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Abstract 

The analysis of future energy systems with increasing shares of renewable energy production 

poses various challenges to models used in the field of energy system analysis. Aggregation is 

one solution to reduce the computation time of large optimization problems, especially for 

optimization models with endogenous capacity expansion. Since the economic viability of 

renewable investments is not directly driven by physical and technical characteristics but rather 

by the corresponding revenue and cost streams, we propose a novel aggregation method. The 

aggregation covers both the spatial and the technological dimension of wind investment choices, 

i.e. the siting as well as the turbine choice. Four value components are defined, related e.g. to 

the total yield or the site-specific infeed profile of investment choices. A clustering approach is 

applied to these value components to identify groups of investment choices that can be 

aggregated without excessive loss of accuracy. The approach is applied in a case study for the 

German electricity system and the influence of the different value components on the combined 

technological and spatial aggregation is analyzed. 
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1 Introduction 

The increasing share of renewable energy production in future energy systems poses multiple 

challenges to energy modelers. Among other things, complexity and model size lead to increasing 

computation times, especially for optimization models with endogenous capacity expansion. 

Reducing the computation time by aggregation requires a comprehensive understanding of 

factors that affect the resulting optimal expansion plan. As optimizing energy system models are 

frequently used to inform policy makers or even help shaping policies, it is equally important to 

get an improved understanding of the factors that drive differences between model results and 

reality.  

Multiple propositions have already been made to reduce model complexity or helping to solve 

large-scale models. Examples of the latter are decompositions methods like Benders 

decomposition (cf. Bloom, 1983) and Dantzig-Wolfe (cf. e.g. Sowa et al., 2016) decomposition. 

In the realm of model complexity reduction, timeseries aggregation has been particularly 

investigated, cf. the recent review by Hoffmann et al. (2020). Much less emphasis has been 

devoted to investigating the impact of spatial and technological aggregation.  

One reason is certainly that spatial aggregation has a two-dimensional, inhomogeneous 

underlying as starting point, with contours of regions and countries frequently shaped by natural 

phenomena like rivers or shorelines. And for technologies, focusing on one representative 

technology has seemed adequate as long as mostly controllable power generation units like, coal, 

nuclear or gas units were built, where economies of scale in cost and heat rate were present yet 

at the same time plant size was limited by engineering constraints. With increasing focus on 

renewable investment both the location of the generation units and their technology 

characteristics become more important as they shape the infeed characteristics and thus the 

economic viability of investments. Technology characteristics are particularly diverse for wind 

energy, where hub height and the dimensioning of the electric generator relative to the rotor size 

have an impact on overall yield and profile of infeed (cf. e.g. Hirth and Müller, 2016, Bucksteeg, 

2019 and Klie and Madlener, 2020). 

At the same time the economic viability of renewable investments is not directly driven by 

physical and technical characteristics but rather by the corresponding revenue and cost streams. 

Therefore, the paper at hand proposes a novel method for aggregating both the spatial and the 

technological dimension of wind investment choices by considering value components of so-

called investment choices. By investment choices we designate the combinations of sites and 

turbine types that are selected by investors, e.g. a so-called low-speed turbine in a mountainous 

region far from the coast or a low hub-height standard turbine on a coastal site. 
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We therefore develop subsequently an analytical approach to distinguish various value 

components, related e.g. to the total yield or the site-specific infeed profile of an investment 

choice. We then identify different model settings that allow us to assess numerically these value 

components. In turn, a clustering approach may be applied to these value components to identify 

groups of investment choices that can be aggregated without excessive loss of accuracy. 

The remainder of the paper is structured as follows: section 2 presents an overview on the relevant 

literature, whereas section 3 is devoted to the developed methodology. The application is then 

presented in section 4 and conclusions are presented in section 5. 
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2 General considerations and relevant literature 

The size and complexity of electricity market models constantly increases, mainly driven by a 

rising share of renewables, leading to the challenge of computational tractability.  

Broadly speaking this challenge is driven by two factors: On the one hand problem complexity 

through e.g. coupling of sectors and on the other hand problem details such as the necessarily 

high resolution of renewable data leading to the challenge of an increasing problem size and 

long computing times (cf. Pfenninger, 2017). Possible solutions to model complexity are inter 

alia reformulation, parallelization or simplification (e.g. ignoring restrictions such as reserve 

provision). Large problem sizes due to the amount of input data are most commonly addressed 

by decomposition and aggregation. Thereby three aspects strongly influence the problem size on 

the level of input data: physical resp. technological detail as well as spatial and temporal 

resolution.  

Since location and technology specifications are crucial for the infeed profiles of renewable 

energy sources (RES), the focus is subsequently on the reduction of two problem dimensions: 

spatial resolution and technological detail. Increasing shares of RES in energy systems redirect 

the focus away from power yield to the economic value and system friendliness of the renewable 

infeed. Hence, several studies recently analyzed the influence of wind turbine type and location 

on energy systems, respectively the changes in system cost and value of generation technologies. 

Hirth and Müller (2016) analyze the effect of system friendly wind turbines on the market value 

of wind power and find that system friendly wind turbines (taller towers, smaller specific power) 

yield a higher annual average capacity factor and smoother output, which increase the long-term 

market value of wind power. Furthermore, Bucksteeg (2019) focusses on the effects of wind 

power diversification to support generation adequacy and Klie and Madlener (2020) contrast the 

influence of spatial diversification and design of wind turbines. Latter conclude that the cost 

savings due to turbine diversification are less important compared to the effect of system friendly 

turbines, a finding which aligns with some of our results.  

A broad range of aggregation methods have been developed over the last two decades, 

nevertheless comparative analysis of these various methods in the field of electricity system 

models are still rare. Inter alia the former structure of analyzed energy systems and ongoing 

developments and changes of the technological and political framework have induced a focus 

on methods of temporal aggregation. Measured by the number of relevant publications, 

apparently, time series aggregation is the best analyzed field of aggregation compared to spatial 

and technological aggregation (Kotzur et al., 2018; Teichgraeber and Brandt, 2019). Hoffmann 

et al. (2020) present a review on the broad field of time series aggregation methods for energy 
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system models by categorizing applied aggregation methods in 130 publications between 1999 

and 2019. 

Furthermore, the lack of comparable work regarding spatial and technological aggregation may 

be explained as follows. In terms of technology there was no need to intensively consider 

renewable energy sources for decades, because of their relatively small importance given the 

small size of single units and their low number. But due to the increasing share of renewables in 

electricity systems, the need for aggregation e.g. of wind turbines to wind farms gained attention.  

Zhang et al. (2013) consider spatio-temporal correlations of wind power to develop a cluster 

methodology for wind turbines and Gómez-Muñoz and Porta-Gándara (2002) identify 

representative daily wind patterns based on a two-step clustering approach. Slootweg and Kling 

(2003) as well as Ali et al. (2013) focus on the influence of technical detail on aggregation.  

The analysis of spatial aggregation in the field of optimization-based electricity system models 

considering renewable power production seems to be even rarer than analysis regarding 

technological aggregation. But for instance Frew et al. (2016) analyzes cost benefits of 

geographical aggregation as flexibility mechanism to integrate highly volatile renewables into the 

United States power grid. 

In terms of methodology, clustering is the most common instrument for temporal and spatial 

aggregation within optimization problems by far (cf. e.g. Aghabozorgi et al., 2015; Gómez-

Muñoz and Porta-Gándara, 2002; Pineda and Morales, 2018; Saxena et al., 2017; Zatti et al., 

2019; Zhang et al., 2013). The algorithms which are used most frequently are k-means (cf. e.g. 

Adhau et al., 2014; Bahl et al., 2017; Fazlollahi et al., 2014; Green et al., 2014), k-medoids (cf. 

e.g. Domínguez-Muñoz et al., 2011; Schütz et al., 2017; Stadler et al., 2014) and hierarchical 

clustering (cf. e.g. Nahmmacher et al., 2016; Pfenninger, 2017). In the field of technological 

aggregation more individual and less clustering based approaches are considered. This may be 

due to the necessary consideration of both generation characteristics and cost parameters to fully 

incorporate the technology design for good aggregation. The idea to base a clustering on 

economic values has already been applied for spatial aggregation in the context of bidding zone 

delimitation. Locational marginal prices (LMPs) are thereby utilized to identify and aggregate 

similar price zones (cf. Breuer and Moser, 2014; Burstedde, 2012; Felling and Weber, 2018 ).  

Consequently, the paper at hand proposes a novel method for aggregating both the spatial and 

the technological dimension of wind investment choices. These are defined as possible 

combinations of sites (locations) and turbine types (technologies, e.g. strong vs. low wind 

turbines). Thereby it is proposed to base the aggregation on a consideration of multiple value 

components. The value of an investment choice is therefore decomposed additively into: 1. the 

yield value component (driven by the site-specific full load hours/capacity factor), 2. the resource 
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related value component (driven by the general market value factor of wind), 3. the technology 

specific value component (driven by the selected turbine type), 4. the spatial heterogeneity value 

component (driven by the wind profile of the selected site) and 5. the grid component 

(considering the network load and resulting nodal price differences). By grounding aggregation 

on these factors, we aim to reduce errors of first (selection of wrong technologies) and second 

(non-selection of right technologies) kind within subsequent applications within electricity system 

optimization1.  

Summarizing, the contribution of this work is threefold: Firstly, it helps closing the gap in spatial 

and technological aggregation. Secondly, the approach is complementing the standard methods 

of aggregation based on time-series clustering with an approach also based on economic 

parameters. Thirdly, it supplements recent work in the analysis of geographical and technological 

diversification of wind turbines within electricity system optimization. 

                                                
1 The minimization of these errors is in line with solving a meta-problem as discussed in Pöstges and Weber 
(2019). Since this meta-problem is unsolvable, the approach at hand approximates the solution by using 
multiple solvable sub-problems. 
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3 Methodology 

In section 3.1, the general idea and an overview of the algorithm to identify suitable aggregation 

of investment choices are presented. In the following section 3.2, the analytics and an illustrative 

example of the decomposition of the value of an investment choice are described and 

subsequently the scenario definitions and the clustering algorithm are introduced in section 3.3 

respectively 3.4. 

3.1 General approach 

As mentioned above, the starting point of the presented approach is the net present value of an 

investment choice which is a key parameter in the decision-making, both for individual investors 

and within an electricity system model. It is defined as the net present value, i.e. the sum of 

discounted cash flows which include the contribution margins over the operation period minus 

the (upfront) investment cost (cf. Eq. (1)). 

𝑁𝑃𝑉𝑎,𝑖 = ∑ 𝑒−𝑟𝑡𝑌𝑡,𝑎,𝑖𝑝𝑡 − 𝑐𝑖𝐾𝑎,𝑖

𝑡

 (1) 

Single indicators directly related to site or technology, e.g. full load hours or investment costs, 

are not sufficient to capture key drivers of decision making or to identify general principles of 

aggregation. By contrast, the defined value of an investment choice reflects multiple spatial and 

technological factors. The value is decomposed further into several value components in order 

to include value drivers that are potentially important, yet with an importance that varies 

depending on the actual decision context. This allows to analyze their individual choice-

dependent contribution and to develop an aggregation that provides suitable results in different 

decision contexts. In order to obtain such an aggregation, we propose an algorithm that includes 

five steps as shown in Figure 1.  
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Figure 1: Overview of the algorithm  

In a first step, the investment choices as objects for the clustering algorithm are defined. 

Therefore, spatial and technological aspects are considered simultaneously by defining the 

investment choices as combinations of site and (turbine) technology characteristics. Furthermore, 

distinct scenarios and hence relevant parameters such as prices and installed capacities are 

selected (cf. step 2, section 3.3) to compute the value components (cf. step 3). These value 

components are introduced in section 3.2 as they form the conceptual core of the methodology. 

The first three steps lay the foundations for the clustering carried out in step four. The clustering 

is split into the two sub-steps of predefining the starting point for a k-means clustering and 

computing the clusters itself (cf. section 3.4). This separation is useful because of the different 

suitability of cluster algorithms to define an appropriate number of clusters and to group the data.  

3.2 Decomposition of the value of an investment choice 

The value of an investment choice defined as the sum of all discounted cash flows (cf. Eq. (1)), 

may be decomposed additively into:  

1. the yield value component which is driven by the site-specific full load hours,  

2. the resource related value component which is driven by the general market value 

factor of the renewable technology,  

3. the technology specific value component, driven by the selected turbine type,  

4. the site-specific value component, driven by the infeed profile of the selected site and 

5. for certain scenarios the grid value component, reflecting the network congestions and 

resulting nodal price differences (cf. Appendix A). 

In section 3.2.1, the value components are derived analytically and an illustrative example is 

presented in section 3.2.2. 

Step 4
Clustering of value components

Step 1
Definition of investment choices

Step 2
Choice of adequate scenarios

Step 3
Calculation of value components
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3.2.1 Analytics  

Since it is assumed that investment choices may be evaluated based on one representative year 

(or possibly several alternative years), the value metrics shown in Eq. (1) is slightly modified. We 

focus on the annualized (net present) value 𝐴𝑉 based on the revenues of all timesteps 𝑡 within 

one year, which allows us to drop the discounting factor 𝑒−𝑟𝑡. The corresponding capital costs 

are obtained by multiplying the investment cost with the annuity factor 𝑎 (𝑐𝑖
𝑎𝑛𝑛 = 𝑐𝑖𝑎) in Eq. (2). 

𝐴𝑉𝑎,𝑖 = ∑ 𝑌𝑡,𝑎,𝑖𝑝𝑡

𝑡

− 𝑐𝑖
𝑎𝑛𝑛𝐾𝑎,𝑖 (2) 

To enable the mathematical decomposition, an expanded representation of the production 𝑌𝑡,𝑎,𝑖 

is introduced in Eq. (3).  

𝑌𝑡,𝑎,𝑖 = 𝜃𝑡,𝑎,𝑖𝐾𝑎,𝑖 (3) 

The production is replaced with the capacity 𝐾𝑎,𝑖 times the individual capacity factor 𝜃𝑡,𝑎,𝑖 which 

is defined as the fraction of installed capacity available for production depending on time, 

location and unit, multiplied with the capacity of technology type 𝑖 at site 𝑎. The time dependent 

capacity factors represent the time series or infeed profiles of e.g. a wind turbine. In Table 1 the 

averaged2 capacity factors utilized in the further steps of the decomposition (right hand part of 

eq. (10) and below) are defined mathematically and briefly explained.  

Table 1: Definition and interpretation of capacity factors 

Definition Description 

𝜃𝑡,𝑎,𝑖 (4) 
Individual capacity factor  
(per time step, site and technology) 

�̅�𝑡,𝑎,⋅ =
∑ (𝜃𝑡,𝑎,𝑖 ∗ 𝐾𝑎,𝑖)𝑖

∑ (𝐾𝑎,𝑖)𝑖

 (5) 
Average portfolio capacity factor 
(per time step and site, averaged over all 
technologies) 

�̅�⋅,𝑎,⋅ =
∑ �̅�𝑡,𝑎,⋅𝑡

𝑁𝑇
=

∑ (𝜃𝑡,𝑎,𝑖 ∗ 𝐾𝑎,𝑖)𝑡,𝑖

𝑁𝑇 ∑ (𝐾𝑎,𝑖)𝑖

 (6) 
Average time and portfolio capacity factor  
(per site, averaged over time and all 
technologies) 

�̅�𝑡,⋅,⋅ =
∑ (𝜃𝑡,𝑎,𝑖 ∗ 𝐾𝑎,𝑖)𝑎,𝑖

∑ (𝐾𝑎,𝑖)𝑎,𝑖

 (7) 
Average site and portfolio capacity factor  
(per time step, averaged over all sites and 
technologies) 

                                                
2 The capacity factors presented in Table 1 are calculated as weighted arithmetic mean to consider the 
different relevance of the infeed profiles. The capacity weighting yet necessitates a backup rule to cope 

with sites where all capacities are zero. We hereby use the average capacity shares �̅�⋅,𝑖 =
∑ 𝐾𝑎,𝑖𝑎

∑ 𝐾𝑎,𝑖′𝑎,𝑖′
 in the 

overall capacity mix. These capacity shares �̅�⋅,𝑖 are then used in Eqs. (4) and (5) whenever the sum of 

capacities ∑ (𝐾𝑎,𝑖)𝑖  at one site 𝑎 is equal to zero.  
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�̅�⋅,⋅,⋅ =
∑ �̅�𝑡,⋅,⋅𝑡

𝑁𝑇
=

∑ (𝜃𝑡,𝑎,𝑖 ∗ 𝐾𝑎,𝑖)𝑡,𝑎,𝑖

𝑁𝑇 ∑ (𝐾𝑎,𝑖)𝑎,𝑖

 (8) 
Overall capacity factor  
(averaged over time as well as all sites and 
technologies) 

𝑐⋅
𝑎𝑛𝑛 =

∑ (𝑐𝑖
𝑎𝑛𝑛𝐾𝑎,𝑖)𝑎,𝑖

∑ (𝐾𝑎,𝑖)𝑎,𝑖

 (9) 
Average cost of the portfolio3 cost 
component averaged over the whole 
portfolio.  

 

In the first step of a number of mathematical reformulations, the right-hand side expression is 

extended by the average time and portfolio capacity factor �̅�⋅,𝑎,⋅ averaged over time and 

technologies (cf. Eq. (10)) to allow the analysis of deviations between the individual capacity 

factor and its mean. This step corresponds to adding and subtracting simultaneously the term 

�̅�⋅,𝑎,⋅𝐾𝑎,𝑖 which does not change the result. A similar approach is used several times in the 

following. 

𝑌𝑡,𝑎,𝑖 = �̅�⋅,𝑎,⋅𝐾𝑎,𝑖 + (𝜃𝑡,𝑎,𝑖 − �̅�⋅,𝑎,⋅)𝐾𝑎,𝑖 (10) 

After expanding Eq. (10) further by inserting the two mathematically neutral terms 
�̅�𝑡,⋅,⋅

�̅�⋅,⋅,⋅
�̅�⋅,𝑎,⋅ −

�̅�𝑡,⋅,⋅

�̅�⋅,⋅,⋅
�̅�⋅,𝑎,⋅ and 

�̅�𝑡,𝑎,⋅

�̅�⋅,𝑎,⋅
�̅�⋅,𝑎,⋅ −

�̅�𝑡,𝑎,⋅

�̅�⋅,𝑎,⋅
�̅�⋅,𝑎,⋅, some further reformulations lead to the expression given in Eq. 

(11).  

𝑌𝑡,𝑎,𝑖 = (�̅�⋅,𝑎,⋅ +
�̅�⋅,𝑎,⋅

�̅�⋅,⋅,⋅

(�̅�𝑡,⋅,⋅ − �̅�⋅,⋅,⋅) + �̅�⋅,𝑎,⋅ (
�̅�𝑡,𝑎,⋅

�̅�⋅,𝑎,⋅

−
�̅�𝑡,⋅,⋅

�̅�⋅,⋅,⋅

) + (𝜃𝑡,𝑎,𝑖 − �̅�𝑡,𝑎,⋅)) 𝐾𝑎,𝑖 (11) 

Insertion of Eq. (11) in Eq. (2) and decomposition of the cost term similarly to Eq. (10) along with 

rearranging leads to the following expression for the annualized value (subsequently also denoted 

as profit): 

𝐴𝑉𝑎,𝑖 = (∑ �̅�⋅,𝑎,⋅𝑝𝑡

𝑡

− 𝑐⋅ + ∑
�̅�⋅,𝑎,⋅

�̅�⋅,⋅,⋅

(�̅�𝑡,⋅,⋅ − �̅�⋅,⋅,⋅)𝑝𝑡

𝑡

+ ∑ �̅�⋅,𝑎,⋅ (
𝜃𝑡,𝑎,⋅

�̅�⋅,𝑎,⋅

−
�̅�𝑡,⋅,⋅

�̅�⋅,⋅,⋅

) 𝑝𝑡 + ∑(𝜃𝑡,𝑎,𝑖 − �̅�𝑡,𝑎,⋅)𝑝𝑡

𝑡𝑡

− (𝑐𝑖
𝑎𝑛𝑛 − 𝑐⋅

𝑎𝑛𝑛)) 𝐾𝑎,𝑖 

(12) 

Based on Eq. (12), four different value components may be identified. These are defined as 

capacity specific values and labeled yield, resource, site and technology component. In the 

following, the different value components are characterized for the case of zonal price time series 

                                                
3 Note that we assume the same technology specific cost for all sites. Notably if offshore wind sites would 
be included in the analysis, a differentiation between sites would be necessary.  
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(cf. Eq. (13) to (17)). To consider scenarios with nodal prices and accordingly the influence of 

e.g. grid congestion on aggregation, an extended version of Eq. (12) is presented in Appendix A. 

Related adjustments and extensions of the value components are discussed accordingly.  

The yield component given in Eq. (13) corresponds to the average value of all technologies 

installed at one site 𝑎 and its interpretation is rather straightforward. It is driven by the time and 

the average time and portfolio capacity factor �̅�⋅,𝑎,⋅ shown in Table 1 and is thus directly related 

to the renewable infeed i.e. the full load hours 𝐹𝐿𝐻 = �̅�⋅,𝑎,⋅𝑁𝑇Δ𝑡 at each site (with 𝑁𝑇Δ𝑡 the length 

of the representative period).  

𝑉𝐶𝑎,𝑖
𝑦𝑖𝑒𝑙𝑑

= ∑ �̅�⋅,𝑎,⋅𝑝𝑡

𝑡

− 𝑐⋅
𝑎𝑛𝑛 = �̅�⋅,𝑎,⋅ ⋅ 𝑁𝑇Δ𝑡 ⋅ 𝑝⋅ − 𝑐⋅

𝑎𝑛𝑛  (13) 

The yield component is calculated as difference between the revenue at site 𝑎 at average prices 

𝑝⋅ and the average (site-independent) cost 𝑐⋅ of the portfolio. Hence, there is no differentiation in 

the yield component between technologies at one site. The yield component only differs for 

investment choices at different locations, i.e. with different infeed profiles. It contributes 

positively to the value of an investment choice as long as the revenue within the representative 

period of the average portfolio at one site is greater than the average cost of the portfolio.  

The resource component as given in Eq. (14) is driven by the market value factor 𝑚 of the 

renewable technology (cf. Hirth (2013)) and thus indicates the self-destructive effect of rising 

renewable shares in electricity markets. This effect results from negative correlations between 

electricity prices 𝑝𝑡 and renewable infeed (represented by the average site and portfolio capacity 

factor �̅�𝑡,⋅,⋅), as indicated by the second equality in Eq. (14).  

𝑉𝐶𝑎,𝑖
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 = ∑

�̅�⋅,𝑎,⋅

�̅�⋅,⋅,⋅

(�̅�𝑡,⋅,⋅ − �̅�⋅,⋅,⋅)𝑝𝑡

𝑡

=
�̅�⋅,𝑎,⋅

�̅�⋅,⋅,⋅

∑(�̅�𝑡,⋅,⋅ − �̅�⋅,⋅,⋅)(𝑝𝑡 − 𝑝⋅)

𝑡

= �̅�⋅,𝑎,⋅ ∑ (
�̅�𝑡,⋅,⋅

�̅�⋅,⋅,⋅

− 1) 𝑝𝑡

𝑡

 = �̅�⋅,𝑎,⋅(𝑚 − 1) ⋅ 𝑁𝑇Δ𝑡 ⋅ 𝑝⋅ 

(14) 

The site component describes the influence of local time-specific infeed profiles on the value of 

an investment choice. As shown in Eq. (15) it is driven by the difference of the capacity factor 

weighted over technologies and the capacity factor weighted over sites and technologies. 

𝑉𝐶𝑎,𝑖
𝑠𝑖𝑡𝑒 = ∑ �̅�⋅,𝑎,⋅ (

𝜃𝑡,𝑎,⋅

�̅�⋅,𝑎,⋅

−
�̅�𝑡,⋅,⋅

�̅�⋅,⋅,⋅

) 𝑝𝑡

𝑡

= �̅�⋅,𝑎,⋅ ∑ (
𝜃𝑡,𝑎,⋅ − �̅�⋅,𝑎,⋅

�̅�⋅,𝑎,⋅

−
�̅�𝑡,⋅,⋅ − �̅�⋅,⋅,⋅

�̅�⋅,⋅,⋅

) (𝑝𝑡 − 𝑝⋅)

𝑡

 (15) 

As indicated by the second equality in Eq. (15), the site-specific component is positive, if the 

(relative) site-specific capacity factor is more positively (or rather: less negatively) correlated with 

the price variations than the average capacity factor.   
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The technology component as shown in Eq. (16) finally indicates the impact of the technology 

type 𝑖 on the value of an investment choice. It is driven by the difference between the technology-

specific and the average portfolio capacity factor per site and the cost deviation from the average 

portfolio cost. 

𝑉𝐶𝑎,𝑖
𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦

= ∑(𝜃𝑡,𝑎,𝑖 − �̅�𝑡,𝑎,⋅)𝑝𝑡

𝑡

− (𝑐𝑖
𝑎𝑛𝑛 − 𝑐⋅

𝑎𝑛𝑛) (16) 

A technology with relatively high capacity factors (compared to the average) is able to 

compensate relatively high costs and hence the corresponding technology component is positive. 

Conversely a technology with relatively low capacity factors will show a positive technology 

component if low capital expenditures overcompensate for the losses in revenues. The first case 

is yet limited in case there are many hours with low or negative prices caused by high renewable 

infeed – then these hours cannot yield a positive contribution to the technology component. 

Subsequently, we merge the yield and the resource component in view of a more compact 

presentation. This leads to the net-yield component corresponding to the sum of yield and 

resource component as shown in Eq. (17). Note that each component is considered 

independently for the clustering even though they are not presented individually in the results.  

𝑉𝐶𝑎,𝑖
𝑛𝑒𝑡 𝑦𝑖𝑒𝑙𝑑

= 𝑉𝐶𝑎,𝑖
𝑦𝑖𝑒𝑙𝑑

+ 𝑉𝐶𝑎,𝑖
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 = ∑

�̅�𝑡,⋅,⋅

�̅�⋅,⋅,⋅

�̅�⋅,𝑎,⋅𝑝𝑡

𝑡

− 𝑐⋅
𝑎𝑛𝑛 (17) 

3.2.2 Illustrative example 

Figure 2 shows the value of four exemplary investment choices based on the Scenario Future 

discussed in detail in chapter 4. These investment choices correspond to two different wind 

turbine types placed in one northern site (Nuts3 region DEF02) and one southern site (Nuts3 

region DE132) in Germany. One turbine type for low wind speed (type 2) and one for high wind 

speed (type 8) are chosen to illustrate the varying decomposition of the profit.  
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Figure 2: Decomposed value of four investment choices of the Scenario Future (cf. section 4) 

By definition, the net-yield component and the site component of different technologies at the 

same site are equal (cf. Figure 2 as well as Eqs. (15) and (17)). The values yet significantly differ 

between locations. The higher value of the net-yield component in the north reflects the major 

difference in full load hours between north and south Germany. The site component contributes 

positively in the north and only slightly negatively at the southern site in this example. The 

technology component varies between all investment choices. As stated in Eq. (16), there is one 

main aspect to keep in mind for this component. The technology component can only be positive 

if the summed difference between the technology-specific and the portfolio-average capacity 

factor weighted by the electricity price is larger than the corresponding difference in investment 

cost.  

3.3 Scenario definition 

The selection of representative scenarios is crucial for the robustness of the clustering results and 

hence the selected scenarios should be sufficiently contrasted. Put differently: the more 

fundamental the differences between the scenarios, the less sensitive are the resulting conclusions 

to changes in input parameters and consequently the identified aggregated investment choices 

may be applied to quite different energy systems and optimization models.  

As presented in section 3.2.1, capacity factors, installed capacities, prices and investment costs 

are the key parameters necessary to calculate the value components. The capacity factors are 

based on technology data like e.g. hub height, rated power and rotor diameter of a wind turbine 
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and weather data like wind velocities. The latter are dependent on the selected representative 

period, whereas installed capacities and prices are scenario-dependent4.  

3.4 Clustering algorithm and parameter settings 

A large number of cluster algorithms has been developed over the last decades and may be 

selected to perform the intended aggregation of investment choices. A detailed classification of 

clustering algorithms and a summary of the underlying theory is provided e.g. by Gan et al. (2007) 

whereas Aghabozorgi et al. (2015) present a review of clustering approaches for time-series. In 

the following a short overview and justification of the applied algorithms is given.  

The clustering of investment choices can be carried out by a relatively simple partitioning 

algorithm and does not require any special enhancement. The approach at hand utilizes the k-

means algorithm which currently is one of the mostly used and best bench-marked clustering 

algorithms (cf. Saxena et al. (2017)). Figure 3 (right) shows the flow chart of the utilized k-means 

algorithm. The investment choices (IC) represent the objects and the value components represent 

the attributes for the clustering. The centroids are calculated as average of the data points within 

each cluster. Furthermore, the data points are assigned to clusters by minimizing the squared-

Euclidean distance between the objects (all IC) and the centroids (representative IC) of each 

cluster. Despite the advantages of k-means there are also several drawbacks, e.g. the sensitivity 

to outliers and noise as well as the importance of the initialization i.e. selecting good initial 

clusters (cf. Gan et al., 2007). The number of clusters into which the investment choices will be 

assigned can be set randomly by the user or by applying a heuristic and the initial clusters (seeds) 

can be set randomly or systematically as well.  

                                                
4 Note that the technology data and the geographical coverage and resolution must not vary between the 
scenarios to avoid diverging investment choices between the scenarios. In that case the clustering will not 
provide consistent results. Also the meteorological year(s) used as representative period should be the same 
for all scenarios to avoid bias by random volatilities in weather data.  
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Figure 3: Flow diagram of hierarchical (left) and k-means (right) cluster algorithms 

To counter the drawbacks of k-means, a suitable cluster number and seeds are obtained by 

applying an agglomerative hierarchical cluster algorithm (cf. flow chart in Figure 3 left) as 

preprocessing step (cf. Bacher et al., 2010; Fisher, 1996; Milligan, 1980). Agglomerative 

hierarchical clustering means that starting with every single object (i.e. IC) representing one 

separate cluster, the number of clusters is reduced iteratively by merging two clusters into a new 

one. The clustering ends when all objects are merged within one cluster or when some other 

abortion criterion is satisfied. The algorithm applied utilizes the change in within-cluster sum of 

squared Euclidean distances for each merging step as this measure assesses the quality of the 

newly build cluster formation pretty well.  
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4 Application – The case of wind energy in Germany 

In this chapter, the proposed approach is applied to a German case study. Germany encompasses 

quite diverse geographical conditions including coastal regions as well as inland regions with 

mountain sites and forest areas. The application is focused on wind power – as the analysis of 

wind energy expansion is expected to be the most complex case of renewable energy. Moreover, 

less portfolio effects are expected for e.g. photovoltaic since its technological diversity is not as 

high as for wind – at least for any given site (i.e. large-scale ground-mounted and roof-top 

modules are placed in different sites). Anyhow, the algorithm can be applied to other spatial 

resolutions and technologies. The investment choices based on German data are defined in 

section 4.1 and three distinct scenarios are developed in section 4.2. In section 4.3 respectively 

4.4, the value components are calculated and clustered.  

4.1 Step 1: Define investment choices as objects for the clustering 

algorithm 

Per definition the number of investment choices (combination of site and technology type) is 

directly related to the spatial resolution and level of technological detail considered. Furthermore, 

the set of sites and technology types defines the size of the clustering problem. In the following, 

the selection of sites and wind turbine types is set out. 

A rather high spatial resolution is selected by distinguishing the 402 German NUTS3 regions (cf. 

EU (2013)5). These correspond to counties (“Landkreise”) and non-county cities (“kreisfreie 

Städte”) and for these mostly individual wind velocities6 are available. The sites are adequately 

defined by their coordinates and related wind velocities.  

Eight different types of wind turbines are selected to represent technology choices available in 

Germany. Table 2 presents the utilized wind turbines and lists the parameters required for further 

calculations. The selection of wind turbines is thereby two-fold: On the one hand, a k-medoids 

cluster analysis of the existing German wind power plant fleet in 2017 is conducted. The wind 

turbines 1 to 5 and 8 are representatives of the latter grouping. On the other hand, technological 

developments are considered by the selection of two additional turbines types, named turbine 6 

and 7. Both turbines are inspired by combined technology projections of Deutsche Windguard 

(2015), Bundesministerium für Wirtschaft und Energie (2014) and own assumptions. The 

                                                
5 For reasons of internal model compatibility, the NUTS3 edition 2013 instead of the most recent edition 
was utilized in our analysis. Since the differences only involve four districts and minor boundary shifts, 
they do not affect our analysis. 
6 The wind velocities are publicly available and downloaded from the ftp server of the German 
Meteorological Service DWD (ftp://opendata.dwd.de/climate_environment/CDC/). 
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consideration of technological development and its representation within the investment choices 

is crucial when optimizing the capacity expansion of wind power plants in any future scenario.  

Table 2: Technology data of the eight representative onshore wind turbines 

Turbine Type Hub height 
[m] 

Rotor Diameter 
[m] 

Power 
[kW] 

Type7 Capex 
[€/kW] 

1 72 53 800 High speed 1.047 

2 139 121 2.530 Low speed 1.571 

3 109 92 2.350 High speed 1.155 

4 142 114 3.170 Low speed 1.290 

5 110 109 3.000 Low speed 1.169 

6 150 140 4.000 Low speed 1.573 

7 120 124 4.500 High speed 1.363 

8 120 140 6.000 High speed 1.483 

 

Hub height, rotor diameter, power and wind velocities are used to calculate the infeed 

characteristics of each turbine at every site. The investment costs enter the yield and the 

technology component as defined in section 3.2.1  

Since the literature does not provide cost data for turbine 1 to 8, the costs presented in Table 2 

have been derived based on Fingersh et al. (2006). The average currency exchange rate of 2006 

(1.26$/€ cf. Bundesbank, 2020) enters the currency conversion and an adjustment factor of 1.2 

is applied to fit the results to comparable turbine costs in the literature (cf. Bundesministerium für 

Wirtschaft und Energie, 2014; Deutsche Windguard, 2015). 

Since the geographical setting is similar for all scenarios, only the capacities need to be adapted. 

A simple clustering algorithm with predefined centroids is utilized to allocate the wind capacities 

of each scenario to the eight representative technology types per site. In total 402 sites and 8 

technology types lead to a total of 3216 investment choices i.e. cluster objects. 

 

 

                                                
7 Low- and high-speed wind turbines are differentiated by their specific power (power per swept area), 
whereas turbines with a specific power of more than 0.35 kW/m² are defined as high speed turbines.  
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4.2 Step 2: Choice of adequate scenarios 

Three distinct scenarios are chosen to calculate the value components and as discussed in section 

3.3, each scenario is primarily defined by electricity prices and installed capacities.  

Scenario 2017  → Actual capacities and prices of 2017  

Scenario Future  → Optimized capacities and prices for a future year 

Scenario Nodal  → Capacities (2017) scaled and approximated prices for 2020 

Scenario 2017 represents a real data scenario and can be interpreted as “status quo scenario”. 

The capacities match the size of the real wind power installations in Germany 2017 and the 

prices are set to the historical day-ahead spot prices.  

The prices and capacities for the Scenario Future are the result of a simplified optimizing 

electricity market model. The problem is designed as greenfield approach with one conventional 

backup technology and three renewable sources, namely PV, wind offshore and wind onshore. 

It is constructed as a low-emission scenario with a CO2 budget of 65 Mio. tons per year for 

Germany which leads to a renewable share of about 65 % of the overall production. The 

demand8 is held constant from 2017 in expectation of balancing effects between increasing 

energy efficiency and growth in population and technology usage. The mathematical description 

of the underlying optimization problem is provided in Appendix B.  

The third scenario, Scenario Nodal, is designed to ensure the consideration of congestion effects 

in the transmission grid (cf. Appendix A). By utilizing nodal prices, the influence of over-supply 

and supply shortages caused e.g. by concentration of renewables in the north of Germany is 

considered. Thereby, this scenario introduces further systemic aspects in the developed 

algorithm, namely a grid value component (cf. Appendix A). The scenario is adopted from the 

work of Felling and Weber (2018). The prices are calculated as average timeseries of the six 

presented scenarios in the latter work, whereas the distribution of capacities is taken from the 

actual capacities in 2017 and scaled to the overall capacity in 2020 assumed by Felling and 

Weber (2018).  

4.3 Step 3: Calculate value components for various scenarios 

For the investment choices defined in step 2, the value components are computed according to 

the methodology described in section 3.2. Based on these calculations, Figure 4 presents the 50 

most profitable investment choices of each scenario in descending order. Various structural 

                                                
8 The demand is determined by utilization of the demand profile for Germany available at the ENTSOE 
Transparency Platform (2019) scaled by the final consumption of Germany in 2017 (521 TWh cf. 
International Energy Agency (2018)) and with missing data filled through interpolation.  
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differences between the scenarios as well as between the investment choices within each 

scenario are observable and will be discussed in the following.  

 

Figure 4: Value components of the 50 most profitable investment choices per scenario 

The number of investment choices with positive profits ranges from 15 in the Scenario 2017 over 

1 in the Scenario Nodal to 191 in the Scenario Future. Apparently, these numbers run against the 

number of realized investment choices i.e. with a capacity greater zero (991, 927 and 54). This 

major shift between profitable investment choices and those with capacities greater zero between 

the two first scenarios and the last scenario demonstrate fundamental difference in the underlying 

data: The great number of realized wind sites in 2017 and in a nodal case (based on 2017) are 

influenced by the fixed feed in tariffs paid in Germany over the last decades. Furthermore, the 

price increase in the Scenario Future is based on the restriction of CO2 emissions and the absence 

of subsidies within the optimization framework. Consequently, the number of profitable 

investment choices at wholesale market prices increases. The fact that only a fraction of the 

profitable investment choices in the Scenario Future are realized is explainable by the maximum 

capacity restriction on each site. It is defined on a per site basis and not individually for each 

investment choice. Therefore, the technology with the highest profit is built up to the site capacity 
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limit and other profitable turbine types are disregarded. Moreover, a site where no technology 

has positive profit remains unused. This implies that the number of realized investment choices 

depends on the maximum capacity installable at the most profitable sites. 

In the Scenario Nodal, a reduction in overall profitability, a decrease of the site component and 

in many cases negative contributions of the grid component are furthermore observed. Main 

driver for these observations is the change in prices due to the consideration of grid restrictions.  

4.4 Step 4: Clustering of value components  

In the following two sub-sections 4.4.1 and 4.4.2 the two clustering algorithms are applied. As 

described in section 4.2, the cluster analysis is based on 3216 objects representing 3216 

investment choices and 13 value components as attributes (three scenarios with 4 respectively 5 

value components).  

4.4.1 Predefine cluster numbers using hierarchical clustering 

To identify an adequate number of clusters as starting point for the k-means clustering algorithm, 

an agglomerative hierarchical clustering approach is applied. The resulting hierarchy is 

visualized as dendrogram in Figure 5 (right) with the last 11 clusters highlighted in colors. 

Furthermore, the Within- and Between-Cluster sum of squared distances of the hierarchical 

clustering in comparison to the objective function value of the k-means clustering are shown in 

Figure 5 (left). It can be observed that the sum of distances within the clusters rises significantly 

when the number of clusters decreases below (approximately) 11. Moreover, the advantage of k-

means clustering is recognizable by the lower sum of squared distances compared to the 

hierarchical pre-clustering. 
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Figure 5: Sums of squared Euclidean distances of the hierarchical cluster algorithm and k-means 

4.4.2 Aggregation of investment choices  

The following analysis focusses on two key aspects in the assignment of investment choices to 

clusters. The first more intuitive one is the geographical and technological diversification of 

clusters and investment choices. The second aspect are the characteristics of cluster specific value 

components.  

Figure 6 presents the geographic position of three exemplary cluster centroids (averaged site 

coordinates9 of all objects within the cluster) and the corresponding investment choices.  

                                                
9 Note that averaging the objects within each cluster might be appropriate for geographical aspects but is 
not reasonable for technological characteristics. 
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Figure 6: Geographical representation of three different clusters (centroid in red) 

The representation of single clusters in Figure 6 as well as the position of all 11 centroids shown 

in Figure 7 indicate two distinct types of clusters. On the one hand, there are some clusters with 

only few profitable investment choices, including many sites in northern Germany (cf. cluster 1 

in Figure 6). On the other hand, there are various clusters gathering multiple less profitable 

investment choices, whose centroids are concentrated in central Germany. The size of the 

bubbles in Figure 7 is related to the cumulated wind capacity potential of the investment choices 

in each cluster. The potential of each site is only considered once by assigning it to the cluster 

with the highest profitability that includes this site.  

  

Figure 7: Geographical representation of all 11 cluster centroids  

The distribution of cluster centroids in Figure 7 reveals an accumulation along the north-south 

axis, which implies that there is no strict distinction of east and west in the clustering. This finding 
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seems plausible for Germany as the suitability of sites for wind generation and the actual 

distribution of high and low wind turbines is changing rather from north to south than from west 

to east.  

The technology distribution within the clusters is presented in Figure 8, with clusters ordered by 

decreasing overall profitability (cf. Figure 9). It supports the conclusion that only few investment 

choices are present in the most profitable clusters. Interesting is the fact, that the distribution of 

turbine types is rather similar for three of the four most profitable clusters, with types 7 and 8 

being very rarely used. Clusters 3, 5, 9 and 10 are quite specialized on high speed wind turbines, 

but the low profitability of clusters 9 and 10 and the small number of units in clusters 3 and 5 

support the idea that technological diversification does not contribute much to the overall 

profitability.  

 

Figure 8: Distribution of technology types within clusters (high speed turbines in blue and low 

speed turbines in red) 

In the following, the clusters are analyzed based on the cluster specific value components. Figure 

9 presents the profit per cluster in descending order.  
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Figure 9: Average profit of all scenarios in descending order 

The profit under the different scenarios is displayed in Figure 10 side by side. A similar ranking 

of clusters is found in all scenarios, this indicates that the ranking of sites remains rather constant 

under different market regimes.   

 

Figure 10: Profit per scenario in descending order 

Figure 11 presents the main value components averaged over the three scenarios. The variation 

between clusters is highest in absolute terms for the technology and the net-yield component. 

The components are strongly varying even between neighboring clusters, yet some balancing 

effect may be observed when it comes to overall profitability. E.g. clusters 2 and 3 are rather 

similar in overall profitability (cf. Figure 10) yet cluster 2 has a much more positive technology 

component whereas cluster 3 has a higher net yield. Given the high influence of the net-yield 

component it is not that surprising that this cluster value component is often aligned with the 

overall profit. In absolute value, the site component has the smallest impact. Apart from that, the 

variability is not that high, only the values for cluster 1 and 3 are a little higher. Regarding the 

grid component, three clusters single out. Cluster one is the only one with a strongly negative 

grid component This is related to the negative influence of the grid component in times of high 
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renewable infeed (cf. Appendix A). Because of scarce transfer capacities in times of high 

renewable infeed, the grid component becomes negative. This especially influences cluster 1 – 

accordingly this cluster includes mostly investment choices in the north, where transmission 

capacities get scarce first. The median grid component of the other investment choices is 

approximately zero with some substantial negative outliers. On the other hand, clusters 1 to 3 

show the by far largest interquartile range without significant outliers. 

  

 

Figure 11: Characteristics of the four value components 
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5 Conclusions and outlook 

The paper at hand proposes a new aggregation approach to be used in view of large-scale 

electricity markets. It is based on the clustering of various value components, related e.g. to the 

total yield or the site-specific infeed profile of investment choices. A case study for the German 

electricity system is applied and the influence of various value components on the combined 

technological and spatial aggregation is analyzed.  

Four main insights for the modeling of electricity markets and the related political framework 

may be retained: 

1. Clustering the investments choices as described allows to reduce the quantity of 

investment choices that have to be included in long-term electricity market models 

without compromising the quality of results. Clear differences in profitability can be 

identified for different investment choices which justify their grouping in a limited number 

of clusters.  

2. Furthermore, we show that aggregation based on economic parameters complements the 

standard methods of aggregation based on time-series clustering. Our approach helps 

closing the gap in spatial and technological aggregation, yet a comparison of the results 

of our approach to other approaches is left for further work.  

3. The results suggest that the spatial heterogeneity, i.e. the diversity of wind profiles at 

different sites, does not contribute much to the investment value. Meaning that 

complementarity in sites is not that important for overall optimal system designs. This 

result supports the recent work of inter alia Hirth and Müller (2016) and Klie and 

Madlener (2020).  

4. The results based on three distinct scenarios emphasize the influence of political 

framework conditions and market prices on the valuation of investment choices. On the 

one hand, the relatively high diversification of realized investment choices in the Scenario 

2017 compared to the Scenario Future shows the influence of support systems like the 

EEG. On the other hand, capacity expansion without further restrictions, i.e. under a 

“copperplate” assumption, can obviously lead to strong effects of capacity concentration 

at highly profitable sites. 

In a next step, the developed methodology should be applied to input data for a large electricity 

market model and the impacts regarding computational acceleration and the aggregation-related 

error should be quantified.  
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IX 

Appendix A: Analytics for scenarios with nodal pricing 

To enable the consideration of scenarios with nodal prices and accordingly the influence of 

grid congestion on optimal aggregation, an extended version of Eq. (12) is presented in Eq. (18). 

Subsequently, the individual value components are outlined for scenarios with nodal pricing 

(cf. Eqs. (19) to (23)).  

𝐴𝑉𝑎,𝑖 = (∑ �̅�⋅,𝑎,⋅𝑝t,⋅

𝑡

− 𝑐⋅
𝑎𝑛𝑛 + ∑

�̅�⋅,𝑎,⋅

�̅�⋅,⋅,⋅

(�̅�𝑡,⋅,⋅ − �̅�⋅,⋅,⋅)𝑝t,⋅

𝑡

+ ∑ �̅�⋅,𝑎,⋅ (
𝜃𝑡,𝑎,⋅

�̅�⋅,𝑎,⋅

−
�̅�𝑡,⋅,⋅

�̅�⋅,⋅,⋅

) 𝑝𝑡,𝑎

𝑡

+ ∑(𝜃𝑡,𝑎,𝑖 − �̅�𝑡,𝑎,⋅)𝑝𝑡,𝑎

𝑡

− (𝑐𝑖
𝑎𝑛𝑛 − 𝑐⋅

𝑎𝑛𝑛)

+ ∑
�̅�⋅,𝑎,⋅

�̅�⋅,⋅,⋅

�̅�𝑡,⋅,⋅(𝑝𝑡,𝑎 − 𝑝t,⋅)

𝑡

) 𝐾𝑎,𝑖 

(18) 

In case of a nodal scenario, the zonal price 𝑝𝑡 of the yield component is set to the average of all 

nodal prices 𝑝𝑡,⋅. A utilization of nodal prices within the yield component would reduce its 

significance compared to scenarios without nodal pricing and therefore is avoided.  

𝑉𝐶𝑎,𝑖
𝑦𝑖𝑒𝑙𝑑

= ∑ �̅�⋅,𝑎,⋅𝑝t,⋅

𝑡

− 𝑐⋅
𝑎𝑛𝑛  (19) 

For the nodal scenario the price within the resource component (cf. Eq. (20)) is also set to 𝑝t,⋅.  

𝑉𝐶𝑎,𝑖
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 = ∑

�̅�⋅,𝑎,⋅

�̅�⋅,⋅,⋅

(�̅�𝑡,⋅,⋅ − �̅�⋅,⋅,⋅)𝑝𝑡,⋅

𝑡

 (20) 

To evaluate the value of a site, not only the local conditions should be considered but the 

geographic location within the energy system as well. Hence, for the nodal scenario, nodal prices 

are utilized to calculate the site-specific value component as shown in Eq. (21). 

𝑉𝐶𝑎,𝑖
𝑠𝑖𝑡𝑒 = ∑ �̅�⋅,𝑎,⋅ (

𝜃𝑡,𝑎,⋅

�̅�⋅,𝑎,⋅

−
�̅�𝑡,⋅,⋅

�̅�⋅,⋅,⋅

) 𝑝𝑡,𝑎

𝑡

 (21) 

For the technology component, nodal prices 𝑝𝑡,𝑎 are utilized as well. Because the formulation in 

Eq. (22) focusses on the difference of technological aspects e.g. the advantages or drawbacks of 

high/low wind speed turbines, the location-dependent aspects of technology choices should also 

include locational, i.e. nodal prices.  

𝑉𝐶𝑎,𝑖
𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦

= ∑(𝜃𝑡,𝑎,𝑖 − �̅�𝑡,𝑎,⋅)𝑝𝑡,𝑎

𝑡

− (𝑐𝑖
𝑎𝑛𝑛 − 𝑐⋅

𝑎𝑛𝑛) 

 

(22) 



 
 

X 

The grid component presented in Eq. (23) only exists in scenarios with nodal prices and expresses 

the influence of grid restrictions on the value of an investment choice.  

𝑉𝐶𝑎,𝑖
𝑔𝑟𝑖𝑑

= ∑
�̅�⋅,𝑎,⋅

�̅�⋅,⋅,⋅

�̅�𝑡,⋅,⋅(𝑝𝑡,𝑎 − 𝑝t,⋅)

𝑡

 (23) 

Mainly driven by the difference between the nodal and the average price of all sites, it expresses 

the change in value related to the site-specific variations in prices. As high renewable infeed and 

missing transfer capacities lead to low prices, the grid component becomes negative or at least 

very small for the corresponding locations. This component can help to include the impact of 

grid restrictions when selecting suitable spatial aggregations and ensures the consideration of grid 

restrictions in the clustering of investment choices described in section 3.4. 

 



 

XI 

Appendix B: Capacity expansion optimization problem 

Objective function: minimization of overall system costs 

min
𝑥,𝐾,𝐿𝐿

𝐶 

𝐶 = ∑ 𝑐𝑖
𝑖𝑛𝑣  𝐾𝑖

𝐶

𝑖∈𝑖𝐶

+ ∑ 𝑐𝑖,𝑎
𝑖𝑛𝑣  𝐾𝑖,𝑎

𝑅𝐸

𝑖,𝑎

+ ∑ 𝑐𝑖
𝑣𝑎𝑟 𝑥𝑡,𝑖

𝐶

𝑡,𝑖

+ ∑ 𝑐𝑖,𝑎
𝑣𝑎𝑟 𝑥𝑡,𝑖,𝑎

𝑅𝐸

𝑡,𝑖,𝑎

+ ∑ 𝑐𝐿𝐿𝐿𝐿𝑡

𝑡

 

(1) 

Balance of supply and demand 

𝑠. 𝑡.   ∀𝑡  ∑ 𝑥𝑡,𝑖
𝐶

𝑖

+ ∑ 𝑥𝑡,𝑖,𝑎
𝑅𝐸

𝑖,𝑎

+ 𝐿𝐿𝑡 = 𝐷𝑡 + 𝑆𝑡   (2) 

Limitation of conventional generation by installed capacity and availability 

∀𝑡, 𝑖 𝑥𝑡,𝑖
𝐶 ≤ 𝜃𝑡,𝑖,𝑟𝐾𝑖

𝐶 (3) 

Limitation of renewable generation per area by installed capacity and availability 

∀𝑡, 𝑖, 𝑎  𝑥𝑡,𝑖,𝑎
𝑅𝐸 ≤ 𝜃𝑡,𝑖,𝑎𝐾𝑖,𝑎

𝑅𝐸 (4) 

Limitation of conventional generation capacities by potential per technology class 

∀𝑖   𝐾𝑖
𝐶 ≤ 𝐾𝑖

𝐶,𝑚𝑎𝑥 (5) 

Limitation of renewable generation capacities by potential per technology class and area 

∑ 𝐾𝑖,𝑎
𝑅𝐸

𝑖∈𝑖𝑡𝑐𝑙

≤ 𝐾𝑡𝑐𝑙,𝑎
𝑅𝐸,𝑚𝑎𝑥 (6) 

Political objective: minimum share of electricity produced from renewables 

𝑟𝑅𝐸 ∑ 𝐷𝑡

𝑡

≤ ∑ 𝑥𝑡,𝑖,𝑎
𝑅𝐸

𝑡,𝑖,𝑎

 (7) 
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Political objective: limitation of CO2 emissions by conventional production 

∑
 𝑥𝑡,𝑖,𝑟

𝐶

𝜂𝑖,𝑟
𝜀𝑖,𝑟

𝐶𝑂2

𝑡,𝑖∈𝑖𝐶 ,𝑟

≤ 𝑅𝐶𝑂2 (8) 

Post processing (not part of the optimization): calculation of renewable curtailment 

∀𝑡, 𝑎  𝑆𝑡,𝑎 = ∑( 𝜃𝑡,𝑖,𝑎𝐾𝑖,𝑎
𝑅𝐸 − 𝑥𝑡,𝑖,𝑎

𝑅𝐸 )

𝑖,𝑎

 (9) 
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