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Foundations of Pseudomarkets: Walrasian Equilibria for

Discrete Resources

Antonio Miralles and Marek Pycia∗

This draft: May 2021. First posted draft: October 2014.

Abstract

We study the assignment of discrete resources in a general model encompassing

a wide range of applied environments, such as school choice, course allocation, and

refugee resettlement. We allow single-unit and general multi-unit demands and any

linear constraints. We prove the Second Welfare Theorem for these environments and

a strong version of the First Welfare Theorem. In this way, we establish an equivalence

between strong efficiency and decentralization through prices in discrete environments.

Showing that all strongly efficient outcomes can be implemented through pseudomar-

kets, we provide a foundation for using pseudomarkets in market design.

1 Introduction

Efficiency is the key objective in assignment of discrete resources, or bundles of resources,

in environments such as school choice, course assignment, and refugee resettlement. In
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these environments, the standard stochastic allocation mechanisms that only rely on partici-

pants’ ordinal rankings over resources or bundles are known to cause efficiency losses.1 Since

Hylland and Zeckhauser (1979), we know that efficient mechanisms can be constructed by

endowing market participants with token money that they can use to buy probability shares

in allocated objects, with the allocation determined via Walrasian equilibrium. The re-

sulting mechanisms—known as pseudomarkets—became central to the literature on efficient

assignment in discrete environments.2

The two main questions the present paper addresses are: how flexible is the pseudomarket

approach? in particular, can all efficient assignments be implemented via pseudomarkets?

By answering these two questions—and establishing a positive answer to the second one—we

provide a foundation for the market design literature’s focus on pseudomarkets: in market

design contexts, our characterization of efficient assignments allows one to restrict attention

to pseudomarkets at least in settings, such as large markets, where pseudomarket price

mechanisms are incentive compatible.3 This positive answer is tantamount to proving for

general discrete allocation environments an analogue of the Second Welfare Theorem of the

classic Walrasian theory: that every Pareto efficient assignment can be decentralized through

the use of prices. In classic Walrasian markets, at least one good is divisible, and agents

always strictly prefer having more of this good; in reduced-form models of markets the role

of such a good is played by numeraire or money. The presence of such numeraire good

implies that each agent is locally non-satiated, that is, for any assignment there is a nearby

assignment that the agent strictly prefers. In contrast, our agents may be satiated if they

receive their most preferred bundles.

We establish a tight link between efficiency and pseudomarkets despite the failure of

1Such losses are particularly pronounced when market participants have multi-unit demands as estab-
lished by Budish and Cantillon (2012) and Budish (2011) in the course allocation context. The losses are
also present in single-unit demand environments such as school choice: Bogomolnaia and Moulin (2001),
Abdulkadiroglu, Che, and Yasuda (2011), Featherstone and Niederle (2016), Miralles (2008), and Pycia
(2014) provide theoretical analyses of such losses, and Abdulkadiroglu, Agarwal, and Pathak (2017) provide
their empirical evaluation. While deterministic mechanisms fare better—unlike stochastic mechanisms they
can be Pareto efficient—in many environments stochasticity plays an important role, for instance because
of fairness considerations, cf. Abdulkadiroglu and Sonmez (2003) and Abdulkadiroglu, Pathak, and Roth
(2009). Refugee resettlement entails the allocation of discrete resources to the refugee families, and ordinal
allocation mechanisms inherit the efficiency losses first established in school choice and course allocation
studies; for a discussion of these mechanisms in refugee context, see e.g. Andersson and Ehlers (2020),
Delacretaz, Kominers, and Teytelboym (2020), and Pycia (2019). Even allocating legal tender money is a
special case of our setting as long as the money comes in a finite number of discrete coins and banknotes;
however the cited analyses of efficiency losses of ordinal mechanisms relied on the absence of legal tender.

2We provide a review of this rich literature below.
3See He et al. (2018) for asymptotic strategy-proofness of pseudomarkets, Azevedo and Budish (2019)

for their strategy-proofness in the large, and Pycia (2014) for Nash equilibria. While these papers assume
that participants’ budgets are fixed, in an ongoing work we show that this assumption may be relaxed.
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local non-satiation. The feature of the environment that enables this unexpected link is the

discreteness of resources being allocated; otherwise our allocation model is general. There is

a finite set of agents and objects. Agents are assigned bundles of objects and we impose no

assumptions on agents’ utilities from the bundles. Lotteries over bundles are evaluated in line

with the expected utility theory. As we allow for arbitrary multi-unit demands, our model

accommodates as special cases all types of substitutes, complements, externalities among

objects in the same bundle, as well as the canonical single-unit demand model of Hylland

and Zeckhauser (1979). Extending Hylland and Zeckhauser’s pseudomarkets to our general

setting, we study Walrasian equilibria in which each agent is endowed with token money;

the amount of token money held after the assignment has no impact on agents’ utilities.4

Our main result takes a particularly simple form in the single-unit demand settings such

as school choice: every Pareto efficient assignment may be supported in a Walrasian equi-

librium with properly chosen budgets, and hence decentralized via prices. The link between

efficiency and prices remains valid in the general multi-unit-demand random assignment

model in which agents receive lotteries over bundles of indivisible goods. In the general

multi-unit-demand case the statement of this link is however more subtle because—as we

show in an example—there are environments in which some assignments are Pareto efficient,

in the sense of being undominated by any feasible random assignment, and at the same time

these assignments cannot be supported in any Walrasian equilibrium.5 We thus prove the

Second Welfare Theorem for allocations that are strongly Pareto efficient in the following

sense: they are undominated by random allocations that are feasible at least in expecta-

tion.6 Importantly, we prove that strong efficiency is not only sufficient but also necessary

for the Second Welfare Theorem, that is we also prove the analogue of the First Welfare

Theorem for strong efficiency: every Walrasian equilibrium is efficient in the strong sense.7

4For earlier extensions of Hylland and Zeckhauser’s idea to multi-unit demand settings, see Budish (2011)
and Budish et al. (2013). In addition to establishing the Second Welfare Theorem in their environments, we
relax the modeling restrictions their analyses rely on.

5The subtlety is caused by the failure of the Birkhoff-von Neumann property: in general random alloca-
tions whose expectations are feasible may fail to be implementable as a lottery over feasible deterministic
assignments. Cf. Budish et al. (2013) and Nguyen, Peivandi and Vohra (2016) for a discussion of fail-
ures of the Birkhoff-von Neumann property. In all environments in which Birkhoff-von Neumann property
obtains—in particular in environments studied by Budish et al. (2013)—our results show that every Pareto
efficient assignment may be supported in a Walrasian equilibrium.

6Our Second Welfare Theorem implies as a corollary that whenever feasibility in expectation is the
relevant feasibility concept, then the Second Welfare Theorem holds true for standard Pareto efficiency.
This is of relevance in large markets as Nguyen, Peivandi and Vohra (2016) extended the Birkhoff-von
Neumann Theorem to multi-unit assignment in large markets showing that the set of feasible-in-expectation
random assignments is asymptotically equivalent to the set of implementable random assignments. Following
on our analysis, Miralles and Pycia (2017) identify a sufficient condition for the Second Welfare Theorem to
obtain in multi-unit-demand environments with divisible goods, possibly nonlinear preferences, and agents
demanding goods up to a capacity quota (and hence possibly satiated).

7For the school choice setting, the First Welfare Theorem was established by Hylland and Zeckhauser
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The conjunction of our First and Second Welfare Theorems establishes the equivalence of

pseudomarkets and strong efficiency, thus answering the first of our two leading questions,

how flexible pseudomarkets are.

Whether the Second Welfare Theorem obtains in discrete settings was a puzzle, except

for deterministic assignments in single-unit demand settings, for which Abdulkadiroglu and

Sonmez (1998) established a version of the Second Welfare Theorem. We find it quite

surprising that the insight of the Second Welfare Theorem holds true in discrete environments

because the problems the received approaches to the Second Welfare Theorem run into

in settings with non-divisibilities and locally satiated agents are well-known (Mas-Collel,

Winston, and Green, 1995). The failure of local non-satiation implies that the Separating

Hyperplane Theorem commonly used to prove the Second Welfare Theorem guarantees only

the existence of a separating hyperplane that may have non-empty intersections with the set

of Pareto-dominant aggregate assignments.8 Facing the resulting prices, some agents might

afford to buy bundles they strictly prefer over their assignment; this situation is called a

quasi-equilibrium.

To surmount the problems that satiation causes for the standard proof approach, we de-

velop a novel approach to constructing the separating hyperplane that leverages the polytope

properties of discrete environments. As a key part of our proof, we establish a Full Separation

Lemma for Polytopes that might be useful beyond the confines of our Walrasian analysis.9

The lemma establishes the existence of a separating hyperplane that is disjoint with the set

of Pareto-dominant aggregate assignments. Facing the resulting prices, no agent can afford a

bundle they would prefer over their assignment, and the prices support the assignment as an

equilibrium. To the best of our knowledge, ours is the first paper to leverage the properties

of the polytopes to analyze Walrasian equilibria and prove the Second Welfare Theorem.10

Prior work on implementing efficient outcomes via pseudomarkets relied on additional

strong requirements. In continuum economies, Thomson and Zhou (1993) related efficient,

symmetric, and consistent mechanisms to Hylland and Zeckhauser’s pseudomarket mecha-

(1979). This result was further refined and extended by Mas-Collel (1992) and Budish, Che, Kojima, and
Milgrom (2013). For instance, all equilibria are efficient if agents strictly rank any two objects. Note that
the validity of the First Welfare Theorem in some of the settings we study does not imply the validity of
the Second Welfare Theorem for these settings; indeed, there are environments in which the First Welfare
Theorem holds true, and the Second Welfare Theorem fails, cf. Mas-Collel, Whinston, and Green (1995).

8While the full separation obtains if one of the separated sets is open, this assumption fails in our setting.
Section 3 provides an example illustrating the failure of openness and a more detailed discussion of why the
standard techniques do not work.

9We also prove a complementary Polytope Lemma that shows that the set of Pareto dominant outcomes
is a polytope, provided the resources being allocated are discrete.

10For earlier uses of polytope ideas to study other questions in economics, see, e.g., McLennan (2002),
Budish et al. (2013), Pycia and Unver (2015); none of these papers analyzes Walrasian equilibria.
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nism with equal budgets, and Ashlagi and Shi (2016) showed that any efficient, symmet-

ric, and strategy-proof random assignment can be expressed as the result of the equal-

budget pseudomarket mechanism.11 In contrast, we do not rely on symmetry, consistency,

or strategy-proofness, and we prove our results for all finite economies.

Our paper also contributes to the literatures on constraints in market design—e.g., Bud-

ish, Che, Kojima, and Milgrom (2013) and He, Miralles, Pycia, and Yan (2018)—and on

multi-unit assignment—e.g., Sonmez and Unver (2010), Budish (2011), and Budish and Can-

tillon (2012)—that extended the idea of using token money to allocate objects beyond the

canonical Hylland and Zekchauser setting.12 Our Second Welfare Theorem is complemen-

tary to these papers and provides a microfoundation for their focus on pseudomarkets; none

of these earlier papers provided such a microfoundation. We also improve upon the First

Welfare Theorems established in these papers by showing that pseudomarket equilibria are

not only Pareto efficient but also strongly efficient, and our general multi-unit demand set-

ting goes beyond the settings studied in these papers: our analysis allows arbitrary utility

profiles over bundles of objects and arbitrary linear constraints. In particular, our Second

Welfare Theorem does not hinge on the standard assumption that goods are substitutes, and

it allows any mixture of substitutes and complementarities.13

Our paper provided a microfoundation for the focus on pseudomarkets in the analysis

of efficient mechanisms also for the many papers that followed on our work. Papers that

crucially rely on our Second Welfare Theorem include Miralles and Pycia (2015), who address

the question which assignments are efficient and envy-free and show that the answer is

qualitatively different in large finite markets than in a continuum economy limit, as well

as Miralles (2017) and Schlegel and Mamageishvili (2019), who study He et al’s (2018)

pseudomarkets with weak priorities. Other papers that followed on our work and whose focus

on pseudomarkets is microfounded by our Second Welfare Theorem include Babaioff, Nisan,

Talgam-Cohen (2018), McLennan (2018), Echenique, Miralles and Zhang (2019a, 2019b), and

Gul, Pesendorfer and Zhang (2019); the focus of these papers is on equilibrium existence,

11Miralles and Pycia (2015) showed that the latter result hinges on the presence of the continuum of agents
and Hafalir and Miralles’ (2015) study more demanding utilitarian welfare. Cf. also Makowski, Ostroy, and
Segal (1999) for classical exchange economies. Subsequent to our work, Bogomolnaia et al. (2017, 2019)
show that the utility profile of the equal-budget pseudomarket mechanisms maximize the Nash product of
utilities; in particular the resulting profile is fully determined by the set of feasible utility profiles.

12For analysis of market design constraints beyond the token money mechanisms, see also e.g. Pycia and
Unver (2015), and Kojima and Kameda (2015). Beyond allocation, the token money ideas were used e.g. in
Manjunath’s (2014) analysis of two-sided matching.

13In this sense we are also contributing to the literature extending the economic analysis of matching and
allocation models beyond the standard substitutes assumption; cf. Sun and Yang (2006), Ostrovsky (2008),
Pycia (2012), Baldwin and Klemperer (2019) for earlier analyses going beyond the substitute assumption.
At the current still early stage of this literature and the literature on constraints, they focus primarily on
existence results most closely related to our secondary result, the First Welfare Theorem.
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particularly in the context of fairness requirements or in the presence of constraints.14

Finally, we contribute to the literature on the Second Welfare Theorem, also known as

the Second Fundamental Theorem of Welfare Economics. The theorem was conjectured by

Pareto (1909), and subsequently refined and developed by many authors. Arrow (1951)

proved the theorem assuming strict concavity of preferences and Debreu (1951) proved it

assuming weak concavity and local non-satiation. Anderson (1988) allowed nonconvex pref-

erences but maintained the assumption of local non-satiation. Florig and Rivera (2010)

established an almost-everywhere Second Welfare Theorem for large markets with a contin-

uum of agents; in contrast, our analysis is valid in finite markets. Richter and Rubinstein

(2015) proposed a general convex geometry approach to welfare economics based on the con-

cept of “primitive equilibrium,” where a strict linear ordering arranges alternatives in order

to create “budget” sets. They proved a Second Welfare Theorem for the primitive equilib-

rium concept; when preferences are strictly monotone, their primitive equilibrium concept

corresponds to the standard equilibrium concept; however, when specialized to our setting,

this equilibrium concept becomes equivalent to the quasi-equilibrium discussed above.15

2 Base Model

We study a finite economy with agents i, j ∈ I = {1, ..., |I|} and indivisible objects x, y ∈
X = {1, ..., |X|}. Each object x is represented by a number of identical copies |x| ∈ N.

By S = (|x|)x∈X we denote the total supply of object copies in the economy. If agents have

outside options, we treat them as objects in X; in particular, this implies that
∑

x∈X |x| ≥ |I|.
We assume initially that agents demand at most one copy of an object; we fully relax this

assumption in Section 4. A canonical interpretation of the single-unit demand model is

school choice, in which each student demands entry to at most one school.

We allow random assignments and denote by qxi ∈ [0, 1] the probability that agent i

obtains a copy of object x. Agent i’s random assignment qi = (q1
i , ..., q

|X|
i ) is a probability

distribution. The economy-wide assignment Q = (qxi )i∈I, x∈X is feasible if the aggregate

assignment (which we will denote as A(Q)) is weakly lower that the supply vector: A(Q) ≡
14Of interest is also Reny (2017), who extends the deterministic analysis of Budish (2011) beyond discrete

outcomes spaces, as well as Baldwin et al. (2020), who study the First Welfare Theorem, and Vazirani and
Yannakakis (2020), who study the complexity of pseudomarket mechanisms.

15In Section 3 we provide an example of a quasi-equilibrium which is not an equilibrium; this quasi-
equilibrium is a primitive equilibrium in the sense of Richter and Rubinstein. To the best of our knowledge
the above discussion covers all extensions of the Second Welfare Theorem beyond Arrow and Debreu. Of
course, the literature on Walrasian equilibria beyond this setting is richer, and—in addition to the papers
cited above—includes, for instance, Bergstrom (1976), Manelli (1991), and Hara (2005) who focused on
equilibrium existence and core convergence rather than on the Second Welfare Theorem.
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∑
i∈I qi ≤ S. Let A denote the set of economy-wide random assignments, and F ⊂ A denote

the set of feasible random assignments. We call an assignment pure, or deterministic, if each

of its elements qxi is either 0 or 1. By the Birkhoff-von Neumann theorem, a feasible random

assignment can be expressed as a lottery over feasible pure assignments.

Agents are expected utility maximizers, and agent i’s utility from random assignment qi

equals the scalar product ui(qi) = vi · qi where vi = (vxi )x∈X ∈ [0,∞)|X| is the vector of agent

i’s von Neumann-Morgenstein valuations for objects x ∈ X.

We study the connection between two concepts: efficiency and equilibrium. A feasible

random assignment Q∗ ∈ F is ex-ante Pareto efficient—or, simply, efficient—if no other

feasible random assignment Q ∈ F is weakly preferred by all agents and strictly preferred

by some agents.

A random assignment Q∗ ∈ F and a price vector p∗ ∈ RX constitute an equilibrium (or

Walrasian equilibrium) for a budget vector w∗ ∈ R|I|+ if Q∗ = (q∗i )i∈I is feasible in the sense

p∗ · q∗i ≤ w∗i for all i ∈ I, and ui(qi) > ui(q
∗
i ) =⇒ p∗ · qi > w∗i for all (qi)i∈I ∈ A.

3 The Second Welfare Theorem for Single-Unit De-

mand

We now develop the Second Welfare Theorem for agents with single-unit demand. The

result is directly applicable to school choice. Furthermore, the analysis serves as an example

illustrating the approach that in the next section we use to derive a general Second Welfare

Theorem for assignment with multi-unit demand.

Theorem 1. (The Second Welfare Theorem for Single-Unit Demand) If Q∗ ∈ F
is Pareto-efficient, then there is a vector of budgets w∗ ∈ R|I|+ and a vector of prices p∗ ∈ R|X|+

such that Q∗ and p∗ constitute an equilibrium with budgets w∗.

Before laying out the proof, let us compare our problem to the standard Second Welfare

Theorem for agents whose preferences are convex and strictly monotonic. The well-known

argument in the standard setting relies on the celebrated separating hyperplane theorem:

for any two disjoint convex sets Y, Z ⊆ Rn there exists a price vector p ∈ Rn and budget

w ∈ R such that p · z ≥ w ≥ p · y for each z ∈ Z and y ∈ Y , thus achieving a partial

separation of Y and Z; the separation is full if one of the inequalities can be assumed to be

strict.16 In the standard proof, Y is the set of aggregate feasible assignments and Z is the

16See e.g. Boyd and Vandenberghe (2004). An alternative proof of the standard Second Welfare Theorem
was offered by Maskin and Roberts (2008): their “revealed preference” approach is inapplicable in our

7



set of (infeasible) aggregate assignments that Pareto dominate a fixed efficient assignment

Q∗ = (q∗i )i∈I we want to implement.17 If now some agent i ∈ I strictly prefers some qi

to q∗i , then Q =
(
qi, q

∗
−i
)

Pareto dominates Q∗ and by the partial separation inequality,

p ·
(
qi +

∑
j∈I\{i} q

∗
j

)
≥ w ≥ p ·

∑
j∈I q

∗
j , where the second inequality can be shown to be an

equality. Setting wi = p · q∗i we conclude that

ui(qi) > ui(q
∗
i ) =⇒ p∗ · qi > w∗i ,

thus prices p and budgets wi give us a so-called quasi-equilibrium .

The key step of the standard proof is then to show that the above quasi-equilibrium is

in fact an equilibrium, that is

ui(qi) > ui(q
∗
i ) =⇒ p∗ · qi > w∗i

for all i ∈ I and for all (qi)i∈I ∈ A. This last step is by contradiction: we take an assignment

Q = (qi)i∈I that Pareto dominates Q∗ while there is an agent i for whom qi costs the same

as q∗i ; in the neighborhood of Q we then find an assignment that still Pareto dominates

Q∗ while being cheaper than it. This is a contradiction as in quasi-equilibrium no cheaper

assignment can Pareto dominate Q∗.

It is this key step of the standard proof that fails in our setting. The standard separating

hyperplane theorem partially separates the Pareto dominating aggregate assignments from

the feasible ones. In the standard argument this is sufficient because the set of Pareto

dominating aggregate assignments is open; in contrast, in the setting we study, this set of

aggregate assignments does not need to be open. In effect, while full separation follows from

the partial one (and hence every quasi-equilirbium is an equilibrium) in the standard setting,

in the discrete setting with locally satiated preferences that we study, the full separation

does not follow from the partial one and not every quasi-equilibrium is an equilibrium. The

standard argument breaks at the claim that there is a cheaper but still Pareto-dominant

assignment; this step relies on the prices of goods being strictly positive, which obtains in

the standard setting as otherwise agents would demand an infinite amount of zero-price

goods. In contrast, zero prices are the staple of our setting as recognized already by Hylland

and Zeckhauser (1979). In particular, in a quasi-equilibrium an agent may be assigned a

setting because it relies on endowing agents with initial shares in objects as opposed to token budgets.
Pseudomarkets do not allow share endowments for reasons explicated in Hylland and Zeckhauser (1979).
Furthermore, Maskin and Roberts (2008) rely on local non-satiation and the resulting property that any
two bundles an agent is indifferent between have the same price; both local non-satiation and the same-price
property fail in our setting. The failure of the latter is illustrated in footnote 26.

17Note that these sets are convex and they are disjoint.
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Figure 1: The simplex of “full-consumption” aggregate assignments. Aggregate assignment
A (Q∗) is on the intersection of the boundaries of sets Y and Z.

zero-price object while he strictly prefers another zero-price object.

As an illustration of these problems, consider the following example.

Example 1. Consider an economy with four agents and three objects. Two of the agents

have von Neumann-Morgenstern utility vector v = (1
2
, 0, 1), and the remaining two agents

have the utility vector v′ = (0, 1, 1
2
). Suppose that there are three copies of object 1, one copy

of object 2, and one copy of object 3. The following allocation Q∗ is then Pareto-efficient:

v-agents obtain q∗ = (1
2
, 0, 1

2
) and v′-agents obtain q∗′ = (1

2
, 1

2
, 0).

The resulting aggregate assignment A (Q∗) is (2, 1, 1). Figure 1 places this point in the

barycentric simplex of aggregate assignments in which exactly four units are assigned, that is

such that for each agent the sum of probabilities of the three goods is 1 (the full-consumption

simplex). Set Y represents feasible aggregate assignments in the simplex; it is the triangle

spanned by (2, 1, 1), (3, 0, 1) and (3, 1, 0). Set Z represents all aggregate assignments A (Q)

in the simplex such that there exists an assignment Q in which all agents are weakly better

off than under Q∗ and at least one agent is strictly better off, and such that A (Q) is the

aggregate assignment of Q (these assignments are, of course, not feasible). Set Z has five

corners:

• (2, 1, 1), the aggregate assignment corresponding to Q∗,

• (1, 2, 1), the aggregate assignment when v-agents obtain q∗ and v′-agents obtain (0, 1, 0),

• (0, 21
2
, 11

2
), the aggregate assignment when v-agents obtain

(
0, 1

4
, 3

4

)
and v′-agents ob-

tain (0, 1, 0),

• (0, 0, 4), the aggregate assignment when each agent obtains good 3

9



• (1, 0, 3), the aggregate assignment when v-agents obtain q∗ and v′-agents obtain (0, 0, 1).

Only the middle three corners belong to Z, and one of the borders of Z, the dashed line, is

disjoint with Z. In particular, the set Z is neither open nor closed.

Restricting attention to the assignments in the simplex, there is a horizontal hyperplane

separating Y and Z. This hyperplane corresponds to prices p3 > p2 = p1 = 0. When

v-agents have budget 1
2
p3 and v′-agents have budget zero, these prices support Q∗ as a

quasi-equilibrium but not as an equilibrium. Indeed, v′-agents would rather buy a sure copy

of object 2 than the lottery q∗′, and both these outcomes have the price of zero.18

We develop a new proof approach to establish the second welfare theorem and to address

the difficulties discussed above and illustrated in Example 1. To understand our approach,

observe that in Example 1, there are non-horizontal hyperplanes that fully separate Y and

Z (in the full-consumption simplex). We show that this is always the case. A key step in

the proof is the following new Full Separation Lemma that establishes that full separation

is possible under conditions that—as we will shortly see—are always satisfied in the discrete

assignment problems. The full separation relies on the assumption that some of the relevant

sets are polytopes, where a polytope is the intersection of a finite number of half spaces.19

Lemma 1. (Full Separation Lemma) Let Y ⊂ Rn be a closed and convex polytope. Let

Z ⊂ Rn be convex, non-empty, and such that its closure Z̄ ⊂ Rn is a closed and convex

polytope. Suppose that Z ∩Y = ∅ and that for all y ∈ Y ∩ Z̄, δ ∈ Rn, and ε > 0 if y+ δ ∈ Z,

then y − εδ /∈ Z̄. Then, there exists a price vector p ∈ Rn
+ and a budget w ∈ R such that for

18As perceptively observed by a referee, this example has several features that might lead one to wonder
whether the problems illustrated by the example can be avoided if we restrict attention to strictly positive
valuations or require non-zero budgets. Such simple solutions would not address the problems illustrated by
Example 1. For instance, we can add any constant to the valuations and multiple it by any scalar and in
such modified example the problematic partially separating hyperplane would still be present even though
all valuations are then strictly positive. We could endow v′-type agents with any positive budget without
otherwise changing the example, and the problematic hyperplane would still be there. We could also modify
the example so that all agents have strictly positive budgets and fully spent them: e.g. we could enrich the
example by adding a fourth good, which only has one unit available, and that types v′ like more than other
goods (and types v do not want to buy); in such a modification of the example, the price of the fourth good
would be strictly positive and equal to twice v′ types’ individual budgets and the problematic hyperplane
would still be present.

19The terminology varies in the literature, with some authors referring to this concept as polyhedra and
reserving the term polytope for compact polyhedra. We use the polytope in the above broader sense; in
particular, our lemma does not rely on compactness. In the proof of our lemma we rely on an elegant Polytope
Separation Lemma that McLennan (2002) developed in an ordinal context unrelated to the problems studied
in our paper, and that was never previously used to analyze Walrasian equilibria. McLennan’s lemma cannot
be substituted for our Full Separation Lemma in the simple proof of our Second Welfare Theorem presented
below because his lemma establishes only partial separation between polytopes, while our proof relies on full
separation established by our lemma. (The December 2014 draft of our paper sketched an alternative direct
proof of our Full Separation Lemma, and we would like to thank Andrew McLennan for directing us to his
lemma as a basis for the current simplified version of our proof).
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any z ∈ Z and y ∈ Y we have p · z > w ≥ p · y and such that for any z̄ ∈ Z̄ and y ∈ Y we

have p · z̄ ≥ w ≥ p · y.

We provide the proof of the lemma in Appendix A.

We can easily visualize the statement of the lemma in the context of Example 1. Both the

set Y of feasible aggregate assignments and the set Z of (infeasible) aggregate assignments

that Pareto dominate Q∗ are polytopes. Our separation lemma states that if every line

through Q∗ and a point in Z has points that belong to the closure of Z only on one side of

Q∗, then there exists a fully separating hyperplane. The line assumption is satisfied in our

example.

The rest of the proof of the second welfare theorem revolves around showing that indeed

the assumption of the lemma is satisfied: no line through Q∗ can intersect the closure of Z

on both sides of Q∗ (see the highlighted claim in the proof below).

Proof of the Second Welfare Theorem. For any random assignment Q ∈ A, we

define the aggregate assignment A (Q) associated with Q to be
∑

i∈I qi, and we write Q � Q∗

when ui(qi) ≥ ui(q
∗
i ) for every i ∈ I with at least one strict inequality.

Let Z = {A (Q) : Q � Q∗, Q ∈ A}, and notice that the above assumption implies that

Z is non-empty. Furthermore, Z is convex. Let Z̄ = Cl(Z) be the topological closure of Z,

and notice that Z̄ is a non-empty convex polytope. Let Y = {A (Q) : Q ∈ F} be the set of

aggregate feasible random assignments. This set is a closed and convex polytope, and the

efficiency of Q∗ implies that Z ∩ Y = ∅.

To use the full separation lemma, we need the following

Claim. For any y ∈ Y ∩ Z̄, δ ∈ R|X| and ε > 0, if y + δ ∈ Z then y − εδ /∈ Z̄.

Proof of the claim: If y + δ ∈ Z then there is a Q � Q∗ such that A (Q) = y + δ.

By way of contradiction, assume y − εδ ∈ Z̄ = Cl(Z). Thus, there is a Q̃ = (q̃i)i∈I such

that ui(q̃i) ≥ ui(q
∗
i ) for every i ∈ I and A

(
Q̃
)

= y − εδ. Then, the random assignment

Q̄ = ε
1+ε

Q+ 1
1+ε

Q̃ is feasible, and the choice of Q and Q̃ and the linearity of utility ui(·) in

probabilities imply that Q̄ � Q∗. But this contradicts the fact that Q∗ is efficient, proving

the claim.

This claim and the full separation lemma imply that there exists a price vector p ∈ R|X|+

and a budget w ∈ R such that p ·z > w ≥ p ·y, for any z ∈ Z and y ∈ Y . Since Q∗ is feasible∑
i∈I q

∗
i ∈ Y and thus p ·

∑
i∈I q

∗
i ≤ w. Furthermore, p ·

∑
i∈I q

∗
i ≥ w because Q∗ ∈ Cl (Z).

We conclude p ·
∑

i∈I q
∗
i = w. Now, if we take some qi that some agent i ∈ I strictly prefers to

q∗i , then qi+
∑

j∈I\{i} q
∗
j ∈ Z, and we have p ·

(
qi +

∑
j∈I\{i} q

∗
j

)
> w = p ·

(
q∗i +

∑
j∈I\{i} q

∗
j

)
.

Consequently we have p · qi > p · q∗i , proving that p and Q∗ constitute an equilibrium for

budgets w∗i = p · q∗i . QED
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4 Multi-Unit Demand: Second and First Welfare The-

orems

We now analyze the validity of our Second Welfare Theorem result in assignment economies

in which participants demand multiple units of goods. As in the base model, we have a set

of agents I and a set of objects X. Each object x ∈ X has a finite number of units (or

copies) |x| ∈ {1, 2, ...} and S = (|x|)x∈X is the supply vector.20 We relax the restriction that

each agent demands at most one unit of goods in total, and allow each agent to demand at

most k ∈ {1, 2, ...} units of various goods in total. We impose no restrictions on the positive

integer k; in particular, it can be larger than the total supply of objects.

Let Bi ⊆ {0, 1, ..., k}|X| be the finite set of admissible individual bundles for agent i, and

let bi1, ..., bi|Bi| denote the elements of Bi. The set Bi can accommodate any restrictions such

as, for instance, that the agent consumes at most quantity 1 of each object. Course allo-

cation is an example of a multi-unit demand setting that satisfies this particular restriction:

in course allocation, Bi =
{
b ∈ {0, 1}|X| :

∑
x∈X b

x ≤ k
}

for each agent i.

An individual random assignment qi ∈ ∆(Bi) of agent i ∈ I is a probability distribution

over Bi. The agent’s expected utility is the scalar product qi ·vi where vi ∈ R|Bi| is the vector

of valuations for each bundle in Bi. For the sake of linear algebra calculations, we represent

the set of bundles Bi by the matrix βi = (βxib)x∈X,b∈Bi
in which βxib is the quantity of object

x in bundle b.

A deterministic assignment of bundles D = (bi)i∈I ∈ ×i∈IBi is feasible if
∑

i∈I bi ≤ S,

coordinatewise. We denote by D the (finite) set of all feasible deterministic assignments

of bundles and by bi(D) the bundle that agent i obtains under the D ∈ D. We assume

throughout that set D is non-empty. Denoting B = ∪iBi, a random assignment of bundles

Q = (qbi )i∈I,b∈B ∈ [0, 1]I×B is feasible in expectation if each q·i has support on Bi and

the expected aggregate assignment does not exceed supply for any good,
∑

i∈I,b∈B q
b
i b ≤

S. A random assignment Q = (qbi )i∈I,b∈B is feasible (or implementable) if there are

nonnegative weights (λD)D∈D ≥ 0 summing up to 1 and such that, for every i ∈ I and

b ∈ B,
∑

bi(D)=b λD = qbi . By F we denote the set of all feasible random assignments. Of

course, every feasible assignment is feasible in expectation.

A random assignment of bundles Q ex-ante Pareto-dominates a random assignment of

bundles Q∗ if qi · vi ≥ q∗i · vi for all i ∈ I, with at least one strict inequality. A feasible

random assignment of bundles Q∗ = {q∗i }i∈I is (ex-ante Pareto) efficient if it is not ex-ante

Pareto-dominated by any feasible random assignment of bundles. A random assignment of

bundles Q∗ is an equilibrium assignment with prices p∗ ∈ R|X|+ and budgets (w∗i )i∈I ∈ R|I|+

20Without affecting the results, we can allow |x| = 0 for all but one object.
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if, for every agent i ∈ I, p∗ · βiq∗i ≤ wi and if qi · vi > q∗i · vi for some random assignment Q

then p∗ · βiqi > wi.

Our single-unit demand Second Welfare Theorem immediately implies the multi-unit

demand Second Welfare Theorem if we allowed separate prices for all bundles. Indeed, then

we can think of agents as having a single-unit demand: each of them demands at most one

bundle.

The analysis becomes more subtle if we require—as in the definition of the competitive

equilibrium above—that the price of a bundle is the sum of prices of the component goods

of the bundle.21 We can then still apply our Full Separation Lemma and replicate the single-

unit demand analysis provided every random assignment that is feasible in expectation is

feasible. This property—established in the single-unit case in the Birkhoff-von Neumann

Theorem—ensures that if we moved from an initial (feasible) aggregate assignment in some

direction to a (non-feasible) Pareto-dominating aggregate assignment, then when moving

in the opposite direction the assignments are not weakly Pareto dominant as otherwise a

proper linear combination of both assignments would be feasible by the Birkhoff-von Neu-

mann property and it would Pareto dominate the initial assignment. In consequence, in

environments satisfying the Birkhoff-von Neumann property we can directly apply our Full

Separation Lemma.

There are multi-unit demand settings in which the Birkhoff-von Neumann property is true

such as, for instance, the setting in which each agent buys up to some quantity cap of each

object, and two lotteries over bundles are treated as equivalent when they are equivalent

as lotteries over the quantities of objects; the equivalence which is natural if each agent

i’s utility from a feasible bundle of objects is given by the sum of agent’s von Neumann-

Morgenstern valuations ṽi =
(
ṽ1
i , ..., ṽ

|X|
i

)
for objects in the bundle, that is the utility from

bundle qi =
(
q1
i , ..., q

|X|
i

)
∈ Xi is the scalar product qiṽ; the utility from other bundles is

zero (cf. Budish et al. 2013).22

At the same time, the Birkhoff-von Neumann Theorem does not in general extend to

21For a taxonomy of bundle prices and discussion of the assumption that the price of the bundle is the sum
of item prices, see Bikchandani and Ostroy (2002). They refer to such prices as linear. We also maintain the
standard assumption that all agents face the same prices, thus the prices we study are anonymous in their
terminology.

22Budish et al. (2013) discuss how any profile of random assignments (qi)i∈I that satisfies the above
constraints can be implemented as lotteries over deterministic assignments. They also prove the First Welfare
Theorem for the case of equal budgets and additive utilities and showed how to use Milgrom’s (2009) integer
assignment messages to reduce certain non-linear preferences to this linear setting. The single-unit demand
setting is the special case of the multi-unit demand setting, in which |i| = 1 for each agent i. As implied
by our discussion of Birkhoff-von Neumann’s property, our Second Welfare Theorem remains true for any
type of consumption constraints Xi that satisfy Birkhoff-von Neumann’s property, e.g. because they satisfy
Budish et al.’s hierarchy condition or Pycia and Unver’s (2015) decomposition conditions.
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multi-unit assignments, as pointed out by Budish et al. (2013) in an example with three

agents and three objects with unit supply. When each agent demands two objects, then

the following random assignment is feasible in expectation but it is not feasible: each agent

receiving a pair of objects (different pair for each agent) with probability 1
2

and receiving

no objects with the remaining probability 1
2
.23 The following example illustrates the same

failure of the Birkhoff-von Neumann property; the example also illustrates our formalism

and lays the ground for the proof of Proposition 1 as well as for Examples 3, 4, and 5.

Example 2. There are four objects with unit supply, and there are two agents, each de-

manding two objects. Thus, the supply vector is S = (1, 1, 1, 1) and the set of admissible

bundles is

B1 = B2 = {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)}.

The random assignmentQ = (q1, q2) where q1 = (1/2, 0, 0, 0, 0, 1/2) and q2 = (0, 0, 1/2, 1/2, 0, 0)

is feasible in expectation because
∑

i∈{1,2},b∈B bq
b
i = S. However, Q is not feasible. We can

see this readily as in Q agent 1 receives either both “left objects” 1 and 2 or both “right

objects” 3 and 4, while agent 2 receives either both “extremal” objects 1 and 4 or both

“middle” objects 2 and 3. More formally, if there is (λD)D∈D ≥ 0,
∑

D∈D λD = 1 meeting

the condition in the definition, then there must be D ∈ D such that b1(D) = (1, 1, 0, 0) and

λD > 0. However, λD > 0 implies that b2(D) ∈ {(1, 0, 0, 1), (0, 1, 1, 0)}. In either case D

generates excess demand for either object 1 or object 2, contradicting D ∈ D.

In environments in which the Birkhoff-von Neumann property may fail, formulating the

analogue of our Theorem 1 requires care. This is demonstrated by the following

Proposition 1. Not every efficient feasible random assignment Q∗ is an equilibrium assign-

ment.

Proof. Consider again the two agents and four objects from Example 2, with the set of

feasible bundles studied in this example. Assume that v1 = (1, 1 − ε, 0, 0, 1 − ε, 1) and

v2 = (0, 1 − ε, 1, 1, 1 − ε, 0) where ε ∈
(
0, 1

2

)
. Consider assignment (q∗1, q

∗
2) such that q∗1 =

(0, 1/2, 0, 0, 1/2, 0) and q∗2 = (0, 1/2, 0, 0, 1/2, 0) where the probabilities of bundles in B are

listed in the same order as the bundles in Example 2. This assignment is feasible because

we can implement it as a 1
2

: 1
2

lottery between two feasible deterministic assignments:

((1, 0, 1, 0), (0, 1, 0, 1)) and ((0, 1, 0, 1), (1, 0, 1, 0)).

23The failure of the Birkhoff-von Neumann property was further analyzed by Nguyen, Peivandi and Vohra
(2016).
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The assignment (q∗1, q
∗
2) is also efficient. By way of contradiction, suppose that some other

assignment (q1, q2) Pareto dominates (q∗1, q
∗
2). As the expected utility from the assignment

Q∗ is 1− ε for both agents, we have

q1
1 + q6

1 + (1− ε)
(
q2

1 + q5
1

)
≥ 1− ε,

q3
2 + q4

2 + (1− ε)
(
q2

1 + q5
1

)
≥ 1− ε,

where superscripts on probabilities q1
i , ..., q

6
i denote the position in which the bundles are

listed in B. Denoting ρ1 ≡ q1
1 +q6

1 = q1
2 +q6

2, ρ2 ≡ q3
1 +q4

1 = q3
2 +q4

2, and ρ3 ≡ q2
1 +q5

1 = q2
2 +q5

2,

and recognizing that 1− ρ3 = ρ1 + ρ2, we can rewrite the above inequalities as

ρ1 ≥ (1− ρ3) (1− ε) = (ρ1 + ρ2) (1− ε) ,

ρ2 ≥ (1− ρ3) (1− ε) = (ρ1 + ρ2) (1− ε) .

Because ε < 1/2, this system of inequalities cannot be satisfied unless ρ1 = ρ2 = 0. Hence,

(q1, q2) must put all the weight on the second and fifth bundle, just like (q∗1, q
∗
2), and we can

conclude that no feasible random assignment Pareto-dominating (q∗1, q
∗
2).

In spite of being feasible and efficient, (q∗1, q
∗
2) cannot be an equilibrium assignment.

Indeed, for any vector of prices p ∈ R|X|+ the cost of each of the bundles q∗1, q∗2, q1 =

(1/2, 0, 0, 0, 0, 1/2), and q2 = (0, 0, 1/2, 1/2, 0, 0) is 1
2

∑
x p

x, while qi · vi > q∗i · vi for both

i ∈ {1, 2}.

4.1 Second Welfare Theorem

In order to recover the Second Welfare Theorem we will strengthen the Pareto efficiency

requirement. We say that a feasible random assignment of bundles Q∗ is strongly efficient

if it is not ex-ante Pareto-dominated by any feasible-in-expectation random assignment of

bundles. Because every feasible assignment is feasible in expectation, strong efficiency is

indeed more demanding than efficiency we studied so far. A positive feature of strong

efficiency, and an advantage over the efficiency concept studied above, is that verifying it

does not require the market participants to verify whether swaps of probabilities can be

implemented; it is the natural concept when thinking in terms of marginal probabilities. In

all settings that satisfy the Birkhoff-von Neumann Theorem, strong efficiency and efficiency

are of course equivalent.

The following result then holds24

24Combining this result and the previous proposition, we can conclude that in the setting of Example 2
efficiency does not imply strong efficiency.
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Theorem 2. (Second Welfare Theorem for General Multi-unit Demands) If a

feasible random assignment of bundles Q∗ is strongly efficient, then it is an equilibrium

random assignment supported by some vector of prices p∗ ∈ R|X|+ and some vector of budgets

w∗ = (w∗i )i∈I ∈ R|I|+ .

We prove this theorem as an immediate corollary from the following

Theorem 3. If a feasible-in-expectation random assignment of bundles Q∗ cannot be ex-ante

Pareto-dominated by any other feasible-in-expectation random assignment of bundles, then

Q∗ is an equilibrium random assignment supported by some prices p∗ ∈ R|X|+ and budgets

(w∗i )i∈I ∈ R|I|+ .

The latter result is more general because it only requires random assignment of bundles

Q∗ to be feasible in expectation.

Remark 1. In both of Theorems 2 and 3, we can add that the equilibrium we construct

satisfies the following complementary slackness condition: px∗ > 0 implies that there is no

excess supply of object x,
∑

i∈I β
x
i q
∗
i = |x|. To see this suppose that there is an excess supply

of object x at assignment Q∗. If 0 <
∑

i∈I β
x
i q
∗
i < |x| then the set of feasible assignments

contains assignments with more of object x than Q∗ as well as assignments with less of

object x than Q∗. In particular, the separating hyperplane between feasible assignments and

dominant assignments contains a line parallel to x-axis. Hence, the resulting price vector is

orthogonal to x-axis and the price of good x is zero. In the remaining case, 0 =
∑

i∈I β
x
i q
∗
i ,

hence q∗i = 0 for all agents i, and the efficiency of assignment Q∗ allows us to set the price

of good x at zero without affecting the equilibrium demands of agents.

To get a sense of the proof of Theorem 3, notice that each random assignment over

bundles determines the expected assignment of agent i over the underlying goods, µi = βiqi.

Because the prices are defined on the underlying goods, every lottery over bundles that leads

to the same expected assignment over the underlying goods has the same price. We can

also input utility to the expected assignment by recognizing that in the equilibrium an agent

buys the lottery over bundles in Bi that maximizes the agent’s utility among all lotteries of

the same price. For every expected assignment µi in the convex hull of Bi—the convex hull

denoted by Co(Bi)—we thus define agent i’s utility Vi from µi as

Vi(µi) = max
{q∈∆(Bi)|βiq=µi}

q · vi.

The following property of this utility function allows us to apply the methods we developed

for the single-demand case and prove the second welfare theorem.
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Figure 2: Piece-wise linearity of preferences over expected allocations.

Lemma 2. (Polytope Lemma) For every µi ∈ Co(Bi), the upper contour set Ui(µi) =

{µ ∈ Co(Bi) : Vi(µ) ≥ Vi (µi)} of assignments better than µi for agent i is a convex polytope.

The proof of this lemma is in Appendix B. The key claim of the lemma is that the upper

contour set is a polytope. To get a sense for why this claim is true consider the example

illustrated in Figure 2. In the figure, agent i has four possible bundles, Bi = {bi1, ..., bi4},
and the the convex hull Co (Bi) takes the shape of the rhomboid. The highlighted dot

represents an expected assignment µi. This expected assignment is a convex combination of

{bi1, bi3, bi4} and it is also a convex combination of {bi2, bi3, bi4}. Indeed, by the well-known

Carathéodory’s theorem, any expected assignment in Co (Bi) is a convex combination of

just three extreme points in Bi.
25 The weights in each of these two convex combinations are

unique, and any other representation of µi as a convex combination of {bi1, bi2, bi3, bi4} can

be decomposed as a convex combination of these two 3-point convex combinations. Taking

into account that Vi(µi) is the maximum of a linear function, to calculate Vi (µi) we only

need to know the utility V at these two 3-point convex combinations. This analysis remains

valid for any expected assignment in the interior of the triangle span by points A, bi3, and

bi4. Thus, the aforementioned triangle can be divided into a finite number (here: two) of

regions on which the set of bundles implementing V is constant. Linearity of the objective

function guarantees that there is a hyperplane separating these two regions. If—as in the

figure—the expected assignment µi is not on this separating hyperplane, then there is a

neighborhood of µi on which the maximizer convex combination comes from the same set,

say {bi2, bi3, bi4}. In the figure, this is true for all points in the interior of the triangle span

by points A,C, and bi3 (note this is a smaller triangle than the one referred to previously).

Thus the preferences are linear in a neighborhood of the expected assignment µi. The

figure represents the neighborhood of µi by a ball, and it also illustrates the parallel linear

25We thank Jordi Massó for directing us to the Carathéodory’s theorem.
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indifference curves and the direction in which utility increases.

Lemma 2 enables us to leverage the methods we developed in Section 3 to prove Theorem

3. The proof, similarly to the proof of Theorem 1, leverages our general Full Separation

Lemma (Lemma 1).

Proof of Theorem 3. Let Y = {m ∈
∑

i∈I Co(Bi) : m ≤ S} be the set of feasible

aggregate expected allocations. Notice that Y is a polytope to which the expected assignment

µ∗i =
∑

i∈I βiq
∗
i of Q∗ = {q∗i }i∈I belongs. Denote the set of aggregate Pareto-improvements

by

Z =

{
m ∈

∑
i∈I

Co(Bi)| (∃(µi)i∈I)

(∑
i∈I

µi = m& (∀i ∈ I)Vi(µi) ≥ Vi (µ
∗
i ) & (∃i)Vi(µi) > Vi (µ

∗
i )

)}
.

Because Q∗ is not ex-ante Pareto-dominated by any other feasible-in-expectation random

assignment, Z ∩ Y = ∅. Furthermore, the aggregate upper contour set U =
∑

i∈I Ui(µi) is

a closure of Z and, by Lemma 2, U is a polytope.

To be able to apply our Full Separation Lemma it remains to verify that for no z ∈ Z
and y ∈ Y , there is ε > 0 such that y− ε(z− y) ∈ U. By way of contradiction suppose there

are such z, y and ε. Then, there is some µ = (µi)i∈I such that
∑

i∈I µi = y − ε(z − y) and,

for all i ∈ I, Vi(µi) ≥ Vi (µ
∗
i ). Because z ∈ Z there is µ′ = (µ′i)i∈I such that

∑
i∈I µ

′
i = z

and, for all i ∈ I, Vi(µ
′
i) ≥ Vi (µ

∗
i ), with strict inequality for some i. Consider the expected

assignment µ′′ = 1
1+ε

µ + ε
1+ε

µ′. By construction,
∑

i∈I µ
′′
i = y ≤ S, and, by convexity of Vi

established in Lemma 2, for all i ∈ I we have Vi(µ
′′
i ) ≥ 1

1+ε
Vi(µi) + ε

1+ε
Vi(µ

′
i) ≥ Vi (µ

∗
i ), with

strict inequality for some i. This contradicts the fact that Q∗ is strongly efficient.

Thus we can apply the Full Separation Lemma to conclude that there is a hyperplane

that fully separates Y and Z. The rest of the proof is standard and follows the same step

as the analogous part of Theorem 1 above. QED

4.2 First Welfare Theorem

An immediate question is whether all equilibrium outcomes are strongly efficient? We ad-

dress this question by proving the First Welfare Theorem for strong efficiency under two

assumptions. We assume that every agent buys a lowest-cost (cheapest) among all optimal

affordable lotteries, a standard assumption in the analysis of the pseudomarkets introduced

and motivated by Hylland and Zeckhauser (1979). The lowest-cost assumption is, for in-

stance, implied by the generic assumption that each agent has a unique favorite bundle,

which immediately implies that each agent buys a cheapest favorite affordable bundle. We

also restrict attention to equilibria satisfying the complementary slackness condition: px∗ > 0
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implies that there is no excess supply of good x,
∑

i∈I β
x
i q
∗
i = |x|.26

Theorem 4. (First Welfare Theorem) Let Q∗ be an equilibrium assignment with prices

p∗ ∈ R|X|+ and budgets (w∗i )i∈I ∈ R|I|+ such that the complementary slackness condition is

satisfied and each agent buys one of her lowest-cost optimal affordable lotteries over bundles.

Then, Q∗ is strongly efficient.

Proof. By way of contradiction, suppose Q∗ = {q∗i }i∈I is not strongly efficient. Then

there is an expected allocation (µi)i∈I such that
∑

i∈I µi ≤ S and Vi(µi) ≥ q∗i ·vi for all i ∈ I,

with at least one inequality strict. If an agent i is not satiated under q∗i —that is with positive

probability her outcome is worse than her most preferred bundle—then p∗ · µi ≥ p∗ · βiq∗i by

the same argument that works in standard Walrasian equilibrium theory with non-satiated

agents.27 If agent i is satiated then the same inequality holds provided she bought the least

expensive most-preferred lottery. The same argument, gives us p∗ · µi > p∗ · βiq∗i for agents

i for whom the inequality Vi(µi) ≥ q∗i · vi is strict. Summing up the inequalities over agents,

we obtain
∑

i∈I p
∗ ·µi >

∑
i∈I p

∗ · βiq∗i . In particular, there is an object x with positive price

px∗ > 0 and such that
∑

i∈I µ
x
i >

∑
i∈I β

x
i q
∗
i . Because px∗ > 0, the complementary slackness

assumption implies that
∑

i∈I β
x
i q
∗
i = |x| (no excess supply). We thus obtain a contradiction

with the assumption that
∑

i∈I µi ≤ S. QED

4.3 Existence

The final question we address is whether strongly efficient assignments—and hence equilibria—

exist. The potential subtlety is that strongly efficient feasible random assignment need to

be favorable compared to both feasible and unfeasible random assignment of bundles. It

turns out that in general a feasible random assignment of bundles that is strongly efficient

might not exist. However, strongly efficient assignments exist in course allocation setting,

the leading example of the multi-unit setting, provided agents’ preferences over bundles are

26The assumption of complementary slackness is justified as we show that all strongly efficient assignments
can be implemented via equilibria satisfying complementary slackness, cf. Remark 1. Complementary
slackness is however a more substantive assumption than in environments with local non-satiation where it
is trivially satisfied. The reason to impose the lowest cost assumption can be seen in the following example
with one unit of object x, two units of object y and three agents. Agent 1 strictly prefers x to y, agent
2 strictly prefers y to x, and agent 3 is indifferent. The following is an equilibrium in which each of these
agents has budget of 1: the price of good x is 2, the price of good y is 0, agents 1 and 3 buy probability
.5 in good x and probability .5 in good y, agent 2 buys probability 1 in good y. This equilibrium violates
the lowest-cost assumption and it is inefficient as it is dominated by an allocation in which agent 1 buys
probability 1 of good x, while each of the remaining agents buy probability 1 of good y.

27Suppose p∗ · µi < p∗ · βiq∗i and let bi be a most preferred bundle of agent i. We can then find a small
weight α > 0 such that Vi(αbi + (1−α)µi) > q∗i · vi and p∗ · (αb∗i + (1− α)µi) ≤ p∗ · βiq∗i , contradicting that
q∗i was an optimal choice in i’s budget set.
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strict; strict preferences are generic.28

Theorem 5. (Existence) In course allocation, if agents’ preferences over bundles are strict,

then there exists a feasible deterministic assignment that is strongly efficient.

Proof. We construct the strongly efficient assignment via a serial dictatorship mech-

anism. Fix an arbitrary ordering of agents, say 1, ..., |I|. Let 0 denote the bundle with 0

units of each object. Let B∗1 ⊆ B1 be the set of bundles b such that (b, 0, ..., 0) is feasible;

we assign to agent 1 his or her most preferred bundle b1 in B∗1 . Let B∗2 ⊆ B2 be the set of

bundles b such that (b1, b, 0, ..., 0) is feasible; we assign to agent 2 his or her most preferred

bundle b2 in B∗2 . Proceeding recursively, we define a feasible deterministic assignment. Note

that the mechanism is well-defined because in the course allocation setting B∗1 , B
∗
2 , ..., B

∗
|I|

are non-empty and, thanks to the strict preference assumption, each agent i has the most

preferred bundle in B∗i .

It remains to verify that the resulting assignment is strongly efficient. By way of contra-

diction suppose that Q = (qi)i∈I is a strictly dominant random assignment that is feasible in

expectation. Agent by agent, we show that qi put probability 1 on assignment bi constructed

above. Consider agent 1. If bundle b̃ ∈ B1 − B∗1 then the failure of feasibility would imply

that b̃x > |x| for some object x ∈ X; this cannot happen in course allocation where b̃x ≤ 1

and |x| ≥ 1. Thus, the support of the lottery q1 is contained in B∗1 . Furthermore, because b1

is 1’s the unique most favorite bundle in B∗1 and the support of q1 is contained in B∗1 , Pareto

efficiency implies that q1 puts entire probability on b1.

Consider agent 2. If bundle b̃ ∈ B2 − B∗2 then b̃x > |x| − bx1 for some object x ∈ X; this

can only happen when bx1 = 1 and |x| − bx1 = 0. As Q is feasible in expectation, the expected

number of units of x in q2 is zero, and we conclude that b̃x = 0 for all bundles in the support

of q2. Thus, the support of q2 is contained in B∗2 . Furthermore, because b2 is i2’s the unique

most favorite bundle in B∗2 and the support of q2 is contained in B∗2 , Pareto efficiency implies

that q2 puts entire probability on b2.

Proceeding recursively, we find that the analysis for agent 3 and for subsequent agents is

analogous to the analysis for agent 2. If bundle b̃ ∈ Bi − B∗i then b̃x > |x| − bx1 − ... − bxi−1

for some object x ∈ X; this can only happen when bxi = 1 and |x| − bx1 − ...− bxi−1 = 0. We

conclude that the support of qi is contained in B∗i and hence that qi puts entire probability

on bi. In effect, Q puts probability 1 on
(
b1, ..., b|I|

)
which is the assignment of the serial

dictatorship mechanism. Hence, Q does not strictly Pareto dominate the outcome of the

mechanism; a contradiction that proves the assignment of the serial dictatorship is strongly

efficient. QED

28We illustrate the role of the course allocation and strict preference assumptions in Examples 4 and 5
below. The restriction to course allocation was missing in our 2017-2020 drafts.
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Remark 2. The proof of Theorem 5 shows not only that there exists strongly efficient as-

signments but also that the serial dictatorships used in the proof always generate strongly

efficient outcomes.

The existence theorem is less straightforward than it might ex ante appear. First, not

all Pareto efficient deterministic outcomes are strongly efficient, even in course allocation

setting with strict preferences. Second, the strong efficiency of serial dictatorships is not

guaranteed in general multi-unit environments. Third, the assumption of strict preferences

is needed for the result. These three points are illustrated by the following examples.

Example 3. To see that not all Pareto efficient deterministic outcomes are strongly effi-

cient, consider the environment of Example 2 allowing that bundles in which agents receive

fewer than two courses are also admissible.29 Suppose that—in the terminology from Ex-

ample 2—agent 1 strictly prefers the left bundle (1, 1, 0, 0) to the right bundle (0, 0, 1, 1)

and strictly prefers the latter to all other bundles. Suppose that agent 2 strictly prefers the

extreme bundle (1, 0, 0, 1) to the middle bundle (0, 1, 1, 0), strictly prefers the middle bundle

to the left bundle, and strictly prefers the latter to all other bundles. Then, the deterministic

assignment in which agent 1 receives the right bundle and agent 2 receives the left bundle

is Pareto efficient. At the same time, this deterministic assignment is not strongly efficient

because it is dominated by the feasible-in-expectation random assignment (q1, q2) from Ex-

ample 2, which gives the 50-50 lottery over left and right bundle to agent 1 and gives 50-50

lottery over extreme and middle bundle to agent 2.

Example 4. To see how some feasibility constraints may cause existence problems, let us

modify Example 2 so that

B1 = {(1, 1, 0, 0), (1, 0, 0, 1), (0, 0, 1, 1)}, B2 = {(1, 1, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0)}.

Then, only two deterministic assignments are feasible: either agent 1 receives (1, 0, 0, 1) while

agent 2 receives (0, 1, 1, 0); or agent 1 receives (0, 0, 1, 1) while agent 2 receives (1, 1, 0, 0). If

the valuation vectors satisfy v
(1,1,0,0)
1 > v

(0,0,1,1)
1 > v

(1,0,0,1)
1 and v

(1,0,0,1)
2 > v

(0,1,1,0)
2 > v

(1,1,0,0)
2 ,

then, for each agent, the value of any feasible deterministic assignment is strictly lower than

the expected value of the random assignment (q1, q2) from Example 2; the random assignment

(q1, q2) is feasible in expectation but it is not feasible. In effect, in this modification of

Example 2, no feasible assignment is strongly efficient.

29The admissibility of these bundles plays no role in the argument but the course allocation model requires
it.
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Example 5. To see the need for the strict preference assumption, consider again Example

2 allowing that bundles in which agents receive fewer than two courses are also admissible.

Fix ε ∈
(
0, 1

2

)
, and let the values of admissible bundles be equal to 0, except for

v
(1,1,0,0)
1 = v

(0,0,1,1)
1 = v

(1,0,0,1)
2 = v

(0,1,1,0)
2 = 1,

v
(1,0,1,0)
1 = v

(0,1,0,1)
1 = v

(1,0,1,0)
2 = v

(0,1,0,1)
2 = 1− ε.

As ε > 0, all deterministic assignments—and hence all feasible random assignments—are

Pareto dominated by the feasible-in-expectation random assignment (q1, q2) from from Ex-

ample 2. Indeed, (q1, q2) gives expected utility 1 to each agent, while any deterministic

assignment either gives utility 1 − ε to both agents, or it gives utility 0 to both agents, or

it gives utility 0 to one of the agents and 1 to the other. In particular, in this example no

feasible assignment is strongly efficient.30

4.4 Constraints

Our model allows for many design constraints such as e.g. reserving some seats in a school

for a group of applicants, while allowing all applicants to compete for the remaining seats;

to model such constraint we create an auxiliary object “reserved seats” and we define the

sets Bi in such a way that individual allocations with copies of the reserved seats object are

feasible only for the selected group of applicants.

Furthermore, our First and Second Welfare Theorems (Theorems 1-4) remain valid—with

no changes in proofs—under any conjunction of linear constraints imposed on random and

deterministic assignments as long as the set of feasible assignments remains nonempty.31 Our

existence result (Theorem 5) and its proof remain valid under any conjunction of nonnega-

tive integer upper bounds on unweighted sums of probabilities of arbitrarily selected agents

receiving arbitrarily selected objects.

30This example hinges on indifferences and, unlike Example 3, it is non-generic; indeed, Theorem 5 implies
that generically at least one deterministic assignment is strongly efficient.

31Indeed, under any such conjunction of constraints the polytopes in the proofs of our Second Welfare
Theorems (Theorems 1, 2, and 3) remain polytopes and all the steps of the proofs and all our lemmas,
including our Full Separation Lemma, remain applicable. The proof of the First Welfare Theorem (Theorem
4) remains valid because imposing a conjunction of linear constraints preserves the convexity of sets we work
with; for the role of convexity in this proof see footnote 27.
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5 Conclusion

We have established the Second Welfare Theorem for the general class of single-unit demand

and multi-unit demand discrete allocation problems. We show that in large range of mar-

ket design settings—including school choice, course allocation, and refugee resettlement—

efficient assignments can be implemented by token price mechanisms, thus providing the

foundations for the literature’s focus on such mechanisms. Our Second Welfare Theorem

has already played the role of a revelation principle for discrete mechanism design.32

In addition to this substantive insight, we developed a novel approach to analyzing Wal-

rasian markets in which agents’ preferences fail the standard local non-satiation assumption;

our approach builds on the polytope properties of the Walrasian markets for discrete re-

sources.

Our analysis allows arbitrary utility profiles over bundles of objects and arbitrary linear

constraints, thus contributing both to the literature on constraints in market design as well

as the literature on complementarities and substitutes discussed in the introduction.

A Proof of Lemma 1 (Full Separation Lemma)

We say that Z̄ is partially separated (or simply, separated) from Y when there is scalar

w ∈ R and price vector p ∈ Rn such that p · z̄ ≥ w ≥ p · y for all z̄ ∈ Z̄ and y ∈ Y. We say

that Z is fully separated from Y when there is scalar w ∈ R and price vector p ∈ Rn such

that p · z > w ≥ p · y for all z ∈ Z and y ∈ Y.
Let P be a polytope in Rn that is the intersection of a finite number of half spaces; each

half-space bounded by a hyperplane. Let H1, ..., HK be the set of these hyperplanes; we refer

to them as the hyperplanes defining P . A face of P is an intersection P ∩ (∩k∈JHk) for

some J ⊆ {1, ..., K}, and we also call the empty set a face of P .33 The affine hull of a set,

denoted aff, is the collection of all finite linear combinations of points in the set with weights

adding up to 1 (with negative weights allowed, as opposed to a convex hull). In the proof we

will use McLennan’s (2002) Separating Hyperplane Theorem, which states the following:34

Lemma 3. (McLennan’s Separating Hyperplane Theorem) Suppose Y ⊂ Rn and

Z̄ ⊂ Rn are polyhedra. Let FY be the intersection of all faces of Y that contain Y ∩ Z̄ and

let FZ̄ be the intersection of all faces of Z̄ that contain Y ∩ Z̄. If aff(FY ∪ FZ̄) 6= Rn, then

32Cf. Miralles and Pycia (2015), Miralles (2017) and Schlegel and Mamageishvili (2019), as well as other
papers discussed in the introduction.

33Notice that we allow J = ∅ and hence P is a face of itself.
34McLennan developed this theorem in an ordinal context unrelated to the problems studied in our paper,

and it was never previously used to analyze Walrasian equilibria.
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there is a hyperplane H that separates Rn into two half spaces H+ and H− where Y ⊆ H−

and Z̄ ⊆ H+ such that Y ∩H = FY and Z̄ ∩H = FZ̄.

As a consequence we conclude

Lemma 4. Suppose Y ⊂ Rn and Z̄ ⊂ Rn are polyhedra. Let FY be the intersection of all

faces of Y that contain Y ∩ Z̄ and let FZ̄ be the intersection of all faces of Z̄ that contain

Y ∩ Z̄. Either there exists a hyperplane H that separates Rn into two half spaces H+ and H−

where Y ⊆ H− and Z̄ ⊆ H+ such that Y ∩H = FY and Z̄∩H = FZ̄, or else aff(FY ∪FZ̄) = Rn

and Y = FY and Z̄ = FZ̄.

Proof of Lemma 4. If aff(FY ∪FZ̄) 6= Rn then the claim follows from McLennan’s Lemma.

It remains to consider the case when aff(FY ∪ FZ̄) = Rn. Suppose we embed Y and Z̄ in

Rn×R as Y ×{0} and Z̄×{0}, respectively. Then, McLennan’s Lemma implies the existence

of a hyperplane H that separates Rn+1 into two half spaces H+ and H− where Y ×{0} ⊆ H−

and Z̄ × {0} ⊆ H+ such that Y × {0} ∩H = FY × {0} and Z̄ × {0} ∩H = FZ̄ × {0}. The

two inclusions allow us to infer that Y × {0} ⊆ H and Z̄ × {0} ⊆ H. Furthermore, the two

equalities and aff(FY ∪ FZ̄) = Rn allows us to conclude that H = Rn × {0}. The claim of

Lemma 5 then follows. QED

We now turn to the proof of our Full Separation Lemma. We may assume that Y ∩ Z̄ is

non-empty as otherwise the lemma follows from the standard separating hyperplane theorem

for closed convex sets.35 Let S be the affine hull of Y ∩ Z̄. Being an affine hull, S is a linear

subspace of Rn. Furthermore, S is a linear subspace of dimension lower than n. Indeed, if

not then the convexity of Y ∩ Z̄ would imply that there is an open ball B ⊂ Y ∩ Z̄ around

some point y∗ ∈ Y ∩ Z̄. But then, taking any z ∈ Z and setting δ = z − y∗, we would find

an ε > 0 such that y∗ − εδ ∈ B contrary to y∗ − εδ 6∈ Z̄.

Let FZ̄ be the intersection of all faces of Z̄ that contain Y ∩Z̄, that is FZ̄ is the intersection

of Z̄ with all hyperplanes that define faces of Z̄ and contain Z̄ ∩ Y . Similarly, let FY be

the intersection of all faces of Y that contain Y ∩ Z̄. From Lemma 4, we know that either

(i) there exists a hyperplane H that separates Rn into two half spaces H+ and H− where

Y ⊆ H− and Z̄ ⊆ H+ such that Y ∩H = FY and Z̄ ∩H = FZ̄ , or else (ii) aff(FY ∪FZ̄) = Rn

and Y = FY and Z̄ = FZ̄ .

Consider case (i). Because Z ∩H ⊆ Z ∩FZ̄ , to prove that H fully separates Z and Y , it

is sufficient to show that Z ∩ FZ̄ = ∅ . Suppose not. FZ̄ is non-empty. If FZ̄ is a singleton

then let z be the only point contained in FZ̄ . Because Z̄ ∩ Y = FZ̄ ∩ Y is nonempty, we

conclude that z ∈ Y and because Z ∩ FZ̄ is non-empty we conclude that z ∈ Z. But this

35The theorem says that there is a fully separating hyperplane for any two disjoint convex closed sets in
Rn, see e.g. Boyd and Vandenberghe (2004).
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contradicts Z ∩ Y = ∅. We can thus assume that FZ̄ contains at least two points. Define

the relative interior of a set to be the interior of this set in the linear space spanned by the

affine hull of this set. Because FZ̄ is a convex polytope, its relative interior, denoted ri(FZ̄),

is nonempty. Because FZ̄ is the intersection of Z̄ and all the hyperplanes Hk defining Z̄ and

containing Y ∩ Z̄, we can infer that Y ∩ ri(FZ̄) 6= ∅. Indeed, if Y ∩ ri(FZ̄) = ∅ then the

intersection Y ∩ Z̄ = Y ∩ FZ̄ of the polytopes Y and Z̄ would be disjoint with the relative

interior of FZ̄ and hence, being convex, this intersection would be contained in a face of FZ̄

that is a proper subset of FZ̄ . But this is a contradiction as FZ̄ is the smallest face of Z̄

containing Y ∩ Z̄. Let thus a ∈ Y ∩ ri(FZ̄), and, by way of contradiction, assume that there

is z∗ ∈ Z ∩ FZ̄ . Because z∗ ∈ FZ̄ and a ∈ ri(FZ̄), we infer that a − ε[z∗ − a] ∈ FZ̄ ⊆ Z̄ for

any ε > 0 small enough, and the assumptions of our lemma imply that a + [z∗ − a] 6∈ Z, a

contradiction.

Finally, we show that case (ii) cannot happen. If it did then Z̄ = FZ̄ and hence Z̄ itself

would be the only face of Z̄ that contains Y ∩ Z̄. Because Y is convex, this would imply

that Y has a non-empty intersection with the relative interior of Z̄. Let a ∈ Y ∩ ri(Z̄) and

let z∗ ∈ Z. Because z∗ ∈ Z̄ and a ∈ ri(Z̄), we infer that a− ε[z∗−a] ∈ Z̄ for any ε > 0 small

enough, and the assumptions of our lemma imply that a+ [z∗− a] 6∈ Z, a contradiction that

concludes the proof of the Full Separation Lemma. QED

B Proof of Lemma 2 (Polytope Lemma)

The next two lemmas jointly imply the result.

Lemma 5. (Convexity) Preferences represented by Vi are convex.

Proof. Take λ ∈ [0, 1] and µi, µ
′
i ∈ Co(Bi). We need to show that λVi(µi) + (1 −

λ)Vi(µ
′
i) ≤ Vi (λµi + (1− λ)µ′i). By the definition of V , there is q ∈ ∆(Bi) such that βiq = µi

and Vi(µi) = q · vi. Similarly, there is q′ ∈ ∆(Bi) such that βiq
′ = µ′i and Vi(µ

′
i) = q′ · vi.

Then,

λVi(µi) + (1− λ)Vi(µ
′
i)

= [λq + (1− λ)q′] · vi
≤ max
{q′′∈∆(Bi)|βiq′′=λµi+(1−λ)µ′i}

q′′ · vi

= Vi(λµi + (1− λ)µ′i)

where the inequality follows because βi[λq + (1 − λ)q′] = λµi + (1 − λ)µ′i, and hence q′′ =

λq + (1− λ)q′ is in the set the maximum above is taken over. QED
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Lemma 6. (Local Affinity) Let i be an agent. Let L be the linear space spanned by Bi and

let d be its dimension. For almost every µi ∈ Co(Bi), there exists a convex L-neighborhood

M ⊆ Co(Bi) of µi such that Vi is an affine function of µ on M ; that is, for all µ, µ′ ∈ M
and λ ∈ [0, 1], Vi (λµ+ (1− λµ′)) = λVi (µ) + (1− λ)Vi (µ

′).

Proof. The set D of expected assignments in Co (Bi) that can be represented as a

convex combination of d or fewer points in Bi is of measure zero in L. This claim follows

from two observations. First, the convex hull of any d or fewer points is of dimension at

most d − 1, and hence of measure zero in the d-dimensional space L. Second, there is only

a finite number of subsets in Bi because Bi itself is finite.

Let us fix an expected assignment µi ∈ Co(Bi)−D. Let Bi (µi) be the set of all B ⊆ Bi

such that |B| ≤ d + 1 and µi is a convex combination of elements from B. Because µi 6∈ D
we infer that each B ∈ Bi (µi) has exactly d+1 elements. Bi (µi) is finite because Bi is finite.

Bi (µi) is nonempty because Carathéodory’s Theorem tells us that µi can be represented as

a convex combination of d + 1 elements of Bi. Furthermore, for any B ∈ Bi (µi) there is

exactly one convex combination of elements of B that gives µi. Indeed, if there were two

such convex combinations then µi would also be a convex combination of elements from a

proper subset of B; a contradiction because |B| = d+ 1 and µi 6∈ D.

By definition of Vi, there is B ∈ Bi (µi) such that Vi (µi) = q · vi for some q ∈ ∆(Bi) such

that µi = βiqi, and qb > 0 iff b ∈ B. Let us denote by µ1, ..., µd+1 the expected assignments

that belong to B. For any ε ∈
(
0,min

{
qb|b ∈ B

}
∪
{

1− qb|b ∈ B
})

, the set Bε of convex

combinations of elements of B with weight on each b ∈ B taken from
(
qb − ε, qb + ε

)
is a

convex full-dimensional open subset of Co (Bi), and hence a convex L-neighborhood of µi.

We claim that for sufficiently small ε > 0, all expected assignments in Bε have a unique

decomposition as a convex combination over a subset of Bi (µi), and this unique decompo-

sition is over B. Indeed, if not then there is a sequence of µ`i ∈ Co (Bi) that tends to µi as

`→∞ and such that all µ`i have at least two convex decompositions over subsets of Bi (µi).
Same argument as above shows that then all µ`i ∈ D and we can select a subsequence `n

such that all µ`ni are convex combinations of the same d (or fewer) points in B. But then

µi = limn→∞ µ
`n
i would also be a convex combination of the same d (or fewer) points in B,

a contradiction.

Take ε that is sufficiently small in the sense of the above claim. Then, µi is an arbitrary

element of the full measure subset of Co (Bi), and the uniqueness of the convex decomposition

implies that for all q ∈ ∆(Bi) such that qb > 0 iff b ∈ B and βiq belongs to the convex

neighborhood M = Bε of µi, the utility Vi (βiq) = q · vi. Thus, Vi is affine on M . QED
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