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Abstract

We develop a theoretical analysis of two widely used regulations of genetic
tests, Disclosure Duty and Consent Law, and we run an experiment in order
to shed light on both the take-up rate of genetic testing and on the com-
parison of policyholders’ welfare under the two regulations. Disclosure duty
forces individuals to reveal their test results to insurers, exposing them to
a discrimination risk. Consent law allows them to hide any detrimental in-
formation, resulting in adverse selection. The experiment results in much
lower genetic tests take-up rates with Disclosure Duty than with Consent
Law, showing that subjects are very sensitive to the discrimination risk. Un-
der Consent Law, take-up rates increase with the adverse selection intensity.
We then study how individual preferences for one regulation vary as test-
ing costs decrease. The answer depends crucially on whether the adverse
selection intensity remains fixed (as in the short run) or is allowed to vary
endogenously with the testing costs (as in the long run). In the short run,
more people prefer Consent Law to Disclosure Duty as the testing costs de-
crease. In the long run, support for Consent Law may decrease when testing
costs decrease, because the insurance contracts o↵ered under Consent Law
become more expensive due to an increase in adverse selection.

Keywords: Consent Law, Disclosure Duty, Personalized Medicine, Test
take-up rate, pooling health insurance contracts.

JEL Codes: C91, D82, I18.



1 Introduction

Health insurance regulation faces the following trade-o↵. Allow insurers to
adjust the contracts o↵ered to policyholders according to their individual
health status, and individuals face a discrimination risk (or, in its dynamic
version, a reclassification risk). Restrict the ability of insurers to price their
contracts according to all relevant individuals’ characteristics, and some ad-
verse selection may emerge. The trade-o↵ between adverse selection and
discrimination risk has received a lot of attention recently, as exemplified by
the Econometrica article by Handel et al. (2015) on the health exchanges set
up by the A↵ordable Care Act in the US.

Our objective in this article is to study this trade-o↵ in the context of
the emergence of personalized medicine, defined as the use of an individ-
ual’s genetic profile to guide prevention, diagnosis, or treatment decisions.
The advent of ever cheaper and more informative genetic tests will drive the
development of personalized medicine. These tests will allow individuals to
obtain very detailed information on their genetic predisposition to several
diseases, as well as on potential prevention strategies to decrease the prob-
ability of the disease occurring, and on the treatment to be followed if the
disease occurs.1 With increasing medical benefits of testing, coupled with
lower monetary costs, the prevalence of genetic testing will most probably
increase in the foreseeable future.2

In such a context, it becomes necessary to better understand how this
genetic information should be regulated, and whether current regulations

1See Abrahams and Silver (2010) for a history of personalized medicine and also
Anaya et al. (2016) for applications to autoimmune diseases. It is fair to say that,
while the cost of sequencing a whole genome has decreased at a very impressive rate (see
http://www.genome.gov/sequencingcosts, last accessed on October 26, 2018) and is likely
to continue to do so, the amount of actionable health information gleaned from sequencing
has not grown at the same pace. For instance, while knowing one’s genome can bring more
precise information as to the likelihood of developing a disease in the future, it does not
always give much useful guidance for prevention. This is recognized by Snyder (2016),
among others. The di�culty lies in the fact that genetic diseases are complex and a↵ected
by the environment. This being said, Snyder (2016) contains many examples where genetic
testing already has medical value and claims that this will be the case even more in the
not too distant future.

2Another driver of the decision to test is the psychological costs of acquiring bad news
regarding one’s health. There is no obvious trend in these costs, so there is no reason to
think that their evolution would reverse the impact of lower monetary costs (and larger
medical e�cacy) on the frequency of genetic testing.
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should be modified as the prevalence of genetic testing increases. More pre-
cisely, it is likely that in the next decades genetic testing will a↵ect the trade-
o↵ between adverse selection and discrimination risk in two ways. First, these
tests may convey more precise information on individuals’ health risks. When
tested agents are forced by law to reveal to insurers their genetic informa-
tion, they then face a stronger discrimination risk. Second, in most countries
individuals decide whether they want to take a genetic test or not. This
decision to acquire information then depends on whether this information
has to be shared with insurers or not. If disclosure is mandatory, the ensuing
discrimination risk may reduce incentives to take the test in the first place
(Hirshleifer, 1971), resulting in the loss of precious health information. If
disclosure is not mandatory, individuals may hide any bad information they
have discovered, resulting in a stronger version of adverse selection than if
they were uninformed of their genetic background. This last e↵ect will likely
increase as genetic testing becomes more widely used.

Regulations of the health information generated by genetic testing vary a
lot across countries, as described by Otlowski, Taylor and Bombard (2012).
While regulations labelled “Laissez-Faire” and “Disclosure Duty” mandate
disclosure of genetic information to health insurers,3 “Consent Law” and
“Strict Prohibition” allow withholding of information.4 The latter type of
regulation generates adverse selection while the former type aims at avoiding
this adverse selection but creates a discrimination risk. Moreover, the two
types of regulation produce di↵erent incentives to take a genetic test.

In this article, we compare Consent Law and Disclosure Duty, as these
two regulations best exemplify the trade-o↵ between adverse selection and
discrimination risk in a setting where individuals are left to decide whether
to take a genetic test or not. We first develop a theoretical framework to

3Laissez-Faire allows the health insurers to require testing from their customers, while
Disclosure Duty does not. Laissez-Faire is applied in China, Japan, Korea, New Zealand,
Russia, Singapore, Spain, and South Africa whereas Disclosure Duty is the regulatory
regime in the UK.

4Under Consent Law, agents choose whether they want to disclose genetic information,
which can be used in their contracting with health insurers, while under Strict Prohibition
no contract can be explicitly based on genetic information – which does not prevent insurers
from o↵ering menus of contracts that indirectly elicit information on individual risks.
Australia, the Netherlands, and Switzerland are three of the countries applying a Consent
Law regime whereas Austria, Belgium, Canada, Denmark, France, Germany (except for
life insurances with significant premiums), Ireland, Israel, Italy, Norway, and Portugal
apply a Strict Prohibition regime.
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compare those regulations, and we then devise an experiment to elicit which
regulation individuals would selfishly prefer, and whether they would take a
genetic test under each regulation. Moreover, we are interested in how pref-
erences for testing and for regulations will evolve as testing costs decrease.
An experimental setting is a natural first step to understand behavior and
preferences with respect to both regulations, and how they change with test-
ing costs. Observe that, to obtain answers to those questions with empirical
data, we would have to find a (quasi-)natural experiment where the regula-
tion has changed at some point in time, and with discontinuities in genetic
testing costs across groups. This is very unlikely because these regulations
have been introduced quite recently in most countries, and have thus varied
very little since their inception.5

Our theoretical set-up is as follows.6 Agents can be of two types depend-
ing on their genetic background: type L have a low probability of developing
a disease while type H have a high probability. Agents are uninformed about
their type, unless they take a genetic test which reveals their type without
error, and allows them to better tailor a prevention e↵ort (i.e., tests have
medical value).7 Genetic tests are costly to individuals, because of their
monetary cost but also because some agents may dislike knowing with preci-
sion their genetic background. Agents are then heterogeneous in their testing
cost. After deciding to test or not, individuals buy health insurance on a per-
fectly competitive market.

Under Disclosure Duty (DD hereafter), equilibrium contracts are such
that individuals pay an “average” premium if they do not test, but are faced
with a discrimination risk if they test, in the form of a lottery (low premium
if type L, high premium if type H). As for Consent Law (CL hereafter), in
light of the current low take-up rate of genetic tests (see Hoy et al., 2014), we
assume that insurers o↵er a pooling contract will full (exogenous) coverage to
all who pretend (truthfully or not) to be uninformed. At equilibrium, agents

5An important exception is studied in Miller and Tucker (2018), which we discuss at
the end of this section.

6The model we develop here applies more generally to any kind of type-revealing tests
(such as EKG, X-rays, HIV tests, IQ tests, etc.) that could be exploited by insurance
companies, provided that agents tested positive can take some action in order to decrease
their probability of damage. Genetic testing is an important leading example.

7See for instance Snyder (2016) for examples fitting our model, especially Figure 17 for
how taking a genetic test gives more precise information as to the probability of developing
several diseases, and page 76 for examples of prevention e↵orts for agents genetically more
susceptible to develop certain diseases.
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show their test results to the insurers if they are revealed to be type L, and
pretend to be uninformed (i.e., not to have done the test) otherwise. The
equilibrium (zero profit) premium attached to the pooling contract reflects
the intensity of adverse selection at play (with a higher premium when more
type H individuals falsely pretend to be uninformed).

Solving the analytical model allows us to obtain three hypotheses that
we then test with an experiment. First, test take-up rates decrease with the
test cost under both regulations, and are higher under CL than under DD
(since obtaining bad genetic news can be hidden from the insurer under CL).
Second, the test take-up rate under CL increases with the amount of adverse
selection (since agents test in order to escape the pooling contract, which
is made less attractive by the higher equilibrium premium necessitated by a
higher level of adverse selection). Third, agents prefer CL when the test cost
is low, and DD when the test cost is large.

We design an experiment in a neutral framework in which subjects have to
make several choices between a lottery and a sure payo↵. The lottery (resp.,
the sure payo↵) corresponds to the pay-o↵ obtained when (resp., when not)
testing. We have opted for a neutrally-framed (rather than for a health-
framed) experiment because it is the most direct way to translate our model
into an experiment, but also because this allows us to control directly for the
heterogeneity in test costs (which, in our theoretical model, stands for both
the financial and psychological costs of the genetic tests). More precisely, the
payo↵s o↵ered to subjects correspond to the equilibrium contracts obtained
in the analytical part of the paper, when considering four di↵erent costs of
the genetic test, and five di↵erent intensities of adverse selection (for the CL
regulation).

Our experimental results match the main theoretical predictions, but also
allow us to go further and to shed light for instance on the intensity of the
trade-o↵ between adverse selection and discrimination risk. We refer the
impatient reader to the concluding section for a more detailed summary of
the main results of the paper. Referring back to Handel et al. (2015), we
find like them evidence of both discrimination risk and of adverse selection
at equilibrium. Subjects seem very sensitive to the discrimination risk, since
most of them do not test under DD, even when the test cost is low. As for
adverse selection, we proceed in two stages. In the first stage, we assume
that the level of adverse selection (used by insurers to compute their break-
even premia) is exogenously given, and not a↵ected by the test cost. This
approach is reasonable in the short run for instance, when insurers take the
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composition of the pool as given.
In a second stage, we use our experimental results to compute the equilib-

rium (steady state) amount of adverse selection as a function of the test cost,
by looking at the proportion of agents who test (and who then claim to be
uninformed if they receive bad news) under CL. We obtain that testing (and
hence the adverse selection level) is quite insensitive to the test cost when the
latter is either low or large, but very sensitive when it is intermediate. We
then obtain that preferences for CL (as opposed to DD) are non-monotone in
the value of the test cost (see Figure 7).8 Since test costs have been decreas-
ing at a steady and impressive rate, from very high levels, for the last decade,
our results then highlight that the political support for genetic regulations
may become very unstable as the test cost keeps decreasing, especially when
it becomes low enough that the testing decisions (and thus adverse selection
under CL) become very sensitive to the test cost.

We now turn to the related literature, starting with the articles closest
to ours. Barigozzi and Henriet (2011) and Peter et al. (2017) compare DD
and CL (among other regulations). Their result (that DD dominates CL)
depends crucially on two simplifying assumptions that we are not making
here: that genetic tests are costless, and that individuals are homogenous in
their preference for information acquisition. These assumptions imply that
all individuals test under CL at equilibrium, with insurers degrading the
(coverage rate of the) contract o↵ered to type L to prevent type H from
mimicking them.9 By contrast, we obtain in our setting that not all individ-
uals test under either CL or DD, because they vary in their (financial, but
especially psychological) cost of taking the test. Hoel et al. (2006) study the
consequences for the testing decisions of introducing heterogeneity in psy-
chological preferences (repulsion from chance), in a setting with separating
equilibria, but do not compare the properties of various regulations.10

8In other words, while CL may look more attractive to agents than DD (because it
allows them to hide bad news), the resulting equilibrium amount of adverse selection in
the pooling contract under CL may actually make this regulation less attractive than DD,
in a way which is non-monotone with the value of the test cost.

9Peter et al. (2017)’s last section contains an informal discussion of how their results
would likely be a↵ected by the introduction of either costly testing or ex-ante heterogeneity
among agents.

10Hoy et al. (2014) also depart from the traditional expected utility framework by
studying the impact of ambiguity aversion on the acquisition of genetic information, but
they do not consider heterogenous preferences.

5



Gemmo et al. (2017) develop a model where agents have access to a
free technology (such as telemonitoring) that reveals their type to the in-
surers. This technology then plays a role similar to genetic testing in our
consent law environment. Their model di↵ers from ours in several important
ways. First, they consider separating contracts (à la Rothschild-Stiglitz –RS
hereafter– and à la Wilson-Miyazaki-Spence –WMS hereafter– with cross-
subsidies) rather than pooling contracts. Second, all individuals are aware
of their risk type, and the technology is only used to reveal this type to in-
surers (while in our setting agents who have not performed genetic tests are
unaware of their type). Third, agents di↵er in their utility cost of reveal-
ing their risk type to the insurers (transparency aversion), so that low risk
agents who are su�ciently transparency averse will not reveal their type to
the insurers, in stark contrast with our setting. They obtain that the infor-
mation disclosure can be Pareto improving with RS contracts since low risk
individuals may obtain more coverage. However, with WMS contracts, the
information disclosure may reduce or eliminate the cross-subsidies at work
in health insurance markets.

Few articles assume that insurers o↵er a pooling contract, an assumption
much more in line with current practice than the separating contracts à la RS
used by the rest of the literature. An important exception is Hoy (2006) who
studies the equity-e�ciency trade-o↵ of regulatory adverse selection based
on a pooling equilibrium. A recent survey of the economic e↵ects of risk
classification bans, including in settings where insurers provide pooling equi-
libria, is provided by Dionne and Rothschild (2014). Other papers assuming
pooling contracts under CL are Hoy et al. (2003) and Crainich (2017), but
they do not compare regulations.11

Strohmenger and Wamback (2000) focus on health issues where the will-
ingness to pay for treatment is lower than the treatment’s cost. This simple
twist to the assumptions underlying standard insurance models is enough to
generate strikingly di↵erent results. To start with, only agents with a low
probability of getting sick wish to buy an actuarially fair insurance contract.
Strohmenger and Wamback (2000) study the impact of genetic tests in two
settings: with symmetric information (corresponding to the “laissez-faire”
regulation allowing insurers to request genetic tests and use their results)

11Furthermore, there is some recent interest in pooling equilibria, see Einav and Finkel-
stein (2011) for a general approach and Peter et al. (2016) for an application to guaranteed
renewability.
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and with asymmetric information (a “strict prohibition” regulation prevent-
ing insurers from making use of test results). They show that, in the case of
symmetric information, genetic testing can enhance e�ciency, in contrast to
standard models. They obtain the opposite result in the strict prohibition
setting, where the introduction of genetic testing can result in a complete
market failure where no one buys insurance anymore. Note that these re-
sults are obtained for a large set of equilibrium contracts (pooling with full or
partial coverage, separating with or without cross-subsidies across types).

All related articles mentioned so far are applied theory papers. Schudy
and Utikal (2018) is the only paper we are aware of studying an experiment
dealing with the acquisition and disclosure of personal health data in health
care markets, but this paper does not study the trade-o↵ between adverse
selection and discrimination risk. Miller and Tucker (2018) studies how US
States genetic privacy laws a↵ect the di↵usion of personalized medicine, us-
ing data on genetic testing for cancer risks. The regulatory picture in the US
is very complex, with a patchwork of State regulations and the introduction
in 2008 of the Federal Genetic Information Nondiscrimination Act (GINA)
that provides privacy protection that is specific to genetic information and
that covers all States. Miller and Tucker (2018) focus on three aspects of
the US regulations: the requirement of informed consent from tested indi-
vidual, restrictions to discriminatory usages of genetic data by employers,
health care providers or insurance companies, and limits to redisclosure of
genetic information without the consent of the individual. Their first result
is that “approaches to genetic and health privacy that give users control over
redisclosure encourage the spread of genetic testing” (p. 1) and is in line
with our result that agents test more under CL than under DD. At the same
time, they find no e↵ects of State or federal genetic anti-discrimination laws
on genetic testing rates. As they explain, this is due in part to the fact they
can not disentangle o↵setting demand and supply e↵ects, as when “anti-
discrimination rules may increase the willingness of consumers to undergo
testing while at the same time decrease the willingness of health insurers (...)
to cover the tests” (p.13). Our approach is then complementary to theirs,
since we develop a theoretical model to compute the equilibrium contracts
o↵ered by insurers, as a function of the regulation chosen, and then use the
experimental design to shed light on the test take-up rates of individuals
faced with these regulations and ensuing contracts. Also, unlike Miller and
Tucker (2018), our approach can disentangle short run from long run e↵ects
of regulations (when insurers adapt their contracts under CL to the amount
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of adverse selection o↵ered), and study how results are a↵ected by variations
in the test costs.

The paper is organized as follows. Section 2 develops the theoretical
model, including the set-up and the analysis of the two regulations. Section
3 presents our experimental setting. Section 4 explains our experimental
results when the amount of adverse selection under CL is set exogenously,
while section 5 revisits these results when adverse selection is endogenous
and set at its steady-state level. Section 6 recapitulates our main results.

2 Analytical model and predictions

We develop a theoretical setting that allows us to formulate predictions to be
tested during the experiment. We first introduce our analytical set-up where
agents can take a genetic test allowing them to tailor their prevention e↵ort.
We then introduce two regulations of the health insurance market, Disclosure
Duty and Consent Law, and we finally compare the testing decisions and
utility levels of agents across the two regulations.

2.1 Set-Up

The economy is composed of a unitary mass of individuals. We focus on a
generic illness, for which agents have either a genetic background predisposing
them to develop the disease (bad type, or type H, with a high probability
of developing the illness) or a neutral/beneficial genetic background (good
type, or type L, with a low probability of developing the disease). There is
a fraction � of type H in the population. Developing the disease is modeled
as the occurrence of a monetary damage, d.

Taking a genetic test is the only way for agents to know their type. The
test reveals with certainty their true type.12 Agents decide first to take the
genetic test or not. With a slight abuse of language, we call those who do
not take the test type U agents, as they remain uninformed about their type.

Learning about your genetic background has medical value. We assume
that a (costly) prevention e↵ort decreases the probability of developing the
disease for type H agents, but has no e↵ect for type L agents. We also

12This simplification is often made in the economic literature on genetic testing: to the
best of our knowledge, Hoy et al. (2014) is the only paper allowing genetic testing to
generate errors of type I and II.
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assume that the cost/benefit ratio of this e↵ort is low enough that even
agents uninformed of their type find it worthwhile to exert this e↵ort. One
reason to do the genetic test is then to forego the e↵ort cost for agents
who learn that they are of type L.13 We make the important simplifying
assumption that the prevention e↵ort is observable and contractible by the
insurers. This assumption seems reasonable, since there is little empirical
evidence of ex ante moral hazard in health insurance contracts (see Einav
and Finkelstein, 2018). We refer the reader to the concluding section for a
brief discussion of the consequences of this assumption.

We denote by pH the probability that a type H agent who exerts a pre-
vention e↵ort becomes sick, and by pL the probability that a low type agent
(who does not exert the prevention e↵ort) develops the disease, with pH > pL.
The expected probability of developing the disease for an individual who does
not take the test (but exerts the prevention e↵ort) is

pU = �pH + (1� �)pL.

The monetary cost of the prevention e↵ort is denoted by �, and is the
same for all agents undertaking the e↵ort. The (monetary equivalent of the)
cost of taking the genetic test is denoted by K. This cost includes the fi-
nancial cost of the test plus the monetary equivalent of the psychological
cost/disutility from knowing one’s genetic background.14 Agents di↵er ac-
cording to K, allowing for di↵erent (unmodelled) attitudes towards (genetic)
information acquisition. We denote by G(K) the cumulative distribution of
K.

The timing of decisions runs as follows. After having first decided whether
to test and then whether to undertake the prevention e↵ort, agents buy health
insurance on the private market. The equilibrium contracts o↵ered on the
market depend on the regulation of this market, to which we now turn.

13Examples include all behavioral modifications that are not too costly (such as dietary
requirements or physical exercise for instance). Our results would no be qualitatively
a↵ected if we were to assume that type U agents do not exert a prevention e↵ort. Bardey
and De Donder (2013) study which case arises at equilibrium as a function of the e↵ort
cost and impact on the probability of developing the disease when of type H.

14This monetary equivalent K allows us to keep the simple expected utility framework
and may capture di↵erent notions introduced in the literature, such as ambiguity aversion
(Epstein, 1999), repulsion to chance (Hoel et al., 2006) and psychological expected utility
(Caplin and Leahy [2001] and Barrigozi and Levaggi [2010]). We measure the cost K
in monetary terms because we want to control for the individuals’ value of K in the
experiment.
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2.2 Health insurance market regulations: Disclosure
Duty vs Consent Law

Throughout the paper, we study and contrast two well-known regulations of
health insurance markets: Disclosure Duty and Consent Law. Under DD,
agents are required to reveal to insurers the results of any genetic test they
have chosen to take. Under CL, agents choose to reveal or not to the insur-
ers whether they tested and the result of the genetic test. We study both
regulations in turn.

2.2.1 Disclosure Duty

Insurers and policyholders have the same information when contracting, and
know whether the agent has type L or H (if he has taken the test) or type U
(if he has not taken the test). The insurance contract devised for an agent
of type j 2 {L, H, U} is characterized by a premium in case of health, ⇡j

and an indemnity (net of the premium) in case of sickness, Ij. Competition
induces profit-maximizing insurers to o↵er actuarially fair contracts with full
insurance, so that ⇡j = pjd and Ij = (1 � pj)d.15 All agents have the same
income y and the same preferences over consumption, which are represented
by a classical von Neumann Morgenstein utility function v(.) (with v0(.) > 0
and v00(.) < 0).

An uninformed policyholder’s expected utility is then

U0

DD = (1� pU)v(y � ⇡U � �) + pUv(y � d+ IU � �)

= v(y � pUd� �),

where the superscript 0 over UDD stands for “no genetic testing”.
Individuals who take the genetic test obtain a utility level equal to

(1� pH)v(y�K�⇡H ��)+ pHv(y�K� d+ IH ��) = v(y� pHd�K��),

15As mentioned above, we assume that the prevention e↵ort is observable by the insurers,
so that this e↵ort is reflected in the equilibrium premium. As shown by Bardey and De
Donder (2013), the non-observability of the prevention e↵ort by insurers would result in
contracts with partial coverage being o↵ered to agents. Intuitively, agents need to have
enough “skin in the game” in order to be induced to make a prevention e↵ort whose
result (a lower damage probability) is not observed by insurers. We adopt this assumption
for simplicity reasons, as it would have been most di�cult to elicit endogenous partial
coverage rates in the experiment, and as our focus is rather on the adverse selection/ risk
discrimination trade-o↵ betwen regulations.
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if they are revealed to be of type H, and of

(1� pL)v(y �K � ⇡L) + pLv(y �K � d+ IL) = v(y � pLd�K),

if they are revealed to be of type L. Their expected utility when taking the
test is then given by

U1

DD = �v(y � pHd�K � �) + (1� �) v(y � pLd�K),

where the superscript 1 over UDD stands for “taking the genetic test”.
Let us denote by  DD the informational value of the genetic test under

Disclosure Duty,

 DD = U1

DD � U0

DD (1)

= �v(y � pHd�K � �) + (1� �) v(y � pLd�K)� v(y � pUd� �),

with agents doing the test if  DD > 0.
From (1), we see that the main drawback of DD is that it exposes agents

to a discrimination risk : rather than obtaining the sure payo↵ associated
with remaining uninformed, they face a lottery when taking the test. The
more risk averse agents are, the less likely they are to take the test, as they
su↵er more from the discrimination risk. Agents may decide to take the test
even if K > 0, since taking the test allows them to save on the e↵ort cost
� when they are revealed to have a favorable genetic background. A larger
value of K (because, for instance, of a larger disutility from knowing one’s
own genetic background) renders genetic testing less attractive. We denote
by KDD the threshold value of K below (resp., above) which agents take
(resp., do not take) the genetic test under DD–i.e., the value of K such that
 DD = 0.

2.2.2 Consent Law

Under CL, agents have an incentive to hide any bad genetic information,
thereby creating adverse selection. The usual way to deal with adverse se-
lection, in the Rothschild and Stiglitz (1976)’s tradition, is to assume that
insurers o↵er separating contracts, with partial coverage (i.e., a deductible)
for the mimicked type (here, type U) in order to prevent the mimicking type
(here, type H) from taking the contract intended for the former. As pointed
out by Hoy et al. (2003), there is no recorded instance of contracts o↵ering a
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deductible in case the policyholder does not provide genetic tests results. We
then rather assume that the insurers o↵er a pooling contract intended for all
those who claim to be uninformed.16 We further assume that insurers o↵er a
pooling contract with an exogenous coverage level (as is the case in Switzer-
land17 and in the Netherlands for instance, where the regulator imposes the
coverage level), and for simplicity we consider full coverage. We refer the
reader to Appendix A for a discussion of how our main results would have
been a↵ected if we had rather used Wilson (1977)’s equilibrium concept, as
in Crainich (2017) and Hoy et al. (2003), where the equilibrium contract
is either a pooling one with partial coverage or the Rothschild and Stiglitz
(1976) separating equilibrium. We explain in Appendix A that introducing
endogenous coverage rate and endogenous move from pooling to separating
contract, à la Wilson, would have been very di�cult to translate into an
experimental setting. We also come back to this point in the concluding
section.

Tested agents of type L reveal their type to the insurers to benefit from
a lower premium, while tested agents of type H claim to be uninformed to
benefit from the pooling contract. The premium charged for the pooling
contract reflects the composition of the pool. We assume that the pooling
contract clientele is made of a fraction f of truly uninformed agents (type U)
and of a fraction 1�f of cheating agents (tested agents of type H). Roughly
speaking, 1� f measures the intensity of the adverse selection at play, with
more adverse selection translating into a lower f .18 The utility of an agent
who does not test is then given by

U0

CL = v(y � (fpU + (1� f)pH)d� �),

while the expected utility of an agent who takes the genetic test is

U1

CL = �v(y � (fpU + (1� f)pH) d�K � �) + (1� �)v(y � pLd�K).

16There exist both experimental and theoretical arguments in favor of the emergence of
pooling (as opposed to separating) contracts: see for instance Posey and Yavas (2007) for
the former, and Wilson (1977), Allard et al. (1997) and Newhouse (1996) for the latter.

17Basic health insurance is mandatory with a 90% coverage rate (going to
100% above some expense threshold), but must be bought on the private mar-
ket. See https://lenews.ch/2015/10/08/15-things-you-should-know-about-swiss-health-
insurance/, last accessed on 5 November 2018.

18See also Peter et al. (2016) for a similar reasoning applied to guaranteed renewability.
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We denote by  CL the informational value of genetic testing under CL,
given by

 CL = U1

CL � U0

CL

= �v(y � (fpU + (1� f)pH) d�K � �) + (1� �)v(y � pLd�K)

�v(y � (fpU + (1� f)pH) d� �). (2)

Individuals who take the test obtain the same monetary payo↵ (minus
the test cost K) than if they did not when they are unlucky (type H) and a
better payo↵ if they are lucky (type L). It is then straightforward that they
do take the test when K = 0, and that the incentives to take the test are
reduced when K increases. We then denote by KCL the (positive) value of
K such that  CL = 0, and below (resp., above) which agents (resp., do not)
take the genetic test under Consent Law.

Assume for the moment that f is exogenous, and not influenced by K
(this is the case in the short run if insurers consider the composition of their
pool as fixed). Increasing exogenously f (i.e., decreasing adverse selection
in the pool) has two impacts of opposite signs on KCL. On the one hand,
a larger value of f improves the payo↵ associated to the pooling contract
and thus reduces the amount to be gained by testing. On the other hand,
if K is large, the marginal utility with the pooling contract is much higher
if the agent has tested (and paid K) than if he did not. The lower pooling
premium generated by a larger value of f then increases more U1

CL than U0

CL,
thus increasing the incentive to test.19

Lemma 1 KCL decreases with f if policyholders are not too risk averse (v(.)
is not too concave) and if � is low enough.

Proof. Applying the implicit function theorem to (2), we obtain that:

dKCL

df
=

(pH � pU) d [�v0(y � (fpU + (1� f)pH) d�K � �)� v0(y � (fpU + (1� f)pH) d� �)]

�v0(y � (fpU + (1� f)pH) d�K � �) + (1� �)v0(y � pLd�K)
.

We now lift the assumption that f is exogenous in the rest of this section.
As shown above, f determines the value of KCL, which in turn determines
who tests and thus the composition of the clientele of the pooling contract.
The following proposition characterizes the equilibrium value of f .

19This second e↵ect occurs when an agent buys the pooling contract after having tested–
i.e., with probability �.
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Proposition 1 There exists at least one equilibrium (or steady state) value
of f , denoted by f ⇤, with

f ⇤ =
1�G(KCL(f ⇤))

1� (1� �)G(KCL(f ⇤))
. (3)

The numerator of the right hand side of (3) denotes the proportion of
untested agents in the economy, while the denominator denotes the propor-
tion of agents who buy contract U (i.e., everyone except those who are tested
L). Existence of a fixed point of this mapping is due to the continuity of the
functions G(.) and KCL(.). Note that the uniqueness of f ⇤ is not guaranteed
when Lemma 1 applies, since in that case the RHS of (3) increases with f ⇤.
For instance, one could obtain two steady state values of f , a low one and
high one. The low value of f ⇤ occurs if many people test at equilibrium, so
that few people buying the pooling contract are uninformed about their type,
resulting in an expensive pooling contract price and thus in large incentives
to test in order to escape from this expensive contract. The high value of
f ⇤ occurs if few people test at equilibrium, so that many agents buying the
pooling contract are truly uninformed about their type, resulting in a low
pooling contract price, and little incentives to undergo the test.20 This mul-
tiplicity issue does not a↵ect the remainder of our theoretical analysis, since
we compare the two regulations for exogenous values of K and of f , and not
at the steady state f ⇤. We will come back to this issue in section 5 when
assessing the results of the experiment.

2.2.3 Comparisons between the two regulations

Figure 1 summarizes the payo↵ structure of the model we are studying. For
each regulation, agents first choose whether to test or not, and nature deter-
mines their test result. They then buy the insurance contracts computed in
the previous section, with the corresponding payo↵s reported in the termi-
nal nodes of Figure 1. In this section, we compare the testing decisions and
utility levels across regulations.

Insert Figure 1 around here

20We than a referee for pointing this out to our attention.
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We start by comparing utility levels across regulations, for given testing
decisions.

Lemma 2 U1

CL � U1

DD and U0

DD � U0

CL 8K, f.

Proof. Immediate from the definitions of the four utility levels.

For individuals who choose to test under both regulations, CL is ex ante
(before the test reveals the agent’s type) preferable to DD, because they
obtain the same payo↵ under both regulations if they are revealed to be of
type L, while they fare better under CL, by being pooled with type U , if
they are revealed to be of type H. Conversely, for individuals who do not
test under either regulation, DD is preferable to CL because the pooling
contract o↵ered under CL is more costly than the contract for uninformed
agents o↵ered under DD.

The previous sections have defined the test cost threshold levels below
(resp., above) which agents take (resp., do not take) the test under each
regulation. The following lemma compares these two thresholds.

Lemma 3 KCL > KDD 8f 2 [0, 1] .

Proof. Follows from the facts that  CL = U1

CL�U0

CL >  DD = U1

DD �U0

DD

8f,K by Lemma 2, and that both  CL and  DD are decreasing in K, 8f,K.

Lemma 3 says that, everything else equal, policyholders are more willing
to take a genetic test under CL than under DD. This result is intuitive,
since individuals gain more by taking the test under CL than under DD
( CL >  DD), both because testing does not expose them to a discrimination
risk under CL (since they obtain the same contract whether of type U or
type H) and because the contract o↵ered in case the test is not taken is
more expensive under CL (because of adverse selection) than under DD.

The next proposition compares utility levels across regulations when agents
choose optimally whether they test or not in each regulation (i.e., it solves
the game tree depicted in Figure 1 by backward induction).

Proposition 2 All individuals with K low enough that they take the test
under both regulations (K < KDD < KCL) are better o↵ under Consent Law.
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All individuals with K large enough that they do not take the test under
either regulation (K > KCL > KDD) are better o↵ under Disclosure Duty.
All individuals with intermediate values of K (KCL > K > KDD) take the
test only under Consent Law, and their utility di↵erence between Disclosure
Duty and Consent Law increases with K and decreases with f .

Proof. K < KDD implies that agents do the test under both regulations
(by Lemma 3) in which case they are better o↵ under CL (by Lemma 2).
K > KCL implies that agents do not take the test under either regulation
(by Lemma 3) in which case they are better o↵ under DD (by Lemma 2). In
the intermediate case where KDD < K < KCL, the di↵erence in utility levels
between DD and CL is

U0

DD � U1

CL = v(y � pUd� �)

� [�v(y � (fpU + (1� f)pH)d�K � �) + (1� �) v(y � pLd�K)] ,

which is increasing in K and decreasing in f .

Proposition 2 can be illustrated in Figure 2, which shows the utility dif-
ferential between DD (UDD) and CL (UCL), measured at the optimal testing
decision of agents in each regulation (so that UDD =max(U0

DD, U
1

DD) and
UCL =max(U0

CL, U
1

CL)), as a function of K, when f = 0 (panel a), 0 < f < 1
(panel b) and f = 1 (panel c). When f > 0 (so that some agents who buy
the pooling contract under CL are uninformed about their own type) and
K < KDD, the utility level under DD (U1

DD) decreases faster than under
CL (U1

CL) because of the larger marginal utility under the former (due to the
larger premium when revealed of type H). For f > 0 and intermediate values
of K, the test cost K is paid only under CL, so that the utility di↵erence
between DD an CL (U0

DD �U1

CL) increases with K. When f = 0 (so that all
agents claiming to be uninformed under CL are of type H) and K > KDD,
utility is strictly larger under DD because individuals su↵er from adverse
selection under CL (with a larger premium in the pooling contract for those
who do not test).

Finally, we note for future reference that choosing to test under CL is a
necessary, but not su�cient, condition for preferring CL to DD in the game
depicted in Figure 1.
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Insert Figure 2 around here

Solving our model reveals that the comparison of ex ante expected utilities
under CL and DD is ambiguous when agents test under CL but not under
DD and 0 < f < 1. We now move to the presentation of the design of our
experiment which will allow us, among other things, to shed light on this
comparison.

3 Experimental Setting

In the first subsection, we prove that a simple contingent analysis consisting
of two binary questions su�ces to determine (i) whether agents test or not
under each regulation and (ii) which of the two regulations they prefer. We
then present the experiment we have devised to implement this contingent
analysis. Finally, we formulate the three hypotheses we want to test using
our experiment.

3.1 Task fundamentals

Our objective in the experiment is to elicit the preferences within regulation
(i.e., whether to test or not) and between regulations (i.e., whether CL or
DD is preferred, when agents choose optimally whether to test or not for
each regulation separately). In other words, we aim at ranking with strict
inequalities the following utility comparisons: U1

CL ? U0

CL, U
1

DD ? U0

DD and
UCL ? UDD. In terms of the tree diagram shown in Figure 1, we want to
elicit the subjects’ choices in each one of the three solid nodes.

Observe that both the choice of regulation and the choice of whether to
test under CL depend both on the test cost K and on the intensity of adverse
selection f , while the choice of whether to test under DD depends only on
K. Since we are interested in testing decisions and regulation choices for
several values of K and of f , it is important that we find a way to reduce
the number of questions asked to the subjects for each pair (K, f).

We solve this problem by using a contingent analysis where, for each pair
(K, f), we ask (at most) the following two questions.

• Q1: When faced with CL, does the subject prefer to test or not (i.e.,
how does the subject rank U1

CL and U0

CL)?
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If the subject prefers not to test, no further questioning is required for
this pair (K, f). If the subject prefers to test (U1

CL > U0

CL), then we ask the
second question:

• Q2: Does the subject prefer to “test under CL” or “not to test under
DD” (i.e., how does the subject rank U1

CL and U0

DD)?

The following proposition shows that using this contingent analysis allows
us to answer the two questions we are interested in.

Proposition 3 The contingent analysis described above and composed of
questions Q1 and Q2 asked for pairs (K, f) including f = 0 is su�cient
to determine the preferences within regulations and between regulations of
the subjects for all pairs (K, f) studied.

Proof. If the answer to Q1 is that U0

CL > U1

CL, then using Lemma 2 allows
us to infer the full ranking of utility levels of the subject: U0

DD > U0

CL >
U1

CL > U1

DD.
If the answer to Q1 is that U0

CL < U1

CL, then we proceed to Q2. If the answer
to Q2 is that U0

DD > U1

CL, we know from Q1 and Q2 that U0

DD > U1

CL > U0

CL

and from Q2 and Lemma 2 that U0

DD > U1

CL > U1

DD. These two partials
ranking are su�cient to determine the preferences within regulations and
between regulations of the subject, even though we are not able to rank U0

CL

and U1

DD.
If the answer to Q2 is that U0

DD < U1

CL, we know from Q2 and Lemma 2 that
U1

CL > U0

DD > U0

CL and that U1

CL > U1

DD. We then know that the subject
chooses to test under CL, and prefers CL to DD. In order to assess whether
the subject chooses to test under DD, we need to compare U0

DD with U1

DD.
Observe that U1

DD = U1

CL when f = 0. We then know how the subject ranks
U1

DD and U1

CL either from his answer to Q1 with f = 0 (when U0

CL > U1

CL

with f = 0 so that U0

DD > U1

DD) or to Q2 if U0

CL < U1

CL with f = 0.

The proof of Proposition 3 makes use of the two utility rankings in Lemma
2 and of the fact that the expected payo↵s when testing are identical under
CL and DD when f = 0. Recall from Lemma 2 that agents most-prefer
either CL and to test, or DD and not to test. The proof of Proposition 3
establishes that subjects prefer CL to DD if and only if they prefer to test in
both Q1 and Q2. Alternatively, they prefer DD if they choose not to test in
Q1 or in Q2. When subjects prefer to test in Q1 and Q2, their choice in Q2
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when f = 0 determines whether they wish to test under DD or not. Their
preference for testing or not under CL is of course obtained directly from
Q1.21

We now turn to how we have implemented Q1 and Q2.

3.2 Experimental Design

The experiment has been administered on paper. Subjects have received a
set of stapled sheets with the instructions and the tasks (see Appendix B). On
each page were displayed five tasks in consecutive rows. Each task consisted
in answering Q1 and Q2, with K and f (and hence the subjects’ payo↵s)
varying across tasks. We studied 4 di↵erent values of K and 5 values of f ,
for a total of 20 tasks. The tasks were applied on a within-subject basis, and
the subjects were asked to perform the same twenty tasks.22 Note that the
ordering of the tasks di↵ered between participants. More precisely, for all
subjects, the value of K was held constant on each page, while the value of
f was monotonic among tasks. We randomized across the participants the
four possible orderings of tasks, corresponding to increasing and decreasing
values of K (between pages) and f (within pages).

Q1 and Q2 were labeled as subtask A and subtask B, respectively. Both
subtasks required that the subjects choose between the same lottery (cor-
responding to testing under CL) and a sure payo↵ (not testing under CL
for subtask A, not testing under DD for subtask B). Proposition 3 has es-
tablished that it is not necessary to ask the answer to subtask B when the
subject prefers the sure payo↵ in subtask A (intuitively, subtask B improves

21Our contingent analysis does not allow us to fully rank the four possible outcomes
when agents choose to test in Q1 but not to test in Q2. In that case, we can only infer
that U0

DD > U1
CL > U0

CL and that U0
DD > U1

DD. We do not need the full ranking to be
able to assess the preferences for testing within each regulation, and the most-preferred
regulation.

22To have the closest fit with the model, subjects start the experiment with an endow-
ment/income y, and tasks correspond to losses to be subtracted from that endowment. In
all 20 tasks, the payo↵s o↵ered were computed from the following parameter values, with
monetary values in e: y = 36, d = 25.2, � = 3.6, pH = 5/9, pL = 1/9 and � = 1/2. The
20 tasks are obtained by crossing the 4 values of K ((2,4,6 and 8) corresponding to (y/18,
2y/18, 3y/18 and 4y/18)) with the 5 values of f (0,0.25,0.5,0.75 and 1). Some of these
parameters have more extreme values than in other insurance-motivated lab experiments
(e.g., in Riahi et al. (2013) where the wealth at risk ratio d/y is 0.2 and the high-risk
probability pH is 3/10). Given the small values of � and K, this is necessary to induce
meaningful variations across choices within a task.
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the sure payo↵ compared to subtask A). We nevertheless chose to ask sub-
jects to answer subtask B whatever their answer to subtask A in order to
check the internal consistency of their answers (see section 4.1).

We have chosen a neutral framing because it permits to control for many
characteristics of the experiment, such as the severity of the illness (which is
common to all agents), the financial cost of the test, and the proportion of
subjects of high-risk type. It has also the advantage of helping to secure the
consistency between the multiple decisions elicited from the same participant.
The repeated use of a health framing might have di↵erential e↵ects between
participants (for instance, according to their medical background) that would
not have been observed by the researchers.

We now explain how we have implemented the lotteries in the experiment.
At the beginning of the experiment, subjects were given at random a sealed
envelope, and were told that one half of the envelopes distributed contained
a green card, and the other half a red one. A green (resp., red) card was
the equivalent to being of type L (resp., H) in our model, with � = 1/2.
Choices in both subtasks were framed as opening or not opening the envelope,
corresponding to taking the test (and resolving the uncertainty as to one’s
type) or not. Participants were instructed to keep the envelope sealed until
the payment stage.23

After having performed the twenty tasks, participants were also asked
to answer an additional question in order to elicit their risk preferences us-
ing the procedure described in Eckel and Grossman (2008). Each subject
had to choose one among six lotteries that were increasing in both expected
value and variance. The risk elicitation procedure was framed as an extra
task to decrease the protocol’s complexity. The activity ended with a post-
experimental survey aimed to measure the tolerance to ambiguity using a
standardized and non-incentivized psychological test (Budner, 1962). The
Budner test on ambiguity aversion includes sixteen items, all of them using
a 7-point Likert scale. The ambiguity aversion score was computed accord-
ing to Budner (1962)’s instructions: score reversing the indicated items, and
then summing up all 16 items. The items from this test are reported in Ap-
pendix C. The post-experimental survey includes a final question to measure

23We have framed the discovery (or not) of one’s type as opening (or not) an envelope
to bring to the decision problem a di↵erent notion of risk (i.e., not knowing / not wanting
to know what is inside the envelope). This framing’s objective is to capture some psycho-
logical costs (or benefits) that are closer to the psychological costs of taking a genetic test
than to its financial costs, helping the external validity of our experimental results.
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willingness to take risks in a more general domain. The question, which also
uses a 7-point Likert scale and is adapted from Dohmen et al. (2011), says
“I see myself as a person who is fully prepared to take risks, who rarely tries
to avoid taking risks.”

We now turn to the payment protocol. In order to preserve incentive
compatibility (i.e., to avoid portfolio strategies), participants were told from
the outset that they would be paid according to one of the twenty one tasks
they were asked to perform. Following Cox et al. (2015), participants were
shown in advance all the tasks before any decision was made. Each partici-
pant was paid according to a di↵erent task number (1 to 21) and a di↵erent
subtask (A or B, for the first 20 tasks).24 Participants were allowed to open
their envelope (and discover the color of the paper inside) only in the fol-
lowing two cases. The first case arises if they selected the lottery (described
as “open the envelope”) in the task (between 1 and 20) and subtask (A or
B) chosen at random to be the basis of their payment. The second case oc-
curs if they were paid according to task 21 (in which case the green and red
cards were associated to the positive and negative outcomes of the lottery,
respectively).25

Two sessions were conducted at the Toulouse School of Economics in De-
cember 2015 and February 2016. We had 33 participants in the first session
and 34 participants in the second session. To minimize selection issues, both
sessions were conducted during lecturing hours on two di↵erent courses from

24The front of the envelope containing the colored paper exhibited a letter from A to
U, with half of the envelopes showing a blue letter and the other half a black letter.
Subjects were told from the outset that we would reveal at the end of the activity the
bijections (i) between the letter printed on the envelope and the task number on which
their payment would be based, and (ii) between the color of the letter and the subtask on
which the payment would be based (except for task 21 for which this latter information
was irrelevant). Each subject was paid according to a di↵erent combination of (K, f),
corresponding to its unique letter. The color in which this unique letter was printed, blue
or black, defined whether they were paid according to subtask A or B.

25With this particular feature we block anticipated regret. Suppose we allowed subjects
to open the envelope, regardless of the experimental outcome, once the payment was made.
A subject of type L would have felt regrets in case he chose not to test. We did not allow
subjects to open their envelopes, unless the experimental outcome told them to do so, to
prevent subjects from considering the hypothetical scenario described above. The use of
envelopes with green and red cards representing L and H types, respectively, brings closer
the experimental setting to the revelation of the type in a more realistic setting, compared
to a die roll or a coin toss. This feature contributes to the “ecological validity” (Morton
and Williams, 2010) of our design.
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the Master in Economics (the first session in the elective “Behavioral and
Experimental Economics” course and the second session in the mandatory
“Microeconomics” course). Subjects were not informed in advance about the
conduct of the experiment. Participants were, on average, 22 years old (stan-
dard deviation 1.47). Sixty percent of them were male. We observe substan-
tial variation in the ambiguity aversion score (54.7± 7.44, the minimum and
maximum scores were 39 and 82, while the minimum and maximum achiev-
able scores are 7 and 112) and in the non-incentivized risk aversion question
(3.88 ± 1.39 in a 7-point Likert scale). Besides, the non-incentivized risk
aversion question is positively correlated with the chosen lottery in task 21
(Pearson’s ⇢ =0.33$, p-value = 0.007). This evidence of consistency of risk
preference across domains speaks well to the external validity of our exper-
iment.26 The activity lasted 45-50 minutes. The average earnings for the
activity were 23 euros.

3.3 Experimental hypotheses

Our main objective in this article is to shed light first on the decisions by
agents to take a genetic test or not for a given regulation (CL or DD), and
then on their preferences for these regulations, given their testing decision
under each regulation. More formally, we now describe the three hypotheses
we want to test. These hypotheses, summarized in Table 1, are informed by
our analytical results (Lemmas 1 to 3 and Proposition 2 above).27

Starting with the within-regulation decisions, we formulate the following
hypothesis.

Hypothesis 1 (a) Test take-up rates are higher under CL than under DD
for any value of the parameters (K, f). (b) Take-up rates decrease with test
cost K both for CL and for DD.

Part (a) of Hypothesis 1 derives from Lemma 3. Part (b) is straightfor-
ward from the definitions of the information value of genetic tests (see (1)
and (2)).

26Similarly, Dohmen et al. (2011) write that their “results suggest that risk attitudes
are strongly but not perfectly correlated across contexts.”

27We show in section 4.1 that the number of inconsistent choices made by subjects is
very low. We are thus confident that subjects have well understood the experiment, and
that we can base the hypotheses to be tested on the theoretical results obtained above.
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Table 1: Summary of hypotheses to be tested
Hypothesis Derived from What do we test? Description

H1(a) Lemma 3 KCL > KDD 8f 2 [0, 1] Higher test take-up rates under
CL than under DD.

H1(b) Equations
(1) and (2)

@ DD
@K < 0, and

@ CL
@K < 0 Take-up rates decrease with K for

CL and DD.

H2(a) Lemma 1
@ CL

@f < 0 Take-up rates decrease with f
under CL.

H2(b) Lemma 1
��� @ CL

@f

��� smaller for more risk averse agents For large K, the e↵ect of f on the
probability of testing under CL is
smaller for risk averse subjects.

H3 Proposition 2 UCL > UDD if K low, and
UCL < UDD if K large

CL is preferred to DD for low K.
DD is preferred to CL for high K.

The next hypothesis concentrates on the testing decisions under CL, and
on how they are a↵ected by the value of f and by the preferences of the
agents.

Hypothesis 2 (a) Take-up rates under CL are decreasing with f (i.e., in-
creasing with the intensity of adverse selection). (b) For a large test cost
K, the marginal e↵ect of f on the probability of testing under CL is smaller
(i.e., less negative) for risk averse subjects (with respect to more risk tolerant
subjects).

Part (a) constitutes a test of whether the conditions under which KCL

decreases with f (see Lemma 1) are satisfied in the experiment. Part (b)
further builds on Lemma 1, and looks at how risk aversion a↵ects the impact
of adverse selection (as measured by 1�f) on the probability of testing when
K is large (so that the marginal utility with the pooling contract is much
higher if the agent has tested than if he has not, reducing the incentive to
take the test when f is increased).

Moving now to the between-regulation decision, the following hypothesis
is obtained from Proposition 2:

Hypothesis 3 CL is preferred to DD for low levels of K. DD is preferred
to CL for high levels of K.

Section 4 tests these three hypotheses using all twenty exogenous pairs
(K, f) studied in the experiment. Recall from section 2.2.2 that the value
of f is used to compute the equilibrium contracts under CL. The choice to
test or not to test under CL, given these contracts, results in a value of f
which need not be the same as the one used to compute the contracts o↵ered.
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In that sense, most exogenous pairs (K, f) studied in the next section can
be considered as “out of equilibrium”. Recall also that Proposition 1 has
established the existence of at least one equilibrium (or steady state) value
of f . In section 5, we then test whether Hypotheses 1 and 3 hold when the
value of f is obtained endogenously from the testing decisions of individuals.

4 Individual choices when the adverse selec-

tion level is exogenous

We start by studying in the first subsection whether subjects have understood
the tasks at hand by focusing on the inconsistencies in their choices across
tasks and subtasks, for exogenous values of K and f . We obtain a very low
number of inconsistent choices, so that we are confident that the subjects
have well understood the protocol.28 In the second subsection, we study the
testing decisions of the subjects, while section 4.3 analyzes their preferences
over regulations.

4.1 Inconsistent choices

There are two ways in which we can detect inconsistent choices made by
subjects: (i) within tasks, by comparing answers to subtask A (corresponding
to question Q1 in section 3.1) and B (question Q2) for given (K, f), and (ii)
between tasks, by comparing answers given to subtasks B for given K but
varying f . We cover these two types of inconsistencies in sequence.

As explained in section 3.1, for any given (K, f) with f < 1, agents
who prefer the sure payo↵ in subtask A (so that U0

CL > U1

CL) should also
prefer the sure payo↵ in subtask B (so that U0

DD > U1

CL) since both subtasks
di↵er only in the sure payo↵ amount, which is larger in subtask B than in
subtask A (with U0

DD > U0

CL). We have chosen to ask subjects to answer
subtask B even when they prefer the sure payo↵ in subtask A in order to
detect inconsistent choices. We take the unit of observation to be the subject
for any given K, so that we have a total of 4 (values of K) times 67 (sub-
jects)=268 observations.29 Table 2 shows that inconsistencies within tasks

28For instance, they seem to have well understood that the subtasks were framed as
losses to be subtracted from the endowment of 36e.

29In other words, one unit of observation corresponds to one experiment sheet (see
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only happen 3 times out of 268 observations, corresponding to 1.1% of the
possible occurrences.30 Mann-Whitney tests reveal that di↵erences between
sessions, cases where we decreased or increased f in any given answer sheet,
and where we decreased or increased K in successive sheets are negligible (p-
values are 0.2675, 0.315 and 0.188, respectively).31 Our unit of observation
in these tests is the task instead of the player. Hence, the reported p-values
are much lower than those one would have obtained if all observations were
independent. Since the reported p-values indicate a lack of significance this
is not a concern.

Table 2: Inconsistencies in individual choices
Type Frequency Percentage
Within tasks 3/268 1.1%
Across tasks 9/268 3.4%

We now move to the second type of inconsistencies. A simple inspection
of the question sheets from the protocol in Appendix B shows that, for K
constant (same question sheet), moving down the list of tasks improves the
worst payo↵ among the two o↵ered in subtask B’s lottery, but keeps the other
payo↵s in this subtask una↵ected. Hence, an inconsistency is defined as a
preference reversal in which the subject tests in Subtask B for a given task
number, and does not test for a larger task number where the worst outcome
from testing improved. Since we control for order e↵ects of f (i.e., increasing
versus decreasing values), we define the inconsistency in a similar way when
moving down the list of tasks deteriorates the worst payo↵ among the two
o↵ered in subtask B’s lottery.

As in the first type of inconsistencies, we take the unit of observation to be
the subject for any value of K. As Table 2 shows, we obtain 9 inconsistencies

Appendix B), and so to 5 tasks (one for each of the 5 values of f we consider).
30Note that the frequency of inconsistencies would be even lower if we were to take the

unit of observation to be the task when f < 1, in which case we only have 4 inconsistencies
out of 4 (values of K) times 4 (values of f < 1) times 67 (subjects) = 1072 observations.

31We also obtain 8 cases out of the 4 (values of K) times 67 (respondents)=268 answers
to tasks involving f = 1 where subjects make di↵erent choices in subtasks A and B even
though the payo↵s are the same in both subtasks. Di↵erent choices may not correspond
to inconsistencies, but rather to indi↵erence between the two payo↵s, since we do not
allow subjects to register indi↵erences in the experiment. So we obtain at most 3% of
inconsistencies of that type.
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across tasks out of a total of 268 observations, i.e. 3.4% of cases. Mann-
Whitney tests reveal no statistical di↵erences between sessions (p-value of
0.769) or between protocols with an increasing or decreasing order of K (p-
value 0.119). However, inconsistencies across tasks are more likely to appear
when f decreases from one task to the next within the same sheet (p-value
0.012).

In the light of Table 2, we feel confident that subjects have well un-
derstood the experiment protocol, and we move to the study of its results,
starting with the testing decisions.

4.2 Testing decisions within regulations

Figure 3 reports the observed test take-up rates within CL and DD for the
di↵erent levels ofK and f considered in our experiment. We first observe that
take-up rates are higher under CL than under DD, as predicted in Hypothesis
1 (a). Actually, the take-up rates under DD are very small (varying from
7.5% for the lowest value of K, to 0 for its two highest values). This means
that subjects are very sensitive to the discrimination risk associated with
this regulation. By contrast, take-up rates under CL are very close to 100%,
for any value of f , when K is low. This is intuitive since section 2.2.2 has
shown that take-up would be 100% with K = 0, and thus would remain by
continuity close to 100% for K small. We then observe that take-up rates
decrease with the cost of the test under both regulations, in accordance with
Hypothesis 1 (b).

We now study more closely the testing decisions under CL. Figure 3 shows
that take-up rates under CL are decreasing with f, confirming Hypothesis 2
(a).32 Recall from Lemma 1 that increasing f improves the pooling contract
o↵ered to agents (pretending to be) uninformed, which has two e↵ects of
opposite signs on the incentives to take the test. On the one hand, a better
pool decreases incentives to test since agents test in order to move away
from this pooling contract. On the other hand, if utilities are very concave,
marginal utility is especially large when agents take the test (and pay its
cost), and the lower premium associated to a larger f especially benefits

32The only exception in Figure 3 seems to be the increase in take-up rate for K = y/9
when moving from f = 3/4 to f = 1, but both a chi-squared test (p-value 0.71) and a
t-test (same p-value) show that the di↵erence in take-up rates between those two points
is not significant.
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those who take the test, inducing more agents to do so. Figure 3 shows that
the former e↵ect is larger than the latter.

Insert Figure 3 here

We present in Appendix D the result of a logit regression where we study
the determinants of the probability of testing under CL. We are especially
interested in the impact of adverse selection as measured by 1 � f and of
its interaction with subjects’ risk aversion, in order to shed light on whether
Hypothesis 2 (b) is supported by the experiment’s results. We measure risk
aversion by asking participants to choose one from the six lotteries shown
in Task 21 in Appendix B. The lotteries are ordered by increasing expected
payo↵ going hand in hand with increasing variance. Less risk averse agents
then should choose a lottery with both a higher expected payo↵ and a higher
variance. Our measure of risk aversion is not continuous, since we only know
which of 6 lotteries would be chosen by each respondent. We then concentrate
on agents who are either very risk averse (preferring the safest lotteries) or
among the least risk averse (preferring the lotteries with the highest payo↵s
and variances). In the first numerical column of Table D.1., we select the
sample of respondents who have either chosen the two least risky lotteries
(43% of respondents) or the two most risky lotteries (27% of respondents),
and we construct a dummy variable called “Risk averse” set to one for the
first group, and to one for the second group. We proceed similarly in the
second numerical column, where we select the sample of those who have
chosen either the least risky lottery (18% of respondents) or the most risky
(16% of subjects).

We see that the coe�cient for f is negative and significant in both
columns, confirming that the test take-up rate increases with the adverse
selection intensity (Hypothesis 2 (a)). Also, the coe�cient for the interac-
tion of f and risk aversion is positive and significant in both columns. The
interaction term has the opposite sign to the coe�cient for f , meaning that
the negative e↵ect of adverse selection is less pronounced for subjects with a
more concave utility. The latter result is supportive, although not definitive
evidence, of Hypothesis 2 (b).33

33We do not check whether Hypothesis 2 (b) holds for large values of K only, as this
would drastically reduce the estimation sample. Confidence intervals would be very im-
precise, a problem particularly acute in our setting because for large values of K we have
very little variation in the testing decisions.
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4.3 Preferences over regulations

We now move to the preferences over regulations. The left panel of Figure
4 displays the observed preferences for CL over DD as a function of the cost
of the test (K) and of the intensity of adverse selection (f). Recall from
Proposition 3 that, given the sequence of the choices presented in Figure 1,
if agents most prefer DD they also prefer no to test, and that if they most
prefer CL, they then prefer to test. Also, agents prefer CL to DD if they
choose to test in both Q1 and Q2, and DD otherwise.

We obtain that the proportion of subjects preferring CL to DD decreases
with K, for any given value of f . This is intuitive, since a larger value
of K discourages testing, and since CL is preferred to DD only when it is
optimal to test under CL. When K is large, most subjects prefer DD to CL,
in accordance with Hypothesis 3.

For K su�ciently low, y/18 and y/9 in our experiment, where y is the
endowment of the subject when the experiment starts, the proportion of sub-
jects preferring CL increases when the intensity of adverse selection decreases
(i.e., when the proportion f of truly uninformed agents increases). This is
intuitive, since a larger value of f makes the pooling contract under CL more
attractive. Recall from Figure 3 that, for low values of K, the test take-up
rate under CL remains large for all values of f .

For higher levels of K, y/6 and 2y/9, the preferences between regulations
are less a↵ected by the intensity of adverse selection, even though Figure 3
shows that the test take-up rate under CL decreases rapidly as f increases.
Recall the observation made after Proposition 2 that taking the test under
CL is a necessary, but not su�cient, condition to prefer CL over DD. One
can then infer that many of those subjects who change their decision to
not testing under CL as f increases already preferred DD to CL anyhow.
Observe that, for high levels of K, the amount of adverse selection needs to
be minimal (f close to 1) for some subjects to prefer CL over DD (7.5% for
K = y/6 and 4.5% for K = 2y/9). Figure 3 shows that most agents do not
take the test under CL for these parameter values.

Insert Figure 4 around here

We complement this analysis by jointly estimating the testing decisions
in subtasks A and B. We employ a bivariate probit regression to model the
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two binary choices as dependent from each other. As is explained in Propo-
sition 3, choosing to test under Subtask A (Q1) corresponds to choosing to
test under CL, while choosing to test under Subtask B (Q2) corresponds to
preferring CL to DD. These testing decisions are expected to be positively
correlated because, as we show in section 3.1, conditional on not testing in
Subtask A it is rational to not test in Subtask B: the sure payo↵ associated
to not testing is higher in Subtask A than in Subtask B, while both subtasks
o↵er the same lottery. Alternatively, this also means that, for subjects test-
ing in Q2 it is rational that they also test in Q1. The choices in Q1 and
Q2 are expected to be di↵erent only for those willing to test within CL but
prefer (not to test under) the DD regulation (in which case they prefer the
lottery in Q1, and the sure payo↵ in Q2).

We describe in Appendix E how the bivariate probit captures the rela-
tionship between testing decisions. We report the results from this regression
in Table 3. More precisely, the reported coe�cients correspond to changes
in the random utility model on which the bivariate probit model described
in Appendix E is based. Our objective is to predict agents’ choices based on
the values of f and K for di↵erent specifications. The sparsest specification
is model (1) in which the only covariates are f and K. Model (2) adds as
covariates some participant’s characteristics (gender, risk aversion and am-
biguity aversion measures) in addition to categorical variables to control for
order e↵ects and session fixed e↵ects. Model (3) adds an interaction between
the cost of the test K and our measures of risk aversion and ambiguity aver-
sion. Model (4) adds participant fixed e↵ects (at the expense of dropping
participant’s characteristics that are time invariant).

Table 3 provides additional evidence supporting Hypotheses 1, 2 (a) and
3. The negative coe�cients of K in both the Q1 and Q2 choices for all mod-
els indicate that the higher the test cost, the less likely it is that the subjects
test under CL (in accordance with Hypothesis 1 (b)), and the more likely
they are to prefer DD over CL, validating Hypothesis 3. The negative coe�-
cient for f in Q1 implies that the probability of testing within CL decreases
with f (confirming Hypothesis 2 (a)). By contrast, its positive coe�cient
in Q1 implies that the probability of preferring CL over DD increases with
f . The coe�cients are highly significant, and they are robust to multiple
specifications.

The right panel of Figure 4 displays the predicted preferences for CL over
DD, corresponding to the marginal e↵ects of a probit regression that esti-
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mates the probability of testing for each value of f and K in the experiment,
instead of assuming a linear or quadratic relationship for each parameter.
The comparison of the two panels of Figure 4 shows that our probit regres-
sion makes a good job at fitting the experimental data.

Both the good fit and the highly significant coe�cients in Table 3 make
us confident that we can build on these regression results to shed additional
light on the subjects’ preferences. In Figure 5, we report the probability of
testing with CL (left panel) and of preferring CL to DD (right panel), as a
function ofK and f , obtained from the probit regression coe�cients in model
(2) of Table 3. In line with our theoretical analysis, we find that a decrease
in the test cost K makes it more likely that CL be preferred to DD, and
that subjects take the test within CL. Less adverse selection in the pooling
contract under CL (i.e., a higher f) makes CL more likely to be preferred to
DD, but decreases the test take-up rate under CL.

Insert Figure 5 around here

Figure 5 also shows that the sensitivity of the testing decision to adverse
selection depends non-linearly on the value of K. When the cost of the test is
high (resp. low), this sensitivity to adverse selection is small, due to the low
(resp. high) probability of testing estimated with the bivariate probit. For
intermediate values the bivariate probit model is more sensitive to adverse
selection.

5 Individual choices when the adverse selec-

tion level is endogenously determined

The previous section has presented results for exogenous values of pairs (K,
f). This can be interpreted as a short run analysis, where insurers consider
the composition of their pooling contract under CL as fixed at the level f ,
and not a↵ected by the test cost K. Most of these pairs correspond to “out
of equilibrium” allocations, in the following sense. Individuals base their
decision to test or not under CL on the values of K and f , since the latter
determines the premium charged for the pooling contract. At the same time,
the proportion of tested agents determines the composition of the pool –
i.e., the value of f . Proposition 1 has shown that there exists at least one
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equilibrium, or steady state, value of f , denoted by f ⇤, solving this fixed
point problem. In other words, when subjects are proposed the pair (K, f ⇤),
the proportion of agents who decide to test under CL (when the premium
charged for the pooling contract is based on f ⇤) results endogenously in the
fraction f ⇤ of uninformed (i.e., untested) agents among those who buy the
pooling contract. The steady state value(s) of f is (are) given by equation
(3).

Note that Proposition 1 assumes that there exists a distribution of values
of K, while we perform the experiment by fixing the same monetary value of
K for all subjects, with subjects di↵ering in their unobserved non-monetary
psychological cost of knowing their type. So, with a slight abuse of notation,
we denote from now on the steady state value of f as f ⇤(K), since f ⇤ depends
on the value we have attributed to K in the questionnaires.

We compute the function f ⇤(K) by using the marginal e↵ects of the
bivariate probit regression (Model 1 in Table 3), and by using an iterative
procedure, which we explain in Appendix F . We obtain a unique steady
state value of f for all values of K, which we report in Figure 6.34 We first
observe that f ⇤(K) is increasing in K. This is intuitive, for the following
reason. An increase in K discourages testing under CL, leading to more
truly uninformed individuals. This in turn means that a larger fraction of
the agents buying the pooling contract under CL are not informed about
their type, so that there is less adverse selection in the pool and a larger
value of f at the steady state.

Insert Figure 6 around here

When interpreting Figure 6, we have to keep in mind that its S shape is a
direct consequence of the distributional assumptions underlying the bivariate
probit model. But this leaves several degrees of freedom as to the specific
shape and especially the slope of the function for various values of K. We
obtain that the function is not very sensitive to K when K is very low or

34We then do not face the multiplicity issue explained at the very end of section 2.2.2
in the experiment. As explained in more details in Appendix F, our search algorithm
computes the RHS of equation (3) for 1000 values of K and 1000 starting values of f , and
stops iterating when it finds a fixed point (i.e., when two successive applications of the
RHS of (3) give the same value of f). We obtain that this steady state value of f is the
same one irrespective of the starting value of f used by the algorithm.
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very high, but more when it is intermediate (with the testing decision more
sensitive to the test cost for intermediate values of K).

In terms of testable predictions one can draw from this analysis, observe
that the genetic testing costs are indeed still large for the moment (and that
the take-up rate of genetic tests is very low), but that their financial costs
are predicted to decrease significantly within the next years (see footnote
1). This means that the pooling contracts observed in the health insurance
market currently exhibit little adverse selection, but that this may change
very quickly if K decreases below a threshold.

Figure 7 reports both the predicted fraction of the population choosing to
test under CL, and the predicted fraction preferring CL to DD, as a function
of K, when f is set at its steady state value depicted in Figure 6. Looking
first at the preferences for testing under CL, we obtain that Hypothesis 1
(a) and (b) still hold when measured at the steady state value of f . As
for Hypothesis 1 (a), we have already seen in section 4.2 that take-up rates
are higher under CL than under DD for any value of K and any value of
f , so that this remains true when measured at (K, f ⇤(K)) for any K. As
for Hypothesis 1 (b), Figure 7 shows that the test take-up rate under CL
remains decreasing in K when f is measured at its steady-state f ⇤(K), with
the caveat that the S shape of the take-up function is a consequence of our
econometric assumptions.

Insert Figure 7 around here

We then move to the preferences between regulations as a function of
the test cost K when f is computed at its steady state level. Recall from
Proposition 2 and Figure 2 that choosing to test under CL is a necessary
(but not su�cient) condition to prefer CL to DD. The predicted fraction of
agents preferring CL to DD is then lower than the predicted fraction of agents
choosing to test under CL, in Figure 7.35 With our bivariate probit model,
varying the test cost K does not a↵ect much the testing decisions under
CL when K is either low or high. Decreasing K (the empirically relevant

35When f > 0, all agents who test under both CL and DD strictly prefer CL. When K
is low enough that everyone tests under CL, so that f = 0, all agents who test under both
CL and DD are actually indi↵erent between the two regulations (see left panel of Figure
2). This explains why the fraction predicted to (strictly) prefer CL to DD in Figure 7
starts at the lowest value of K consistent with f⇤(K) > 0.
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case) then increases more the utility under CL than under DD (because
more agents pay the testing cost under the former regulation than under the
latter), so that more people prefer CL to DD. This is what we observe on
Figure 7 when K is either lower than 12% of endowment (but large enough
that f ⇤ > 0, see footnote 35), or larger than 15%. For intermediate values
of K, the testing decision under CL is very sensitive to K, and a lower value
of K translates into a much smaller value of f ⇤, which is detrimental to
agents buying the pooling contract under CL, since more adverse selection
increases the premium charged for the pooling contract. When this e↵ect
is very important, as for the intermediate values of K, the CL regulation
becomes less attractive when K decreases, and we observe from Figure 7
that the proportion of people preferring CL to DD actually decreases when
K decreases. It is worth pointing out that this was not a foregone conclusion,
even if our assumption of a bivariate probit model generates a S shaped
f ⇤(K) function, since it requires a large enough sensitivity of f ⇤ to K in this
neighborhood.

So, we obtain that the proportion of subjects preferring CL to DD is
non-monotone with test cost K when f adjusts to its steady-state level:
mimicking the current situation and decreasing the value of the test cost K
from a large starting point, this proportion first increases (since f ⇤ is kept
nearly constant), then decreases (as f ⇤ becomes very sensitive to K) and
finally increases again (as f ⇤ remains roughly constant). When K is low
enough that everyone tests under CL (i.e., f ⇤(K) = 0), then no one strictly
prefers CL to DD. As can be seen from Figure 7, given our econometric
assumptions a strict minority of subjects is predicted to prefer CL to DD,
whatever the value of K, when f is set at its steady-state.

6 Conclusion

Our main results from the experiment run as follows. We have spotted very
few inconsistencies in the subjects answers, and we thus feel confident that
they have well understood the experiment’s protocol. We obtain that test
take-up rates decrease with the genetic test cost under both regulations, and
that they are larger under CL than under DD. This result is intuitive and
due to the lack of discrimination risk under CL, unlike under DD. Note that
these results hold for any exogenous amount of adverse selection under CL,
as well as when the adverse selection level is measured at its steady state.
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The test take-up rate is very small under DD, even when the test cost is
small: this shows that subjects in the experiment are extremely sensitive to
the discrimination risk embedded in the DD regulation. The test take-up
rate increases with the amount of adverse selection in the pooling contract
under CL (since more agents try to escape this more expensive contract by
obtaining the cheaper contract associated with good genetic information),
although the impact of adverse selection is smaller for the more risk averse
agents.

As for the preference for regulations (when individuals choose optimally
whether to test or not, under each regulation), we obtain contrasted results
whether we consider the amount of adverse selection under CL as exogenous
(for instance, in the short term) or endogenous. When the adverse selection
level is exogenously set, the support for CL over DD increases when the ge-
netic test cost decreases. Recall that agents fare better under DD than under
CL if they choose (in both cases) not to test, because the (pooling) contract
under CL is costlier due to the presence of adverse selection. Preferring to
test under CL is thus a prerequisite to favor CL over DD, and a lower test
cost (inducing more testing, especially under CL) then increases the fraction
of agents who prefer CL (and test) to DD.

This reasoning holds for any exogenous adverse selection level, for in-
stance in the short term when insurers cannot adapt their contracts to the
proportion of agents falsely claiming to be uninformed. Results become more
intricate when the adverse selection level is set at its steady state level (i.e.,
when it is obtained from the testing decisions under CL). Given our econo-
metric modeling assumptions, we obtain that when the test cost is either low
or high, the decision whether to test under CL or not is quite insensitive to
variations in the value of this test cost, so that the adverse selection level
barely changes, and the analysis reported above still holds: a smaller test
cost increases the support for CL. As for intermediate values of the test cost,
many more people do test under CL when the cost decreases, which increases
the amount of adverse selection and thus the premium in the pooling contract
o↵ered under CL, and results in a sharp decrease in the fraction of agents
preferring CL to DD.

Personalized medicine is currently in its infancy, with genetic tests (mon-
etary) costs still large currently but falling at an impressive rate, and with
better actionable informational content on the horizon. As the take-up of
genetic tests is likely to increase, our analysis highlights that we could ob-
serve a sudden increase in the amount of adverse selection (and in the premia
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charged) under CL, with a concurrent decrease in the political support for
CL. At the same time, discrimination risk seems to be very salient, with few
agents testing under DD even for low values of the genetic test costs.

Observe that we obtain that less than one half of agents prefer CL to DD,
whatever the value of the test cost K. The equilibrium with DD and very
little testing we then obtain seems pretty bleak from a normative perspective,
as it is impossible to reap the benefits from personalized medicine when
genetic testing is shunned by the public.

Which policy recommendations can we draw from these results? Author-
ities bent on favoring the emergence of personalized medicine should prefer
CL to DD, as the genetic test take-up rate is larger under the former than
under the latter. But this preference may not be shared by a majority of
the electorate, as we show above. We caution against a tendency to wait for
test costs to decrease in the hope that it would increase the support for CL.
While our prediction is that this support would indeed increase with time for
a given adverse selection level, the increase in adverse selection which results
from a larger test take-up under CL may itself dampen the support for this
regulation. Observe also that the Laissez-Faire regulation would probably
make policyholders worse o↵ than under DD in our framework, since it allows
insurers to demand from agents that they perform the genetic tests, while
very few agents voluntarily test under DD even when the test cost is low.

Our results of course have to be taken with caution. We have chosen
to run an experiment with neutral framing and with simple choices, mainly
to be able to remain as close as possible to the analytical model developed,
and to be able to better control all relevant aspects of the experiment and
to help secure the consistency of the respondents’ answers. The reality is
of course more complex, has higher stakes and relates to health decisions.
We thus take our results as indicative of what could happen in the realm of
personalized medicine within the next decade.

We would like to come back to two important assumptions made in the
analytical model. First, our results are based on the simplifying assumption
of a pooling contract with full coverage under CL. As we explain in Appendix
A, this assumption biases our results in the direction of a larger fraction of
agents testing under CL, and preferring CL to DD, than with Wilson (1977)’s
approach resulting in endogenous partial coverage. This is an important
reminder that our results depend crucially on the type of equilibrium contract
o↵ered in both regulations.

Second, we have assumed that the prevention e↵ort (which is the source
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of the health benefit generated by genetic tests) is observable by the insurers,
and that agents perform this e↵ort if and only if it is e�cient. Relaxing either
assumption would likely modify our experimental results. Unobservable pre-
vention would induce insurers to o↵er contracts with partial coverage rates,
to control for the ex ante moral hazard problem. Allowing agents in the ex-
periment to choose whether they want to exert this prevention e↵ort would
probably have generated a di↵erent pattern of prevention, which would have
a↵ected their pay-o↵s. For instance, if agents procrastinate when considering
the prevention e↵ort, then a test which makes this e↵ort non necessary (when
revealed to have a good genetic background) has higher value than in our
setting, potentially leading to larger take-up rates. Such considerations may
then a↵ect the applicability of our experimental results to the real world.
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Appendix A: Wilson equilibrium

We assume for simplicity in the paper that the pooling equilibrium contract
under CL o↵ers full coverage. An often used micro-foundation for a pooling
equilibrium is o↵ered by Wilson (1977) and used in the context of genetic
testing by Crainich (2017). This alternative approach would generate two
di↵erences compared to our simpler one: (i) the coverage rate o↵ered in the
pooling contract would be the one maximizing the utility of type U agents,

max
↵P

pUv(y � d+ ↵P (1� (fpU + (1� f)pH) d� �)

+ (1� pU) v(y � ↵P (fpU + (1� f)pH) d� �),

with ↵P < 1 when f < 1, since the unit price of the contract is more
expensive than the actuarially fair price for type U , and (ii) the equilibrium
contract would be pooling if there are su�ciently many type U (as opposed
to type H) agents in the pool, but would correspond to Rothschild-Stiglitz
separating contracts otherwise.

In this appendix, we briefly discuss how adopting Wilson’s approach
would a↵ect our theoretical results qualitatively. Allowing type U agents
to choose the coverage rate of the pooling contract would increase their util-
ity compared to the one they obtain with full coverage, while the utility of
type H agents would decrease. This would in turn decrease the incentive
to test under CL (since the utility with no testing would increase while the
utility gained if testing revealed your H type would decrease) compared to
our setting. In other terms, we would have a larger value of U0

CL but a lower
value of U1

CL. Even though U0

CL is larger with endogenous coverage than with
full coverage, it remains lower than U0

DD, as in Lemma 2, so that performing
the test under CL remains a necessary (but not su�cient) condition to prefer
CL to DD. Since fewer people would test under partial coverage, and since
they would attain a lower utility level when testing, our assumption of full
coverage means that we over-estimate both the fraction testing under CL,
and the fraction preferring CL to DD.

We would obtain a qualitatively similar impact when the proportion of
bad types (i.e., individuals who test and know their type H) becomes large
enough that the Wilson equilibrium now corresponds to a Rothschild-Stiglitz
separating equilibrium. Recall that insurers wish to attract the less risky
types (type U agents, since type L agents can reveal their type), and that
perfect competition will induce insurers to o↵er to those type U agents the
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best contract for them. The choice between pooling and separating contracts
at the Wilson equilibrium is thus determined by which of these contracts
gives more utility to type U . Type U agents would then obtain a higher
utility level with the Wilson separating equilibrium than with the pooling
equilibrium with (partial, and thus a fortiori with) full coverage, while type
H agents would obtain a lower utility level. This would induce fewer agents
to test under CL than in our setting, and would increase U0

CL while decreasing
U1

CL.
Finally, note that translating the Wilson approach into an experiment

would have been very di�cult, since we would have had to first elicit the most-
preferred coverage rate of uninformed subjects under CL, and whether they
prefer this contract to a separating contract, before moving to the comparison
between CL and DD. Since the most-preferred coverage level depends on
preferences, it would have been di↵erent from one subject to another. This
would have made the comparison of DD and CL more cumbersome, with
CL contracts di↵ering across subjects. Our approach, while based on the
simplifying assumption of a pooling contract with full coverage, allows us to
proceed to a much simpler and less cognitively taxing experiment.
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Appendix B: The protocol
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IFIK 
PART TWO: TASK 21 

 
In the 21st and last task, you will be asked to choose one among six different lotteries. As for the first twenty (20) tasks, 
the GREEN and the RED colored papers indicate your payoff deduction in euros from the selected lottery, with the 
GREEN paper always giving a smaller payoff deduction than the RED paper.  
 
Example: 
 

 
 
You then have a total of TWENTY ONE tasks to perform: TWENTY tasks where you indicate whether you would prefer to 
OPEN or NOT TO OPEN the envelope, plus one final task where you SELECT THE LOTTERY you prefer. 

 
 

HOW DO YOU GET PAID? 
 
Please do not open the envelope until you are instructed to, at the payment stage, or we won’t be able to pay you. 
 
You will be paid the amount you have chosen in ONLY ONE of the 21 tasks according to the following procedure. 
 
There is a letter, from A to U, on the outside of the envelope. This letter differs across envelopes. Each letter is randomly 
matched with a task number. After we have collected the filled forms, we will reveal the correspondence between letter 
and task number.  
 
If the letter on your individual envelope corresponds to task 21, you will be paid according to the lottery you have 
chosen: you will open the envelope and get 36€ minus the lower payoff deduction if there is a GREEN paper slip in the 
envelope, and 36€ minus the larger payoff deduction if there is a RED paper slip. 
 
If the letter on your individual envelope corresponds to a task between 1 and 20, we will toss a coin to determine 
whether you will be paid according to subtask A or to subtask B. If, for the subtask determined by the toss outcome, you 
have indicated that you prefer NOT TO OPEN the envelope, the corresponding amount will be deducted from your 
endowment of 36€. If you have indicated that you prefer to OPEN the envelope, you will be asked to open it and you will 
get 36€ minus the smaller payoff deduction if there is a GREEN paper slip in the envelope, and 36€ minus the larger 
payoff deduction if there is a RED paper slip. 
 
Finally, we will ask you to fill a questionnaire. The collected information will be treated anonymously and will be used 
only with scientific purposes. Once you fill the questionnaire, please remain seated and silent until this form is collected.  
 
If you have any question, please raise your hand and we will respond individually.  
 
If all the instructions are clear and you agree to take part in this activity please sign the accompanying informed consent 
form. We also ask you to fill the accompanying receipt with your name, we will ask you to sign it when we pay you.  
 
Thank you for your participation! 
 

PLEASE DO NOT TURN THE PAGE UNTIL YOU ARE INSTRUCTED TO DO IT 
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Appendix C: Questionnaire for measuring am-

biguity aversion

Each one of the following sixteen statements was evaluated by the partici-
pants using a Likert scale from 7 (strongly agree with the statement) to 1
(strongly disagree with the statement). To compute the ambiguity aversion
score, odd-numbered items must be summed directly and even-numbered
items must be reverse-scored (a “7” scores 1, a “6” scores 2, and so on).
Items can be divided into three categories of ambiguity aversion: aversion to
novelty (N), aversion to complexity (C), and insolubility (I). The category is
listed as a superscript next to the item number.

1(I). An expert who doesn’t come up with a definite answer probably
doesn’t know too much.

2(N). I would like to take a free genetic test informing me of my probability
of developing cancer later in life.

3(I). There is really no such thing as a problem that can’t be solved.
4(C). People who fit their lives to a schedule probably miss most of the

joy of living.
5(C). A good job is one where what is to be done and how it is to be done

are always clear.
6(C). It is more fun to tackle a complicated problem than to solve a simple

one.
7(C). In the long run it is possible to get more done by tackling small,

simple problems rather than large and complicated ones.
8(C). Often the most interesting and stimulating people are those who

don’t mind being di↵erent and original.
9(N). What we are used to is always preferable to what is unfamiliar.
10(C). People who insist upon a yes or no answer just don’t know how

complicated things really are.
11(N). A person who leads an even, regular life in which few surprises or

unexpected happenings arise really has a lot to be grateful for.
12(I). Many of our most important decisions are based upon insu�cient

information.
13(N). I like parties where I know most of the people more than ones

where all or most of the people are complete strangers.
14(C). Teachers or supervisors who hand out vague assignments give one
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a chance to show initiative and originality.
15(C). The sooner we all acquire similar values and ideals the better.
16(C). A good teacher is one who makes you wonder about your way of

looking at things.
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Appendix D: The logit regression describing

test take-up rates under CL

Table D.1: Coe�cients from the logit estimation of the test take-up under
CL
Dependent variable: (1) (2)
Probability of testing in Q1 Risk averse Risk averse

Top 43% Top 18%
f -8.095*** -8.466***

(1.484) (1.847)
Risk averse -1.805 -4.946**

(2.551) (2.369)
f ⇥ Risk averse 4.687** 5.714**

(1.844) (2.290)
K -25.22 -40.35

(23.27) (24.71)
K ⇥ Risk averse -18.06 10.59

(30.14) (31.14)

Constant 8.096*** 8.685***
(2.092) (2.072)

Observations 1,000 460
Session Fixed E↵ects ⇥ Top averse tertile Yes Yes

Controls included: quadratic polynomial for f and K, their interactions with Risk

Averse. Decreasing f and K and their interactions with Risk Averse. Clustered

standard errors at the subject level shown in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.
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Appendix E: The bivariate probit regression

describing choices in Q1 and Q2

The choices we observe in the experiment can be defined as

Q1 =

(
1 (test) if V

1

� 0

0 (no test) otherwise
, Q2 =

(
1 (test) if V

2

� 0

0 (no test) otherwise

with the underlying latent variables V
1

and V
2

given by

V
1

= �0
1 X + ✏

1

,
V
2

= �0
2 X + ✏

2

,

where X is the set of covariates reported in Table 3. The error terms from
the random utility equations, ✏

1

and ✏
2

, are assumed to be jointly normally
distributed. That is,

✓
✏
1

✏
2

◆
⇠ N

✓
0
0

◆
,

✓
1 ⇢
⇢ 1

◆�
.

As explained in section 4.3., the testing decisions in Q1 and Q2 are ex-
pected to be positively correlated (i.e., ⇢ > 0) given the contingent character
of our analysis.

Since we have repeated observations for each participant the standard
errors of the model are clustered at the individual level. The estimated
coe�cients for all the covariates are shown in Table 3. An inspection of the
two panels in Figure 4 shows that the observed and predicted behavior are
qualitatively similar.
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Appendix F: Search algorithm to compute f ⇤

for multiple values of K

In this appendix, we explain how we have computed the steady state values
of f as a function of K that are reported in section 5. We have used a search
(rather than a fixed point) algorithm. This algorithm uses two matrices,
called ptestCL and next_f, which both have 1000 rows (denoting the values
of f ranging from 0 to 1 with a resolution �f of 0.001) and 1000 columns
(denoting the values of K ranging from 0 to 0.25 with a resolution �K of
0.00025). The matrix ptestCL stores the probability of testing under CL,
as obtained in Stata by computing the marginal probability of subtask A in
the bivariate probit, for all combinations of (f , K) belonging to our 1000
by 1000 grid. This is an input matrix, whose values are kept unchanged
throughout the procedure. The matrix next_f initially contains the value
of f corresponding to its row (so that all cells in the same row have the
same value). Then, at each iteration, the algorithm computes the value of f
that results from the RHS of equation (3), where the probability to test as
a function of K and f (denoted by G(KCL(f)) in equation (3)) is obtained
from looking up at the matrix ptestCL. In other words, at each iteration
the procedure computes the next value of f for all values of K (i.e., for all
columns) and all starting values of f (i.e., for all rows) of matrix next_f.
The process is repeated until the stop criterion (that the computed value of
f in one iteration changes by less than �f compared to the previous iteration)
is satisfied.

Beyond the stop criterion, we also have a convergence criterion, which is
that the steady state value of f is the same for all starting point values of
f , once K has been fixed. That is, we can check that all rows of next_f
converge to the same value of f ⇤, once the column (corresponding to the
value of K) has been fixed. This allows us to check the uniqueness of the
steady state value of f , for any given K in the experiment.

For a detailed explanation on how the algorithm works, see the Matlab
program (.m) available as supplementary material. The steps of the algo-
rithm can be summarized as follows:

1. Fill a matrix next_f with the initial values of f . Divide each cell by
�f to store the values of f as a position in the matrix rather than as a
value. This is done to ease the search process in matrix ptestCL.
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2. Fix the test cost K. That is, limit the search algorithm to a column j

in the matrices next_f and ptestCL (in practice all columns are solved
simultaneously).

3. At iteration t+ 1, the value of f corresponding to row i and column j
of matrix ptestCL is obtained from the following computation

f(i)t+1

=
1� ptestCL(f(i)t, K(j))

1� (1� �)ptestCL(f(i)t, K(j))
.

4. Store the current values of f in a temporary matrix f and update the
cells in matrix next_f with the computation obtained in Step 3.

5. Transform all elements in next_f and f by dividing each cell by �f .
Each value in matrix next_f is stored as an integer i that maps into a
position in matrix ptestCL in the following iteration t to compute eq.
(3) again.

6. Compare if matrices next_f and f are identical. If not, repeat from
Step 3.

7. If matrices next_f and f are identical then the value of next_f in each
column j and row i is equal to f ⇤(K(j)) given the starting point value
of f corresponding to row i. If all values in column j are the same,
then we have a unique steady state value of f ⇤ for the corresponding
of K.

Our algorithm finds a unique steady state value of f for all values of K.
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Figures

Figure 1: Payoff structure of the model.
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Figure 2: Utility differences between Disclosure Duty and Consent Law,
measured at the optimal testing decision of agents in each regulation.

Figure 3: Observed test take-up rate within Consent Law (CL) and Disclo-
sure Duty (DD).
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Figure 4: Observed and predicted preferences between regulations.
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Figure 5: Predicted probabilities between and within genetic testing regula-
tions.
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Figure 6: Steady state value of f as a function of test cost.
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Figure 7: Fraction of people predicted to test under CL, and to prefer CL to
DD, when f is set at its steady state level.
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