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Abstract

We investigate the implications of Salience Theory for the classical preference re-

versal phenomenon, where monetary valuations contradict risky choices. It has been

stated that one factor behind reversals is that monetary valuations of lotteries are

inflated when elicited in isolation, and that they should be reduced if an alternative

lottery is present and draws attention. We conducted two preregistered experiments,

an online choice study (N = 256) and an eye-tracking study (N = 64), in which

we investigated salience and attention in preference reversals, manipulating salience

through the presence or absence of an alternative lottery during evaluations. We

find that the alternative lottery draws attention, and that fixations on that lottery

influence the evaluation of the target lottery as predicted by Salience Theory. The

effect, however, is of a modest magnitude and fails to translate into an effect on pref-

erence reversal rates in either experiment. We also use transitions (eye movements)

across outcomes of different lotteries to study attention on the states of the world

underlying Salience Theory, but we find no evidence that larger salience results in

more transitions.
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1 Introduction

Uncovering individual preferences is fundamental for applied economics, and it is es-

sential to allow for policy recommendations and positive analysis. In practice, different

methods are used, some relying on actual choices, and others on the elicitation of mon-

etary equivalents (see Bateman et al., 2002, for an overview of elicitation methods and

how they are used in applied work). It is well-known, however, that different elicitation

methods might contradict each other. This is illustrated by one of the most important

anomalies in decision making under risk, namely the classical preference reversal phe-

nomenon (Lichtenstein and Slovic, 1971; Grether and Plott, 1979; see Seidl, 2002 for a

detailed survey). This phenomenon refers to an empirically-robust pattern of decisions

under risk where decision makers provide monetary values for long-shot lotteries which

are above those of more moderate ones, but then choose the latter, in contradiction with

any value-based theory as Expected Utility Theory or (Cumulative) Prospect Theory.

A large literature has demonstrated the robustness of the preference reversal phe-

nomenon and postulated different, sometimes competing, explanations (e.g., Tversky

et al., 1988, 1990; Tversky and Thaler, 1990; Casey, 1994; Fischer et al., 1999; Cubitt

et al., 2004; Schmidt and Hey, 2004; Butler and Loomes, 2007). The phenomenon is

typically demonstrated in paradigms involving pairs of lotteries consisting of a riskier

option (Figure 1; left-hand side) offering a larger prize (a long shot), called the $-bet

and a relatively safe one (Figure 1; right-hand side), called the P-bet (for “probabil-

ity”). Individual preferences over such pairs are then elicited both through a choice task

involving pairwise choices and by comparing valuations obtained separately for each lot-

tery in an evaluation task eliciting (typically) stated minimal selling prices (Willingness

To Accept, WTA). The anomalous pattern is that decision makers often choose the P-

bet in the choice task, but explicitly value the $-bet above the P-bet in the evaluation

task, which yields a contradiction since a decision maker should be indifferent between

a lottery and its certainty equivalent. In contrast, the opposite pattern of choices and

evaluations occurs much more rarely.

A recent, prominent argument on the origins of the classical preference reversal

phenomenon arises from Salience Theory (Bordalo et al., 2012, 2013). Essentially, it

states that decision makers’ attention is drawn to salient payoff comparisons, and, as

a consequence, true probabilities are replaced by decision weights distorted in favor of

the corresponding states of the world. For this argument, it is essential that salience

is determined by the visible outcomes. In the choice task both lotteries are present,

while in the evaluation task employed in classical preference reversal experiments only

the target lottery is present. Bordalo et al. (2012) assume that during evaluation the

decision maker compares the lottery to an alternative of not having it with probability

one (“a natural way to model the elicitation of minimum selling prices,” Bordalo et al.,

2012, p. 1271). This results in a distortion of the decision weights, which in turn leads

to an overpricing of both lotteries. That overpricing is particularly strong for $-bets,
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$ 4

$ 14

$-bet

$ 6.5

$ 3

P-bet

Figure 1: Two lotteries. The left lottery yields a large monetary amount with relatively
low probability ($-bet) while the right lottery yields a moderate monetary amount with
relatively high probability (P-bet).

because the high outcomes generate more salient states. Salience Theory suggests that

reversals should be more frequent when lotteries are evaluated in isolation compared to

when they are evaluated in the context of another lottery.

We conducted two preregistered preference reversal experiments, an online experi-

ment (N = 256) and an eye-tracking experiment (N = 64), with two different treatments

(varying the “salience” of lotteries) to provide direct evidence on the role of attention

and salience on the classical preference reversal phenomenon. In the online study, we

test the hypothesis that preference reversals should be reduced when evaluation of a

target lottery happens while an alternative lottery is present. In the eye-tracking study,

we additionally examine gaze data and test the hypotheses that the alternative lottery

attracts attention and that this attention influences both the evaluation of the target

lottery and the resulting preference reversal rates. We further observe that states of the

world in Salience Theory correspond to comparisons between the outcomes of the two

lotteries in a choice pair, and hence to measurable transitions (eye movements). We then

use the latter to test the hypothesis that more salient states attract more attention.

The results are mixed. Neither the online nor the eye-tracking experiment revealed

any effect of the presence or absence of an alternative lottery during evaluations on the

preference reversal rates or on the monetary valuations of the target lotteries. However,

a more detailed regression analysis of the effect of fixations revealed that, first, attention

on the alternative lottery reduced both the monetary valuation of the target lottery and

the likelihood of a preference reversal when the target lottery was a long shot, but not if

it was a moderate lottery. This is a confirmation of the implications of Salience Theory,

and in particular the prediction that evaluations in the presence of an alternative lottery

should reduce overpricing.

Our analysis suggests two possible reasons for the failure of this basic effect to trans-

late into a measurable difference in preference reversal rates. On the one hand, the effects

are modest. The alternative lottery receives a relatively small number of fixations, and

the effect of a fixation on the valuation of the target lottery is of a small magnitude. On

the other hand, there are countervailing effects. When the target lottery is a moderate

one (P-bet) instead of a long shot, attention to the alternative lottery increases the
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likelihood of preference reversals, in alignment with the view that it should also reduce

the overpricing of moderate lotteries. Bordalo et al. (2012) argued that salience should

indeed impact monetary valuations of both types of lotteries, but that the impact on

long shots should be proportionally larger. Our data suggests that the relative difference

in overpricing across lottery types is too small to have a large impact on reversal rates.

Conceptually, our studies contribute to the literature examining the consequences and

implications of attention and salience for economic decisions, and in particular Salience

Theory as put forward by Bordalo et al. (2012, 2013). Methodologically, we add to the

small but growing literature directly examining eye-tracking measurements in economics

(e.g., Knoepfle et al., 2009; Reutskaja et al., 2011; Polonio et al., 2015; Devetag et al.,

2016; Polonio and Coricelli, 2019; Alós-Ferrer et al., 2019), and in particular in decisions

under risk (e.g., Glöckner and Herbold, 2011; Ludwig et al., 2020; Alós-Ferrer et al.,

2021).

This paper is structured as follows. Section 2 briefly reviews Salience Theory. Section

3 presents the design and results of the online experiment. Section 4 presents the design

and results of the eye-tracking experiment. Section 5 discusses additional tests and

comparisons. Section 6 concludes.

2 Salience Theory

Bordalo et al. (2012, 2013) proposed a theory of context-dependent choice where salient

outcomes draw more attention than others, resulting in distorted decision weights. For

simplicity, in this manuscript, we will refer to it as Salience Theory. Unlike other theories

relying on distorted weights, as e.g. Prospect Theory (Kahneman and Tversky, 1979;

Tversky and Kahneman, 1992), Salience Theory makes those dependent on the outcomes

themselves, and, specifically, on their salience relative to the outcomes of other available

alternatives.

For binary choices under risk as those considered here, Salience Theory can be sum-

marized as follows. There is a finite set of states of the world, S. Each state s ∈ S has

an objective probability πs ∈ [0, 1], so that
∑

s∈S πs = 1. The decision maker chooses

among two lotteries La, Lb, where each lottery i = a, b gives a payoff xis ∈ R in state

s. Assume for simplicity that, for each i, xis 6= xi
s′

for all s, s′ ∈ S, that is, lotteries

are non-degenerate in the sense that different states result in different payoffs. Then,

every state s ∈ S is associated with one and only one pair of payoffs (xas , x
b
s). That

is, the set of states can be identified with the Cartesian product of the sets of out-

comes of the lotteries. This is highly consequential for our purposes, because it creates

a one-to-one mapping between the underlying states of the world that Salience Theory

is built upon, and comparisons between outcomes of different lotteries (and thus eye

movements). Consider, for instance, the binary choice depicted in Figure 2, which is

based on the actual representation used in our experiments. The left lottery La pays

$ 4.0 with probability 0.77 and $ 14.0 with probability 0.23. The right lottery Lb pays
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$ 4.0

$ 14.0

77 %

23 %

$ 3.0

$ 6.5

10 %

90 %

La Lb

Figure 2: Schematic representation of binary choice. Salience theory’s states are one-to-
one with the possible transitions comparing particular outcomes across lotteries.

$ 3.0 with probability 0.1 and $ 6.5 with probability 0.9. Lotteries are independent. In

Salience Theory, this corresponds to a set of four states s1, s2, s3, s4, with probabilities

π1 = 0.077, π2 = 0.693, π3 = 0.023, and π4 = 0.207, respectively. State s1 corresponds

to the payoff vector (xas1 , x
b
s1
) = (4, 3), and so on. As seen in the figure, each state is

uniquely identified by a comparison of two outcomes, one for each lottery, and thus one

could write, abusing notation, s1 = (4, 3), s2 = (4, 6.5), s3 = (14, 3), and s4 = (14, 6.5).

Salience Theory predicts that choices reflect maximization of a value function

V ST (Li) =
∑

s∈S

δk
i
sπs

∑

r∈S δ
kir
r πr

v
(

xis
)

,

where v(·) is a utility of money (typically assumed to be linear in Bordalo et al., 2012),

and δ ∈ (0, 1] is a parameter indicating the degree of distortion (δ = 1 would mean no

distortion). The key element capturing salience considerations are the natural numbers

kis ∈ {1, . . . , |S|}, which indicate the salience ranking of the states, from most to least

salient (that is, each state is assigned a different salience ranking).1

The salience ranking is determined through a salience function σ which assigns a

real number (the salience) to each state s and lottery Li, σ(x
i
s, x

−i
s ), depending also on

the outcome of the other lottery −i in that state. The key axiomatic assumptions on

σ are ordering, meaning that a state should be more salient than another one if the

outcomes of the former cover a larger range than those of the latter, and diminishing

sensitivity, meaning that the salience of a state with positive outcomes should decrease if

1This rank-based discounting ensures analytical tractability. Bordalo et al. (2012) suggest some
possible smooth extensions.
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the outcomes of both lotteries are increased by the same constant (so that they become

closer in relative terms; this reflect the well-known Weber’s Law).2 For instance, in the

example depicted in Figure 2, the first property implies that state s3 = (14, 3) is more

salient than each of the other three states.

Bordalo et al. (2012) further assume σ to be a continuous and bounded function, and

suggest using the particular functional form

σ(xis, x
−i
s ) =

|xis − x−i
s |

|xis|+ |x−i
s |+ 0.1

, (1)

which we will also rely on for some aspects of our experimental design.3 For instance,

using this function for the example in Figure 2 yields the salience ranking kis1 = 4, kis2 =

3, kis3 = 1, kis4 = 2.

To understand the implications of Salience Theory for the classical preference reversal

phenomenon, remember that this phenomenon involves a specific, contradictory pattern

where people choose a moderate lottery or P-bet (as lottery Lb in Figure 2), over a

long shot or $-bet (as lottery La in Figure 2) in direct binary choice, but then provide a

larger monetary valuation for the $-bet than for the P-bet. In Salience Theory, the value

V ST (Li) for a lottery can only be computed with reference to an alternative lottery. This

is straightforward for the direct choices in a preference reversal experiment, where two

lotteries are present. For the monetary valuation embedded in such experiments, where

lotteries are presented in isolation, Bordalo et al. (2012) assume that the “natural way to

model the elicitation” is to assume that the actually-presented lottery is compared to the

alternative of not having the lottery, i.e. a virtual lottery yielding zero with probability

one. By the ordering property, this results in a higher salience for the resulting states

compared to the ones involved in direct choices, since the (typically strictly positive)

outcomes of the other lottery in a pair are replaced with zero, leading to a larger range.

For instance, evaluation of Lb in Figure 2 would involve the state (14, 0) rather than

states (14, 3) and (14, 6.5). However, since by definition the $-bets involve a higher

outcome, this results in a relatively more salient state for the high outcome of the $-bet

compared to the one of the P-bet ((14, 0) compared to (6.5, 0) in Figure 2), resulting in a

particularly strong overpricing which might lead to a preference reversal. As pointed out

by Bordalo et al. (2012), one could shut down this effect by conducting the monetary

valuation of each lottery while the second lottery in the corresponding choice pair is

actually present (instead of presenting the former in isolation). In this way, the salience

ranking should be the same during choices and evaluations, preventing reversals. In

2Ordering: σ(xa

s , x
b

s) > σ(xa

s′
, x

b

s′
) if min(xa

s , x
b

s) ≤ min(xa

s′
, x

b

s′
) and max(xa

s , x
b

s) ≥ max(xa

s′
, x

b

s′
),

with at least one of the inequalities being strict. Diminishing sensitivity: If xa

s , x
b

s > 0, for any ε > 0
it follows that σ(xa

s , x
b

s) > σ(xa

s + ε, x
b

s + ε). A third axiomatic property, reflection, ensures that the
salience ranking does not switch between gains and losses and is not relevant for our purposes (since all
our lotteries will involve gains only).

3The constant 0.1 in the denominator avoids problems with zero outcomes and was proposed in
Bordalo et al. (2012, Supplementary Material).
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other words, Salience Theory predicts that the classical preference reversal phenomenon

should occur if lotteries are evaluated in isolation, but not if they are evaluated in the

context of another lottery while keeping the salience of states constant. Bordalo et al.

(2012) reported data from a particular choice pair, where the monetary valuation of

the $-bet decreased when conducted immediately after seeing it next to another lottery,

compared to its evaluation when presented later and in isolation.

3 Online Experiment

3.1 Design and Procedures

We conducted an online experiment using Qualtrics (preregistered at the AEA RCT

Registry; see next subsection). The sample size of N = 256 was determined by a power

analysis expecting a small-to-moderate effect size (Cohen’s d = .35) for a one-sided non-

parametric test for a between-subject design. The average earnings were £ 4.15 and the

experiment took on average 11.5 minutes. Participants were recruited through Prolific

(Palan and Schitter, 2018).

To ensure enough variance in choices and avoid effects arising from particular lotter-

ies, we designed a set of 32 lottery pairs, each containing a $-bet and a P-bet (Lotteries

1–32 in Table A.1, Appendix A). The outcomes were given in experimental currency

units (ECU) which were then exchanged into £ (1 ECU=£ 0.4). Each $-bet consisted

of a high monetary outcome (> 10 ECU) with a low probability (< 45%) and a sec-

ond, low monetary outcome, while the P-bet consisted of a moderate monetary outcome

(< 10 ECU) with a high probability (> 60%) and a second, lower monetary outcome.

In any given lottery pair, the high outcomes of the $-bet and the P-bet were always

the highest and second-highest of the four outcomes presented in the pair, respectively.

The outcome ranking for the low outcomes of the P/$-bets varied. The construction of

lottery pairs was such that the most salient state according to Salience Theory always

corresponded to the comparison between the high outcome of the $-bet and the low

outcome of the P-bet (using the salience ranking derived from (1)), and the least salient

state corresponded to the comparison between the low outcomes of both lotteries.

To keep the length of the online experiment within Prolific’s standards, we divided

the set of lottery pairs in four subsets of 8 pairs each, and each participant in the online

experiment was randomly assigned to one of the subsets. That is, each participant in the

online experiment faced 8 binary lottery choices and 16 evaluations (for the 16 lotteries

involved in the binary choices). Choices and evaluations were interspersed.

In binary choices, the participant selected the lottery she preferred. Lotteries were

presented in a circle format (see Figure 3 for an example) with outcomes and probabilities

at equal distance from the center. Outcomes were always close to the horizontal axis to

facilitate transitions (eye movements) between outcomes, because those correspond to

the underlying states in Salience Theory (recall Section 2; this is particularly important

7



4.0

14.0

77 %

23 %

3.0

6.5

10 %

90 %

Left Lottery Right Lottery

Please choose between these two lotteries:

Figure 3: Choice Task. Choosing between a $-bet (here on the left) and a P-bet (here
on the right).

for the subsequent eye-tracking experiment). The exact position of the outcomes (top

vs. bottom) and $-bets/P-bets (left vs. right) were counterbalanced within subjects.

The experiment was incentivized according to a standard procedure. Specifically, one

randomly-selected decision was implemented and paid. If that decision was a choice,

then the chosen lottery was played out. If that decision was an evaluation, a random

selling price between the low and high outcome of the lottery was drawn. In case the

price was above the stated minimum selling price, the participant sold the lottery and

received the price, otherwise the lottery was played out.

We implemented two different treatments between subjects, which differed only in

the evaluation phase. In the Joint Treatment, participants saw the lottery they were

asked to evaluate while another lottery was also present (Figure 4, left). The lottery

that had to be evaluated was always one of the lotteries in the choice pairs. The other

lottery shown was a slightly perturbed version of the one offered in that choice pair (here

a perturbed P-bet). The perturbation was such that the salience ranking remained the

same as in the choice pair where the lottery was also present. The non-evaluated lottery

was perturbed to avoid the exact repetition of choice pairs, which could have led to

participants recognizing them and artificially enforcing consistency. In the Separate

Treatment, participants saw the lottery that they had to evaluate, but saw black circles

as placeholders where the other lottery would have been during the choice task (Figure

4, right).

3.2 Hypothesis and Result

The two treatments (Joint vs. Separate) allow to directly test the claim derived from

Salience Theory that reversals should not occur when lotteries are evaluated while an-

other lottery is present (and the salience ranking is unaltered with respect to the choice

pair). The intuition is that overpricing arises because, if a second lottery is not present,

the salience ranking is altered and the high outcome is then associated with a much more
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4.0

14.0

77%

23%

2.6

6.6

10%

90%

Joint Treatment

4.0

14.0

77%

23%

Separate Treatment

Figure 4: Treatments during Evaluation of a lottery (here left lottery). Left-hand side:
Joint Treatment; right-hand side: Separate Treatment.

salient state (e.g., because it is implicitly compared to an outcome of zero for sure). The

reduction in overpricing when another lottery is present during the evaluation phase

should then lead to fewer reversals. Hence, we preregistered the following hypothesis

(AEA RCT, Registry ID: AEARCTR-0005988):

H: Standard reversal rates should be lower in the Joint Treatment compared to the

Separate Treatment (between subjects).

The standard reversal rate for a given participant is defined as the rate of $-bets

being evaluated higher than P-bets conditional on the P-bet being chosen over the $-bet

during the choice task. Since Hypothesis H is directional, we preregistered a one-sided

Mann-Whitney-Wilcoxon test.

Figure 5 displays violin plots for the distribution of reversal rates for both treat-

ments. For completeness, the figure also displays the non-standard reversal rates (rate

of P-bets evaluated higher than $-bets conditional on the $-bet being chosen).4 In the

Joint Treatment, the average standard reversal rate was 70.28%, compared to 67.49%

in the Separate Treatment. Those rates are comparable to the ones observed in the

literature (Grether and Plott, 1979; Tversky et al., 1990; Cubitt et al., 2004), and in

particular we reproduce the classical preference reversal phenomenon. However, con-

trary to Hypothesis H, we did not find lower reversal rates in the Joint Treatment than

in the Separate Treatment according to the preregistered Mann-Whitney-Wilcoxon test

(N = 245, z = −.539, p = .7050).5

4The preference reversal phenomenon is the asymmetry between standard and non-standard reversal
rates (Grether and Plott, 1979; Tversky et al., 1990).

5All tests restricting to one of the four subsets of lotteries were also non-significant. Eleven partici-
pants never chose the P-bet, and hence their standard reversal rate is undefined.
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Figure 5: Reversal Rates in the Online Experiment. Violin plots depict the median,
interquartile range, and kernel density plot. One-sided non-parametric test was not
significant for Hypothesis H (p > .1).

4 Eye-Tracking Experiment

The online (purely behavioral) experiment did not find evidence for Salience Theory’s

prediction that changes in attention due to treatment differences should translate into

differences in preference reversal rates. However, attention cannot be directly observed

with just choice data. For this purpose, we turn to eye-tracking data, which allows us

to infer how attention is actually distributed.

4.1 Design and Procedures

We conducted an eye-tracking experiment at the Laboratory for Social and Neural Sys-

tems Research (SNS Lab) of the University of Zurich (preregistered at the AEA RCT

Registry; see next subsection). The sample size of N = 64 was determined by a power

analysis expecting a small-to-moderate effect size (Cohen’s d = .35) for a one-sided

non-parametric test for a within-subject design. The data was collected in N = 64 in-

dividual sessions, each lasting around 48 minutes. Average earnings were 27.43 CHF.

Lottery outcomes were given in experimental currency units (ECU) which were then

exchanged into Swiss Francs (1 ECU = CHF 2.5).
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The design built upon the online experiment, with a few modifications. First, each

participant faced a total of 32 binary lottery choices and 64 evaluations (32 $-bets and

32 P-bets), instead of the reduced subsets used in the shorter online experiment. Second,

the two treatments were implemented within subjects, counterbalancing the lottery pairs

evaluated jointly and separately across participants. That is, each subject conducted

both evaluations in isolation and evaluations in the presence of an alternative lottery,

but not subject evaluated the same lottery twice.6 Third, since we did not find the

reduction in standard reversals between treatments predicted by Salience Theory in the

online experiment, we replaced half of the lottery pairs to give Salience Theory a better

chance. Specifically, in the online experiment, lottery pairs with higher outcomes for

$-bets (pairs 17–32 in Table A.1, Appendix A) displayed a larger standard reversal rate

in the Joint Treatment than in the Separate Treatment (difference of 3.11%), contrary

to the prediction, while the difference was in the predicted direction (−3.13%) for the

remaining lotteries. Hence, in the eye-tracking experiment, we replaced the former set

of lottery pairs with pairs displaying lower outcomes for the $-bets (pairs 33–48 in Table

A.1, Appendix A). Further, one of the new pairs (nr. 47) was the exact pair used by

Bordalo et al. (2012).7

Visual fixations were measured using a Tobii Eyelink 1000s remote eye-tracker. Par-

ticipants were placed 55 cm in front of a 22” screen which showed the stimuli with a

resolution of 1920× 1080 pixels, and placed their heads on a chin-rest to reduce random

movements. The pupil was recorded at 500 Hz and fixations were calculated by Tobii’s

proprietary software. The eye tracker was calibrated at the beginning of the task (after

instructions) using a 9-point calibration routine. Pre-defined non-overlapping Areas of

Interest (AOIs) were defined around every piece of information (160×90 pixels per AOI).

4.2 Hypotheses and Results

The eye-tracking experiment and all hypotheses and tests reported below were prereg-

istered at AEA RCT, Registry ID: AEARCTR-0005985. Salience Theory implies that

the presence of the other lottery changes attention and hence affects overpricing. With

eye-movement data, the first natural test to conduct concerns whether the participants

actually look at the other lottery. For the other lottery to affect evaluation, one would

expect that participants direct some attention to it. This can be tested by comparing

how often they look at that lottery in the Joint Treatment, compared to how often they

look at the placeholder black circles in the Separate Treatment. Hence, we test the

following hypothesis:

H1: There should be more fixations on the other lottery in the Joint Treatment than

fixations on the black circles in the Separate Treatment.

6Each individual had her own unique sequence which determined which lottery pair was evaluated
jointly or separately.

7We included a (new) lottery pair with a large $-bet outcome (pair nr. 48) as an exploratory example
with large differences in salience.
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Joint Separate

Figure 6: Heatmap of Fixations. Fixations during the evaluating the left lottery in the
Joint (left-hand side) and Separate (right-hand side) Treatments. The “warmer” the
colors the more fixations in the same area. Solid frames indicate Areas of Interest used
for calculating the number of fixations and were not visible to participants.

Figure 6 displays a heatmap of the fixations during the evaluation task in both

treatments. The “warmer” the colors, the more fixations are in a certain area. The solid

frames indicate the non-overlapping AOIs used for calculating the number of fixations

and were not visible to participants. We found that participants had on average 2.16

fixations on the other lottery in the Joint Treatment and only 0.08 fixations on average

on the black circles in the Separate Treatment. This difference is statistically significant

according to a Wilcoxon Signed-Rank test (WSR; N = 64, z = 6.935, p < .0001) and

confirmed that, although the number of fixations is modest, participants indeed looked

at the other lottery present during evaluation.

We now turn to behavior in the experiment. In accordance with Salience Theory,

and analogously to Hypothesis H in the online experiment, the first hypothesis concerns

reversal rates.

H2a: Standard reversal rates should be lower in the Joint Treatment compared to the

Separate Treatment (within subjects).

The difference is that, in the eye-tracking experiment, we can conduct this test within

subjects. Further, the test includes a different set of lotteries. Figure 7 illustrates the

reversal rates in both treatments. In the Joint Treatment the standard reversal rate was

62.55%, compared to 60.47% in the Separate Treatment. As in the online experiment,

those reversal rates are as commonly observed in the literature and we reproduce the

classical preference reversal phenomenon. However, again as in the online experiment,

and contrary to Salience Theory’s prediction, we did not find lower standard reversal
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Figure 7: Reversal Rates in the Eye-tracking Experiment. Violin plots depict the median,
interquartile range, and kernel density plot. One-sided non-parametric test was not
significant: n.s. p > .1.

rates in the Joint compared to the Separate Treatment according to a Wilcoxon Signed-

Rank test (WSR; N = 63, z = 0.722, p = .7650).

In addition to reversal rates, for the eye-tracking experiment we also preregistered

hypotheses about monetary valuations. According to Salience Theory, evaluating a

lottery in the context of another lottery should reduce overpricing. Following Salience

Theory, we expected

H2b: The evaluations of $-bets should be lower in the Joint Treatment compared to the

Separate Treatment, when P-bets were chosen, and

H2c: the differences in lottery evaluations ($-bets minus P-bets) should be smaller in the

Joint Treatment compared to the Separate Treatment, when P-bets were chosen.

The hypotheses were conditional on pairs such that the P-bet was chosen because

the standard reversal rate refers to those pairs. Figure 8 displays the evaluations of

$-bets (left-hand side) and the difference in evaluations between $- and P-bets (right-

hand side) for both treatments. The average evaluation of the $-bet when the P-bet

was chosen was 6.52 in the Joint Treatment and 6.44 in the Separate Treatment. That

is, contrary to Salience Theory’s prediction (H2b), $-bets were not evaluated lower in
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Figure 8: Evaluations in the eye-tracking Experiment. Left-hand side: Evaluation of $-
bets. Right-hand side: Evaluation difference between $- and P-bets. Both comparisons
are weakly significant in the opposite direction of the one predicted by Salience Theory,
∗ p < .1.

the Joint compared to the Separate Treatment (WSR, N = 63, z = 1.486, p = .9313).

In fact, our experiment found (weak) evidence in the opposite direction. That is, the

opposite test shows that $-bets were evaluated higher in the Joint than in the Separate

Treatment (p = .0687).

The right-hand side of Figure 8 displays the differences in evaluations between $- and

P-bets, when the P-bet was chosen. The average difference in evaluations was .691 ECU

in the Joint Treatment and .598 ECU in the Separate Treatment. That is, the difference

between $- and P-bets was not smaller in the Joint compared to the Separate Treatment

(WSR, N = 63, z = 1.308, p = .9045), contrary to Salience Theory’s prediction (H2c).

Again, our experiment found weak evidence in the opposite direction, with a larger

difference in evaluations between $- and P-bets in the Joint compared to the Separate

Treatment (p = .0955).

Behavioral data thus again failed to provide evidence for Salience Theory’s predic-

tions. The non-parametric analysis, however, does not use the additional information

borne by the eye-tracking data. Rather, it simply aggregates over all observations. In

the next step, we look at evaluations and preference reversals again, but control for
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Table 1: Random Effects Panel Regression on Evaluations in the Joint Treatment.

Evaluation Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

# Fix. on other lottery -0.0128 -0.0176 -0.0182∗ -0.0319∗∗ -0.0398∗∗∗ -0.0399∗∗∗

(0.0105) (0.0109) (0.0107) (0.0160) (0.0173) (0.0173)
# Fix. on evaluating lottery 0.0087 0.0071 0.0064 -0.0046 -0.0036

(0.0058) (0.0057) (0.0057) (0.0087) (0.0087)
Evaluating a P-bet -0.6331∗∗∗ -0.7062∗∗∗ -0.7100∗∗∗ -0.7087∗∗∗

(0.0904) (0.0995) (0.0995) (0.0994)
# Fix. other × P-bet 0.0346∗ 0.0322 0.0320

(0.0197) (0.0198) (0.0198)
Constant 6.2023∗∗∗ 6.0501∗∗∗ 6.3978∗∗∗ 6.4422∗∗∗ 6.4878∗∗∗ 5.3375∗∗∗

(0.1049) (0.1449) (0.1520) (0.1545) (0.1941) (0.7146)

Controls No No No No Yes Yes
Demographics No No No No No Yes
adj. R2 0.0014 0.0002 0.0325 0.0354 0.0397 0.0506
WaldTest 1.49 3.79 53.05∗∗∗ 56.28∗∗∗ 59.63∗∗∗ 63.56∗∗∗

LinCom: # Fix. other + 0.0027 -0.0076 -0.0079
# Fix. other × P-bet (0.0160) (0.0173) (0.0173)

Observations 1166 1166 1166 1166 1166 1166

Standard errors in parentheses, ∗
p < 0.1, ∗∗

p < 0.05, ∗∗∗
p < 0.01.

the number of fixations on the other lottery in panel regressions. Since, according to

Salience Theory, overpricing should be reduced when evaluations happen in the presence

of another lottery, we should control for exactly how often the subject actually looked

at the other lottery. We thus preregistered the following hypotheses.

H3a: More fixations on the other lottery should reduce the minimum selling price.

H3b: More fixations on the other lottery should reduce (standard) preference reversals.

Table 1 presents a random effects panel regression on monetary valuations in the Joint

Treatment for pairs such that the P-bet was chosen in the choice phase. The coefficient

of interest is “# Fix. on other lottery” in the first row, which measures the number of

fixations on the other lottery (the one not being evaluated) during the evaluation phase.

This coefficient thus reflects the impact of attention on the other lottery on the actual

monetary valuation. According to Salience Theory, this coefficient should be negative.

In the first two models, we did not find a significant coefficient. Those models, however,

do not distinguish whether the evaluated lottery is a P-bet or a $-bet. The coefficient

becomes (weakly) significant when introducing a dummy taking the value one when the

evaluated lottery was a P-bet (Model 3). Models 4–6 include the interaction between

the number of fixations on the other lottery and the dummy. Thus, in these models

the coefficient “# Fix. on other lottery” concerns the evaluation of $-bets only. This is

(highly) significant and negative, showing that fixations on the other lottery significantly

reduce the evaluation of the $-bets, as predicted by Salience Theory, by approximately

4 ECU cents (equivalent to 0.1 CHF) per fixation. In contrast, linear combination tests
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Table 2: Panel Probit Regression on Preference Reversals for lotteries Jointly evaluated.

Standard Reversals Model 1 Model 2 Model 3

# Fix. on other P-bet -0.0482∗∗∗ -0.0479∗∗∗ -0.0485∗∗∗

(0.0156) (0.0156) (0.0157)
# Fix. on other $-bet 0.0301∗ 0.0307∗ 0.0300∗

(0.0175) (0.0175) (0.0175)
# Fix. on eval. $-bet 0.0012 0.0020 0.0027

(0.0067) (0.0068) (0.0068)
# Fix. on eval. P-bet -0.0064 -0.0058 -0.0051

(0.0082) (0.0082) (0.0082)
Constant 0.3416 0.4749∗ 0.4782

(0.2143) (0.2557) (0.8497)

Controls No Yes Yes
Demographics No No Yes
Log Likelihood -351.75 -351.27 -349.20
WaldTest 12.26∗∗ 13.08∗∗ 16.87∗∗

LinCom: # Fix. other P-bet + -0.0180 -0.0172 -0.0185
# Fix. on other $-bet (0.0224) (0.0224) (0.0225)

Observations 583 583 583

Standard errors in parentheses, ∗
p < 0.1, ∗∗

p < 0.05, ∗∗∗
p < 0.01.

(bottom of the table, second to last row) show that fixations on the other lottery did

not significantly affect the evaluation of P-bets.

We conclude that, in the Joint Treatment, fixations on the other lottery did reduce

the monetary valuation of $-bets, but the actual effect was small (about 0.1 CHF per

fixation). Taking into account that the average number of fixations on the other lottery

was just 2.16, the impact on monetary valuations can be seen to be rather modest. It

is thus unclear whether this effect can translate into a measurable impact on preference

reversals. Thus we turn to a panel probit regression with Standard Reversals as the

dependent variable (Table 2), again for the Joint Treatment. That is, the dependent

variable is a dummy taking the value one if the choice was in favor of the P-bet, but the

monetary valuation of the $-bet was higher than that of the P-bet, and zero otherwise.

In this regression, an observation is a choice pair, which is hence associated with two

different evaluations (for the $-bet and for the P-bet in the pair), and for each of those

evaluations two lotteries were displayed (Joint Treatment). Thus there are four different

kinds of fixations, depending on whether they are on the actually-evaluated lottery (in

turn either a $-bet or a P-bet) or on the other, alternative lottery (which is hence either

a P-bet or a $-bet itself).

In all models in Table 2, the coefficient # Fix. on other P-bet is negative and highly

significant, indicating that, indeed, standard reversals were less likely when, during eval-

uation of the $-bet, the alternative lottery (hence a P-bet) was fixated more. This is
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aligned with the previous result that overpricing of $-bets decreased with the number of

fixations on the alternative lottery, and suggests that this indeed has an overall impact

on the likelihood of reversals.

The coefficient # Fix. on other $-bet is positive and (weakly) significant, suggesting

that standard reversals were more likely with additional fixations on the alternative

lottery (a $-bet) during evaluation of the P-bet. This is also in alignment with the

predictions. If fixating the alternative lottery reduces overpricing of the P-bet (and

although the regression in Table 1 did not detect this effect), the result should be a

reduction in the monetary valuation of this lottery. Since standard preference reversals

involve the evaluation of the P-bet being lower than that of the $-bet, this effect should

translate into an increase in the likelihood of standard reversals, as observed.

Linear combination tests (bottom of Table 2) show that the negative effect of fixations

on the other lottery when the evaluated lottery is a $-bet cancels out with the positive

effect when the evaluated lottery is a P-bet, and overall there is no effect on the likelihood

of standard reversals.8 This is interesting, because the intuition derived from Bordalo

et al. (2012) is that salience impacts monetary valuations of both types of lotteries

when conducted in isolation, but that the overall effect should result in fewer preference

reversals because the impact on $-bets should be proportionally larger. In contrast,

our data suggests that the effects are relatively modest and not large enough for the

relative difference in overpricing across different lottery types accruing to salience effects

to actually have a large impact on reversal rates.

For the next hypothesis, recall that Salience Theory is built upon the concept of

state of the world and specifically the assumption that more salient states receive more

attention. Since a state corresponds to a comparison between outcomes across the two

lotteries (recall Section 2), attention to this state should be reflected by the number of

transitions (eye movements) between the two outcomes that the state consists of. Thus,

we calculated the number of transitions for each state in each round of choice and joint

evaluation.9 Thus, the difference in attention should be the largest when comparing

the most salient and least salient state for each given pair. Hence, we preregistered the

following hypothesis (separately for choices and for joint evaluations).

H4: There should be more transitions between the outcomes in the most-salient state

than between the outcomes in the least-salient state.

By design, in our choice pairs the most salient state was always the one corresponding

to the comparison between the high outcome of the $-bet and the low outcome of the

P-bet, while the least salient state was always the one corresponding to the comparison

between the low outcome of the $-bet and the low outcome of the P-bet. During choice

rounds, there were on average 0.61 transitions on the most salient state and 0.75 transi-

8There are no significant differences in the number of fixations on the other lottery between lottery
types. See Section 5.

9For calculating transitions, we omitted fixations that were not in any AOI.
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Figure 9: Transitions between outcomes representing states. Transitions encircled in
green (14.0 ↔ 3.0) represent attention on the most salient state and transitions in red
(4.0 ↔ 3.0) attention on the least salient state.

tions on the least salient state. There was no statistically significant evidence in favor of

Salience Theory’s prediction (WSR, N = 64, z = −2.231, p = .9872) and in fact, we find

significant evidence that the least salient state received more attention than the most

salient state (p = .0128). The same conclusion obtains for transitions during the joint

evaluation rounds. Recall that there were few fixations on the alternative lottery, thus

there are even fewer average transitions. There were on average 0.13 and 0.12 transi-

tions for most-salient and least-salient states, respectively, with no significant differences

(WSR, N = 64, z = 0.859, p = .1953).

As a robustness check, we considered transitions not only between outcomes but

enlarged the area of interest to the whole quadrant (containing both the outcome and

its probability). We confirm the previous findings for both types of rounds. Overall,

there were more transitions during choice rounds. However, the most salient state (1.59)

received significantly less attention than the least salient state (1.74), contrary to Salience

Theory’s prediction (WSR, N = 64, z = −1.963, p = .0248). In joint evaluation rounds,

there were no significant differences in attention between most-salient (0.32) and least-

salient (.31) states (WSR, N = 64, z = 1.197, p = .1156).

5 Exploratory Analyses

5.1 The Lottery Pair in Bordalo et al. (2012)

Our results, following our preregistered hypotheses and tests, deliver mixed evidence

for the postulated implications of Salience Theory. We do find a connection between

fixations and evaluations but overall we do not find the predicted reduction of reversal

rates when lotteries are evaluated in the context of another one as suggested by Bordalo
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Figure 10: Evaluation of the lottery pair from Bordalo et al. (2012). Left and center
panels, evaluations in the two surveys in Bordalo et al. (2012). Right panel, evaluations
of the same lotteries in our eye-tracking experiment. One-sided non-parametric tests
were not significant: n.s. p > .1.

et al. (2012). That work included a survey where each participant chose between two

lotteries and immediately afterwards priced one of them (price in choice context) and

after filler questions priced the other lottery in isolation. That is, the manipulation is

whether the evaluation took place right after seeing both lotteries or later. Reversals

conditional on the manipulation were not actually observable within subjects, since each

subject priced only one of the lotteries in the pair under each manipulation. The survey

employed only one lottery pair, which was one of the 32 lottery pairs we used in our

eye-tracking experiment: L$ = [.31, 16; .69, 0], LP = [.97, 4; .03, 0]. A second survey

using the same lottery pair followed a similar evaluation procedure but did not include

an actual choice.

Figure 10 illustrates the evaluations of the lottery pair in different treatments and

experiments. Bordalo et al. (2012) observed lower evaluations in the Joint Treatment

than in the Separate Treatment. We, however, do not find such a difference in the

evaluation for the exact same lotteries. Since the manipulations differ (actual presence of

the other lottery in our case, in contrast with temporal distance in Bordalo et al., 2012),

we cannot discard that the effect in Bordalo et al. (2012) might be due to a different
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Figure 11: Average evaluation of P-bets and $-bets when P-bet was chosen during Joint
and Separate evaluation treatments for the Online Study (left-hand side) and the Eye-
tracking Study (right-hand side).

mechanism than whether evaluation is driven by the salience of states as derived from

the comparison with another lottery.

5.2 Averages at the Lottery Level

The previous analysis of the lottery evaluations relied on subject averages across lotteries.

In the following analysis, we construct an average evaluation across subjects for each

given lottery, for both treatments. A Wilcoxon-Signed-Rank test then compares the

evaluations between the Joint and Separate Treatments, with paired observations for

each lottery. As before, the test conditions only on cases where the P-bet was chosen

during the choice trials.

Figure 11 shows the average evaluation for P-bets and $-bets for both treatments for

the online study (left-hand side) and the eye-tracking study (right-hand side). Results

are mixed. In the online study, in line with Salience Theory’s predictions, the joint

evaluation did significantly reduce the stated minimum selling price compared to the

separate evaluation, both for P-bets (Joint 5.80, Separate 5.97; WSR, N = 32, z = 3.38,

p = .0007) and for $-bets (Joint 7.20, Separate 7.62; WSR, N = 32, z = 2.49, p = .0129).

In contrast, in the eye-tracking experiment evaluations were not significantly different
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Figure 12: Number of fixations by lottery type during joint evaluation. Right-hand side
shows the average number of fixations on the lottery that was evaluated. Left-hand
side shows the average number of fixations on the alternative lottery, which was not
evaluated.

across treatments, neither for P-bets (Joint 5.95, Separate 5.92; N = 32, z = −1.103,

p = .2699) nor for $-bets (Joint 6.74, Separate 6.63; WSR, N = 32, z = −0.767,

p = .4433).

5.3 Fixations Across Lottery Types

Kim et al. (2012) and Alós-Ferrer et al. (2021) showed that fixations on P- and $-bets

differ during evaluation, with $-bets generally being fixated more. Figure 12 shows the

average number of fixations on each lottery during evaluations in the Joint Treatment,

when the lottery was the one being evaluated (left-hand side), and when it was the

alternative (not evaluated) lottery (right-hand side). Fixations on the evaluated lottery

differed by lottery type, with P-bets being fixated significantly less often (18.07) than

$-bets (19.14; WSR, z = 2.809, p = .0050). That is, we reproduce the findings of

Kim et al. (2012) and Alós-Ferrer et al. (2021) for the lottery currently evaluated. The

difference, however, is absent for the alternative lottery (P-bets 2.18, $-bets 2.13; WSR,

z = −.0281, p = .7787).
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Of course, the average number of fixations greatly differed between evaluated and

alternative lotteries. With an average number of ≈ 2 fixations on the other lottery, it is

not surprising that there are no differences across alternative lotteries of different types.

5.4 A Lottery with an Extreme Outcome

Our preregistered test for Hypothesis (H4a) in Section 4 failed to deliver evidence that

differences in the salience of states are reflected by differences in the corresponding

number of transitions. Lottery pair nr. 48 included a $-bet with a particularly high

outcome (26 ECU) which allows us to conduct an extreme comparison along the lines

of Hypothesis (H4a). Since the salience of states depends on the difference between

outcomes, this pair yields a particularly large salience for the state where the high

outcome of the $-bet and the low outcome of the P-bet are compared. We compare it

with another pair, lottery pair nr. 2, which yields a particularly small salience for the

corresponding state (in terms of (1), σ(26, 2.1) = .85 for the former and σ(11.5, 5) = .39

for the latter pair). We then test whether the high-salience state of lottery pair nr. 48

received more attention than the corresponding state of lottery pair nr. 2. This is indeed

the case. During choices, subjects exhibited more transitions on the most salient state

of lottery pair nr. 48 (mean 1.00) compared to the corresponding state of lottery pair

nr. 2 (mean 0.39; WSR, N = 64, z = 3.040, p = .0012). This suggests that differences

in transitions reflecting the salience of states might be generally hard to detect and only

measurable when salience differences are large enough.

6 Discussion

In this work, we investigated the predictions of Salience Theory in an online experiment

and an eye-tracking experiment where attention could be measured directly. We imple-

mented two treatments which according to Salience Theory should result in differences

in preference reversals.

Contrary to the predictions of Salience Theory, whether the monetary valuation for

a lottery was elicited in isolation or in the presence of an alternative one failed to have

any effect on the preference reversal rates or on the monetary valuations themselves.

However, an analysis of the effect of fixations revealed that attention on the alternative

(not evaluated) lottery reduced the monetary valuation of the target lottery, but only if

the latter was a long shot ($-bet), in agreement with the view that the overpricing of long

shots which is associated with the preference reversal phenomenon should be reduced

if evaluations do not happen in isolation. This particular result is hence a conceptual

confirmation of the implications of Salience Theory. However, the effects were small,

both in terms of the attention attracted by the alternative lottery and in terms of the

monetary reduction in the valuation per fixation on the other lottery. This might explain

why the documented effect fails to translate into a reduction in reversal rates.
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A further confirmation of Salience Theory is the fact that, in a regression analysis,

the number of fixations on the alternative lottery when the target lottery was a $-bet

significantly reduced the probability of a reversal. However, the number of fixations

on the alternative lottery when the target lottery was a P-bet seems to increase the

probability of a reversal, which is in agreement with a reduction of overpricing for the

latter lottery type when evaluations are not made in isolation. These two effects appear

to (at least partially) cancel out, delivering another possible reason for the absence of an

effect of attention (as measured by fixations) on preference reversal rates. This echoes

the discussion in Bordalo et al. (2012), which argued that salience impacts monetary

valuations of both types of lotteries when conducted in isolation, but that the impact

on $-bets should be proportionally larger, resulting in an effect on preference reversals.

Our results suggest that the effects are modest and the relative difference in overpricing

across different lottery types is too small to have a large impact on reversal rates.

We conclude that, although the evidence confirms effects of attention on monetary

valuations as predicted by Salience Theory, they might be too weak to result in mea-

surable behavioral effects, at least for the case of the classical preference reversal phe-

nomenon.
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Glöckner, A. and A.-K. Herbold (2011). An Eye-tracking Study on Information Process-
ing in Risky Decisions: Evidence for Compensatory Strategies Based on Automatic
Processes. Journal of Behavioral Decision Making 24 (1), 71–98.

Grether, D. M. and C. R. Plott (1979). Theory of Choice and the Preference Reversal
Phenomenon. American Economic Review 69 (4), 623–638.

Kahneman, D. and A. Tversky (1979). Prospect Theory: An Analysis of Decision Under
Risk. Econometrica 47 (2), 263–291.

Kim, B. E., D. Seligman, and J. W. Kable (2012). Preference Reversals in Decision
Making under Risk are Accompanied by Changes in Attention to Different Attributes.
Frontiers in Neuroscience 6 (109), 1–10.

Knoepfle, D. T., J. T.-Y. Wang, and C. F. Camerer (2009). Studying Learning in Games
Using Eye-Tracking. Journal of the European Economic Association 7 (2–3), 388–398.

Lichtenstein, S. and P. Slovic (1971). Reversals of Preference Between Bids and Choices
in Gambling Decisions. Journal of Experimental Psychology 89 (1), 46–55.

Ludwig, J., A. Jaudas, and A. Achtziger (2020). The Role of Motivation and Volition
in Economic Decisions: Evidence from Eye Movements and Pupillometry. Journal of
Behavioral Decision Making 33 (2), 180–195.

Palan, S. and C. Schitter (2018). Prolific.ac – A Subject Pool for Online Experiments.
Journal of Behavioral and Experimental Finance 17, 22–27.

Polonio, L. and G. Coricelli (2019). Testing the Level of Consistency Between Choices
and Beliefs in Games Using Eye-Tracking. Games and Economic Behavior 113, 566–
586.

Polonio, L., S. Di Guida, and G. Coricelli (2015). Strategic Sophistication and Attention
in Games: An Eye-Tracking Study. Games and Economic Behavior 94, 80–96.

Reutskaja, E., R. Nagel, C. F. Camerer, and A. Rangel (2011). Search Dynamics in
Consumer Choice under Time Pressure: An Eye-Tracking Study. American Economic
Review 101 (2), 900–926.

Schmidt, U. and J. D. Hey (2004). Are Preference Reversals Errors? An Experimental
Investigation. Journal of Risk and Uncertainty 29 (3), 207–218.

Seidl, C. (2002). Preference Reversal. Journal of Economic Surveys 16 (5), 621–655.

Tversky, A. and D. Kahneman (1992). Advances in Prospect Theory: Cumulative Rep-
resentation of Uncertainty. Journal of Risk and Uncertainty 5, 297–323.

Tversky, A., S. Sattath, and P. Slovic (1988). Contingent Weighting in Judgment and
Choice. Psychological Review 95 (3), 371–384.

Tversky, A., P. Slovic, and D. Kahneman (1990). The Causes of Preference Reversal.
American Economic Review 80 (1), 204–217.

Tversky, A. and R. H. Thaler (1990). Anomalies: Preference Reversals. Journal of
Economic Perspectives 4 (2), 201–211.

24



Appendix A Lotteries

Table A.1: Lottery pairs: Online (1–32) and Eye-tracking (1–16, 33–48) experiment.

$-bet P-bet
Lottery High Low High Low
Pair ECU % ECU % ECU % ECU %

1 11.3 0.37 1.5 0.63 5.8 0.83 2.5 0.17
2 11.5 0.43 4 0.57 8.3 0.72 5 0.28
3 11.5 0.36 4 0.64 7.5 0.72 4.5 0.28
4 11.9 0.39 4.5 0.61 8.6 0.65 5 0.35
5 12 0.28 3.5 0.72 8 0.62 2.8 0.38
6 12 0.18 3.1 0.82 6.3 0.61 2 0.39
7 12.1 0.31 3.4 0.69 6.3 0.74 5.3 0.26
8 12.3 0.41 3 0.59 7.3 0.79 4.5 0.21
9 12.6 0.36 3.2 0.64 7.2 0.76 4.8 0.24
10 13 0.34 2 0.66 7.1 0.72 1.5 0.28
11 13.2 0.30 3.8 0.70 7.7 0.66 4.8 0.34
12 13.2 0.29 3.7 0.71 6.8 0.73 5.4 0.27
13 14 0.23 4 0.77 6.5 0.90 3 0.10
14 14 0.31 3 0.69 7.2 0.76 4 0.24
15 14 0.28 4 0.72 7.1 0.82 6 0.18
16 14.2 0.37 3.1 0.63 8.4 0.72 5 0.28

17 15 0.31 1.5 0.69 5.8 0.87 3.6 0.13
18 15.2 0.26 1.5 0.74 5.5 0.79 3.7 0.21
19 15.3 0.34 4.2 0.66 8.7 0.73 6 0.27
20 16 0.22 1.5 0.78 5.2 0.80 1.9 0.20
21 16 0.27 3.8 0.73 8.7 0.71 4 0.29
22 16.1 0.29 4 0.71 7.8 0.72 6.4 0.28
23 17.1 0.32 1.5 0.68 7.9 0.68 3 0.32
24 18.5 0.34 3 0.66 8.9 0.85 5 0.15
25 18.7 0.22 4.2 0.78 8.6 0.71 3.8 0.29
26 19 0.25 5 0.75 8.9 0.82 6 0.18
27 20 0.29 2 0.71 8.8 0.70 3.1 0.30
28 21 0.20 3 0.80 7 0.72 5 0.28
29 22 0.19 5 0.81 8.8 0.83 6.1 0.17
30 23 0.12 2.9 0.88 6 0.86 1.6 0.14
31 25.4 0.20 2 0.80 8.6 0.75 1.6 0.25
32 26 0.13 4 0.87 8.5 0.77 2.1 0.23

33 11.1 0.34 3 0.66 6.9 0.72 3.1 0.28
34 11.2 0.38 2.5 0.62 7.4 0.66 2.6 0.34
35 11.6 0.38 2.8 0.62 7.8 0.71 2.2 0.29
36 12 0.44 5 0.56 8.2 0.68 5.2 0.32
37 12.2 0.30 3.7 0.70 8.6 0.60 3 0.40
38 12.4 0.43 4.2 0.57 8.4 0.61 4.5 0.39
39 12.5 0.42 3 0.58 7.9 0.68 2.8 0.32
40 12.8 0.31 5 0.69 8.9 0.62 4.6 0.38
41 12.9 0.30 2.9 0.70 6 0.82 1.6 0.18
42 13.1 0.29 4 0.71 6.9 0.78 4.9 0.22
43 13.3 0.26 1.5 0.74 5.5 0.72 2.5 0.28
44 13.7 0.22 4.2 0.78 7.6 0.71 2.7 0.29
45 14.1 0.44 1 0.56 7 0.80 1.5 0.20
46 14.5 0.36 1.5 0.64 5.7 0.87 3.5 0.13
47 16 0.31 0 0.69 4 0.97 0 0.03
48 26 0.18 4 0.82 8.5 0.77 2.1 0.23
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Appendix B Instructions

[The instructions were presented on screen. We merged the instructions of the online
and eye-tracking experiment which were almost identical. Text in brackets [. . . ] was not
displayed to subjects to identify differences between treatments and/or the online and the
eye-tracking experiments. Exercise trials and Comprehensions questions were only part
of the eye-tracking experiment.]

General Instructions

Welcome! Thank you for participating in this eye-tracking experiment. On top of your
fixed earnings of [Online]: 1.1 GBP / [Eye-tracking]: 10 CHF for completing this study,
you will earn a bonus payment which will depend on your decisions.

[Online]: The bonus payment ranges from 0.6 GBP to 10.4 GBP.
Please read all instructions and questions carefully before making a decision. The

experiment will take about [Online]: 20 minutes / [Eye-tracking]: 1 hour to complete.
[Online]: Answer honestly and take care to avoid mistakes.
[Eye-tracking]: The following pages explain the decision task and how your final

payment is determined in detail. Use the arrow keys to navigate through the instructions.
Please answer the comprehension questions at the end. In case you have any questions,
please ask the experimenter.

Decisions and Payment

There are [Online]: 24 / [Eye-tracking]: 96 rounds in which you will face two types of
decision tasks involving lotteries. More detailed instructions on the two decision tasks
and lotteries will follow. Your bonus payment depends on the decisions you are about
to make. At the end of this study, we will randomly pick one of your decisions. This
particular decision will then be paid out according to the rules specified in later pages.

Each decision could be the one that counts for your bonus. It is therefore in your
best interest to consider all your answers carefully.

The bonus you can earn in each decision is presented in Experimental Currency
Units, in short ECU. At the end of the study your bonus payment will be exchanged
using the following exchange rate:

[Online]: 1 ECU = 0.4 GBP.

[Eye-tracking]: 1 ECU = 2.50 CHF.

Lotteries

Below is an example of two lotteries: a Left Lottery and a Right Lottery, which are
separated by a vertical line.

Each lottery has two outcomes that can occur with certain probabilities (both adding
up to 100%). Each outcome pays a certain amount of ECU. The two outcomes of a lottery
are separated by a dashed, horizontal line, i.e. there is a top and bottom outcome, each
shown next to the probability of the outcome (i.e., how likely each outcome is).

≪ [Example Lottery (Figure B.1) was shown here] ≫

Example: The Left Lottery has two possible outcomes. With a probability of 29%
the lottery yields 14.0 ECU and with a probability of 71% the lottery yields 3.3 ECU.
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14.0 ECU

3.3 ECU

29 %

71 %

7.6 ECU

4.2 ECU

64 %

36 %

Left
Lottery

Right
Lottery

Figure B.1: [Example Lottery shown during instructions. $-bet (here on the left) and a
P-bet (here on the right).]

Task A: Choose Between Two Lotteries

One of the tasks is to choose between two lotteries and select the one you prefer (Left
Lottery or Right Lottery).

In this task you simply select the lottery you prefer to play out. Playing out the
lottery means that one of the two outcomes is realized and you will earn that amount of
ECU.

≪ [Example Lottery (Figure B.1) was shown here] ≫

Example: Suppose you chose the Left Lottery which yields 14.0 ECU with 29%
probability and 3.3 ECU with 71% probability. Imagine a box with a total of 100 balls
of which 29 are blue and 71 are orange. We will then randomly pick a ball from the box
and if it is blue you will earn 14.0 ECU and if it is orange you will earn 3.3 ECU.

[Eye-tracking]: Exercise Trial: Choose Between Two Lotteries!

Use the “left Arrow” and “right Arrow” key on the keyboard to choose the “Left Lottery”
and “Right Lottery,” respectively.

≪ [Example Lottery (Figure B.1) was shown here] ≫

Task B: State the Lowest-acceptable Selling Price

The other kind of task you will encounter is to state the lowest-acceptable selling price
for a lottery: For this, simply assume that you already own the lottery and you have to
state the lowest price at which you are still willing to sell that lottery instead of keeping
and playing it out.

[Eye-tracking]: In some case you will only see the lottery and black dots on the
opposite side (as depicted here). In other cases both lotteries are depicted and you have
to state the lowest-acceptable selling price for the indicated lottery (example depicted
in the Exercise Trial).

Your bonus payment will be determined as follows:
We will randomly determine an offer for buying the lottery from you.

• If the offer is larger than (or equal to) the lowest-acceptable selling price you stated,
then you sell the lottery for the amount of ECU we offered.

27



14.0 ECU

3.3 ECU

29 %

71 %

Left
Lottery

Right
Lottery

[Eye-tracking and Separate Treatment Online Experiment]

Lowest-acceptable selling
price for the left lottery:

Figure B.2: [Example Lottery of Separate Evaluation shown during instructions.]

14.0 ECU

3.3 ECU

29 %

71 %

7.6 ECU

4.2 ECU

67 %

33 %

Left
Lottery

Right
Lottery

[Joint Treatment, Online experiment]

Lowest-acceptable selling
price for the left lottery:

Figure B.3: [Example Lottery of Joint Evaluation shown during instructions in the Joint
Treatment in the Online experiment.]

• If the offer is smaller, then you keep the lottery and it will be played out. This
means that you will randomly receive one of the outcomes of the lottery you kept
(according to the probabilities of each outcome).

≪ [Example Lottery Evaluation (Figure B.2 or Figure B.3) was shown here] ≫

Example: Suppose you stated that 6.5 ECU is the lowest-acceptable selling price for
the Left Lottery.

• If we offered to buy the lottery for, e.g., 9.5 ECU (randomly determined), which
is higher than your stated price, then you sell the lottery and earn 9.5 ECU.

• If we offered to buy the lottery for, e.g., 5.3 ECU (randomly determined), which
is lower than your stated price, then you will keep the lottery and your earnings
will be determined by playing it out.

This means that for any offer larger than (or equal to) the lowest-acceptable selling
price you stated, you prefer selling the lottery instead of keeping and playing it out. For
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any offer below the lowest-acceptable selling price you stated, you prefer keeping and
playing it out.

Therefore, it is in your best interest to truthfully report the lowest-acceptable selling
price, i.e., the lowest price at which you are still willing to sell the lottery.

Note that the lowest-acceptable selling price cannot be larger than the larger outcome
or smaller than the smaller outcome of the lottery.

[Eye-tracking]: Exercise Trial: State the Lowest-acceptable Selling Price!

State the lowest-acceptable selling price for the Left Lottery: Use the number pad
to enter the lowest-acceptable selling price for the Left lottery and press the “Re-
turn”(/“Enter”) key to confirm the price or “Backspace” to delete the currently typed
price.

Use this opportunity to familiarize yourself with entering the price while keeping
your gaze on the screen.

≪ [Example Lottery Evaluation (Figure B.2) was shown here] ≫

[Eye-tracking]: Comprehension Questions

≪ [Example Lottery (Figure B.1) was shown here] ≫

Comprehension Question 1: What is the probability you will receive 14.0 ECU in
case the Left Lottery is played out?’

Comprehension Question 2 What is the probability you will receive 7.6 ECU in
case the Right Lottery is played out?

Comprehension Question 3 What amount of ECU can you receive with probability
of 71% when playing the Left Lottery?

Comprehension Question 4 What amount of ECU can you receive with probability
of 36% when playing the Right Lottery?

This is the end of comprehension questions! Do you have any remaining questions?
The calibration is about to start.
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