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Abstract

Energy system models are limited in their scope and level of disaggregation by the availability of
fast computing hardware. While improvements in hardware and solver developments have led to
an increasing size of solvable models, problems with high temporal and geographical resolution
remain difficult to solve in one loop. In this paper, we evaluate the use of rolling planning as a
speed-up method for energy system models. In a stylized model, we highlight potential issues
that occur at the boundary of optimization horizons, especially regarding time-linking constraints
such as energy storage balances. In multiple configurations of the energy system model WILMAR-
JMM, we investigate the tradeoff between solution quality and problem size / solution time that
characterize the use of rolling planning.
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1 Introduction

The global energy sector is undergoing a paradigm change as the efforts to mitigate climate change

have required regulatory changes and initiated technological innovations, all with the goal to re-

duce greenhouse gas emissions and lead to a more sustainable system. Energy systems are com-

plex and highly disaggregated systems, in which techno-economic rationales affect the decision-

making of market actors, regulators, and consumers. To allow analyses of new technologies,

policy measures and individual investment decisions, mathematical energy system models have

been developed and are continuously applied in various studies and analyses (Pfenninger et al.,

2018). Depending on the model and the application at hand, the level of temporal, geographi-

cal and technological resolution varies widely. Historically, large-scale electricity system models

have focused on the transmission grid and power plants above a certain size threshold, which

limits the number of variables and results in acceptable problem sizes. With the energy transition

leading to increasingly smaller assets often connected at the distribution grid level, and further

challenges coming from modeling the corresponding investment decisions, there is an increasing

need to allow for more detailed system modeling.

A common classification of modeling approaches distinguishes the following types: equilibrium

models (applicable to electricity grid studies and equilibria in markets with strategic actors), simu-

lation models (often so-called agent-based models), and optimization models (using the objective

function for single-actor revenue or system welfare maximization) - see Ventosa et al. (2005). In

the following, we focus on optimization models where the solution of an integrated optimization

problem is the key characteristic. Optimizing energy system models are limited in their scope

and level of disaggregation by the availability of fast computing hardware. While improvements

in hardware and solver developments have continuously increased the size of solvable models,

problems with high temporal and geographical resolution remain challenging. Multiple aggrega-

tion and decomposition techniques have been proposed to overcome this issue (see Section 2.1).

The use of a rolling planning horizon, which shortens the time periods included in each individual

optimization problem, is one such approach. Without time-linking constraints or variables, each

time period could be considered as an individual optimization problem and be solved in parallel

without affecting the solution. However, energy system models commonly include time-linking

elements. Technical constraints such as ramp speeds or uptime and downtime constraints affect

the short-term operation of thermal generators. Additionally, storage balance constraints affect

the use of storages. Therefore, there exists a tradeoff between solution quality and model size

/ computation time when implementing a rolling planning horizon. Focusing on the electricity

system model JMM (see Section 3), we therefore investigate the following research questions.

• How much reduction in problem size and runtime can be achieved using a rolling planning

horizon (using aWeek and a Day horizon configuration)?
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• Analyzing the solution using quantitative and qualitative measures, how large is the reduc-

tion in solution quality from applying the heuristic?

• As a secondary question, how do three different computer classes (high-end desktop, server,

supercomputer node) compare in terms of runtime?

The remainder of the paper is structured as follows. Section 2 gives an overview of the existing

literature and provides a motivating example using a stylized model. In Section 3, we describe

the model setup, data, and problem instances. Section 4 contains the results of the analysis, while

Section 5 provides a summary and concludes.

2 Methodology

2.1 Literature

In a perfect world without any computational limits, an ideal energy system model would include

high resolution in every dimension: hourly time periods, endogenous investment decisions over

multiple decades, nodal market clearing and DC or even AC load flow modeling. However, while

not particularly challenging to implement (each of the aforementioned characteristics exists in in-

dividual models), the combination of all leads to computationally unsolvable problems given the

capabilities of current computers. Therefore, methods to increase solution speed, reduce prob-

lem sizes or use decomposition approaches to allow solving large problem instances have been

prevalent in energy system models for years. Cebulla et al. (2017) and Schreck (2016) provide a

structure to categorize the various approaches, the first stage distinguishing at pure model reduc-

tion techniques, model decomposition, and meta heuristics (cf. Figure 1).

To illustrate this point, we subsequently give examples of the tradeoffs / methods applied by sev-

eral current-generation energy system models. Leuthold, Weigt, and von Hirschhausen (2012)

provides an overview of the energy system model ELMOD, which is also applied in various other

publications. This model, which exists in multiple configurations (among others, MIP and NLP

including a DC load flow approximation), is solved for 24 hours at a time and uses heuristics to

achieve realistic thermal startup and storage operation behavior. Due to the level of detail, the

optimization period is one day ”for the time being”. Hirth (2017) is the documentation to the

European Electricity Market Model (EMMA), in which a pragmatic approach is used to overcome

computational constraints. Due to the focus on market operation and renewable dispatch rather

than conventional unit commitment, neither hydro reservoirs and thermal constraints on uptime

or minimum load are modeled. This allows a high temporal resolution and long modeling periods,

but comes at the cost of lower technological detail. Wiese et al. (2018) give an overview of the July

2017 implementation of BALMOREL. This model is quite flexible, allowing the implementation of

2



Figure 1: Reformulation approaches to reduce problem size (Schreck, 2016)

Problem formulation Decomposition …

Rolling time 
horizons

Pure model 
reduction

Meta heuristics

…

Others (e.g., 
Evolutionary 
algorithms)

Hierarchical 
approaches

Others (e.g., 
Geographical 
“zooming”)

regional and temporal scopes depending on the application at hand. As such, both long-term in-

vestment equilibria and sub-hourly dispatch can be investigated, however not in the same model

instance. For investment decisions, a rolling-planning implementation exists in which multiple

years are solved simultaneously and then shifted forward.

The only systematic investigation of a rolling planning horizon in a large-scale energy system

is to our knowledge Schreck (2016). In this student research paper, the system model REMIX is

extended with rolling planning. The author finds computation time reductions of 35 to 50%, at the

cost of objective function increases below 1.5%. In a somewhat related setup, Marquant, Evins,

and Carmeliet (2015) investigate a type-day approach and a rolling planning horizon for use in a

neighborhood systemmodel called ”energy hub framework”. Their analysis finds that given perfect

parametrization, the rolling-horizon approach can result in a 0% gap compared to the full run, but

this result does not generalize. Computation time reductions are between 0% and 30%, with larger

problem instances benefitting more. JMM, the model used in this study, is an hourly-resolution

one-year energy system model with a focus on optimal dispatch and (in its MIP formulation) on

unit commitment. It was developed during the WILMAR project (Barth et al., 2006; Meibom et

al., 2006) and has been applied in studies of market splitting / bidding zone configuration, RES

integration and interconnector investment valuation. One defining characteristic of all studies is

the use of a rolling planning horizon, which has not previously been compared to the results of a

fully integrated optimization run. The model is described in Section 3.

A separate stream of literature provides a treatment of rolling-horizon optimization from a math-

ematical standpoint and with applications differing from the large-scale system models described

above. Birge and Louveaux (2011) give an overview of multi-stage problems which allow re-

course action. Recourse action, or the ability to change previously made decision given new

information, is a key element of (stochastic) rolling-horizon methods. This is a realistic represen-

tation of applications such as hydro planning. Consequently, Guigues and Sagastizábal (2012)

find a rolling-horizon configuration to be significantly faster than an SDDP formulation of a hydro

reservoir scheduling problem. However, the authors add the closing remark that while they find
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Table 1: Stylized model nomenclature

Symbol Type Unit Description
t ∈ T Set N/A Time periods
i ∈ I Set N/A Generators
Pi Parameter EUR/MWh Production costs
Ci Parameter MW Generation capacity
Dt Parameter MW Demand levels
xi,t Variable MW Production per generator
yt Variable MW Storage operation
ft Variable MWh Storage filling level
λt Dual variable EUR/MWh Electricity price

rolling-horizon to be a good heuristic, their results are not systematic but clearly problem and pa-

rameter dependent. Another application of rolling-horizon optimization as a speedup method can

be found in Kallabis, Gabriel, and Weber (2019), where the authors apply this method to MPECs

and investment models.

2.2 Stylized model

A stylized energy system model serves as a motivating example for considering time-linking con-

straints when implementing a rolling horizon into an optimization model. Consider a simple

four-period (T = {t1, ..., t4}) dispatch problem, whose nomenclature is stated in Table 1. Assume
two demand levels, peak and offpeak, where Dpeak > Doffpeak and t1, t2 are offpeak, while t3, t4

are peak. There are two generators, gas and coal, with Pgas > Pcoal. Also, let Dpeak > Ccoal, so

that during peak hours, the capacity of the cheaper technology is insufficient to satisfy demand.

Finally, consider an ideal storage with no production or storage volume limits. Its operation is

given by yt and its filling level by ft. The objective function, stated in Equation 1, is the mini-

mization of production costs. Equation 2 enforces load serving, with the dual variable λt giving

the price of electricity. Additional constraints apply to maximum production capacity (Equation 3)

and storage balance across time periods (Equation 4).

min z =
∑
T

∑
I

xi,tPi (1)

yt +
∑
I

xi,t ≥ Dt : λt ∀t ∈ T (2)

xi,t ≤ Ci ∀i ∈ I, ∀t ∈ T (3)
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Figure 2: Results of the stylized model for three configurations: integrated optimization (left), rolling hori-
zon without heuristic (center), rolling horizon with heuristic (right)

ft = ft−1 − yt ∀t ∈ T (4)

In the following, we consider three configurations. The first is an integrated, fixed-horizon opti-

mization of all four time periods t1, ..., t4. The other two both use a shortened optimization horizon

in which at first, only time periods t1, ..., t3 are included in the optimization, while t4 is optimized

subsequently. The (simplified) results are shown in Figure 2. For the integrated optimization over

the entire time horizon (shown on the left), the result is trivial. During the initial offpeak periods

t1 and t2, the cheaper coal generator produces at maximum capacity to serve demand and charge

the storage. During the subsequent peak demand periods, the storage discharge produces enough

electricity so that the more expensive gas generator is not required to produce electricity to satisfy

demand. The storage charges during offpeak and discharges during peak, leading to a uniform

electricity price at the cost level of the cheaper coal generator. This result is also cost-optimal.

A rolling planning horizon is characterized by including only a subset of time periods into each

individual optimization problem. While overlapping time periods are not strictly required, it is a

common trait in rolling-horizon energy system models. For the stylized model, we assume two

disjoint planning horizons: the first including time periods t1, ..., t3, the second including only

t4. However, this issue of end-of-horizon effects as described in the following can also apply
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to overlapping horizons. Without any additional constraints, the rolling-horizon optimization of

t1, ..., t3 leads to the results shown in the middle of Figure 2. The storage charges and discharges

as before, however it is empty at the end of time period t3 since the model is no longer aware

of the additional peak load time period t4. The individual optimization of said time period then

requires the use of more expensive gas-fired generation, thus leading to higher electricity prices in

t4 and an overall higher system cost. This result is clearly suboptimal and results from the lack of

awareness of the time period t4 in the initial planning loop, a concept known as an end-of-horizon

effect.

There are multiple ways to overcome this issue. The key problem is that the storage content has

no value at the end of the planning horizon, therefore giving the model an incentive to empty

it completely. Two main approaches are common. Value-based approaches give the storage

content an economic value by introducing an additional objective function term reflecting the

storage value, i.e. the storage volume multiplied by a shadow price term. The second approach is

volume-based, i.e. fixing the final storage filling level to a predetermined value (see Ripper, 2000).

Hybrid approaches also exist, where a penalty term introduced to the objective function penalizes

deviations from a predetermined storage filling level path. All approaches share the difficulty of

parameter calibration, as choosing optimal parameters requires knowledge of the optimal solution

over the entire planning horizon. This solution is not available - if it were, the rolling-horizon

configuration would be pointless to begin with. With ideally chosen parameters, the results of

the rolling-horizon would be identical to the entire horizon optimization. This result is shown in

Figure 2 on the right.

Given optimal parameter choices, both value-based and volume based approaches can lead to

identical results. However, one issue of volume-based approaches is their inflexibility. When

using time series data of historical years as input for simulation of future years, the difference in

the overall system usually renders the historical filling level time series obsolete. Fixing filling

levels at the end of the horizon also strips the model of flexibility. Value-based approaches on

the other hand allow temporary deviations, since a value heuristic gives incentives based on the

overall system state. Ripper (2000) finds value functions generally more efficient in modeling

hydro dispatch, at least when not systematic forecast error is present. Therefore, this is the heuristic

we use in the following.

3 Case study setup

In the following, we describe the model framework and the data used in our case study to evaluate

rolling-horizon optimization in a large-scale electricity market model.
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3.1 Model JMM and data

The Joint Market Model JMM is a large-scale electricity system model. It was originally developed

as part of the EU-funded research project WILMAR and is a linear optimization model of the Eu-

ropean power system. JMM is implemented in GAMS and commonly CPLEX is used as the solver

for both its LP and its MIP configuration. One defining model aspect is the dynamic geographical

scope, allowing to include Europe in its entirety (Meibom et al., 2006; Weber et al., 2009) or

individual countries. There is also a high level of detail in modeling the various constraints in

the thermal generation fleet (upper and lower bounds on electricity output, dynamic uptime and

downtime constraints, combined optimization of electricity and heat output, integrated optimiza-

tion of long-term and short term storages, among others). The model can be configured to model

individual power plant blocks, which leads to a mixed-integer optimization problem (Trepper,

Bucksteeg, and Weber, 2015), but is commonly used in a linear approximation, in which similar

generation assets are grouped into ”vintage classes” with common technological and operational

characteristics.

The high level of detail corresponds with high computational requirements. During its inception,

the model was designed to run in a rolling-horizon configuration of 24 to 36 hours. This signifi-

cantly reduces the size and solution time of individual instances, and in fact was required since at

the time no integrated optimization of an entire year appeared feasible. During the time since the

model’s inception in 2006, there have been significant advancements in the overall capability of

home desktop and server computers, and the machines available today facilitate another attempt

for an integrated year-round optimization. The availability of supercomputing hardware at the

Jülich Supercomputing Centre (through the BEAM-ME project) allows another layer of research,

comparing three hardware configurations in the following.

We configure the model using a three-country geographical scope: Germany, Austria and Switzer-

land (abbreviated by the acronym ”D-A-CH”). While a full-fledged run of the entire European

electricity system was also initially considered, the resulting problem size proved prohibitive (see

below). However, the scope of our case study provides the relevant variety: the Alpine coun-

tries, which are largely driven by dispatchable seasonal hydro storages, provide flexibility to the

Germany market, which is heavily reliant on less flexible thermal and inexpensive renewable gen-

eration capacity. Particularly Switzerland, a country in which hydropower is essential for security

of supply, makes for a good test case.

We parametrize the model using 2016 historical data for fuel prices, electricity demand, and re-

newable production as well as hydro inflow. Hydro storage filling levels are fixed to their historical

values at the beginning (all configurations) and the end of the year (only enforceable for the in-

tegrated Year configuration). Since the three D-A-CH countries are heavily interconnected with

their European neighbors, we fix the historical hourly interconnector flows to third countries as

parameters. The used data is outlined in Table 2. Thermal unavailability data was provided by

Beran, Vogler, andWeber (2017). For comparison, we also provide metrics for a problem instance
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Table 2: Data used for the three-country D-A-CH case study

Energate-messenger.de

Specification

Dito

Dito

Dito

Load (time series)

Parameters Source

ENTSO-E transparency Hourly production per production type

Total Load - Day Ahead / Actual

Final electricity consumption (incl. losses)IEA electricity statistics

ENTSO-E transparency

API#2 (CIF ARA)

NCG Day-ahead

OPEC basket

EU allowances (EUA)

Scheduled commercial exchanges

Day-ahead forecasted capacities, aggregated into monthly

Technology-specific data for DE/AT, manually adjusted for CH

Water reservoirs and hydro storage plants

Calculated from filling levels and production, data cleaned

Capacities, technology and age-specific parameters

Dito

Dito

EEX transparency

ENTSO-E transparency

Dito

HEMF-internal database

Coal price

Gas Price

Oil Price

CO2 Price

Demand (annual)

3rd country exchange

Net transfer capacity

Unavailability

Hydro reservoir levels

Hydro reservoir inflow

Thermal power plant fleet

Renewable production

whose geographical scope includes Europe in its entirety rather than the D-A-CH subset (based

on the work given in Felling et al. (2019) and Felten et al. (2019)). Since it is only used for com-

parisons regarding problem size and solver time (but not solution quality, incl. objective function

value), we do not state the parametrization details here.

3.2 Optimization horizon configurations

The optimization horizon configurations we use for analysis are described in the following. We

compare three configurations: a closed loop optimization over an entire year (called Year con-

figuration), which encompasses 8760 hours and is used as both a reference for problem size and

a benchmark regarding solution quality. We compare its results to two different rolling-horizon

implementations, one using weekly, one using daily planning horizons. The Week configuration

consists of 180 hours, of which 12 hours are overlap to the following optimization loop. The Day

configuration consists of 36 hours of optimization, of which 12 hours are overlap from the previous

loop. However, the first 12 hours of the horizon (from noon the previous day until midnight) are

only included as a ”ramp-up” period for which all variables are fixed. Therefore, the optimization

horizon for the solver is only 24 hours long.1 The structure of both rolling-horizon configurations

is given in Figures 3 and 4.

One noticeable difference between the two rolling-horizon implementations is the treatment of

end-of-horizon effects. TheWeek configuration has a 12-hour overlap, which provides an incen-

tive to the solver not to shut down thermal plants at the end of the horizon.2 Contrarily to this, the

1This setup is derived from a separation in day-ahead and intraday loops, which is commonly used in JMM applica-
tions. The implementation in this paper can be interpreted as a sequence of day-ahead dispatch problems with no
in-between intraday market.

2End-of-horizon effects for storages are treated separately using a heuristic, see Section 3.3.
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D3

D2

D1

d1 d2 d3d0

Figure 3: Day horizon looping structure

W3

W2

W1

d1

Week 1 Week 2 Week 3

d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 …

Figure 4: Week horizon looping structure

Day configuration does not include any overlap: each optimization loop ends at midnight, and the

optimization of the following one picks up with the first hour of the next day. As outlined before,

the tradeoff in rolling-horizon optimization achieves problem sizes which can be generated and /

or solved in reasonable time given available computation infrastructure, but it comes at the cost

of reduced solution quality. We therefore provide metrics for both.

3.3 Hydro reservoir shadow price heuristic

The optimal use of seasonal hydro storages is one key determinant of system costs in heuristics

such as rolling-horizon optimization. The hydro storage modeling in JMM includes upper and

lower constraints on reservoir filling levels, limits on hourly reservoir production, and a dynamic

storage filling level constraint. Since our analysis is focused on the economically incentivized (i.e.

value-based) reservoir usage, we do not show all hydro equations here. A detailed description
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of the hydro modeling of JMM is given in Meibom et al. (2006) and Jahns, Podewski, and Weber

(2019).

As outlined in Section 2.2, giving stored water a value at the end of the optimization horizon is

key in rolling-horizon configurations. In integrated optimization runs, the value of water is given

implicitly as the dual variable of the dynamic storage equation, JMM’s version of which is given

in Equation 5. The dual variable, also known as shadow price, mathematically states the marginal

change to the objective function value given a small relaxation to the constraint. We define this

dual variableWV dual
t,a , giving the water value per time period t ∈ T and area a ∈ A in the model.

FillLevelt,a = FillLevelt−1,a − Prodt,a + Inflowt,a : WV dual
t,a ∀t ∈ T, a ∈ A (5)

In rolling-horizon configurations, water remaining in the reservoir at the end of a horizon has no

intrinsic value to the model. This can be modified by making two adjustments in the model code.

In a first step, the objective function is amended to include a value term for the reservoir content

filling level at the end of the planning horizon. We denote the time period that defines the end of

the horizon as p ∈ P ⊆ T , where p is the final time period in the current optimization loop while

P is the set of all final time periods (in any optimization loop). The objective function term is given

in Equation 6. The filling level is a primal variable in all optimization configurations. The shadow

price parameterWVp,a would ideally be set to the value of the dual variableWV dual
p,a from the Year

run as decribed in Equation 5, but this value is not known in the rolling-horizon configurations.

Therefore, it calculated using the heuristic described in the following.

+
∑
A

∑
P

FillLevelp,a ∗WVp,a (6)

For the first loop, WVp,a is initialized with a pre-determined start value. Beginning with the sec-

ond loop, the value of WVp,a is updated as described in Equation 7. In each loop, the previous

loop’sWVp,a is modified by calculating the difference between a predefined reference time series

FillLevelrefp−1,a and the actual filling level FillLevelp−1,a. This difference (in percent) is scaled by

parameter α and added to the previous WVp−1,a. If the reservoir level is lower than in the refer-

ence profile, the shadow price increases, incentivizing less water use in the following optimization

loop. Vice versa in the opposite case, this approach is beneficial in that it creates an economic

incentive to keep the reservoir filling level relatively close to the reference time series. At the same

time, it allows deviations when the objective function can be improved significantly by deviating

from the reference path.

WVp,a = max(1,WVp−1,a + α× (FillLevelrefp−1,a − FillLevelp−1,a)) ∀a ∈ A, p ∈ P ⊆ T (7)
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Table 3: Computer classes used in this case study

High-end 

desktop

Dell R620 

Server

JUWELS HPC 

node

2019 2014 2018

Core i9 9900k
2 x Xeon E5-

2637 v2

2 x Xeon 

Platinum 8168

8 8 48

3.60 3.50 2.70

5.00 3.80 3.70

96 192 192

Boost speed [GHz]

RAM [GB]

Computer class

Build year

CPU

Cores (total)

Core speed [GHz]

This heuristic is parametrized with the following input: the initial WVp,a, the reference profile

FillLevelrefp,a , and the adjustment scalar α. The latter we choose as 1 or 100%, a value which has

proven robust during years of applying JMM in various studies and is not varied in the following.

For the other two parameters, there is an Optimized and a Historical parametrization. The opti-

mized parametrization uses results of the Year configuration as input: WV dual
p1,a is assigned as the

initial value ofWVp1,a, while FillLevelrefp,a uses the realized FillLevelp,a. The advantage of these

optimized parameters is that they allow to evaluate the hydro heuristic under idealized conditions.

The disadvantage is that these parameter values are not commonly known in rolling-horizon ap-

plications: if yearly results were available, the rolling horizon configuration would be obsolete.

Therefore, we also test a configuration using historical inputs which are known independently

of the Year run: the initial WVp,a is set at the average historical day-ahead electricity price (per

country), while FillLevelrefp,a uses the historical filling level time series. While this input is not

necessarily optimal, it allows to test the heuristic given realistic input parameters.

3.4 Computing hardware and problem sizes

We compare three different computer classes: a custom-built, high-end desktop; a Dell R620

server workstation; and a compute node of the JUWELS supercomputer at Jülich Supercomput-

ing Center (JSC), computation time on which was made available through the BEAM-ME project.

Descriptions of the three classes are listed in Table 3. The main differences between the classes

lies in their computing architecture. While all three use Intel processors, their clock speeds differ

significantly. RAM size on the desktop is chosen at 96 GB so that the largest individual problem

instance remains solvable.

The computational effort required to solve a problemwith CPLEX scales with problem size. Table 4

gives an overview of the problem size for different model configuration. Regarding geographical

scope, it is noteworthy yet expected that the problems including the entire European electricity

system are roughly four times the size (referring to the number of non-zero elements) of those only

modeling the D-A-CH region. Of course, this is directly related to the number of nodes / countries
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Table 4: Problem sizes under different rolling horizon configurations and parametrizations

Rows Columns Nonzeroes

Year D-A-CH 61,863,127 35,378,920 228,229,549 0.00% 73.19 0.00%

Week D-A-CH 1,271,161 732,880 4,694,809 -97.94% 1.49 -97.96%

Day D-A-CH 236,593 129,421 843,513 -99.63% 0.25 -99.66%

Year* Europe 275,076,776 200,145,832 914,629,816 0.00% 393.60 0.00%

Week Europe 6,236,281 4,144,095 20,788,416 -97.73% 7.71 -98.04%

Day Europe 943,321 732,507 3,025,716 -99.67% 1.40 -99.65%

*Extrapolation based on Day and Week configuration results, no actual run data available

Stats (typical instance, before pre-solve)
Relative delta

Horizon 

configuration

Geographical 

scope

Peak RAM 

usage [GB]
Relative delta

and power plants, which is smaller in the latter case. Please note that computational restrictions

(in particular, the available amount of RAM) made it impossible to compile or solve a yearly

planning configuration for the European geoscope. Therefore, the statistics given in Table 4 are

extrapolated from the Day and Week configurations using the ratios from the D-A-CH runs. This

gives an estimate of the computational efforts required to generate and solve this configuration.

Since current commercial servers can be configured with 512 GB of memory (or more), sufficient

budget and time likely allows to solve these problems.

The size differences between the different horizon configurations also yields relevant insights.

The problem size (again, referring to non-zeros) scales with the horizon size in a roughly linear

fashion. The optimization horizon of the Week configuration includes 5 times the number of the

12hour configuration (180 vs 36 hours), while the problem size ratio is 5.6. Comparing Year to

Week, the it is an almost perfect match: 48.6 times the hours in the optimization horizon yield

48.7 the number of non-zeros. RAM usage follows a similar pattern, as one would expect: the

amount of memory required to store a problem instance is directly driven by its row, equation,

and non-zero element count. This first assessment of the model configuration clearly shows the

lower computational requirements of the rolling-horizon configurations as measured by problem

size and required memory.

4 Results

4.1 Computational benefits

The main computational burden comes from the time it takes to solve a problem, commonly

known as solution time. While sufficient memory is a necessary condition, the difference in so-

lution time may be a deciding factor when determining the value of a shortened optimization

horizon. The results for the three different computer classes are outlined in Table 5. Please note
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Table 5: Solution times under different rolling horizon configurations and parametrizations

Year D-A-CH 10.50 0.00% 20.10 0.00% 13.53 0.00%

Week D-A-CH 0.28 -97.33% 0.60 -97.03% 0.33 -97.54%

Day D-A-CH 0.14 -98.71% 0.29 -98.57% 0.14 -98.93%

Year* Europe 239.76 0.00% 452.73 0.00% 302.99 0.00%

Week Europe 7.94 -96.69% 17.42 -96.15% 9.42 -96.89%

Day Europe 2.35 -99.02% 4.57 -98.99% 2.38 -99.22%

*Extrapolation based on Day and Week configuration results, no actual run data available

Horizon 

configuration

Geographical 

scope

Total Solver 

time [hours]
Relative delta

High-end desktop

Relative delta

Dell R620 Server JUWELS HPC node

Total Solver 

time [hours]
Relative delta

Total Solver 

time [hours]

that all figures given in the table refer to the overall solution time, i.e. one loop for the year, 52

loops for the week, and 365 for the Day configuration. Obviously, computation times for the

D-A-CH region are much lower than for entire Europe as the geographical scope of Europe is sig-

nificantly larger than D-A-CH (again, the results for the EU-year configuration are extrapolations).

Within each computer class, longer horizons also lead to higher solutions times. However solu-

tion time increases less than linear with problem size: for the smaller D-A-CH geoscope, theWeek

configuration takes ”only” twice as long to solve as the Day configuration, while for the larger Eu-

ropean model, this ratio is closer to 4. However, all these statistics refer to overall solution time

(i.e., the sum over all problem loops) - the solution times of an individual loop of each horizon

configuration are significantly shorter, indicating a superlinear relationship between problem size

and solution time.

The results for the different computer classes are somewhat inconclusive. It is clear that the R620

server lacks behind the other two classes, leading to a 50% higher solution time. It appears that

this is not due to pure core speed though, since both the JUWELS node and the R620 server operate

with similar boost clocks. Potentially the compute architecture plays a role, since the Core i9 of

the high-end desktop and the Xeon Platinum of the JUWELS node are several years younger than

the Xeon E5 of the R620 server. It should however be noted that given their higher core count, the

server and especially JUWELS would significantly benefit from parallelization. While CPLEX, the

solver used in this study, allows parallelization, studies involving the JMM do not commonly use

it.3 The underlying Simplex algorithm is sequential at its core4. In any case, the solution time of

the Europe-Year configuration (which we extrapolate) would be close to two weeks, which may

or may not be acceptable depending on the task at hand.

3Parallelization is very limited in CPLEX when requiring deterministic results, that is to say identical results for a given
model instance. An opportunistic implementation using multiple CPU threads (e.g. barrier and concurrent optimiz-
ers) is available, but are not commonly used in JMM to allow reproduction of run results. www.gams.com/latest/-
docs/S_CPLEX.html#CPLEXparallelmode

4All runs use the CPLEX parameters lpmethod 0 and threads 1, leading the solver to default to its dual simplex config-
uration. www.gams.com/latest/docs/S_CPLEX.html#CPLEXlpmethod
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Table 6: Objective function values under different rolling horizon configurations and parametrizations

Year N/A 8,687.52 5.76 0.00 8,687.52 0.00 0.00%

Week Optimized 8,670.02 4.48 58.03 8,728.04 40.52 0.47%

Week Historical 8,669.59 4.40 61.90 8,731.49 43.97 0.51%

Day Optimized 8,670.59 4.42 60.90 8,731.48 43.96 0.51%

Day Historical 8,692.79 4.31 66.17 8,758.96 71.44 0.82%

Uncorrected 

Vobj [mEUR]

Corrected 

Vobj [mEUR]

End-of-year 

Res. filling 

level [TWh]

Filling level 

correction 

[mEUR]

Absolute delta 

[mEUR]
Relative delta

Horizon 

configuration

Parameter 

selection

4.2 Objective function impact

The previous paragraphs have outlined the computational benefits of the rolling-horizon config-

urations. However, these benefits come at a cost: the solutions found are different from that of

the integrated yearly optimization run. This leads to ”less optimal” results, ultimately caused by

less efficient use of resources in the electricity system. In a first stage, we aggregate this solution

difference to the objective function value. These results are given in Table 6. It appears that the

rolling-horizon configurations lead to lower system costs than the integrated run. However, these

initial objective function values do not show a complete picture. This is related to the use of hy-

dro storages. When comparing the end-of-year filling levels of the Day and Week configurations

to the integrated yearly run, it is apparent that they are lower than in the Year run. While these

are likely not systematic and could be higher in different problem instances, they do indicate that

the proposed shadow value heuristic in the rolling-horizon configurations does not yield perfect

incentives to use the available water as efficiently as in the yearly run. Ceteris paribus, using

up more of the stored water reduces the required fuel used in thermal generation assets, there-

fore lowering the objective function value. To make the different configurations comparable, we

propose an adjustment of the objective function by the ”filling level adjustment term” AdjFL as

given in Equation 8. By this logic, we value the remaining storage content using the final hydro

shadow price from the Year run. This corrects the objective function value for the difference in

end-of-year reservoir filling level by using the hydro shadow price from the Year run as common

valuation basis.5

AdjFL = (FillLevelpfinal,a,RH −ResLevelpfinal,a,Y ear) ∗WV dual
pfinal,a

(8)

The end-of-year filling levels, adjustment terms, and the adjusted objective function values are

given in Table 6 (for brevity, all figures are aggregated among the D-A-CH countries). With the

adjustment, the order of objective function values is as one would expect: the integrated opti-

mization leads to the lowest system costs, while the Week rolling-horizon configuration comes

5It is important to use the same shadow price for all adjustments in order to avoid inconsistent valuations. The use of
the shadow price from the Year run is the logical choice as this is the reference configuration.
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out ahead of the Day configuration. Given the fact that shorter optimization horizons lead to

more frequent use of the imperfect hydro heuristic (as well as potential end-of-horizon effects),

this is a plausible outcome. Also, the optimized parametrizations of the heuristic lead to lower

objective function values than the ones using historical parameters, again, an expected outcome.

When looking at the absolute and relative delta between the configurations, it appears that the

impact on solution quality is quite low in cost terms. However, there are two points which sug-

gest additional analysis: first, the absolute differences are in in excess of 70 million EUR for one

year, which may be a relevant welfare change for some applications. Secondly, solution quality

cannot be measured by objective function values alone. Therefore, we devote the remainder of

this chapter to providing a more qualitative analysis of the solution variations between the different

configurations centered around the efficient use of fuels and water.

4.3 Qualitative solution assessment

One key difference between the configurations is the use of hydro storages during the year. It is

clear that the integrated yearly optimization must yield the optimal6 result. Figures 5 and 6 show

the closely related shadow price of water and the filling level of the Swiss hydro storages7. The two

are linked, since the value of reservoir content strongly affects its use. In the Year configuration,

there are three discrete shadow price levels: 33.5 EUR / MWh from January to late May, 30.8 EUR

/ MWh until mid October, and 45.4 EUR / MWh until the end of the year. The changes in water

value occur in May and October at those points in time when the reservoir reaches its minimum

and maximum filling level, as is expected in a deterministic setting (Böcker and Weber, 2019).

The shadow price development also corresponds with the filling level, as the lowest shadow price

level coincides with the largest inflows due to snow melting during early summer. The large jump

in water value in the fourth quarter is also related to an unplanned outage of the Leibstadt nuclear

power plant, the largest of Switzerland’s five nuclear stations. The plant went offline for its main

revision in August.8 Initially planned for only four weeks, then extended to eight weeks, and finally

to six months, this caused a shortage in relatively cheap nuclear power supply for the remainder

of 2016, and increased Swiss electricity prices and thereby, the value of stored water.

The reservoir water usage in the rolling-horizon configurations is mainly driven by the water value.

The water value in turn is affected by the filling level compared to the reference profile. During

the first and second quarters, both the Day and the Week configuration use slightly more water

than the Year run, leading to lower filling levels than the reference profiles (Figure 6) and higher

shadow prices than the Year run (Figure 5). It is visible that the water value adjustment heuristic (as

described in Section 3.3) leads to shadow prices and filling levels which are relatively close to the

6”Optimal” refers to optimality in a mathematical sense, i.e., that the objective function value cannot be improved
further. Evaluating the model fit against historical data may lead to a different result, since the model premise of
perfect foresight is not present in reality. This is briefly discussed in Section 5.

7For brevity, we limit this evaluation to Switzerland. It is the country in which hydropower has the largest generation
share within our case study, and the results for Germany and Austria do not differ significantly.

8https://www.kkl.ch/unternehmen/medien/archiv/2016.html
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Figure 5: Swiss reservoir shadow price under different horizon configurations

25.00

30.00

35.00

40.00

45.00

50.00

C
H

 h
y
d

ro
 re

se
rv

o
ir

 s
h

a
d

o
w

 p
ri

c
e
 [E

U
R

 / 
M

W
h

]

Year Week Day

Figure 6: Swiss reservoir filling levels under different horizon configurations
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Year run. However, they both deviate significantly in the fourth quarter when the shadow price

jumps in the Year configuration. Here it is obvious that the heuristic requires several weeks to

reach the higher optimal value, in the process leading to an above-optimal use of hydropower in

the two rolling-horizon configurations. This appears to be the main cause of the lower end-of-year

reservoir filling levels in all rolling-horizon runs. This deviation could potentially be diminished

by setting the adjustment speed parameter α to a higher value. On the other hand, a higher value

of α would likely lead to more volatile water values. Overall, the heuristic performs as expected:

imperfect compared to the Year run, but leading to reasonable results within its limitations. Note

that we only discuss configurations using the optimized parameters for reference profile and start-

ing shadow price and not the ones using historical parameters. For brevity, these were omitted

here. The qualitative results do not differ significantly from the ones shown, but the objective
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Figure 7: Electricity production volumes from different fuels in the Year configuration (left) and deltas for
the remaining configurations (right)
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function values given in Table 6 show the less optimal outcome using the historical parameter

values.

Another assessment of solution quality are differences in production volume per technology / fuel

type. Figure 7 shows the production volumes for the different configurations. The total electricity

production for the Year configuration is 710 TWh, of which 22% each are hard coal and lignite,

and 15% each are nuclear and hydro (both run-of-river and reservoirs), while wind and solar

make up for a combined total of 16%. This result mirrors the generation system of the D-A-CH

case study region, being strongly influenced by the German fuel mix. On the right, we show the

deltas between the Year run and the other configurations. Here, it is noteworthy that the rolling-

horizon runs all use more hydro reservoir content than the integrated run (mirroring the data shown

in Table 6) because of the sub-optimal use of hydropower due to the water value heuristic. This is

made up for by using less mid- and baseload fuels, mainly coal and lignite, a pattern visible in all

configurations. However, the production deltas of gas-fired generation assets (as a more expensive

midload to peak technology) deviates from this pattern. In the Week Optimized configuration,

the model uses less natural gas, while the other three configurations show additional use of this

fuel. The difference shows the impact of the horizon configuration on the technology replaced by

the additional hydropower. In Week Historical and the two Day configurations, the solver only

manages to replace relatively cheap coal and lignite production, and actually requires additional

gas-fired generation to satisfy demand. In the Week Optimized configuration however, almost

50% of the additional hydropower usage replaces natural gas generation, explaining the lower

system costs as expressed by the lower objective function value.

Finally, we review the average day-ahead market prices (see Table 7). We also show the historical

day-ahead prices for comparison, but note that this study has not aimed to provide a model back-

testing (which would require additional parametrization). It is obvious that prices increase with

shorter horizon length and less-than-optimal parametrization of the water value heuristic. Unlike
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Table 7: Average electricity prices in the D-A-CH countries and a weighted average under different model
configurations and historical market results

AT CH DE

Historic Day-ahead prices 28.96 37.83 28.96

Year N/A 30.24 34.70 30.21

Week Optimized 30.18 34.30 30.16

Week Historical 30.30 35.32 30.28

Day Optimized 30.81 35.19 30.79

Day Historical 30.90 36.22 30.88

Configuration
Parameter 

selection

Average Price (uncorrected)

the objective function values shown in the previous subsection, these prices are not and cannot

be corrected for different end-of-year reservoir filling levels. Three of the rolling-horizon configu-

rations (Week Historical and both Day configurations) show higher electricity prices, in line with

higher (corrected) objective function values. This is likely another sign of the less-than-optimal

dispatch resulting from the shortened optimization horizon. Electricity prices, in system models

defined as the shadow price of the market-clearing condition, are set by the marginal plant. Since

the merit-order is by definition a convex function, small changes in production volumes can lead

to large price increases in some hours and small price decreases in others. The net effect of this

appears to be positive, an argument supported by the fact that we observe the largest individual

increase between Year and Day Historical (1.52 EUR / MWh) in Switzerland, the country with the

largest influence of hydro reservoir production. The exception in this case is theWeek Optimized

configuration, which leads to lower electricity prices than the Year run. This is in line with the

results on fuel usage, which in this configuration showed less use of (expensive) natural gas than

the Year run.

5 Conclusion

The aim of this paper is to investigate the tradeoff between runtime and solution quality that comes

from implementing a rolling planning approach. Referring to the research questions raised in

Section 1, the answers are as given below. Please note that all statements are made in relation to

the tested problem instances and generalized where they can be. However, many of the answers

are problem-specific, and different problem instances likely require to revisit each topic.

• The reduction in problem size and computation time are significant. Depending on the hori-

zon configuration and the geographical scope, the problem size can be reduced by 97.9%

to 99.7%. Clearly this is an improvement that allows running the model on much smaller

machines or implementing much larger, more detailed problem instances. The reduction
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in runtime is in a similar range, decreasing by 97.0% to 99.0%. Again, this creates flexibil-

ity when configuring problem instances encompassing e.g. the entire European electricity

system.

• Regarding solution quality, results are not straightforward. On the one hand, the relative

increase in the objective function value or system cost is small, remaining below 1% in all

instances. On the other hand, the absolute deltas are around 40 million EUR and exceed

70 million EUR in one configuration. When comparing the welfare impact between two

model runs, e.g. to analyze the impact of a new interconnector (see Trepper, 2015), this

difference may be meaningful. On the other hand, it is apparent that the Week horizon

configuration performs better than the shorterDay one, suggesting that some solution quality

can be preserved by this somewhat longer planning horizon. The implementation of the

water reservoir heuristic plays a role as well, and even better results are likely to be achieved

by optimal parametrization.

• Regarding the different computer classes, there appears to be a significant benefit from using

themost recent architecture. While the two classes using 2018 and 2019 hardware (the high-

end desktop and the supercomputer node) vary in (boost) clock speed, both outperform the

2014 server by up to 100% (cutting runtime in half). This suggests improvements in the

computer architecture or lower-level adjustments of the solver to more recent systems. In

any case, the results highlights the relevance of improvements in computing hardware to the

application of energy system models.

As mentioned in Section 3, the JMM model is used in various applications, often investigating the

impact of individual investments / assets on overall systemwelfare. It would clearly be problematic

if the system cost increase introduced by the rolling horizon approach were to distort these results.

However, these analyses commonly involve comparing two relatively similar runs with each other:

in this case, any systematic deviation due to the rolling horizon configuration would be present

in both, and only secondary effects (likely smaller) would affect the quantification of the deltas.

Therefore, analyses derived from comparing two similar model instances using the same rolling-

horizon configuration are likely still valid. However, please note that this approach still requires

correcting for any changes in the end-of-year hydro reservoir filling level.

When focusing on production volumes per technologies, the heuristic also appears to perform

reasonably well. As this metric is commonly used to assess the amount of carbon dioxide emis-

sions, it is clearly relevant. For any focus on prices (also used in model backtesting to improve

parametrization), the differences are larger and likely meaningful. Here, additional work would

be useful to understand which horizon configuration comes closest to modeling actual market

behavior - after all, reality has no perfect foresight, so an integrated year-long optimization loop

may actually not be the best proxy.
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