
Bruns, Martin; Lütkepohl, Helmut

Working Paper

Comparison of local projection estimators for proxy Vector
Autoregressions

DIW Discussion Papers, No. 1949

Provided in Cooperation with:
German Institute for Economic Research (DIW Berlin)

Suggested Citation: Bruns, Martin; Lütkepohl, Helmut (2021) : Comparison of local projection
estimators for proxy Vector Autoregressions, DIW Discussion Papers, No. 1949, Deutsches Institut
für Wirtschaftsforschung (DIW), Berlin

This Version is available at:
https://hdl.handle.net/10419/234456

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/234456
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Discussion  
Papers

Comparison of Local Projection  
Estimators for Proxy Vector  
Autoregressions

Martin Bruns and Helmut Lütkepohl

1949

Deutsches Institut für Wirtschaftsforschung  2021



Opinions expressed in this paper are those of the author(s) and do not necessarily reflect views of the institute. 

IMPRESSUM 

© DIW Berlin, 2021

DIW Berlin 
German Institute for Economic Research 
Mohrenstr. 58 
10117 Berlin 

Tel. +49 (30) 897 89-0 
Fax +49 (30) 897 89-200 
http://www.diw.de 

ISSN electronic edition 1619-4535 

Papers can be downloaded free of charge from the DIW Berlin website: 
http://www.diw.de/discussionpapers 

Discussion Papers of DIW Berlin are indexed in RePEc and SSRN: 
http://ideas.repec.org/s/diw/diwwpp.html 
http://www.ssrn.com/link/DIW-Berlin-German-Inst-Econ-Res.html 

http://www.diw.de/
http://www.diw.de/discussionpapers
http://www.ssrn.com/link/DIW-Berlin-German-Inst-Econ-Res.html


Comparison of Local Projection Estimators

for Proxy Vector Autoregressions

Martin Bruns1

University of East Anglia, School of Economics,
Norwich Research Park, NR4 7TJ, Norwich, United Kingdom

email: martin.j.bruns@gmail.com

and

Helmut Lütkepohl
DIW Berlin and Freie Universität Berlin, Mohrenstr. 58, 10117 Berlin,

Germany
email: hluetkepohl@diw.de

May 26, 2021

Abstract. Different local projection (LP) estimators for structural impulse
responses of proxy vector autoregressions are reviewed and compared alge-
braically and with respect to their small sample suitability for inference.
Conditions for numerical equivalence and similarities of some estimators are
provided. A new LP type estimator is also proposed which is very easy
to compute. Two generalized least squares (GLS) projection estimators are
found to be more accurate than the other LP estimators in small samples. In
particular, a lag-augmented GLS estimator tends to be superior to its com-
petitors and to perform as well as a standard VAR estimator for sufficiently
large samples.

Key Words: Structural vector autoregression, local projection, impulse re-
sponses, instrumental variable

JEL classification: C32

1 Introduction

In structural macroeconometric analysis, local projection (LP) estimators of
impulse responses, as proposed by Jordà (2005), have become increasingly

1We thank Jörg Breitung, Ralf Brüggemann, Dake Li, Mikkel Plagborg-Møller and
Christian Wolf for helpful comments on an earlier version of this paper.
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popular despite some evidence that they may be inefficient in small samples if
the true underlying data generating process (DGP) is a vector autoregression
(VAR) (e.g., Meier (2005), Kilian and Kim (2011), Choi and Chudik (2019)).
LP estimators are based on linear regressions only, while VAR based impulse
responses are nonlinear functions of the VAR slope coefficients. Thereby
LP estimators can be defended as nonparametric estimators of impulse re-
sponses (Angrist, Jordà and Kuersteiner (2018), Stock and Watson (2018)).
They are sometimes regarded as more robust to model deficiencies, which
can excuse their small sample inefficiency in standard scenarios. Also, there
has been evidence that, in some small sample situations, the loss in effi-
ciency may be quite limited, depending on the choice of the VAR lag order
(Brugnolini, 2017). However, based on a large number of DGPs that do not
have a finite-order VAR representation, Li, Plagborg-Møller and Wolf (2021)
conclude that impulse response estimates based on approximating VARs tend
to have much smaller variances than LP estimates but the latter may have
smaller bias in small samples. Plagborg-Møller and Wolf (2021) present gen-
eral conditions for VAR and LP methods to be equivalent tools for impulse
response analysis in population.

In this study we focus on a structural VAR setup where the true DGP is a
finite-order VAR process and the structural shocks are linear transformations
of the reduced-form errors. We also assume that an external instrument or
proxy is used to estimate the impact effects of a shock and, thus, the struc-
tural parameters (see Stock and Watson (2012), Mertens and Ravn (2013),
Gertler and Karadi (2015)). In other words, we focus on a conventional proxy
VAR framework. If a suitable external instrument exists, it is also possible to
use LP estimators for the corresponding structural impulse responses (e.g.,
Breitung and Brüggemann (2019), Plagborg-Møller and Wolf (2021)).

The potential small sample inefficiencies of LP estimators have motivated
research in modifications with better small sample properties. By now, a
number of alternative LP estimators have been proposed (e.g., Plagborg-
Møller and Wolf (2017), Stock and Watson (2018), and Breitung and Brüg-
gemann (2019)). The objective of this study is to review and compare the
different LP estimators for proxy VAR models in our framework. We derive
similarities between the different estimators and even provide conditions for
some of them to be numerically equivalent. Some of these results are not
apparent from the previous literature. Moreover, we present new residual
based LP-type estimators which are very easy to compute. We also compare
the small sample properties of the various estimators in a Monte Carlo study.

Anticipating the results, we find that two generalized least squares (GLS)
projection estimators dominate the other LP estimators in terms of root
mean squared error (RMSE). A lag-augmented GLS version proposed by
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Breitung and Brüggemann (2019) is the best performing estimator for smaller
processes and it is about as accurate in terms of RMSE as a competing LP
GLS estimator for larger VAR models. The lag-augmented GLS estimator
also yields small confidence intervals which may, however, have coverage
below the desired nominal coverage if they are constructed with a moving-
block bootstrap. For moderately large samples, the estimator has similar
properties to the standard VAR estimator if the true DGP is a finite-order
VAR process, as assumed in the following.

The study is structured as follows. In the next section the proxy VAR
model is presented which is the basis for the LP estimators included in our
comparison. In Section 3, the alternative estimators for structural impulse
responses are discussed, including the new proposals. Section 4 reports small
sample results and Section 5 concludes.

2 Proxy VAR Models

2.1 The General VAR Setup

Consider a K-dimensional reduced-form VAR process of order p (VAR(p)),

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut. (2.1)

The reduced-form error, ut = (u1t, . . . , uKt)
′, is a serially uncorrelated, zero

mean white noise process with covariance matrix Σu, i.e., ut ∼ (0,Σu). The
VAR(p) model can be written alternatively in the form

yt+h = νh + A(h+1)Yt−1 + v
(h)
t+h, (2.2)

where νh is a constant vector which depends on the integer h, Y ′t−1 = (y′t−1,
. . . , y′t−p) is a Kp-dimensional vector of lagged dependent variables,

v
(h)
t = ut + Φ1ut−1 + · · ·+ Φhut−h (2.3)

is a weighted sum of the reduced-form errors ut, . . . , ut−h and

A(h) = [A
(h)
1 , . . . , A(h)

p ]

is the (K ×Kp) dimensional matrix consisting of the first K rows of the hth

power of the companion matrix

A =


A1 A2 . . . Ap−1 Ap
IK 0 . . . 0 0
0 IK 0 0
...

. . .
...

...
0 0 . . . IK 0

 .
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The (K×K) weighting matrices Φi in (2.3) are equal to the first K columns of

A(i), i.e., Φi = A
(i)
1 . They can be computed equivalently as Φi =

∑i
j=1 Φi−jAj

from the VAR slope coefficients, using Φ0 = IK and Aj = 0 for j > p (Lüt-
kepohl (2005, Section 2.1.2) or Kilian and Lütkepohl (2017, Section 12.8)).

The vector of structural errors, wt = (w1t, . . . , wKt)
′, is assumed to have

instantaneously uncorrelated components, i.e., its covariance matrix, Σw, is
diagonal. The structural errors are obtained from the reduced-form errors,
ut, by a linear transformation, ut = Bwt, where B is the matrix of impact
effects of the shocks on the observed variables yt. If the nonsingular (K×K)
matrix B is known, the structural impulse responses can be computed as
ΦhB for h = 0, 1, . . . , H.

Note that for stable, stationary VAR processes satisfying the condition

det(IK − A1z − · · · − Apzp) 6= 0 for |z| ≤ 1, (2.4)

i.e., the determinantal polynomial has no roots in and on the complex unit
circle, yt has moving average (MA) representations,

yt = µ+
∞∑
i=0

Φiut−i = µ+
∞∑
i=0

ΦiBwt−i. (2.5)

In the following we assume that the impulse responses of the first struc-
tural shock, w1t, are of primary interest. If only one structural shock is of
interest, this choice does not entail a loss of generality because the shocks
can be reordered freely. Hence, we only need the first column, denoted by
b = (b1, . . . , bK)′, of the structural matrixB to compute the impulse responses
to the first shock as Φhb, h = 0, 1, . . . . In line with much of the proxy VAR
literature, we also assume that the size of the shock is such that it increases
one of the variables on impact by one unit. Without loss of generality, we
assume that the first shock has a unit impact effect on the first variable,
possibly after rearranging the variables. In other words, the first element of
b is unity, b1 = 1. If structural impulse responses up to a propagation horizon
of H periods are of interest, we collect them in the (K × (H + 1)) matrix

Θ = [θ0, θ1, . . . , θH ] = [b,Φ1b, . . . ,ΦHb], (2.6)

where the first element of θ0 is θ10 = b1 = 1. In this study, we will consider
alternative estimators of Θ.
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2.2 The Proxies

Suppose there are N external instrumental variables in the (N × 1) vector zt
(called proxies in the following) satisfying

E(w1tz
′
t) = c′ 6= 0 (relevance), (2.7)

E(wktz
′
t) = 0, k = 2, . . . , K (exogeneity). (2.8)

Here c is a fixed N -dimensional vector. These conditions imply that

E(utz
′
t) = BE(wtz

′
t) = bc′.

In other words, the proxies zt identify multiples of the first column of B.
If proxies are available that satisfy conditions (2.7) and (2.8), then the

impact effects can be obtained as

b = θ0 = E(utz
′
t)QE(ztu1t)/E(u1tz

′
t)QE(ztu1t) (2.9)

for any positive definite (N ×N) matrix Q and then the matrix of structural
impulse responses of interest, Θ, can be determined as in (2.6), using the Φh

of the reduced-form VAR(p) model.
Stock and Watson (2018) also require the following lead-lag exogeneity

condition for some of their theoretical results to hold:

E(wt+iz
′
t) = 0 for i 6= 0 (lead-lag exogeneity). (2.10)

Although this condition does not exclude serially correlated zt, the proxy
has to be such that it is not predictable from past yt because yt and its
lags depend on the shocks wt (see equation (2.5)). However, what we have
in mind in the following are proxies that mimic the shock of interest and,
hence, have no serial correlation. This will also be reflected in the way we
generate the proxies in the simulations in Section 4.

In applications it is not uncommon that there is only one proxy such that
N = 1 and zt is a scalar variable. In that case, equation (2.9) reduces to

b = θ0 = E(utzt)/E(u1tzt).

Although N = 1 is a common case in practice, we allow for the general case
of N > 1 proxies in our theoretical framework. However, we will present the
estimators of interest also for the case N = 1 to make the formulas easier to
digest.

One could also extend the framework such that more than one shock is
identified by a set of proxies. Typically that requires additional assumptions
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for separately identifying the individual shocks and their impulse responses.
Once those assumptions are imposed, the shocks and their impulse responses
can be considered one by one. Therefore we focus on inference for impulse
responses of a single shock in the following.

In the next section, estimation of Θ is discussed. A standard estimator
based on estimating the Φh from reduced-form estimators of the VAR slope
coefficients is presented in addition to alternative LP estimators.

3 Estimators of Structural Impulse Responses

We first present the standard proxy VAR approach for estimating struc-
tural impulse responses. It is our benchmark against which we compare the
alternative projection approaches discussed subsequently. To simplify the
exposition, we will present the different estimators for a scalar proxy first
and mention the necessary modifications for a vector of proxies at the end of
each section. Thus, zt is now a scalar proxy variable if not explicitly stated
otherwise.

It is assumed that for estimation a gross sample size T is available, in-
cluding all required presample and lead values of the observable variables.
For a fair small sample assessment of the different estimators, it is important
to consider the same gross sample size for each of them because the estima-
tors differ also in the number of presample and lead values needed in their
calculations and, hence, they differ in the net sample size they are using.

3.1 The Standard VAR Approach

Estimators of the Φi matrices may be obtained from estimators, Âi, of the
reduced-form VAR model in equation (2.1) using the recursions

Φ̂i =
i∑

j=1

Φ̂i−jÂj, i = 1, . . . , H.

Thus, the reduced-form impulse responses are nonlinear functions of the VAR
slope coefficients. Nonlinear functions may magnify estimation errors due to
model misspecification. The estimators Âi may simply be ordinary least
squares (OLS) estimators. Alternatively, one may want to use bias-corrected
OLS estimators as suggested by Kilian (1998), to improve inference for im-
pulse responses (see Appendix B). Such estimators were found to be supe-
rior for stable, stationary VAR processes in a number of small-sample inves-
tigations (e.g., Kilian (1998), Lütkepohl, Staszewska-Bystrova and Winker
(2015a, 2015b)).
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The first column of Θ, θ0, can be estimated using the proxy zt. Let

θ̂0 =
T∑

t=p+1

ûtzt

/
T∑

t=p+1

û1tzt , (3.1)

where the ût are the estimated residuals of the reduced-form VAR(p). The
estimator 1

T−p
∑T

t=p+1 ûtzt is a standard method-of-moments estimator which,

under general conditions, is asymptotically normal (see Newey and McFadden
(1994)) and the last K − 1 components of θ̂0 are a differentiable function of
that estimator. Thus, they are also consistent and asymptotically normal.
More details are given in Appendix A.4.

Combining the proxy VAR estimator θ̂0 with the reduced-form impulse
response estimators gives a conventional VAR based estimator

Θ̂V AR = [θ̂0, θ̂1, . . . , θ̂H ] = [θ̂0, Φ̂1θ̂0, . . . , Φ̂H θ̂0] (3.2)

of the structural impulse responses Θ.
In some of the related literature, the proxy is turned into an internal

variable of the VAR by adding it to the set of observed variables yt and a VAR
model for the augmented vector (zt, y

′
t)
′ is considered (see Appendix A.1).

Plagborg-Møller and Wolf (2021) show that an advantage of internalizing
the proxy is that asymptotically valid impulse response analysis becomes
possible even if the shock of interest is ‘noninvertible’, that is, the shock
cannot be recovered from past and present forecast errors. As we assume
that the shocks are linear transformations of the reduced-form VAR errors,
they are invertible and do not pose the ‘noninvertibility’ problem. Assuming
that the proxy mimics the properties of w1t, so that it is white noise and
there are no lags in the proxy equation in the VAR process and also the yt
equations contain no lags of the proxy, then the impact effects of the first
shock may be estimated by considering the Cholesky decomposition of

1

T − p

T∑
t=p+1

(
zt
ût

)
(zt, û

′
t).

Dividing the first column of this matrix by the second element in that column,
the last K elements are an estimator θ̂0 of θ0 which is numerically identical
to the estimator in expression (3.1) (see Appendix A.1). In other words, if
we fully take into account the more restrictive assumptions for the proxy,
we get the same estimator Θ̂V AR as from our standard setup. Therefore we
consider the latter setup in the following.
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If zt is an N -dimensional vector of proxies, a possible estimator of θ0 is

θ̂0 =
T∑

t=p+1

ûtz
′
tQZ

T∑
t=p+1

ztû1t

/
T∑

t=p+1

û1tz
′
tQZ

T∑
t=p+1

ztû1t, (3.3)

where QZ = (
∑T

t=1 ztz
′
t)
−1. The other quantities are not affected.

3.2 The Standard Local Projection Estimator

Jordà’s (2005) LP estimator is based on the system of KH equations

yt+h = νh + A(h+1)Yt−1 + v
(h)
t+h, h = 0, 1, . . . , H − 1. (3.4)

Estimating this set of equations by OLS gives estimators Φ̂LP
i = Â

(i)
1 , where

Â
(i)
1 denotes the firstK columns of the estimator Â(i). Thus, the reduced-form

impulse responses, Φi, are estimated by linear regression techniques which
is sometimes regarded as an advantage because such estimators are robust
to some assumptions underlying the VAR model setup. The drawback is
that up to H lead values are needed which reduce the effective sample size
and many more parameters have to be estimated than in the standard VAR
approach which may compromise the efficiency of the LP estimators. The
estimated Φi can be used to estimate the structural impulse responses, Θ, as

Θ̂LP = [θ̂0, Φ̂
LP
1 θ̂0, . . . , Φ̂

LP
H θ̂0], (3.5)

where θ̂0 is the same estimator for the impact effects as in (3.1) or (3.3).
Note also that, if OLS estimation is used, Φ̂LP

1 = Φ̂1 and is, hence, identical
to the standard VAR estimator. Thus, Φ̂LP

1 θ̂0 = θ̂1 as in (3.2).

Jordà (2005) points out that, given that the error term v
(h)
t+h is autocor-

related and heteroskedastic, GLS estimation can be used for inference. GLS
estimation is possible because the stochastic structure of the error term is
known if the DGP is a VAR process. Thus, the error covariance matrix can
be constructed and estimated from the VAR parameters. GLS estimation
can also be used for point estimation to improve the estimation efficiency.
A feasible GLS procedure has been proposed by Lusompa (2021) who uses
an iterative procedure which pre-cleans the left-hand side of the equations
(3.4) using estimates ût+h−1, . . . , ût+1. More precisely, reduced-form impulse
responses are obtained from

ỹt+h = νh + A(h+1)Yt−1 + e
(h)
t , (3.6)

where ỹt+h = yt+h−Φ̂GLS
1 ût+h−1−· · ·−Φ̂GLS

h−1 ût+1 and Φ̂GLS
1 , . . . , Φ̂GLS

h−1 are ob-
tained from the regressions at horizons 1 through h−1 as the first K columns
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of the estimator Â(i). In our estimations, ût+h−1, . . . , ût+1 are OLS or bias-
corrected OLS reduced-form errors, depending on the estimation method
used for the VAR. The full estimator of Θ corresponding to this GLS proce-
dure is

Θ̂GLS
LP = [θ̂0, Φ̂

LP
1 θ̂0, Φ̂

GLS
2 θ̂0, . . . , Φ̂

GLS
H θ̂0], (3.7)

where θ̂0 is again the estimator of the impact effects given in (3.1) or (3.3).

In other words, the first two columns of Θ̂GLS
LP and Θ̂LP are identical.

3.3 Lag-augmented Local Projection

Lag-augmentation to fix unit root asymptotics was proposed earlier in other
contexts by Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996)
and in the context of impulse response analysis by Dufour, Pelletier and
Renault (2006). Breitung and Brüggemann (2019) and Montiel Olea and
Plagborg-Møller (2020) propose to use that device in the present context as
well. They add an additional lag to the LP equations (3.4),

yt+h = νh +A(h+1)Yt−1 +A
(h+1)
p+1 yt−p−1 + v

(h)
t+h, h = 0, 1, . . . , H − 1. (3.8)

If the true DGP is a VAR(p), then the coefficient matrices of the additional

lag are known to be zero, i.e., A
(h+1)
p+1 = 0, h = 0, 1, . . . , H−1, and estimating

the lag-augmented model by OLS implies an inefficiency. However, Mon-
tiel Olea and Plagborg-Møller (2020) show that the resulting lag-augmented
LP estimator is more robust to unit roots and near unit roots and therefore
has advantages for inference. We denote the corresponding impulse response
estimator by Φ̂aug

i = Â
(i)aug
1 . The resulting estimator of Θ is

Θ̂aug
LP = [θ̂0, Φ̂

aug
1 θ̂0, . . . , Φ̂

aug
H θ̂0], (3.9)

where θ̂0 is again the same estimator as in (3.1) or (3.3).
The model (3.8) can be reparameterized as

yt+h = νh−1 + Θhwt + A(h)
∗ Yt−1 + v

(h−1)
t+h ,

where A
(h)
∗ is a (K × Kp) matrix (see Appendix A.2). To use this model

for estimation, the wt have to be replaced by estimates. As the components
of wt are uncorrelated, it is plausible to consider orthogonal regressors for
them. In that case, w2t, . . . , wKt can be dropped from the equations for OLS
estimation without affecting the estimators of the other parameters. Hence,
θh, the first column of Θh, can be estimated by OLS using the model

yt+h = νh + θhŵ1t + A(h)
∗ Yt−1 + v

(h−1)
t+h for h = 1, . . . , H, (3.10)
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where ŵ1t is an estimate of w1t. If we were to choose ŵ1t such that the
OLS estimator of θ0, which is obtained from the model (3.10) for h = 0, is
identical to the estimator θ̂0 in (3.1), we could compute the columns of the

estimator Θ̂aug
LP by OLS estimation of model (3.10). In fact, the shocks w1t

corresponding to a given θ0 = b can be determined as

w1t = b′Σ−1u ut/b
′Σ−1u b (3.11)

(see Appendix A.2). Thus, using b = θ̂0 and substituting the OLS estimator
for Σu based on a VAR(p) gives a series of shocks ŵ1t which yield the esti-

mator Θ̂aug
LP . Of course, the extra step of computing ŵ1t is not needed if an

estimate of θ0 is already available and, hence, we do not use it for computing
Θ̂aug
LP .

Breitung and Brüggemann (2019) proceed in a different way. They con-
sider the model (3.10) and propose to estimate w1t directly based on esti-
mated reduced-form errors, û1, . . . , ûT , such that the first element of θ̂BB0 is
1. In other words, the impulse responses are by construction standardized
such that the first shock has a unit impact effect on the first variable. They
first estimate the structural errors w2t, . . . , wKt recursively for k = 2, . . . , K,
from the system of K − 1 equations

û2t = γ21û1t + w2t,

ûkt = γk1û1t + γk2ŵ2t + · · ·+ γk,k−1ŵk−1,t + wkt, k = 3, . . . , K, (3.12)

by the instrumental variables (IV) method using zt as an instrument for û1t.

The estimated errors are denoted by ŵ
(2)
t = (ŵ2t, . . . , ŵKt)

′. In the next step,
the w1t are estimated as the errors of the OLS regression

û1t = ηŵ
(2)
t + w1t, (3.13)

where η is a (K − 1)-dimensional row vector. Substituting the estimator ŵ1t

computed in this way for w1t in (3.10), an estimator of Θ is obtained which
we denote as

Θ̂BB = [θ̂BB,0, . . . , θ̂BB,H ]. (3.14)

Despite the differences in the computations, the estimator θ̂BB,0 precisely

corresponds to the estimator θ̂0 in (3.1), if OLS reduced-form VAR errors
ût are used, because both estimators fully exploit the information in the
reduced form errors and the proxy. Both estimators can be interpreted as
generalized method of moments (GMM) estimators based on equivalent mo-

ment conditions. This implies that Θ̂BB is identical to Θ̂aug
LP if OLS residuals
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are used for ût in the Breitung-Brüggeman approach for estimating w1t. In
the simulations reported in Section 4, we also consider the residuals of bias-
corrected OLS instead, which yields differences in the two estimators and,
hence, the different notation is needed when the estimator is computed via
the Breitung-Brüggemann approach.

As the estimation equations in (3.10) have an autocorrelated error term,

v
(h−1)
t+h = ut+h + Φ1ut+h−1 + · · · + Φh−2ut+2 + Φh−1ut+1, Breitung and Brüg-

gemann (2019) also propose a GLS estimator obtained by replacing the un-
observed quantities ut+h, ut+h−1, . . . , ut+2 in the error term of (3.10) by esti-
mates and using the system of equations

yt+h−ût+h = νh+θhŵ1t+A
(h+1)Yt−1+Φ1ût+h−1+· · ·+Φh−2ût+2+e

(h)
t (3.15)

to estimate θh for h = 3, . . . , H. The ût+h, . . . , ût+2 are estimated reduced-
form VAR errors and the estimates of w1t are obtained as in (3.13). We
denote the estimator of θh based on (3.15) by θ̂GLSBB,h for h = 3, . . . , H. For

h = 2, the estimator θ̂GLSBB,2 is determined by OLS estimation of

yt+2 − ût+2 = ν1 + θ2ŵ1t + A(3)Yt−1 + e
(2)
t .

The full estimator of Θ corresponding to the GLS procedure is

Θ̂GLS
BB = [θ̂BB,0, θ̂BB,1, θ̂

GLS
BB,2, . . . , θ̂

GLS
BB,H ], (3.16)

where for h = 0, 1, the estimators θ̂BB,0 and θ̂BB,1 based on (3.10) are used.

In other words, the first two columns of Θ̂GLS
BB and Θ̂BB are identical. Since

the GLS estimator accounts for the autocorrelation in the error term, it is
asymptotically more efficient than the lag-augmented LP estimator based on
OLS estimation of (3.8) for columns θh, h > 1.

Breitung and Brüggemann (2019) discuss also other variants of their es-
timators. We do not consider them in our comparison because they did not
seem to improve on the small sample performance of the present estimators
in their simulations.

3.4 An Instrumental Variables Approach

Stock and Watson (2018) assume that the proxies satisfy the relevance, the
exogeneity, and the lead-lag exogeneity conditions (2.7), (2.8), and (2.10),
respectively. For a scalar proxy zt and mean-adjusted yt, they note that,
using zt as an instrument, the standard instrumental variables (IV) estimator
of the coefficient in the linear model

yt+h = θhy1t + u
(h)
t+h, (3.17)
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is

θ̂h(IV ) =

(
T−h∑
t=1

zty1t

)−1 T−h∑
t=1

ztyt+h. (3.18)

Clearly, the regressor in (3.17) is correlated with the error term and, hence,
simple OLS regression is inconsistent. In contrast, the IV estimator, θ̂h(IV ),
converges in probability to θh because the instrument is uncorrelated with
the error term, u

(h)
t+h, which contains leads and lags of ut and yt and, hence,

of wt. It can be shown that

1

T − h

T−h∑
t=1

zty1t
p→ c and

1

T − h

T−h∑
t=1

yt+hzt
p→ θhc,

where
p→ signifies convergence in probability. Hence, as θ0 is assumed to be

standardized such that the first component is one, θ̂h(IV )
p→ θh, and the

estimator is asymptotically normal under general conditions. We denote the
corresponding estimator for the (K × (H + 1)) matrix Θ by Θ̂IV .

Stock and Watson (2018) note that adding control variables to the basic
model (3.17) may be necessary if, in their framework, the proxy does not sat-
isfy the conditions (2.7), (2.8), and (2.10) without the controls. Controls can
also reduce the variance of the IV estimator. Stock and Watson (2018) men-
tion that lagged yt and leads of zt are possible control variables that can im-
prove the efficiency of IV estimation. Therefore, in our simulations comparing
different estimators in Section 4, we use as control variables (1, y′t−1, . . . , y

′
t−p)

′

when h = 0 and (1, y′t−1, . . . , y
′
t−p)

′ or (1, y′t−1, . . . , y
′
t−p, zt+1, . . . , zt+h)

′ for
h > 0. The corresponding estimators of the impulse responses are denoted by
Θ̂y
IV and Θ̂yz

IV , respectively, where y and yz stand for the respective controls.
Note that adding the additional regressors may, of course, create degrees-of-
freedom problems in the estimation if the gross sample size T is small, given
that computing Θ̂yz

IV requires p presample and up to H lead values. More-
over, there are up to Kp+H+2 regressors. It may also be worth noting that
the first column of Θ̂y

IV and Θ̂yz
IV , i.e., the estimator of the impact effects,

is identical to θ̂0 in (3.1) if that estimator is based on OLS residuals (see
Appendix A.3).

As a final note on the IV estimators we mention that, if there is a vector
of proxies, zt, rather than just a scalar, an IV estimator of θh corresponding
to (3.18) may be chosen as

θ̂h(IV ) =
T−h∑
t=1

yt+hz
′
tQZ

T−h∑
t=1

zty1t

/
T−h∑
t=1

y1tz
′
tQZ

T−h∑
t=1

zty1t (3.19)
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and an intercept should be added to the regression equation (3.17) if the yt
are not mean-adjusted. Adding control variables is also straightforward and,
of course, the lead values of the proxy would become lead vectors so that
the number of required degrees of freedom for estimation will increase even
further (see also Stock and Watson (2018)).

3.5 Residual-Based LP-type Estimators

Considering again a scalar proxy and using expression (2.3), a simple LP-type
estimator is obtained by noting that

E(v
(H)
t+Hzt+H−h)/E(v

(H)
1,t+Hzt+H) = Φhθ0, (3.20)

for h = 0, . . . , H. Here v
(H)
1,t+H denotes the first component of v

(H)
t+H . Hence,

we may estimate the model (2.2) for h = H and use the estimated residuals,

v̂
(H)
t+H , to obtain an estimator of the structural impulse responses as

Θ̂resid
LP =

T−H∑
t=p+1

v̂
(H)
t+H(zt+H , . . . , zt)

/
T−H∑
t=p+1

v̂
(H)
1,t+Hzt+H . (3.21)

For this estimator, the quantities v̂
(H)
t+H are obtained by estimating a model

with K equations only and not KH equations as in LP estimation. Note,
however, that the estimator differs from Θ̂V AR even for θ0 if H ≥ 1. While
the estimator of θ0 in (3.2) is based on estimated errors ût of the original
VAR model in (2.1), this is clearly not the case in (3.21), where estimated
errors of (2.2) are used.

It is easy to see that the residual-based estimator can be viewed as a dif-
ferentiable function of a two-step GMM estimator in the sense of Newey and
McFadden (1994) which has standard asymptotic properties under general
assumptions. In Appendix A.4 we show that

1

T −H − p

T−H∑
t=p+1

v̂
(H)
t+Hzt+h =

1

T −H − p

T−H∑
t=p+1

v
(H)
t+Hzt+h+op(T

−1/2), (3.22)

under general conditions. This result implies that the first column of Θ̂resid
LP

has the same asymptotic distribution as θ̂0 in (3.1). In small samples, the
two estimators may differ substantially, however, because θ̂resid0,LP is estimated

from serially dependent observations and the correlation between v
(H)
t+H and

zt is smaller than between ut and zt as v
(H)
t+H has a larger variance than ut.

This reduced correlation may undermine the small sample properties of our
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estimator. Moreover, θ̂resid0,LP may even be based on fewer observations than

θ̂0, because the former estimator is based on T − H − p observations only,
while θ̂0 is based on T − p observations.

The estimator Θ̂resid
LP may be inefficient at least for H > p because, even

if v̂
(H)
t+H is replaced by v

(H)
t+H , the estimator is just a sample mean of serially

correlated observations which does not account for possible restrictions on
Θ that are due to the VAR structure. However, Θ̂resid

LP is consistent under
general conditions and very easy to compute. Given the limited samples
available for some empirical studies, the small sample performance of the
estimator may be an issue, however. Therefore, in Section 4 we explore the
finite sample properties of the estimator as well.

To improve the estimator Θ̂resid
LP in small samples, one may want to con-

sider an estimator

Θ̂ss
LP =

(
T∑

t=p+1

ûtzt,
T−1∑
t=p+1

v̂
(1)
t+1zt, . . . ,

T−H∑
t=p+1

v̂
(H)
t+Hzt

)/
T∑

t=p+1

û1tzt. (3.23)

It requires estimating all the models yt+h = νh + A(h+1)Yt−1 + v
(h)
t+h for h =

0, 1, . . . , H and, thus, the advantage of computational savings relative to the
standard LP estimator is lost. On the positive side, small sample efficiency
gains are conceivable. It follows from the result in equation (3.22) that the

asymptotic properties of Θ̂ss
LP are the same as for Θ̂resid

LP . Note, however, that

the impact effects (h = 0) of Θ̂ss
LP are estimated exactly as in (3.1). In other

words, the first column of Θ̂ss
LP is the same as for Θ̂V AR and it does not only

have the same asymptotic properties.
If there is an N -dimensional vector of proxies zt, the expression (3.20)

generalizes to

E(v
(H)
t+Hz

′
t+H−h)QE(zt+Hv

(H)
1,t+H)/E(v

(H)
1,t+Hz

′
t+H)QE(zt+Hv

(H)
1,t+H) = Φhθ0,

for h = 0, . . . , H. Here Q is again an arbitrary positive definite (N × N)

matrix. The estimator Θ̂resid
LP of the structural impulse responses becomes

Θ̂resid
LP =∑T−H
t=p+1 v̂

(H)
t+H(z′t+H , . . . , z

′
t)

×IH+1 ⊗
(
QZ

∑T−H
t=p+1 zt+H v̂

(H)
1,t+H

/∑T−H
t=p+1 v̂

(H)
1,t+Hz

′
t+HQZ

∑T−H
t=p+1 zt+H v̂

(H)
1,t+H

)
.

Furthermore, an estimator Θ̂ss
LP may be computed using the more general
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Table 1: Equality of Estimators Based on OLS Estimation

Θ̂V AR Θ̂LP Θ̂GLS
LP Θ̂aug

LP Θ̂BB Θ̂GLS
BB Θ̂IV Θ̂y

IV Θ̂yz
IV Θ̂resid

LP Θ̂ss
LP

Θ̂V AR all h

Θ̂LP h = 0, 1 all h

Θ̂GLS
LP h = 0, 1 h = 0, 1 all h

Θ̂aug
LP h = 0 h = 0 h = 0 all h

Θ̂BB h = 0 h = 0 h = 0 all h all h

Θ̂GLS
BB h = 0 h = 0 h = 0 h = 0, 1 h = 0, 1 all h

Θ̂IV – – – – – – all h

Θ̂y
IV h = 0 h = 0 h = 0 h = 0 h = 0 h = 0 – all h

Θ̂yz
IV h = 0 h = 0 h = 0 h = 0 h = 0 h = 0 – h = 0 all h

Θ̂resid
LP – – – – – – – – – all h

Θ̂ss
LP h = 0 h = 0 h = 0 h = 0 h = 0 h = 0 – h = 0 h = 0 – all h

Note: h denotes the propagation horizon.

expression

Θ̂ss
LP =(∑T
t=p+1 ûtz

′
t,
∑T−1

t=p+1 v̂
(1)
t+1z

′
t, . . . ,

∑T−H
t=p+1 v̂

(H)
t+Hz

′
t

)
×IH+1 ⊗

(
QZ

∑T
t=p+1 ztû1t

/∑T
t=p+1 û1tz

′
tQZ

∑T
t=p+1 ztû1t

)
.

3.6 Summary of Numerical Relations Between Esti-
mators

For assessing the small sample properties of the estimators, it is useful to keep
in mind that, based on plain OLS estimation, Θ̂V AR, Θ̂LP , Θ̂GLS

LP , Θ̂aug
LP , Θ̂BB,

Θ̂GLS
BB , Θ̂y

IV , Θ̂yz
IV , and Θ̂ss

LP all have the same first column and, hence, yield

identical estimates of the impact effects. Moreover, Θ̂V AR, Θ̂LP , and Θ̂GLS
LP as

well as Θ̂BB and Θ̂GLS
BB have identical first two columns by construction. Also,

if bias-corrected OLS estimation is used for the reduced-form VAR, Θ̂V AR,
Θ̂LP , Θ̂GLS

LP , Θ̂aug
LP , and Θ̂ss

LP share the same first column and for Θ̂BB and

Θ̂GLS
BB the first two columns are identical. All nine estimators Θ̂V AR, Θ̂LP ,

Θ̂GLS
LP , Θ̂aug

LP , Θ̂BB, Θ̂GLS
BB , Θ̂y

IV , Θ̂yz
IV , and Θ̂ss

LP should provide very similar
estimates for the impact effects also if bias-corrected OLS is applied, at least
for larger sample sizes for which the estimated bias tends to be small. Only
the estimators Θ̂IV and Θ̂resid

LP estimate the impact effects clearly differently
for both plain OLS and bias-corrected OLS estimation of the reduced-form
VAR parameters.

15



For propagation horizons h > 0, the estimators Θ̂aug
LP and Θ̂BB are iden-

tical for plain OLS estimation. For VAR(p) processes with little persistence,

also Θ̂LP and Θ̂aug
LP may be quite similar, in particular, if the lag order p is

already large. In that case, adding an extra lag may not make much differ-
ence. In the next section, we will explore the performance of the different
estimators in small samples and these relations may be useful to remember.
All exact identities of the estimators based on plain OLS estimation are also
summarized in Table 1 for easy reference.

3.7 Other Proposals

Given the large number of parameters in the estimation equations underlying
some of the estimators, Bayesian and other shrinkage estimators have also
been used in the present context. In their study, Li et al. (2021) explicitly
consider also a Bayesian approach, a penalized LP approach which shrinks
the impulse responses to smooth functions, as proposed by Barnichon and
Brownlees (2019), and a model averaging approach which addresses the un-
certainty in the lag lengths to be considered in practice. Such modifications
can be used with most of the estimators considered in our study. They raise
issues such as Bayesian prior selection and selecting the degree of shrinkage
etc. which are not the focus of our study. Therefore we compare the esti-
mators in raw form as presented in the foregoing sections and we leave such
modifications to future research.

4 Monte Carlo Comparison

We conjecture that the sample size T , the dimension, the lag order and the
persistence of the VAR process as well as the correlation between the shock
of interest and the proxy, i.e., the strength of the proxy, are features that
have an impact on the properties of the estimators for the impulse responses.
Therefore we choose data generating processes (DGPs) accordingly.

We consider the RMSEs of the impulse response estimators as our main
performance criterion for estimator comparison. As confidence intervals of
impulse responses are often examined in empirical analysis, we also use
the coverage and length of bootstrap confidence intervals for the impulse
responses as performance criteria. This raises the issue which bootstrap
method to use. Different bootstraps have been considered in related con-
texts. For example, Stock and Watson (2018) and Breitung and Brüggemann
(2019) use a parametric bootstrap (see Stock and Watson (2018, Appendix
A.2)) and Montiel Olea and Plagborg-Møller (2020) recommend a wild boot-
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strap to construct equal-tailed percentile-t intervals for the lag augmented
LP method. We decided for a moving-block bootstrap (MBB) to construct
percentile confidence intervals (see Appendix C for details). Jentsch and
Lunsford (2019) show that the MBB yields asymptotically valid confidence
intervals for structural impulse responses in proxy VAR analysis under gen-
eral conditions. They also show that other bootstraps such as the wild boot-
strap, that have been used in structural VAR analysis, do not yield confidence
intervals with asymptotically correct coverage. Unfortunately, there is also
evidence that the MBB may not be very accurate in small samples (e.g.,
Bruns and Lütkepohl (2020)). As we are primarily interested in the relative
performance of the different estimators, we prefer the asymptotically valid
MBB and assume that it imposes a similar small sample handicap on all
estimators.

To improve the small sample coverage rates of the MBB confidence in-
tervals, we also use bias-corrected OLS estimation in addition to plain OLS
estimation for the reduced-form VAR models (see Appendix B) and we pri-
marily report the results for bias-corrected OLS estimation, if not otherwise
stated. Bias-corrected OLS estimation was shown to improve small sam-
ple inference for impulse responses based on the standard VAR approach
(see Kilian (1998)). The corresponding residuals are used for generating the
bootstrap samples for all other estimators as well. Moreover, the estimators
Θ̂LP , Θ̂aug

LP , Θ̂ss
LP , Θ̂BB, Θ̂GLS

LP and Θ̂GLS
BB are also based on the residuals ût

of bias-corrected reduced-form OLS estimators wherever these residuals ût
enter the estimator.

Breitung and Brüggemann (2019) and Li et al. (2021) also perform Monte
Carlo experiments to compare some of the estimators considered in the fol-
lowing. Breitung and Brüggemann (2019) use a DGP similar to DGP1 below
and their performance criteria are the bias and standard deviation of the es-
timators as well as coverage and length of bootstrap confidence intervals
based on their different bootstrap. As we will see later, their results are
in line with our results for those estimators and simulation designs consid-
ered in their study. Li et al. (2021) consider a very large range of DGPs
which are not finite-order VARs but are approximated by finite-order VARs
in their study. They are specifically interested in the bias-variance trade-off
of the estimators and include some shrinkage estimators in their comparison.
Our results are roughly in line with their results for the overlapping estima-
tors. Our focus is more limited, however, given that we consider finite-order
VARs as DGPs and try to understand the properties of the estimators in an
idealized setting.
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4.1 Monte Carlo Setup

4.1.1 DGP1

Our first DGP is a bivariate VAR(1), yt = A1yt−1 + ut, where yt is a 2-
dimensional vector of endogenous variables, A1 is a matrix of autoregressive
slope coefficients, and ut is the white-noise reduced-form error term. The
VAR slope coefficients are chosen similar to Kilian and Kim (2011), Breitung
and Brüggemann (2019), Lütkepohl et al. (2015a) and other studies compar-
ing impulse response estimators for VAR processes, where such a DGP has
been considered. More precisely, we choose

A1 =

[
a11 0
0.5 0.5

]
,

with a11 = 0.1, 0.5, 0.9, 0.95. The process is stable and its persistence depends
on a11. If a11 is close to one, the persistence is high and it is low for a11 close
to zero.

The structural shocks are standard normal, wt ∼ N (0, I2), and ut = Bwt
with

B =

[
1 0

0.5 3

]
.

In line with the related literature (e.g., Caldara and Herbst (2019), Lütke-
pohl and Schlaak (2021), Breitung and Brüggemann (2019)), a scalar proxy
zt is generated as

zt = φw1t + ηt, (4.1)

where φ and the error ηt determine the strength of the correlation between
zt and w1t and, hence, the strength of the instrument. The error term ηt is
generated independently of w1t as ηt ∼ N (0, σ2

η). Thus, the proxy not only
ensures that the relevance and exogeneity conditions (2.7) and (2.8) hold but
it also satisfies the lead-lag exogeneity condition (2.10).

Note that the strength of the relation between the instrument and the
shock w1t determines how well the impact effects of the shock can be es-
timated and these estimates are of central importance for estimating the
impulse responses. Therefore different scenarios are considered. The vari-
ance of zt is Var(zt) = φ2Var(w1t) + σ2

η. Hence, the correlation between w1t

and zt is Corr(w1t, zt) = φ
√

Var(w1t)
/√

φ2Var(w1t) + σ2
η . We consider the

two different cases presented in Table 2. For correlation 0.9, zt is a strong
proxy while a correlation of 0.5 gives a proxy with intermediate strength.
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Table 2: Specifications Used for the Proxy for DGP1

Case φ σ2
η Corr(w1t, zt)

1 1 0.2346 Corr(w1t, zt) = 0.9 ∀t
2 1 3 Corr(w1t, zt) = 0.5 ∀t

As the residual-based estimation also depends on the propagation horizon
H, we consider an intermediate value of H = 20. As sample sizes we use
T = 100, 200, and 500. The former value represents the order of magnitude
used in macroeconometric studies based on quarterly data, whereas T = 500
is hoped to reflect the properties of the estimators for larger samples. The
number of bootstrap replications is N = 2000 and the number of Monte
Carlo replications is 1000 for all reported simulation results.

4.1.2 DGP2

Our second DGP is linked to an empirical model from the proxy VAR lit-
erature. More precisely, DGP2 is based on a model by Mertens and Ravn
(2013), which employs seven variables at quarterly frequency from 1950Q1 -
2006Q4, giving T = 228 observations. We fit a VAR(1) process including a
constant to their data and, after bias-adjustment, obtain the following set of
parameters:

A1 =



0.88 0.01 0.03 0.00 0.00 −0.02 −0.00
−0.11 0.83 −0.02 0.02 −0.02 −0.03 0.00

0.14 −0.08 0.85 0.02 −0.01 0.11 0.01
−1.47 −0.32 −0.90 0.86 −0.06 1.05 0.05
−0.27 0.06 0.48 0.04 0.93 −0.53 0.00
−0.09 −0.08 0.04 0.01 −0.01 0.92 0.00
−0.12 −0.19 −0.44 −0.07 0.03 0.49 1.01


and

Σu =



.021 .004 .007 .003 .013 .005 −.010

.004 .286 .006 .002 −.024 .010 −.053

.007 .006 .084 .172 .022 .072 .006

.003 .002 .172 2.347 −.025 .328 −.007

.013 −.024 .022 −.025 .789 .040 .077

.005 .010 .072 .328 .040 .102 .011
−.010 −.053 .006 −.007 .077 .011 .078


× 10−3.
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The largest eigenvalue of A1 has modulus 0.99995, implying a stable but very
persistent process. The constant is estimated as

ν = (0.09,−0.60,−0.46, 0.08,−1.02,−0.41, 0.23)′.

The VAR(1) with these parameters is used to generate yt based on Gaussian
ut, ut ∼ N (0,Σu). We generate 2T observations starting from

y0 = (0.17, 0.30,−15.15,−17.32,−14.66,−15.14,−15.86)′,

the unconditional mean of yt, and discard the first T observations to alleviate
the effect of the starting value.

A proxy is generated so as to have similar properties as the proxy for
shocks to personal income taxes in Mertens and Ravn (2013). More precisely,
we estimate the b vector of impact effects of the first shock giving

b = (1.00, 2.07, 0.09,−9.67, 0.57,−1.11, 0.66)′

and generate the first shock using equation (3.11). Then we estimate the
parameters φ and σ2

η of model (4.1) using the full sample from 1950Q1 -
2006Q4. This yields estimates φ = 464.18 and σ2

η = 0.32. The original proxy
by Mertens and Ravn (2013) has a correlation with the identified shock of
0.19, i.e., the proxy is rather weak. Only 7% of its values are non-zero.
Instead, we employ a proxy with nonzero values for all sample periods and
a correlation of 0.90 with the shock of interest, implying a strong proxy.

To mimic the situation in the Mertens/Ravn study where the proxy has
many zero values, we follow Jentsch and Lunsford (2019) and also generate
a proxy as

zt = Dt(φw1t + ηt), (4.2)

where Dt is a series of independent, identically distributed Bernoulli 0-1
random variables with parameter d, 0 < d ≤ 1, which signifies the probability
of a nonzero value. The random process Dt is assumed to be stochastically
independent of w1t and the error term ηt. The latter term is again assumed
to have mean zero and variance σ2

η, i.e., ηt ∼ N (0, σ2
η), and it is distributed

independently of w1t. In this case, the correlation between w1t and zt is

Corr(w1t, zt) = φ
√
d
√

Var(w1t)
/√

φ2Var(w1t) + σ2
η

and we choose the same values for φ and σ2
η as before (φ = 464.18 and

σ2
η = 0.32) and d = 0.3, which leads to a correlation of 0.5, implying a proxy

with intermediate strength.
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Note that the generation mechanism for DGP2 differs from that of DGP1,
where the structural shocks are generated directly and the reduced-form data
as well as the proxy are computed from the generated structural shocks and
the generated ηt series. In contrast, we generate the reduced-form errors for
DGP2, construct the first structural shock from the structural parameters b
and the error covariance matrix Σu as in (3.11) and then generate zt as in
equation (4.1) or (4.2), depending on the strength of the considered proxy.

As for DGP1, we use a maximal propagation horizon of H = 20 but
consider sample sizes T = 200 and 500 only. A sample size of T = 100 leaves
insufficient degrees of freedom for some of the estimators for the higher-
dimensional DGP2. The number of bootstrap replications for this DGP is
again N = 2000 and the number of Monte Carlo replications is 1000.

4.2 Monte Carlo Results

4.2.1 Based on DGP1

In Figures 1 - 3, RMSEs, pointwise coverage rates of nominal 90% confidence
intervals, and average interval lengths for the responses of variable 2 to the
first structural shock are presented for selected simulation designs for DGP1.
The selected results provide an overview of the overall results for DGP1. The
estimators are grouped such as to alleviate a comparison and ranking.

Figure 1 presents results for the estimators Θ̂LP , Θ̂aug
LP , and the three IV

estimators Θ̂IV , Θ̂y
IV , and Θ̂yz

IV . Out of these five estimators, four (Θ̂LP ,

Θ̂aug
LP , Θ̂y

IV , and Θ̂yz
IV ) use the same estimator for the impact effects (h = 0)

if plain OLS estimation is used. Θ̂LP and Θ̂aug
LP are also identical for h = 0

for bias-corrected OLS estimation. Θ̂y
IV and Θ̂yz

IV are unaffected by the bias-
correction. In Figure 1 it can be seen that these four estimators are also very
similar across all four estimators for this case.

For h > 0, the estimators Θ̂LP and Θ̂aug
LP as well as Θ̂y

IV , and Θ̂yz
IV are

typically very similar in terms of RMSE. However, Θ̂LP and Θ̂aug
LP clearly

dominate the IV estimators. The RMSEs of Θ̂LP and Θ̂aug
LP are either very

similar to or lower than the corresponding RMSEs of the IV estimators.
In particular, if a weaker proxy is used (Corr = 0.5), Θ̂LP and Θ̂aug

LP have

substantially smaller RMSEs than Θ̂IV , Θ̂y
IV , and Θ̂yz

IV (see Figure 1(c), (f),
(i)).

For all simulation designs, the coverage rates of the confidence intervals
associated with all four estimators in Figure 1 are reasonably close to or
larger than 90%. Most coverage rates are above 80% and in many cases
the coverage rates are close to or at 100%. In other words, the estimators
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yield conservative intervals. Only for more persistent processes (a11 = 0.95),

the coverage rates for Θ̂LP and Θ̂aug
LP are below 80% for some propagation

horizons (Figure 1(d), (e), (f)). For some of the simulation designs the cov-
erage rates of all estimators are actually rather similar, e.g., for designs with
medium persistence (a11 = 0.5) and lag order p = 1 (see Figure 1(a), (c),
(g), (i)). Generally, the interval lengths tend to increase for processes with
larger persistence, larger lag order, and if the proxy has lower correlation
with the first shock. Note, however, that the interval lengths and RMSEs
for Θ̂LP and Θ̂aug

LP for longer propagation horizons are not much affected by
these features. As one would expect, for all five estimators, interval lengths
and RMSEs decline with increasing sample size.

Summarizing the results in Figure 1, the estimators Θ̂LP , Θ̂aug
LP , Θ̂y

IV ,

and Θ̂yz
IV yield the same or very similar impact effects. The estimators Θ̂LP

and Θ̂aug
LP tend to dominate the IV competitors for h > 0. Θ̂LP and Θ̂aug

LP

have sometimes slightly lower coverage rates and yield either very similar or
smaller interval lengths and RMSEs compared to the IV estimators Θ̂IV Θ̂y

IV ,

and Θ̂yz
IV . Moreover, the pairs of estimators Θ̂y

IV and Θ̂yz
IV as well as Θ̂LP and

Θ̂aug
LP yield very similar RMSEs and interval lengths, as anticipated in earlier

sections.
In Figure 2, the five estimators Θ̂resid

LP , Θ̂ss
LP , Θ̂BB, Θ̂GLS

BB , and Θ̂GLS
LP are

compared for the same simulation designs underlying Figure 1. Recall that
Θ̂BB and Θ̂GLS

BB are identical by construction for h = 0, 1. For h = 0, Θ̂ss
LP

is also identical to these two estimators, which is reflected in the figure. For
h > 1, a remarkable result in Figure 2 is that Θ̂GLS

BB uniformly dominates
the other four estimators in terms of RMSE. In other words, it yields very
similar or smaller RMSEs for all simulation designs presented in the figure.
The estimator Θ̂GLS

LP is often second best in these terms. In fact, Θ̂resid
LP

and Θ̂ss
LP often yield much larger RMSEs than Θ̂BB, Θ̂GLS

BB , and Θ̂GLS
LP . As

the results for Θ̂BB are similar to those for Θ̂aug
LP , it is clear that Θ̂aug

LP and

Θ̂LP dominate Θ̂resid
LP and Θ̂ss

LP as well. As in Figure 1, the RMSEs of the
estimators in Figure 2 tend to increase with larger persistence (larger a11),
larger lag order, and smaller correlation between shock and proxy. Moreover,
the RMSEs decrease for increasing sample size.

Again the coverage rates associated with the estimators in Figure 2 are
reasonably close to or larger than 90%. However, Θ̂GLS

BB typically yields the
lowest coverage rates and also the smallest average interval lengths. Often
the coverage rates are below 90% and in some cases even below 80%.2

2Note that the coverage rates associated with Θ̂GLS
BB and Θ̂GLS

LP tend to be lower if plain
OLS residuals instead of residuals of bias-corrected VAR estimators are used (see Figure
A.1).
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Given the superior performance of Θ̂LP , Θ̂aug
LP , Θ̂GLS

LP , and Θ̂GLS
BB , we com-

pare these estimators with Θ̂V AR in Figure 3 for the same simulation designs
as in Figures 1 and 2. In Figure 3, it can be seen that all five estimators
yield the same RMSEs, coverages, and interval lengths for the impact effects
and are very similar for small propagation horizons. Recall that Θ̂V AR, Θ̂LP ,
Θ̂GLS
LP , and Θ̂aug

LP yield identical impact effects by construction and, as dis-

cussed in Section 3.3, the impact effects of Θ̂GLS
BB would be the same as well

if plain OLS estimation was used and they are very similar for bias-corrected
OLS.

A striking result is that Θ̂GLS
BB and Θ̂V AR yield very similar RMSEs and

confidence intervals also for h > 0, which shows that Θ̂GLS
BB is not only very

efficient asymptotically, as shown by Breitung and Brüggemann (2019), but
also in small samples. This result is fully in line with simulations reported
by Breitung and Brüggemann (2019). The Θ̂GLS

LP estimator outperforms Θ̂LP

and Θ̂aug
LP but is still less efficient in terms of RMSE than Θ̂GLS

BB .
Given previous simulation results by Kilian and Kim (2011), it is, of

course, not surprising that Θ̂V AR dominates Θ̂LP and Θ̂aug
LP for our simulation

designs. As Θ̂GLS
BB performs about as well as Θ̂V AR, it is clearly the preferred

projection estimator for DGP1. We stress, however, that the good coverage
rates of confidence intervals associated with Θ̂GLS

BB rely to some extent on the
use of bias-corrected OLS estimators for the reduced-form VAR. In Figure
A.1 in Appendix D, we show the corresponding results obtained when Θ̂GLS

BB

and Θ̂GLS
LP are based on plain OLS estimation. Clearly, some coverage rates

for both estimators for the more persistent processes (a11 = .95) are then far
below the nominal 90% and much worse than with bias-correction (see Figure
A.1(d), (f)). We note that Breitung and Brüggemann (2019) report better

coverage rates for Θ̂GLS
BB based on their alternative bootstrap method. Thus,

using other bootstrap methods rather than bias-corrected VAR estimates
may also improve the interval coverage associated with the GLS estimators.

The overall takeaway from the simulations of the bivariate DGP1 is that
smaller samples, weaker instruments, and larger lag orders tend to increase
RMSEs and the lengths of confidence intervals. The LP estimators Θ̂LP

and Θ̂aug
LP dominate the IV estimators and, among the projection estimators,

the lag-augmented GLS estimator, Θ̂GLS
BB , dominates all other estimators in-

cluding the residual-based LP-type estimators and the LP GLS estimator,
Θ̂GLS
LP , clearly in terms of RMSE. It may have slightly lower coverage rates

when used in combination with the MBB, in particular, for more persistent
processes, however. Thus, using Θ̂GLS

BB , possibly in conjunction with an alter-
native bootstrap method, would be the best choice for DGPs such as DGP1.
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4.2.2 Results Based on DGP2

In Figures 4 - 6, results for the seven-dimensional, very persistent DGP2 are
presented. The estimators are grouped in the same way as in Figures 1 - 3 and
we again consider Monte Carlo designs with different sample sizes, VAR lag
orders and proxy strengths. However, now we present responses of two dif-
ferent variables to the first shock. The performance of the estimators differs
markedly for the seven variables and therefore we present impulse responses
of variables two and four, for which the performance is quite different. The
results for variable four are rather special. In Figure A.2.b in Appendix D,
the original time series from Mertens and Ravn (2013) are plotted which are
the basis for our DGP2. In that figure, variable 4 (Corporate income tax
base) is seen to have rather distinct dynamics which may be reflected in our
simulation results. The impulse responses of the remaining variables are also
presented in figures in Appendix D. They display a similar overall picture
and are mostly more similar to the results for variable two.

Before we discuss the figures in more detail, it may be worth mentioning
that some crucial features are the same as for the bivariate DGP1. The
coverage rates improve and the average lengths of the confidence intervals
and the RMSEs tend to decline for all estimators with increasing sample
size. Also using a stronger proxy tends to improve the estimation precision
as measured by the RMSE. Note that the figures are scaled so as to bring out
clearly the differences between and similarities of the alternative estimators.
Therefore some RMSEs and average interval lengths had to be truncated at
the upper limit of the vertical axis.

Looking now at the individual figures in more depth, it can be seen in
Figure 4 that for the higher-dimensional DGP, Θ̂LP and Θ̂aug

LP dominate the
IV estimators for h > 0 for most variables in terms of RMSE. Variable four
represents an exception in this respect (see Figure 4(e), (f), (h)), at least if a

strong proxy is used. For that case, Θ̂yz
IV performs remarkably well in terms

of RMSE. This example shows that there are situations where an estimator
that performs generally less well in our study, can be a very good choice
in some situations. The overall conclusion from the results in Figure 4 and
the related figures in Appendix D is, however, that Θ̂LP and Θ̂aug

LP tend to
dominate the IV estimators, at least in terms of RMSE.

The two IV estimators Θ̂IV and Θ̂yz
IV yield confidence intervals with rea-

sonable coverage close to or above 90% but the LP and augmented LP es-
timators (Θ̂LP and Θ̂aug

LP ) as well as Θ̂y
IV yield rather low coverage rates for

some propagation horizons for the fourth variable (see Figure 4(e), (f), (g)).
The coverage improves for larger sample sizes (Figure 4(h)). Of course, it is
conceivable that the rather low coverage rates of some confidence intervals
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can be fixed by using alternative bootstrap procedures. Therefore the RMSE
may be a more important criterion for comparing the estimators.

In Figure 5 it can be seen that, for h > 1, in terms of RMSE and interval
length, Θ̂GLS

BB and Θ̂GLS
LP are superior to the other three estimators presented in

the figure (Θ̂resid
LP , Θ̂ss

LP , and Θ̂BB). For the fourth variable this goes together
with some rather low coverage rates for intermediate propagation horizons.
Low coverage rates also arise for Θ̂ss

LP and Θ̂BB. Only Θ̂resid
LP yields gener-

ally coverage rates close to or above 90%. These coverage rates come with
very large intervals and Θ̂resid

LP yields also very large RMSEs. Thus, generally,
this estimator is not really competitive. Hence, its use in practice cannot be
recommended despite the good coverage rates. Clearly, Θ̂GLS

BB and Θ̂GLS
LP are

overall the best estimators out of those compared in Figure 5. The corre-
sponding Figure A.4 in Appendix D shows the same dominance of Θ̂GLS

BB and

Θ̂GLS
LP for the other variables. Moreover, for DGP2 the latter two estimators

are typically very similar in terms of RMSE.
It is perhaps worth mentioning, however, that the maximal lag order

and propagation horizon Θ̂GLS
BB can handle even for a gross sample size of

T = 200 is, of course, a bit more limited than that of some of the other
estimators because it needs p presample values and up to H lead values and
it involves a rather substantial number of regressors. Thus, its net sample size
quickly exhausts the degrees of freedom needed for estimation when the lag
order or the propagation horizon increases for a model with many variables.
Therefore, it is not surprising that, for larger propagation horizons, Θ̂GLS

LP is

occasionally slightly better in terms of RMSE than Θ̂GLS
BB (see, e.g., Figure

A.4c (b)).

In Figure 6 the four estimators Θ̂GLS
BB , Θ̂GLS

LP , Θ̂LP , and Θ̂aug
LP are com-

pared to the standard VAR estimator Θ̂V AR. In contrast to what we found
for DGP1, Θ̂GLS

BB is not dominating Θ̂GLS
LP . However, both estimators per-

form similarly to Θ̂V AR in terms of RMSE and interval coverage and length.
These three estimators clearly dominate Θ̂LP and Θ̂aug

LP in terms of associated

RMSE and interval length. Only the coverage rates associated with Θ̂GLS
BB ,

Θ̂GLS
LP , and Θ̂V AR for some intermediate propagation horizons leave room for

improvement (see Figure 6(e), (f), (g)).

To show that the strong performance of Θ̂GLS
BB and Θ̂GLS

LP depends again to
some extent on the use of bias-corrected OLS estimation of the VAR reduced
form, we compare the estimators based on plain OLS estimates in Figure
A.6 in Appendix D to the other three estimators with bias-correction. As
DGP2 is very persistent, the coverage rates associated with Θ̂GLS

BB and Θ̂GLS
LP

are very poor for most designs, while the impact of avoiding bias-correction
on interval lengths and RMSEs is rather limited. Our recommendation is
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therefore to use Θ̂GLS
BB and Θ̂GLS

LP with bias-correction if a MBB is used for
constructing confidence intervals. Again, one could argue that the features
of the MBB confidence intervals are less important than the RMSE criterion
because the former may reflect the properties of the MBB rather than the
properties of the estimators.

In summary, the overall conclusion from the simulation results for DGP1
and DGP2 is that Θ̂GLS

BB is the best projection estimator in terms of RMSE

and Θ̂GLS
LP comes in second. Apparently, for higher-dimensional processes the

superior performance of Θ̂GLS
BB that we observed for the bivariate DGP1 may

decline relative to Θ̂GLS
LP .

5 Conclusions

This study compares a range of projection estimators for impulse responses
of proxy VAR models. Using LP estimators in this context has become in-
creasingly popular lately because these estimators are easy to apply and have
a reputation of being robust to some model deficiencies. On the other hand,
there is some evidence from simulation studies showing that the standard LP
estimators may be quite inefficient if the true DGP is a finite-order VAR pro-
cess. Such results have motivated researchers to look for modifications and
alternatives to classical LP estimators. We review a number of alternative
approaches and then compare them algebraically and in a simulation study.
We present conditions for some estimators to be identical in small samples.
In our simulation study, we use the RMSE as well as coverage rates and
interval lengths of bootstrap confidence intervals as performance criteria.

We find that generally the estimators behave as expected in that the
RMSEs and confidence intervals improve for increasing sample size and when
stronger proxies (proxies with higher correlation with the shock of interest)
are used. Moreover, estimation precision tends to decline when more heavily
parametrized models with larger lag orders are considered. Furthermore,
processes with higher persistence may lead to less precisely estimated impulse
responses.

Ranking our estimators, we find that overall a lag-augmented GLS ap-
proach proposed by Breitung and Brüggemann (2019) and a GLS approach of
Lusompa (2021) lead to the most precise projection estimators in small sam-
ples. All other estimators are typically less precise than the standard VAR
estimators if a finite-order VAR process is the true DGP. In contrast, for
moderately large samples the lag-augmented GLS approach performs about
as well as the standard VAR approach, if it is used with bias-corrected OLS
estimates of the reduced-form VAR model. As the Breitung and Brüggemann
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(2019) GLS approach involves many regressors, it is not a suitable choice in
small samples if the number of variables in the model and/or the lag order
is large and the desired propagation horizon for the impulse responses is also
large because it quickly exhausts the degrees of freedom for estimation in
that case. The coverage rates of MBB confidence intervals based on both
GLS estimators leave room for improvement, in particular for persistent pro-
cesses. They can be improved by using bias-corrected OLS estimation of
the reduced-form VAR. Generally, it would be desirable to design bootstrap
procedures that work well asymptotically and in small samples with the GLS
estimators also for such processes because bootstrap inference is quite com-
mon in structural VAR analysis. The fact, that Breitung and Brüggemann
(2019) obtained better coverage rates for their lag-augmented GLS estimator
by using an alternative bootstrap method in their simulation study suggests
that there is scope for future research in that direction.

It may also be worth noting that LP estimators based on a proxy VAR
approach performed well in a large-scale simulation study by Li et al. (2021)
which is based on a very different Monte Carlo design where finite-order VAR
processes and LP estimators approximate more general DGPs. Thus, our re-
sults may be relevant for more general settings as well. Li et al. (2021) also
consider shrinkage methods such as Bayesian methods and penalized estima-
tion which shrinks to smooth impulse response functions to cope with the
uncertainty induced by the large number of control variables in some of the
LP equations. They find that, in their simulation scenario, shrinkage can in-
deed improve the bias-variance trade-off and, thus, it may reduce the RMSE.
Of course, shrinkage can also be applied in conjunction with the estimators
considered in the present study and is, hence, a topic that may be worth
exploring in future research.

Appendix

A Supplementary Theoretical Results

A.1 Internalizing the Proxies

Instead of using the proxy as an external instrument variable one may inter-
nalize it by adding it to the set of observed variables in the VAR. Consider
the model[

zt
yt

]
= ν̃ + Ã1

[
zt−1
yt−1

]
+ · · ·+ Ãp

[
zt−p
yt−p

]
+ ũt (A.1)
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with OLS-estimates ˆ̃ut and error covariance estimate

ˆ̃Σ =
1

T − p

T∑
t=p+1

ˆ̃ut ˆ̃u
′
t.

Denote by chol( ˆ̃Σ) = M̃ the Cholesky decomposition of ˆ̃Σ, let M̃2:K+1,1 be a
vector consisting of the last K elements of the first column of M̃ and M̃2,1

the first element of M̃2:K+1,1. The estimator M̃2:K+1,1/M̃2,1 of θ0 will not be

numerically identical to θ̂0 in (3.1) in small samples, but it will converge to
θ0 under general conditions, as shown by Plagborg-Møller and Wolf (2021).
They point out that an advantage of internalizing the proxy is that asymp-
totically valid impulse response analysis becomes possible even if the shock
of interest is ‘noninvertible’, that is, the shock cannot be recovered from past
and present forecast errors.

Under our more restrictive assumptions, where w1t is invertible, suppose
that the zt equation in (A.1) has no lags and there are also no lags in the yt
equations. If such restrictions are taken into account in estimating the VAR,
the residual covariance matrix is based on (zt, û

′
t)
′. Then

M∗ = chol

(
1

T − p

T∑
t=p+1

(
zt
ût

)
(zt, û

′
t)

)
,

andM∗
2:K+1,1/M

∗
2,1 is numerically identical to the estimator θ̂0 in (3.1) because

the first column of a Cholesky decomposition of a matrix Σ is proportional
to the first column of Σ (see e.g., Lütkepohl (2005, Section A.9.3)).

A.2 Equivalence of Lag-augmented and Breitung-Brüg-
gemann Projection Estimators

As shown in Section 3.3, the equivalence of the lag-augmented LP estimator
and the Breitung-Brüggemann estimator follows from the representation

yt+h = νh−1 + Θhwt + A(h)
∗ Yt−1 + v

(h−1)
t+h (A.2)

which can be obtained by first replacing in (3.8) t by t+ 1 such that

yt+h+1 = νh + A(h+1)Yt + A
(h+1)
p+1 yt−p + v

(h)
t+h+1

= νh + Φh+1yt + A
(h+1)
# Yt−1 + v

(h)
t+h+1

= νh + Φh+1ut + A(h+1)
∗ Yt−1 + v

(h)
t+h+1.
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Using Φh+1ut = Θh+1wt and then replacing h by h−1 gives the representation
(A.2).

The expression for computing the first shock when θ0 = b is given,

w1t = b′Σ−1u ut/b
′Σ−1u b,

is obtained by noting that Σu = BΣwB
′ implies b′Σ−1u ut = b′(BΣwB

′)−1ut =
b′B′−1Σ−1w B−1ut = w1t/σ

2
w1

, where b′B′−1 = (1, 0, . . . , 0) has been used and
σ2
w1

denotes the variance of w1t. Moreover, Σ−1u = B′−1Σ−1w B−1 implies
b′Σ−1u b = 1/σ2

w1
. Putting things together, we get the above relation (see

also Stock and Watson (2018, Footnote 6, p. 933)).

A.3 An Equivalence Result for the IV Estimator

Let Y = (y1, . . . , yT ), y1 = (y11, . . . , y1T ), Y−1 = (Z0, . . . , ZT−1), where
Zt−1 = (1, y′t−1, . . . , y

′
t−p)

′, U = (u1, . . . , uT ), A = (ν,A1, . . . , Ap) and recall
that OLS estimation of the model

Y = AY−1 + U

results in OLS errors Û = Y − ÂY−1 = Y (IT − Y ′−1(Y−1Y
′
−1)
−1Y−1). Now

consider

Y = θ0y1 + AY−1 + Ũ .

Estimating the model by OLS conditionally on θ0 gives an estimator Â =
(Y − θ0y1)Y

′
−1(Y−1Y

′
−1)
−1. Replacing A in the model equation by this esti-

mator and rearranging terms gives

Y (IT − Y ′−1(Y−1Y ′−1)−1Y−1) = θ0y1(IT − Y ′−1(Y−1Y ′−1)−1Y−1) + ̂̃U
or

Û = θ0û1 + ̂̃U,
where û1 is the first row of Û . In other words, instead of the model with
controls, we can equivalently consider the model

ût = θ0û1t + errort

so that an IV estimator with zt as an instrument for û1t is

T∑
t=p+1

ûtzt

/
T∑

t=p+1

û1tzt,

the same as in (3.1).
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A.4 Some Asymptotic Results

The following proposition shows that we can replace estimated residuals v̂
(H)
t+H

by the true quantities v
(H)
t+H for asymptotic derivations. To simplify the sum-

mation limits, we now assume, without loss of generality, that T sample
values plus presample and postsample values are available.

Proposition. Let yt, ut, and zt be such that

A1. T−1
∑T

t=1 utY
∗′
t−1 = Op(T

−1/2), where Y ∗t−1 = (1, y′t−1, . . . , y
′
t−p)

′;

A2.
(
T−1

∑T
t=1 Y

∗
t−1Y

∗′
t−1

)−1
= Op(1);

A3. T−1
∑T

t=1 zt+hY
∗
t−1 = Op(T

−1/2) for h > 0.

Then

1

T

T∑
t=1

v̂
(H)
t+Hz

′
t+h =

1

T

T∑
t=1

v
(H)
t+Hz

′
t+h + op(T

−1/2)

for h = 0, 1, . . . , H, and H = 0, 1, 2, . . . . �

Note that Assumptions A1 - A3 are high level assumptions that hold
under very general conditions for stable, stationary VAR processes. They
can even be relaxed to hold for unit root and cointegrated processes as well.
In the following proof, it is shown how they are used to establish the desired
result. Note also that, for h = H = 0, the Proposition implies that

1

T

T∑
t=1

ûtz
′
t =

1

T

T∑
t=1

utz
′
t + op(1)

which in turn implies standard asymptotic properties of θ̂0 in (3.1).

Proof: Denoting by [ν̂, Â] the OLS estimator of [ν,A], Assumptions A1 and

30



A2 imply that [ν̂, Â]− [ν,A] = op(1). Hence,

1

T

T∑
t=1

v̂
(H)
t+Hz

′
t+h =

1

T

T∑
t=1

v
(H)
t+Hz

′
t+h +

1

T

T∑
t=1

(v̂
(H)
t+H − v

(H)
t+H)z′t+h

=
1

T

T∑
t=1

v
(H)
t+Hz

′
t+h − ([ν̂H , Â

(H+1)]− [νH , A
(H+1)])

1

T

T∑
t=1

Y ∗t−1z
′
t+h

=
1

T

T∑
t=1

v
(H)
t+Hz

′
t+h + op(T

−1/2).

Note that

[ν̂H , Â
(H+1)]− [νH , A

(H+1)] =
1

T

T∑
t=1

v
(H)
t+HY

∗′
t−1

(
1

T

T∑
t=1

Y ∗t−1Y
∗′
t−1

)−1
= op(1)

because

1

T

T∑
t=1

v
(H)
t+HY

∗′
t−1 =

1

T

T∑
t=1

ut+HY
∗′
t−1 + Φ1

1

T

T∑
t=1

ut+H−1Y
∗′
t−1

+ · · ·+ ΦH
1

T

T∑
t=1

utY
∗′
t−1

and

1

T

T∑
t=1

ut+hY
∗′
t−1 = op(1)

for h ≥ 0 by Assumption A1, while(
1

T

T∑
t=1

Y ∗t−1Y
∗′
t−1

)−1
= Op(1)

by Assumption A2. �

The proposition extends to integrated processes by modifying the orders
of convergence of the quantities in A1, A2, and A3 appropriately, depending
on the order of integration of the process and possible cointegration relations.
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B Bias-corrected VAR Estimation

The following notation is used: ν̂, Â1, . . . , Âp denote the OLS estimators of

the VAR coefficients and Φ̂0, . . . , Φ̂H are the corresponding estimators of the
reduced-form impulse responses. Bias-correction is based on the asymptotic
bias formula given by Nicholls and Pope (1988) and Pope (1990). The sta-
tionarity correction, described by Kilian (1998), is used when calculating the
bias-corrected estimates.

The following presentation is similar to Kim (2004) (see also Lütkepohl
et al. (2015a, Appendix A.1)). The bias-correction is based on the VAR(1)
representation,

Yt − µ = A(Yt−1 − µ) + Ut,

where Yt = (y′t, . . . , y
′
t−p+1)

′, A is the VAR companion matrix, µ = µ⊗ 1p is
a (Kp× 1) vector of mean terms which is replaced by ȳ ⊗ 1p for estimation.
Here 1p = (1, . . . , 1)′ is a (p × 1) vector. Furthermore, Ut = (u′t, 0, . . . , 0)′ is

(Kp× 1). The bias-corrected estimator of the least squares estimator Â for
A is computed as

Âc = Â +
1

T
Ĝ
[
(I − Â′)−1 + Â′(I − Â′2)−1

+
∑

λ∈Spec(Â)

λ(I − λÂ′)−1
]
Γ̂(0)−1,

where Γ̂(0) = T−1
∑T

t=1(Yt − ȳ)(Yt − ȳ)′, Ĝ = T−1
∑T

t=1 ÛtÛ
′
t and Spec(A)

denotes the set of eigenvalues λ of the A matrix.
The bias-corrected estimator of the VAR slope coefficients, [Âc1, . . . , Â

c
p]

consists of the first K rows of Âc and the bias-corrected estimator of the
constant term is ν̂c = ȳ − Âc1ȳ . . . − Âcpȳ, where ȳ is the sample mean of
yt. (Alternatively, one may use mean-adjusted data for yt and delete the
intercept term from the procedure.)

Kilian (1998) proposes the following stationarity correction. If the largest

eigenvalue of Â is outside the unit circle, set Âc = Â. If the largest eigenvalue
of Â is inside the unit circle but the largest eigenvalue of Âc is outside the
unit circle, then the bias-correction term is reduced in small steps until the
largest eigenvalue of Âc is inside the unit circle (see also Kilian and Lütkepohl
(2017, pp. 363-364)).
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C Moving-Blocks Bootstraps

We use the moving-blocks bootstrap (MBB) of Jentsch and Lunsford (2019)
who show that it leads to asymptotically valid inference under general con-
ditions. The nth bootstrap sample is generated as follows.

For a given block length ` < T the estimated residuals and proxies are
arranged in the form of the matrix

(
û1
z1

) (
û2
z2

)
. . .

(
û`
z`

)
(
û2
z2

) (
û3
z3

)
. . .

(
û1+`
z1+`

)
...

...
...(

ûT−`+1

zT−`+1

) (
ûT−`+2

zT−`+2

)
. . .

(
ûT
zT

)


.

The bootstrap residuals and proxy are recentered columnwise by constructing

ũj`+i = ûj`+i −
1

T − `+ 1

T−∑̀
r=0

ûi+r

and

z̃j`+i = zj`+i −
1

T − `+ 1

T−∑̀
r=0

zi+r

for i = 1, 2, . . . , ` and j = 0, 1, . . . , s − 1. Then s = [T/`] of the recentered
rows of the matrix are drawn with replacement, where [·] denotes the smallest
number greater than or equal to the argument such that `s ≥ T . These ran-
domly drawn blocks are joined end-to-end and the first T bootstrap residuals
and proxies are retained,(

u
(n)
t

z
(n)
t

)
, t = 1, . . . , T.

Finally, the u
(n)
t are de-meaned and used to generate y

(n)
t = ν̂ + Â1y

(n)
t−1 +

· · · + Âpy
(n)
t−p + u

(n)
t , t = 1, . . . , T , starting from y

(n)
−p+1, . . . , y

(n)
0 . The latter

quantities are obtained as a random draw of p consecutive values from the
original sample.

Based on N bootstrap samples y
(n)
1 , . . . , y

(n)
T and z

(n)
1 , . . . , z

(n)
T , n =

1, . . . , N , the following steps determine bootstrap impulse responses and con-
fidence intervals:
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1. A VAR(p) model is fitted to the sample by OLS and the estimates are
bias-adjusted, giving bootstrap estimates Â(n),

Φ̂
(n)
i =

i∑
j=1

Φ̂
(n)
i−jÂ

(n)
j , i = 1, . . . , H, with Φ̂

(n)
0 = IK ,

and residuals û
(n)
t .

2. Then bootstrap estimates

b̂(n) =
T∑
t=1

û
(n)
t z

(n)
t

/
T∑
t=1

û
(n)
1t z

(n)
t

of the structural parameters are determined.

3. Finally bootstrap estimates of the impulse responses of interest are
computed as

Θ̂(n) = [b̂(n), Φ̂
(n)
1 b̂(n), . . . , Φ̂

(n)
H b̂(n)]

and stored.

The N bootstrap estimates Θ̂(1), . . . , Θ̂(N) are used to construct pointwise
confidence intervals based on the quantiles of the bootstrap distributions.
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Figure 1: DGP1 RMSEs as well as coverage and average lengths of point-
wise MBB 90% confidence intervals based on Θ̂LP (LP), Θ̂aug

LP (LP-aug), Θ̂IV

(IV ), Θ̂y
IV (IV y), and Θ̂yz

IV (IV yz) for the responses of variable 2 to the
first structural shock (average length and RMSE suitably truncated at upper
limits of vertical axis; with bias-corrected reduced-form VAR estimation).
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Figure 2: DGP1 RMSEs as well as coverage and average lengths of pointwise
MBB 90% confidence intervals based on Θ̂resid

LP (Resid LP), Θ̂ss
LP (SS LP), Θ̂BB

(BB), Θ̂GLS
BB (BB GLS), and Θ̂GLS

LP (LP GLS) for the responses of variable 2 to
the first structural shock (average length and RMSE suitably truncated at upper
limits of vertical axis; with bias-corrected reduced-form VAR estimation).
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Figure 3: DGP1 RMSEs as well as coverage and average lengths of pointwise
MBB 90% confidence intervals based on Θ̂V AR (VAR), Θ̂LP (LP), Θ̂aug

LP (LP-

aug), Θ̂GLS
BB (BB GLS), and Θ̂GLS

LP (LP GLS) for the responses of variable 2 to
the first structural shock (with bias-corrected reduced-form VAR estimation).
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Figure A.1: DGP1 RMSEs as well as coverage and average lengths of pointwise
MBB 90% confidence intervals based on Θ̂V AR (VAR), Θ̂LP (LP), Θ̂aug

LP (LP-aug),

Θ̂GLS
BB (BB GLS), and Θ̂GLS

LP (LP GLS) for the responses of variable 2 to the first
structural shock (VAR, LP, and LP-aug based on bias-corrected VAR estimation;
BB GLS and LP GLS based on plain OLS estimation without bias-correction).



Table A.2.a: DGP2. Variables and proxy by Mertens and Ravn (2013).

Variable Definition

Average personal income tax rate Federal personal income tax revenues including contribu-
tions to government social insurance divided by personal
income tax base

Average Corporate income tax rate Federal corporate income tax reveneues divided by copo-
rate income tax base

Personal income tax base Logarithm of personal income less government transfers
plus contributions to government social insurance divided
by GDP deflator and by population

Corporate income tax base Logarithm of corporate profits less Federal Reserve Bank
profits divided by GDP deflator and by population

Government spending Logarithm of real Federal government consumption and
investment expenditures divided by population

GDP Logarithm of real GDP divided by population
Government debt Logarithm of federal government debt held by the public

divided by GDP deflator and by population
Proxy for shocks to corporate income taxes See Mertens and Ravn (2013) for construction
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Figure A.2.b: DGP2. Variables and proxy of Mertens and Ravn (2013).
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