~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Jin, Ding

Working Paper
Metamodeling: A useful tool for applying innovative
simulation techniques in agricultural economics

Working Papers of Agricultural Policy, No. WP2021-02

Provided in Cooperation with:
Chair of Agricultural Policy, Department of Agricultural Economics, University of Kiel

Suggested Citation: Jin, Ding (2021) : Metamodeling: A useful tool for applying innovative simulation
techniques in agricultural economics, Working Papers of Agricultural Policy, No. WP2021-02, Kiel
University, Department of Agricultural Economics, Chair of Agricultural Policy, Kiel,
https://nbn-resolving.de/urn:nbn:de:gbv:8:3-2021-00254-5

This Version is available at:
https://hdl.handle.net/10419/234256

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

.: BY https://creativecommons.org/licenses/by/4.0/
Mitglied der
WWW.ECOMSTOR.EU K@M 3
. J . Leibniz-Gemeinschaft

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:gbv:8:3-2021-00254-5%0A
https://hdl.handle.net/10419/234256
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

WORKING PAPERS OF AGRICULTURAL POLICY

ISSN: 2366-7109

AGRICULTURAL POLICY

WORKING PAPER SERIES
WP2021-02

Metamodeling: a useful tool for applying
innovative simulation techniques

in agricultural economics

Ding Jin
Department of Agricultural Economics

University of Kiel

The Agricultural Working Paper Series is published by the
Chair of Agricultural Policy at the University of Kiel.
The authors take the full responsibility for the content.

Ding Jin

Metamodeling: a useful tool for applying
innovative simulation techniques

in agricultural economics

Department of Agricultural Economics

University of Kiel

Kiel, 2021
WP2021-02
http://www.agrarpol.uni-kiel.de/de/publikationen /working-papers-of-agricultural-policy

About the authors:
Ding Jin is research assistant and doctoral candidate at the departement for agricultural
policy at Insitute for Agricultural Economics of Kiel.

Corresponding author: djin@ae.uni-kiel.de

Abstract

Computational simulation models are widely used in the field of agricultural
economics for a variety of tasks, particularly for evidence-based policy analysis.
Despite the substantial and continuing growth of computing power and speed, the
growing complexity together with the implicit nature of the simulation models,
on the one hand, still lead to high computational costs in applying the models
along with great difficulties in the parameter specification where data availability
and parametrization constraints for empirical calibration problems are notably
challenging. On the other hand, they also limit the uses of simulation models in
many other aspects such as integration into other research frameworks like policy
optimization coupled with uncertainty analysis. In this paper, we attempt to
systematically and comprehensively introduce the metamodeling technique and
investigate several metamodel types in terms of accuracy, computational time,

variable importance and potential practical applications.

1. Introduction

Computational simulation models, such as partial or general equilibrium models or Agent
Based Models (ABMs), are widely used in the field of agricultural economics for a va-
riety of tasks, particularly for evidence-based policy analysis (Birur et al., 2007; Diao
et al., 2012; Manson and Evans, 2007; Rasch et al., 2017). The demands for creating
large-scale dynamic models with highly disaggregated sectors and regions or developing
the existing models with more components such as land, water, energy and sustainability
or linking economic and ecological models to construct extensively interlinked models or
diversifying agent heterogeneity drive the increase in complexity of these models. Despite
the substantial and continuing growth of computing power and speed, the growing com-
plexity together with the implicit nature of the simulation models, on the one hand, still
lead to high computational costs in applying the models along with great difficulties in
the parameter specification where data availability and parametrization constraints for
empirical calibration problems are notably challenging. On the other hand, they also
limit the uses of simulation models in many other aspects such as integration into other
research frameworks like policy optimization coupled with uncertainty analysis which is
receiving increasing attention as Manski stated that exact predictions of policy outcomes
are routine, while expressions of uncertainty are rare (Manski, 2018).

As a specific example, let’s suppose that we want to maximize a welfare function U (z)
subject to 0 where z is an output variable of an economic-ecological simulation model
that is represented by T'(z,0) = 0 and € is an input parameter of the model that is
assumed to have a direct impact on z. Without any further restrictions, deriving an
analytical solution to the maximization problem is complicated or at least tedious and
time-consuming because T'(z,60) = 0 is an implict representation of the relationship be-
tween @ and z. Likewise, due to the same reason, finding solutions to problems mentioned
above is tricky.

Researchers have been increasingly tapping into this gap. For example, Storm et al.
have stated in their review paper that the Machine Learning (ML) methods have the
potential to address both computational demands of complex simulation models and their
calibration (Storm et al., 2020). Moreover, they have metioned that the metamodeling
method offers opportunities to solve these problems. In the metamodeling literature, the
ML methods are considered as an important element of the entire framework, which is
called the metamodel (see Section 2). Therefore, in this paper, we are going to dive deep
into the metamodeling method and explore its potentials from a practical point of view.
Metamodeling is also known as response surface modeling or surrogate modeling (Kleijnen
and Sargent, 2000). The method aims at approximating the mapping between inputs and
outputs of the underlying simulation model with a simplified model which enables us to

circumvent the simulation model’s black-box nature and ease the computational cost. The

statistical approximation models are called metamodels (Blanning, 1975; Kleijnen, 1975)
and the ultimate goal of metamodeling is to construct metamodels that can approximate
the Input-Output (I/O) relationship with an acceptable level of precision so that they
can be used to understand and develop the simulation models further or replace them
for other research purposes. The method has been extensively used in other disciplines,
such as engineering (Simpson et al., 1997; Barthelemy and Haftka, 1993; Jaroslaw and
Raphael T, 1996) and natural science (Razavi et al., 2012; Gong et al., 2015; Mares
et al., 2016). In recent years, the method has drawn the interests of researchers from the
economic field as well: Ruben and van Ruijven have applied the approach to bio-economic
farm household models to analyze the potential impact of agrarian policies on changes in
land use, sustainable resource management and farmers’ welfare (Ruben and van Ruijven,
2001); Villa-Vialaneix et al. have compared eight metamodels for the simulation of N20
fluxes and N leaching from corn crops (Villa-Vialaneix et al., 2012); Yildizoglu et al. have
applied two popular metamodel types to two well known economic models, Nelson and
Winter’s industrial dynamics model and Cournot oligopoly with learning firms, to conduct
sensitivity analysis and optimization respectively (Yildizoglu et al., 2012).

With a metamodel being constructed to approximate the 1/O relationship, we can re-
place the simulation model in the aforementioned optimization problem and derive an
analytical solution. Analogously, it can help us solve other problems as well. However,
to the author’s knowledge, there have been no comprehensive metamodeling studies in
the field of agricultural economics. Thus, in this paper, we attempt to systematically and
comprehensively introduce the metamodeling technique and investigate several metamodel
types in terms of accuracy, computational time, variable importance and potential exten-
sions to demonstrate how to use them in practical applications and the features of various
metamodel types as well as to explain how they can help us solve the aforementioned
problems. The paper is organized hereafter as, Section 2: a general introduction of the
metamodeling framework, Section 3: a comprehensive review of the metamodels that are
considered in this study, Section 4: a brief introduction of the simulation model that is

used in the paper and analysis of the results, Section 5: conclusion.

2. Framework of metamodeling

A simulation model is often developed to study a real problem for a specific purpose. Such
a model, deterministic or stochastic, is applied to approximate the true I/O relationships.

In the field of agricultural economics, a good case in point is the Computable General
Equilibrium (CGE) model and the corresponding CGE-based policy analysis. CGE mod-
els are broadly used as policy analysis instruments that can comprehensively represent
the economy-wide effects of potential policy interventions (Henning et al., 2018). How-

ever, given the internal complexity, it is often viewed as a black-box (Bohringer et al.,

2003) that does not allow to identify relationships between input parameters' and output
variables? explicitly. Besides, the implicit nature of model relationships and high com-
putational intensity due to the growing complexity hinder the possibility of performing
many tasks such as empircal calibration of large-scale dynamic models, integration into
other research frameworks such as policy optimization coupled with uncertainty analysis
and etc.

To overcome the limitation of applying simulation models, researchers have come up
with the idea of producing a model that can approximate the I/O relationships of the
underlying simulation model but has a more simplified form. Such a model is named as
the metamodel (Blanning, 1975; Kleijnen, 1975).

Having a metamodel instead of a simulation model usually gives us several benefits
(Barton, 2015; Simpson et al., 2001; Britz et al., 2009):

e Metamodels have a more simplified form that enables the users to better understand

the behaviors of the simulation model;

e Metamodels can be integrated into other research frameworks such as policy opti-

mization to solve more complex problems;

e Metamodels are faster to run and evaluate. Once they are constructed, we can easily

utilize and manipulate them based on research purposes.

The method to produce metamodels is called metamodeling, also known as surrogate
modeling or response surface modeling (Kleijnen and Sargent, 2000), which aims at ap-
proximating the mathmatical mapping between the inputs and outputs of the underlying
simulation model.

To explain the metamodeling technique intuitively, let (x,y) represent the dataset that
contains n pairs of (z;,y;) where x; = (z}, ..., 2F

Ly

) are the input parameters and y; are the

output variables. Thus, the simulation model is refered to as:

yi = F¥™(x;) i=1,....n, (1)

where F"™ represents the simulation model.

Furthermore, with x; and y;, we can fit a metamodel which can be formulated as:

gi — meta<xi) 1= 17 e n, (2)

In this paper, input parameter is also refered to as input, factor, or independent variable because it
has different names in different fields. Therefore, we use them interchangeably.

?In this paper, output variable is also refered to as output, response, or dependent variable because it
has different names in different fields. Therefore, we use them interchangeably.

6

where ¢ represents the metamodel that we utilize to approximate the I/O relationship
of the underlying simulation model and g; are the predicted values of the outputs using
x;.

Having introduced the general idea of metamodeling, we should dive into the three

essential elements of this technique:

o Design of Experiments (DoE)?;
e Metamodel;

« Validation.

DoE refers to the sampling method which we use to obtain the simulation sample (to
get x) for running the simulations (to get y) because we need to train the metamodels
before we employ them in practical applications. The training is performed with the
help of the simulation data that are generated by running the simulation sample in the
simulation model. The sample for simulation are produced by DoE which includes two
categories: the classical experimental design and the space-filling experimental design
(see Figure 1). The former places multiple sample points at the boundaries and the
center of the parameter space to minimize the influence of the random errors from the
stochastic simulation models. However, Sacks et al. have argued that this is not the
case for deterministic simulation models where systematic errors prevail and therefore
the space-filling experimental designs should be employed to replace the classical ones
(Sacks et al., 1989). Among popular space-filling designs, such as the orthogonal arrays
(Owen, 1992), uniform designs (Fang et al., 2000) and Latin Hypercube designs (Sacks
et al., 1989), Latin Hypercube design enjoys great popularity due to its ability to generate
uniformly distributed sample points with ideal coverage of the parameter space as well as

the flexibility with the number of the sample points (Sacks et al., 1989).

10 . 10 % o . o
(1] L L]
05 os| , * » . .,
X2 00]es o . x2 00 . .
) . .
05 05 . . .
A ¢ e 2 40| . . .
10 05 00 05 10 10 05 00 05 10
x1 x1
(a) “Classical” Design (b) “Space Filling” Design

Figure 1: Classical and Space-filling Design. (Simpson et al., 2001)

3DoE is a statistical method of drawing samples in computer experiments (Dey et al., 2017).

7

Metamodel refers to the statistical method that we use to approximate the 1/0 rela-
tionships of the underlying simulation model. In the next section, we will give a brief
introduction of the metamodel types that are selected and compared in this paper.

The process of constructing a metamodel can be called the training process. Moreover,
in the training process of certain metamodel types (see Section 3 for details), a tuning
process is necessary to adjust the hyper-parameters in the pursuit of optimal predictive
ability. More specifically, for some metamodel types, there exist some parameters that
affect how the predictions are made but cannot be estimated. These parameters are
refered to as hyper-parameters. Practically, a k-fold cross validation approach is applied
to tune the hyper-parameters which are selected on a grid search. It works in this way: the
training sample is randomly partitioned into £ folds (subsets); & — 1 folds are used to train
the metamodel and the other fold is used to make predictions; the averaged prediction
accuracy is used to determine the best hyper-parameters on a grid search.

Validation refers to the evaluation criteria such as prediction accuracy and others in
order to compare the performance of various metamodels and determine if the metamodels
hold an acceptable level of quality. To assess the quality of a trained metamodel, we often
make use of two samples: the training sample and the test sample. The training sample
includes the sample points that are used to train the metamodel whereas the test sample
contains sample points that are used to validate the metamodel that has been trained. An
important difference is that there are sample points in the test sample that the training
sample doesn’t include. The importance of having a test sample is that we will use the
metamodel as the replacement of the simulation model and therefore it is necessary to
evaluate the generalization quality of it. In other words, we not only want the metamodel
to have good predictions on the training sample but also want it to be able to predict
values close to real values even for points which are not in the training sample. The

metrics that we use to assess the validation results are summarized in Section 4.

3. Review of Metamodels

In the literature, there is a variety of metamodel types, see Dey et al. 2017; Simpson
et al. 2001; Chen et al. 2006 for nice reviews. Based on the popularity in the practical
applications, we have selected six types to assess and compare in terms of prediction
performances and other aspects. We will provide a brief description of the metamodels
studied in this section: polynomial model (Forrester et al., 2008), Kriging model (Cressie,
1993), multivariate adaptive regression splines (Friedman et al., 1991), support vector
regression (Vapnik, 2013), random forest regression (Breiman, 2001) and artificial neural
network (Smith, 1993). The polynomial model is a parametric model (Myers et al., 2016)
that has explicit structure and specification whereas the others are non-parametric models

(Yildizoglu et al., 2012; Kleijnen, 2015) that do not depend on assumptions in terms of

model specification and determine the 1/O relationship of the underlying simulation model

using experimental data.

3.1. Polynomial Models

The polynomial models are the most basic metamodels. In this paper, we introduce
polynomial models that have specific orders which are determined by the user. As a

specific example, a second-order polynomial model is given as follows:

k ko k
y="00+ > Brxn+ Y. > Brgtnty + e (3)

h=1 h=1g>h
where w1,, 1y are the k factors of the model, y is the response and € is the error term.

The coefficients § are usually derived through a linear regression based on least squares
estimation. The main reasons for the popularity of polynomial models in comparison to

the non-parametric metamodels are:

e Polynomial models have simple forms, which are easy to understand and manipulate;
e Polynomial models require low computational efforts;

e Polynomial models can be easily integrated into other research frameworks.

In this paper, we consider two polynomial models: a first-order polynomial model,
recorded as LM1, and a second-order polynomial model, recorded as LM2. In practical
applications, there are cases where even higher orders are used in the model when analysts
have good reasons to do so. In the current context, we will not go into that direction.

In the determination of the form for LM1 and LM2, we rely on expert opinions to select
the input parameters (see Section 4.2 for details). As for LM1, we include all the main
effects of the input parameters. As for LM2, we include all the main effects, a subset of
all the two-way interaction effects, and all the quadratic effects. Moreover, we perform
a preliminary stepwise selection based on the AIC criterion (Akaike, 1974) to screen the
terms of LM2 in order to select an optimal subset of covariates in the training process

4. There are various programming languages

to avoid the potential overfitting problem
with the built-in functions to perform this selection process. In this paper, we use the
“stepAIC” function from the R package MASS (Venables and Ripley, 2002).

In the construction of LM1 and LM2, there are no hyper-parameters that we need to

play around in the tuning process.

4n statistics, overfitting is the production of a model that corresponds too closely or exactly to a
particular set of data, and may therefore fail to fit additional data or predict future observations
reliably.

3.2. Kriging Models

The Kriging model is based on the pioneering work of Danie Krige and introduced as a
metamodel for deterministic simulation models in Sacks et al. 19809.

In this paper, we study two Kriging models in the context of deterministic simulation
models: the Ordinary Kriging, recorded as OK, and the Universal Kriging, recorded
as UK. For readers who are interested in the Stochastic Kriging for random simulation
models, we refer to Kleijnen 2015. As a specific example, a Universal Kriging has the

following form:
y = f(z)+M(z) (4)

where = and y represent the factors and response of the model, f(x) represents the assumed
global trend and M (x) is a stochastic process that refers to the localized deviations from
the global trend®. M(x) is assumed to be a weakly stationary process with zero mean
and covariance matrix ¥ = 72R where 72 is the process variance and R is the correlation
matrix whose (4, j) element is the correlation between points x; and z;% namely, R;; =
Corr|[M(x;), M(x;)]. In Kriging, the correlations are determined by the distances between
the points, that means, the closer the points z; and x; are to each other, the higher the
correlation between them is. This idea is represented by the following correlation function

which computes the correlation of points z; and x; using a Gaussian kernel”:

k
Corr[M(x;), M(x;)] = exp(— Z wi Tip — Jij,h,)2), (5)

Mll—

where h represents the A factor of each point and 1)), quantifies the relative importance
of this factor meaning that a higher 1), represents a higher contribution of factor xj to
the correlation between the points, in other words, a higher importance of factor x; to
the response.

The Kriging models use a linear predictor and predict the new point xy as a linear

function of the n old points.
ijo — Z)\iyiu (6)
i=1

where y; = F5™(z;) is the simulation response of the i old point z; and \; refers to
the weight of it in the prediction. The Kriging is often called a spatial estimator because
A; decreases as the distance between the new point xy and the old point x; increases.

To determine the optimal weights A7, the Kriging uses the best linear unbiased predictor

SFigure 2 shows an Ordinary Kriging which has a constant trend.

62, and z; refer to the it" and j' points in the simulation sample respectively.

“There are also other kernel functions that we can use in the computation of correlations, such as linear,
exponential, etc (Kleijnen, 2015).

10

y®)]

Computer
responses

M“

Figure 2: An Ordinary Kriging model (Jourdan, 2005).

(BLUP) as a criterion which minimizes the mean squared error of the predictor:
min MSE[§y,] = min E[f., — y(zo)]*. (7)
Following the derivations in Kleijnen 2015, we can obtain:

oo = F(@0) + 0(20)TE " (y — f(0)), (®)

where we have unknown parameters 5 (in the trend function) estimated via GLS (Kleijnen,

2015) as well as ¥ and 72 that are estimated using the maximum likelihood method:

(u, 72, 0) = —In[(2m)"?]
~Hnfdet(PR(4))] — 3y — F@))T PR (o — f@)) with >0,
(9)
where det refers to the determination of a matrix.

Some of the advantages and disadvantages of the Kriging model can be listed as:

e In comparison to polynomial models, Kriging models can handle nonlinear and

irregular I/O relationships much better;

e Kriging models are by nature exact interpolators and therefore can predict the

training sample with certainty;

e A potential disadvantage of the Kriging models is the implementation which is
more time-consuming due to the optimization difficulty in the maximum likelihood

estimation of the parameters (Kleijnen, 2015).
In this paper, we implement the Kriging model with the help of the R packages

11

DiceDesign and DiceEval (Dupuy et al., 2015). In addition, we want to mention the
“nugget” effect (see Kleijnen 2015 for detailed explanations) which is essentially an error
term added to Equation (4). Adding the “nugget” effect often reduces the numerical
problems in the estimation of the Kriging models and makes them smooth but lose the
interpolating property.

In the construction of OK and UK, there are two hyper-parameters to adjust in the

tuning process:

e The kernel function that determines how the correlations are computed;

e The optimization method that is used in the estimation of 1) and 72.

The kernel functions and optimization methods are summarised in Table 8 in the ap-
pendix. For the details of them, we refer to Kleijnen 2015 and the accompanying docu-

mentations of the R packages DiceDesign and DiceEval (Dupuy et al., 2015).

3.3. Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines, recorded as MARS, was first developed by Fried-
man (Friedman et al., 1991). It is a nonparametric statistical method that approximates
the I/0O relationships of the underlying simulation model by adaptively selecting a set of
basis functions. A MARS model has the following form:

M
y = Z Ay B (1), (10)
m=1

where a,, is the coefficient of the basis function B,,(z) and B,,(z) = 1 when m = 1,

namely, the first basis function is a constant. Basis functions can be written as follows:

P

By, (z) = H[Snm(xv(p,m) — tpm)]% (11)

p=1
where P, is the number of interaction order in the m'" basis function, s,,, = +1, Ty(pm)
is the v* factor, 1 < v(p,m) < k and t,,, is a knot location corresponding to T(pm)-
The subscript “+”7 means the function is a truncated power function that is often called

a hinge function:

q [sp.m(Zopm) — tom)]?, Spm(Topm)—tpm) > 0
[Sp.m (ZTu(pm) — tpm) |3 = _

0, otherwise.
In the construction of a MARS model, the algorithm performs a forward selection
and a backward pruning. In the forward selection, the algorithm recursively splits the

training sample by adding a pair of hinge functions, which maximize the reduction of

12

the residual sum of squares. To be more specific, the algorithm iteratively searches for
a proper knot location for a factor and splits the training sample at this knot location
using hinge functions, which yields a regression equation for each of the two subsets of
the training sample. The pair of hinge functions can enter the model directly or they can
be multiplied by an existing basis function that is already in the model and become new
basis functions. This forward selection stops when a predefined maximum number of basis
functions is reached or if the reduction of the residual sum of squares is less than 0.001.
In the backward pruning, a generalized cross validation (GCV) approach (Craven and
Wahba, 1978) is applied to remove the basis functions which have the least contribution
to the reduction of residual sum of squares. The purpose of the backward pruning is to
reduce the complexity of the MARS model and avoid the potential overfitting problem.
In the paper, the MARS is produced with the help of the R packages “earth” and
“caret” (Milborrow., 2020; Kuhn, 2020). Additionally, in the construction of MARS,

there are two hyper-parameters to adjust in the tuning process:

e degree: the maximum order of interaction in the basis functions;

e nprune: the predefined maximum number of basis functions to retain in the model.

As described in section 4.3, a k-fold cross validation approach is applied to tune the
two hyper-parameters degree and nprune which are selected on a grid search (see Table 9

in the appendix).

3.4. Suppport Vector Regression

Support vector regression, recorded as SVR, is an extension of the support vector machine
(Boser et al., 1992) which was originally developed to address the classification problems.
Vapnik extended the idea to regression problems (Vapnik, 1995).

A SVR model has the following form:

y =wx + b, (12)

where = and y are the factors and response of the model while w and b represent the
coefficients. In the literature, there are several methods that have been proposed to
determine the coefficients (Steinwart and Christmann, 2008). In this paper, we still
follow the original approach that utilizes the € — insensitive loss function to determine

the coefficients for the model:

Le =Y max(|fi — vi] —¢,0), (13)
i=1

13

where ¢; refer to the predicted values. Such a loss function pays no attention to errors
which are smaller than ¢ and deems them as acceptable while focuses only on the errors
larger than e.

To determine the coefficients, the algorithm minimizes the loss function L. while pe-

nalizes the complexity of the estimated function, which is reflected as follows:
. 1 2
arg min L.+ —||w||, (14)
w,b C

where ||w||® represents the regularization term that controls the complexity of the esti-
mated function and C' is the regularization parameter. Parameter C' regulates the toler-
ance of the points which lie outside the accepted error margin. If C' decreases, it means
that we give more tolerance to the points outside because we allow for bigger errors in
exchange for less complex estimated model. On the contrary, if C' increases, it means
that we accept more complexity of the estimated model so as to avoid bigger errors. It is
worth mentioning that if we allow for high complexity, the model can usually make pre-
cise predictions on the training sample but poor predictions on a new sample (a typical
overfitting problem). Thus, it is always a compromise that we have to make between the
complexity of the model and the tolerance of the errors.

In the computation of w and b, Vapnik has derived the solution using the Lagrangian
and Karush-Kuhn-Tuchker conditions (Vapnik, 1995) and Keerthi et al. have demon-
strated that it is a classical quadratic optimization problem that can be explicitly solved
(Keerthi et al., 2001). For readers who are interested in the details, we refer to these two
papers.

In the paper, the SVR is produced with the help of the R package “e1071” (Meyer
et al., 2020). Additionally, in the construction of SVR, there are three hyper-parameters

to adjust in the tuning process:
e The € of the loss function;
e The regularization parameter C,

e The ~ parameter of the Gaussian kernel used in solving the optimization problem
(Keerthi et al., 2001).

As described in section 4.3, a k-fold cross validation approach is applied to tune the
hyper-parameters ¢, C' and « which are selected on a grid search (see Table 10 in the

appendix).

3.5. Random Forest

Random forest regression, recorded as RF, is developed based on two methods: classifi-

cation and regression tree (Breiman et al., 1984), also known as CART, and bootstrap

14

aggregating regression trees (Breiman, 1996), also known as Bagging.

CART constructs a basic regression tree (see Figure 3) by partitioning a training sample
into smaller subsets and fitting a constant for each subset. The partitioning is achieved
by successive binary partitions based on the different predictors. The algorithm begins
with the entire training sample, say S, and searches every distinct value of factors to find
the predictor and its split value that partitions S into two subsets, R, and R,, such that

the overall sum of squared errors is minimized:

min SSE =Y (yi—c1)*+ Y (4 — @) (15)
1€ER 1€R2
Node

Terminal Node 1 Terminal Node 2 Terminal Node 3

Figure 3: The structure of a basic regression tree with three terminal nodes.

The partitioning is carried out from top to bottom and any partitioning will not affect
the previous partitioning. Having found the first split, the process will be conducted on
each of two resulting subsets and it will continue until some stopping criteria is reached.
Thus, a basic regression tree with multiple nodes® is constructed. Then the prediction of
a new point is made by assessing it at each node and proceeding to the terminal nodes’
which contain the predicted values. Besides, in order not to have a complex regression tree
that is likely to lead to an overfitting problem, there is a pruning process that allows us to
control the complexity by making trade-offs between complexity and prediction accuracy.
For readers who are interested in the pruning process, we refer to Breiman et al. 1984.

The advantage of CART is that it generates basic regression trees which are easy to use

8 A node is represented by a predictor and its split value.
9A terminal node is where the fitted constant locates.

15

and interpret while the disadvantage of it is that these basic regression trees have high
variances which could lead to unstable predictions. Because of this, it leads us to an
upgrade of the basic regression trees, namely, Bagging.

Basically, Bagging combines and averages the predictions across multiple basic regres-
sion trees!®. Averaging across multiple trees reduces the variability of any single tree and
overfitting, which improves predictive performance. In practice, Bagging is performed in

the following process:

1. Creating a certain number of bootstrap samples from the training sample. Boot-
strapped samples allow us to create many slightly different subsets of the training

sample;
2. For each bootstrap sample, train a basic regression tree without the pruning process;

3. Averaging individual predictions from each regression tree to create an overall pre-

dicted value.

Despite the improvements that Bagging brings, the regression trees produced by Bag-
ging are not completely independent of each other owing to the fact that all of the original
factors are considered at every split of every tree. The problem is known as tree correlation
which could reduce the overall performance of the model (Breiman, 1996).

Random forests (Breiman, 2001) are built on the same fundamental principles as CART
and Bagging and aim at improving the prediction accuracy further by minimizing the
amount of correlation among regression trees. This can be achieved by injecting more
randomness into the tree-growing process which can be practically done by only consid-
ering a subset of factors at every split of every tree to find the predictors and their split
values.

Besides, Zhang et al. have found out that random forests often fail in extrapolating
problems (Zhang et al., 2019). Therefore, in our paper, we analyze two types of random
forests. The first one is a random forest for extrapolating'!, recorded as RF1, and the
second one is a random forest for interpolating'?, recorded as RF2. In the paper, the
random forest is produced with the help of the R package “ranger” (Wright and Ziegler,
2017). Additionally, in the construction of random forest, there are two hyper-parameters

to adjust in the tuning process:

e mitry: number of factors to consider at each split to find the predictor and its split

value;

Tn Bagging, the construction of basic regression trees will not include the pruning process for the sake
of reducing computational time.

" Extrapolating means that the paramenter space of the test sample is larger than that of the training
sample.

2Interpolating means that the paramenter space of the test sample is the same as that of the training
sample.

16

e node_size: minimum number of sample points within the terminal nodes, this
hyper-parameter controls the complexity of the trees. Smaller node size allows for

more complex trees.

As described in section 4.3, a k-fold cross validation approach is applied to tune the
hyper-parameters mtry and node__size which are selected on a grid search (see Table 11
in the appendix). In addition, there is another hyper-parameter that we can tune in the
process which is the number of the trees niree in the final random forest, but it is not a

very sensitive hyper-parameter and we simply follow the rule-of-thumb by using 500 trees.

3.6. Artificial Neural Network

Proposed in the 1940s as a simplified model of the elementary computing unit in the
human cortex, artificial neural networks (Ripley, 1994; Bishop et al., 1995), recorded as
ANN, have since been an active research area. It is an information processing model that
is composed of a large number of highly interconnected processing elements known as the
neurons to learn to solve problems by examples. An artificial neural network is a complex
adaptive system, which means that it has the ability to change its internal structure by
adjusting the weights in the network.

To understand the structure of an artificial neural network and how it works, we begin
with its basic element: a neuron. The structure of a neuron is illustrated in Figure 4. The
neurons are crucial elements because they are the places where the calculations happen,

or to put it in a fancy way, where the model learns.

Output
Inputs

Figure 4: The structure of a neuron.

17

The inputs are connected to the neuron and each input has an initial weight. Then the
neuron calculates a weighted sum of its inputs, adds a bias and decides whether it should

be activated or not:

y=A wyxy +b), (16)

h=1

where Y5 _, wpay + b is passed to the activation function A (Awad and Khanna, 2015)
which can be considered as a “gate” between the inputs feeding the current neuron and its
output going to the next layer. Besides, it helps the network learn complex relationships
in the data by adding non-linearity into the calculation. The bias b shifts the activation
function to the right or the left, which has a similar role to the constant of a regression
model that moves the regression line to fit the prediction with the data better.

An artificial neural network is a collection of multiple layers of neurons. Figure 5 shows
the structure of a one-hidden-layer artificial neural network. The layer that contains the
inputs is called the input layer, the layer that contains the outputs is called the output
layer, and the layer that contains the neurons is called the hidden layer. In each neuron
on the hidden layer, the calculation mentioned above is executed. Then the results from
each activated neuron is passed further to the neuron on the output layer where the
same calculation is carried out again. Thus, we get the predicted outputs. For regression
problems; the activation function in the neuron on the output layer is an identity function
which means that the predictions are a linear combination of the values from the activated

neurons on the hidden layer.

Inputs

Figure 5: An artificial neural network with one hidden layer.

18

The number of hidden layers determines the depth of an artificial neural network. A
neural network can be “shallow”, meaning it has an input layer, only one hidden layer
that processes the inputs, and an output layer that provides the final output of the model.
A Deep Neural Network (DNN) commonly has between 2-8 additional layers of neurons.
Researches from Goodfellow et al. and other experts suggest that neural networks increase
in accuracy with the number of hidden layers (Goodfellow et al., 2016). Moreover, the
deeper the artificial neural network, the more capable it is of approximating complex
relationships, while however, the higher the demand is for the data, which will make the
compuation particularly time-consuming.

During the learning process the weights are determined by minimizing the mean squared

CITor:

1.
PZéZH}’i—YiHZ? (17)
=1

where P is not a quadractic function of w and the existence of a global minimum is not
garanteed. Thus, gradient descent based approximation algorithms have been utilized
to find an approximate solution, where the gradient of w is calculated by the back-
propagation principle (Werbos, 1974).

Moreover, Krogh and Hertz have introduced a penalization strategy, called weight decay,
to tackle the problem of overfitting, which aims at minimizing the following performance
function (Krogh and Hertz, 1992):

1
P =23 lI9 =il + Cllwl, (18)
i1=1

where C' is the penalization parameter.

The learning process of artificial neural network models is an iterative process. The
algorithm compares the predicted values with the true values and record the information
of the errors. Then the information is propagated backwards to all the activated neurons
on the hidden layer and dependent on the contribution of each activated neuron to the
prediction, a corresponding correction is made to reduce the error.

In our paper, we will analyze two types of artificial neural networks. The first one is an
artificial neural network with one hidden layer and the penalization parameter, recorded
as ANN1. The second one is an artificial neural network with multiple hidden layers (in
this paper, we train a three-hidden-layer artificial neural network model) but without the
penalization parameter, recorded as ANN2. ANNI1 is constructed with the help of the
R package “nnet” (Fritsch et al., 2019) while ANN2 is constructed with the help of the
R package “neuralnet” (Venables and Ripley, 2002). In the construction of ANN1, there
are two hyper-parameters in the tuning process: the number of neurons on the hidden
layer (); and the penalization parameter C' while in the construction of ANN2 there are

three hyper-parameters in the tuning process: the number of neurons on the three hidden

19

layers (01, (02 and Q3.
As described in section 4.3, a k-fold cross validation approach is applied to tune the

hyper-parameters which are selected on a grid search (see Table 12 and Table 13 in the
appendix).

4. Simulation and Results

4.1. Simulation Model

In this paper, we use the recursive-dynamic CGE model for Senegal of the International
Food Policy Research Institute (IFPRI) developed by Lofgren et al. (2002); Diao and
Thurlow (2012), and the corresponding 2015 social accounting matrix (SAM) constructed
by Randriamamonjy and Thurlow (2019).

Given that the focus of our study is to compare the predictive ability and demenstrate
the features of various metamodel types, we simplify the model structure by aggregating
the accounts of the original SAM (see B.1 for more details). We also select specific func-
tional forms and closures of the CGE model such that they reflect long-term adjustment

possibilities of the Senegalese economy (see B.2 for more details).

4.2. Inputs and Outputs (Sampling and Simulation)

Two output variables are studied in this paper: income (represented by GDP per capita,
Z11) and poverty (represented by national poverty headcount rate, Z14). Moreover, we
select ten years (2016-2025) as the simulation horizon and consider the linear growth rates

as the responses for the metamodels:

72025 _ 72016

where 72916 represents the simulated value of year 2016, Z2°?° represents the simulated
value of year 2025 and z is the linear growth rate.

The degree of SAM aggregation and selected functional forms as well as closures define
a set of CGE parameters that have direct or indirect impact on z.

There are two groups of inputs parameters that we will study in the paper: parameters
of policy intervention and uncertain non-policy CGE parameters. They refer to the main
driving forces affecting z in the simulation.

As parameters of policy intervention, we consider the growth of TFP (Total Factor

Productivity) induced by public investment in the following sectors:
 crop production (crop);

o other agriculture: forestry, fishing, and livestock (oagr);

20

« processing of agricultural products (agrib);
o other industrial production (oind);

o public goods and services (pub);
 private-sector services (prserv).

As a set of uncertain non-policy CGE parameters that can have additional significant

impact on z, we consider parameters of the CGE equations that describe:

o production side of the economy (growth of primary production factors (capital,

labor, agricultural land) and elasticities of substitution);

o trade and other iterations with the Rest of the World (world market prices, elastic-

ities of substitution and transformation, current account balance).

Model parameters of the equations that describe consumption side of the economy are
excluded from the analysis and assumed to be fixed (certain). All in all, total number of
CGE input parameters is 33.

We use different sources, estimates, and assumptions to assign initial values (py,) for all
CGE parameters (see Section B.3 for more details). Then, for 33 CGE parameters that
are assumed to be uncertain, we additionally specify values of the standard deviations
(01). Wherever possible, we used historical data to estimate o}, (see Section B.4 for more
details); for those parameters that do not have historical data available, we use rule of
thumb and assign o), = %,uh.

We generate two latin hypercube samples for our analysis: the training sample and the
test sample. In the training sample, each parameter is sampled within [, —2%0y,, py,+2%07y]
and in the test sample each parameter is sampled within the same range except for the
TFP parameters which are drawn within [, — 3 % o, s + 3 % 03], namely, the test sample
contains sample points which do not exist in the parameter space that is represented by
the training sample.

With the simulation sample generated, we run the simulation and collect the simulated

outputs z.

4.3. Training, Tuning and Testing

According to the idea of validation introduced in Section 2, we generate two samples for
the analysis: the training sample with the size of 4000 and the test sample with the size
of 1000. The training sample is used to train the metamodels and the test sample is used
to evaluate the trained metamodels. Additionally, we want to make an extra analysis of
the relationship between the size of the training sample and the predictive ability of the

metamodels, thus we further extract some subsets of the orginal training sample. Finally,

21

we have training samples with sizes 4000, 2000, 1000, 500, 200 and 100, each of them
being the subset of the previous one.
For each metamodel type, each output and each training sample size, we do the follow-

ing:
1. Train the metamodel with the training sample;
2. Predict the outputs for the test sample using the trained metamodel,
3. Assess the prediction accruacy and other properties.

Importantly, in the step of training the metamodels, we need to tune the hyper-
parameters to get the optimal prediction accuracy. To explain how the tuning process
works, let’s take the MARS model for example which has two hyper-parameters, degree
and nprune, to adjust in the tuning process. Firstly, a grid containing various combi-
nations of values of the two hyper-parameters is generated. Secondly, the metamodel
is trained using each combination from the grid by means of the k-fold cross validation
method!®. Thirdly, the combination that gives the best prediction accuracy is kept and
used to make predictions for the test sample. Finally, the predicted results are compared
across all metamodel types.

The tuning process is applied to all metamodel types except for LMI1, LM2, OK and
UK. As for the polynomial models, they do not have hyper-parameters to tune. As for
the Kriging models, it is due to the high computational cost that instead of the cross
validation we apply a simple validation strategy, namely, we use the training sample to
train OK and UK while the test sample is used to select the best hyper-parameters on a
grid search in the tuning process.

In the assessment of prediction accuracy and the variability of the predictions, we follow

Villa-Vialaneix et al. and use the following metrics:

« the Mean Squared Error (MSE):

MSE = 232 — 2)?, (20)

i=1
where z; represent the simulated output values in the test sample and Z; represent

the predicted output values of the metamodel.

e the R? coefficient:

R2—1_ i1 (2 — %)

?:1(21' — 2)? 7

(21)

13In this paper, we use 10 folds in the cross validation.

22

where Z is the mean of the outputs in the test sample.

e the standard deviation and the maximum of the squared errors are also computed

so that we can have an insight on the variability of the prediction.

4.4. Results and Discussion

In this section, we compare the results from four aspects. Section 4.4.1 compares the
prediction accuracy of all metamodel types. Section 4.4.2 compares the computational
time for training and prediction. Section 4.4.3 discusses the variable importance and
understanding of the metamodels. Section 4.4.4 discusses the potential extensions of the

metamodels. Section 4.4.5 summarizes the results.

4.4.1. Accuracy

The prediction performance of the metamodels are summarized in Figure 8 and Figure 9
as well as in Table 1 to Table 4. The two figures show the evolution of R? for z;; and z4.
Table 1 and Table 3 show results of MSE which evaluate the prediction accuracy while
Table 2 and Table 4 display the results of the maximum and standard deviation of the
squared errors which assess the variability of the performance with respect to z1; and 24
whose distributions are presented in Figure 6 and Figure 7 where the orange line refers
to the mean and the blue line refers to the median of the simulated values in the test

sample.

23

0.020-

0.015-

010~

b_wcwo

0.005-

0.000-

150

100

50

Z1

Figure 6: Distribution of z1;.

0.020-

0.015-

0.005-

0.000-

75

50

25

Z14

Figure 7: Distribution of z4.

24

e b b v

0.9- st

R Squared
e

o
~
3
[=]
o
@

0.6-

0.5-

100 200 500 1000 2000 4000
Sample Size

Figure 8: R? evolution with respect to the size of the training sample
g
for z;;.

,,,,,,,,,,,,,
e e e

0.9-

R Squared
o
o

o
~
+ 3
2
o
©

=
4 ¥ % MARS
0.6- ¢ e
i
100 200 500 1000 2000 4000

Sample Size

Figure 9: % evolution with respect to the size of the training sample
for zy4.

Size LMl LM2 OK UK MARS SVR RF1 RF2 ANN1 ANN2

100 86.98 ° 63.1 9234 55.86 81.83 243.08 201.32 66.78 277.05

200 65.87 221.23 34.73 15.11 30.8 56.87 159.8 12446 28.05 121.07

500 59.34 554 1556 5.99 24.95 38.16 108.38 58.16 9.06 68.82

1000 5742 4455 10.03 3.81 29.78 2328 93.86 15.51 4.99 50.61

2000 096.2 38.51 ° ° 13.15 13.03 7 14.15 3.35 .

~ 4000 55.44 37.7 . ° 11.19 10.39 65.06 11.08 3.03

Table 1: MSE on the test sample for each metamodel and each size of the training sample
for z;;. e refers to the cases that we cannot train, either because the model
is over-specified (LM2) or the size of the training sample is so large that the
estimation of the model takes too much time (OK, UK and ANN2).

25

Size LM1 LM2 OK UK MARS SVR RF1 RF2 ANN1 ANN2
100 2489.62 . 2541.72 2701.38 1355.2 2653.9 5910.85 10325.96 2420.03 6400.36
180.11 . 193.1 180.75 104.78 241.32 559.38 573.6 176.94 553.13
200 1917.94 6598.59 1717.58 633.81 1327.45 1776.34 4508.59 8252.96 920.93 3323.25
152.05 390.09 119.49 43.04 80.31 161.35 357.64 398.94 70.83 267.17
500 1421.13 1143.14 846.52 211.03 1095.23 122232 2407.63 3130.46 269.1 1700.46
135.81 110.31 51.07 14.66 71.49 112.65 217.7 162.7 20.14 164.66
1000 1537.62 893.91 684.01 141.16 2049.5 951.15 1833.46 1009.25 211.26 2667.25
145.75 94.24 36.54 9.74 136.25 71.71 180.04 44.05 11.99 174.02
2000 1548.74 957.6 °) 556.4 497.99 1399 1033.68 127.95)
140.33 86.7 . ° 36.27 37.8 141.93 44.68 7.97 .
~ 4000 1662.99 908.72 .) 682.86 578.37 1330.66 784.31 108.94)
143.98 86.8 . . 39 31.19 122.34 33.44 6.61 .

Table 2: Maximum (first line) and standard deviation (second line) of the squared errors
on the test sample for each metamodel and each size of the training sample for
z11. @ refers to the cases that we cannot train, either because the model is over-
specified (LM2) or the size of the training sample is so large that the estimation
of the model takes too much time (OK, UK and ANN2).

Size LM1 LM2 OK UK MARS SVR RF1 RF2 ANN1 ANN2
100 69.11 ° 2771 29.21 64.08 68.6 172.73 170.58 41.44 157.43
200 52.83 18343 148 11.96 2996 48.66 109.41 95.55 29.98 72.2
500 479 31.88 7.98 6.4 16.56 31.71 71.3 45.6 12.95 34.79
1000 4497 2544 642 419 14.28 16.45 51.97 10.72 8.72 28.64
2000 43.64 23.66 . ° 11.51 9.98 41.33 9.34 7.86 °

~ 4000 42.75 2244 ° ° 11.14 8.07 35.69 7.35 3.85 .

Table 3: MSE on the test sample for each metamodel and each size of the training sample

for zy4.

e refers to the cases that we cannot train, either because the model

is over-specified (LM2) or the size of the training sample is so large that the
estimation of the model takes too much time (OK, UK and ANN2).

26

Size LM1 LM2 OK UK MARS SVR RF1 RF2 ANN1 ANN2
100 1057.46 o 437.26 466.2 804.11 1443.86 1697.13 1311.17 646.56 4167.11
106.06 ° 52.19 49.96 112.38 120.54 212,95 207.76 71.92 317.84
200 1334.47 192091 362.37 260.71 527.08 1521.67 1408.63 811.78 528.67 1110.29
88.11 260.64 28.34 22.04 48.59 89.56 152.35 13231 48.48 129.42
500 1099.82 530.93 197.67 210.84 373.37 1289.35 1114.7 832.9 332.1 533.55
79.73 54.24 14.86 12.96 26.88 63.72 106.58 89.39 21.71 59.72
1000 1016.95 45821 193.15 202.22 190.22 386.71 957.14 148.02 225.4 572.68
77.01 44.8 12.54 9.64 22.27 28.39 79.28 16.61 15.4 53.86
2000 952.3 473.24 . o 298.44 264.58 789.24 13496 169.62 .
73.06 44.07 . . 21 19.58 63.94 14.98 14.01 .
~ 4000 952.67 518.2 . ° 310.55 213.81 651.14 86.17 110.04 °
71.93 43.01 . . 19.64 15.66 55.56 11.37 6.77 .

Table 4: Maximum (first line) and standard deviation (second line) of the squared errors

on the test sample for each metamodel and each size of the training sample for
z14. ® refers to the cases that we cannot train, either because the model is over-
specified (LM2) or the size of the training sample is so large that the estimation
of the model takes too much time (OK, UK and ANNZ2).

To assess the prediction performance, we categorize the findings into general findings

that apply to all metamodel types and specific findings that are unique to each metamodel

type.

We start with drawing some general conclusions:
=) o

No models can deliver proper prediction performances when the sample size is 100.

Even for small training sample sizes, R? is in some cases over 0.8. However, we want

to point out that high R? does not necessarily mean good prediction accuracy.

Polynomial models have a clear weakness in terms of prediction performance, par-

ticularly when large training samples are available.

The best prediction performance in terms of MSE is always achieved with the largest
training sample. For all the metamodels, we observe a clear trend that the prediction
performances increase with the size of training sample rising except for one case
where the MARS model trained with a smaller sample (500) has a better prediction
accuracy than the MARS model trained with a larger sample (1000). Although OK,
UK and ANN2 come across computational problems due to the large size of the
training sample, we can still assume that the trend will hold if the computations
could proceed. Besides, we can observe that the amount of data matters a lot to
machine learning models SVR, RF and ANN.

In most cases, we observe that the maximum and standard deviation of the squared
errors decrease while the size of the training sample increases meaning that the

variability of the errors diminishes with the prediction accuracy improving except

27

Sample Size z;; 21

200 126 136

500 99 64
1000 62 73
2000 61 79

~ 4000 76 89

Table 5: Number of covariates selected by the AIC criterion in LM2 for z1; and 214
across various training sample sizes.

for some metamodels, such as LM1, LM2 and MARS, where we also observe slightly

different behaviors.

e Across all the cases, the most accurate prediction in terms of MSE are also the least

variable in terms of the maximum and standard deviation of the squared errors.
Then, we draw some specific conclusions:

e The prediction accuracy for LM1 improves when the size of the training sample
increases from 100 to 500 and stays relatively stable afterwards which is probably
owing to the fact that the specification of the metamodel is very simple. Therefore,
even though more and more information is given to the model, it cannot utilize

them in exchange for better predictions.

e LM2 cannot be estimated when the size of the training sample is 100 due to over-
specification. It performs very badly when the size of the training sample is 200
because the information provided by the training sample is barely enough to train
the model well which affects the predictive ability. However, with the size of the
training sample further rising, the prediction accuracy of LM2 improves as well. It
is also clear that for each output and size of the training sample, the prediction
performance of LM2 is better than that of LM due to the fact that LM2 has more
terms in the specification which allows it to model more complex relationships and
implies that the underlying I/O relationships are not simple linear relationships.
The number of covariates selected by the “AIC” procedure across the two output
variables with respect to various sample sizes is given in Table 5 from which we

notice that the number of covariates selected is clearly larger than that in the LM1

model (33).

o The Kriging models (OK and UK) work better with small and medium training
sample sizes than other metamodels especially for UK as it has the best performance

among all the metamodels for each training sample size from 200 to 1000. Due to the

28

computational limitations, for larger sizes the estimation and optimization processes
of Kriging models took so long that we have to stop them.'* We observe that for
z11 and zy4, the prediction performance of UK is in most cases better than that of
OK because in comparison to OK that only contains a constant trend, UK has a
more complicated trend which helps in making predictions. However, for the two
outputs, when the training sample size is 100, OK behaves better in prediction
probably because the sample size is too small to produce a stable UK model and
its predictive ability is thus poorer than OK. Moreover, UK has the same trend as
LMT1, yet the prediction accuracy is much better, which also reflects the underlying

nonlinear I/0 relationships.

e The MARS model works well with small, medium and large training samples. The
prediction accuracy is better with larger training sample with one exception where
for z1; the prediction performance is better with size 500 than that with size 1000.
The prediction accuracy of MARS is not the best but always stays in an acceptable
range. We can have a look at the degree and nprune that are selected by MARS
with various training sample sizes which is given in Table 6. It is not surprising
that with the size of the training sample increasing, the MARS model tends to use
higher interaction orders and retain more terms in order to pursue better prediction

accuracy.

211 214

Sample Size degree nprune degree mnprune

100 3 21 1 8
200 2 30 3 23
500 2 36 2 36
1000 3 40 3 38
2000 3 40 3 40
~ 4000 3 40 3 40

Table 6: Hyper-parameters degree and nprune selected by the MARS for z1; and 24
across various training sample sizes.

e The machine learning model SVR is a data-intensive metamodel and therefore be-

haves poorly with small training sample sizes (100 and 200). Starting from medium

140n our PC, the process ran for more than three days and continued to run. Therefore, we manunally
stopped the process.

29

sizes, the SVR model displays satisfactory and stabily increasing prediction accu-

racy.

The machine learning model RF has shown quite different prediciton performances
in terms of interpolating and extrapolating. The training samples are exactly the
same for RF'1 and RF2 while the test sample for RF1 is the usual one and the test
sample for RF2 is the training sample with the size 1000, namely, the parameter
space is the same as that of the training samples. We clearly observe that the
random forest model is poor at extrapolating. This is because the random forest
make predictions by using the constants from each terminal node. If the points
to predict contain parameters whose ranges go beyond the ranges of the training
sample, this means that the random forest model would as a result have no proper
terminal nodes for these points, thus the predictions would be made by simply
using the mean value of all the terminal nodes which is apparently not a good
choice. However, if the parameter space of the test sample is similar to that of the
training sample, as the case for RF'2, the random forest model will behave correctly
and make satisfactory predictions with medium to large training sample because

the random forest model is a data-intensive machine learning technique.

The machine learning model ANN has demonstrated different results in terms of the
two setups: ANNI has one hidden layer with the penalization parameter; ANN2 has
three hidden layers. The results show that ANN1 starts to deliver good prediction
accuracies when the training sample size is 500 while for the training sample that we
are able to train the ANNZ2, its prediction accuracies are very poor, in some cases
even poorer than that of LMI1. This means that ANNI needs at least medium-
sized training sample to get satisfactory prediction accuracy and ANNZ, if it can,
needs at least large training sample sizes. Besides, the results also clearly show that
having more hidden layers doesn’t necessarily yield better prediction performance.
In our applications, it is actually the opposite, the prediction performance of ANN2
is worse than that of ANNI. It might because the data is not sufficient to train
the ANN2 well as it is a deep artificial neural network, thus it cannot deliver good
predictions. Additionally, when the size of the training sample gets large enough,
ANN1 always has the best prediction performance and the smallest variability in

the errors.

4.4.2. Computational Time

The computational time for training and prediction is listed in Table 7. For meta-
models OK and UK, the sample size for training is 1000 and the sample size for

training for other metamodels is 4000. For all the metamodels, the size of the test

30

sample is 1000. LM1, RF1 and ANN2 are not included in the comparison due to

their poor prediction accuracies.

From Table 7, we observe no significant differences in the training time for LM2,
MARS, SVR, RF2 and ANN1 among which ANN1 has the best prediction accuracy
for the two output variables. Despite the good predictive ability of OK and UK
for small and medium training sample sizes, the training time is obviously longer
that that of other metamodels due to the optimization process in the estimation
of coefficients. On the other side, the prediction takes a short time across all the

metamodels possibliy because the size of the test sample is not large.

LM2 OK UK MARS SVR RF2 ANN1

Training and Tuning 21 mins 3 hours 2 hours 15 mins 26 mins 21 mins 32 mins

Prediction <1 sec 6 secs 5 secs <1 sec <1 sec <1 sec <1 sec

Table 7: Training and prediction time for different metamodels.

4.4.3. Variable Importance

To evaluate the variable importance in the prediction, methods can be categorized
into two groups: model-specific and model-agnostic (Fisher et al., 2019). In this
paper, we focus on the model-agnostic method that does not assume anything about
the model structure which allows us to apply it to any predictive model and compare
variable’s importance across different models.

The main idea of the method is to measure the change of prediction performance
when the effect of a certain independent variable is removed. This means that the
prediction performance could suffer a loss when the effect of a certain independent
variable is removed and the larger the loss in the prediction performance, the more
important the variable is to the prediction. In this paper, we measure the loss in the
prediction performance by the increase of the Root Mean Squared Error (RMSE).
Besides, the removal of the effect is realized by applying perturbations. For more

details of this method, we refer to Fisher et al. 2019.

Figure 10 and Figure 11 show the results of variable importance analysis for z;;
and zy4 among LM2, UK, MARS, SVR, RF2 and ANNI1 while the other three

metamodels are excluded due to the poor prediction performances.

31

fcap_nat
pwm_oind
pwe_oind
tfp_oind
tfp_prserv
fsav

flab
tfp_oagr
tfp_agrib
tfp_crop

fcap_nat
pwm_oind
pwe_oind
tfp_oind
tfp_prserv
fsav

flab
tfp_oagr
tfp_agrib
tfp_crop

fcap_nat
pwm_oind
pwe_oind
tfp_oind
tfp_prserv
fsav

flab
tfp_oagr
tfp_agrib
tfp_crop

fcap_nat
pwm_oind
pwe_oind
tfp_oind
tfp_prserv
fsav

flab
tfp_oagr
tfp_agrib
tfp_crop

fcap_nat
pwm_oind
pwe_oind
tfp_oind
tfp_prserv
fsav

flab

tfp_oagr
tfp_pub
SIGMAQ_oind

fcap_nat
pwm_oind
pwe_oind
tfp_oind
tfp_prserv
fsav

flab
tfp_oagr
tfp_agrib
tfp_crop

LM2

Kriging Model (UK)

MARS

|

SVR

""II' [| I
4
'
'
i
*

RF2

|

ANN1

a

10
Root mean square error (RMSE) loss after permutations

-
a
N
o

Figure 10: Variable importance analysis for z;;.

LM2
pwm_oind s -
pwe_oind g
fsav b 3
fcap_nat -
tfp_prserv T
pwe_agrib .
tfp_oind -
flab _—
pwm_agrib -
tfp_agrib -

pwm_oind R TTTiiiimmie=—=———
pwe_oind T ——————————
fsav I ———
fcap_nat —————
tfp_prserv .
pwe_agrib S -
tfp_oind —
flab —
pwm_agrib e
tfp_agrib .

pwm_oind —a—
pwe_oind
fsav
fcap_nat
tfp_prserv
pwe_agrib
tfp_oind
flab
pwm_agrib
tfp_crop

—_—
—_——
—-
-
-
+
-
+
-
pwm_oind T EE—————
pwe_oind e -
fsav T ———
fcap_nat .
tfp_prserv I
pwe_agrib 3
tfp_oind [E—
flab —_——
pwm_agrib _—
pwe_crop _—

RF2
pwm_oind ———
pwe_oind ——-——
fsav —-——
fcap_nat
tfp_prserv +
pwe_agrib -
tfp_oind U
flab L]
pwm_agrib ’
SIGMA_prserv ’

+

pwm_oind T —=———
pwe_oind S -
fsav S -
fcap_nat S .
tfp_prserv I
pwe_agrib I
tfp_oind —
flab —
pwm_agrib ——
tfp_crop _—
5 10 15

Root mean square error (RMSE) loss after permutations

Figure 11: Variable importance analysis for zy4.

It shows that for the same output variables, z1; and z4, different metamodels rank

33

the importance of input parameters in the same order but the magnitude of the
importance (measured by the length of the bars on the figures) varies from model
to model, for example, in the case of zy;, both RF2 and ANNI rank the flab
(growth of land as a factor in the production) as the 7" important parameter, but

its importance is viewed quantitatively different by the two metamodels.

As for zq1, results show that the top five influential input parameters are fcap nat,
pwm.__oind, pwe oind, tfp oind and tfp prserv. Senegal is a capital-scarce
and labor-intensive country. Therefore, it is not surprising that capital growth
(fcap_nat) is very influential in driving the per capita GDP (z;1). Besides, Sene-
galese economy is highly dependent on trade, therefore world prices of exports (pwe)
and world prices of imports (pwm) matter profoundly. Moreover, the goods from
sector oind are far more tradable than other sectors and sector oind has a much
wider economic linkages with other sectors. Thus, pwe__oind and pwm__oind are far
more important than the two prices in other sectors. Growth of Total Factor Pro-
ductivity (¢fp) also matter to a certain extent and obviously, ¢ fp in larger sectors
(oind and prserv) are more important than those in smaller sectors. However, we
want to mention that the difficulty of generating growth of total factor productivity

in different sectors varies as well.

As for zy4, the top five influential input parameters are pwm_ oind, pwe_ oind,
fsav, fcap nat and tfp prserv. It is not surprising that pwm_ oind, pwe_oind,
fecap _nat, tfp_ prserv appear on the list because they are paramters that drive
the development of the Senegalese economy and a rising economic condition eases
the poverty condition. Apart from that, in the Senegal CGE model, fsav (foreign
savings) is modeled in a way that it could represent the variation of exchange rate
and food prices, such as rice prices, are very crucial for reducing poverty, thus it is

considered as a very influential parameter.

For different output variables, z1; or z14, metamodels treat input parameters in a
distinct fashion in terms of importance. For example, ANNI ranks fsav (foreign
savings) the 6 for z;; and the 37 for z;4. This phenomenon is more obvious if we list
more input paramters with respect to importance. Figure 12 lists the 20 important
input parameters of model ANNT for z;; and z14. A typical case is tfp_oagr (the
Total Factor Productivity growth in sector oagr) which ranks the 9" influential
parameter for z;; but turns out to be hardly effective for z14. Besides, it shows
that the number of main drivers for prediction is not high and many parameters
are hardly influential in predicting the output variables, which is an interesting

observation enabling us to have more insights of the CGE models.

Additionally, we do not observe sharp differences in the ranking of importance of

input parameters for z;; and 214, namely, there are no cases where a parameter is

34

among the most important ones for z;; but turns out to be hardly important for
z14 and vice versa. This also makes sense because the CGE model is an internally
interrelated model where parameters interact with each other extensively. Besides,

z11 and zy4 are also related with each other to a certain degree.

The variable importance analysis is very helpful to understand the main drivers of
the I1/O relationships that we are interested in. Due to the implicit nature and
computational cost, performing sensitivity analysis for CGE models is not straight-
forward. However, the variable importance analysis with the help of the metamodels

gives us the possibility to gain more insights of the underlying simulation model.

35

Z11 Z14
ANN?1 ANN1
foap_nat pwm_oind
pum_oind pwe_oind -
pwe_oind I fsav -
tfp_oind - fcap_nat _
tfp_prserv - tfp_prserv -
fsav _ pwe_agrib -
flab - tfp_oind -
tfp_agrib . flab -
tfp_oagr . pwm_agrib .
tfp_crop ' tfp_crop '
pwe_agrib . tfp_agrib .
tfp_pub ' pwe_crop .
SIGMAQ_oind ' SIGMA_prserv '
SIGMAT_oind I tfp_pub l
SIGMA_prserv] pw_prserv '
pelas_prserv) pwm_crop]
find] SIGMAT _oind]
pw_prserv i find i
pwm_crop l SIGMAQ_crop]
SIGMAQ_crop I SIGMAQ_oind i
SIGMAT _agrib l tfp_oagr)
SIGMAQ_agrib l SIGMAT _agrib i
pwm_agrib I SIGMAQ_agrib I
pwe_crop l pwe_oagr l
pelas_agrib l pelas_agr I
pelas_oind I SIGMAQ_oagr l
pelas_agr l pelas_oind I
pwe_oagr I SIGMAT _crop I
SIGMAQ_oagr l pelas_prserv l
SIGMAT_crop I pelas_agrib I
pwm_oagr l pwm_oagr l
pelas_pub I SIGMAT_oagr l
SIGMAT _oagr l pelas_pub l

5 10 15 20 5 10 15
Root mean square error (RMSE) loss after permutations Root mean square error (RMSE) loss after permut

Figure 12: Variable importance analysis using ANN1 for z;; and zy4.

36

4.4.4. Potential Extensions

Depending on the properties of different metamodels, they can be applied to different
contexts where we can answer more complex research questions such as the ones we
mentioned in Section 1. To start with, we want to emphasize a quite importance
property which is the speed of prediction. It means that once a metamodel is
well trained, it is exceptionally computation-efficient to be applied to any research
environment. More specifically, take the ANNI model for example, the time for

prediction of the test sample with 1000 simulation runs is only 1 second.

For example, we have applied the polynomial model to perform a baseline calibra-
tion of a large-scale dynamic CGE model Dynamic Applied Regional Trade (DART)
with highly disaggregated regions and sectors'®. The basic idea of employing meta-
models to address empirical calibration problems is that we train a metamodel to
approximate the underlying relationships and use it in the calibration process to
obtain the “optimal” parameter values that make the simulation model produce
outcomes that are close to the forecasts. Furthermore, with the metamodels, we
can deal with the parametrization constraints because they can be directly added
into the calibration process. In addition, Storm et al. have mentioned other possi-
bilities for improving empircal calibration such as leveraging ideas from Generative
Adversarial Nets (GANs), which is a very interesting and promising idea (Storm
et al., 2020).

In addition, we have applied the polynomial model and Kriging model to perform
a comprehensive policy analysis coupled with uncertainty analysis including both
the impact of fundamental uncertainty regarding exogenous economic shocks and re-
garding the responses of the economy to these shocks as well as the impact of shocks
on optimal policy choices. The basic idea is to train a metamodel and replace the
simulation model with it in the optimization process to obtain an analytical solu-
tion. Moreover, an uncertainty analysis can be carried out because the probabilistic
descriptions of model input parameters can be applied to metamodels so as to derive

probability distributions of model outputs'®.

Furthermore, similar to the variable importance analysis we did in Section 4.4.3,
metamodeling can help us conduct sensitivity analysis effectively and have more

understanding of the underlying simulation model.

15The paper is available upon request.
16The paper is available upon request.

37

4.4.5. Summary

The results demonstrated in the sections above have given us some indications: the
metamodeling techniques are able to make good approximations of the I1/O rela-
tionships of the underlying CGE model at a low computational cost. Even the size
of the training sample is 200, the UK is able to deliver a good prediction accu-
racy in spite of the fact that the training process is time-consuming in comparison
with other metamodels. Then, with the size of the training samples increasing, the
prediction performances of all the metamodels improve at different paces where ma-
chine learning metamodels tend to produce very precise predictions, among which
ANNI1 clearly outperforms other metamodels. Thus, if a big training sample is
not available, we can resort to Kriging or MARS or ANNI models dependent on
our tolerance of the computational time and research purposes. On the contrary,
if we are able to have a big training sample, the machine learning metamodels can
deliver excellent prediction results while the computational costs are not very high.
Moreover, polynomial and Kriging models enable us to integrate the underlying
simulation models into other research frameworks to obtain analytical solutions and

answer more complex questions, which opens up the door to endless possibilities.

Last but not the least, we want to point out again that the variable importance
analysis in Section 4.4.3 is helpful to understand the driving forces of certain outputs
which might help us have a better control of the simulation model and improve it
further.

5. Conclusion

In this paper, we have conducted a systematic and comprehensive comparison analy-
sis investigating several metamodel types in terms of accuracy, computational time,
variable importance and potential extensions to demonstrate how to apply them
in practical applications along with their properties. Moreover, we have pointed
out some aspects where the metamodeling technique can be employed to answer

complex research questions.

In summary, the metamodeling method is a useful tool for applying innovative
simulation techniques and the combination of the two methods opens the door to

endless possibilities.

Metamodeling is a very active research area and is constantly undergoing rapid
developments. Therefore, we want to make the point that we should keep pace with

this field and involve the novel methods into agricultrual economics.

38

References

Aguiar, A., Narayanan, B., and McDougall, R. (2016). An overview of the GTAP 9
data base. Journal of Global Economic Analysis, 1:181-208.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans-
actions on Automatic Control, AC-19(6):716-723.

Awad, M. and Khanna, R. (2015). Efficient learning machines: theories, concepts,

and applications for engineers and system designers. Springer Nature.

Barthelemy, J.-F. and Haftka, R. T. (1993). Approximation concepts for optimum

structural design - a review. Structural optimization, 5(3):129-144.

Barton, R. R. (2015). Tutorial: simulation metamodeling. In Proceedings of the
2015 Winter Simulation Conference, pages 1765-1779. IEEE Press.

Birur, D., Hertel, T., and Tyner, W. (2007). Impact of biofuel production on world

agricultural markets: a computable general equilibrium analysis.

Bishop, C. M. et al. (1995). Neural networks for pattern recognition. Oxford uni-

versity press.

Blanning, R. W. (1975). The construction and implementation of metamodels.
Simulation, 24(6):177-184.

Bohringer, C., Rutherford, T., and Wiegard, W. (2003). Computable General Equi-
librium Analysis: Opening a Black Box. ZEW Discussion Paper No. 03-56, Center

for European Economic Research, Mannheim.

Boogaerde, P. and Tsangarides, C. (2005). Ten years after the CFA Franc devalua-
tion: Progress toward regional integration in the WAEMU. IMF.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for
optimal margin classifiers. In Proceedings of the fifth annual workshop on Com-

putational learning theory, pages 144-152.
Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123-140.
Breiman, L. (2001). Random forests. Machine learning, 45(1):5-32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification

and regression trees. CRC press.

39

Britz, W., Henning, C. H. C. A., and Henningsen, G. (2009). Modelling the impact of
rural infrastructure policy on transaction costs and economic performance at the
micro and macro level. Paper presented at the EU-Project ADVANCED-EVAL
Workshop "Evaluation and Modelling of Rural Development Policies: Theory and
Application’ in Kiel, Germany.

Chen, V. C., Tsui, K.-L., Barton, R. R., and Meckesheimer, M. (2006). A review
on design, modeling and applications of computer experiments. IIE transactions,
38(4):273-291.

Craven, P. and Wahba, G. (1978). Smoothing noisy data with spline functions.
Numerische mathematik, 31(4):377-403.

Cressie, N. A. C. (1993). Statistics for Spatial Data. John Wiley & Sons, Inc.

Dey, S., Mukhopadhyay, T., and Adhikari, S. (2017). Metamodel based high-fidelity
stochastic analysis of composite laminates: A concise review with critical com-

parative assessment. Composite Structures, 171:227-250.

Diao, X. and Thurlow, J. (2012). A recursive dynamic computable general equilib-
rium model, chapter 2, pages 17 — 50. International Food Policy Research Institute
(IFPRI).

Diao, X., Thurlow, J., Benin, S., and Fan, S., editors (2012). Strategies and Prior-
ities for African Agriculture - Economywide Perspectives from Country Studies.

International Food Policy Research Institute, Washington DC.

Dupuy, D., Helbert, C., and Franco, J. (2015). DiceDesign and DiceEval: Two R
packages for design and analysis of computer experiments. Journal of Statistical
Software, 65(11):1-38.

Fang, K.-T., Lin, D. K., Winker, P., and Zhang, Y. (2000). Uniform design: theory
and application. Technometrics, 42(3):237-248.

Fisher, A., Rudin, C., and Dominici, F. (2019). All models are wrong, but many are
useful: Learning a variable’s importance by studying an entire class of prediction

models simultaneously. Journal of Machine Learning Research, 20(177):1-81.

Forrester, A., Sobester, A., and Keane, A. (2008). Engineering design via surrogate
modelling: a practical guide. John Wiley & Sons.

Friedman, J. H. et al. (1991). Multivariate adaptive regression splines. The annals
of statistics, 19(1):1-67.

40

Fritsch, S., Guenther, F., and Wright, M. N. (2019). neuralnet: Training of Neural
Networks. R package version 1.44.2.

Gong, W., Duan, Q., Li, J., Wang, C., Di, Z., Dai, Y., Ye, A., and Miao, C. (2015).
Multi-objective parameter optimization of common land model using adaptive
surrogate modeling. Hydrology and Earth System Sciences, 19(5):2409-2425.

Goodfellow, 1., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Henning, C., Badiane, O., and Krampe, E., editors (2018). Development Policies

and Policy Processes in Africa. Springer International Publishing.
IMF (2017). Senegal. Country report 17/2, International Monetary Fund.

Jaroslaw, S. and Raphael T, H. (1996). Multidisciplinary aerospace design opti-

mization: Survey of recent developments.
Jourdan, A. (2005). Planification d’Expériences Numériques. PhD thesis.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., and Murthy, K. R. K. (2001). Im-
provements to platt’s smo algorithm for svim classifier design. Neural computation,
13(3):637-649.

King, R. and Byerlee, D. (1978). Factor intensities and locational linkages of rural
consumption patterns in Sierra Leone. American Journal of Agricultural Eco-
nomics, 60 /2:197-206.

Kleijnen, J. P. (1975). A comment on Blanning’s “Metamodel for sensitivity analysis:

the regression metamodel in simulation”. Interfaces, 5(3):21-23.

Kleijnen, J. P. (2015). Design and analysis of simulation experiments. In Interna-

tional Workshop on Simulation, pages 3—22. Springer.

Kleijnen, J. P. and Sargent, R. G. (2000). A methodology for fitting and validating
metamodels in simulation. European Journal of Operational Research, 120(1):14—
29.

Krogh, A. and Hertz, J. A. (1992). A simple weight decay can improve generaliza-

tion. In Advances in neural information processing systems, pages 950-957.

Kuhn, M. (2020). caret: Classification and Regression Training. R package version
6.0-86.

Lluch, C., Powell, A., and Williams, R. (1977). Patterns in Household Demand and
Saving. Oxford University Press.

41

Lofgren, H., Harris, R. L., and Robinson, S. (2002). A Standard Computable General
Equilibrium (CGE) Model in GAMS, volume Microcomputers in Policy Research
5. International Food Policy Research Institute, Washington, D.C.

Manski, C. F. (2018). Communicating uncertainty in policy analysis. Proceedings
of the National Academy of Sciences, 116(16):7634-7641.

Manson, S. M. and Evans, T. (2007). Agent-based modeling of deforestation in
southern yucatan, mexico, and reforestation in the midwest united states. Pro-
ceedings of the National Academy of Sciences, 104(52):20678-20683.

Mares, T., Janouchovd, E., and Kucerova, A. (2016). Artificial neural networks in
the calibration of nonlinear mechanical models. Advances in Engineering Software,
95:68-81.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F. (2020).
el071: Misc Functions of the Department of Statistics, Probability Theory Group
(Formerly: E1071), TU Wien. R package version 1.7-4.

Milborrow., S. (2020). earth: Multivariate Adaptive Regression Splines. R package

version 5.3.0.

Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M. (2016). Response sur-
face methodology: process and product optimization using designed experiments.
John Wiley & Sons.

Owen, A. B. (1992). Orthogonal arrays for computer experiments, integration and

visualization. Statistica Sinica, pages 439—452.

Randriamamonyjy, J. and Thurlow, J. (2019). (mimeo) 2015 Social Accounting Ma-
trix for Senegal. A Nexus Project SAM, International Food Policy Research
Institute, Washington, DC. USA.

Rasch, S., Heckelei, T., Storm, H., Oomen, R., and Naumann, C. (2017). Multi-scale
resilience of a communal rangeland system in south africa. Fcological Economics,
131:129-138.

Razavi, S., Tolson, B. A., and Burn, D. H. (2012). Review of surrogate modeling in

water resources. Water Resources Research, 48(7).

Ripley, B. D. (1994). Neural networks and related methods for classification. Journal
of the Royal Statistical Society: Series B (Methodological), 56(3):409—-437.

42

Ruben, R. and van Ruijven, A. (2001). Technical coefficients for bio-economic farm
household models: a meta-modelling approach with applications for southern
mali. Fcological Economics, 36(3):427-441.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis

of computer experiments. Statistical science, pages 409-423.

Simpson, T. W., Lin, D. K., and Chen, W. (2001). Sampling strategies for com-
puter experiments: design and analysis. International Journal of Reliability and
Applications, 2(3):209-240.

Simpson, T. W., Peplinski, J., Koch, P. N., and Allen, J. K. (1997). On the use of
statistics in design and the implications for deterministic computer experiments.
Design Theory and Methodology-DTM’97, pages 14-17.

Smith, M. (1993). Neural networks for statistical modeling. Thomson Learning.

Steinwart, I. and Christmann, A. (2008). Support Vector Machines. Springer Science
& Business Media.

Storm, H., Baylis, K., and Heckelei, T. (2020). Machine learning in agricultural and
applied economics. Furopean Review of Agricultural Economics, 47(3):849-892.

Vapnik, V. (2013). The nature of statistical learning theory. Springer science &

business media.
Vapnik, V. N. (1995). The nature of statistical learning. Theory.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S.
Springer, New York, fourth edition. ISBN 0-387-95457-0.

Villa-Vialaneix, N., Follador, M., Ratto, M., and Leip, A. (2012). A comparison
of eight metamodeling techniques for the simulation of n2o fluxes and n leaching

from corn crops. Environmental Modelling € Software, 34:51-66.

Werbos, P. (1974). Beyond regression:" new tools for prediction and analysis in the

behavioral sciences. Ph. D. dissertation, Harvard University.

Wright, M. N. and Ziegler, A. (2017). ranger: A fast implementation of random
forests for high dimensional data in C++ and R. Journal of Statistical Software,
77(1):1-17.

Yildizoglu, M., Salle, L., et al. (2012). Efficient sampling and metamodeling for com-
putational economic models. Technical report, Groupe de Recherche en Economie

Théorique et Appliquée.

43

Zhang, H., Nettleton, D., and Zhu, Z. (2019). Regression-enhanced random forests.
arXiv preprint arXiv:1904.10416.

44

A. Summary of Hyper-parameters for

Metamodels

Kernel Functions Optimization Method

gauss quasi-Newton procedure
maternb 2 genound genetic algorithm
matern3 2
exp
powexp

Table 8: Hyper-parameters for tuning OK and UK.

45

degree nprune
1 5

2 7
3 10
13
16
19
22
25
28
31
33
36
39
42
45
48
o1
o4
o7
60

Table 9: Hyper-parameters for tuning MARS.

€ y C
0.1 0.001 0.5
0.01 0.01 1

0.1)
1 10
5 20

50
100

Table 10: Hyper-parameters for tuning SVR.

46

mtry node_ size
10 3
12 5
7

9

14
16
18
21
23
25
27
30

Table 11: Hyper-parameters for tuning RF1 and RF2.

@ C

20 0

22 0.001
24 0.01
2% 0.1

28 05
31

33

35

37

40

Table 12: Hyper-parameters for tuning ANNI.

47

Q1 Q2 Q3
20 2 2

22 3 3
24 4

26

28

31

33

35

37

40

Table 13: Hyper-parameters for tuning ANN2.

48

B. CGE

B.1. SAM adjustments

— The original SAM by Randriamamonjy and Thurlow (2019) has regionalized
production structure (5 regions) and total 462 accounts;

— the aggregated SAM used in our CGE model (Table 14) preserved the region-
alized production structure and has 68 accounts;

— we also amend the original SAM such that public goods are consumed only
by the government. This amendment allows us to assume that public goods

and services are outside of consumers linear expenditure system (LES).

Category Description Label Dimension
Activities Crops, other agriculture, ac?og, a,oa{]gor, aagrib, Regional
agribusiness, other industry, 8°1d, apub, aprser
Commodi- public, private services ccrop, coagr, cagrib, National
ties coind, cpub, cprser
Labor All types of labor flab Regional
Land All types of land find Regional
Capital Agriculture-related fcap-a Regional
Non-agriculture-related fcap-n Regional
Enterprises DlStI"lbllthIlal account ent National
(capital rents)
Urban hhd-u Regional
H hol
ouseholds Rural hhd-r Regional

Table 14: Aggregated SAM used in the CGE model (available upon request).

B.2. Functional forms and closure rules

We define functional forms and closure rules for our CGE model based on the
recursive-dynamic CGE model developed by Lofgren et al. (2002) and Diao and
Thurlow (2012).

B.3. Baseline CGE parameter values (vector of mean

values)

— We use approximations and assumptions when the necessary estimates/fore-

casts are not available. For example, we use the Global Trade Analysis Project

49

Block Category Form / closure (endogenous variables)

Value-added constant elasticity of substitution (CES)

Production Intermediate Leontief

Top of technology Leontief

Import CES
Trade . .
Export constant elasticity of transformation
(CET)
Consumption Households LES
Current account Consumer and producer price level (ex-
change rate is model numerraireExchange
Closures rate of CFA franc/French franc (EUR)

is fixed since 1994. See Boogaerde and
Tsangarides (2005) for more details)

Factors Fully employed and mobileCapital:
‘putty-clay’ assumption, see Diao and
Thurlow (2012) for more details

Government Budget deficit

Savings/Investment Balanced ‘S-I” closure 4, with enterprises
adjusting marginal propensity to save.
See Lofgren et al. (2002) for mroe details)

Table 15: Functional forms and closures of the CGE.

90

(GTAP) 9 database (Aguiar et al., 2016) to calculate the values of elasticity

parameters;

— we use our assumption about the productivity growth of 1 % per year for all

sectors in the baseline scenario for 2016-2025'7;

— because the composition of export and import commodities within defined
aggregated SAM account can be different (e. g. export crops consist mostly of
nuts, vegetables, and fruits, while the major import crop is rice), we distinguish
between export and import elasticity parameters, and we distinguish between

export and import world market prices.

1T"We prefer this modest estimate over the observed historical productivity decline in 2006-2015 and very
high productivity increase forecast by the IMF (2017) for 2016-2021

51

Category Used sources Values
Total Factor
Productivity .
(TFP) Own assumption All 1%
growth
Growth of ILO for labor; FAO for land; flab 3.07%; find 0%; economy-wide
factors PWT for economywide capital capital (feap e) 5.34%
Population hhd w 3.72%: hhd r 1.78%
growth

Export (E): crop 1.35%, oagr

Growth of WB Commodities Price -0.45%, agrib 0.4%, oind 1.32%,

world market
prices

Forecast and
FRED for CPI services

in France

prserv 1.39%

Import(I): crop 0.94%, oagr 0.36%,
agrib 0.91%, oind 1.39%, prserv
1.39%

Growth of

BoP deficit IMF WEO fsav 11.17%

Production crop & oagr 0.24; agrib 1.17; oind
CES elast. Based on GTAP 9 1.24; pub 1.26; prserv 1.41

Trade elast.

Based on GTAP 9

CET: crop 2.84; oagr 1.47, agrib
2.58, oind 1.98, prserv 1.9; CES:
crop 4.29; oagr 2.27, agrib 3.39,
oind 2.79, prserv 1.9

Own estimates based on the

(Ia?;scizril::ieties household survey and King Available upon request
and Byerlee (1978)
Frisch Own estimates based on the
household survey, WB WDI Available upon request
parameters

and Lluch et al. (1977)

Table 16: Baseline parameters.

52

€9

B.4. Estimated variance

We use the same sources as in appendix B.3 and construct the historical sample
of 10-year moving averages throughout 1980-2015 and estimate components of the

multivariate Gaussian distribution.

flab find feap_e ‘ hhd_u hhd_r ‘ Ecrop Icrop Eoagr Ioagr Eagrib Iagrib FEoind Ioind prserv ‘ fsav

0.51 0.99 1.25 ‘ 0.33 0.24 ‘ 2.94 431 3.09 2.74 2.44 2.31 6.16 4.21

135 | 7.98

Table 17: Standard deviations.

']

‘ flab find feap_e ‘ hhd u hhd r ‘ Ecrop Icrop Eoagr Ioagr Eagrib Iagrib Eoind Ioind prserv ‘ fsav
flab 1
find 0.43 1
fcap_e | 0.38 0.62 1
hhd_u | 0.70 0.00 -0.05 1
hhd_r | -0.29 -0.62 -0.90 -0.01 1
Ecrop | 0.42 0.57 0.74 0.16 -0.81 1
Icrop 0.54 0.54 0.67 0.26 -0.68 0.89 1
Eoagr | -0.20 -0.01 0.09 0.01 -0.06 0.15 0.10 1
TIoagr | -0.24 -0.15 -0.19 0.05 0.22 -0.06 -0.06 0.93 1
Eagrib | 0.10 0.22 0.30 0.17 -0.31 0.53 0.50 0.87 0.79 1
Tagrib | 0.45 0.53 0.69 0.31 -0.74 0.92 0.84 0.38 0.19 0.71 1
Eoind | 0.17 0.59 0.87 -0.11 -0.94 0.80 0.69 0.05 -0.23 0.28 0.71 1
Toind | 0.18 0.59 0.85 -0.06 -0.94 080 069 0.11 -0.17 0.32 0.75 0.99 1
prserv | 0.16 -0.27 -0.78 0.45 0.64 -0.39 -0.23 -0.22 002 -019 -0.33 -0.68 -0.66 1
fsav ‘0.43 0.43 0.75 ‘ 0.31 -0.86 ‘ 072 0.63 -0.01 -0.25 0.21 0.66 0.85 0.85 -0.49‘ 1
Table 18: Correlations.

