bpL
and bpH are both higher than p2. Again, using the property of the di↵erence ⇡0

H � ⇡0
L

(specifically, that it is decreasing in p0 when p0 > p̄), we have bpL < bpH . If both types

are indi↵erent, then clearly, bpL = bpH = p2.

Finally, if at p1 both low and high types receive a strictly lower payo↵ than in

equilibrium, and at p2 they both receive a higher payo↵ than in equilibrium, then

the D1 condition (3) would hold against the low type. Again, this is implied by the

property of the di↵erence ⇡0
H �⇡0

L. If bpH 2 (p1, p), then at p0 = bpH the low type does

not want to deviate because ⇡H(�0, bpH)� ⇡L(�0, bpH) > ⇡H(�, p)� ⇡L(�, p) so it must

be bpH < bpL. The argument is analogous when bpH 2 (p, p2) .

Based on the above observations, the necessary and su�cient conditions for (3)

not to hold against the low type is that either

⇡H(�
0, p2)� C(�0)  ⇡H(�, p)� C(�), (32)

which means that at p2 neither type strictly wants to deviate, or,

⇡H(�
0, p1)� C(�0) � ⇡H(�, p)� C(�), (33)

which means that at p1 both types weakly want to deviate.

Step 3: Now, we further develop conditions (32) and (33), in light of the cost

function (2).

Consider first the condition on p2, (32). Notice that when �0 ! �, the LHS and

RHS of (32) become equal, because p2(�0) = p. We consider the derivative of the

LHS. Take first:
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d⇡H(�0, p2(�0))

d�0 =��(x0)
dx0

d�0 = ��(x0)


@x0

@p2

@p2
@�0 +

@x0

@�0

�

=


�(x0)�(x0 + a0)

�(x0 + a0)� �(x0)

�
da0

d�0 < 0,

where

x0 =
s(p2, �0)� ✓H

�0 , a0 =
✓H � ✓L

�0 ,

and where we have used from (31):

@p2
@�0 = �

��(x0) @x
0

@�0 + �(x0 + a0)[ @x
0

@�0 +
@a0

@�0 ]

��(x0) @x
0

@p2
+ �(x0 + a0) @x

0

@p2

. (34)

We then have that

d⇡H(�0, p2)

d�0 � dC(�0)

d�0

=


�(x0)�(x0 + a0)

�(x0 + a0)� �(x0)
� �

�
da0

d�0

Recall that p2 is optimistic and that in the optimistic case x0 < 0 and |x0 + a0| <
|x0|, so �(x0 + a0)� �(x0) > 0.

First, consider higher deviations, that is �0 2 (�, b�). Since da0/d�0 < 0, we have

that for any of such deviations �0

d⇡H(�0, p2)

d�0 � dC(�0)

d�0  0

if and only if

�  �(x0)�(x0 + a0)

�(x0 + a0)� �(x0)
=

�(x0)

1� �(x0)/�(x0 + a0)
=

�(x0)

1� �2

, (35)

where we have used the fact

�(x0)

�(x0 + a0)
=

1� p2
p2

· ✓H � ✓M
✓M � ✓L

⌘ �2

from (5) and (9).
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Since we have that

dx0

d�0 =
�(x0 + a0)

�(x0 + a0)� �(x0)
> 0

and �(x) increases in x for x < 0, we have that the numerator of (35) is increasing

in x0. The denominator is decreasing in x0 because @�/@p < 0 and @p2/@�
0 < 0.29

Therefore, for upper deviations �0 2 (�, b�), the RHS of (35) is increasing in x0. It

follows that to satisfy (32) it is su�cient that condition (35) holds locally:

�  �(x)

1� �
. (36)

Actually this is also necessary. In fact, if for �0 ! � we had

@⇡H(�0, p2)

@�0 � @C(�0)

@�0 > 0,

(32) would not hold. So, it must be that (36) holds.

We now consider the condition on p1, (33), and claim that we can disregard it.

If we take the derivative of the LHS of (33) we have the same algebra as above but

now the sign is the opposite because p1 is pessimistic, which in turn implies that

|x0 + a0| > |x0| and thereby �(x0 + a0)� �(x0) < 0. This implies that

@⇡H(�0, p1)

@�0 > 0,

and
@⇡H(�0, p1)

@�0 � dC(�0)

d�0 > 0.

By definition of b�, we have that ⇡H(b�, p)�⇡L(b�, p) = ⇡H(�, p)�⇡L(�, p) and therefore

p1(b�) = p. When instead �0 ! � we have that p1(�0) < p. Since when �0 ! � (32)

holds with equality and p1 < p2, (33) cannot hold. It is now important to notice that

29The expression (34) can be simplified as

@p2

@�

0 =
�(x0 + a

0)x0 � �(x0)(x0 + a

0)

[�(x0)� �(x0 + a

0)] · @x0
/@p2

.

The denominator is the product of two negative terms and is therefore positive. The numerator is

negative, for all x0
> |x0 + a

0|.
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conditions (32) and (33) are mutually exclusive. In fact we have just shown that for

marginal higher deviations, �0 ! �, (33) cannot hold. In order for D1 condition not

to apply, it is therefore necessary that (32) holds for such marginal deviations, that

is �  �(x)
1��

. However, above we have shown that if this is the case, (32) also holds

for non marginal higher deviations. But then, (33) can never hold and it is therefore

irrelevant.

Second, consider a deviation �0 < �. We may restrict to deviations �0 2 [�, �]

where � is such that if a deviation to � was considered to come from a high type for

sure, the sender would get the same payo↵ from deviation as the high type gets in

equilibrium, i.e. 1�C(�) = ⇡H(�, p)�C(�). This is because for �0 < � the high type

would not want to deviate for any beliefs of the receiver. Following similar reasoning

to that of the case �0 > �, in order for D1 condition not to hold against the low type

for �0 2 [�, �], we need that (32) holds. Thus, since for �0 = � equation (32) holds

with equality, for lower deviations �0 ! � we would need the following expression to

be positive

d [⇡H(�0, p2)� C(�0)]

d�0 =


�(x(�0, p2))

1� �2
� �

�
da0

d�0 . (37)

The algebra for (37) is the same as for higher deviations. However, we now want it

to be positive, that is, � � �(x)
1��

. In other words to have compatibility the conditions

on high and low deviations, we want (37) to have a global maximum at �0 = �.

Therefore, necessary and su�cient condition for (�, p) to survive as part of a D1

equilibrium, is that

� =
�(x)

1� �
.

Proof of Proposition 2:

Part 1. The statement follows from the proof of Part 1 of Lemma 3.

Part 2. To prove part 2, one has to examine condition (15). On the one hand, its

LHS is constant. On the other hand, fixing p, the RHS first increases in �, until it

reaches a maximum at �opt, and then decreases towards zero as � approaches infinity.

This is illustrated in Figure 6. As p increases, the RHS of (15) shifts down, and �opt

moves right. Let �1
�(p) and �2

�(p) be the two intersections between the LHS and

RHS of (15), when they do intersect. Given prior p, a pooling equilibrium on a
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Figure 6: D1 equilibria with optimistic prior.

signal � < 1 satisfies the D1 criterion if and only if � = �1
�(p) or �

2
�(p). It follows

that the signals �1
� and �2

� are D1 pooling equilibria if and only if they are pooling

equilibria, which in the optimistic case is equivalent to that they are greater than

�0(p).

When p is very close to 1 so that the LHS and RHS of (15) do not intersect,

pooling on +1 is the unique D1 equilibrium. We need to see under which conditions

�1
� and �2

� exist and are pooling equilibria.

Let p1/2 be the interim posterior belief such that the signal at which the low type

is getting zero payo↵ equals the signal at which the probability of acceptance of the

high type is at its minimum,

�0(p1/2) = �opt(p1/2).

Notice that, since at �opt(p), x + a = 0, ⇡L(p, �opt(p)) = 1/2 for all p < 1. In the

meantime, �0(p) is defined by ⇡L(p, �0) = C(�0). We show that p1/2 is well defined.

When p ! p or � ! 1, �0(p) < �opt(p). This is because in the limit, x+ a = a/2 and

⇡L(�, p) = 1��(a/2). As p ! p, while �0 is defined by 1��(a/2) = C(�0), �opt must

satisfy 1��(a/2) = 1/2, and therefore �0(p) < �opt(p), as the latter approaches 1.

When p ! 1 or � ! 0, �0(p) > �opt(p). This is because as p, ⇡L(p, �0(p)) converges

to 1, which implies that when p ! 1 we have that ⇡L(p, �0(p))� ⇡L(p, �opt(p)) > 0.
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This in turn implies �0(p) > �opt(p). Since ⇡L(p, �0(p)) is increasing in p, we have

that, for any �, there is a unique p1/2 such that: if p < p1/2 then �0(p) < �opt(p) and

if p > p1/2 then �0(p) > �opt(p).

We also know from Proposition 1 that for any fixed �, there exists a ep that satis-

fies (16), i.e.,

� =
�(x(�0(ep), ep)
1� �(ep) .

We need to see whether �0(p̃) = �1
�(p̃) or �0(p̃) = �2

�(p̃).

From the proof of Proposition 1, we know that �(x(�0(p), p)/[1� �(p)] is decreas-

ing in p, that � < �(x(�0(p), p)/[1� �(p)] at p = p and � > �(x(�0(p), p)/[1� �(p)]

at p = 1.

If ep � p1/2 and therefore �0(p̃) > �opt(p̃), then �0(p̃) = �2
�(p̃). So at p = p̃, there

exist two D1 equilibria: �2
� and +1. For p higher than p̃, pooling on +1 is the only

D1 equilibrium. This is because for higher p, the whole curve �(x(�, p))/[1� �(p)]

shifts down and to the left, �opt(p) < �0(p) < �0(ep), and �(x(�0(p), p))/[1� �(p)] <

�, implying that �0(p) is to the right of �2
�(p). Conversely, for p lower than p̃, the

whole curve �(x(�, p))/[1� �(p)] shifts up and to the right, �0(p) > �0(ep), and

�(x(�0(p), p)/[1� �(p)] > �, implying that �0(p) is to the left of �2
�(p), which means

that �2
�(p) is a D1 equilibrium.

If ep < p1/2, we have �0(ep) < �opt(ep), which implies �0(ep) = �1
�(p̃). At ep, there

are three D1 equilibria: �1
�, �

2
� and +1. Let p� be the maximum prior such that �1

�

and �2
� are well defined. In other words, p� satisfies � = �(x(�opt(p), p)/[1� �(p)].

Clearly, for priors p > p�, +1 is the only D1 pooling equilibrium. If p 2 (ep, p�),
there continue to exist three D1 equilibria: �1

�(p), �
2
�(p), and +1. This is because

higher p, have lower �0(p) and � > �(x)/(1� �), implying that �0(p) < �1
�(p) and,

therefore, that �1
�(p) and �2

�(p) are both pooling equilibria. Conversely, for p lower

than p̃, as before �0(p) is higher and � < �(x)/(1� �). However, now this implies

that �0(p) 2 [�1
�(p), �

2
�(p)] and therefore only �2

�(p) and +1 are D1 equilibria.

Part 3 The statement follows from Proposition 1.

Proof of Proposition 3. 1. In the optimistic case, if the precision is a = 0, then

the sender’s expected payo↵ is 1, the maximum value he can achieve. Any
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precision a > 0 will result in a payo↵ strictly less. So a = 0 is the unique

optimal precision level.

For notational convenience, let u(a) be the expected payo↵ of the sender from

committing to a precision a. Note that u(0) = 0 in the pessimistic case and

u(0) = 1/2 in the neutral case by our tie-breaking assumption. On the other

hand, u(1) = �1, so a = 1 is never optimal. Nevertheless, it is useful to

analyze the behaviour of u as a ! 1.

To find the optimal precision in the neutral and pessimistic cases, we need to

first investigate the existence of a solution to the first order condition u0(a) = 0,

as expressed by (19). After that, we will compare the sender’s payo↵ at these

critical points with his expected payo↵ at a = 0.

We now proceed to the analysis of the neutral and pessimistic cases.

2. In the neutral case, the derivative of the sender’s expected payo↵ with respect

to precision a, u0(a), is the LHS of (20), reproduced below.

1

2
(2p̄� 1)�(x)� � = 0.

Using the fact that x = �a/2 in the neutral case, we can see u00(a) < 0 for

all a 2 [0,1). Therefore, (20) is both necessary and su�cient for an a > 0

to maximize the sender’s expected payo↵. An inspection of (20) will give the

desired conclusions.

3. Using (9), (10), and (27), we may write

u0(a)= p�(x)


x+ a

a
+

✓H � ✓M
✓M � ✓L

· x
a

�
� �. (38)

Note that, as we do in the main text, the dependence of x on a is suppressed.

Using the definitions a = (✓H � ✓L)/� and x = (s̄� ✓L)/� (recall that s̄ is the

cuto↵ signal realization for acceptance), we obtain

u0(a)= p�(x)
✓M � s̄

✓M � ✓L
� �. (39)
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In the pessimistic cases, using Lemma 6, s̄, the cuto↵ signal realization for

acceptance, is decreasing in a (or increasing in �). Furthermore, using (26),

when a = 0 (� = 1), s̄ = 1; when a = 1 (� = 0), s̄ = (✓H+✓L)/2. Therefore,

whenever ✓M  (✓H + ✓L)/2, (39) is always negative and therefore the optimal

precision is a = 0, which proves (a).

To prove (b), let aM be the precision level such that s̄ = ✓M . For all a  aM ,

s̄ > ✓M , so u0(a) < 0. For a > aM , using (27) and (39), we have

u00(a)=
p

✓M � ✓L


�x�(x)

�(x+ a)

a
(✓M � s̄) + �(x) [�(2x+ a)] ·

h
��

a

i�
,

=
p�(x)

a(✓M � ✓L)


1� x+ a

2x+ a
· �x(✓M � s̄)

�

�
. (40)

Note that

d

da

✓
x+ a

2x+ a

◆
=

�x(2x+ a)� (x+ a) · [�(2x+ a)]

(2x+ a)2
,

=
a

2x+ a
,

> 0.

In addition,

�x(✓M � s̄)

�
=

✓H � s̄

�
· ✓M � s̄

�
,

which increases with a for a > aM as s̄ is decreasing in a (hence s̄ < ✓M < ✓H

for a > aM) and � is inversely related to a (recall that a ⌘ (✓H � ✓L)/�). The

above two remarks imply that u00 is decreasing in a.

Given that u0(aM) < 0, u00(aM) > 0, lima!1 u0(a) = �� and u00 is decreasing

in a for a > aM , we conclude that generically (except the value of � such that

u0(a) = 0 and u00(a) = 0 have the same solution), the function u has zero or

two critical points. When it does have two critical points, the right one is a

local maximum point. Evaluating u at this point and comparing its value with

zero will tell us whether the optimal precision is 0 or interior. Note that by the

Envelope Theorem, at the interior critical point, the sender’s expected payo↵

is decreasing in �. Therefore, we conclude that an interior optimal precision is

the solution only if � is small enough.
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Proof of Proposition 4:

Part 1. We have already provided the argument in the main text. Both under

commitment and in the best equilibrium under discretion the sender would choose

to not provide any information.

Part 2. The payo↵ of the sender under commitment can be written as

u⇤ = p̄ [1� �(x)] + (1� p̄)�(x)� �a,

where x = �a/2 must satisfy (20). Indeed, using (20) and the fact that x = �a/2,

we obtain

u⇤ = p̄+ (2p̄� 1) [�(x)x� �(x)] ,

On the other hand, the discretion payo↵ is

ũ = p̄ [⇡H(�̃, p̃)� C(�̃)] .

By Corollary 1.1, ⇡H(�̃, p̃) � C(�̃) is dependent only on the cost function (or �).

Therefore,

u⇤ � ũ

p̄
= 1� [⇡H(�̃, p̃)� C(�̃)] +

2p̄� 1

p̄
[�(x)x� �(x)] .

Note that the first two terms do not depend on p̄. So, as p̄ varies, the change in

(u⇤ � ũ)/p̄ is fully accounted for the change in the last term. Let us investigate how

then it changes with p̄ 2 [1/2, 1]. Note that its derivative with respect to p̄ can be

written as

d(u⇤ � ũ)/p̄

dp̄
=

1

p̄2
[�(x)x� �(x)] +

2p̄� 1

p̄

⇥
�x2�(x)

⇤ @x
@p̄

,

=
�(x)x� �(x) + 2p̄(�x)�(x)

p̄2
,

=
�a� �(x)

p̄2
,

where in the second equality sign we have used @x/@p̄ from (20)

@x

@p̄
= � 2�(x)

�x�(x)
=

2

(2p̄� 1)x
,
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and in the third we have used (20) directly and the fact that in the neutral case

x = �a/2. Note that �(x) is the low type’s probability of acceptance and �a is

the cost of signalling. This implies that (u⇤ � ũ)/p̄ is increasing if and only if the

optimal choice x under commitment is not a pooling equilibrium (in the perfect

Bayesian sense). Note that by Lemma 5, if the optimal x under commitment is not

a pooling equilibrium, then discretion is strictly better, i.e., u⇤ < ũ. Consequently,

(u⇤ � ũ)/p̄ is always weakly decreasing in p̄ whenever commitment is weakly better

than discretion. This implies that (u⇤ � ũ)/p̄, as a function of p̄, can cross the

horizontal axis at most once, and if at all, from above (from the left hand side),

given that at p̄ = 1/2, u⇤ > ũ. So, there exists a cuto↵ p̄c 2 (1/2, 1], such that

the sender prefers commitment to discretion if and only if p̄  p̄c (if p̄c = 1, then

the sender always prefers commitment to discretion when the prior is neutral, which

could occur when � is relatively large).

Part 3. The argument is due to Lemma 5.

Part 4. We may first write (17) as

max
�2M

p0 [1� �(x)] + (1� p0) [1� �(x+ a)]� C(�).

Note that in the receiver’s optimality condition (10), ✓M enters only through �–an

increase in ✓M makes � bigger or makes the receiver more pessimistic. Now, applying

the implicit function theorem to (10), we obtain

@x

@�
= � �(x+ a)

�x�(x) + �(x+ a)�(x+ a)
=

1

�a
> 0,

where we have applied (10) to the denominator of the intermediate expression. This

simply means that as the receiver becomes more pessimistic, the probability of ac-

ceptance goes down for both the high type and the low type.

Now applying the Envelope Theorem to the sender’s optimal commitment prob-
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lem above (ignoring how the optimal � depend on ✓M), we have

@u⇤

@✓M
=

@u⇤

@✓M
,

=
@u⇤

@x
· @x
@�

· @�

@✓M
,

=
⇥
�p0�(x)� (1� p0)�(x+ a)

⇤
· 1

�a
· @�

@✓M
,

< 0.

On the other hand, the discretion payo↵ is equal to

ũ = p0 [⇡H(�̃, p̃)� C(�̃)] ,

which is constant, fixing p0. Therefore, as we increase ✓M , discretion is more likely

to dominate commitment, and there exists a cuto↵ ✓⇤M 2
⇥
✓̄M(p0), ✓H

⇤
, such that the

sender prefers commitment to discretion if and only if ✓M  ✓⇤M , where ✓̄M(p0) is the

✓M that makes the receiver neutral.

8 Appendix B: results on the probabilities of acceptance

In this appendix, we derive properties of the probabilities of acceptance for the low

type and the high type in all three cases: optimistic, neutral, and pessimistic.

8.1 Low type

To see how the expected payo↵ of the low type varies with �, fixing belief p, note

that
@⇡L(�, p)

@�
� @C

@�
= �x

�
� (x+ a) + �

a

�
, (41)

which is positive if and only if:

� > �L ⌘ x

a
� (x+ a) . (42)

In the neutral and optimistic cases, ⇡L(0, p) < C(0) while ⇡L(1, p) > C(1) = 0. In

addition, while ⇡L is always increasing in �, C is always decreasing. Therefore, the

di↵erence between the two is always increasing, for any cost function satisfying the

standard assumptions. When we restrict to cost functions of the type in (2), we can
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see this also by noticing that since x < 0, condition (42) is satisfied for all � > 0.

We have that ⇡L(�, p) and C(�) intersect once and only once.

In the pessimistic case, without further assumptions, there is no guarantee that

the two curves cross. We now show that in the pessimistic case, for the cost function

in (2), whenever ⇡L(�, p) and C(�) intersect, they intersect twice. Observe that when

� approaches zero, ⇡L(�, p) is below C(�). When � ! 1, while piL(�, p) and C(�)

converge to 0, as well as @⇡L/@� and @C/@�, we can show that ⇡L(�, p) is also below

C(�). To see this, consider the ratio

@⇡L(�, p)/@�

@C/@�
=

�x� (x+ a)/�

��a/�
=

x

a
· � (x+ a)

�
.

Recall that x/a = ln�/a2�1/2 = �2 ln�/(✓H � ✓L)
2�1/2. When � ! 1, x/a ! 1

at the speed of �2. The variable (x + a) goes to infinity at the same speed as �. So

� (x+ a) goes to zero at a faster rate than �2 and therefore @⇡L

@�
/@C
@�

! 0. It could

therefore be that the two curves never cross and ⇡L(�, p) is always below C(�) or,

if they cross, they must cross an even number of times. In other words, if the two

curve cross, since both converge to zero as sigma grows large, the di↵erence cannot

be always increasing. At the critical points, the following FOC must be satisfied:

@⇡L

@�
� @C

@�
= �x

�
� (x+ a) + �

a

�
= 0.

that is, from (42)

� = �(x+ a)
x

a
= �L. (43)

For � < �pes (the point of max of ⇡L, and at which x = 0), x < 0. Clearly

�L < �, for all � > 0.30In fact, for x < 0, �L is increasing in � (x+ a is positive and

decreasing, meaning that �(x+a) is increasing, and x
a
is increasing). We can restrict

our attention to what happens for x > 0, � > �pes. We take the total derivative with

respect to � and obtain @�L
@�

= ��(x+a)
�a

[(x+ a) (x2�1)+x]. We have that @�L/@� = 0

if and only if

x2 � 1 =
x

x+ a
.

30That is, @⇡L/@� � @C/ @� > 0.
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Figure 7: Maximum and minimum of ⇡L � C, pessimistic prior.

We know that x is increasing in � so we can analyze the above expression in terms

of x: The LHS is increasing and convex in x. When x = 0 it equals �1. It equals 0 at

x = 1 and equals 1 at x =
p
2. The RHS is increasing and concave in x.31 When x = 0

it equals 0 and it is always less than 1. It follows that a unique intersection exists

between the two curves at some � 2 (�a, �b), where �a =
(✓H�✓L)
2 ln�

(1 +
p
1 + 2 ln�) =

(✓H�✓L)p
1+2 ln��1

is such that x(�a) = 1 and �b = (✓H�✓L)
p
2

2 ln�
[1 +

p
1 + ln�] is such that

x(�b) =
p
2.

We have just shown that �L initially (� = 0) is below �, then it increases and

reaches a maximum at some � 2 (�pes, �a). Afterwards it decreases and converges to

zero ((x + a) ! x ! 1, x/a ! 1 but at a lower rate than �(x + a) ! 0). The

following Figure 7 represents this situation:

Between the two levels of � that satisfy (43), the smallest �M
L corresponds to a

maximum and the second �m
L to a minimum. Once again, if � > max �L ⌘ �Lwe are

sure that the probability of acceptance and the cost do not intersect. If, � < �Lwe

know that the di↵erence between the two curves reach a local maximum and a local

31Notice that da
dx = �a/(x + a) < 0, and dx/(x+a)

dx = (x+a)�x(1+da/dx)
(x+a)2 = x+a�x+xa/(x+a)

(x+a)2 =
a(x+a)+xa

(x+a)3 = 2ax+a2

(x+a)3 > 0. This can be rewritten asdx/(x+a)
dx = (x+a)2�x2

(x+a)3 therefore, d2x/(x+a)
d2x =

�2ax+[�a2�4ax]x
(x+a)5 < 0 8x > 0.
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minimum but we cannot be sure they intersect. For this we need � to be small

enough. A su�cient condition for the two curves to cross is that � < �p, where

�p =
1��(

p
2 ln�)p

2 ln�
is the value of � such that ⇡L(�, p) and C(�) intersect exactly at

b�pes.

8.2 High type

For the high type,

@⇡H(�, p)

@�
� @C

@�
=

�(x+ a)� (x)

�
+ �

a

�
,

which is positive if and only if:

� > � (x)
x+ a

a
= � (x)

hx
a
+ 1

i
⌘ �H (44)

In the neutral case, by Lemma 6, x + a = a/2 and x = �a/2. Condition (44) is

satisfied i↵ � > max
�

�(a/2)
2 = �(0)/2. Since ⇡H(0, p)<C(0), we are sure there exists a

unique intersection between the two curves as long as ⇡H(1, p)>C(1) = 0, which

is certainly the case if as a tie-breaking rule we assume that ⇡H(1, p) = 1/2.

In the optimistic case, x+a is first positive then negative. In addition, similar as

above, ⇡H(0, p)<C(0) and ⇡H(1, p) = 1>C(1) = 0. Since C 0 < 0, we know that an

intersection between ⇡H(�, p) and C(�) exists. We now find conditions under which
@⇡H(�,p)

@�
� @C

@�
> 0, which assures that such intersection is unique.

When (x+a)  0, which happens when � � �opt(p),
@⇡H(�,p)

@�
� @C

@�
> 0 for all � > 0.

When (x+ a) > 0, which happens when � < �opt(p) (recall that at �opt(p), ⇡H(�, p)

reaches a minimum and x+a = 0) we need to impose � > max
�

�H = �H . Since �H(�)

is di↵erentiable, the FOC characterizes its critical points:

@�H
@�

=�x� (x) [
x

a
+ 1]

@x

@�
+

� (x)

a2
[
@x

@�
a� x

@a

@�
] (45)

=� (x) (�x)

✓
@x

@�
[
x

a
+ 1� 1

ax
]� 1

a�

◆

=� (x) (�x)

✓
x+ a

�
[
x+ a

a
� 1

ax
]� 1

a�

◆

=
�� (x)

✓H � ✓L

�
(x+ a)2 x� (x+ a)� x

�
= 0.
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We want to find a solution to
�
(x+ a)2 x� (x+ a)� x

�
= 0. We re-write this ex-

pression in terms of (x + a) only. Let y = (x + a), we want to find the solution

to

y2(y � a)� y � (y � a)= 0,

(y2 � 1)(y � a)� y=0,

which we may rearrange into

y2 � 1 =
y

y � a
(46)

We are interested in intersections at some y > 0, y < a/2.

The LSH starts at -1 and is increasing, it crosses the x-axis at y = 1. Since at

y = a/2, the RHS is �1, the intersection must be at some y < 1. Notice that
da
dy

= �a
x
, therefore dy/(y�a)

dy
= �a

(y�a)2 [1 + y/x] < 0. This is because

da

dy
=

da/d�

dy/d�
=

�a/�
dx
d�

+ da
d�

=
�a/�

x+a
�

� a
�

=
�a

x
,

dy/(y � a)

dy
=

da/d�

dy/d�
=

(y � a)� y[1� da/dy]

(y � a)2
=

�a� ya/x

(y � a)2
=

�a

(y � a)2
[1 + y/x],

and

1 +
x+ a

x
> 0,

for all |x+a| < |x|. It follows that there is a unique intersection of (46) and therefore

a unique point that satisfies the FOC (45). In other words �H is well defined. When

� > �H , we know that the di↵erence between the two curves is always increasing, and,

therefore, there is a unique intersection between ⇡H(�, p) and C(�). Since x  �a/2

and therefore (x+ a)  a/2, we have that �H  �(0)/2, which is therefore su�cient

condition for ⇡H(�, p)-C(�) to be increasing in all its domain.

In the pessimistic case, @⇡H(�, p)/@� < 0. Without further assumptions, there is

no guarantee that ⇡H(�, p) crosses C(�). It should be noticed that when � ! 1,

both @⇡H(�, p)/@� and @C/@� converge to zero. To know which one converges faster

we look at
@⇡H(�, p)/@�

@C/@�
=

�(x+ a)�(x)/�

�a/�
=

(x+ a)� (x)

�a
,
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where using the explicit expressions for x and a we have x+a
a

= ln�
a2

+ 1
2 = �2 ln�

(✓H�✓L)
2 + 1

2 .

Therefore when � ! 1 we have that x+a
a

! 1 at the speed of �2. The variable x

goes to infinity at the same speed as �. So � (x) goes to zero at a higher rate than

�2 and therefore @⇡H(�,p)
@�

/@C
@�

! 0. It follows that when � is very large, ⇡H(�, p) is

below C(�). Since ⇡H(0, p)<C(0) and lim�!1 ⇡H(�, p)�C(�) < 0, if ⇡H(�, p) and C

intersects, they must cross an even number of times. In addition, since both converge

to zero as sigma grows large, if the two curves intersect, the di↵erence cannot be

always increasing, there must be a point to the right of the first intersection where

the di↵erence achieves a maximum. It could also achieve other local critical points.

At the critical points, the following FOC must be satisfied:

� = � (x)
x+ a

a
⌘ �H . (47)

The problem now is, for fixed � to find � where (47) is satisfied. Using the explicit

expressions for x, x+ a, and a, The RHS can be rewritten as

�

✓
� ln�

✓H � ✓L
+�✓H � ✓L

�

◆✓
�2 ln�

(✓H � ✓L)
2 +

1

2

◆
.

It goes to zero both for � ! 0 and for � ! 1. In the pessimistic case, it is always

positive and, in addition, we have showed in the treatment of the optimistic case that

it has a unique maximum �H = max� �H . As it is also represented in Figure 8 below,

it follows that if there exist � that satisfy (47) there must be two of them.

If �H exists, it must be at a value of � > �pes (recall that at �pes, x = 0). This

is because, as long as x < 0, both � (x) and x+a
a

increase in �32, so the point where

the first order condition is satisfied must be at some x > 0.

The above considerations also imply that between the two values of � satisfying

(47), the smallest �M
H must correspond to a maximum and the biggest �m

H to a

minimum. This is because ⇡H(�, p)�C is initially increasing (reaching a maximum)

and then decreasing.

If follows that if � > �H , @⇡H(�,p)
@�

� @C
@�

is always positive, implying that ⇡H(�, p)

is always below C(�). If � < �H , we know that ⇡H(�, p)�C(�) reaches a maximum

and a minimum but this is not enough to assure that they intersect. What we can

32 d(x+a)/a
d� = d(�2 ln�/(✓H�✓L)2+1/2)

d� = 2� ln�/(✓H � ✓L)2.
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Figure 8: Maximum and minimum of ⇡H � C, pessimistic prior.

say is that they will intersect for � low enough. Since ⇡H(�, p) > ⇡L(�, p) 8�, if the
curve ⇡L(�, p) intersects C(�) so will the curve ⇡H(�, p).

In the pessimistic case it is usefull to compare condition (47) with condition (43).

Recalling that in the pessimistic case |x|<|x+a|, we have that when x > 0,

�H
�L

=
� (x) (x+a)

a

�(x+ a)x
a

=

>1z }| {
� (x)

�(x+ a)

>1z }| {
x+ a

x
> 1.

So �H > �L meaning that in order to be sure that there is a maximum between the

probability of acceptance for each type and the cost, we only need to impose that

� < �L.
33

9 Appendix C (online)

Separating equilibria

Lemma 9. In the persuasive signalling game

33Notice that �H > �L also when x < 0, because �(x)(x+ a) > �(x+ a)x.
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1. there exists a unique fully separating equilibrium, where the low type chooses

signal �S
L = +1 such that C(�S

L) = 0 and the high type chooses signal �S
H such

that C(�S
H) = 1;

2. this separating equilibrium is not D1.

When the two sender types separate, each type chooses a di↵erent level of preci-

sion. Therefore, the receiver uses only the choice of precision but not the signal real-

ization to infer the quality of the sender. Given our assumption that ✓M 2 (✓L, ✓H), it

follows that, in a separating equilibrium, the probabilities of acceptance for types H

and L are respectively 1 and 0. Given that the cost of signalling is strictly increasing

in the precision, a separating equilibrium must be in pure strategies. In addition,

since the absence of a single-crossing condition means that each type can mimic each

other and get the exact payo↵ of the other type, the incentive compatibility condi-

tions of each type imply that each type must receive the same payo↵ in a separating

equilibrium. This implies the results of part 1 and 2 of the proposition.

The optimal choice for a low type, who is accepted with zero probability is to set

precision at its lowest, i.e., �S
L = +1, whose cost is assumed to be zero. To prevent

deviation by the low type, the high type would have to choose the �S
H that gives him

a payo↵ of zero.

For any best responses of the receiver (s) when she observes a level of precision

o↵ the equilibrium path, the high type is always more likely to find it profitable

to deviate to that level of precision. The D1 criterion then requires the receiver to

believe that the deviating sender is of the high type with probability one. Given the

belief, the high type would indeed find it profitable to deviate. Part 2 of Proposition 9

sets our model apart from standard signalling models. The separating equilibrium in

our Persuasive Signalling model survives the Intuitive Criterion but fails D1.34 This

is in sharp contrast to a standard Spence [40, 41] job market signalling model, where,

if the single-crossing condition is assumed, there are multiple separating equilibria.

With two types of the sender, a unique equilibrium survives the Intuitive Criterion,

34In fact, it also fails the weaker refinement of Divinity as long as there exists a finite � such that

⇡H(�, p)� C(�) > 0.
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while with more than two, a unique D1 equilibrium exists. In the meantime, no

pooling equilibrium survives even the intuitive criterion, which is weaker than D1.

Also in a Spence job market signalling model without single-crossing condition, there

exists a unique separating equilibrium, in which both the high type and the low type

are indi↵erent between choosing high education and low education and it survives

D1 because the high type and the low type have exactly the same payo↵ function.

By the same reasoning, any pooling equilibrium also satisfies D1.

A different look at the D1 condition (15)

Another way to look at the results above on the characterization of D1 equilibria

is to analyse, as Daley and Green [11] do, the so-called belief-indi↵erence curves.

To facilitate the comparison, it is best to consider indi↵erence curves in the (a, 1/�)

space, where the variable on the horizontal axis corresponds to what we call the

precision of the signal, and the one of the vertical axis is just a positive transformation

of the interim posterior. On the same curve then one can read the precision, and

interim-belief locus that give the same expected payo↵ to the sender of a given

type, knowing that the receiver uses this belief to calculate the acceptance threshold

according to (4).

These curves are illustrated in Figure 9, where we have drawn the zero-payo↵

indi↵erence curve for the low type and di↵erent indi↵erent curves for the high type.

The D1-condition in (15) basically says that for a signal � and associated interim

belief p to be part of a D1 equilibrium it must be that at the corresponding (a, 1/�)

the indi↵erence curves of the high and low types are tangent. We illustrate this point

for the semi-separating equilibrium, which is unique and provides a zero payo↵ to

the low type. From the figure we can see that (ea, 1/e�) is a D1 equilibrium because

for any deviation a0 6= ea the set of beliefs for which the high type would want to

deviate (beliefs above its indi↵erence curve) is included in the set of beliefs for which

the low type would want to deviate. For the same reason, a point like (a1, 1/�1),

where the tangency condition is not satisfied, for local deviations a0 < a1 the high

type would want to deviate more often than the low type, and therefore would not

survive the D1-refinement.
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Figure 9: Belief-indi↵erence curves: the horizontal axis corresponds to the precision

of the signal and the vertical axis measures the level of optimism of the interim

posterior.
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