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ARTICLE

Landsat time series reveal simultaneous expansion and 
intensification of irrigated dry season cropping in Southeastern 
Turkey
Philippe Rufin a,b, Daniel Müller a,b,c, Marcel Schwieder a,d, Dirk Pflugmacher a 

and Patrick Hostert a,b

aGeography Department, Humboldt-Universität zu Berlin, Berlin, Germany; bIntegrative Research Institute on 
Transformations of Human-Environment Systems, Humboldt-Universität zu Berlin, Berlin, Germany; cInstitute of 
Farm Economics, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Halle, Germany; 
dInstitute of Farm Economics, Thünen-Institut, Institute of Farm Economics, Braunschweig, Germany

ABSTRACT
Long-term monitoring of the extent and intensity of irrigation systems is 
needed to track crop water consumption and to adapt land use to 
a changing climate. We mapped the expansion and changes in the 
intensity of irrigated dry season cropping in Turkey´s Southeastern 
Anatolia Project annually from 1990 to 2018 using Landsat time series. 
Irrigated dry season cropping covered 5,779 km² (± 479 km²) in 2018, 
which represents an increase of 617% over the study period. Dry season 
cropping was practiced on average every second year, but spatial varia-
bility was pronounced. Increases in dry season cropping frequency were 
observed on 40% of the studied croplands. The presented maps enable 
the identification of land use intensity hotspots at 30 m spatial resolution, 
and can thus aid in assessments of water consumption and environmental 
degradation. All maps are openly available for further use at https://doi. 
org/10.5281/zenodo.4287661.
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Introduction

Irrigated agriculture boosts crop production through more intensive use of land, particularly in 
water-limited regions (Malek et al., 2018; Rosa et al., 2018). Water inputs enable cropland expansion 
on areas with insufficient precipitation, the introduction of additional crop types, a reduction of 
fallow years, or allow a higher frequency of cropping on existing cropland (Erb et al., 2013; Foley 
et al., 2011). However, inadequate management of irrigation systems and inefficient use of land and 
water resources are key problems in irrigated agriculture (Gerten et al., 2011; Jägermeyr et al., 2015). 
Specifically, in semi-arid to arid conditions, water-intensive crops and irrigation practices can lead to 
soil salinization (Singh, 2016). Long-distance water allocation increases seepage and evaporation 
losses, which adds to the risk of water scarcity (Mekonnen & Hoekstra, 2016; Porkka et al., 2016) and 
compromises irrigation-induced productivity increases (Rufin et al., 2018).

The spatial patterns, extent, and use intensity of many irrigated lands are currently not well 
understood (Ray & Foley, 2013), partly because statistics and reports are costly to produce and can be 
biased due to over- or underreporting of water use (Deines et al., 2019; Özdoğan et al., 2006). Cost- 
efficient monitoring of land and water resource use in irrigated production systems is urgently 
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needed. Remote sensing offers great potential for monitoring the extent and use intensity of 
irrigated agriculture across administrative borders, institutional settings, as well as management 
regimes (Löw et al., 2018; Özdoğan et al., 2010). Annual information on irrigated area extent at 
appropriate spatial resolution helps to understand the spatio-temporal patterns and trends of land- 
use intensity and can support land-use planning and policy towards attaining more efficient land 
and water resource use in water-limited production systems (Ambika et al., 2016; Chen et al., 2018).

Openly available remote sensing data support decadal analyses and monitoring of land cover and 
land use over large areas (Wulder et al., 2012; Zhu et al., 2019). The Landsat data record provides 
a suitable basis for such applications, as it spans more than three decades at 30 m spatial resolution 
with global coverage (Wulder et al., 2019). Cloud computing platforms such as Google Earth Engine 
(Gorelick et al., 2017) facilitate access to these data archives, thereby enabling remote sensing 
scientists to analyze large amounts of satellite imagery without the need for local server infrastructure.

In this context, land use mapping has substantially advanced through increased use of time series 
analysis techniques (Dong et al., 2019). Time series at the pixel-level can be statistically summarized 
as metrics that capture the distribution or variance of the spectral reflectance over a given period, 
commonly referred to as spectral-temporal metrics. Spectral-temporal metrics are increasingly used 
as a means to map land use at high thematic detail (Rufin et al., 2019; Wulder et al., 2018) and over 
long time frames (Dara et al., 2020; Deines et al., 2019). Spectral-temporal metrics in combination 
with state-of-the-art machine learning algorithms enable the production of multi-decadal land use 
maps in agricultural systems (Schmidt et al., 2016; Waldner et al., 2017). The resulting time series of 
land use maps can be translated into long-term land-use intensity indicators that reveal cropland 
expansion and intensification patterns, which in turn are essential for estimating water consumption 
in irrigated systems (Deines et al., 2019, 2017).

Turkey is the second-largest consumer of irrigation water amongst the Mediterranean countries 
due to the enormous demand in southeast Anatolia (Daccache et al., 2014). The region comprises 
Turkey´s largest regional development project, the Southeastern Anatolia Project (Güneydoğu 
Anadolu Projesi, GAP), which aimed at diverting and storing water from the Euphrates and Tigris 
rivers to irrigate 18,000 km² of arable land by 2005 (GAP, 2017). The envisaged completion of the GAP 
was delayed as parts of the infrastructure development were on hold due to geopolitical and socio- 
cultural disputes (Hommes et al., 2016). Currently, the operational areas of the GAP are mainly used 
to cultivate water-intensive crops during the dry summer months, mostly cotton and corn (Bilgen, 
2018a; USDA, 2018). Cotton production is responsible for the major share of the Turkish irrigation 
water consumption (Daccache et al., 2014) and the water requirements for cotton in the semi-arid to 
arid GAP region exceed those of all other production regions of Turkey (Cetin, 2020; Ertek & Yilmaz, 
2014). A better understanding of the patterns and trends of dry season cropping in Southeastern 
Anatolia is thus urgently needed, particularly in the face of future water shortages under a changing 
climate (Fader et al., 2016; Malek et al., 2018).

The objective of this study is to quantify the expansion and intensification of irrigated dry season 
cropping in the GAP region between 1990 and 2018 using Landsat time series. We address three 
main research questions:

(1) How has the extent of irrigated dry season cropping changed since 1990?
(2) What are the spatial patterns of dry season cropping frequency?
(3) How did land use intensity in terms of dry season cropping frequency change in the study 

period?
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Data & methods

Study area

The GAP is a large-scale development project that covers 75,000 km² and accounts for nearly 10% of 
the Turkish land area across nine provinces in Southeastern Anatolia (Figure 1). The region has an 
arid to semi-arid climate with precipitation between 200 and 600 mm/year, while potential evapora-
tion frequently exceeds 2,000 mm/year. The land and water resource program of the GAP comprises 
major infrastructure developments, including 22 dams for electricity generation and irrigation water 
provision, as well as 1,400 km of irrigation canal networks and tunnels. Two major tunnel systems 
deliver irrigation water from the Atatürk reservoir in Adıyaman province to the Harran and 
Ceylanpınar plains in Şanlıurfa since April 1995 (UNEP, 2004). The GAP was initiated by the Turkish 
State Hydraulic Works, with envisioned completion in 2005 (Bilgen, 2018b), but is currently still under 
development due to numerous delays (Kankal et al., 2016). In 2017, 5,459 km² (30% of the originally 
targeted area) were reported to be under irrigation (GAP, 2017).

Irrigation is essential for dry season cultivation due to the near-zero precipitation between July 
and September (Özdoğan et al., 2006). Until 1995, the region was dominated by the cultivation of 
winter and spring crops, such as wheat, barley, lentils, and chickpeas, which are commonly harvested 
until the end of June (Beaumont, 1996; Metin Sezen & Yazar, 2006). Dry season cropping expanded 
after the construction of the GAP irrigation infrastructure. The dominant crops grown in the dry 
season are cotton and corn (Özdoğan et al., 2006; Özerol & Bressers, 2017), hereafter referred to as 
dry season crops. The share of irrigated cotton cultivation increased drastically in the GAP region due 
to relatively low production costs and growing demand from the domestic textile sector (Solakoglu 
et al., 2013). Cotton covered 3,100 km² of the cropland in 2018, which corresponds to 56% of the 
national cotton production area (USDA, 2018). Dry season cultivation in semi-arid to arid conditions 
is extremely water-intensive, and the water requirements for corn and cotton production in the GAP 
region exceed those of other production sites in Turkey on average by 51% for corn and 182% for 
cotton (Cetin, 2020).

Figure 1. Location of the GAP region in Turkey (overview in the upper left corner). The main map shows a true-color satellite 
image (composited from Landsat ETM+ and OLI data) of August 2015.
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Mapping dry season cropping

We produced 29 annual maps of dry season cropping for the period between 1990 and 2018 in 
several steps: First, we collected an extensive set of training data for 2015, a year with close-to- 
normal precipitation and temperature levels in the GAP region (Figure S1) and with high Landsat 
data availability (Table S1). Second, we trained a classification model based on these training data 
and spectral-temporal metrics for the year 2015. Third, we computed Landsat-based spectral- 
temporal metrics for each year between 1990 and 2018 and generated the maps using the 2015 
classification model. Finally, we estimated classification accuracy, dry season crop area, and con-
fidence intervals for each year using stratified estimation.

Training data
We targeted a binary class catalog consisting of dry season cropping (including double-cropped 
areas with harvests before the dry season crop) and one aggregate class for all other types of land 
cover or land use. The latter included water, non-vegetated land, grasslands, open to closed canopy 
shrublands and forests, winter crops (cereals and pulses), perennials (pistachio and olive trees), and 
fallow cropland. We collected training data as polygons with a minimum mapping unit of nine pixels 
(0.81 ha) and a maximum size of 30 ha using pixel-based Landsat composites (Frantz et al., 2016; 
Griffiths et al., 2013), a gap-filled time series of the Enhanced Vegetation Index (EVI) covering 
2014–2016 (Rufin et al., 2019), and very high-resolution imagery available in Google Earth. We 
collected 568 training polygons across the GAP provinces, of which 37% represented dry season 
crops. We used all pixels located entirely within the polygons for model training (n = 10,780).

Spectral-temporal metrics
Spectral-temporal metrics are suitable to generate gap-free datasets over large areas, while at the 
same time providing information on land surface phenology. Spectral-temporal metrics have been 
widely used in large-area mapping applications in agricultural landscapes (Phalke & Özdoğan, 2018; 
Rufin et al., 2019; Waldner et al., 2017). We used Google Earth Engine (Gorelick et al., 2017) for 
producing a set of spectral-temporal metrics to discriminate dry season crops from the remaining 
land use and land cover classes in the GAP region. We used all available precision and terrain 
corrected images of the Landsat Collection 1 Surface Reflectance product acquired by the Landsat 
TM, ETM+, and OLI sensors (L1TP Tier 1), covering the growing season of the main dry season crops 
(July 1st to September 30th) in the GAP area for the years 1990 to 2018. This time window was defined 
according to the regional crop calendar (Figure 2), as it coincides with the maturity stage of dry 
season crops and has been shown to provide valuable information for Landsat-based mapping of dry 
season cropping amongst other cropping practices across Turkey (Rufin et al., 2019). Cloud, cloud- 
shadows, and snow were masked based on the cloud information contained in the Landsat 
Collection 1 quality bands (Zhu et al., 2015). We calculated band-wise spectral-temporal metrics 
that capture the distribution of reflectance values (25th percentile, median, 75th percentile, inter-
quartile mean), and the variability of reflectance in the dry season (standard deviation and inter-
quartile range) for each Landsat spectral band in the visible, near-infrared, and shortwave infrared 
wavelengths (totaling 36 features). For an overview of the number of images included and the 
average number of clear observations per year, please see Table S1.

Classification
We trained a Random Forest classification model (Breiman, 2001) based on the training samples and 
the spectral-temporal metrics of 2015. We used 250 trees and the square root of the number of input 
features at each split to identify the best feature. We subsequently used this classification model to 
classify all years, resulting in a time series of 29 binary maps covering the years 1990 to 2018. As 
irrigation infrastructure is a long-term investment, we eliminated pixels with only one year of dry 
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season cultivation over the study period for the subsequent analyses to reduce the effect of one-time 
commission errors on further analysis steps (Deines et al., 2017).

Estimating land use intensity

We performed a series of post-processing steps to capture land use intensity and its change at the 
pixel level (Figure 3). From the time series of maps, we derived the first year with dry season crops, 
the total number of years with dry season crops, and dry season cropping frequency (DSCF) as the 
percentage of all years with dry season crops after (i.e., excluding) the first year (Figure 3A). In the 
next step, we calculated long-term land use intensity indicators (Figure 3B). We calculated five-year 
dry season cropping frequency (5-year DSCF) for every year, which captures the share of years with 
dry season crops within a five-year moving window (accordingly only derived two years after the 
initial cultivation until 2016). Finally, we performed a pixel-wise linear regression using 5-year DSCF 
as dependent and time as an independent variable to identify linear trends in the 5-year DSCF. We 
limited this analysis to pixels with the first dry season crop before 2012 to ensure a minimum period 
of four years. The analysis yielded a spatially explicit representation of the linear regression coeffi-
cients, their standard error, as well as the statistical significance (p-values). We assessed the overall 
trend magnitude since the onset of dry season cropping as a proxy for intensification or dis- 
intensification. We included only significant trends (p < 0.05) with substantial trend magnitudes 
exceeding 25%, as absolute trend magnitudes below 25% were considered unsubstantial. We 
categorized significant and substantially positive or negative trend magnitudes into weak (25% to 
50%), moderate (50% to 75%), and strong (75% to 100%).

Figure 2. Regional crop calendar, indicating the start (circle) and end (square) of the planting phase (green) as well as the harvest 
period (orange) for six major crops in the GAP region. Yellow shading represents the time window for the inclusion of Landsat 
images. Data on the crop calendars were compiled from the Turkish Ministry of Agriculture and Forestry. Planting and harvesting 
dates were not available for all crops and provinces.
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Accuracy assessment and area estimation

We used a stratified random sample of 1,260 Landsat pixels to estimate map accuracies and class 
areas. The validation sample size was estimated by targeting a 1% standard error of overall 
accuracy and assuming a 90% user´s accuracy for the dry season cropping and other classes 
(Cochran, 1977). As strata, we used a map of the initial cultivation year to cover different cropping 
periods, leading to 40 samples per year and 100 samples in permanent non-cropped areas. Each 
validation pixel was labeled as either dry season crop or other land cover using spectral time series 
plots and medoid composites of the growing season (Flood, 2013), assuming that crop cover 
prevails throughout most parts of this period (Özdoğan et al., 2006). We downloaded the compo-
site time series using code produced for the TimeSync Legacy software (Kennedy et al., 2018) and 
visualized the composite time series in QGIS using the EO Time Series Viewer (Jakimow et al., 
2020). To aid interpretation and to exclude potential areas of permanent vegetation, plantations, 
or seasonally inundated areas, we visually inspected each point location in very high-resolution 
imagery available in Google Earth.

Class labels for 179 samples could not be determined due to mixed pixel effects, i.e., where 
samples were located amidst neighboring parcels or in highly fragmented landscapes. We used the 
resulting 1,081 reference samples to estimate area-adjusted accuracies and error-adjusted area 
proportions of the dry season crop area for the entire GAP region (Olofsson et al., 2014; Stehman, 
2014). We then calculated the first year of dry season cultivation, the number of years under dry 
season cropping and the DSCF for the reference samples to assess agreement between the map 
products and the reference data. We also calculated linear regression coefficients, R² and RMSE for 
the first year of cultivation, the total number of years under dry season cultivation, as well as DSCF. 
Finally, the dry season crop area for the entire region was estimated based on the reference samples. 
At the province level, we used the mapped area totals, due to an insufficient number of samples 
within provinces to allow for stratified estimation.

Figure 3. Schematic representation of pixel-level post-classification analyses. A time series of binary information on fallow or 
cultivated land was used to derive the initial cultivation year and DSCF (A), and 5-year DSCF, the linear trend in 5-year DSCF as 
well as the magnitude of the trend (B).
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Results

Accuracy assessment

High map accuracies underline the robustness of our approach. Overall map accuracies ranged 
between 98.1% (± 0.8%) in 2009 and 99.8% (± 0.3%) in 1990 (Table S1). In most years, the omission 
(underestimation) of dry season crops tended to be higher than the commission (overestimation, 
Figure 4). The mean producer´s accuracy for dry season crops over the study period was 82.4% 
(ranging from 45.9% to 97.5%), and the mean user´s accuracy was 91.0% (ranging from 67.3% to 
97.1%). The low producer´s accuracies of some early years partly corresponded with reduced data 
availability. However, other years with low data availability had high accuracies (e.g., 1990), and vice 
versa (e.g., 2009), and thus no clear relationship between data availability and accuracy was apparent 
(Table S2). It is noteworthy that our region-wide area estimates are unbiased as they were generated 
using a sample-based estimator.

We found high agreement between reference datasets and post-classification derivates (Figure S2), 
such as the total number of years under dry season cropping (β = 1.07, R² = 0.93, RMSE = 1.8 years). The 
most frequent errors were one-time commission on permanent non-cropland (n = 77), supporting the 
strategy of restricting analyses to regions with at least two years of dry season cropping. The 
mapped year of initial dry season cultivation was also highly correlated with the reference data 
(β = 0.922, R² = 0.85, RMSE = 3.4 years), similarly to the cropping frequency measure (β = 0.902, 
R² = 0.85 and an RMSE of 11.8%).

Expansion of dry season cropping

The start of the water transfer to Şanlıurfa and Mardin (cf. Figure 1) in 1995 marked the onset of dry 
season cultivation expansion in the GAP region. Our area estimates revealed a 617% increase in dry 
season cropped area since 1990 (Figure 5; top), from 935.53 km² (± 192.00 km²) in 1990 to 5,778.87 km² 
(± 479.32 km²) in 2018. The dry season cropped area increased with an annual rate of βyear = 170.86 km² 
(standard error 9.22 km², R² = 0.93), with deviations from this trend in 1995, 1998, 2007, and 2008.

Expansion occurred at varying rates in different parts of the GAP region (Figure 5; bottom) and 
concentrated in Şanlıurfa and Mardin throughout the study period, largely driven by the irrigation 
expansion in the Harran and Ceylanpınar plains. Expansion rates in Mardin increased drastically in 
the early and mid-2000s but declined in more recent years. Overall, the remaining provinces showed 

Figure 4. Estimates of user´s (black) and producer´s (grey) accuracy for summer crops. Error bars indicate 95% confidence 
intervals. Orange bars indicate the average number of clear sky observations in the respective year.
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declining expansion rates since the late 1990s and nearly halted in some of the western (Adıyaman, 
Kilis, Gaziantep) and eastern provinces (Batman, Siirt, Şırnak; Table S3).

Maps of the first dry season crop year reveal a detailed view of how dry season cropping expanded 
throughout the GAP provinces (Figure 6). In the first decade, dry season cropping was established 
mostly in Adıyaman (Figure 6A), Şırnak (Figure 6I), and Şanlıurfa´s Harran plain (Figure 6G). More 
recently, dry season crops expanded to Diyarbakır (Figure 6B), Gaziantep (Figure 6C), western and 
eastern Şanlıurfa (Figure 6),D,H and Mardin (Figure 6F). Large agglomerations of pivot-irrigated crop-
lands replaced older rectangular parcels in the border region of Şanlıurfa and Mardin after 2010 
(Figure 6E).

Patterns of dry season cropping frequency (DSCF)

Dry season cropping frequency (DSCF) expresses the percent of years with dry season cropping 
relative to all years after initial dry season cropping for each pixel. The average DSCF in the study 
region in the years after 1995 was 50.8%, with distinct variability between provinces. Mean DSCF was 
highest in Şanlıurfa with 57.4%, Mardin with 55.7%, and Diyarbakır with 42.7%, whereas all other 
provinces had a mean DSCF below 35%. The lowest mean DSCF was found in large distances to the 
main infrastructures of the GAP, namely the eastern provinces Siirk with 21.0%, Şırnak with 26.3%, 
and in the western province of Kilis with 26.0%.

Figure 5. Annual dry season cropped areas in the GAP region between 1990 and 2018 with error bars indicating the 95% 
confidence intervals (top), and province-level shares of the total annual expansion (bottom).
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A total of 6.6% of the area was cultivated during the dry season every year. We here considered 
a DSCF of 80% as a threshold for permanent cultivation (Deines et al., 2017). Following this definition, 
15.6% of the croplands established since 1995 were permanently cultivated. On the contrary, 14.4% 
of the croplands showed a DSCF of less than 20%. The least and most intensively used 10% of the 

Figure 6. Maps of the first year of dry season cropping for the entire GAP region and selected areas.
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study area each covered an area of 731.12 km² and had a cropping frequency of 13.6%, and 92.8%, 
respectively. Spatially explicit patterns reveal differences in cropping frequency across and within 
regions (Figure 7). DSCF was generally high in Şanlıurfa and Mardin. For instance, a DSCF above 80% 
was common in the Harran plain (Figure 7G), where some croplands exist since the mid-to-late 

Figure 7. Fraction of years with dry season cropping after the initial cropping year (i.e., dry season cropping frequency, DSCF; in 
%).
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1990s. Likewise, croplands in western Mardin (Figure 7F) were frequently used. Intermediate DSCF of 
40–80% occurred in Adıyaman and Şırnak (Figure 7 A, I), while lower DSCF occurred in eastern 

Şanlıurfa (Figure 7 E, H) and Diyarbakır (Figure 7 B) where dry season crops were introduced more 
recently.

Trends of dry season cropping frequency

We calculated pixel-wise linear regressions of 5-year DSCF to identify areas in which substantial 
changes in cropping frequency occurred between the initial cultivation and the year 2016 (Table 1). 
The analysis revealed that 57.5% of the croplands underwent significant and substantial changes in 
cropping frequency over time. Negative trends were detected in 17.4% and positive trends in 40.1% 
of the study area, indicating that intensification processes dominated in the study period. On the 
contrary, 42.5% of the croplands in the study region did not show substantial trends.

Contrasting spatial patterns of trends in 5-year DSCF were visible at the province level (Figure 8). 
Intensification patterns dominated in Şanlıurfa and Mardin, where positive trends occurred on 50% 
of the cropland. The largest shares of dis-intensification were observed in Adıyaman, Batman, 

Table 1. Trend magnitudes of five-year dry season cropping frequency.

Trend Magnitude Class Share of Cropland

< −75% Strongly negative 2.2%
−50% – −75% Moderately negative 4.8%
−25% – −50% Weakly negative 10.5%
−25% – +25% Insignificant/unsubstantial 42.5%
+25% – +50% Weakly positive 15.9%
+50% – +75% Moderately positive 13.7%
> +75% Strongly positive 10.5%

Figure 8. Province-level shares of trend class. The category ‘Unsubst./Insign.’ contains pixels with insignificant trends (p > 0.05) as 
well as those with magnitudes between −25% and 25%. For spatial patterns of DSCF trend magnitude and significance levels see 
Figures S 3 and S4.
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Diyarbakır, and Gaziantep, where negative trends occurred on one-quarter of the cropland or more. 
A strong local-level variability regarding trend strength and direction was abundant between 
neighboring parcels throughout most parts of the GAP (Figure S3, Figure S4).

Discussion

We characterized the spatio-temporal evolution of dry season irrigation in Turkey´s largest irrigation 
scheme by analyzing Landsat time series across 29 years. Our findings document the transformation 
of a rainfed agro-pastoralist system into an intensively used landscape through the expansion and 
intensification of irrigated agriculture. This drastic change was accompanied by a plethora of social, 
ecological, and economic externalities (Bilgen, 2018b; Bilgili et al., 2018; Özerol & Bressers, 2017). 
Excessive water consumption and soil salinization caused by area-based water pricing schemes, the 
absence of water use monitoring, low water-use efficiency, and water-intensive cropping patterns 
constitute the core challenges in the GAP region. Here we seek to contextualize our findings in light 
of these issues and outline opportunities to inform land management in the GAP region, or similar 
arid to semi-arid irrigation systems.

Water pricing in Turkey is based on the irrigated land area and crop type and does not impose 
volumetric restrictions on water use (Cakmak, 2010). Economic incentives to switch to water-saving 
methods are lacking, since the quantity of water used at the farm level is neither monitored nor 
incorporated into the irrigation fee. As a consequence, irrigation water use has been excessive and, 
combined with insufficient drainage, drastically raised the extent of saline lands in the GAP region 
(Bilgili et al., 2018; Kendirli et al., 2005). Our maps provide opportunities to assess cropland use 
history over three decades at 30 m spatial resolution and can thus serve as a spatially detailed 
indicator for soil salinization risk. For instance, our maps document that Şanlıurfa´s Harran plain has 
been used since the onset of the GAP project with rising intensity. The risk for environmental 
degradation is likely aggravated in this particularly dry region, and many studies already documen-
ted increasing soil salinity due to excessive irrigation (Altinbilek & Tortajada, 2012; Bahçeci & Nacar, 
2009; Bilgili et al., 2018; Çullu, 2003).

Low water use efficiency stems from high rates of evaporation, seepage, and inefficient irrigation 
techniques, which further increase pressure on water resources in the GAP region (Cakmak et al., 
2004; Unver, 1997; Yazar et al., 2002). The majority of the irrigation canals are open, with few 
subsurface piped systems (Özerol & Bressers, 2017). On-farm irrigation is primarily based on flood 
and furrow irrigation. Some farmers installed drip and sprinkle systems with subsidized credit from 
the Ministry of Agriculture after 2005 (Topcu et al., 2019). The persistence of inefficient irrigation 
techniques has been related to the regional land ownership structure. Approximately 40% of the 
farmers in the GAP region are landless, tenants, or smallholders with only a few hectares of land 
(Miyata & Fujii, 2007) who are risk-averse, lack collaterals to access credits, and rarely undertake 
costly investments into irrigation infrastructure (Demirdöğen et al., 2016; Topcu et al., 2019). 
Improving water use efficiency accordingly requires policies that incentivize the required invest-
ments for landowners, landless tenants, and smallholders (Özerol & Bressers, 2017).

The choice of crops determines water consumption and optimized cropping patterns are needed 
to reduce future water demand. Agricultural support payments are effectively controlling the crop 
choice in the GAP region (Demirdöğen et al., 2016; Özerol & Bressers, 2017). Subsidies on inputs 
(fertilizer, pesticides, fuel, irrigation fees, seeds) and output (crop-specific support payments), and 
the growing domestic textile sector explain the drastic expansion of cotton production (Solakoglu 
et al., 2013). Before the irrigation expansion, cotton cultivation covered less than 3% of Şanlıurfa and 
Mardin (Beaumont, 1996), and was also foreseen to occupy only a small share of the newly irrigated 
croplands (Özdoğan et al., 2006). In 2018, however, cotton was the major dry season crop in the GAP 
region and covered 3,100 km² or 54% of the dry season cropped area (USDA, 2018).

The estimation of crop water requirements over time and space can benefit from integrating 
annual maps of dry season crops with province-level crop production statistics and climate datasets. 
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Such information is particularly useful in the GAP region given the lack of spatially and temporally 
detailed data on water consumption. Moreover, such data can inform the spatial optimization of 
cropping patterns that aim at reduced water consumption (Davis et al., 2017). Given that climate 
change will likely elevate crop-water requirements in the Mediterranean (e.g., by 8% to 18% for 
cotton; Fader et al., 2016), such assessments allow to better explore the option space in future crop 
production (Fader et al., 2016; Malek et al., 2018).

We mapped the distribution of dry season cropping wall-to-wall for the GAP region over 29 years 
on an annual basis, which amends previous assessments of dry season crop expansion based on 
remote sensing (Özdoğan et al., 2006). The maps revealed an average expansion rate of 170 km² 
per year. Notably, 75% or more of the recent annual expansion and the majority of intensification 
occurred in only two provinces: Şanlıurfa and Mardin (Figure 5). This highlights the relevance of 
Şanlıurfa and Mardin in terms of production and as potential hotspots of future environmental 
degradation. Both provinces should hence be considered priority targets for agro-environmental 
policies targeting the protection of land and water resources. The estimates for the frequency of dry 
season cropping provide useful information in this regard, for instance, in assessing the compliance 
to new rules in agricultural support payments, which reject payments to farmers not rotating crops 
regularly (USDA, 2020). Dry season crops were cultivated on average every second year, but 10% of 
the croplands experienced dry season cropping in nine out of ten years since the first cultivation, for 
instance, in the Harran plain.

Contradicting policy paradigms of subsidizing water-saving techniques in parallel to supporting 
water-intensive crops and promoting cropland expansion in hydroclimatically unsuitable regions are 
apparent in the GAP region and other parts of the Mediterranean (Molle & Tanouti, 2017). Failure to 
improve the efficiency and management of irrigated systems in the Mediterranean under climate 
change will increase water scarcity, lead to the contraction of irrigated agriculture (Fader et al., 2016; 
Malek & Verburg, 2018), and foster further water-related conflicts across borders (Harris, 2002; 
Schillinger et al., 2020).

Our method for mapping dry season cropping annually for three decades relied on Landsat-based 
spectral-temporal metrics as a means for temporally consistent cropland mapping (Deines et al., 
2017; Schmidt et al., 2016). Limited availability of reference data is a key constraint for mapping land 
cover time series in agricultural regions (Bégué et al., 2018). Here, we demonstrated that temporally 
consistent land use maps can be produced with training data from a single year. Transferring 
classification models through time and space requires that the image effects unrelated to land 
cover are minimized (Woodcock et al., 2001). The results of our independent validation speak in favor 
of the temporal consistency of spectral-temporal metrics. However, the accuracies of the dry season 
crop class were less stable in the early study period (e.g., 1995) and selected recent years (e.g., 2007 
to 2009). Classification errors may be related to annual variations in the temporal distribution of 
Landsat observations, variations in temperature and precipitation that altered crop calendars, or 
combinations thereof. While a detailed investigation is beyond the scope of this study, further 
research can help to systematically isolate the sensitivity of spectral-temporal metrics towards 
these factors to further narrow down the sources of uncertainty. Our regional area estimates, 
however, are unbiased as they are based on a probability sampling design and stratified estimation 
(Olofsson et al., 2014; Stehman, 2014).

Conclusions

Assessing the dynamics of irrigated areas is essential to inform land and water resource management. 
We used a 29-year time series of Landsat imagery to quantify the expansion, cropping frequency, and 
changes thereof for irrigated dry season cultivation in Turkey´s largest irrigation scheme. The combi-
nation of Landsat-derived spectral-temporal metrics and a non-parametric classification algorithm 
yielded a robust long-term characterization of the regional cropping system at 30 m spatial and 
annual temporal resolution. The need for extensive reference datasets on irrigation status could be 
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circumvented in the GAP region as dry season cultivation is fully based on irrigation and the spectral 
information contained in spectral-temporal metrics and composites facilitated the generation of 
accurate training and validation datasets. The approach thus offers potential for deriving long-term 
indicators of dry season cultivation in other semi-arid or arid irrigation systems.

Our maps revealed a six-fold expansion of dry season crops since 1990. Fields were on average 
cultivated every second dry season, with tendencies of intensification in 40% of the cropland. The 
agroecological conditions of the GAP region, coupled with low water use efficiency, area-based water 
pricing, and support payments favoring water-intensive crops, inflict excessive water consumption. 
Trade-offs between the envisioned expansion and intensification of irrigated cropland should be 
carefully evaluated to avoid future water shortages and land degradation. The long-term land use 
intensity indicators presented here can be combined with data on local biophysical conditions 
(precipitation, drought indices, soil quality), land management (e.g., irrigation technique, crop rota-
tions, governance in water user associations), agricultural policies (e.g., crop-specific subsidies, rotation 
rules), market developments (e.g., variations in commodity prices), and production output (e.g., crop 
yield or market value) to assess key determinants of water demand and land use intensity, as well as 
their implications on the regional water resource base and downstream water users.
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