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Abstract* 
 

This paper develops a dynamic model of competitive equilibrium in electricity 
markets with thermal, hydro and intermittent power sources. Thermal generators 
have positive and increasing costs and use a marketable input. Hydro generators 
use a free and uncertain input, but one that is storable. Intermittent renewable 
generators (solar or wind) use a free, uncertain and non-storable input. The 
competitive equilibrium is characterized, and it is proven to be Pareto optimal for 
any given technology mix. It is then proved that the optimal capacity matrix exists, 
is unique and, under reasonable cost assumptions, involves the three technologies. 
Moreover, the efficient allocation involves using thermal generation in every 
period. We calibrate our model with data from three countries with very different 
capacity matrices and diverse natural characteristics, namely, Argentina, Brazil, 
and Uruguay. For each country we obtain: i) the unrestricted optimal capacity 
matrix; and ii) the second best matrix, or the optimal investment in capacity given 
the current matrix. Finally, the numerical results show that when there is an increase 
in the share of intermittent sources, the profitability of the thermal and hydro 
increase after some point, following a U-shape relationship, which suggests that the 
entry of renewable generators does not compromise the system’s reliability. 
 
JEL classifications: D24, L94, Q42 
Keywords: Electricity markets, Competitive equilibrium, Hydroelectric 
generation, Intermittent sources 
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1. Introduction 
 

The electricity industry has faced important structural changes in the last three decades. There has 

been a wave of liberalization, privatization and competition in the energy generation sector. New 

technologies are entering the energy system, and intermittent sources such as wind and solar now 

account for a significant share of generation in many countries. 

The impact of these structural changes is far from clear, mainly because electricity markets 

function in a very different way than other more commonly studied markets. There are several 

market failures specific to this industry: for the most part, electricity is non-storable and non-

tradable (outside the grid), supply and demand vary substantially across time and the total potential 

supply is fixed in the short run. Moreover, the different technologies have very distinct features. 

While thermal sources have a typical neoclassical production function with increasing marginal 

costs and marketable inputs, renewables rely on non-marketable inputs that are stochastic and non-

storable. Moreover, marginal production costs of hydro generators and other renewables are 

negligible. This poses a challenge to an industry with a diversified portfolio of generators: how 

much water to store, and how much to produce in any given period? Additionally, the investment 

decision is also quite complex. A larger share of renewables implies lower expected prices for 

consumers but also implies less reliability. Thermal sources provide reliability, but they cannot 

compete with the low prices of renewables. In a country with a diversified portfolio of 

technologies, how far from efficiency will the competitive equilibrium be? What is the ideal 

capacity matrix? 

We develop a dynamic stochastic model of energy markets to answer such questions. Our 

model captures the main features of the energy market and provides a tractable framework to 

analyze i) how the competitive equilibrium works, ii) the optimal capacity matrix, and iii) the 

impact of a larger share of renewables, in prices and profitability of other sources. Our theoretical 

model is testable and can provide insights for policy analysis. We are then able to calibrate our 

model, and we provide numerical exercises to study the optimal matrix in countries with different 

characteristics. We also provide policy recommendations for investment in capacity in different 

economies. 

Specifically, in our model energy can be produced through hydro, thermal and intermittent 

power sources. The behavior of the three different types of power generators is quite different. 

While thermal generators produce energy based on marketable inputs (coal, oil, natural gas), hydro 
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and intermittent sources produce power based on non-marketable, renewable and free of costs 

inputs, stochastically delivered by nature: sunlight, wind, and water. However, in contrast to 

sunlight and wind, water is storable, and that changes the problem completely. Hydro generators 

face a dynamic problem: using water in the present may prevent them from generating energy in 

the future. In this economy, the market price correctly signals hydro generators to ration water in 

the present for future use. We prove a version of the first welfare theorem for this economy: that 

is, the market equilibrium is Pareto optimal. 

Finally, we simulated an economy where hydro capacity is replaced by renewable capacity. 

The numerical results show that, when we increase the share of intermittent sources, i) the 

profitability of the thermal and hydro plants follow a U-shape relationship, ii) the mean price drops 

due to technology diversification and then rises for a high share of intermittent sources, and iii) 

the profitability of the renewable sources drops steadily. These findings corroborate the idea of a 

balanced technology mix in long-term equilibrium. 

Centralized electricity production has received many criticisms for quite some time. The 

pioneering work of Joskow and Schmalensee (1998) pointed to efficiency problems in centralized 

systems and advocated for full liberalization and competition. In fact, perhaps the major motivation 

for the wave of liberalization that the industry has undergone over the last 25 years was to introduce 

competition and to move away from centralized decisions. 

There is a large literature that analyzes liberalization of power markets in many different 

contexts and aspects of it. This ranges from Joskow and Schmalensee (1998) to important 

contributions such as Green and Newbery (1992) and Wilson (2002), among many others. García, 

Reitzes and Stacchetti (2001) analyzes competition between two hydro generators, and their main 

concern is market power. Our paper builds on their set-up and extends their analysis to a continuum 

of generators in a competitive environment. 

Crampes and Moreaux (2001) compute the first best, monopoly and duopoly allocation of 

a market with a thermal and a hydro plant. Ambec and Doucet (2003) analyze decentralization of 

a hydroelectric industry and show that, while a monopoly brings market power concerns, a 

decentralized market may have suboptimal use of water resources. Both of these papers have a 

negatively sloped demand curve, and generators’ optimal production tries to equate marginal 

revenues across periods. Inefficiencies come largely from the fact that generators may not be able 

to do so. 
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Our paper has a fundamental distinction to Crampes and Moreaux (2001) and Ambec and 

Doucet (2003): generators face a discrete choice problem—to produce or not to produce—and not 

a continuum problem. Production is a binary variable, as well as water storage. Either the generator 

is full or it is empty. Our model is not aimed at modelling inefficiencies that may arise from limited 

storage capacity or market power.1 Instead, it analyzes how a competitive equilibrium works in a 

continuum of generators with distinct technologies and where most generators have zero marginal 

cost. We show that, even in a competitive market, prices never go down to zero. 

The paper proceeds as follows. Section 2 lays out a benchmark model with hydro and 

thermal generators only and characterizes the competitive equilibrium. Section 3 derives an 

important result concerning the effect of a price cap on the competitive equilibrium. Section 4 

introduces intermittent sources and analyzes their effects on market equilibrium. Section 5 proves 

that the first welfare theorem holds in such a market. The last section concludes. 

 
2. Benchmark Model2 
 
2.1 Competitive Equilibrium in a Hydro-Thermal Economy 
 
Consider an infinite horizon model in which there is a unitary inelastic demand for electricity, 

which might be supplied by a thermal production source or by hydroelectric power source. We 

assume a continuum of identical hydro sources and a single thermal source. Each thermal source 

can produce an unlimited amount of energy at an increasing and convex marginal cost. The hydro 

plants are indexed between [0,θ], where 2 > θ > 1. Each hydro plant can generate energy at zero 

marginal cost, but is capacity constrained and atomistic, that is, if a set S ⊂ [0,θ] is producing 

energy, the energy produced is given by e(S) = ∫i∈S 1di. 

At each period t = 1,2,..., a hydro generator might have full capacity or empty capacity, 

which we will denote by the binary variable {0,1}. The hydro plant might decide to sell its energy 

or not. That is, each hydro plant has a discrete choice, and energy is modeled as an indivisible unit. 

If it does sell, the plant earns the current market price but will finish the period with empty 

reservoirs. If it does not sell energy, it will enter the following period with full capacity. With these 

assumptions, we can focus on the extensive margin of energy production. 

 
1 Garcia, Reitzes and Stacchetti (2001) analyze market power in a setting like the one we use here. 
2 This section was first developed in Moita and Monte (2018). 
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In order to capture the aggregate uncertainty that is intrinsic to the production of 

hydroelectric energy, but not to thermal production, we will assume that, at each period t, there are 

two possible states of the world. Formally, we assume that with probability π ∈ [0,1], which is 

drawn independently before every period t, the state of nature is ω ∈ {G,B}. Once the state is 

drawn, it becomes known to everyone. We eliminate any exogenous idiosyncratic uncertainty and 

assume that if the state of the world is G, every hydro generator has full capacity, while if the state 

of the world is B, each hydro generator will have full capacity only if it had full capacity in the 

previous period and decided not to sell its energy in that period. Otherwise, its capacity is empty. 

The thermal generator has no capacity constraint and faces the same production costs every period. 

We also assume a thermal source, whose (static) objective function is: maxe πT = pe − c(e), 

where e is the quantity of energy sold, c(e) is the cost function and p is the current market price. 

For convenience, we think of the thermal source as a price-taker myopic player, capturing the fact 

that we are actually modeling a representative generator. The hydro’s static profit function is given 

by πH = pe. However, recall that i) each hydro is capacity constrained and atomistic and ii) there is 

a dynamic link, through the hydro’s reservoir capacity, between the current period’s profit and the 

expected continuation payoff starting at the subsequent period. 

A public history at time t is denoted by ht and is a sequence of states of the world and 

energy sold by each player. The set of all public histories at time t is Ht. A behavioral strategy for 

a hydro generator is defined as: 
 

, 
 

and for the representative thermal generator it is: 
 

. 
 

We consider a Walrasian market in which firms, hydro plants and thermal sources, are 

price-takers.3 A competitive equilibrium in our environment is a sequence of prices such that the 

market clears on a period-by-period basis—that is, in every history demand meets supply. 

Moreover, the thermal producer maximizes its myopic profit function, and each hydro plant 

maximizes its dynamic expected continuation payoff. 
 

 
3 There are over a thousand hydro plants in Brazil, which is our prototypical example. 
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Definition 1 (Equilibrium) An equilibrium is a map  such that the market clears 

at every period, the thermal generator is maximizing its per-period payoff and each hydro is 

maximizing its expected present value profit. 
 
We will denote hydro i0s expected continuation profit at the start of any period t for which 

the state of nature is G by VG. Recall that in state G, every hydro has full capacity, regardless of 

what happened in the previous period. In contrast, whenever the state of the world is B, each 

hydro’s capacity is dependent on whether it has sold energy in the previous period or not. With 

slight abuse of notation, we denote by VB1 the value function of a given hydro when the state is B, 

and the hydro has full capacity, while by VB0 we denote the value function of the hydro when the 

state is B and it has empty capacity. The value function at state G can be written as the maximum 

between selling and not selling the energy: 

 

 . (1) 

Regardless of the state of the world, whenever a hydro sells its energy at price p, it empties 

its reservoir, which means that it will only be able to sell energy again whenever the state of the 

world becomes G again. Thus, we may write the payoff VB0 for any period in which the state is 

B and the hydro has an empty reservoir as: 
 

 . (2) 
 

The value function at B when the capacity is full is given by: 
 

 . (3) 
 

Before we proceed let us define p∗ = c’(1), that is, p∗ is the Walrasian price when only the 

thermal generator supplies the market. 

In order to better understand the mechanics of our model, let us first consider the case in 

which the number of hydro plants selling in a particular given period exceeds the demand. Given 

that each hydro supplies at a zero marginal cost, the Walrasian price in that period would be zero, 

as shown in Figure 1. 

  



7 

Figure 1. Only Hydro Production (p=0) 
 

 
 

In contrast, if the number of hydro sources selling at a particular period is smaller than the 

unitary demand, then thermal sources are used to clear the market. Such a scenario is presented in 

Figures 2 and 3 below. 

 

Figure 2. Equilibrium (t=1): good state 
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Figure 3. Equilibrium (t=2): Bad State 
 

 
 

The market price for such a period in which hydro sources do not supply the entire demand 

is given by the marginal cost of the thermal production at the market-clearing quantity. In 

equilibrium, hydro plants must be maximizing their infinite stream of profits discounted by the 

discount rate δ < 1. For that reason, a price of zero as presented in Figure 1 will not happen in 

equilibrium, regardless of the history. This is a consequence of the fact that hydro plants are 

forward-looking and subsequent periods have a positive probability of some water-scarcity. Hydro 

plants anticipate a positive price in the future and thus prefer to keep water in their reservoir to 

profit when the price is high. Thus, a first implication of our model is that prices are always 

positive, despite the fact that at given periods there might be excess supply of zero-marginal-cost 

suppliers. 

Figures 2 and 3 show the prices in a good state and in a bad state, respectively. Note that 

prices are higher in bad states. That is the intuition of the equilibrium price dynamics in this market. 

We are now ready to prove our first two results: first, we prove that an equilibrium always 

exists in these markets, then we provide a characterization of an equilibrium, that is, a few 

necessary conditions for equilibrium. 
 

Proposition 1 (Existence) An equilibrium always exists in this market. 
 

Proof. The proof is by construction, and we provide it in the Appendix.  
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Lemma 1 (Equilibrium Properties) An equilibrium must satisfy the following properties: 
 

i) Prices are weakly lower than the price given by the production of thermal 

sources exclusively: ∀h, ph ≤ p∗. 

ii) If the price is the maximal one, p = p∗, then firms have strict incentive to sell 

energy. 

iii) If at period t firms have strict incentive to sell, then at period t+1 if the state is B 

: p = p∗.  

iv) For any period t, firms weakly prefer to sell energy versus not selling. 

v) In equilibrium, at state G, firms are indifferent between selling and not selling 

energy. 
 
The competitive price is given by the marginal cost of the marginal producer. Recall that 

in the good state G, where all hydro plants have water in their reservoirs, it is not an equilibrium 

to have only hydro generation. If this were the case, p = 0, and the hydro generators would have 

an incentive to save water for the next period. An important implication of this is that there is 

always thermal generation, qT > 0, which gives the next lemma. 
 

Lemma 2 (Thermal is the marginal producer) In equilibrium, pt = C(qTt ). 
 

The next lemma characterizes the “off corners” market price dynamics in the competitive 

equilibrium.4 
 

Lemma 3 (Price Dynamics) Let pG be the price in the good state and pB be the price in a bad state 

with  pB < δ (1 − π)p∗ . Then, in equilibrium we have 
 
 pB = δ (1 − π)p’BB (4) 
 

Equation (4) shows the relationship between the price in the good state, pG, and the price 

in the bad state, pB. It shows that the price in the good state is the expected discounted value of the 

price in the bad state next period. It comes from the fact that hydro generators in the good state are 

indifferent between selling or not energy. Similarly, equation (4) shows the relationship between 

 
4 Whenever the water storage is low enough so that the current price using all water left in storage is high enough 
(namely, when p > δ (1 − π)p∗) the hydro sources with water in storage will strictly prefer to sell their water. For that 
reason we refer to Lemma 3 as the “off corner” price dynamics. 
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the price in a bad state following a good state, pB, and the price in a bad state following a bad state, 

pBB.  
 

Remark 1 (Price Cap) To finalize this section, let us consider an important regulatory tool: price 

caps. Assume that the price of energy is always constrained to be pt ≤ 𝑝𝑝 < p∗. Our next result 

follows immediately from Lemma 1 (ii). 
 
Lemma 4 If pt = 𝑝𝑝, then all hydro plants sell their capacity in that period. 
 

Now, consider a history in which there is a mass µ of hydro plants with full capacity, and 

let µ < 1. In any such case, if the expected future price is not high enough, the price of energy 

might be p∗ (or 𝑝𝑝 in the case of a binding price cap) in the subsequent period. If, in equilibrium, 

all hydro plants find it profitable to sell their currently stored reservoirs, that is, µ is such that e 

= µ, then we say that we are in an extreme scenario. 

Using Lemma 4 we have that under a binding price cap, hydro plants sell weakly more 

energy every period than when there is no price cap. This implies that under a price cap, the 

economy has a higher probability of reaching extreme scenarios. We state this result below.5 
 
Proposition 2 Assume that a price cap has been imposed: 𝑝𝑝 < p∗. Denote this economy by Ec  and 

construct an identical economy, but with no price cap, denoted by Ef. Then, whenever the state is 

G, the energy produced by hydro sources is higher under Ec  than it is under Ef,  ec > ef  moreover, 

Ec has a higher probability of reaching extreme scenarios than f. 

 
2.2 Intermittent Sources 

 
In our benchmark model we deliberately ignored intermittent power sources. By intermittent 

sources, we consider all power plants that satisfy two conditions i) a zero marginal cost of 

producing energy and ii) lack of capacity to store energy. Note that hydro sources satisfy i), but 

they can store energy in their reservoirs, while thermal sources satisfy ii), but the cost is assumed 

to be increasing. 

Intermittent sources most notably include wind power, solar energy and run-of-river plants 

(plants that generate hydro energy but have no reservoirs). For environmental reasons, this source 

 
5 This result is similar to the one obtained by García, Reitzes and Stacchetti (2001), but theirs is a duopoly of hydro 
generators, while we have a competitive market with a mix of technologies. 
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of power is generating great interest throughout the world, and it is already quite common in some 

places. Denmark, for example, generates around 40 percent of its electricity from wind. China, 

another example, has recently announced ambitious plans to increase wind and solar power 

capacity. In Brazil, run-of-river plants are common and relatively representative. We will model 

all of these different sources as a continuum of producers with zero marginal cost and no reservoirs. 

In an electricity system with thermal and hydro sources, the entry of intermittent generators 

has two effects: it decreases the ratio of storage to total capacity, and it diversifies the stochastic 

processes that generate the input. 

In order to have a better understanding of the role of intermittent sources, we will try to 

disentangle these two effects by analyzing two cases. First, intermittent generators with no storage 

but the same stochastic process as the hydro sources. We will think of these sources as being run-

of-river plants, so that the uncertainty inherent in the production is the same as with the hydro 

generators. This is useful as a benchmark, but it also provides us with policy recommendations for 

investment in this type of generator. Second, we study the perhaps more interesting case in which 

intermittent sources follow a stochastic process that is distinct from that of hydro sources. As an 

example, wind and rain may have distinct and independent probabilities of occurring. For the first 

case, we provide an analytical solution, whereas for the second case, the complexity of the problem 

is substantially increased and, therefore, we solve the model numerically in Section 5. 

 
2.2.1 Run-of-River 

 
Assuming that intermittent sources have mass η < 1, it is perhaps not surprising that energy should 

be weakly cheaper in G when all reservoirs are full and the intermittent plants can generate energy. 

What is more interesting is that there is a critical level η, such that for any η ≤ η, the market 

equilibrium is the same as the one without intermittent sources. Also, this critical capacity level is 

equal to the amount of energy that is produced by the hydro plants in state G when there is no 

intermittent capacity installed. 
 

Proposition 3 (Intermittent Power Plants: Threshold capacity for run-of-river plants) 

i) There is a critical level of intermittent capacity η, such that for any η ≤ η, the market 

equilibrium is unchanged with respect to the benchmark case. 

ii) Let eh be the energy generated by the hydro plants in the benchmark case. Then we have, 

η = eh. 
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The intuition behind this result is the following. The energy from the intermittent sources 

will be used in the good state anyway. If their capacity is less than or equal to eh, the energy 

produced in state G is still eh, so that the share of hydro that saves water to the next period is θ − 

eh, as in the benchmark case. 

For cases where η > η, the equilibrium differs. In order to understand the effects of 

intermittent sources, consider two economies Ei and Ej with a mass of intermittent sources lower 

in Ei : ηi < ηj. To have a comparable situation, we assume that the total installed capacity of hydro 

plus intermittent is the same in the two economies, and only the share of each technology differs. 

That is, 
 

 θi + ηi = θj + ηj, (5) 
 
and hence, θi > θj. Also, for the next proposition assume that at least ηj > eh, or both ηi and ηj are 

greater. 

 
Proposition 4 (Intermittent Power Plants: Higher price volatility) Consider two economies Ei and 

Ej with a mass of intermittent sources lower in Ei : ηi < ηj, where ηj > η. Also assume that θi + ηi = 

θj + ηj. Then we have the following: 
 

i) The equilibrium prices are lower in Ej in periods G: 𝑝𝑝𝐺𝐺
𝑗𝑗 < 𝑝𝑝𝐺𝐺𝑖𝑖 . 

ii)  The equilibrium prices are higher in Ej in periods B: 𝑝𝑝𝐵𝐵
𝑗𝑗 > 𝑝𝑝𝐵𝐵𝑖𝑖 .  

iii) Price volatility is higher in Ej. 
 

This result has one important policy implication. Competitive energy prices in the good 

state will be lower with more intermittent sources operating. With no interference, this lower price 

will signal intermittent sources not to enter the market until perhaps demand increases and it 

becomes profitable for these sources to enter again. 

A subsidy is a common policy for intermittent and environmentally friendly sources. It 

induces entry of intermittent sources, and it reduces energy prices, as shown. These lower prices 

require further incentives to induce further entry of clean generators. 

Up to this point, the stochastic process governing the delivery of hydro and intermittent 

energy is identical. It simplifies the problem greatly, but it is not realistic. We will relax this 

assumption in Section 6, when we will analyze the effect of intermittent sources through a 
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numerical simulation of the social planner’s problem. But to do this, we need to guarantee that the 

first welfare theorem holds, meaning that the solution to the planner’s problem gives rise to the 

same allocation as that of a market economy. The next section shows that the first welfare theorem 

holds. 

 
3. Social Planner 

 
3.1 Production Plan 
 
The social planner chooses a production plan to minimize the intertemporal sum of discounted 

costs. 
 

 , (6) 
 
in which Ct (Q) represents the total cost of producing Q units of energy. 

We look at the planner’s problem considering a capacity θ of hydro and R of renewable 

sources. We will treat both θ and R as state variables since this will be essential to study the long-

run optimal policy, that is, when the planner is allowed to choose the optimal energy matrix. We 

will do this in Section 4. In this section we will focus on the case where the matrix is given. This 

is the short-run problem: for a given matrix, what is the optimal policy of the planner? 

We assume that there is a constant inelastic demand D every period, and the cost structure 

is the following: the hydro plant has zero marginal cost and the thermal plant’s cost function is 

C(qT ), with C’≥ 0 and C’’ > 0. We further assume that C’(0) = 0. The thermal plant has enough 

capacity to supply the entire demand at a cost C(D). We restrict R to the interval [0,D] and θ to the 

interval [0,θ∗]. Denote by CG the cost of production when the state is good for renewables and CB 

otherwise. The planner’s problem in the recursive formulation is: 

 
Ci(X,θ,R) =        min {C(qT ) + δ (πγCG(θ,θ,R) + (1 − π)γCG(X − qH,θ,R) + π(1 − γ)CB(θ,θ,R))+ 

qT,qH,qR 
(1 − π)(1 − γ)CB(X − qH,θ,R)} 
s.t 
D = qT + qH + qr  

qH ≤ min{X,D} 
qR ≤ 𝑅𝑅         
            = 
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if i = G  
if i = B 

 

                X − qH, with probability 1 − π 
X’ = 
 θ, with probability π 
 
where qT , qH, and qr stand for quantity produced of thermal, hydro and renewable energy, 

respectively. X and X’ denote the total amount of water stored in the reservoirs in the current and 

subsequent period. 

The first restriction says that hydro plus thermal plus intermittent must match total demand, 

the second states that hydro generation is constrained by the amount of water available and cannot 

exceed the demand, the third states that the production of intermittent sources cannot exceed the 

available capacity 𝑅𝑅, and the fourth states that the capacity of producing from intermittent sources 

in a period is given by a factor uh or ul (with uh > ul) multiplied by the total capacity R.6 Finally, 

the last equation shows the law of motion of the state variable X. 

The total cost function is defined as the sum of thermal plus hydro plus intermittent 

generation: C = CT (qT )+CH (qH)+Cr (qr). Since the costs of the hydro and of intermittent sources 

are zero, we write the one period cost function as C = C (qT ). 

Our next result is straightforward and comes directly from the fact that there is no storage 

of renewable energy in our model. 
 

Lemma 5 (Full use of renewables) The planer will always choose qR = 𝑅𝑅. 

 
The next result states that the planner will always choose to employ some thermal sources 

in energy production. Before we proceed with the proofs, note that that the cost function C(·) is 

decreasing in the first argument. The following result shows that it can never be optimal to use no 

thermal in the current period and some thermal sources on the following period. This result comes 

from the convexity of the cost function. We prove this result by showing that such a policy has a 

profitable deviation in which the planner uses some thermal source to produce in the current period 

and saves water for the future. 

 
6 For the proofs we use uh=1 and ul=0. For the calibration exercise, we use more realistic values. 
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The next proposition shows that the planner will always use some thermal energy sources. 

The proof is in the Appendix. 
 

Proposition 5 (Always optimal to use thermal sources) qH = D − 𝑅𝑅 is never an optimal choice. (As 

a consequence, thermal is always produced). 
 

From now on, it will be convenient to consider the equivalent problem of maximizing the 

function −C(qt) instead of working with the minimization problem above. Then we have that –

C’(qt) < 0 and −C’’(qt) < 0, so the objective function becomes a strictly concave function. Next 

we write the problem in terms of choosing the remaining hydro capacity X’ = X − qH. Thus, we can 

rewrite the above problem as: 
 

V i(X,θ,R) = max{−C(D − 𝑅𝑅 − X + X0) + δ(πγV G(θ,θ,R) + (1 − π)γV G(X’,θ,R)+ 
X’ 

 π(1 − γ)V B(θ,θ,R)) + (1 − π)(1 − γ)V B(X’,θ,R)} s.t 

max{0,X + 𝑅𝑅 − D} ≤ X’ ≤ X 
 

 𝑅𝑅 = uhR, if i = G 

 ulR, if i = B 

where the maximum is there to ensure that the energy production never exceeds the demand. 

We are now able to state our main theoretical result, which combines the results in this 

section with those of Section 2.1. In the Appendix, the proof provides some properties of the 

value function, which are necessary for the theorem. 
 

Theorem 1 (First Welfare Theorem) The competitive equilibrium is Pareto-optimal. 

Proof. See Appendix.  
 

In Section 5 we will use the first welfare theorem to implement our numerical analysis. 

Before we proceed, let us discuss about a very important issue in markets with different 

technologies. 
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3.2 Start-up Costs 
 

Start-up costs is a fixed cost paid by a thermal plant that was not producing energy and decides to 

start producing. That plant needs to be started up, and this fixed cost must be paid before it can 

feed electricity into the grid. 

In our model, we assume that this is an extra cost paid by thermal plants whenever i) their 

last period’s production was zero and ii) their current period’s production is positive. 

We investigate whether start-up costs would change the planner’s solution, or the 

competitive equilibrium. From a planner’s perspective, we know that the minimization of costs 

leads to thermal sources being used in every period and every state of the world. Thus, it should 

be clear that an extra cost following an idle period will not alter the planner’s optimal allocation. 

A similar argument holds for the competitive equilibrium case. Since hydro plants are 

price-takers in our model, they cannot strategically explore the thermal source’s desire to produce 

even at very low prices. Thus, given that in the competitive equilibrium thermal sources produce 

every period, the new equilibrium under start-up costs will also have them produce in every period 

and the allocation is unchanged. 

 

4. Optimal Capacity 
 
We assume that there is an installation cost Ch per unit of hydro capacity and CR per unit of 

renewable capacity. Our objective is to show that there is an optimal energy matrix. 

We solve this problem from an ex ante perspective. We assume that the planner can choose 

a capacity in the space E := [0,𝜃𝜃] × [0,𝑅𝑅], with 𝜃𝜃 large enough7 and 𝑅𝑅 ≤ D, then the planner’s 

problem of choosing the optimal energy matrix will be: 

 

 
 

Theorem 2 (Optimal Capacity Matrix) There exists a unique optimal capacity matrix (θ∗,R∗) ∈ E. 
 
Proof. Note that this problem is well defined since V G(·) is continuous and bounded and 
E is compact, so the existence of (θ∗,R∗) ∈ E follows directly. Uniqueness comes from 
the fact that V g is strictly concave.  
 

 
7 Precisely, we need only that 𝜃𝜃≥ θ∗, where θ∗ is the optimal capacity in the relaxed problem. 
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Note that this optimal capacity will depend on the combination of the parameters of the 

model, which renders an analytic solution infeasible. We can, however, solve this numerically 

given the parameters. 

To illustrate how the optimal capacity relates to the installation costs, we present the 

following three figures. In the first one, we show the relation of the planner’s value function with 

the installed capacity of hydro and intermittent sources. The main idea to grasp from this figure is 

that the value function is (obviously) increasing in the installed capacity, but it is also clearly 

concave. We prove this in Lemma 7. 

In the following two figures, we present i) the optimal hydro capacity as a function of the 

installation costs and ii) the optimal capacity of intermittent sources as a function of these costs. 

 

 
Value Function and Capacity 
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An important message here is that the optimal matrix will be interior for reasonable cost 

parameters. 

 

Second best 
 

For a fixed initial matrix (θ,R), with θ < 𝜃𝜃 and R < 𝑅𝑅. we can ask what is the optimal investment 

plan. Define now the capacity expansion space as T := [0,𝜃𝜃−θ]×[0,𝑅𝑅 −R], the problem is now: 
 

 
 

Again uniqueness comes from the strict concavity of the value function. 

Proposition 6 (Second Best Capacity Matrix) There exists a unique second best capacity 

. 

 

5. Quantitative Analysis 
 

We develop a strategy to solve the model numerically. We parameterize the model to data in Brazil, 

Uruguay and Argentina. These three countries are representative in that they differ significantly in 

terms of their natural characteristics and in their current energy matrix. We obtain i) the 

unconstrained optimal capacity matrix for each of these countries and ii) the second best optimal 

matrix, which is a policy implication: how should these countries invest given their current matrix? 
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5.1 Parameterization 
 

5.1.1  Overall Strategy 
 
Below we describe our calibration strategy. We consider a monthly frequency and use one year of 

data. We use observed market outcomes from data to calibrate the parameters. Our description is 

done in the sequence that the parameters are found, so that it also describes our algorithm to 

retrieve the parameters. In order to obtain the investment cost parameters we assume free entry 

into the market, so we equate the expected profits with the investment cost. We assume a unitary 

demand and a quadratic cost function. 
 

• First we choose δ in order to match a target real (gross) interest rate, considering 

a monthly frequency:  

• We set γ = 0.5. We then sort the monthly observations on the wind capacity 

factor and choose uh as the average of the top 6 months and ul as the average of 

the bottom 6. This way, the average capacity factor in the model coincides with 

the one observed in the data. 

• R is chosen in order to match the average share of wind energy production in 

the total energy generation, which is given analytically by sr = R(γuh + (1 − γ)ul). 

• We set θ to match the observed relation between hydro and wind installed 

capacities:  

• We find π in order to match the average share of hydro energy production in 

the total energy generation, this cannot be done in a closed form, so we do this 

procedure numerically.8 

• Given the above calibration we simulate the model 10,000 times to obtain the 

expected profit for hydro and wind energy sources, Ph and Pr respectively. We 

then find the cost of each source by equating profits and investment cost: 
 

 Ph = chθ and Pr = crR 
 
  

 
8 We use the Matlab routine fzero to find a zero of a residual function between the average share generated by the 
model (for a given π) and the target. The routine brackets the value of π in an interval [a,b] and progressively shrinks 
the bracket until the distance between the extremes is small. 
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5.1.2  Brazil 
 
Table 1 summarizes the parameters for Brazil used in the quantitative analysis. 

 

Table 1. Parameter Values: Brazil 
 Brazil 2018 

Parameter Value Target 

Discount factor δ 0.997 Gross interest rate of 1.036 (yearly basis) 
Wind scaling factor uh 52.09% average wind capacity factor of 41.91% 
Wind scaling factor ul 31.72% average wind capacity factor of 41.91% 
Intermittent capacity R 0.2098 8.79% share of wind in energy production 
Hydro Capacity θ 1.4851 theta/R = 7.08 
Probability of rain π 73.92% 74.66% share of hydro in energy production 
Installation cost of Hydro ch 17.11 Expected profits equal investment costs 
Installation cost of Intermittent cr 23.2636 Expected profits equal investment costs 

 
5.1.3  Uruguay 
 
In Table 2 below, we summarize the parameters for Uruguay. 

 

Table 2. Parameter Values: Uruguay 

 Uruguay 2017 
Parameter Value Target 

Discount factor δ 0.997 Gross interest rate of 1.036 (yearly basis) 
Wind scaling factor uh 32.01% average wind capacity factor of 28.69% 
Wind scaling factor ul 25.38% average wind capacity factor of 28.69% 
Intermittent Capacity R 1.0946 31.41% share of wind in energy production 
Hydro Capacity θ 1.1144 theta/R = 1.01 
Probability of rain π 81.33% 59.12% share of hydro in energy production 
Installation cost of Hydro ch 11.60 Expected profits equal investment costs 
Installation cost of Intermittent cr 8.86 Expected profits equal investment costs 
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5.1.4  Argentina 
 
Table 3 summarizes the parameters for Argentina used in the quantitative analysis. 

 
Table 3. Parameter Values: Argentina 

 Argentina 2017 
Parameter Value Target 

Discount factor δ 0.997 Gross interest rate of 1.036 (yearly basis) 
Wind scaling factor uh 100% average wind capacity factor of 34.86% 
Wind scaling factor ul 0% average wind capacity factor of 34.86% 
Intermittent Capacity R 0.0129 0.45% share of wind in energy production 
Hydro Capacity θ 0.6614 theta/R = 51.24 
Probability of rain π 0.4800 28.96% share of hydro in energy production 
Installation cost of Hydro ch 73.07 Expected profits equal investment costs 
Installation cost of Intermittent cr 63.24 Expected profits equal investment costs 

 
5.2  Main Results 
 
In Table 4 we report the optimal capacity matrix and the second best optimal matrix. The former 

is the unconstrained optimal choice of capacity given the parameters of the economy but 

disregarding the actual capacity. The latter represents the best capacity matrix given the parameters 

of the economy but also the current matrix. 

Our policy recommendations are based on the second best results, since we do not expect 

capacity to be removed. The main suggestions are: i) Brazil should invest in renewables, ii) 

Uruguay is already close to the second best (but has experienced overinvestment in wind capacity 

and underinvestment in hydro sources) and iii) Argentina needs to massively invest in wind 

generation. The percentage changes are reported on last column of Table 4. 

If we consider the first best, i) Uruguay has overinvested in wind generation, ii) Brazil has 

overinvested in hydro sources, and iii) Argentina has overinvested in hydro plants. 

Table 5 shows the optimal share in terms of quantity generated. Note that the very large 

percentage increase in Argentina’s wind installed capacity represents a 9 percent increase in the 

total amount generated by this technology. 
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Table 4. Optimal Capacity Matrix 
 

Brazil 
    

2018 
Source Actual Capacity Optimal Capacity % change Second Best % change 

Hydro 1.4851 1.4293 -3.75% 1.4851 0% 

Wind 0.2098 0.3055 +45.63% 0.2658 +26.72% 

Uruguay     2017 

Source Actual Capacity Optimal Capacity % change Second Best % change 

Hydro 1.1144 1.2012 +7.79% 1.1320 +1.57% 

Wind 1.0946 0.9518 -13.05% 1.0946 0% 

Argentina     2017 

Source Actual Capacity Optimal Capacity % change Second Best % change 

Hydro 0.6614 0.5141 -22.28% 0.6614 0 

Wind 0.0129 0.2738 +2020% 0.2147 +1563% 

 
Table 5. Optimal Share of Generation 

 

Brazil   2018 

Source Actual share Optimal share Second Best share 
Hydro 74.66% 71.43% 73.57% 

Wind 8.79% 12.80% 11.14% 
Uruguay   2017 

Source Actual share Optimal share Second Best share 
Hydro 59.12% 63.46% 60.08% 

Wind 31.41% 27.31% 31.41% 
Argentina   2017 

Source Actual share Optimal share Second Best share 
Hydro 28.96% 23.23% 28.54% 

Wind 0.45% 9.54% 7.49% 
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6. Intermittent Power Sources 
 

Our goal in this section is to analyze the impact that the entry of renewable sources has on the 

reliability of the system. A potential drawback of the entrance of renewables is that by decreasing 

the average price it might decrease the profitability of other, more reliable sources of energy such 

as thermal producers. This would, as the argument goes, reduce the reliability of the system due to 

intermittency. In order to analyze whether this argument is true, we simulate an economy using 

the data calibrated to Brazil from Table 1 and examine the profitability of thermal planes as a 

function of the fraction of intermittent sources in the economy. In order to do this, we solve the 

planner’s problem. By the first welfare theorem (Theorem 1), we know that it is also the 

competitive equilibrium. 

As in the previous section, in order to have a reasonable comparison between different 

industry structures, we assumed that increases in renewable source capacity replaces hydro plants, 

so that total installed capacity remains constant. 

Figure 4 shows the profitability of the thermal plant against the amount of renewable 

installed. Note that the profitability of the thermal plants follows a U-shape relationship with the 

amount of intermittent renewable installed. 

 

Figure 4. Thermal Technology Profitability and Share of Renewables 
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Two forces are at play in this case. First, when wind/solar capacity start replacing hydro 

capacity, electricity prices drop on average, as shown in Figure 5. It happens because wind and 

rain follow distinct stochastic processes, and now there is a higher probability that in any period 

there is either rain or wind or both, lowering electricity cost. This effect dominates at first, and it 

highlights the gain from a more diverse portfolio of generating technologies. 

 

Figure 5. Average Prices and Share of Renewables 
 

 
 

But as we decrease the share of hydro in favor of intermittent renewable capacity, hydro 

loses the ability to transfer water across time, saving water for scarcity periods. This increases the 

probability that the thermal plant may find itself in a situation where it has to produce a large 

quantity at a high price. This second effect dominates the first for higher shares of renewables. 

The electricity average price drops steadily until a threshold R. For this point on, the loss 

of storage capacity outweighs the gains from diversification. 

Perhaps unexpectedly, price volatility drops until a threshold R, then rises sharply. Our first 

thought was that price volatility would only increase as we decrease the share of hydro plants with 

storage capacity, since they are the ones which act to smooth the price. Again, the diversification 

effect is stronger than the smoothing effect for lower levels of renewable capacity. 

On the other hand, the profit per unit of installed capacity of wind generators falls 

continuously as the share of wind increases. 
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Figure 6. Price Volatility and Share of Renewables 
 

 
 

Figure 7. Hydro Technology Profitability and Share of Renewables 
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Figure 8. Intermittent Technology Profitability and Share of Renewables 
 

 
 

Two long-term conclusions arise from this analysis. First, the generation technology mix 

tends to be balanced, in the sense that it is unlikely that renewable generation technologies with 

their zero marginal costs drive other technologies out of the market. Second, the results corroborate 

the idea of a  “clean energy paradox,” where the entry of renewable sources becomes progressively 

harder as their share of the market increases. 

 
7. Conclusion 

 
This paper characterizes the competitive equilibrium of an electricity industry comprised of 

thermal, hydro and intermittent (solar, wind, etc.) sources and shows that this equilibrium is Pareto 

optimal. 

The price is determined by the marginal generator, usually a thermal plant. The fact that 

water is storable introduces dynamics into the problem. Even with zero cost, hydro generators do 

not sell at zero price. An important result shows that the market price signals water scarcity in the 

future and induces hydro generators to refrain from producing, even if they have lower marginal 

cost than thermal generators. 

A corollary of this result is that a binding price cap may increase water usage today by 

reducing future peak prices. It reduces the incentive to save water today by decreasing the highest 

price that may happen in the future. 
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We use the model to show that there is a unique optimal energy matrix, and we calibrate it 

with data from Argentina, Brazil and Uruguay. The results for each country show in which 

technology it is optimal for these countries to invest. We find that Argentina and Brazil should 

invest in wind generation, while Uruguay should invest in hydro sources. 

In another use for the model, we simulated what would happen to the profitability of the 

more traditional power sources, namely hydro and thermal plants, when we replace the share of 

hydro with intermittent technology. There is a fear that the expansion of these renewable sources 

will expel traditional sources from the electricity market, compromising reliability through 

intermittency. The results show a U-shape relationship between the share of renewables and the 

profitability of thermal and hydro sources. Profitability first drops due to a decrease in electricity 

prices, then increases since there are fewer generators able to produce in bad periods, which favors 

more reliable sources. This positive result suggests that renewables may not be a threat to the 

reliability of power supply.  
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Appendix A 
 
Proof of Proposition 1. We provide an algorithm to compute the equilibrium: 

The first equation comes from VB0 = δ (πVG + (1 − π)VB0) : 

                                             𝑉𝑉𝐵𝐵0 = 𝛿𝛿𝛿𝛿
1−𝛿𝛿(1−𝜋𝜋)

𝑉𝑉𝐺𝐺 . 

  (7) 

The second equation comes from VG = pG + δ (πVG + (1 − π)VB0), which leads us to: 

 . (8) 

Lemma 5 (indifference at G) leads us to:  

𝑉𝑉𝐺𝐺 = 𝛿𝛿(𝜋𝜋𝑉𝑉𝐺𝐺 + (1 − 𝜋𝜋)𝑉𝑉1,𝐵𝐵
1           (9) 

where 

 . (10) 
 

We have four equations and five unknowns . These four equations 

hold for any equilibrium. 

Precisely, we will work with the following steps to find the equilibrium: 

Step 1) Assume that , where v¯ ≡ p∗ + δ (πVG + (1 − π)VB0). 

Step 2) Compute the share of hydro plants with full capacity in state (1,B).This share is  

θ − 1 + T, where T is the share of energy produced by a thermal generator. How is T computed? 

pG = c’(T). Denote this quantity T by TpG. 

Step 3) Compute p1. This price is given by: p1 = c’ (2 − θ − T), where the number in 

parenthesis is calculated from the supply of thermal that is needed after every hydro with full 

capacity supplies. 

Step 4) We now have p1, solve the system of four equations and four unknowns above. 

Step 5) Check if step 1 is correct, that is, if . If yes, then the 

equilibrium for the dynamic game has been solved. If no, then from lemma 4 add the following 

two equations:  and . 
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We now have 6 equations and 7 unknowns. Assume that  and 

proceed as before: 

Step 2.1) Compute the share of hydro plants with full capacity in state (1,B).This share is 

θ − 1 + TG, where TG is the share of energy produced by a thermal generator in state G. How is TG 

computed? pG = c0 (TG). 

Step 3.1) Compute p1. This price is given by: p1 = c’ (2 − θ − TG), where the number in 

parenthesis is calculated from the supply of thermal that is needed after every hydro with full 

capacity supplies. 

Step 4.1) We now have p1, solve the system of four equations and four unknowns above. 

Step 5.1) Check if step 1 is correct, that is, if . If yes, then the 

equilibrium for the dynamic game has been solved. If no, then from lemma 4 add the following 

two equations:  and .  

 

Proof of Lemma 1.  

i) p ≤ p∗. Given that we have imposed that the thermal generator is a myopic 

optimizer, p∗ is the maximum possible static price in this dynamic environment. 

ii) If p = p∗ firms have strict incentive to sell energy. If the firm sells, it cashes in 

the maximum price possible. Its payoff is: p∗ + δ (πVG + (1 − π)VB0). If it does 

not sell, it has a zero payoff in the current period and in all future periods that 

it does not sell. If it sells only t periods ahead, it will get a payoff δtp + δt+1 (πVG 

+ (1 − π)VB0) < p∗ + δ (πVG + (1 − π)VB0). 

iii) At t all firms will sell and empty their reservoirs. Thus, all firms will either enter 

the following period with full reservoirs (G) or empty reservoir (B). In the latter 

case, only the thermal generator will supply energy and the price will be p∗. 

iv) We need to show that: . 

Suppose that there exists some period t and some history ht for which selling is 

strictly worse than not selling energy. This means that nobody sells and p = p∗. 

By lemma 2 we have a contradiction. 

v) Suppose that selling is better than not selling at some period t and state G. Then, 

all firms will sell and price must be 0. (Recall that the mass of firms exceeds 
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the demand and they have zero marginal cost). If the next period is B, the mass 

of hydro plants with full capacity is θ − 1, which, by assumption is smaller than 

1, that is θ − 1 < 1 and thus, price must be p > 0, since thermal production 

would be needed to clear the spot market. Thus, the payoff from selling would 

be: 0 + δ (πVG + (1 − π)VB0) which is smaller than waiting a period and with 

probability π being in the same situation as having sold, but with probability  

1 − π having the possibility of selling energy at a positive price.  

 

Proof of Lemma 3. We repeat the Bellman equations of the hydro firm in the three relevant 

states: good (VG), bad with water (VB1) and bad without water (VB0): 
 
 

, 

, 

. 
 

In equilibrium, on the good state generators need to be indifferent between selling and not 

selling energy: 

 
, 

 
which simplifies to 

 . (11) 
 

Applying the same reasoning to generators with water on the bad state we get 
 

 . (12) 
 

Using the definitions of VB1 and VB0 , we have 
 

 . (13) 
 

Substituting equation (13) in equations (11) and (12), and letting p’B be the price on the bad 

state next period, we have 

  (14) 
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  (15)  
 

Proof of Proposition 5. 

In order to prove the proposition, we first need to prove the following lemma. 

Lemma 6 We cannot have qH = D − R¯ in the current period and qH0 < D − R¯ in the subsequent 

period if the renewables’ state is the same in both periods and there is no rain in the second period. 
 
Proof. Fix θ > 0 and R ≥ 0. We will focus on the case of renewable’s good state, the proof for the 

bad state is analogous. Assume by way of contradiction that we have a optimal policy qH := 

qH(X,θ,R) = D − uhR and , with . Consider that the planner 

engages in a deviation of this optimal policy in only two periods, with  and 

 this policy is feasible. Denote by Cd the associated cost value. 

We show that exists ε small enough such that Cε < C. Note that: 
 

Cε − C = C(ε) − C(0) + δ(1 − π)((1 − γ)(CB(X − qH + ε) − CB(X − qH))+ 

γ(C(D − uhR − qH0 − ε) − C(D − uhR − qH0 ))) 

where in the last part of right-hand side we used the fact that in our proposed deviation, nothing 

changes from the third period onwards (that is, the state variables will be the same in the proposed 

policy and in the deviation, regardless of the state of the world). Moreover, since C is decreasing 

in the first argument we have: 
 

 
 

Since we need to show that Cε − C ≤ 0, it suffices to show that ∃ ε > 0, such that: 
 

 

Both sides are positive since ∀x > 0 C0(x) > 0. The existence of such an ε comes directly 

from the fact that C0(D − uhR − qH0 ) > C0(0) = 0. To see 

why, denote by 

 and l = δ(1 − π)C0(D − uhR − qH0 ).  
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By these previous properties we have that ∀γ > 0, ∃δ > 0, such that: 
 
 ε < δ ⇒ (a < γ ∧ l − γ < b < l + γ) ⇒ b − a > l − 2γ 
 

By picking  and 0 < ε < δ we get the desired result. We get then that Cε < C, which is a 

contradiction with the definition of C.  
 

Now assume by way of contradiction that on an arbitrary period t the planner chooses 

qt(Xt,θ,R) = D − R¯. Fix s ∈ N, such that Xt < s(D − R¯). Consider a history of s periods of bad 

states for the hydro power source (and the same states for the renewable source). Then by the 

previous lemma we have by induction that qt+s = D − R¯, which is a contradiction, since it is 

necessarily true that qt+s > Xt+s.  
 

Proof of Theorem 1. 

First we prove that the value function satisfies certain properties. 
 

Lemma 7 For i ∈ {G,B}, V i(X,θ,R) is bounded, continuous, increasing and concave. 
 
Proof of Lemma 7. Let D be the space of bounded, continuous, non-decreasing and concave 

functions defined on [0,θ] × [0,θ¯] × [0,D], endowed with the sup-norm. D is a complete space, 

since it is a closed subset of the space of bounded and continuous functions. Since the Cartesian 

product preserves completeness we have that D ×D is also a complete space. Define the operator 

T on D × D,  
 

T : (f,g) → (TGf,TBg): 

TGf(X,θ,R) = max{−C(D − uhR − X + X’) + δ(πγf(θ,θ,R) + (1 − π)γf(X’,θ,R)+ 
X’ 

π(1 − γ)g(θ,θ,R) + (1 − π)(1 − γ)g(X’,θ,R)} s.t 

 

max{0,X + uhR − D} ≤ X’ ≤ X 
 

and 

 
TBg(X,θ,R) = max{−C(D − ulR − X + X’) + δ(πγf(θ,θ,R) + (1 − π)γf(X’,θ,R)+ 

X’ 
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π(1 − γ)g(θ,θ,R)) + (1 − π)(1 − γ)g(X’,θ,R)} s.t 
 

max{0,X + ulR − D} ≤ X’ ≤ X 
 

Denote by FG(X,θ,R,X’) and FB(X,θ,R,X’) the objective function from the problems above, 

respectively. Also define f¯(·) := πγf(·) + (1 − π)γf(·) + π(1 − γ)g(·) + (1 − π)(1 − γ)g(·). Define the 

following correspondences: 
 

ΓG(X,θ,R) = {X’ ∈ R+ : max{0,X + uhR − D} ≤ X’ ≤ X} 

ΓB(X,θ,R) = {X’ ∈ R+ : max{0,X + ulR − D} ≤ X’ ≤ X} 
 

Note that both correspondences are non-empty, compact-valued and convex-valued. Since in both 

cases the functions on each side of inequality are continuous, we conclude that both 

correspondences are continuous. 
 

(i) (TGf,TBg) is bounded and continuous. First note that, since (f,g) ∈ D × D and by 

assumption −C(·) is continuous and bounded, then Fi(X,θ,R,X’) is a linear 

combination of continuous and bounded functions, so it is also continuous and 

bounded for i = {G,B}.Then maximizing Fi(X,θ,R,X’) over the compact set 

Γi(X,θ,R) has a solution and by consequence (TGf,TBg) is bounded. Moreover 

since Γi(X,θ,R) is compact valued and continuous we can apply Berge’s 

Maximum Theorem to conclude that (TGf,TBg) is continuous.  

(ii) TGf is increasing: Fix (𝑋𝑋,𝜃𝜃, 𝑅𝑅) ≥ (X,θ,R) with one strict inequality. Pick 

 
 

Case 1: x0 ∈ ΓG(𝑋𝑋,𝜃𝜃, 𝑅𝑅): 
 

Tgf(𝑋𝑋,𝜃𝜃, 𝑅𝑅) = max −C(D − uh𝑅𝑅 − 𝑋𝑋 + X’) + δf¯(X’,𝜃𝜃, 𝑅𝑅) ≥ −C(D − uhR¯ − X¯ 

+ x’) + δf¯(x’,θ,¯ R¯) ≥ −C(D − uhR − X + x’) + δf¯(x’,θ,R) = Tgf(X,θ,R) 
 

where the last inequality comes from the fact that −C(·) is strictly decreasing 

and f¯(·) is non decreasing. Note that we will have a strictly inequality if  

X > X¯ or R > R¯ . 
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Case 2: x’∉ ΓG(X,¯ θ,¯ R¯): Then it must be the case that 

X¯ + uhR¯ − D > x’ ≥ 0: 

Tgf(X,¯ θ,¯ R¯) = max −C(D − uhR¯ − X¯ + X’) + δf¯(X’,θ,¯ R¯) ≥ −C(0) + 

δf¯(X¯ + R¯ − D,θ,¯ R¯) ≥ −C(D − uhR − X + x0) + δf¯(x0,θ,R) = Tgf(X,θ,R) 

 

where the last inequality comes from the fact that −C(0) is the maximum of 

−C(·). 
 

(iii) TGf is Concave: Fix (X’,θ’,R’),(X’’,θ’’,R’), fix α ∈ [0,1] and: 

 X’ ∈ arg max FG(X’,θ’,R’,X) 
X∈ΓG(X0,θ0,R0) 

 X’’ ∈ arg max FG(X’’,θ’’,R’’,X) 
X∈ΓG(X’’,θ’’,R’’) 

Define x’’’ = αx’ + (1 − α)x’’ and (X’’’,θ’’’,R’’’) = α(X’,θ’,R’) + (1 − 

α)(X’’,θ’’,R’’). Then by the constraints we have: 

 

X’’’ ≥ max{0,α(X’+uhR’−D)}+max{0,(1−α)(X’’+uhR’’−D)} ≥ 
max{0,α(X’+uhR0)+(1−α)(X’’+uhR’’)− 

and we conclude x’’’ ∈ ΓG(X’’’,θ’’’,R’’’). Then 
 

max −C(D – uhR’’’ – X’’’ + X) + δf¯(X’’’,θ’’’,R’’’) ≥ −C(D – uhR’’’ – X’’’ + 

x’’’) + δf¯(x’’’,θ’’’,R’’’) ≥ α(−C(D − uhR’ – X’ + x’) + δf¯(x’,θ’,R’)) + (1 − 

α)(−C(D − uhR’’ – X’’ + x’’) + δf¯(x’’,θ’’,R’’)) 
 

where the last inequality comes from the fact that −C(·) is concave and f¯(·) is 

concave. So we conclude that: 

 
𝑇𝑇𝑔𝑔f(X’’’,θ’’’,R’’’) ≥ α𝑇𝑇𝑔𝑔f(X’,θ’,R’) + (1 − α) 𝑇𝑇𝑔𝑔f(X’’,θ’’,R’’) 
 

(iii) TBg is increasing and Concave: The proof is analogous to the case for TGf. 
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Using the previous results we can conclude that T:D × D → D × D. 

Since δ < 1 we can apply Blackwell’s Sufficient Conditions to conclude that T 

is a contraction in a complete space, then we can apply the Banach fixed-point 

theorem to prove the existence of a unique fixed point of the operator, (VG,VB) 

∈ D × D.  

 

We can derive further properties if we combine the previous lemma with 

proposition 5. We know that is always true that qH < D−R¯, then, by definition, 

it is always true that X’ > X+R−D. 
 

Proposition 7 For i ∈ {G,B}, V i(X,θ,R) is bounded, continuous, strictly increasing and strictly 

concave. 
 
Proof. By lemma 7 we know that V i(X,θ,R) is bounded, continuous, increasing and concave. 

Then it suffices to show that the function is strictly increasing and strictly concave. 
 

(i) V g is strictly increasing: The proof that V g is strictly increasing in X and R is 

analogous to the proof of lemma 7 but applying Proposition 5 to get the strict 

inequality. The result that V g is increasing in θ comes directly from the fact that 

from a given X, R and θ > θ¯ , ΓG(X,θ,R) ⊆ ΓG(X,θ,R¯ ) and the fact that V g is 

strictly increasing in X. 

(ii) V g is strictly concave: The procedure is analogous. We first use proposition 5 

to show that for a fixed θ,V g is strictly concave in X and R, and use this fact to 

show that V g is strictly concave in (X,θ,R).  
 

The following two results will help us describe fully the social planner’s optimal policy. 

The following lemma shows the optimal interior solution to the problem. We already know from 

Proposition 5 that the planner always uses some thermal source to produce. The next result tells 

us that off corners, the social planner’s optimal policy is to produce with hydro plants such that it 

equalizes the current thermal plant’s marginal cost with next period’s expected discounted 

marginal cost. 
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Proposition 8 Fix i ∈ {G,B}, off corners we have , where x’ is 

the optimal choice given the state (X,R). 
 
Proof. We also have by assumption that C(·) is continuously differentiable on R+ then it will be 

continuously differentiable on int ΓG(X,θ,R). With these and the previous results we can apply the 

Benveniste-Scheinkman Theorem to get the result.  
 

Now, consider the situation where there is not much water left on the reservoirs. In this 

case, when there is no production of intermittent sources, the planner is better off producing using 

all water left. This is true even though it will imply that in the subsequent period, if there is no 

rain, all energy production will necessarily come from thermal sources and intermittent sources, 

at a high cost. The following lemma describes optimal production in this case. 
 

Lemma 8 There is a storage level 𝑋𝑋� >0, such that in a state in which there is no production of 

intermittent sources, for any amount of storage X in which X ≤ 𝑋𝑋�, all the water is used to produce 

energy. Moreover, if it is also true that 
 

C’(D − R) ≥ δ (1 − π)(γC’(D − R) + (1 − γ)C’(D)), 
 

then there is also a threshold level 𝑌𝑌�  such that even in a state in which there is full 

production of intermittent sources, for any amount of storage X in which X ≤ 𝑌𝑌� , all the 

water is used to produce energy. 
 

Proof. Since C’(D) is the highest possible marginal cost, there is a storage level 𝑋𝑋 �>0 such that 
 

C’(D − 𝑋𝑋�) = δ (1 − π)(γC’(D − R) + (1 − γ)C’(D)) 
 

For any level X such that X < 𝑋𝑋�, the following holds: 
 

C’(D − X) > δ (1 − π)(γC’(D − R) + (1 − γ)C’(D)) 
 

Using the convexity of the cost function we get the result. The argument for the case of a good 

state of intermittent is analogous.  
 

We have thus far fully described the social optimum. Lemma 8 shows that there is a critical 

amount of stored water for each state of intermittent production, such that the planner deploys all 



37 

reservoirs in that period. Above these thresholds, we know that production the solution is interior 

and given by Proposition 8.  

 
8. Appendix B: Data Sources 

 
Table 6. Data Sources: Brazil 

Brazil                                                                                                                                    2018 
 
Data Source url 
Wind Capacity Factor Operador Nacional do 

Sistema Elétrico 
https://bit.ly/2BVRSu7 

Composition of energy 
production 

Operador Nacional do 
Sistema Elétrico 

https://bit.ly/2BVRSu7 

Hydro and Wind capacity Agência Nacional de Energia 
Elétrica 

https://bit.ly/28INSwk 

 
 

Table 7. Data Sources: Uruguay 
Uruguay 2017 

Data Source url 

Wind Capacity Factor Administración Nacional de Usinas y 
Trasmisiones Eléctricas 

https://bit.ly/2XuLvqU 

Composition of energy 
production 

Administracion Nacional de Usinas y 
Trasmisiones Electricas 

https://bit.ly/2EDZoO0 

Hydro and Wind capacity Ministerio de Industria, Energia y 
Mineria 

https://bit.ly/2BZQfvL 

  
Table 8. Data Sources: Argentina 

Argentina                2017 
Data Source url 

Wind Capacity Factor Comisión Nacional de Energía Atómica https://bit.ly/2Tql7Qu 

Composition of 
energy production 

Comisión Nacional de Energía Atómica https://bit.ly/2Tql7Qu 

Hydro and Wind 
capacity 

Comisión Nacional de Energía Atómica https://bit.ly/2Tql7Qu 

  

https://bit.ly/2BVRSu7
https://bit.ly/2BVRSu7
https://bit.ly/28INSwk
https://bit.ly/2XuLvqU
https://bit.ly/2EDZoO0
https://bit.ly/2BZQfvL
https://bit.ly/2Tql7Qu
https://bit.ly/2Tql7Qu
https://bit.ly/2Tql7Qu
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