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Abstract

This paper studies how to combine real-time forecasts from a broad range of Bayesian vec-

tor autoregression (BVAR) specifications and survey forecasts by optimally exploiting their

properties. To do that, it compares the forecasting performance of optimal pooling and tilt-

ing techniques, including survey forecasts for predicting euro area inflation and GDP growth

at medium-term forecast horizons using both univariate and multivariate forecasting metrics.

Results show that the Survey of Professional Forecasters (SPF) provides good point forecast

performance, but also that SPF forecasts perform poorly in terms of densities for all vari-

ables and horizons. Accordingly, when the model combination or the individual models are

tilted to SPF’s first moments, point accuracy and calibration improve, whereas they worsen

when SPF’s second moments are included. We conclude that judgement incorporated in

survey forecasts can considerably increase model forecasts accuracy, however, the way and

the extent to which it is incorporated matters.

Keywords: Real Time, Optimal Pooling, Judgement, Entropic tilting, Survey of Profes-

sional Forecasters

JEL Codes: C11, C32, C53, E27, E37
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Non-technical summary

Analytical models can be used to obtain point forecasts and the uncertainty surrounding them.

The latter is as important (in some instances more so) than the point prediction, since it allows

academics and policy-makers to gauge the probability of downside versus upside risks to the

economy. In the time series realm, Bayesian Vector Auto-Regression models (BVARs) became

a standard tool for forecasting and scenario analysis at central banks. As any other forecasting

tool, there is a large variation in performance across different specifications. It is difficult to

choose an individual model which, given prior information, set of variables, and data transfor-

mations, is able to forecast equally well every variable, at every horizon, and at each point of

the business cycle.

For this reason, with the aim of finding the best possible forecasts for our two target variables,

the year-on-year growth rates of euro area real Gross Domestic Product (GDP) and HICP

inflation, in this paper we optimally combines different sources of information. First, using

real-time data, we estimate a wide set of BVAR specifications and evaluate their forecasts over

the sample 2000-2019. The models differ on data set size and composition, data transformation,

degree of time variation, prior specification, and inclusion of off-model information. We then

combine forecasts from these models using a method called linear optimal pooling. The method

finds weights associated with each model by maximising past predictive performances (based on

individual variables or on both variables together). Finally, we test whether combining forecasts

from the euro area Survey of Professional Forecasters (SPF) with the model forecasts further

improves the forecast performance.

We find that including the complete distribution from SPF in an optimal pool slightly im-

proves final performance at the one-year horizon; we also find that including only information on

certain moments via entropic tilting from the SPF has different effects depending on the moment

included: the first moment improves overall density forecast accuracy, whereas the second one

always worsens it. This is due to the fact that SPF respondents tend to be overconfident, and

provide too narrow forecast densities, which in turn result in poor calibration and low predictive

scores. In contrast, the point forecasts from SPF tend to have smaller errors than those from

the BVARs. Therefore, including only information on survey means can substantially improve

our forecasts both from a point and a density perspective.

ECB Working Paper Series No 2543 / May 2021 2



1 Introduction

Optimally combining forecasts from multiple models in order to robustly predict future paths

of macroeconomic variables is a methodology, which has been advocated for some time in the

economic literature (for a comprehensive review, see Bassetti et al., 2020). The reason for this

is that it is hard to find an individual model, which can be considered the “best performing” in

all possible forecasting dimensions, i.e. for any variable, at any forecast horizon, at any point in

history, and for any loss function metric (be it in terms of point or density forecast). It is then

quite natural to think about combinations as a way of averaging multiple measurements of the

same outcome. These measurements may be the result of known econometric models, or they

may come from a mixture of unobserved data, models, and judgement calls, such as the figures

published in survey forecasts.

Having the above in mind, we construct a real-time forecast exercise for the euro area real

GDP and HICP inflation using econometric models at one- and two-year-ahead forecast hori-

zons. We use several types of Bayesian Vector Auto-Regression models (BVARs), which became

a standard tool for forecasting and scenario analysis in the central banking community, see

Bańbura et al. (2010) and Karlsson (2013), above all for mid- and long-term forecast horizons.

We choose several specifications, which differ on certain modelling choices, such as data set size

and composition, data transformation, degree of time variation, prior specification, and inclusion

of off-model information. In particular, we include BVAR models with Minnesota (Sims and

Zha, 1998; Bańbura et al., 2010) and democratic priors (Villani, 2009; Wright, 2013) and a model

with time-varying parameters (Primiceri, 2005). We also include a model proposed by Bańbura

and van Vlodrop (2018) with a local mean and a univariate unobserved component model with

stochastic volatility in the style of Stock and Watson (2007). For some models we use both a

3 and a 19 variable specification, resulting overall in 13 different BVARs. As mentioned above,

we then hedge against model uncertainty by combining those model forecasts by means of linear

optimal pooling, where weights are selected in order to maximise forecast accuracy (Hall and

Mitchell, 2007; Jore et al., 2010; Geweke and Amisano, 2011; Amisano and Geweke, 2017), both

for each individual variable and for the aggregate of the two variables.

We evaluate the performance of individual models and their combinations over the period

2000-2019 at the one- and two-year-ahead horizons, in terms of point and density forecast

accuracy. We calculate Root Mean Square Forecast Errors (RMSFE), Log Predictive Scores
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(LPS) and Continuous Ranked Probability Scores (CRPS) as performance measures. In order

to assess calibration, we also compute the Probability Integral Transforms (PITs) and perform

a test for the uniformity of the PITs distribution (Berkowitz, 2001). The latter feature is often

overlooked in forecast evaluations, although it is key when accurate measures of uncertainty

around the point forecasts are needed. We find that combination improves on individual models,

however, it does not achieve good calibration for both, variables and horizons. We then turn

to an additional source of information, namely the Survey of Professional Forecasters (SPF),

whose forecasts are known for having a good point forecast performance (Kenny et al., 2014). We

construct a continuous distribution from the SPF histograms in order to assess their accuracy

and calibration. We find, as expected, high accuracy for the SPF point forecasts, but poor

performance from a density perspective, both in terms of accuracy and calibration.

Given that from this first analysis there is no clear “best” forecast between a combination

of BVARs and survey forecasts, we then investigate two alternative approaches to incorporate

information from both methods in a unique forecast density, hence benefiting from more sub-

jective SPF forecasts, containing forward-looking information, and from the more academic and

model based BVAR forecasts, which are mostly based on backward looking information.

In the first approach, after simulating draws from the SPF distributions we obtain an SPF

density forecast, which we incorporate into the pool of models used for the optimal combination.

The second method is entropic tilting. Namely, we tilt either the individual models before

combining them, or the model combination, to either the first moment or both first and second

moments of the SPF. Therefore, we extend the literature that applies tilting to individual models

(Krüger et al., 2017; Altavilla et al., 2017; Ganics and Odendahl, 2021) and model combinations

(Galvao et al., 2021) or just combines macroeconomic models (Amisano and Geweke, 2017). To

our knowledge it has not yet been considered to combine tilted forecasts or to include survey

forecasts in macroeconomic model density combinations.

We find that incorporating survey information in model combinations improves forecast

performance and calibration, especially in the tilting method, albeit only limited to the first

survey moment. When the individual models or the combination are tilted to both mean and

variance of the SPF, there is a general worsening of the performance. Our results are similar to

Galvao et al. (2021) for U.K.’s GDP and inflation; they also found that judgement on the mean

tends to improve model density forecasts at short horizons, whereas survey second moments

hinder performance at short horizons. Combining individual BVARs both with and without
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judgement improves accuracy with respect to individual models according to the LPS metric,

while in terms of CRPS the combination is worse than SPF for all variables and horizons, with the

exception of the two-year-ahead GDP forecast. The option that improves forecast performance

the most, both in point and in density terms for GDP at the one-year horizon and for HICP at

both horizons, is the combination tilted to the SPF mean ”ex-ante” (before performing optimal

pooling, each individual model is tilted). This is closely followed by the combination tilted ”ex-

post” to the SPF mean. We also extend the evaluation to a bivariate setting, where accuracy is

computed using joint statistics for GDP and inflation forecasts, allowing to investigate whether

models’ or surveys’ performance for one of the two variables can be explained by conditioning on

the other variable. Results are consistent with the univariate case, i.e. the optimal pool tilted

ex-ante to the mean of SPF provides again the most accurate results. We also confirm that the

lack of calibration of the SPF is not due to the survey respondents giving higher relevance to

one of the two variables, but rather their densities are simply too narrow (i.e. they are over-

confident) for both variables. We conclude that judgement incorporated in survey forecasts can

help model forecasts accuracy and improve calibration, however, the way and extent to which

it is incorporated matters.

The rest of the paper is organised as follows. In Section 2, we present the set of BVAR

models included in the combination and briefly explain the data used and combination method,

as well as show the performance results of the optimal pooling combination. In Section 3, we

explain how we construct the SPF forecast density from a discrete histogram and how do these

forecasts perform. In Section 4, we illustrate the two options used to combine model and survey

information, and present their results. Section 5 describes results for the bivariate analysis and

Section 6 concludes.

2 Pool of Bayesian VARs

Bayesian VARs have become a standard tool for forecasting and scenario analysis at central

banks, due to their competitive performance and relatively easy implementation. At the same

time, results from such models are often sensitive to some modelling choices such as data set

size and composition, data transformation, degree of time variation, prior specification, and in-

clusion of off-model information. To hedge against such model uncertainty, we consider several

of the most common model variants. In particular, we choose BVAR models with Minnesota
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(Sims and Zha, 1998; Bańbura et al., 2010) and democratic priors (Villani, 2009; Wright, 2013)

and those with time-varying parameters (Primiceri, 2005). In addition, we include a model

proposed by Bańbura and van Vlodrop (2018) with a survey local mean and a univariate unob-

served component model with stochastic volatility in the style of Stock and Watson (2007). The

survey local mean model and the specification with democratic priors allow including off-model

information (from long-term survey forecasts) to pin down the low frequency evolution of the

modelled variables (the trends). We consider “small” (three variables) and “medium” (19 vari-

ables) data set sizes for the euro area as a whole and a bottom-up approach whereby the euro

area forecast is aggregated from the forecasts for its four largest countries (each obtained with a

“small” country data set). While trying to include a broad range of specifications, we also aim

at not “duplicating” models (including model versions that produce similar results).

The probabilistic forecasts from individual models are combined via a linear prediction pool

with optimal weights, chosen so as to maximise forecast accuracy (Geweke and Amisano, 2011).

Forecast combinations have frequently been found in empirical studies to produce better forecasts

than methods based on the ex ante best individual forecasting model. They have come to be

viewed as a simple and effective way to improve and robustify the forecasting performance of

individual models, which are subject to problems such as model misspecification, instability

(non-stationarities), and estimation error. This applies to a combination of point forecasts, but

also to a combination of probability forecasts.

In the following sections, we present in more details the individual types of models, the data

used, the combination method, and the forecast performance thereof.

2.1 Bayesian VAR types

The following model types are included in the optimal pool:

1. VAR with “Minnesota” priors

Yt = c+

p∑
i=1

BiYt−i + εt, εt ∼ N (0, Ht) , (1)

where Yt is the vector of dependent variables, c is the intercept, B1 . . . Bp are matrices

of lagged coefficients and εt is a vector of innovations. We consider two versions of the

model: (i) “in differences” (Minn Dif ) in which the trending variables are transformed as

log-differences and (ii) “in levels” (Minn Lev) in which those variables are taken in logs.
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We use independent normal priors for the coefficients Bi. The prior means are equal to 0,

with the exception of the prior for the diagonal of B1 (first lag of the dependent variable

in each equation) for the specification “in levels”, which is equal to 1. Following the

“Minnesota” convention, the coefficients for more distant lags are “shrunk” more (have

tighter priors around 0). The priors’ variances are also adjusted for relative differences in

predictability. The overall degree of shrinkage, as governed by the hyperparameter λ, is

set to the standard value of 0.2.1 The prior for the intercept c is non-informative. See

Kadiyala and Karlsson (1997), Bańbura et al. (2010), and Carriero et al. (2019) for more

details on this type of models, which represent one of the most popular implementation of

Bayesian VARs in recent applications in macroeconomics.

2. VAR with democratic priors (Dem)

Yt = µ+

p∑
i=1

Bi(Yt−i − µ) + εt, εt ∼ N (0, Ht) . (2)

In contrast to the previous version, this parameterisation of the VAR model is in deviation

from the unconditional mean µ (sometimes referred to as the “steady state”). Informative

normal priors are used for µ (Villani, 2009) and stochastic volatility for εt (Clark, 2011).

As the mean of the prior we take the long-term forecasts from Consensus Economics

(as in the “democratic prior” approach proposed by Wright, 2013).2 As this type of

parameterisation assumes the existence of constant unconditional mean, it is only used for

variables “in differences”. The priors for Bi are the same as above.

3. VAR with local mean (LM )

Yt − µt =

p∑
i=1

Bi (Yt−i − µt−i) + εt, εt ∼ N (0, Ht) , (3)

µt = µt−1 + ηt, ηt ∼ N(0, Vt). (4)

The VAR is written in deviation from a “local mean”, µt, that can vary over time as

a random walk (reflecting e.g. low frequency changes in demographics, productivity, or

1We also evaluated the hierarchical approach of Giannone et al. (2015); the performance was similar to the
implementation with fixed λ.

2For the variables for which the long-term survey forecasts (of sufficient length) are not available (e.g. interest
rates), we use non-informative priors.
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inflation trend/expectations). For reasons similar to above, the specification is meaningful

for variables “in differences”. The priors for Bi are the same as above.

4. VAR with local mean linked to long-term expectations (SLM )

This type of VAR is specified as the previous one, but in addition the local mean is linked

to the long-term forecasts from Consensus Economics, zt:

zt = µt + gt, gt ∼ N (0, Gt) . (5)

Again, the specification is meaningful for variables “in differences” and the priors for Bi

are the same as above. See Bańbura and van Vlodrop (2018) for implementation details.

5. Time-varying parameters VAR with stochastic volatility (TVP)

Yt = ct +

p∑
i=1

Bi,tYt−i + εt, εt ∼ N (0,Σt) , (6)

ct = ct−1 + ηt, ηt ∼ N(0, U ct ), (7)

Bi,t = Bi,t−1 + ηt, ηt ∼ N(0, UBt ). (8)

This is the standard implementation of the VAR where all the coefficients can vary over

time; see Primiceri (2005) and Del Negro and Primiceri (2015).

6. Univariate unobserved component model with stochastic volatility (UCSV )

This is a “non-centred” version of the UCSV model as per Stock and Watson (2007),

with gamma priors on the error variances in the two stochastic volatility state equations

(see Chan, 2018). The model decomposes each variable into a trend and a transitory

component, where each component features an independent stochastic volatility:

yt = τt + e
1
2
(h0+ωhh̃t)εyt , εyt ∼ N(0, 1), (9)

τt = τt−1 + e
1
2
(g0+ωg g̃t)ετt , ετt ∼ N(0, 1), (10)

h̃t = h̃t−1 + εht , εht ∼ N(0, 1), (11)

g̃t = g̃t−1 + εgt , εgt ∼ N(0, 1). (12)

This is the only model estimated variable by variable, therefore yt is a scalar.
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Regarding the time-varying variances of the VAR innovations, Ht, in models 1-4 and 6 we

follow the approach for stochastic volatility of Carriero et al. (2019).3

Specifications 2. and 4. allow including off-model information that helps to pin down

the unconditional mean and the trend, respectively. For this we use long-term forecasts from

Consensus Economics. Alternative sources of information could be considered as well, notably

estimates of potential growth to provide information on likely low frequency evolution of real

GDP growth (and possibly also of expenditure components).

2.2 Data set compositions

We build a real-time data set in order to simulate the environment available to SPF respondents

and policy makers at the time of the survey rounds. The data set is built from the historical

vintages from the ECB’s Statistical Data Warehouse (SDW), with cut-off dates adjusted to

correspond to those of the ECB SPF rounds. Where vintages are not available, we use a

pseudo-real time approach, assuming no revisions. For HICP inflation’s, vintages before 2006

were not seasonally adjusted, therefore we adjust them using X11. Most series were backdated

to 1970 using the Area Wide Model (AWM) database (Fagan et al., 2005). The sample for the

euro area goes from 1970Q1 to 2019Q4. The first ten years of data (up to 1980Q1) are used as

training sample. Estimation starts in 1980Q2 and forecasts are done for the period 2001Q1 -

2019Q4.

The model variants also differ in terms of data set composition. For the models with aggre-

gate euro area data we use data sets with three and 19 variables. The latter is not feasible for

some model types due to computational reasons. The model specifications are summarised in

Table 1. A detailed list of variables along with the applied transformations is provided in Table

A.1 in the Appendix.

We also obtain bottom-up forecasts by aggregating results for the largest four countries of

the euro area (Germany, France, Italy and Spain). The latter models include country GDP and

HICP inflation, as well as the euro area level short-term interest rate. We use the period 1980Q1

- 1985Q4 as training sample. Estimation sample starts in 1986Q1. The forecasts are done for

the same periods as for the euro area data.

3The matrix of impulse response functions is assumed constant and log-variances follow random walk. Bis are
sampled equation by equation to speed up the computations.
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Table 1: Data set compositions

Minn Dif Minn Lev Dem LM SLM TVP UCSV

Euro area, 3 variables x x x x x x x
Euro area, 19 variables x - x - - - -

Big 4, 3 variables x - x - x x -

2.3 Combination method

We combine predictive densities from individual models via a linear optimal pool, where each

model contributes to the combination with a time-varying weight driven by the model’s perfor-

mance in terms of predictive density (see Geweke and Amisano, 2011), namely according to the

log scoring criterion:
t∑

s=T1

log (p(ys;Ys−h, . . . , Y1,M)) , (13)

where p(ys;Ys−h, . . . , Y1,M) is the predictive density from model M for variable ys given the

data Y1, . . . , Ys−h, approximated using a non-parametric kernel smoother. The individual pre-

dictive densities are obtained by simulating the parameters from the posterior distribution and

drawing the “future” shocks. The optimal weights are found by solving the following constrained

maximisation problem:

w∗t+h|t = arg max
wi

t∑
s=T1

log

[
I∑
i=1

wip(ys;Ys−h, . . . , Y1,Mi)

]
, (14)

where I is the number of models, w∗t+h|t = (w∗t+h|t,1, . . . , w
∗
t+h|t,I) and w∗t+h|t,i is the time-varying

weight for model Mi.
4 The weights are constrained to be non-negative and sum to one:

w∗t+h|t,i ≥ 0 ,
I∑
i=1

w∗t+h|t,i = 1.

The combined density is a mixture of the individual densities, weighted over time by the

optimal weights found in (14).

4Note that for the first 8 quarters of the evaluation sample we assume equal weights and the optimisation is
done for t = T1 + 8, . . . , T2.
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2.4 Performance of Optimal Pooling

We look at each individual model and at their combination’s performance, according to the

following dimensions, described below: relative point accuracy (RMSFE), relative density accu-

racy (LPS and CRPS), absolute accuracy (PITs), and time-varying relative accuracy (cumulative

RMSFE, LPS, and CRPS with respect to SPF forecasts).

1. The root mean squared forecast error (RMSFE ):

1

T2 − T1 + 1

T2∑
t=T1

(yt − ŷit|t−h)2 ,

where T1 and T2 denote the beginning and the end of the evaluation sample, respectively,

and ŷit|t−h denotes the median of the predictive density for yt given the data up to t−h for

model (or combination) i. The measure is used to compare the accuracy of point forecasts.

2. The continuous ranked probability score (CRPS ):

1

T2 − T1 + 1

T2∑
t=T1

(∫ ∞
−∞

(F (y;Yt−h, . . . , Y1,Mi)− I(yt ≤ y))2dy

)
,

where F (·;Yt−h, . . . , Y1,Mi) denotes the predictive cumulative distribution function (corre-

sponding to the predictive density p(·;Yt−h, . . . , Y1,Mi)) and I(·) is an indicator function.

The CRPS (Gneiting and Raftery, 2007) considers the cumulative density of the forecast

and its distance from the realisation; the lower the score, the better the model accuracy.

3. The log-predictive score (LPS ):

1

T2 − T1 + 1

T2∑
t=T1

log(p(yt;Yt−h, . . . , Y1,Mi)) ,

where p(yt;Yt−h, . . . , Y1,Mi) is a predictive density for yt using information up to time

t− h. The log score is heavily affected by more extreme realisations. It may be therefore

necessary to replace particularly low values of predictive densities by a normalising constant

(close to zero) in order to avoid the log score reaching minus infinity.
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4. The probability integral transform (PIT ):

PITt = F (yt;Yt−h, . . . , Y1,Mi), t = T1, . . . , T2 ,

provides a measure of the model calibration; for well-calibrated predictive distribution

(i.e. such that approximates well the actual distribution), the sequence PITT1 , . . . , P ITT2

should be uniformly distributed over the interval [0, 1]. To test the hypothesis of uniformity,

we perform the Berkowitz test (Berkowitz, 2001)5.

5. Cumulative relative RMSFE, CRPS, and LPS: we take the difference of each model com-

bination’s score with respect to the corresponding SPF’s score, and cumulate it over time.

Results for the individual models are presented in Appendix B. We also check the perfor-

mance of a combination with equal weights, wi = 1
I , for robustness. We find that equal weights

improve on most individual models, albeit not as much as the optimal pool. Only a few indi-

vidual models do better than the optimal pool, and none of them does better in all metrics,

variables and horizons. For inflation, the pooling seems to add particular value, with gains from

individual models in the order of 10− 20%.

Results from the univariate optimal pool are shown in the first column of Table 2 and in each

first panel of Figures 1 - 4, where the first figure shows the forecast distribution with median, 5th,

25th, 75th, and 95th percentile and the second figure shows the probability integral transforms

(PITs), measuring calibration. The same figures for each individual model are in Appendix B.

The two panels of Figure 5 investigate the relative performance of each combination method

with respect to optimal pooling. CRPS and -LPS are in differences from the optimal pool

and cumulated over time. Whenever a line is below zero, the loss function is smaller for the

alternative combination than for optimal pooling, therefore optimal pooling’s performance is

worse. A line above zero indicates that optimal pooling is to be preferred to the alternative.

Whenever the line is around zero, the two models have performed similarly (as is the case for the

optimal pool with SPF for one-year-ahead GDP forecasts). Figures C.1 - C.5 in the Appendix

present analogous results for the two-year-ahead forecasts.

5We also try the Knüppel test for the calibration of multi-step ahead density forecasts (Knüppel, 2015),
obtaining similar qualitative, albeit less discriminating, results. Omitted here and available upon request to the
authors.
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3 Continuous forecast density from discrete SPF histograms

The Survey of Professional Forecasters (SPF) for the European Union has been taking place

quarterly since the beginning of 1999. The survey asks to a panel of professional forecasters

within the EU to give an estimate on the future values for euro area gross domestic product

growth, HICP inflation, and unemployment rate (de Vincent-Humphreys et al., 2019; Kenny

et al., 2013). We focus here on GDP and inflation forecasts, for two separate medium-term

horizons, namely one- and two-year-ahead6. Respondents are asked to give both a point forecast

and to assign probabilities for each variable’s future outcome falling within pre-determined

ranges. The individual responses are then aggregated, and a histogram of average probabilities

for the economic outlook results. We do not focus on individual responses, following the results

in Genre et al. (2013), where the simple average is proven to be the best combination method.

In a more recent work, Diebold et al. (2020) propose a new method to build regularised mixtures

of individual densities.

We consider, for each release of the SPF, a point forecast and a histogram of probabilities, for

the two target variables and the two horizons. From this information, it would be already possible

to calculate the SPF point forecast accuracy, standard deviation, and calibration scores, provided

one calculates a discrete approximation of the histogram, and assumes that the probability is

concentrated in the mid-point of each bin (Kenny et al., 2015). We follow this approach to

calculate mean and standard deviation for the tilting, described in the next section. Another

approach (Engelberg et al., 2009) is to assume a normal or a beta distribution for the SPF

histograms, however, this method presents the obvious shortcoming of possibly misspecifying

the distribution.

For this reason, we decide to take a non-parametric approach (see Billio et al., 2013, for an

application to prediction of stock market returns) and build a continuous SPF distribution, as

well as draws from this distribution, using a kernel smoother. The procedure to build the contin-

uous density for each SPF round is as follows: starting from the aggregated discrete probabilities,

we simulate N (=1000) random samples from multinomial distributions, each with sample size

equal to the average number of respondents times the number of bins7, and probabilities equal

6For each round, the target quarter refers to one (or two) years after the latest official release available at the
time of the questionnaire.

7Each respondent can give a probability to each bin, therefore we can approximate the number of total answers
as the product of respondents and bins. To simplify, we assume a constant number of 80 respondents for each
round. The number of respondents does not impact the final simulated draws.
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to the SPF probabilities for each bin. For each sample we then draw numbers included in the

corresponding bin, making the assumption that the values are distributed uniformly within the

bin. For example, if the multinomial density has 25 counts for the bin with bounds [1.95 2.45),

we draw 25 numbers from the uniform distribution with those bounds. Finally, we fit N kernel

densities over the grid of values corresponding to the bins8 and take the average of these N den-

sities. We then simulate S (=5000) draws from the average kernel density over the same grid,

obtaining a simulated density forecast, which can be compared to densities from other models,

or combined with them.

3.1 Performance of SPF

Looking at SPF results, two main features of the forecasts emerge. First, the survey does

extremely well in terms of point accuracy (RMSFE), particularly for HICP inflation, where

it does better than optimal pooling (see Table B.1 in the Appendix, second column), with

the exception of two-year-ahead GDP. Second, in terms of density accuracy, the SPF tends to

always be over-confident, delivering narrow distributions and u-shaped PITs (see second panel

of Figures 1 - 4 for the one-year horizon and C.1 - C.4 in Appendix for the two-year horizon).

This is reflected also in the log-scores, which, as displayed in the second column of Table 2,

are always worse than in the case of optimal pooling (the difference of the two scores is always

negative, meaning that the SPF log scores are smaller), by a larger margin in the case of GDP.

In terms of time variation, the SPF performance clearly worsens during and after the global

financial crisis. The degree of uncertainty, especially for GDP growth, was not captured by SPF

respondents; one reason for the large errors, particularly in density terms, is the fact that the

pre-determined bins for the GDP’s distribution did not reflect the economic developments. In

the SPF round of 2008Q3, for the forecast of GDP referring to 2009Q3, respondents did put a

large probability in the left-most bin, which nevertheless represented all values below -1.1%9.

The realisation for year-on-year GDP growth was close to -5% for that quarter. It is not possible

to know how the probability assigned to the left-most bin is distributed across values smaller

than -1.1%. For equally sized bins, in this particular round, the beginning of the bin would

8For the extreme bins of inflation, we assume a bin size equal to all the intermediate ones; for those of GDP,
we expand the left extreme bin such that it starts at values of -10. This is to allow a more realistic distribution
in this bin during crisis periods.

9The bins have been expanded since after that SPF round, with ten additional bins added, for values of GDP
growth down to -6.5%
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be -1.5%, returning a predictive score of zero. This in turn would result in a value for the

log-predictive score of minus infinity. For this reason, we set a lower limit to the log score of

-20, therefore selecting this value whenever the log-score is smaller than -20; the same rule is

applied to each individual model and combination.

4 Incorporating model and survey information

In our first set of results, we find strengths and weaknesses in both judgement-based and com-

bination of model-based forecasts. While the former perform particularly well in the point

dimensions, the latter can considerably improve the density and calibration. For this reason,

we unify these two sources of information and look at whether and how this improves forecast

accuracy.

We focus on two additional methods:

1. Including the simulated SPF density described in Section 3 into the BVAR pool and

combining individual models + SPF by means of optimal pooling (Opt Pool w SPF in the

results);

2. Using entropic tilting, including moments from the SPF, in the following four options10:

(a) Tilt to the SPF mean each individual model, then perform optimal pooling (Mean-

tilted ex-ante);

(b) Tilt to the SPF mean and variance each individual model, then perform optimal

pooling (Mean and var-tilted ex-ante);

(c) Tilt to the SPF mean the optimal pool of combined models (Mean-tilted ex-post);

(d) Tilt to the SPF mean and variance the optimal pool of combined models (Mean and

var-tilted ex-post);

4.1 Combination of models with SPF densities

As a first method to add survey information to model forecasts, we take the same forecast

densities derived from the models described in Section 2 and the SPF density constructed as in

Section 3 and combine them by means of a linear optimal pool. The optimal weights are again

found by solving the following constrained maximisation problem, analogous to (14):

10Schemes 2(c)-2(d) are also studied in Galvao et al. (2021).
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w∗t+h|t = arg max
wi

t∑
s=T1

log

[
I+1∑
i=1

wip(ys;Ys−h, . . . , Y1,Mi)

]
, (15)

where w∗t+h|t = (w∗t+h|t,1, . . . , w
∗
t+h|t,I+1), w

∗
t+h|t,i is the time-varying weight for model Mi or for

the SPF density, and I is the number of models, to which we add the SPF density.

4.2 Entropic tilting

The second method consists of imposing the SPF moments as restrictions onto each individ-

ual density before performing optimal pooling, or onto the optimally combined distribution of

forecast densities. To do that, we use a relative entropy approach, as seen in Robertson et al.

(2005). The procedure consists of re-weighting the draws from the forecast distribution so that

it satisfies the required restrictions while being as close as possible to the original distribution.

Tilting has been used in the past to produce conditional forecasts (imposing that the path for

some variables over the forecast period is equal to some predetermined quantities, such as in

Robertson et al., 2005) or to produce forecasts that satisfy economic theory, by imposing mo-

ments such as Euler conditions, as seen in Giacomini and Ragusa (2014). The tilting procedure is

relatively straightforward. The following exposition is a summary from Robertson et al. (2005),

as it corresponds to the methodology that we use.

For each variable, we start with the (h x k) matrix that contains the forecast density – that

is, k draws for 1 to h quarters ahead. The distribution is a random sample from the forecasting

density, so initially we assign the same initial weight to each draw, πi = 1
k , i = 1, ..., k. The

basic idea of tilting is to modify those weights so that the re-weighted distribution, with weights

π∗i , satisfies the restrictions of interest; in this case, those coming from the SPF. However,

the weights are found so that the new distribution is “close” to the original one. In order to

measure the closeness of both probability distributions, we use the Kullback-Leibler Information

Criterion,

K(π∗i , πi) =
k∑
i=1

π∗i log(π∗i /πi).

The new weights are then calculated so that they minimise K(π∗i , πi), subject to the following
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constraints,

π∗i ≥ 0 ,

k∑
i=1

π∗i = 1 ,

k∑
i=1

π∗i g(yi) = ḡ.

The first two constraints are trivial and imply that the new weights should be positive and should

sum to 1. The third constraint imposes the restrictions and implies that the expectations of a

function of the draws from the forecasting distribution should be equal to a fixed quantity. For

example, if g(yi) = yi, the restriction is put on the mean of the distribution, which we would fix

to m̄. In our application, where we use restrictions based on the SPF, we consider the standard

deviation, in addition to the mean.

Matching the SPF standard deviation is straightforward. Given a variance ḡ2, then,

g(yi) = (yi − m̄)2.

Finally, the minimisation problem yields the following solution for the new weights:

π∗i =
πiexp(γ

′g(yi))∑k
i=1 πiexp(γ

′g(yi))
.

In this case, γ is the multiplier associated with the restrictions, which can be found numerically

as:

γ = arg min
γ̃

k∑
i=1

πiexp(γ̃′[g(yi)− ḡ]).

4.3 Performance of model combination with SPF

Results from the various combinations mentioned above can be found in Table 2 and in the

following Figures. Since we already described the results for optimal pooling without judgement

and for SPF forecasts in Sections 2 and 3, we focus here on the five remaining specifications.

The first method implies adding the forecast distribution simulated for the SPF to the pool

of BVARs and finding weights which maximise the predictive likelihood. Figures 9 and C.9

show the resulting optimal weights; Figure 8 and C.8, for reference, show the optimal weights
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from the pool of BVARs only. The weights for SPF densities are never very large, which is also

reflected in the relative cumulative scores of Figures 5 and C.5. The dashed line for optimal

pool with SPF is almost always near zero for GDP growth, meaning that CRPS and LPS are

similar for both optimal pools, including and excluding SPF. For inflation, the weight of SPF is

more persistently positive in the second half of the sample, reflecting in an effect on the pool’s

accuracy. Looking at average scores in the Table, however, the effect seems to vanish over the

sample, with the two optimal pools returning very similar scores (third column in Table 2, scores

relative to optimal pool without SPF are close to 1 for CRPS and to 0 for the LPS).

The two pools obtained from tilting to the SPF mean improve considerably on the original

optimal pool and on the SPF; RMSFE, CRPS, and LPS all get better, especially for inflation.

Over time, as shown in the cumulative scores, both options perform very well for GDP at both

horizons, as well as for inflation. The dashed lines referring to the mean-tilted combinations are

always below the others, particularly since the global financial crisis, when model performance

begins to diverge across combinations. The only exception is again the two-year-ahead GDP,

where, in terms of CRPS, the optimal pool does better and, in terms of LPS, the optimal pool

performs very similarly to the mean-tilted combinations.

Finally, for the case of the tilting to both first and second moments of SPF, there is a general

worsening of the performance for all variables and horizons. We notice from the distribution

and the PITs charts that this method seems to forsake model information and closely replicates

the SPF forecast performance. We conclude that it is counterproductive to include too much

survey information when this is not well calibrated.

5 Bivariate analysis

In this section, we describe results analogous to Section 4 for a bivariate setting. We perform

optimal pooling for both GDP and inflation by maximising the bivariate predictive performance,

i.e. the predictive performance of the joint pdf of both variables. This analysis allows to

investigate whether models or surveys’ performance for one of the two variables or some specific

area of interest of the same variable can be explained by conditioning on the other variable.

To measure accuracy, we consider three scoring functions. We look at the energy score, a

multivariate generalisation of the CRPS (see Gneiting et al., 2008), the bivariate LPS, and the

conditional PITs (Diebold et al., 1999).
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1. The energy score (ES ) is defined as:

1

S

S∑
i=1

‖Ỹi − Y ‖ −
1

2S2

S∑
i=1

S∑
j=1

‖Ỹi − Ỹj‖

where S is the number of draws of forecast densities for each period, ‖·‖ denotes the

Euclidean norm on Rd (here, d = 2), Ỹ is the vector of forecast densities, and Y is the

vector of realisations.

2. The bivariate log-predictive score (LPS ),

1

T2 − T1 + 1

T2∑
t=T1

log(p(Yt|Yt−h, . . . , Y1))

is analogous to the univariate case, but here Yt is a vector and not a scalar.

3. The conditional PIT is given by:

PITt(y1t | y2t) = F (y1t | y1t−h, . . . , y11, y2t−h, . . . , y21), t = T1, . . . , T2

This is obtained by first calculating the univariate PITs (based on the CDF of the first

variable), then the conditional PITs (PITs of the second variable, given that the PITs

of the first variable fall within chosen quantiles). The procedure for the bivariate eval-

uation results in two conditional PITs, PITt(GDP | HICP ) and PITt(HICP | GDP ),

respectively. In our results, we focus on two parts of the PITs distribution; a “central”

part, given by the central 68% of the distribution and a “tails” part, which is the sum

of quantiles 0th − 16th and 84th − 100th. The conditional PITs are evaluated in the same

way as the unconditional ones; for well-calibrated predictive distributions (i.e. such that

approximates well the actual distribution), the sequence PITT1 , . . . , P ITT2 should be uni-

formly distributed over the interval [0, 1]. To test the hypothesis of uniformity, we again

perform the Berkowitz test (Berkowitz, 2001).

5.1 Performance of bivariate combinations

Table 3 shows results for the bivariate combinations. As for the univariate case, ES and LPS of

the different forecasts are shown relative to the first column, optimal pooling. The Berkowitz

ECB Working Paper Series No 2543 / May 2021 19



test is in absolute terms. Results are consistent with the univariate case. According to the LPS

metric, the optimal pool tilted ex-ante to the mean of SPF does best, followed by the optimal

pool tilted ex-post to the mean in the one-year-ahead and by the optimal pool with SPF in the

two-year-ahead. The ES, similarly to the CRPS, penalises less the SPF and the combinations

tilted to both mean and variance of SPF. At the two-year horizon, only the pooling with SPF

does better than optimal pooling for this metric.

Conditional calibration can be assessed both in Table 3 and in Figures 6-7. The latter focuses

only on the best and the worst performing combinations and shows both the unconditional and

the conditional PITs for each variable for the two combinations. The two subplots in the bottom

part of the Figure include conditional PITs for the “center” and the “tails”. For example, the

middle subplot of Figure 6 shows the PITs of GDP conditional on the PITs of inflation falling

in the mid-68% of the distribution at one-year-ahead horizon. The bottom subplot shows the

PITs of GDP, conditional on the PITs of inflation falling either in the first 16% or in the last

84% of the distribution. The mean-tilted ex-ante combination satisfies uniformity for almost all

conditional PITs, failing only for the two-year-ahead PITs of GDP conditional on the extremes

(< 16% and > 84%) of inflation. The mean and variance-tilted combination, in contrast, carries

over the poor unconditional calibration also in the conditional case. Table 3 indicates that the

SPF is not correctly calibrated in any case. The lack of calibration of the SPF is not documented

by the evidence that the survey respondents give higher relevance to one of the two variables,

but their densities are simply too narrow.

Finally, we look at the weights from optimal pooling for the bivariate case, in Figures 8

(pool without SPF) and 9 (pool including SPF). There are large differences in terms of selected

models compared to the univariate optimal pool, which include SPF getting a larger weight

both before and after the 2008 crisis, new models entering the pool with positive weight, and

other models being excluded (notably the SLM model, which for inflation had a large positive

weight during most of the sample). Weights in the multivariate case are less volatile than those

for univariate combinations of GDP, in particular at the beginning of the sample, but still more

volatile than those for univariate combinations of inflation. Despite these differences in weights

visible also in the two-year-ahead results in the Appendix (Figures C.8-C.9), results in terms

of density performance are very similar to the univariate pooling, as discussed above. The

main difference to notice is the improvement in GDP point forecasting accuracy when applying

bivariate combinations (see Table B.1): five cases over the six combination schemes have lower
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root mean square forecasting errors in the bivariate case than in the univariate case. However,

the evidence is opposite for inflation forecasting, where performance deteriorates in the bivariate

case.

6 Conclusions

We evaluate in real time density forecasts from a broad range of Bayesian VARs for euro area

GDP and inflation. We look at average density performance over the sample, at overall calibra-

tion, and at relative performance over time. We then combine results from individual models by

means of a linear optimal pool, finding significant improvements with respect to each model and

to a trivial combination with equal weights. In addition, we consider forecasts from the Survey

of Professional Forecasters and build a continuous distribution and simulated draws from the

survey’s aggregate histograms. Evaluating these forecasts along the same dimensions, we see

a very good performance in terms of point forecast, but a poor performance for density and

calibration, with SPF density forecasts being overconfident and poorly calibrated. In order to

exploit the positive point performance, we include complete distributions for SPF forecasts in

the model densities via two methods. First, we add the SPF as an additional density forecast to

the linear optimal pool. Gains with respect to the original optimal pool in this case are limited.

Second, we use first and second moments from the SPF’s histograms to tilt the model densities.

We tilt both the individual model densities before combining them and the already combined

density. We find that when both moments are used for the tilting, there is a general worsening

of the performance, both for the models tilted ex-ante (before combination) and ex-post (after

combination). In the case of tilting only to the first moment, all results improve with respect

to other alternatives and with respect to SPF only. Evidence is similar when the evaluation is

carried out jointly for the two variables and not marginally as is commonly reported in litera-

ture. Therefore, the lack of calibration of the SPF cannot be justified by the survey respondents

giving higher relevance to one of the two variables, but by the evidence that survey densities are

simply too narrow.

We conclude that there are some benefits to including forward-looking medium-term judge-

ment forecasts to a combination of purely statistical models, with improvements in the point

forecast accuracy which are not achieved by a simple optimal pooling of those models. Good

forecast calibration and density performance, on the other hand, come mostly from combining
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individual models, confirming the advantages of hedging against model uncertainty by using

several specifications.
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Bańbura, M., Giannone, D., and Reichlin, L. (2010). Large Bayesian vector auto regressions.

Journal of Applied Econometrics, 25(1):71–92.
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Table 2: Relative accuracy scores and uniformity test results for the different univariate combi-
nations:

Optimal
Pool:
absolute
scores

SPF Optimal
Pool with
SPF

µ-tilted
ex-ante

µ-tilted
ex-post

µ and σ-
tilted ex-
ante

µ and σ-
tilted ex-
post

GDP 4-q
CRPS 0.808 0.994 0.997 0.935 0.932 0.966 0.971
LPS -1.922 -0.627 0.030 0.302 0.026 -0.406 -0.485
Berkowitz 0.042 0.000 0.016 0.624 0.279 0.000 0.000

GDP 8-q
CRPS 0.994 1.091 1.001 1.080 1.033 1.102 1.099
LPS -1.973 -1.112 -0.094 -0.042 -0.095 -1.243 -1.303
Berkowitz 0.020 0.000 0.011 0.099 0.004 0.000 0.000

HICP 4-q
CRPS 0.503 0.932 0.991 0.917 0.937 0.943 0.944
LPS -1.306 -0.024 0.003 0.117 0.056 -0.007 -0.082
Berkowitz 0.839 0.002 0.704 0.218 0.156 0.000 0.000

HICP 8-q
CRPS 0.567 0.949 1.020 0.922 0.941 0.964 0.963
LPS -1.429 -0.040 -0.001 0.082 0.032 -0.263 -0.284
Berkowitz 0.552 0.000 0.961 0.368 0.232 0.000 0.000

Note: CRPS is calculated as the ratio between each model’s score and those of optimal pooling,
included in column 1. A number smaller than one indicates a more accurate forecast in that column
compared to optimal pooling. LPS is calculated as the difference between the two scores, therefore
a positive value indicates a more accurate forecast compared to optimal pooling. Berkowitz test
is in absolute terms, where a p-value smaller than 0.10 indicates that the null hypothesis of good
calibration can be rejected at the 10 percent confidence level; i.e. the density is not well calibrated.
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Table 3: Relative accuracy scores and uniformity test results for the different bivariate combi-
nations:

Optimal
Pool:
absolute
scores

SPF Optimal
Pool
with
SPF

µ-tilted
ex-ante

µ-tilted
ex-post

µ and σ-
tilted ex-
ante

µ and σ-
tilted ex-
post

4-q
ES 1.015 0.995 0.987 0.961 0.954 0.983 0.984
LPS -3.355 -0.416 0.144 0.433 0.220 -0.106 -0.352
Berkowitz c 0.538 0.000 0.907 0.690 0.650 0.000 0.000
y | h t 0.008 0.000 0.010 0.112 0.098 0.000 0.000
Berkowitz c 0.026 0.013 0.078 0.219 0.168 0.002 0.001
h | y t 0.141 0.061 0.235 0.394 0.724 0.010 0.003

8-q
ES 1.254 1.054 0.989 1.024 1.016 1.069 1.068
LPS -3.766 -0.501 0.061 0.233 -0.017 -0.782 -0.874
Berkowitz c 0.214 0.000 0.623 0.721 0.185 0.000 0.000
y | h t 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Berkowitz c 0.075 0.002 0.156 0.707 0.225 0.000 0.000
h | y t 0.632 0.030 0.915 0.238 0.383 0.003 0.002

Note: ES is calculated as the ratio between each model’s score and those of optimal pooling. LPS is
calculated as the difference between the two scores. Berkowitz test is in absolute terms and refers to
the conditional PITs described in Section 5: PITs of GDP given inflation, central part (c) and tails
(t); PITs of inflation given GDP, central part and tails. A p-value smaller than 0.10 indicates that
the null hypothesis of good calibration can be rejected at the 10 percent confidence level; i.e. the
density is not well calibrated.
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Figure 1: Densities of one-year-ahead forecasts from combinations and SPF, real GDP growth.
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Figure 2: PITs of one-year-ahead forecasts from combinations and SPF, real GDP growth.
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Figure 3: Densities of one-year-ahead forecasts from combinations and SPF, HICP inflation.
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Figure 4: PITs of one-year-ahead forecasts from combinations and SPF, HICP inflation.
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Figure 5: Cumulative relative scores of one-year-ahead forecasts, real GDP growth (left) and
HICP inflation (right).
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Figure 6: Unconditional and conditional PITs for one-year-ahead real GDP growth, for two
combination methods.
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Figure 7: Unconditional and conditional PITs for one-year-ahead HICP inflation, for two com-
bination methods.
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Figure 8: Weights from univariate and bivariate optimal pools, one-year-ahead.
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Figure 9: Weights from univariate and bivariate optimal pools including SPF, one-year-ahead.
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Appendix

A Data Set

Table A.1: Data set

Variable Small Model Medium Model Transformation

GDP, real x x log-differences
Private consumption, real x log-differences
Total investment, real x log-differences
Exports XA, real x log-differences
Imports XE, real x log-differences
GDP deflator x log-differences
Total employment x log-differences
Short-term interest rate x x levels
Long-term interest rate x levels
Lending rate x levels
Compensation per employee x log-differences
Headline HICP x x log-differences
HICP excluding energy and food x log-differences
ESI x levels
Foreign demand x log-differences
Price of oil in EUR x log-differences
Nominal effective exchange rate x levels
US short-term interest rate x levels
US long-term interest rate x levels

Note: For the model specification “in levels”, we use the “log-levels” instead of the “log-
differences” transformation.
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B Point performance of forecast combinations and SPF

Table B.1: Relative RMSFE

Optimal
Pool

SPF Optimal
Pool
with
SPF

Mean-
tilted
ex-ante

Mean-
tilted
ex-post

Mean
and
variance-
tilted
ex-ante

Mean
and
variance-
tilted
ex-post

Univariate
GDP 4-q 1.069 0.972 0.999 0.989 0.955 0.953 0.959
GDP 8-q 1.281 1.044 1.008 1.092 1.028 1.050 1.046
HICP 4-q 0.689 0.964 1.013 0.975 0.998 0.973 0.976
HICP 8-q 0.823 0.894 1.001 0.898 0.919 0.906 0.904

Bivariate
GDP 4-q 0.944 - 1.167 0.990 0.942 0.959 0.959
GDP 8-q 0.996 - 1.008 1.068 1.023 1.050 1.045
HICP 4-q 1.069 - 1.152 0.974 1.008 0.972 0.975
HICP 8-q 1.004 - 1.001 0.908 0.912 0.899 0.902

Note: The relative RMSFE is calculated as the ratio between each model RMFSEs and
those of the univariate optimal pool (in absolute values in the first column of the upper
panel). A number smaller than one indicates a preference for the combination over the
optimal pool.

C Results of two-year-ahead forecasts
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Figure C.1: Densities of two-year-ahead forecasts from combinations and SPF, real GDP growth.
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Figure C.2: PITs of two-year-ahead forecasts from combinations and SPF, real GDP growth.
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Figure C.3: Densities of two-year-ahead forecasts from combinations and SPF, HICP inflation.
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Figure C.4: PITs of two-year-ahead forecasts from combinations and SPF, HICP inflation.
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Figure C.5: Cumulative relative scores of two-year-ahead forecasts, real GDP growth (left) and
HICP inflation (right).
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Figure C.6: Unconditional and conditional PITs for two-year-ahead real GDP growth, for two
combination methods.
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Figure C.7: Unconditional and conditional PITs for two-year-ahead HICP inflation, for two
combination methods.
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Figure C.8: Weights from univariate and bivariate optimal pools, two-year-ahead.
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Figure C.9: Weights from univariate and bivariate optimal pools including SPF, two-year-ahead.
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D Performance of individual models included in the pool

In this section, we present results for the individual BVAR models described in Section 2 of the

main part. The first two tables show accuracy scores (RMSFE, CRPS and LPS) of individual

models with respect to optimal pool and equal weights, respectively. The successive Figures

D.1-D.8 show forecast distributions and PITs of each individual models for real GDP growth

and HICP inflation forecasts at one- and two-year horizons.
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Figure D.1: Densities of one-year-ahead forecasts from individual models, real GDP growth.
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Figure D.2: PITs of one-year-ahead forecasts from individual models, real GDP growth.
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Figure D.3: Densities of one-year-ahead forecasts from individual models, HICP inflation.
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Figure D.4: PITs of one-year-ahead forecasts from individual models, HICP inflation.
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Figure D.5: Densities of two-year-ahead forecasts from individual models, real GDP growth.
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Figure D.6: PITs of two-year-ahead forecasts from individual models, real GDP growth.
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Figure D.7: Densities of two-year-ahead forecasts from individual models, HICP inflation.
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Figure D.8: PITs of two-year-ahead forecasts from individual models, HICP inflation.
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