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Abstract1 
 

The new surge in electric vehicle (EV) charging in Texas can be served efficiently 

during the early morning hours with large wind generation, low electricity demand, 

low prices, and low environmental damage. This paper simulates the ERCOT 

wholesale electricity market and its environmental damages (CO2, SO2, NOx, and 

PM2.5) to find out how charging should be spread among hours to maximize 

welfare and the performance of different tariff schemes (hourly vs. day-night and 

private vs. social costs). The efficient charging schedule, incurring low costs and 

damages, is the opposite of current patterns: while users charge mostly in the 

evening (18-23 H), EVs should be charged during the first hours of the day (0-4 H). 

Constraining power withdrawals to the current Level 1 and 2 chargers reduces 

welfare gains since it limits using energy from those hours with lower prices and 

marginal damages. A day-night tariff reflecting social costs can achieve most of the 

gains of the first best, reducing carbon and air pollution damages below those of 

the current patterns. 

 

JEL classifications: D62, L62, L94, Q41, Q53, Q54, R40 

Keywords: EV charging, Wholesale electricity markets, Emissions taxes, Time-

variant electricity pricing    

 
1 Author’s email: miguelcas@iadb.org, miguelcastroabril@gmail.com. I am thankful for comments from IDB staff 

and participants at the 37th USA and International Association of Energy Economics (USAEE/IAEE) North American 

Conference, Denver, November 2019.  

mailto:miguelcas@iadb.org
mailto:miguelcastroabril@gmail.com
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1. Introduction 
 

Worldwide sales and new registrations of electric vehicles (EVs) have begun to increase 

exponentially. The United States, China and Europe are the leading developers and adopters of 

EVs, which will increase their electricity demand in the short and long run (IEA, 2017). In Texas, 

as this paper will discuss, the surge in power demand for charging EVs can be met efficiently 

during early morning hours of low electricity demand, large wind generation and a large unused 

generation potential of existing power plants. Furthermore, EVs are the key enabling technology 

for decarbonizing transportation and reducing air pollution in cities, as long as their power supply 

is clean.  

Previous literature has modelled in detail the environmental impacts and economic benefits 

of EV charging in the United States, given current users’ (non-optimal) charging patterns and in 

light of marginal increases (Holland et al., 2016; Graff Zivin, Kotchen and Mansur, 2014; 

Archsmith, Kendall and Rapson, 2015). In contrast, this paper assesses the charging schedule that 

maximizes welfare (private marginal generation cost and environmental damages) and two 

implementing tariff structures (hourly, day/night) for the estimated number of EVs in Texas. The 

results aim at informing policy and putting in place incentives (real time pricing, automated 

chargers) that can guide users to charge EVs during economically optimal hours.  

I develop short-term partial equilibrium models of the wholesale electricity market in 

Texas (ERCOT) that replicate and calibrate the baseline (decentralized market problem with 

invariant tariff) and simulate how EV charging should be spread among hours to maximize welfare 

(First Best/Social Planner with hourly tariff) and surplus.2 The models simulate via nonlinear 

optimization hourly electricity demand, fossil fuel generation, EV charging, prices, carbon dioxide 

(CO2), sulfur dioxide (SO2), nitrogen oxide (NOx), and fine particulate matter (PM 2.5) emissions 

for Texas. 

I estimate the fossil fuel supply curve using aggregate hourly fossil generation, heat input 

data, and monthly fuel costs for ERCOT generators in 2017 (EPA, 2019a; EIA, 2017). 

Furthermore, I use the exogenous variation of hourly load and wind to estimate wholesale hourly 

marginal emissions (CO2, SO2, NOx, and PM2.5) and air pollution damages (EPA, 2019a; 

ERCOT, 2017a). I use data on actual EV mileage by auto model in Texas, from the 2017 National 

 
2 The low level of imports makes ERCOT an ideal case for simulations.    
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Household Travel Survey (DOT, 2018), and owners’ current non-optimal charging patterns from 

the EV Project in Houston and Dallas respectively (DOE, 2013b). The model also considers the 

hourly charging restrictions on the amount of energy that an EV can withdraw from the grid (Level 

1 and 2 chargers). Finally, I simulate how day-night tariffs based on the socially optimal hours 

from the Social Planner’s problem and charging generation costs and full social costs can 

implement second best solutions in a decentralized market.  

The welfare-maximizing charging schedule is the opposite of current patterns: while users 

charge mostly in the evening (18-23 H) since they do not face an hourly price and due to 

convenience, EVs can be charged at the lowest marginal social cost during the first hours of the 

day (0-4 H). Unconstrained first best charging leads to welfare gains of up to 42 percent of 

wholesale prices over current non-optimal patterns: an average of 10.44 USD per MWh charged 

and lower carbon and air pollution damages than current charging patterns. Constraining power 

withdrawals to the current Level 1 and 2 chargers limits using energy from those hours with lower 

prices and marginal carbon emissions and reduces welfare gains. Nevertheless, even under the 

most restrictive L1, most EV charging can be done early in the morning, leading to welfare gains 

very similar to the first best (9.91 USD per MWh charged).  

Even in the absence of emissions pricing on EV charging, the private surplus-maximizing 

charging schedule is similar to the welfare schedule due to the overlap of low prices and low 

marginal carbon emissions from hours 0 to 4. However, environmental damages increase at a much 

larger rate than prices from 5 to 8 AM, and the surplus maximizing schedule draws more power 

between those hours than the welfare schedule, leading to larger carbon emissions and air pollution 

than current charging patterns, and lower efficiency gains than the first best. 

The second best day-night tariff charging only generation costs leads to an EV charging 

schedule that withdraws most power during 4-5 AM, and it captures up to 93.7 percent of the gains 

of the first best. However, this less granular period pricing reduces generation cost effectiveness 

and increases environmental damages compared to even the surplus-maximizing charging. On the 

other hand, the day-night tariff reflecting social costs leads to a charging profile that charges mostly 

from 3-4 AM, delivers more benefits (up to 98.3 percent of the gains of the first best) and reduces 

carbon emissions and air pollution damages below those of the current charging patterns. The day-

night tariff is the “low-hanging fruit” since it can incentivize simple behavioral changes such as 

plugging in the EV not as soon as users get home but later on, allowing them to reduce their 
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electricity bill and mitigate emissions damages. Aggregators who can bundle more than three users 

should be able to finance the initial cost of a smart charger and make a profit. I also show how the 

optimal schedule varies throughout seasons due to variation in demand and the marginal generator 

supplying power. 

Under the current charging patterns of EV users, light-duty EV average CO2 emissions per 

mile (176 g CO2/mi) are less than half of those from the average passenger gasoline vehicle (404 

g CO2/mi) and average NOx emissions are 35.7 percent lower (DOE and EPA, 2019; Cai, Burnham 

and Wang, 2013). This occurs since most current charging takes place after the afternoon peak 

load (6-10 PM) when power is supplied by relatively clean combined cycle gas.  

The conceptual and empirical model developed in this paper can be applied to grids mostly 

powered by fossil fuels (as is the case for several Latin America and the Caribbean and developing 

countries worldwide) to find the schedules with the lowest private generation cost and 

environmental damages. 

The paper is organized as follows. Section 2 discusses the economic literature on assessing 

the impacts of electric vehicles. Section 3 presents the main market, prices and wind power trends 

in ERCOT. Section 4 starts with an overview of the numerical models for the Social Planner and 

decentralized simulations of the wholesale market, then describes the demand, marginal cost, 

emissions and damages functions estimation and calibration as well as the charging restriction 

parameters. This section closes with a detailed presentation of the algorithms for simulating the 

models. Section 5 presents the results of the optimal charging schedules, including their welfare 

and emissions impacts for the different tariff schemes. Finally, Section 6 presents discusses the 

results and policy implications, and Section 7 concludes.  

 

2. Literature Review 
 

Different authors in the economic literature have argued that the benefits of using EVs depend on 

the location and timing of their charge. Graff Zivin et al. (2014) show that different marginal power 

plants serve a shifting load during the day, which in turn determines heterogenous carbon, sulfur 

and nitrogen oxide emissions. Hence, the environmental impact of an electric vehicle will depend 

on the charging schedule. The authors find that the average carbon emissions per mile of an EV in 

Texas (> 195 gCO2/mi) are lower than those from a hybrid car independently of its charging hours. 

However, for other regions of the United States, an EV can have lower carbon emissions than a 
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hybrid only if charged during specific hours (for example, from 9PM-12AM in the Northeast 

Power Coordinating Council and from 9-12AM in the Southwest Power Pool). 

 Archsmith, Kendall and Rapson (2015) estimate the abatement potential of switching from 

an internal combustion engine car to an EV by modelling its life cycle carbon emissions. The 

authors find that EVs slightly reduce carbon emissions on average but with large regional 

variations across the United States. The operation or driving emissions of EVs are based on the 

engineering GREETnet model, which renders average emissions factors for power generation. 

While this study undertakes a detailed analysis of total EV lifecycle emissions, it uses two charging 

schedules (day and night) and does not explore what an optimal schedule would look like.  

 Holland et al. (2016) assess the environmental benefits of electric vehicles compared to 

their gasoline counterparts using a comprehensive modelling of the choice of vehicle purchase, the 

carbon, sulfur and nitrogen oxide marginal emissions from charging and the related spatial 

damages. The authors compare the environmental benefits of EVs to those of gasoline vehicles to 

shed light on how to target adoption subsidies. EVs benefits and subsidies depend on where they 

are charged: the Western states and some Texas counties obtain significant benefits due to their 

clean power grid, while the rest of the country does not. The authors analyze a charging profile 

based on results of the Electric Power Research Institute, a flat profile and six others combining 

four-hour charging blocks. Those profiles do not necessarily reflect the optimal charging hours 

that would minimize the generation cost and maximize welfare gains from charging EVs.  

 Ensslen et al. (2018) model and analyze the market impacts of a load-shifting tariff for EV 

charging in France and Germany. The authors perform detailed simulations of how different tariff 

schemes affect the business model and the profitability of charging managers or aggregators. 

Profitable charging by aggregators shifts EV load from the afternoon and evening to night and 

from the morning to noon in both countries. This occurs since prices at night and noon are lower 

in both areas due to lower demand and the contribution of renewables. The authors model neither 

the environmental impacts of shifting EV load nor strategies for maximizing welfare beyond 

aggregators’ profit.  

 A recent experiment by Burkhardt, Gillingham and Kopalle (2019) shows how off-peak 

pricing can provide EV users with the appropriate signals to charge vehicles at the lowest cost. By 

reducing prices from 9 to 2 cents per kWh between 10 PM to 6 AM for treatment households 

selected at random in Austin, the authors find a large increase in electricity consumption from 
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2AM–5AM, with electric vehicles being the main load shifted. This off-peak pricing schedule 

reflects the variation in marginal generation cost and incentivizes adopting the optimal charging 

schedule. Ideally, this schedule should vary at least seasonally to reflect different marginal 

generation costs and emissions for different load levels throughout the year.  

A previous project by the Department of Energy also found that EV users respond to time-

of-use rates in deciding when to charge. Given an off-peak pricing schedule, with lower prices 

from midnight to early morning hours than those during the rest of the day, users responded to the 

incentives by starting EV charging around the initial hour of off-peak pricing (DOE, 2013a).   

To the best of my knowledge, the novel contributions of my research are the following. 

The first is to simulate how household EV charging should be spread among hours to maximize 

welfare (Social Planner problem with hourly prices reflecting social marginal costs) and surplus 

(hourly prices reflecting only private marginal costs). Second, I assess the optimal charging 

schedules by using a detailed model of charging restrictions, hourly private generation costs and 

marginal damages from carbon, sulfur, nitrogen oxide and PM2.5 emissions. Finally, I show how 

day-night tariffs, based on the optimal hours from the Social Planner problem, can implement 

second best solutions in a decentralized market.  

 

3. Electricity Market Prices, Marginal Emissions and EVs in Texas 
 

The best EV charging schedule is one that charges the vehicle at a time that minimizes generation 

cost and environmental damage. Hence, the optimal charging hours will be those with the lowest 

electricity prices and marginal damages. Any misalignments between those two factors will create 

tradeoffs between generation cost effectiveness and full efficiency, which internalizes EV charging 

damages.  

In ERCOT, the lowest generation prices occur late at night and early in the morning (23-

24, 1-6 H) since power demand is low during those hours and is met with low-cost generation 

coming mostly from steam coal turbines, combined cycle natural gas and wind. The lowest 

marginal damages from CO2, SO2, NOx and PM2.5 emissions also coincide with those hours. 

However, as the workday starts and load increases from 7 to 8 AM, there is a morning peak in 

prices and a much steeper increase/peak in marginal damages, which lasts for a couple of hours 

(Figure 1).  
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 Throughout the morning and afternoon load increases, and it is met with more costly 

marginal natural gas generation, driving electricity prices up but reducing marginal damages due 

to the cleaner fuel. Hence, there is a tradeoff between reduced environmental damages and higher 

cost when charging EVs during those hours (for example, while parking at work). By the end of 

the day, as the lights turn off, load decreases and so do prices while marginal damages remain 

almost the same. These prices and marginal damages patterns determine what the optimal EV 

charging schedules should be when users account for only electricity prices or for full marginal 

social costs. Certainly, any optimal schedule will withdraw most power during the very first hours 

of the day.   

 

Figure 1. Average Wholesale Electricity Prices, Load, Marginal Damages and EV Charging 

 
a) Wholesale prices and marginal damages                               b) Load and share EV charging 

  

Source: ERCOT, 2017c. Marginal damages are based on regression estimates described in the sections below. 

 

 On the other hand, current household EV charging patterns in Houston and Dallas exhibit 

the opposite shape of an optimal schedule. Most power is withdrawn during the evening peak 

between 7-9 PM after owners return to their homes; this leads to excessive generation cost and 

environmental damages (DOE, 2013a). These patterns occur since most users face the same 

electricity tariff during all hours and have no incentives and signals to charge their EV at the 

optimal time.  

 While the market share of electric vehicles in the United States was 0.91 percent and 1.18 

percent in 2016 and 2017, respectively, EV adoption has an exponential trend (IEA, 2017). Texas 

has a market share slightly lower than the national rate, but it nearly tripled from 0.39 percent to 
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0.95 percent between 2017 and August 2018 (EV Adoption, 2019). This growing charging demand 

will create inefficiencies and challenges if all charging takes place during peak hours.  

 

4. Empirical Model 
 

4.1 Overview 
 

I develop short-term, partial equilibrium models of the wholesale electricity market in Texas 

(ERCOT) whose goals are: i) to replicate and calibrate the baseline (decentralized market problem 

with invariant tariff); ii) to simulate how household EV charging should be spread among hours to 

maximize welfare (Social Planner problem with hourly prices reflecting social marginal costs) and 

surplus (hourly prices reflecting private marginal costs); and iii) to model how day-night tariffs 

based on the optimal hours from the welfare maximization problem and charging private 

generation and social costs can implement second best solutions in the decentralized market.  

The Social Planner problem simulates either welfare or private surplus maximization by 

choosing fossil generation and EV charging. It assumes a one-day horizon with hourly time steps 

t, and no discount. Electricity demand 𝑃𝑡(𝑞𝑡) is represented with a linear functional form, private 

generation costs 𝐶(𝑓𝑡) are captured with an exponential function, wind power 𝑤𝑡 is based on 

historical output, 𝐸𝑉𝑡 stands for light duty plug-in hybrid (gasoline) electric vehicles and electric 

vehicles charging demand and nuke is a constant capturing the average hourly base nuclear 

generation of 4,395.45 MWh in 2017.  

 

(1) 𝑀𝑎𝑥𝒇,𝑬𝑽∑[∫ 𝑃𝑡(𝑞𝑡)𝑑𝑞𝑡

𝑞𝑡

0

− 𝐶(𝑓𝑡)]

23

𝑡=0

 

𝑠. 𝑡.∑𝐸𝑉𝑡

23

𝑡=0

= 𝐸𝑉̅̅ ̅̅  

 𝑞𝑡 + 𝐸𝑉𝑡 = 𝑤𝑡 + 𝑓𝑡 + 𝑛𝑢𝑘𝑒𝑡 

  and charging constraints 

 

I model the short-term impacts of light-duty EV charging on wholesale generation market 

welfare, surplus, CO2, NOx, SO2 and PM2.5 emissions. For this, I assume that total charging 

demand is determined separately and exogenously by users when deciding what EV to purchase 

and how much to drive. This conjecture is sensible since users do not value the amount of power 
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for charging itself but rather the miles that they can drive with it. Thus, the Planner aims to allocate 

hourly charging demands to have the smallest impact on power generation welfare and surplus.  

While the objective in equation (1) represents the market surplus, I model welfare 

maximization by considering the marginal damages of EV charging. Since the response of 

generators to a carbon price would be low in the short run, a $20 ($70) per ton increase reducing 

emissions by 5 percent (10 percent) according to Cullen and Mansur (2017) and Cullen (2016), I 

focus only on the damages caused by meeting new EV charging demand. Hence, the modelling 

would be analogous to implementing emissions taxes only on EV charging.  

 For modelling the baseline and day/night tariff scenarios in a decentralized market I use 

the following equilibrium conditions: 

 

2) 𝑃𝑡(𝑞𝑡) = 𝑝𝑑 ∀𝑡 

3) 𝐶′(𝑓𝑡) = 𝑝𝑡
𝑤 ∀𝑡 

4) 𝑞𝑡 + 𝐸𝑉𝑡 = 𝑤𝑡 + 𝑓𝑡 + 𝑛𝑢𝑘𝑒𝑡  

5) 𝑝𝑑
𝑟∑(𝑞𝑡 + 𝐸𝑉𝑡)

23

𝑡=0

=∑[(𝑤𝑡 + 𝑓𝑡 + 𝑛𝑢𝑘𝑒𝑡) ∗ 𝑝𝑡
𝑤]

23

𝑡=0

 

6) charging constraints 

 

Equation (2) represents the consumer optimality condition, which equates all hourly 

marginal benefits to one daily tariff 𝑝𝑑. The producer optimality condition in equation (3) states 

that hourly marginal costs are equal to hourly wholesale prices 𝑝𝑡
𝑤. Finally, the cost recovery 

condition in equation (5) sets forth that the income charged to consumers for power consumption, 

including EV charging, must equal total payments to all generators. For day-night tariffs, the 

consumer and the cost recovery condition change to reflect two daily tariffs.   

The models described above represent surplus and welfare at the wholesale generation 

level, and they do not capture fixed costs, distribution tariffs and losses. In this paper I choose to 

focus on EV charging impacts on generation and emissions, and modelling welfare and surplus at 

the wholesale level does a good job of capturing the main features and insights of power 

generation.3 I do not address the access to charging facilities problem, since the models aim at 

finding the best charging hours from a wholesale generation standpoint. It is worth noting that the 

models estimate upper bounds on welfare since they assume a static approach to ramp-up and 

 
3 I discuss this further and show detailed results graphs in the baseline calibration results. 
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startup constraints, and no transmission congestion costs. Furthermore, they do not consider long-

term investments in fossil and nuclear capacity. 

 

4.2 Demand and Fossil Generation Cost Calibration 
 

Average electricity demand and generation costs are parameterized with publicly available 

information on hourly load, generation, fuel use, and prices for 2017 from the U.S. EIA 923 Form, 

the EPA’s continuous emissions monitoring system (CEMs) and ERCOT (EPA, 2019a; ERCOT, 

2017a; ERCOT 2017c; EIA, 2017). Demand is calibrated with a linear functional form 

(𝑃𝑡 = 𝑎𝑡 − 𝑏𝑡 ∗ (𝑞𝑡)) and an elasticity of -0.09, which is a sensible estimate for the hourly pricing 

and short-run elasticity of power demand (Deryugina, MacKay and Reif, 2020; Wolak, 2011). I 

compute the demand parameters for each hour t of each day d of 2017 using load and average 

monthly wholesale prices, since most end-users face monthly tariffs, to solve the two-linear-

equation system comprised of the demand function and the elasticity equation (𝜀 =
𝛿𝑄𝑡𝑃𝑡

𝛿𝑃𝑡𝑄𝑡
). Hence, 

there are 8,760 different intercepts 𝑎𝑡𝑑 and slopes 𝑏𝑡𝑑 for the simulations.  

Using hourly fossil generation, heat input data, and monthly fuel costs for all generators, I 

build the hourly fossil marginal generation cost (MC) of the wholesale market electricity dispatch 

(EIA, 2017; EPA, 2019b). The approach consists of computing hourly heat rates (mmBTU/MWh) 

for all coal and gas generators in ERCOT during 2017 using the EPA Air Markets Program Data 

(AMPD).4 Then, I compute hourly generation costs of each generator by multiplying this heat rate 

by its monthly average fuel cost using the 2017 EIA Form 923.  

I order the plants and their dispatches using the generation cost, in a merit order way, to 

obtain 8,760 hourly wholesale marginal cost curves. Then, I obtain the average wholesale fossil 

marginal cost curve 𝐶(𝑓𝑡) by fitting an exponential functional form (R2 = 0.7), which is the most 

parsimonious form and captures the inelasticity of supply at peak demand (Figure 2).5 This idea is 

similar to the approach used by Reguant (2018) for approximating the marginal generation cost, 

but the author used year-average heat rates and a piece-wise function instead.    

  

 
4 I select those generators which are in ERCOT by matching the generators in Texas from the AMPD database to their 

respective balancing authority identified in EIA Form 923 using the ORISPL code. The previous matching also makes 

it possible to classify the generators by fuel type.  
5 Before fitting the exponential functional form, I eliminated extreme outliers, which represented 0.1 percent of all the 

data.  
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Figure 2. Private Fossil Generation Marginal Costs in ERCOT 

 

     Source: Author’s compilation based on EPA (2019a) and EIA (2017). 

 

The model and the marginal cost calibration incorporate fuel costs related to startups and 

ramp-up constraints through the total amount of fuel used for power generation and reported in the 

CEMS database for all hours of 2017. Hence, this approach is a static version of the actual dynamic 

problem of power generation with start-up costs and ramping constraints since the amount of fuel 

used to deal with those frictions is reflected in the hourly heat rates computed for each generator 

(Cullen and Reynolds, 2016).  

 

4.3 Marginal Damages and Emissions 
 

In order to analyze the environmental impacts of the different EV charging schedules, I obtain the 

hourly marginal damages and emissions from an increase in demand by regressing the wholesale 

aggregate hourly air pollution damages and CO2, SO2, NOx, and PM2.5 emissions on the 

exogenous hourly variation in wind power and load in ERCOT in 2017 (EPA, 2019b; ERCOT, 

2017a, 2017b). I use the aggregate wholesale hourly CO2, SO2, and NOx emissions from EPA’s 

Air Markets Program Data (EPA, 2019a).  

I compute the hourly PM2.5 emissions following Fell, Kaffine and Novan (2019) to i) 

obtain emissions rates (lbs/MWh) by dividing county level coal and gas power plants PM2.5 
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emissions from the 2014 National emissions inventory (EPA, 2019b) by annual power generation 

from EIA Form 923 and ii) impute those rates to all hourly coal and gas generation in ERCOT as 

reported in EPA (2019a). I use the central estimate for a 3 percent discount rate of the social cost 

of carbon (42.02 USD/t CO2 in 2017 dollars), which is the conventional estimate used in the 

literature (IAWG, 2015; Cullen, 2013; Novan, 2015).  

I compute hourly aggregate wholesale level air pollution damages by using county-level 

air pollution marginal damages for SO2, NOx, and PM2.5 medium and tall stacks emissions from 

the AP2 Model used in Holland et al. (2016). The marginal damages include morbidity and 

mortality and use the EPA’s recommended value of a statistical life. I match these county-specific 

marginal damages with the location of the power plants stated in Form EIA-860 and sum all air 

pollution damages for each hour in ERCOT. I calculate and report all damages in 2017 dollars. 

To estimate marginal emissions and damages, I use a linear polynomial with hourly 

interactions specification as in Graff Zivin et al. (2014) and control for weekly and weekend fixed 

effects (equation (7)). I estimate the standard errors using Newey-West with 24-hour and 168-hour 

lags.  

 

(7) 𝑌𝑡
𝑚 = 𝛽0𝑚 +∑ 𝛽𝑙ℎ𝑚 𝐻𝑂𝑈𝑅ℎ ∗ 𝐷𝑡

23
ℎ=0 + ∑ 𝛽𝑤ℎ𝑚 𝐻𝑂𝑈𝑅ℎ ∗ 𝑊𝑡

23
ℎ=0 + 𝛿𝑤 + 𝛾𝑤𝑒 + 𝜀𝑡    

where: 

𝑌𝑡
𝑚 represents m different emissions (tCO2, lbs SO2, lbs NOx, and lbs PM2.5) and total air 

pollution damages (summation of SO2, NOx, and PM2.5 damages in 2017 USD) at hour t,  

𝑊𝑡 , 𝐷𝑡 are ERCOT aggregate wind power and demand (load) in MWh at hour t, 

𝛿𝑤 stands for weekly fixed effects and 𝛾𝑤𝑒 for weekend FE, 

𝜷 are regression coefficients.  

 

The average partial effects 𝛽𝑙ℎ𝑚 ̂ give the estimate of the hourly marginal emissions and 

damages of increasing load in one MWh, which I use to compute the emissions and welfare impact 

of increasing load to charge EVs. Estimation results are in Appendix 3. 

 

4.4 EV Charging Demand 
 

I use data on the number (𝑁𝑠) of plug-in hybrid (gasoline) electric vehicles and full electric 

vehicles and their actual mileage by auto model (s) in Texas, from the 2017 National Household 
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Travel Survey NHTS (DOT, 2018).6 I compute daily individual charging demand for all models 

of plug-in hybrid and fully electric vehicles (𝑒𝑣𝑠̅̅ ̅̅ ) assuming the same daily use for the total annual 

miles estimated in the NHTS and using the fuel economy (kWh/mi) reported by the U.S. official 

source (DOE and EPA, 2019). 

 I use battery size and charging time parameters to model the hourly charging restrictions 

and the amount of energy (MWh) that an individual EV can withdraw in an hour for each vehicle 

type s. As charging restrictions vary according to the type of charger used, I consider the L1 and 

L2 commercially available types, where the latter allows withdrawing more energy in a given hour 

and faster charging (ClipperCreek, 2019).7  

Using the above described parameters, the charging constraints of the maximization 

problem are: 

 

(8)∑∑𝑁𝑠 ∗ 𝑒𝑣𝑠𝑡

23

𝑡=0𝑠

=∑(𝑁𝑠 ∗ 𝑒𝑣𝑠̅̅ ̅̅ ̅)

𝑠

=∑𝐸𝑉𝑡

23

𝑡=0

= 𝐸𝑉̅̅ ̅̅  

(9) 𝑒𝑣𝑠𝑡 ≤
𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑖𝑧𝑒𝑠

𝐿 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑠
  ∀𝑠        

 

Equation (8) states that the summation of hourly individual charging demands 𝑒𝑣𝑠𝑡 should 

equal the total daily charging demand of all EVs (𝐸𝑉̅̅ ̅̅ ), and equation (9) states that no single vehicle 

can withdraw more energy (MWh) than what its hourly charging restriction allows. For the 

optimization scenarios whose goal is to simulate how EV charging should be spread among hours 

𝑒𝑣𝑠𝑡 is a decision variable to be optimized. For the scenarios simulating owners’ current non-

optimal charging patterns 𝑒𝑣𝑠𝑡 is a parameter based on the hourly patterns and shares from the EV 

Project data in Houston and Dallas (DOE, 2013b).  

 

  

 
6 The survey identifies 23 vehicle models, including those catalogued as others. For details on the parameters see 

Appendix 1. 
7 I use the slowest charging technologies of each type, Level 1 ACS 15 1.4 kW and Level 2 LCS 20 3.8 kW, to obtain 

conservative estimates of the optimal EV charging schedule in the constrained scenarios. Level 1 is equivalent to 

plugging into the common household outlet (110 V), while level 2 has a higher voltage (220 V). 
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4.5 Policy Scenarios and Simulations 
 

I compute results for fossil generation, EV charging, surplus, welfare and emissions (CO2, NOx, 

SO2 and PM2.5) using simulations based on the 2017 data for 14 scenarios:  

 

 

 

Tariff 

Welfare 

maximizing 

Surplus 

maximizing 

Day-night 

tariff 

Day-night 

social costs 

tariff 

Day invariant tariff 

C
h

a
rg

in
g
 

C
o
n

st
ra

in
ts

 

Unconstrained Unconstrained Unconstrained Unconstrained Current 

charging 

patterns 

Baseline no 

EV 

charging L2 L2 L2 L2 

L1 L1 L1 L1 

 

 The day-night tariff scenarios have the same structure, with two daily prices to consumers, 

except that one charges only generation costs and the other charges social costs, which include 

generation and environmental damages. There is only one current patterns scenario since the 

charging schedule and amounts are based on the hourly shares from the EV Project Data, which 

comply with the L1 and L2 charging technologies (the default available options). Finally, the 

baseline scenario reproduces the results of the decentralized 2017 market without modelling any 

EV charging.  

 The algorithm consists of the following steps: 

 

1. Draw 24-hour-wind power profiles (𝑤𝑖𝑡), demand parameters (𝑎𝑖𝑡 , 𝑏𝑖𝑡), and other 

generation profiles (𝑜𝑡𝑖𝑡) from all 365 days of 2017.8  

2. For the welfare and surplus optimization problems, solve the below maximization 

problem with the Non-Linear Programming Solver (NLP) from GAMs and find the 

optimal fossil generation and EV charging for each hour (t) of the ith draw. 

 
8 Other generation includes hydro, biomass, solar and imports/exports. It represents less than 1 percent of all power 

generation and is modelled as fixed baseline power since its low share does not significantly affect the results. 
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𝑠𝑡: ∑∑𝑁𝑠 ∗ 𝑒𝑣𝑖𝑠𝑡

23

𝑡=0𝑠

=∑(𝑁𝑠 ∗ 𝑒𝑣𝑠̅̅ ̅̅ ̅)

𝑠

 

𝑒𝑣𝑖𝑠𝑡 ≤
𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑖𝑧𝑒𝑠

𝐿 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑠
  ∀𝑠    

   

In the surplus maximization scenario, the objective function in equation (10) 

drops the third line, which represents the environmental damages from EV charging. 

Nevertheless, when I assess and compare the welfare from charging EVs based only on 

private marginal costs, I compute net welfare by subtracting environmental damages 

from the optimized surplus. 

For the decentralized market problems (current patterns, day-night tariff and 

baseline), I solve the below system of equations using the Non-Linear Programming 

Solver (NLP) from GAMs and find hourly fossil generation, EV charging, wholesale 

generation prices and the daily tariff for each ith draw. 

 

 

(10) 𝑀𝑎𝑥𝒇,𝑬𝑽

 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑∫ [𝑎𝑡 − 𝑏𝑡𝑞𝑖𝑡 ]𝑑𝑞𝑖𝑡

𝑓𝑖𝑡+𝑤𝑖𝑡+𝑛𝑢𝑘𝑒+𝑜𝑡𝑖𝑡−∑ ∑ 𝑁𝑠∗𝑒𝑣 𝑖𝑠𝑡
23
𝑡=0𝑠

0

23

𝑡=0

𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠                   

−∑𝑑 ∗ 𝑒𝑔𝑓𝑖𝑡

23

𝑡=0

−∑𝑔 ∗ 𝑑 ∗ 𝑒𝑔𝑓𝑖𝑡

23

𝑡=0

∗ (𝑤𝑖𝑡 + 𝑛𝑢𝑘𝑒 + 𝑜𝑡𝑖𝑡)

𝐹𝑜𝑠𝑠𝑖𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡       𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑠 𝑛𝑢𝑐𝑙𝑒𝑎𝑟 𝑎𝑛𝑑 𝑤𝑖𝑛𝑑 𝑝𝑜𝑤𝑒𝑟 

−∑ ∑𝑁𝑠 ∗ 𝑒𝑣𝑖𝑠𝑡
𝑠

 

23

𝑡=0

 𝜏𝐶𝑂2 ∗ 𝛽𝑙𝑡𝐶𝑂2  
̂ + 𝛽𝑙𝑡  𝑎𝑖𝑟  𝑝𝑜𝑙𝑙  

̂  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Electric 
vehicle 
charge 

Carbon 
marginal 
damages 

Air pollution 
marginal 
damages 



16 
 

 

 

In the baseline scenario, the EV charging terms are dropped from the above 

system of equations. For the current patterns scenario, EV charging terms are given 

parameters and no longer variables to solve for. For the day-night tariff scenarios, the 

consumer total payments and optimality conditions change to reflect two tariffs instead 

of one. For all the decentralized market models, the charging restriction equations also 

become a part of the system.  

Since the above system of equations is highly non-linear it has several possible 

roots. To find the best possible root that calibrates the baseline and then from there 

simulates the counterfactual tariffs, I maximize surplus in the case of the baseline and 

the private costs day-night tariff subject to equations (8-9) and (11-13) as restrictions. 

For the social costs day-night tariff scenario, I maximize welfare subject to the 

restrictions of equations (8-9) and (11-13). Maximizing welfare permits representing 

how users would respond to a tax on marginal environmental damages (carbon and air 

pollution). 

 

11) 𝑃𝑡  𝑓𝑖𝑡 + 𝑤𝑖𝑡 + 𝑛𝑢𝑘𝑒 + 𝑜𝑡𝑖𝑡 −∑∑𝑁𝑠 ∗ 𝑒𝑣𝑖𝑠𝑡

23

𝑡=0𝑠

 = 𝑝𝑑  ∀𝑡 

 

12) ∑𝑔 ∗ 𝑑 ∗ 𝑒𝑔𝑓𝑖𝑡

23

𝑡=0

= 𝑝𝑡
𝑤  ∀𝑡 

 

13) 𝑝𝑑
𝑟 ∑ 𝑓𝑖𝑡 + 𝑤𝑖𝑡 + 𝑛𝑢𝑘𝑒 + 𝑜𝑡𝑖𝑡 + ∑∑𝑁𝑠 ∗ 𝑒𝑣𝑖𝑠𝑡

23

𝑡=0𝑠

 

23

𝑡=0

 

 

= ∑[(𝑓𝑖𝑡 + 𝑤𝑖𝑡 + 𝑛𝑢𝑘𝑒 + 𝑜𝑡𝑖𝑡) ∗ 𝑝𝑡
𝑤 ]

23

𝑡=0

 

 

Marginal benefits 

Marginal fossil generation costs 

Total payments by consumers 

Total payments to generators 
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Finally, I compute welfare for the decentralized market scenarios using the 

objective function in equation (10) evaluated at the fossil generation and EV charging 

levels solved in the decentralized models.     

3. Compute the average and 95 percent confidence intervals of hourly fossil generation 

(𝑓𝑖𝑡), EV charging (𝐸𝑉𝑖𝑡 = ∑ 𝑁𝑠 ∗ 𝑒𝑣𝑖𝑠𝑡𝑠 ), emissions (𝐸𝑚𝑖𝑡 = ∑ ∑ 𝑁𝑠 ∗ 𝑒𝑣𝑖𝑠𝑡
23
𝑡=0𝑠 ∗

𝛽𝑙𝑡𝑚 ̂), and welfare (𝑊𝑖) for all 11 scenarios. 

4. Compute the welfare gains of the optimized EV charging scenarios with respect to the 

current patterns scenario by subtracting total gains from the dispatch optimization 

gains: 

 

5. Results 
 

5.1 Baseline Calibration 
 

I assess the adequacy of the assumptions, functional forms and methodology for reproducing 

ERCOT’s wholesale generation market by comparing the values and trends in the simulated 

median and 95 percent confidence intervals of prices and generation to those of the historical data 

in 2017. The baseline calibration reproduces fairly well the median and trends for the entire year 

and even for different seasons (Figure 3). By relying on a static version of the startup and ramp-

up costs, with no transmission congestion constraints, the proposed approach captures with 

simplicity the main features and results of wholesale electricity markets and their environmental 

impacts.  

  

𝐺𝑎𝑖𝑛𝑠 𝐸𝑉 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖 =  𝑊𝑖
𝑂𝑝𝑡  𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (𝑬𝑽𝒊

∗) −𝑊𝑖
𝑐𝑢𝑟𝑟𝑒𝑛𝑡  𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

 𝑬𝑽𝒊
𝒄𝒖𝒓𝒓.𝒑𝒂𝒕

   

 

 

− 𝑊𝑖
𝑂𝑝𝑡  𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (𝑬𝑽𝒊

𝒄𝒖𝒓𝒓.𝒑𝒂𝒕
) −𝑊𝑖

𝑐𝑢𝑟𝑟𝑒𝑛𝑡  𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (𝑬𝑽𝒊
𝒄𝒖𝒓𝒓.𝒑𝒂𝒕

)  

Total Gains  

 

Gains from dispatch optimization 
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Figure 3. Baseline Calibrations Results 

 

a) Year-round total generation      b) Year-round prices 

 

 

 

 

 

 

 

     c) Year-round fossil generation    d) Average seasonal generation 

 

Notes: Blue are historical data, and red are simulated data. The band depicts a 95 percent confidence interval, while 

the solid lines represent medians. 

 

 

5.2 Charging Schedules 
 

The welfare-maximizing EV charging schedules are the opposite of current non-optimal patterns: 

while users charge in the evening since they do not face an hourly price and due to convenience, 

EVs can be charged optimally at home during the first hours of the day at the lowest marginal 

social cost. For all charging technologies, the bulk of optimal power withdrawals should occur 

very early in the morning (3-4) and by the end of the day (23-24), as shown in Figure 4a. 

Constraining power extractions to slower chargers displaces withdrawals to 2 and 5 AM. The 

current charging patterns based on the EV project trends comply with both L1 and L2 charging 

restrictions, which reflects that under the available technologies, users spread their demands 
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through the day. Nevertheless, most current charging occurs during the evening peak (19-21) 

leading to excessive generation cost and environmental damages (Figure 4a).  

Even in the absence of emissions pricing on EV charging, the private surplus maximizing 

charging schedules are similar to the welfare schedules due to the overlap of low prices and low 

marginal damages from hours 0 to 4. Since damages increase at a much greater rate than prices 

from 5 to 8 AM, but the surplus maximizing schedule does not consider full social costs, it draws 

more power between those hours than the welfare-optimizing schedule (Figure 4b).     

 The second-best day-night tariff, charging only private generation costs but based on the 

optimal hours from the welfare maximization problem (1-7, 24), leads to an EV charging schedule 

that withdraws most power during 4-5 AM (Figure 4c). The simulation results presented here are 

in line with real world randomized experimental results of the day-night tariff in Austin, which 

show that households that received the day-night tariff treatment charged their EVs mostly at 4 

AM (Burkhardt, Gillingham and Kopalle, 2019).  

Hence, the wholesale market approach and demand calibration proposed in this paper were 

able to capture and simulate a real world counterfactual EV charging behavior. Even when the 

day-night tariff would lead most households to charge from 4-5 AM, this schedule is a bit different 

from the welfare-maximizing hourly schedule, which charges mostly from 3-4 AM. For the day-

night tariff, constraining power withdrawals with L2 chargers slightly modifies the charging 

schedule, and with L1 chargers, even more withdrawals must occur at 2-3 AM and at 6-7 AM. 

 The day-night tariff charging social costs most closely resembles the first best 

unconstrained hourly tariffs profile since it draws most power from 3-4 AM. Hence, as long as 

users face full social costs, even the simple tariff can guide them to charge the vehicles efficiently.  
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Figure 4. EV Charging Schedules 

          4a. Welfare-maximizing charging (hourly tariff)                                 4b. Surplus-maximizing charging (hourly tariff) 

                                              
 

4c. Day-night tariff charging 
 

 

Notes: The bands depict a 95 percent confidence interval, while the solid lines represent averages. 
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5.3 Welfare and Emissions 
 

Unconstrained welfare-maximizing charging leads to the largest gains over current non-optimal 

patterns: 10.44 USD per MWh charged on average, which represents 42 percent of the average 

wholesale price. Constraining power withdrawals to the current Level 1 and 2 chargers limits using 

energy from those hours with lower prices and marginal damages, reducing welfare gains. Level 

2 constrained welfare-maximizing charging leads to slightly lower welfare gains, over the non-

optimal charging patterns, of 10.39 USD per MWh charged. Even under the most restrictive L1, 

most EV charging can be done early in the morning leading to welfare gains of 9.91 USD per 

MWh charged or 40 percent of the average wholesale price.9 As EV adoption and charging demand 

increase, these gaps between the efficiencies of the unconstrained, L2 and L1 constrained charging 

will increase (Figure 5a). 

On average, all welfare-maximizing scenarios lead to lower local air pollution damages 

(SO2, NOx, and PM2.5) than current charging patterns. Unconstrained and L2 restricted scenarios 

lead to average lower carbon emissions and global damages, and L1 causes a slight increase in 

carbon emissions, on average (Figure 5b and 5c). Hence, the EV charging schedule that accounts 

for generation costs and environmental damages will reduce both in comparison to current 

charging patterns.  

The surplus-maximizing scenarios have slightly lower gains than their welfare 

counterparts. Even the L1 restricted charging achieves 93 percent of the gains of the unconstrained 

welfare-maximizing programming. However, by not accounting for marginal damages, they all 

draw more power from 5-8 AM than the welfare-maximizing schedule and lead to larger carbon 

emissions and slightly higher local air pollution than current patterns (Figures 4b, 5b and 5c). 

Hence, hourly signals or prices that do not reflect the full social cost create a tradeoff between 

achieving reduced generation cost and increasing environmental damages.  

The private generation costs day-night tariff scenarios lead to the lowest welfare of all 

scenarios, but still capture most gains of the welfare maximizing schedules: even the L1-

constrained day night-tariff scenario captures 91.6 percent of the gains of the unconstrained first 

best case. Charging in these scenarios causes larger air pollution damages than those of the current 

 
9 Details on air pollution emissions of SO2, NOx, and PM2.5 are in Appendix 2. 
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patterns and surplus maximizing scenarios. Therefore, the less granular period pricing reduces 

generation cost effectiveness and increases environmental damages.  

On the other hand, if the day-night tariff reflects social costs, it leads to a charging profile 

that delivers more benefits: with unconstrained charging up to 98.3 percent of the gains of the first 

best. By correctly signaling users to charge from 3-4 AM it also reduces all environmental damages 

below those of the current charging patterns since, unlike the private costs day-night tariff, it 

mostly avoids any charging from 8-9 AM when emissions rise significantly (Figure 4).  

The welfare and consumer surplus gains projected for all scenarios under the standard L1 

(110 V) charging are the “low-hanging fruit” improvements since they can be implemented by 

users or households without the need of purchasing smart and or fast-charging devices. It only 

requires a behavioral adjustment by households that should plug in EVs not in the evening after 

they get home from work but later on at 12 AM and unplug them when they wake up at 7 AM. 

Even when the optimal charging profile varies by season (see next section), following this rule of 

thumb throughout the year can significantly improve welfare and capture large gains of the ideal 

scenarios. 

At the current market price of smart chargers, even if electricity prices do not reflect 

emissions externalities, the welfare gains of each household under all scenarios (unconstrained, 

fast L2 level, hourly and day-night tariffs) are not large enough to justify buying the devices. 

Nevertheless, some nascent business strategies are based on aggregators grouping several 

households and using one smart charger to distribute EV load between several users. This can be 

a profitable business model since bundling the surplus gains of two households breaks even with 

the initial investment of the smart charger. Serving more than two users creates profitable 

opportunities for aggregators even if prices do not reflect emissions damages.10  

Similarly, at the individual household level, even the welfare gains in the hourly scenario 

are not enough to pay for the additional cost of the L2 chargers with respect to the current standard 

L1 chargers.11 However, the welfare gains that I consider do not take into account users’ additional 

 
10 Using a 10-year lifespan of the device, the average EV charging demand in Texas based on DOT (2018), a discount 

rate based on private sector returns on Corporate Bonds in the United States for the last five years years (2015-2019 

with an avg. of 3.734 percent using St. Louis Federal Reserve Economic Data—FRED), and 2019 market prices for 

smart chargers of USD 250 each based on EV Box Smart charging solution. https://evbox.com/en/products/smart-

charging. 
11 Estimates based on the same parameters of the previous footnote and average market prices for L1 chargers of USD 

169.99 and USD 273.57 for L2 chargers. 

https://evbox.com/en/products/smart-charging
https://evbox.com/en/products/smart-charging
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willingness to pay to have their vehicle charged quickly, especially during the weekends when 

users drive more and would rather not stay long hours at home. The incentives to adopt L2 chargers 

will become larger as EV penetration increases and the gains from price reductions and avoided 

damages become larger. 

Even under the current non-optimal charging patterns of EV users, light-duty EV average 

CO2 emissions per mile (176 g CO2/mi) in ERCOT are less than half of those from the average 

passenger gasoline vehicle (404 g CO2/mi) and average NOx emissions are 35.7 percent lower 

(0.077 lbs/mi vs 0.12 lbs/mi) (DOE and EPA, 2019; Cai, Burnham and Wang, 2013). This occurs 

since most of the default charging takes place during peak load (6-10 PM) when power is supplied 

by natural gas turbines and combined cycle plants whose fuel has a lower carbon content than 

gasoline from oil. On the other hand, EV’s average SO2 emissions per mile are several times larger 

than those of gasoline vehicles (0.14 lbs/mi vs 0.0044 lbs/mi).  
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Figure 5. Welfare, Carbon Emissions and Air Pollution Marginal Damages from EV Charging    

      5a. Welfare gains of optimal EV charging wrt current patterns             5b. Carbon dioxide emissions of EV charging scenarios 

 

 

 

 

 

 

 

 

 

                          5c. Air pollution marginal damages of EV charging scenarios 

 

 

 

 

 

 

 

 

 

 

Notes: Graphs show the average and 95 percent confidence interval.
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5.4 Seasonal Schedules 
 

Wholesale electricity prices and marginal emissions vary throughout seasons due to variation in 

demand and the marginal generator supplying power (Figure 3d). Thus, the optimal charging 

schedule will also differ to account for this heterogeneity. For all seasons, the average charging 

profile is very similar to the average annual one with bulk withdrawals from 12-4 AM that peak 

between 3 and 4 AM, especially during Summer. Winter charging profiles slightly differ from the 

other seasons by withdrawing a larger amount of power in the afternoon (4-5 PM on average). As 

in the average annual results, constraining energy withdrawals leads to charging power more 

evenly throughout the morning (Figure 6).   

 

Figure 6. Average Seasonal EV Charging Schedules (unconstrained welfare maximizing) 

 

Notes: The solid lines represent averages. 

 

6. Discussion 
 

Charging EVs in the early morning hours delivers welfare gains in all scenarios and emissions 

reductions only for the welfare-maximizing schedules. Even with the slow L1 chargers and the 

simple day-night tariff, there are ample welfare gains which users can capture if they charge the 
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vehicles from 1-7 AM. Hence, it is necessary to have tariffs that somehow reflect wholesale price 

variation and incentivize users to adopt the efficient schedules. 

The key question is what tariff structure can actually promote users to adopt the least costly 

and polluting schedule. In principle, a tariff reflecting hourly social marginal costs is the only one 

that can lead to the welfare maximizing schedule or first best described in the previous section. 

Wolak (2011) finds that customers in Washington, DC respond in a similar way to hourly prices 

and to critical period pricing comprising several hours. The author reports that the percentage 

demand reduction of hourly and period pricing are roughly the same and that there is no 

economically significant cost of taking action to adjust demand in response to hourly prices. 

Furthermore, even if the external validity of those results were limited, automated/smart 

chargers could ideally address detailed hourly signals and deliver results conveniently for users. 

Gillan (2017), for example, finds through a field experiment in California that electricity demand 

in households with smart thermostats and plugs is 56 percent more responsive to any price change 

than demand in households with no automation. On the other hand, responses in households with 

smart devices are still insensitive to price changes and do not fully resolve inattention. 

Given those limitations, one could argue that users would be more responsive to the simple 

day-night tariff since it is based on simple heuristics and does not saturate them with too much 

information. Even when this tariff can deliver welfare gains to consumers, it needs to reflect full 

social marginal costs. Otherwise, it might very likely lead to an increase in carbon and air pollution 

damages compared to current evening charging patterns. The results described in the previous 

section can guide the design of tariffs and experiments to guide users to achieve the efficient 

charging schedule. 

In none of the 12 scenarios is charging during workplace hours (9-16) efficient. This occurs 

since the lowest demand, prices and largest wind generation occur during the first hours of the day. 

Hence, households could conveniently charge during that time rather than during the morning and 

early afternoon. This finding will change if Texas significantly increases its solar capacity, which 

provides less than 1 percent of its electricity in 2019.  

A tariff scheme by itself, even if it reflects all social costs, may not deliver the largest 

welfare and environmental gains of the unconstrained scenario if most users only rely on 

conventional charging through the home power outlet. Even when a significant share of EV users 

prefer charging as fast as possible, such as 40 percent in a stated preference study in England 
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(Daina, Sivakumar and Polak, 2017), encouraging all users to adopt fast chargers will very likely 

require incentives. Policies aimed at incentivizing the adoption of fast chargers are necessary to 

allow EV charging during those hours with the lowest fuel and environmental costs. 

Furthermore, an ideal automated, smart and fast charger would allow programming power 

withdrawals with varying rates to charge as fast as possible but following the efficient schedule. 

However, it can be challenging to coordinate EV charging from all households to follow the 

efficient schedule. One option to achieve efficient charging is through aggregators or service 

providers who can make a business model of coordinating several households and arbitraging 

power prices (Ensslen et al., 2018).  

I have argued that a day-night tariff can incentivize simple behavioral adjustments such as 

plugging the EV not as soon as users get home but rather later on, ideally midnight, and unplugging 

at 7 AM can reduce prices and environmental damages. Furthermore, aggregators who can bundle 

at least three users should cover the initial cost of smart chargers and still make a profit. Perhaps 

in the future, through advances in smart chargers and blockchain, the devices will be able to 

coordinate themselves.    

It is worth noticing that even though I use specific marginal damages of NOx, SO2 and 

PM2.5 at the county level, based on the 2011 data from the AP2 Model, the grid average marginal 

carbon and air pollution damages estimate that I obtain for all hours (0.031 USD/kWh) is quite 

close to the most recent estimate from Holland et al. (2018) for average marginal damages from 

2010 to 2017 in ERCOT (0.032 USD/kWh). 

The air pollution marginal damages will likely change since they depend on the total 

emissions and concentrations at a given time (Holland et al., 2018).  The marginal carbon damages 

will increase as the social cost of carbon increases each year. Even under the uncertainty of which 

trend and effect will dominate, the key message of a timely signal for those damages through full 

social marginal pricing is still applicable. Furthermore, if the goal is to limit damages from 

emissions, then all or at least most charging should be done until 5 AM.  

Even though electric vehicles are currently driven less than their gasoline and diesel 

counterparts in the United States (Davis, 2018), those with ample range and battery such as the 

Tesla models and gas/electric hybrids that are not plugged in (e.g., Prius) are driven more, on 

average, than gasoline and diesel vehicles in Texas (DOT, 2018). One could argue that, as the 

technology matures and long-range vehicles become more affordable, most household gasoline 
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and diesel miles can be replaced by electric miles. This possibility only highlights the urgency of 

adopting tariffs that can incentivize users to charge optimally.   

Furthermore, efficient EV charging during the first hours of the day, and not during the 

afternoon peak load, can avoid inefficient investment in peak power plants in the medium and long 

run. Efficient charging will also avoid unnecessary higher wholesale peak prices, which translates 

into higher tariffs in the short run. Finally, the optimal charging schedule will remain very much 

the same in the medium term since wind generation patterns will be the same even under larger 

capacities and coal power is not likely to be completely phased out in the coming years.  

While the above presented results are specific for ERCOT, whose grid is mostly powered 

by fossil fuels with a significant share of coal, the idea of charging electric vehicles during the 

hours with the lowest demand and private generation cost can be broadly applied to grids mostly 

powered by fossil fuels. This is the case in several developing countries in Latin America and the 

Caribbean (e.g. Mexico, Argentina, Chile, Jamaica, Honduras) and worldwide (e.g., China, India, 

Nigeria).  

On the other hand, assessing the best charging schedule to lower both generation cost and 

environmental damages will be more grid specific depending on the relevant shares of coal, oil 

and gas in each grid. The conceptual and empirical model presented in this paper can support such 

analysis. For grids, with a significant share of electricity imports the marginal emissions and 

damages estimates would need to track the emissions of the relevant interconnected region as 

proposed and done by Holland et al. (2016) 

 

7. Conclusions 
 

The surge in power demand for charging new EVs in Texas can be met efficiently during the first 

hours of the day. However, current charging patterns are the opposite due to a lack of appropriate 

time-variant pricing. Even a day-night and an hourly tariff based only on wholesale prices can 

guide users to charge their EVs at a low cost due to the concentration of low prices during the early 

morning hours. However, to avoid an increase in carbon and air pollution emissions, at least a day-

night tariff reflecting full social costs, generation costs and environmental damages, is necessary. 

Furthermore, charging EVs early in the morning will cause the lowest price increase in electricity 

from meeting the upcoming surge in transport electrification demand and avoid unnecessary and 

inefficient investments in capacity.  



29 
 

References 
 

Archsmith, J., A. Kendall and D. Rapson. 2015. “From Cradle to Junkyard: Assessing the Life 

Cycle Greenhouse Gas Benefits of Electric Vehicles.” Research in Transportation 

Economics 52: 72-90. 

Burkhardt, J., K. Gillingham and P.K. Kopalle. 2019. “Experimental Evidence on the Effect of 

Information and Pricing on Residential Electricity Consumption.” NBER Working Paper 

25576. Cambridge, United States: National Bureau of Economic Research. 

Cai, H., A.  Burnham and M. Wang. 2013. “Updated Emission Factors of Air Pollutants from 

Vehicle Operations in GREETTM Using MOVES.” Lemont, United States: Argonne 

National Laboratory, Energy Systems Division, Systems Assessment Section.  

ClipperCreek. 2019. “How Long Does It Take to Charge an Electric Car? Charging Times.” 

Auburn, California, United States: ClipperCreek. Available at: 

https://www.clippercreek.com/charging-times-chart. Accessed December 2018. 

Cullen, J. 2013. “Measuring the Environmental Benefits of Wind-Generated Electricity.” 

American Economic Journal: Economic Policy 5(4): 107-133. 

Cullen, J., and S. Reynolds. 2016. “The Long Run Impact of Environmental Policies on Wholesale 

Electricity Markets: A Dynamic Competitive Analysis.” Tucson, United States: University 

of Arizona. Manuscript. 

Cullen, J.A., and E.T. Mansur. 2017. “Inferring Carbon Abatement Costs in Electricity Markets: 

A Revealed Preference Approach Using the Shale Revolution.” American Economic 

Journal: Economic Policy 9(3): 106-33. 

Daina, N., A. Sivakumar and J. Polak. 2017. “Electric Vehicle Charging Choices: Modelling and 

Implications for Smart Charging Services.” Transportation Research Part C 81: 36–56. 

Davis, L. 2018. “How Much Are Electric Vehicles Driven.” EI @ Haas Working Paper WP-296. 

Berkeley, United States: University of California, Haas Business School, Energy Institute. 

Deryugina, T., A. MacKay and J. Reif. 2020. “The Long-Run Elasticity of Electricity Demand: 

Evidence from Municipal Electric Aggregation.” American Economic Journal: Applied 

Economics 12(1): 86-114. 

DOE (United States Department of Energy). 2013a. “How Do PEV Owners Respond to Time-of-

Use Rates While Charging EV Project Vehicles? The EV Project.” Washington, DC, 

United States: DOE. Available at: 

https://www.clippercreek.com/charging-times-chart


30 
 

https://avt.inl.gov/sites/default/files/pdf/EVProj/125348-714937.pev-driver.pdf. Accessed  

November 2018. 

DOE (United States Department of Energy). 2013b. “AVTA: ARRA EV Project Annual 

Infrastructure Reports.” Washington, DC, United States: DOE. Available at: 

https://www.energy.gov/eere/vehicles/downloads/avta-arra-ev-project-annual-

infrastructure-reports. Accessed September 2018.  

DOE (United States Department of Energy) and EPA (United States Environmental Protection 

Agency). 2019. “Fuel Economy Plug-In Hybrid Electric Vehicles and Electric Vehicles.” 

Washington, DC, United States: DOE and EPA. Available at: 

https://www.fueleconomy.gov/feg/phevsbs.shtml. Accessed February 2019. 

DOT (United States Department of Transportation). 2018. “U.S. National Household Travel 

Survey 2017.” Washington, DC, United States: DOT, Federal Highway Administration. 

EIA (United States Energy Information Administration). 2017. “Form EIA-923 Detailed Data with 

previous form data (EIA-906/920).” Washington, DC, United States: United States 

Department of Energy, EIA. Available at: https://www.eia.gov/electricity/data/eia923. 

Accessed December 2018. 

Ensslen. A., Ringler. P., Dörr. L., Jochem. P., Zimmermann. F. and Fichtner. W. 2018. 

“Incentivizing Smart Charging: Modeling Charging Tariffs for Electric Vehicles in 

German and French Electricity Markets.” Energy Research & Social Science 42: 112–126. 

EPA (United States Environmental Protection Agency). 2019a. “Air Markets Program Data.” 

Washington, DC, United States: EPA. Available at: https://ampd.epa.gov/ampd. Accessed 

March 2019. 

EPA (United States Environmental Protection Agency). 2019b. “2014 National Emissions 

Inventory (NEI) Data.” Washington, DC, United States: EPA. Available at:   

https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-

data. Accessed July 2019 

ERCOT (Electric Reliability Council of Texas). 2017a. “Hourly Load Data Archives.” Austin, 

United States: ERCOT. Available at: http://www.ercot.com/gridinfo/load/load_hist. 

Accessed December 2018. 

https://avt.inl.gov/sites/default/files/pdf/EVProj/125348-714937.pev-driver.pdf
https://www.energy.gov/eere/vehicles/downloads/avta-arra-ev-project-annual-infrastructure-reports
https://www.energy.gov/eere/vehicles/downloads/avta-arra-ev-project-annual-infrastructure-reports
https://www.fueleconomy.gov/feg/phevsbs.shtml
https://www.eia.gov/electricity/data/eia923.
https://ampd.epa.gov/ampd/
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
http://www.ercot.com/gridinfo/load/load_hist


31 
 

ERCOT (Electric Reliability Council of Texas). 2017b. “Wind Power Production - Hourly 

Averaged Actual and Forecasted Values.” Austin, United States: ERCOT. Available at: 

http://www.ercot.com/gridinfo/generation. Accessed November 2018. 

ERCOT (Electric Reliability Council of Texas). 2017c. “Market Prices.” Austin, United States: 

ERCOT. Available at: http://www.ercot.com/mktinfo/prices. Accessed December 2018. 

EV Adoption. 2019. “EV Market Share by State.” https://evadoption.com/ev-market-share/ev-

market-share-state/ (accessed 12. 2018) 

Fell, H., D. Kaffine and K. Novan. 2019. “Emissions, Transmission, and the Environmental Value 

of Wind Energy.” CEnREP Working Paper 19-015. Raleigh, United States: Center for 

Environmental and Resource Economic Policy. 

Gillan, J. 2017. “Dynamic Pricing, Attention, and Automation: Evidence from a Field Experiment 

in Electricity Consumption.” EI @ Haas Working Paper WP-284. Berkeley, United States: 

University of California, Haas Business School, Energy Institute. 

Graff Zivin, J.S., M.J. Kotchen and E.T. Mansur. 2014. “Spatial and Temporal Heterogeneity of 

Marginal Emissions: Implications for Electric Cars and Other Electricity-Shifting 

Policies.” Journal of Economic Behavior & Organization 107: 248-268. 

Holland, S. P., Mansur, E. T., Muller, N. Z. and Yates, A. J. 2016. “Are There Environmental 

Benefits from Driving Electric Vehicles? The Importance of Local Factors.” American 

Economic Review 106(12): 3700-3729. 

Holland, S. P., Mansur, E. T., Muller, N. and Yates, A. J.  2018. “Decompositions and Policy 

Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation.” 

NBER Working Paper 25339. Cambridge, United States: National Bureau of Economic 

Research. 

IAWG (Interagency Working Group on Social Cost of Carbon). 2015. “Technical Support 

Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis 

Under Executive Order 12866.” Washington, DC, United States: United States 

Government.  

IEA (International Energy Agency). 2017. “Global EV Outlook 2017: Two Million and Counting. 

International Energy Agency.” Paris, France: IEA. Available at: 

https://webstore.iea.org/global-ev-outlook-2017. 

http://mis.ercot.com/misapp/GetReports.do?reportTypeId=13028&reportTitle=Wind%20Power%20Production%20-%20Hourly%20Averaged%20Actual%20and%20Forecasted%20Values&showHTMLView=&mimicKey
http://mis.ercot.com/misapp/GetReports.do?reportTypeId=13028&reportTitle=Wind%20Power%20Production%20-%20Hourly%20Averaged%20Actual%20and%20Forecasted%20Values&showHTMLView=&mimicKey
http://www.ercot.com/gridinfo/generation
http://www.ercot.com/mktinfo/prices
https://evadoption.com/ev-market-share/ev-market-share-state/
https://evadoption.com/ev-market-share/ev-market-share-state/
https://webstore.iea.org/global-ev-outlook-2017


32 
 

Novan, K. 2015. “Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided.” 

American Economic Journal: Economic Policy 7(3): 291-326. 

Reguant, M. 2018. “The Efficiency and Sectoral Distributional Implications of Large-Scale 

Renewable Policies.” NBER Working Paper 24398. Cambridge, United States: National 

Bureau of Economic Research. 

Wolak, F.A. 2011. “Do Residential Customers Respond to Hourly Prices? Evidence from a 

Dynamic Pricing Experiment.” American Economic Review 101(3): 83-87. 



33 
 

Appendices 
 

Appendix 1. Electric Vehicles Modelling Parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*Estimates from the NHTS are totals for the state of Texas, computed using the respective expansion weights. 

 

EV type MAKE from NHTS DOT(2018) MODEL from NHTS DOT(2018)
Annual miles estimate 

from NHTS DOT(2018)

Number of 

vehicles estimate 

from NHTS 

DOT(2018)

Fuel economy 

(kWh/mi) 

from DOE and 

EPA (2019)

Ratio miles 

elec/miles 

gasoline+elect

mi/day/user kWh/ day user

Charging 

restrictions 

kwH/L1 Level 1 

ACS 15 1.4 kW 

(Clipper Creek, 

2019)

Charging 

restrictions: 

kWh/L2 LCS 

20  3.8 kW 

(Clipper Creek, 

2019)

1 Plug-in Hybrid 12=Ford 12027=C-Max 35,407,390.00      2,726           0.38 0.0364 35.58 0.49 1.38 3.80

2 Plug-in Hybrid 19=Cadillac NA 5,551,633.00        885              0.54 0.0705 17.19 0.65 1.36 3.56

3 Plug-in Hybrid 20=Chevrolet 20026=Volt 80,803,000.00      7,442           0.35 0.1262 29.75 1.30 1.42 4.09

4 Plug-in Hybrid 37 Honda 37031=Civic/CRX, del Sol 1,158,581.00        151              0.29 0.0228 20.96 0.14 1.34 3.35

5 Plug-in Hybrid 29 29005=Tesla 6,194,711.00        889              0.31 19.09 5.92 1.40 3.79

6 Plug-in Hybrid 51=Volvo 51401=XC90 703,758.20           114              0.58 0.0400 16.86 0.39 1.36 3.56

7 Plug-in Hybrid 12=Ford 12023=Fusion 10,797,880.00      1,012           0.38 0.0364 29.24 0.40 1.38 3.80

8 Plug-in Hybrid 49=Toyota 49046=Prius 6,377,628.00        705              0.29 0.0204 24.78 0.15 1.38 3.80

9 Plug-in Hybrid 55=Hyundai 55033=Sonata 2,460,734.00        540              0.36 0.0450 12.47 0.20 1.40 3.27

10 Plug-in Hybrid 49=Toyota 49040=Camry 41,709,460.00      957              0.29 0.0204 119.37 0.71 1.38 3.80

11 Electric 99=Unknown NA 11,092.85             111              0.35 0.27 0.10 1.24 3.31

12 Electric 35=Nissan/Datsun 35055=Leaf 68,745,230.00      9,100           0.28 20.70 5.80 1.41 3.20

13 Electric Tesla 29005=Tesla 85,111,250.00      5,436           0.31 42.90 13.30 1.40 3.79

14 Electric 98=Other 98998=Other (vehicle) 16,026.48             631              0.35 0.07 0.02 1.24 3.31

15 Electric -88=I don't know NA 172,325.80           172              0.35 2.74 0.96 1.24 3.31

16 Electric 99=Unknown -88=I don't know 58,193.56             929              0.35 0.17 0.06 1.24 3.31

17 Electric -8=I don't know NA 22,504,940.00      2,340           0.35 26.35 9.22 1.24 3.31

18 Electric 49=Toyota 49402=RAV4 2,431,392.00        215              0.37 31.03 11.48 1.39 3.80

19 Electric 52=Mitsubishi NA 4,736,659.00        516              0.26 25.14 6.49 1.39 3.20

20 Electric 34=BMW NA 12,038,470.00      1,516           0.28 21.75 6.09 1.39 3.80

21 Electric 98=Other -88=I don't know 12,023.84             619              0.35 0.05 0.02 1.24 3.31

22 Electric 65=Smart 65031=Fortwo 19,604.87             181              0.30 0.30 0.09 1.41 3.91

23 Electric 34=BMW 34043=1-Series 553,853.40           236              0.28 6.43 1.80 1.39 3.80
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Appendix 2. Air Pollution Emissions  
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Nitrogen oxide  
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PM2.5 
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Appendix 3. Carbon and Air Pollution Marginal Damages and Emissions Econometric 

Estimates 
 

Newey-West standard errors with 24-hour lags 
VARIABLES Air pollution mg 

dmg 

CO2 mg 

emissions 

tCO2/MWh 

SO2 mg emissions 

lbs SO2/MWh 

NOx mg emissions 

lbs NOx/MWh 

PM2.5 mg emissions 

lbs PM2.5/MWh 

      

1b.hour#c.Load 7.598*** 0.560*** 0.957*** 0.514*** 0.139*** 

 (0.359) (0.00832) (0.0621) (0.0162) (0.000895) 

2.hour#c.Load 7.355*** 0.561*** 0.910*** 0.513*** 0.140*** 

 (0.369) (0.00870) (0.0641) (0.0170) (0.000937) 

3.hour#c.Load 7.202*** 0.561*** 0.883*** 0.515*** 0.141*** 

 (0.376) (0.00895) (0.0651) (0.0175) (0.000968) 

4.hour#c.Load 7.312*** 0.570*** 0.902*** 0.523*** 0.143*** 

 (0.380) (0.00913) (0.0661) (0.0179) (0.000986) 

5.hour#c.Load 7.712*** 0.584*** 0.966*** 0.544*** 0.145*** 

 (0.384) (0.00952) (0.0673) (0.0181) (0.00103) 

6.hour#c.Load 8.021*** 0.590*** 1.032*** 0.549*** 0.147*** 

 (0.376) (0.00924) (0.0656) (0.0170) (0.00102) 

7.hour#c.Load 8.084*** 0.586*** 1.042*** 0.547*** 0.146*** 

 (0.356) (0.00862) (0.0626) (0.0159) (0.000986) 

8.hour#c.Load 8.214*** 0.594*** 1.078*** 0.554*** 0.147*** 

 (0.345) (0.00862) (0.0608) (0.0153) (0.000945) 

9.hour#c.Load 8.098*** 0.592*** 1.079*** 0.550*** 0.147*** 

 (0.328) (0.00830) (0.0581) (0.0146) (0.000926) 

10.hour#c.Load 7.954*** 0.591*** 1.073*** 0.547*** 0.148*** 

 (0.312) (0.00774) (0.0543) (0.0139) (0.000885) 

11.hour#c.Load 7.653*** 0.584*** 1.040*** 0.553*** 0.147*** 

 (0.295) (0.00725) (0.0511) (0.0170) (0.000838) 

12.hour#c.Load 7.408*** 0.578*** 1.001*** 0.552*** 0.146*** 

 (0.278) (0.00680) (0.0483) (0.0134) (0.000791) 

13.hour#c.Load 7.263*** 0.571*** 0.968*** 0.566*** 0.144*** 

 (0.264) (0.00642) (0.0460) (0.0135) (0.000742) 

14.hour#c.Load 7.190*** 0.565*** 0.953*** 0.584*** 0.143*** 

 (0.254) (0.00609) (0.0443) (0.0139) (0.000712) 

15.hour#c.Load 7.129*** 0.560*** 0.941*** 0.591*** 0.142*** 

 (0.249) (0.00594) (0.0434) (0.0140) (0.000694) 

16.hour#c.Load 7.093*** 0.557*** 0.938*** 0.588*** 0.141*** 

 (0.246) (0.00583) (0.0431) (0.0137) (0.000677) 

17.hour#c.Load 7.091*** 0.555*** 0.940*** 0.573*** 0.141*** 

 (0.248) (0.00578) (0.0434) (0.0133) (0.000675) 

18.hour#c.Load 7.118*** 0.555*** 0.954*** 0.555*** 0.141*** 

 (0.252) (0.00579) (0.0443) (0.0127) (0.000687) 

19.hour#c.Load 7.242*** 0.557*** 0.970*** 0.540*** 0.141*** 

 (0.263) (0.00603) (0.0462) (0.0124) (0.000710) 

20.hour#c.Load 7.391*** 0.563*** 0.997*** 0.535*** 0.142*** 

 (0.274) (0.00635) (0.0479) (0.0124) (0.000731) 

21.hour#c.Load 7.494*** 0.557*** 1.017*** 0.522*** 0.141*** 

 (0.281) (0.00645) (0.0492) (0.0124) (0.000747) 

22.hour#c.Load 7.696*** 0.557*** 1.043*** 0.523*** 0.140*** 

 (0.300) (0.00696) (0.0522) (0.0130) (0.000804) 

23.hour#c.Load 7.832*** 0.557*** 1.039*** 0.524*** 0.139*** 

 (0.325) (0.00754) (0.0563) (0.0140) (0.000853) 

24.hour#c.Load 7.059*** 0.517*** 0.901*** 0.488*** 0.130*** 

 (0.344) (0.00895) (0.0596) (0.0154) (0.00145) 
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Newey-West standard errors with 168-hour lags 
VARIABLES Air pollution mg 

dmg 

CO2 mg 

emissions 

tCO2/MWh 

SO2 mg emissions 

lbs SO2/MWh 

NOx mg emissions 

lbs NOx/MWh 

PM2.5 mg emissions 

lbs PM2.5/MWh 

      

1b.hour#c.Load 7.598*** 0.560*** 0.957*** 0.514*** 0.139*** 

 (0.479) (0.0108) (0.0841) (0.0162) (0.00101) 

2.hour#c.Load 7.355*** 0.561*** 0.910*** 0.513*** 0.140*** 

 (0.497) (0.0111) (0.0871) (0.0170) (0.00106) 

3.hour#c.Load 7.202*** 0.561*** 0.883*** 0.515*** 0.141*** 

 (0.505) (0.0114) (0.0882) (0.0175) (0.00111) 

4.hour#c.Load 7.312*** 0.570*** 0.902*** 0.523*** 0.143*** 

 (0.513) (0.0117) (0.0900) (0.0179) (0.00115) 

5.hour#c.Load 7.712*** 0.584*** 0.966*** 0.544*** 0.145*** 

 (0.519) (0.0123) (0.0922) (0.0181) (0.00124) 

6.hour#c.Load 8.021*** 0.590*** 1.032*** 0.549*** 0.147*** 

 (0.509) (0.0121) (0.0903) (0.0170) (0.00125) 

7.hour#c.Load 8.084*** 0.586*** 1.042*** 0.547*** 0.146*** 

 (0.496) (0.0115) (0.0871) (0.0159) (0.00121) 

8.hour#c.Load 8.214*** 0.594*** 1.078*** 0.554*** 0.147*** 

 (0.480) (0.0119) (0.0854) (0.0153) (0.00117) 

9.hour#c.Load 8.098*** 0.592*** 1.079*** 0.550*** 0.147*** 

 (0.454) (0.0115) (0.0814) (0.0146) (0.00114) 

10.hour#c.Load 7.954*** 0.591*** 1.073*** 0.547*** 0.148*** 

 (0.435) (0.0108) (0.0760) (0.0139) (0.00111) 

11.hour#c.Load 7.653*** 0.584*** 1.040*** 0.553*** 0.147*** 

 (0.409) (0.0101) (0.0717) (0.0170) (0.00107) 

12.hour#c.Load 7.408*** 0.578*** 1.001*** 0.552*** 0.146*** 

 (0.382) (0.00935) (0.0675) (0.0134) (0.000994) 

13.hour#c.Load 7.263*** 0.571*** 0.968*** 0.566*** 0.144*** 

 (0.359) (0.00873) (0.0634) (0.0135) (0.000928) 

14.hour#c.Load 7.190*** 0.565*** 0.953*** 0.584*** 0.143*** 

 (0.346) (0.00818) (0.0608) (0.0139) (0.000883) 

15.hour#c.Load 7.129*** 0.560*** 0.941*** 0.591*** 0.142*** 

 (0.342) (0.00794) (0.0596) (0.0140) (0.000876) 

16.hour#c.Load 7.093*** 0.557*** 0.938*** 0.588*** 0.141*** 

 (0.340) (0.00778) (0.0592) (0.0137) (0.000845) 

17.hour#c.Load 7.091*** 0.555*** 0.940*** 0.573*** 0.141*** 

 (0.340) (0.00771) (0.0594) (0.0133) (0.000845) 

18.hour#c.Load 7.118*** 0.555*** 0.954*** 0.555*** 0.141*** 

 (0.349) (0.00781) (0.0613) (0.0127) (0.000892) 

19.hour#c.Load 7.242*** 0.557*** 0.970*** 0.540*** 0.141*** 

 (0.373) (0.00839) (0.0658) (0.0124) (0.000959) 

20.hour#c.Load 7.391*** 0.563*** 0.997*** 0.535*** 0.142*** 

 (0.389) (0.00890) (0.0678) (0.0124) (0.000968) 

21.hour#c.Load 7.494*** 0.557*** 1.017*** 0.522*** 0.141*** 

 (0.402) (0.00900) (0.0691) (0.0124) (0.000978) 

22.hour#c.Load 7.696*** 0.557*** 1.043*** 0.523*** 0.140*** 

 (0.421) (0.00950) (0.0719) (0.0130) (0.00100) 

23.hour#c.Load 7.832*** 0.557*** 1.039*** 0.524*** 0.139*** 

 (0.450) (0.0100) (0.0771) (0.0140) (0.000983) 

24.hour#c.Load 7.059*** 0.517*** 0.901*** 0.488*** 0.130*** 

 (0.468) (0.0116) (0.0802) (0.0154) (0.00189) 

 

 

 

 


