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Abstract 

Growing shares of renewable energy sources (RES) in the electricity system increase the need for 

flexible balancing of supply-dependent feed-in of RES and time-varying demand. Besides flexible, 

conventional technologies and demand-responses, storage is an important option. Through the 

use of an analytical approach, this paper explores the implications of the short- and long-run 

electricity market equilibrium. 

While conventional and renewable technologies have fixed positions in the supply stack 

depending on their operational costs, storage may shift in the supply stack over time. Hence, 

shifts in the supply stack only occur if the storage is either full or empty; otherwise, the so-called 

shadow price of storage is constant. 

In a long-term partial electricity market equilibrium, this implies more complicated patterns of 

operational cash flows for storage technologies. These cash flow patterns will determine, in turn: 

how storage investments pay off, to what extent storage is part of an efficient energy system, and 

what power-to-energy ratio should storage have. 

The implications for future sustainable energy systems with multiple storage technologies are 

illustrated in a stylized application of Lithium-Ion batteries and pump hydro storage as two 

possible storage technologies. 
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1 Introduction 

The political and societal aim of slowing global warming by reducing carbon emissions coupled 

with the limitations of fossil fuel resources induced a dramatic change in the global energy 

system. In terms of currently installed capacities in Germany, wind power and photovoltaic (PV) 

systems are already among the most important technologies, and their share is expected to 

increase further in the future. Aside from new challenges to the grid due to decentralized feed-

in, the main problem remains the balancing of the intermittent renewable feed-in and energy 

demand. 

Under the foreseen expansion of renewable energy sources (RES), the aggregated energy supply 

of the system will be less of a problem than matching the demand at each point in time. Today, 

conventional power plants are primarily used to compensate for the feed-in fluctuations to ensure 

the availability of electricity at demanded times. In future energy systems, conventional 

technologies are acting more and more as backup technology, or flexibility options, and therefore 

have to compete with other options like energy storage systems (ESSs). The advantage of ESSs is 

their ability to shift energy over time, which allows the increase of the share of usable RES feed-

in for covering the demand. High but declining costs characterize most of the ESS technologies; 

however, pumped-hydro storage (PHS) is efficient and proven (Steffen, 2012) hence why its 

widespread rollout could be expected in the medium-term. 

Consequently, ESSs are likely to be part of the efficient technology portfolio in future power 

systems, thus impacting the price formation in wholesale electricity markets. Today, the variable 

costs of the marginal price-setting conventional power plant – as described in offer-stack or merit-

order models of electricity market price formation – drive the electricity price in competitive 

markets. In this case, the price is a monotonic (step-wise) function of the current demand. 

Nevertheless, if storage technologies are part of an efficient energy system, the price is no longer 

uniquely determined by current demand and is no longer explicitly given by the marginal costs 

of the last operating thermal plant. 

This paper proposes an analytical approach to determine both the price formation and the 

efficient technology mix for energy systems with storage. The optimal generation mix is derived 

from a system planning perspective that is well-known to be equivalent to the competitive market 

equilibrium. Therefore, the paper contributes to a better understanding of the marginal value of 

storage and what long-term market equilibria, including full cost recovery for conventional, 

renewable, and storage technologies, look alike. This paper builds and extends upon Steffen and 

Weber (2013) by including explicit volume limitations of storage, and by separating investment 

costs for charging and discharging capacity as well as storage volume. This technique provides 
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additional insights into the value of storage in future energy systems. Notably, it turns out that 

storage technologies do not occupy a fixed position in the offer stack. Rather, their position varies, 

as the opportunity costs for charging and discharging vary over time. Moreover, generalizing 

Lamont's analysis (2013), we do not limit storage cycling patterns to empty-full and full-empty 

half-cycles, and we include the possibility of multiple storage technologies. Furthermore, we 

provide a novel representation of storage charging and discharging as well as load shedding in a 

generalized supply stack along with a comprehensive analysis of main operation modes and dual 

variables (shadow prices). 

Section 2 discusses the developed analytical approach. Concerning the role of storage 

technologies, Section 0 discusses their operation principles and investment pay-offs are 

investigated in Section 4. In Section 5, pricing rules, as well as main operation modes for storage 

technologies, are derived. Section 6 provides a numerical application, and finally, Section 7 

concludes the paper.  

2 Basic model 

Different approaches exist to analyze the benefits of new technology in a system context. As a 

first approximation, the analysis may be carried out in an individual investor perspective. In this 

approach, the technology is valued under a given system context and with corresponding prices. 

This valuation (see, e.g., analyzing arbitrage gains for storage at given market prices) is valid as 

long as the feedback from the use of the new technology on the prices and other system 

parameters is negligible (see, e.g. notably (Zafirakis, Chalvatzis, Baiocchi & Daskalakis, 2016; 

Brijs, Geth, Siddiqui, Hobbs & Belmans, 2016; Krishnamurthy, Uckun, Zhou, Thimmapuram & 

Botterud, 2017; Pozo. Contreras & Sauma, 2014; Bradbury, Pratson & Patino-Echeverri, 2014). 

For the first unit of new technology, this is a good approximation, but with increasing investments 

into new technology, the feedback may no longer be neglected and has to be taken into account. 

For this purpose, it is useful to switch to a system perspective to evaluate different technologies 

simultaneously in a system context (Stoft, 2002). The advantage is that the central 

interdependencies are considered. With an increasing number of technologies and influencing 

factors, the complexity of the model may increase rapidly. Hence, this basic idea is applied in a 

broad range of different approaches, such as investigating the combination of storage for a 

specific renewable technology. For example, Tuohy and M (2011) investigate the effects of 

implementing pumped hydro storage in an electricity system with very high wind penetration. 

The used unit commitment model includes uncertainty of wind feed-ins, and the economics of 

the system, including the pay-off of storage investment, are investigated. It is shown that storage 

partly avoids wind curtailment, and uncertainties increase its value.  
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More general model formulations are used to describe further interrelations like reserves or 

ramping constraints (Bruninx et al. 2016) as well as to analyze the effect of other exogenous 

drivers like political objectives (Böcker, Steffen & Weber, 2015).  

In an even more general perspective, the variety of technologies available for power generation 

is taken into account. The operation of thermal power plants is thereby primarily driven by their 

short-run marginal cost, which in turn determines their position in the offer stack (the so-called 

“merit order”). The efficient portfolio of thermal generation assets is then obtained by considering 

the long-term capacity planning problem (also known as a peak-load-pricing problem: see, e.g., 

Boiteux 1960, 1960; Steffen & Weber, 2013), which is an extension of the merit-order model 

considering both investment and operational costs and the load restrictions. 

System models are especially valuable in analyzing the interactions between different 

technologies in competitive markets. Mostly large-scale models are developed that are mainly 

used to provide detailed numerical estimates of optimal portfolios. Besides, more qualitative 

insights may be obtained from system models by interpreting the shadow prices (Lamont, 2013). 

Lamont (2013) provides a theoretical framework (including its application) to evaluate the 

marginal values of storage charging, discharging capacity and volume as well as their impact on 

the wholesale price. The objective is to investigate the effects of a storage system as an enabler 

for renewable investments and the use of baseload generation. 

The present paper complements this work by considering a more general approach in discrete 

time resolution with multiple storage technologies. Notably, this is used to derive detailed 

analytical insights into the various operation modes of storage and how they reflect either the 

scarcity of charging or discharging opportunities. As a starting point, a stylized energy system 

model with its key restrictions is formulated in Section 2.1, and the solution approach based on 

the Lagrangian is sketched in Section 2.2. 

2.1 General problem formulation 

The optimal electricity system configuration is determined by minimizing the system costs 𝐶 of a 

technology portfolio, which can cover the demand 𝐷𝑡 overtime 𝑡. Technologies that provide 

electricity by conversion of fossil or renewable energy sources are labeled generation 

technologies 𝑖. Besides generation technologies, storage technologies 𝑗 are considered, which 

can shift energy over time. Additional restrictions like minimum generation limits or ramping 

constraints of technologies are neglected in this model. 

The efficient capacities of generation technologies define the optimal system configuration 𝐾𝑖 

together with efficient discharging and charging capacities of storage 𝐾𝑗
+ and 𝐾𝑗

− and efficient 

storage volume 𝑉𝑗. Additionally, the optimal generation schedules 𝑦𝑖,𝑡, as well as the storage 
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discharging and charging schedule 𝑠𝑗,𝑡
+  and 𝑠𝑗,𝑡

− , are decision variables. The corresponding 

objective function is then: 

min
𝐾𝑖,𝐾𝑗

+,𝐾𝑗
−,𝑉𝑗,𝑦𝑖,𝑡,𝑠𝑗,𝑡

+ ,𝑠𝑗,𝑡
−
𝐶 

𝐶 = ∑∑𝑐𝑖
𝑜𝑝

⋅ ∆t ∙ 𝑦𝑖,𝑡
𝑖𝑡

+∑𝑐𝑖
𝑖𝑛𝑣 ∙ 𝐾𝑖

𝑖

+∑𝑐𝑗
𝑖𝑛𝑣,− ∙ 𝐾𝑗

−

𝑗

+∑𝑐𝑗
𝑖𝑛𝑣,+ ∙ 𝐾𝑗

+

𝑗

+∑𝑐𝑗
𝑖𝑛𝑣,𝑉 ∙ 𝑉𝑗

𝑗

 

(1) 

Main drivers for the composition of the efficient portfolio are the operational costs 𝑐𝑖
𝑜𝑝

 (multiplied 

with the time step length ∆t since these are energy-based)1 and investment costs 𝑐𝑖
𝑖𝑛𝑣 for 

generation technologies. Investment costs of storage systems do not only depend on the storage 

capacity (charging 𝑐𝑗
𝑖𝑛𝑣,− and discharging 𝑐𝑗

𝑖𝑛𝑣,+) but also on the storage volume 𝑐𝑗
𝑖𝑛𝑣,𝑉. We define 

the optimization problem for a representative period {1, . . , 𝑇}, which is typically one year. 

Correspondingly, the investment costs are annualized costs, which are derived from the up-front 

costs through multiplication with an annuity factor reflecting both capital costs (interest rate) and 

lifetime.  

The cost minimization is constrained by restrictions on the balance of supply and demand (see 

equation (2)), capacity constraints (see equation (3)), and storage filling levels (see equation (4) 

and (5)). For each of these constraints, the corresponding dual variable represents their shadow 

prices indicating the marginal decrease in system costs for an easing of the constraint by one unit. 

Since most constraints are defined as inequalities, complementary slackness conditions and 

Karush-Kuhn-Tucker conditions are expected to hold. 

The primary restriction is the supply-demand balance 𝑅𝐷,𝑡 at all times (equation (2)). The 

demand 𝐷𝑡 may be matched by generation 𝑦𝑖,𝑡 as well as storage discharging 𝑠𝑗,𝑡
+  . If the storage 

is charged 𝑠𝑗,𝑡
− , the supplied energy has to increase. 

𝑅𝐷,𝑡 :   ∑ 𝑦
𝑖,𝑡

𝑖

+∑ 𝑠𝑗,𝑡
+

𝑗

= 𝐷𝑡 +∑ 𝑠𝑗,𝑡
−

𝑗

  ⊥ 𝜇
𝑡
 (2) 

The dual variable 𝜇𝑡 thereby corresponds to the electricity price in the system. 

The installed capacities restrict energy supply (see equation (3)).  

𝑅𝑖,𝑡:   𝑦𝑖,𝑡 ≤ 𝑏𝑖,𝑡 ∙ 𝐾𝑖   ⊥ 𝜈𝑖,𝑡 ≥ 0 

𝑅𝑗,𝑡
+ :   𝑠𝑗,𝑡

+ ≤ 𝐾𝑗
+   ⊥ 𝜈𝑗,𝑡

+ ≥ 0 

𝑅𝑗,𝑡
− :   𝑠𝑗,𝑡

− ≤ 𝐾𝑗
−   ⊥ 𝜈𝑗,𝑡

− ≥ 0 

(3) 

 
1 For renewable technologies, operation costs can be assumed as nearly zero. 
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While conventional and storage technologies can only operate within the limit of installed 

capacities, renewable energy sources like wind and solar are characterized by an uncontrollable 

power supply (in case of wind and solar highly weather-dependent) and curtailment is the only 

possible control. This dynamic can be captured by introducing a time-variable yield 𝑏𝑖,𝑡 with 

values between 0 and 1, which describes the available generation at time t as a fraction of the 

installed capacity 𝐾𝑖.
2 For conventional technologies 𝑏𝑖,𝑡 can be set to one3. For these restrictions, 

the shadow prices indicate the value of an additional capacity unit (or the capacity rent) for each 

generation technology 𝜈𝑖,𝑡 as well as charging 𝜈𝑗,𝑡
−  and discharging capacity 𝜈𝑗,𝑡

+  of the storage. 

Storage technologies as part of the efficient portfolio furthermore require a storage level restriction 

(𝑅𝑥𝑗,𝑡, equation (4)). The change in storage level 𝑥𝑗,𝑡+1 − 𝑥𝑗,𝑡 corresponds to the difference of 

charging and discharging flows multiplied by the time increment ∆t. In the general case, a 

charging efficiency  𝜂𝑗
− and a discharging efficiency 𝜂𝑗

+ are thereby applied. 

𝑅𝑥𝑗,𝑡:   𝑥𝑗,𝑡+1 − 𝑥𝑗,𝑡 = (𝜂𝑗
− ⋅ 𝑠𝑗,𝑡

− −
1

𝜂𝑗
+ ⋅ 𝑠𝑗,𝑡

+ ) ∙ ∆t ⊥ 𝜆𝑗,𝑡 (4) 

In a long-term equilibrium, the terminal filling level of the storage must equal its initial filling 

level. Otherwise, the equilibrium would not be sustainable. However, any ex-ante fixation of the 

storage level may be inefficient. Therefore, the periodic boundary condition 𝑥𝑗,𝑇 = 𝑥𝑗,0 is used. 

𝜆𝑗,𝑡 as the corresponding shadow price is also known as water value and represents the current 

marginal value of the content of the storage. 

Additionally, the installed storage volume limits the time-dependent storage level. 

𝑅𝑉𝑗,𝑡:  𝑥𝑗,𝑡 ≤ 𝑉𝑗 ⊥ 𝜈𝑗,𝑡
𝑉 ≥ 0 (5) 

Similar to the interpretation of the shadow price of the restriction in equation (3), 𝜈𝑗,𝑡
𝑉  gives the 

marginal value of additional storage volume. All variables are furthermore assumed to be is 

greater than zero. 

As usual, for capacity planning approaches (starting with Boiteux, 1960) in the electricity 

industry, demand has been considered as price-inelastic so far. Empirical evidence indeed 

suggests that short-run price-elasticity for electricity is very low. Nevertheless, it is generally 

assumed that there is an upper bound to the willingness to pay for electricity. This value has also 

labeled the value of lost load (VoLL). 

 
2 Note that only the time-variability of renewables is considered here. The forecast errors associated with 
their operation are neglected since this would lead to a stochastic long-term equilibrium that is hardly 
tractable analytically. 

3 Thereby unavailabilities resulting from planned maintenance and unplanned outages are neglected. 
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A straightforward approach for incorporating the possibility of demand reduction in the 

previously established framework is to define an additional “generation” source (i.e. load 

shedding), which allows reducing demand at very high variable cost (VoLL). It is also convenient 

to assume that this option has no (relevant) capacity limit and no investment costs since grid 

operators foresee it anyhow to ensure stable operations. In principle, it is also possible to include 

further (less costly) options of demand responses into the framework, yet this would not add 

substantial insight. Instead, many demand response options may be considered as storage since 

the unconsumed energy at some given point in time is frequently compensated by higher 

consumption later on (or on beforehand). 

2.2 Solution approach 

The set of equations (1] to (5) corresponds to a linear optimization problem that can be solved 

analytically using the Lagrange method, which is done in three steps. First, the Lagrangian is built 

by summing up the objective function and all restrictions multiplied with their Lagrange-

Multiplier (shadow prices): 

𝐿 = ∑(∑𝑐𝑖
𝑜𝑝

⋅ ∆t ∙ 𝑦𝑖,𝑡
𝑖

+ 𝜇𝑡 ⋅ (𝐷𝑡 +∑𝑠𝑗,𝑡
−

𝑗

−∑𝑦𝑖,𝑡
𝑖

−∑𝑠𝑗,𝑡
+

𝑗

)

𝑡

+∑𝜈𝑖,𝑡 ⋅ (𝑦𝑖,𝑡 − 𝑏𝑖,𝑡 ∙ 𝐾𝑖)

𝑖

+∑𝜈𝑗,𝑡
+ ⋅ (𝑠𝑗,𝑡

+ − 𝐾𝑗
+)

𝑗

+∑𝜈𝑗,𝑡
− ⋅ (𝑠𝑗,𝑡

− − 𝐾𝑗
−)

𝑗

+∑𝜆𝑗,𝑡 ∙ (𝑥𝑗,𝑡+1 − 𝑥𝑗,𝑡 − 𝜂𝑗
− ⋅ 𝑠𝑗,𝑡

− ∙ ∆t +
1

𝜂𝑗
+ ⋅ 𝑠𝑗,𝑡

+ ∙ ∆t)

𝑗

+∑𝜈𝑗,𝑡
𝑉 ⋅ (𝑥𝑗,𝑡 − 𝑉𝑗)

𝑗

) +∑𝑐𝑖
𝑖𝑛𝑣 ∙ 𝐾𝑖

𝑖

+∑𝑐𝑗
𝑖𝑛𝑣,− ∙ 𝐾𝑗

−

𝑗

+∑𝑐𝑗
𝑖𝑛𝑣,+ ∙ 𝐾𝑗

+

𝑗

+∑𝑐𝑗
𝑖𝑛𝑣,𝑉 ∙ 𝑉𝑗

𝑗

 

(6) 

Then the Lagrangian has to be differentiated concerning each primal and dual variable, and the 

derivatives have to be bounded by zero from below if the corresponding variable is bound to be 

positive. The obtained results for the Lagrange function and the first-order derivatives are 

summarized in Appendix A. In the last step, the variables are computed by solving the obtained 

system of inequalities (KKT-conditions). However, this step requires case distinctions since the 

inequality constraints may be binding or non-binding. 
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3 Operation principles 

The solution of the previously defined linear optimization model defines the efficient portfolio, 

including the operation of different technologies over time. Subsequently, the fundamental 

properties of marginal technologies and electricity prices (shadow prices of demand) are first 

discussed in Section 3.1. 

In Section 3.2, the particular role of storage technologies is emphasized by the investigation of 

the changes in the value of the storage contents.  

3.1 Fundamentals 

With given capacities, operation at each moment in time may be characterized as follows: 

Proposition 1 [dispatch of generation and storage technologies – control variables] 

The operation of the generation and storage technologies, which may be considered as control 

variables, follows the following principles: 

P 1.1. The dispatch of the generation technologies, corresponding to the choice of the control 

variables 𝑦𝑖,𝑡 is done in the order of increasing variable costs 𝑐𝑖
𝑜𝑝

. 

P 1.2. The dispatch of storage discharging 𝑠𝑗,𝑡
+  is based on the same principle as 

1

𝜂𝑗
+ 𝜆𝑗,𝑡 as 

corresponding variable (opportunity) cost. 

P 1.3. Storage charging 𝑠𝑗,𝑡
−  is dispatched based on the variable (opportunity) value of charging 

in height of 𝜂𝑗
−𝜆𝑗,𝑡. 

Alternative decision variable and combined dispatchable supply stack: 

P 1.4. Define the unused charging capacity of storage as an alternative control variable 𝑠𝑗,𝑡
𝑜 =

𝐾𝑗
− − 𝑠𝑗,𝑡

− , and split generation technologies into dispatchable 𝑖𝑑 ∈ 𝐼𝑑 and non-

dispatchable (renewable energy) 𝑖𝑅𝐸 ∈ 𝐼𝑅𝐸 technologies as well as storage technologies 

into the unused charging 𝑗𝑜 ∈ 𝐽𝑜 and discharging 𝑗+ ∈ 𝐽+ part., allowing the 

representation of all dispatchable controls as 𝑘 ∈ 𝒦 with 𝒦 = 𝐼𝑑 ∪ 𝐽𝑜 ∪ 𝐽+ with their 

operation variable 𝑢𝑘,𝑡 such that 𝑢.,𝑡 = [𝑦⋅,𝑡′   𝑠⋅,𝑡
𝑜 ′   𝑠⋅,𝑡

+ ′]′, with marginal costs  𝜅𝑘,𝑡 and with 

capacities 𝐾𝑘 such that 𝐾.  = [𝐾.′   𝐾.
−′   𝐾.

+′]′.  

Moreover define a corresponding augmented residual demand (see Figure 1).4  

𝐴𝑡 = max{𝐷𝑡 − 𝑌𝑅𝐸,𝑡 + 𝐾𝑡𝑜𝑡𝑎𝑙
−  ,0} 

(7) 

 
4 Note that the maximum operator in equation (7) is chosen to represent renewable curtailment in case of 
the augmented residual demand being negative, i.e. renewable feed-in exceeding the sum of demand and 
possible storage charging. This formulation implies that curtailment of fluctuating renewables is the 
ultimate control to prevent oversupply. It reflects thus the priority dispatch accorded to renewables in many 
legislations. Yet it also implies that this curtailment comes at no cost. 
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Then the supply-demand equilibrium restriction (see 𝑅𝐷,𝑡, equation (2)) can be written as: 

∑ 𝑢𝑘,𝑡
𝑘

= 𝐴𝑡   ⊥ 𝜇
𝑡
 (8) 

and the optimal operation at any electricity price 𝜇𝑡 is described through the merit-order 

of the combined dispatchable supply stack: 

  Infra-marginal operation:  If 𝜅𝑘,𝑡 < 𝜇𝑡, then 𝑢𝑘,𝑡 = 𝐾𝑘 

  Marginal operation:  If 𝜅𝑘,𝑡 = 𝜇𝑡, then 𝑢𝑘,𝑡 ∈ [0 𝐾𝑘] 

  Extra-marginal non-operation: If 𝜅𝑘,𝑡 > 𝜇𝑡, then 𝑢𝑘,𝑡 = 0 

(9) 

For the proof, see Appendix B. 

Based on proposition P1.4, we can now relate the marginal costs 𝜅𝑚,𝑡 as follows to the type of 

marginal unit: 

marginal unit: shadow price:  

 Conventional generation  𝜅𝑚,𝑡 = 𝑐𝑚
𝑜𝑝

⋅ ∆t, 𝑚 ∈ 𝐼𝑑 (10) 

 Storage (unused-)charging 𝜅𝑚,𝑡 = 𝜂𝑚
− ∙ 𝜆𝑚,𝑡 ⋅ ∆t, 𝑚 ∈ 𝐽𝑜 (11) 

 Storage discharging  𝜅𝑚,𝑡 =
1

𝜂𝑚
+ ∙ 𝜆𝑚,𝑡 ⋅ ∆t, 𝑚 ∈ 𝐽+ (12) 

The combined dispatchable supply stack is then given by the increasing marginal costs5 of the 

sorted controls 𝑘′. Figure 1 illustrates this for an example.  

 

 

Figure 1: Exemplary demand and supply stack (merit-order) – modification from traditional merit order 
(left) to modified demand and supply stack including storage (right) 

 
5 𝜅𝑘′−1,𝑡 < 𝜅𝑘′,𝑡 < 𝜅𝑘′+1,𝑡 
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In the left part of Figure 1, the traditional merit order with the total supply stack (incl. storage 

discharging) the inelastic demand curve (including load shedding as well as storage charging) is 

given.6 In this setting, the demand, as well as the supply stack, are time-dependent. By 

introducing the residual demand as the difference between the demand and the intermittent feed-

in (primarily renewables), only dispatchable generation technologies remain in the supply stack. 

Additionally, load shedding is shifted from the demand to the supply side (center figure). 

Dispatchable charging is still part of the (residual) demand side. Under the assumption of P 1.4, 

all dispatchable controls (including unused-charging of storage) are forming the combined 

dispatchable supply stack. The position of the storage in the supply stack depends on the current 

value of the storage content (water value) and stays constant for a specified period (see following 

sections). In any case, the intersection between the augmented residual demand and the 

combined dispatchable supply stack yields the marginal technology and the price. 

For the ordered supply stack, we may define the cumulative capacity 𝐾𝑘,𝑡
𝑐  up to control 𝑘 as 

follows: 

𝐾𝑘,𝑡
𝑐 = ∑ 𝐾𝑘′

𝑘′|𝜅𝑘′,𝑡≤𝜅𝑘,𝑡

            𝐾𝑘,𝑡
𝑐−1 = ∑ 𝐾𝑘′

𝑘′|𝜅𝑘′,𝑡<𝜅𝑘,𝑡

 (13) 

Additionally, we have defined here the cumulative capacity 𝐾𝑘,𝑡
𝑐−1 of all technologies which are 

unequivocally preceding control 𝑘 in the merit order. This separate definition is essential in 

case of ties, i.e. controls with identical marginal costs. 

Corollary 1 [marginal control] 

At any moment in time 𝑡7, there is a marginal control 𝑚, which sets the shadow price of 

demand 𝜇𝑡 corresponding to its marginal costs 𝜅𝑚,𝑡, i.e. 𝜇𝑡 = 𝜅𝑚,𝑡. 

For any control k, precisely one of the following three possibilities holds at any time 𝑡:  

a) Infra-marginal technology: 𝜅𝑘,𝑡 < 𝜇𝑡  ∧ 𝑢𝑘,𝑡 = 𝐾𝑘 ∧ 𝐾𝑘,𝑡
𝑐 < 𝐴𝑡 

b) Marginal technology: 𝜅𝑘,𝑡 = 𝜇𝑡  ∧ 0 ≤ 𝑢𝑘,𝑡 ≤ 𝐾𝑘   ∧ 𝐾𝑘,𝑡
𝑐−1 ≤ 𝐴𝑡 ≤ 𝐾𝑘,𝑡

𝑐  

c) Extra-marginal technology: 𝜅𝑘,𝑡 > 𝜇𝑡  ∧ 𝑢𝑘,𝑡 = 0 ∧ 𝐾𝑘,𝑡
𝑐−1 > 𝐴𝑡 

 
6 Note that load shedding is not included in the formal problem formulation of section 2 in order to avoid 
further notational complications. Yet the extension is straightforward as illustrated in Figure 1. Effectively, 
load shedding is then equivalent to an additional (very expensive) conventional generation technology (see 
Stoft 2002). 

7 Except for a limited number of time steps, where another price is needed to ensure the matching of pay-
offs with investment costs for each technology, see section 5, notably Proposition 3. 
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Note that this corollary does not preclude the case that there may be two marginal technologies 

at some point in time. For example, both conventional generation technology and storage 

discharging may be marginal. Similarly, also storage charging and conventional generation may 

simultaneously be marginal. We will come back to such cases in Section 5. 

3.2 Water values and the specific role of storage 

The previous results indicate that the marginal value drives the operation of storage 𝜆𝑗,𝑡, which is 

known by practitioners as “water value” or more generally “marginal storage value.” Inspection 

of the Lagrangian reveals the following properties: 

Proposition 2 [storage value over time] 

The shadow price 𝜆𝑗,𝑡 describes the current position of discharging and charging options for 

storage 𝑗 in the merit order. Its trajectory is derived from the following principles: 

P 2.1. The marginal storage value remains constant  (𝜆𝑗,𝑡+1 = 𝜆𝑗,𝑡), if the storage operates strictly 

between its filling level bounds, i.e., 0 < 𝑥𝑗,𝑡 < 𝑉𝑗 holds. 

P 2.2. The marginal storage value increases (𝜆𝑗,𝑡+1 = 𝜆𝑗,𝑡 + 𝜈𝑗,𝑡
𝑉 ) only in time steps 𝑡, when the 

storage level reaches the upper bound (𝑥𝑗,𝑡 = 𝑉𝑗).  

Note that the reverse implication is not valid, i.e., the water value may stay constant while the 

filling level reaches the upper bound. 

P 2.3. The marginal storage value decreases (𝜆𝑗,𝑡+1 < 𝜆𝑗,𝑡) only in time steps 𝑡, when the storage 

level reaches the lower bound (𝑥𝑗,𝑡 = 0).  

Again, the reverse implication does not hold, i.e., the water value may stay constant while the 

lower bound of the storage level is reached. 

For the proof, see Appendix C. 

The first part of this proposition states that the “water value” remains constant as long as the 

reservoir content does not reach the upper or lower bound. The second part then states that 

marginal storage value may increase when the storage gets full, whereas the last part affirms that 

the value may decrease when the storage is empty. The key point is that changes in water value 

may only occur when the storage level reaches its bounds. Nevertheless, the opposite conclusion 

does not hold: Empty or full storage may occur without inducing a change in the water value, 

which may be the case when there are ties (similar marginal costs) in the merit order. This 

phenomenon will be discussed further in Section 4. 

Contact points, defined as points where the marginal storage value changes, may consequently 

be used to separate different phases in storage operation. We label these phases with constant 

water values half-cycles (HC). 
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Figure 2: Half-cycles with exemplary storage filling levels and water values. 

As shown in Figure 2, half-cycles may consist of an empty-full or a full-empty transition. 

However, also the other combinations of start and end states, i.e. empty-empty and full-full, can 

constitute a half cycle. When multiple generation technologies are present, an increase in the 

marginal value is not necessarily followed by a decrease at the next boundary. Instead, one 

increase in the water value may follow another (see Figure 2, HC2→HC3 and HC3→HC4), and 

correspondingly, the boundaries reached may repeatedly be the same.  

While empty storage at the end of a half-cycle implies a decreasing water value, full storage 

inversely goes along with an increase in the water value: an immediate consequence of the 

trajectories of the dual variables, as discussed in Proposition 2. 

Note that different storage technologies may have different half cycles and may operate differently 

at the same point in time. For example, large seasonal storage may be charged while at the same 

time small daily storage may be discharged. 

4 Investment Principles 

The optimal generation mix is derived from a long-term cost minimization perspective (see 

Section 2). However, using the shadow prices from the Lagrangian, the complementarity 

formulation (see, e.g., Gabriel, 2013), this planning optimum may also be reformulated and 

described as a competitive partial equilibrium. Consequently, each technology in the efficient 

portfolio will recover its full investment cost from operation margins in different time steps – 

otherwise it would not be built. We may summarize this as follows (see (A - 2) to (A - 5)): 

Generation technology:  𝑐𝑖
𝑖𝑛𝑣 = ∑𝜈𝑖,𝑡 ∙ 𝑏𝑖,𝑡

𝑡

 ⊥ 𝐾𝑖 > 0 (14) 

Storage charging:  𝑐𝑗
𝑖𝑛𝑣,− = ∑𝜈𝑗,𝑡

−

𝑡

 ⊥ 𝐾𝑗
− > 0 (15) 

Storage discharging:  𝑐𝑗
𝑖𝑛𝑣,+ = ∑𝜈𝑗,𝑡

+

𝑡

 ⊥ 𝐾𝑗
+ > 0 (16) 
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Storage volume:  𝑐𝑗
𝑖𝑛𝑣,𝑉 = ∑𝜈𝑗,𝑡

𝑉

𝑡

 ⊥ 𝑉𝑗 > 0 (17) 

Note that excess returns are also excluded in this formulation, i.e. the sum of operation margins 

cannot be strictly superior to the annualized investment cost – in a competitive market this would 

induce market entry. Moreover, every single investment cost component for a (storage) 

technology has to be paid back by corresponding operation margins. 

Typically, technologies generate operating margins for paying back their investment costs during 

time segments 𝑡 when they are infra-marginal. During these time steps 𝑡, another technology sets 

the price 𝜇𝑡 and the contribution margin 𝜈𝑖,𝑡 is equal to the difference between the price and the 

marginal costs of the infra-marginal technology; this does not only apply to generation 

technologies 𝑖, but also for storage charging and discharging (see equation (18), (19) and (20)). 

Storage volume generates its operation margins by the positive jumps in the shadow price of the 

storage level (see equation (21)) (Steffen und Weber 2013; Lamont 2013). 

While conventional technologies and storage discharging are infra-marginal in times when the 

price exceeds their marginal (opportunity) costs, the opposite holds for storage charging. If 

unused-charging is considered instead of charging (as suggested in Section 3.1), this anomaly 

disappears. However, the operating margins are then less easily interpretable. 

In the next section, we will show that additional levels of operating margins and, therefore prices 

have to occur to match the investment costs exactly. 

5 Derivation of pricing rules and main operation modes for 

storage technologies 

The principles mentioned above may now be used to derive some rules about shadow prices – 

both for demand and for storage content. Already in a system with only generation technologies, 

the fulfillment of integral investment payback equalities leads to some peculiarities in price 

formation in discrete time as indicated in the first part of the subsequent Proposition 3. In the 

Conventional technology, see (A - 6):  𝜈𝑖,𝑡 = {
𝜇𝑡 − 𝑐𝑖

𝑜𝑝
⋅ ∆t

0
       

𝑦𝑖,𝑡 = 𝐾𝑖
𝑦𝑖,𝑡 < 𝐾𝑖

  (18) 

Storage charging, see (A - 7):  𝜈𝑗,𝑡
− = {

𝜆𝑗,𝑡 ∙ 𝜂𝑗
− ⋅ ∆t − 𝜇𝑡
0

       
𝑠𝑗,𝑡
− = 𝐾𝑗

−

𝑠𝑗,𝑡
− < 𝐾𝑗

− (19) 

Storage discharging, see (A - 8):  𝜈𝑗,𝑡
+ = {

𝜇𝑡 −
1

𝜂𝑗
+ 𝜆𝑗,𝑡 ⋅ ∆t

0

       
𝑠𝑗,𝑡
+ = 𝐾𝑗

+

𝑠𝑗,𝑡
+ < 𝐾𝑗

+ (20) 

Storage volume, see (A - 9):  𝜈𝑗,𝑡
𝑉 = {

𝜆𝑗,𝑡 − 𝜆𝑗,𝑡−1
0

       
𝑥𝑗,𝑡 = 𝑉𝑗
𝑥𝑗,𝑡 < 𝑉𝑗

 (21) 
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case of storage, the integral reservoir filling level constraint even leads to a priori unexpected 

price patterns and dominant operation modes as illustrated in the second part of Proposition 3. 

In order to prepare these statements, it is useful to reconsider the operation of the generation and 

storage units first. The left part of Figure 3 illustrates the operation of a generation unit 𝑖 by 

indicating capacity bands against (augmented) residual load levels over time.  

 

Figure 3: Main operation modes of generation technologies and storage technologies 

As stated in proposition 1, the technology will not operate as long as 𝐴𝑡 is below the lower 

capacity level 𝐾𝑖−1
𝑐 . Consequently, it will also not earn any operation margin. When 𝐴𝑡 is inside 

the capacity band corresponding to technology i, i.e. 𝐴𝑡 > 𝐾𝑖−1
𝑐  and 𝐴𝑡 < 𝐾𝑖

𝑐, then the technology 

is marginal and being the price-setting technology, it does not earn any operating margin. This 

may change for the case 𝐴𝑡 = 𝐾𝑖
𝑐 but it will certainly whenever 𝐴𝑡 exceeds 𝐾𝑖

𝑐, because then 

another technology is price-setting.  

In the case of storage technologies, similar considerations may be made, yet here five operation 

areas have a priori to be distinguished (𝐼 𝑡𝑜 𝑉, see right part of Figure 3). And additionally, the 

volume constraint relevant for each half-cycle has to be fulfilled. 

The five operation areas may be briefly characterized as follows: 

I Full charging (infra-marginal charging) & no discharging (extra-marginal discharging):  

𝑠𝑗,𝑡
− = 𝐾𝑗

− (𝑟𝑒𝑠𝑝.  𝑠𝑗,𝑡
𝑜 = 0) ∧ 𝑠𝑗,𝑡

+ = 0  

II Partial charging (marginal (unused-)charging) & no discharging (extra-marginal 

discharging):  

𝐾𝑗
− > 𝑠𝑗,𝑡

− > 0 (𝑟𝑒𝑠𝑝.  0 < 𝑠𝑗,𝑡
𝑜 < 𝐾𝑗

−) ∧ 𝑠𝑗,𝑡
+ = 0  

III No charging (extra-marginal charging) & no discharging (extra-marginal discharging):  

𝑠𝑗,𝑡
− = 0 (𝑟𝑒𝑠𝑝.  𝑠𝑗,𝑡

𝑜 = 𝐾𝑗
−) ∧ 𝑠𝑗,𝑡

+ = 0  
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IV No charging (extra-marginal charging) & partial discharging (marginal discharging):  

𝑠𝑗,𝑡
− = 0 (𝑟𝑒𝑠𝑝.  𝑠𝑗,𝑡

𝑜 = 𝐾𝑗
−) ∧  0 < 𝑠𝑗,𝑡

+ < 𝐾𝑗
+  

V No charging (extra-marginal charging) & full discharging (infra-marginal):  

𝑠𝑗,𝑡
− = 0 (𝑟𝑒𝑠𝑝.  𝑠𝑗,𝑡

𝑜 = 𝐾𝑗
−) ∧ 𝑠𝑗,𝑡

+ = 𝐾𝑗
+  

The critical question is then on the height of the shadow price for the storage content since it 

determines the position of the storage in the overall merit order and hence triggers the switch 

between the operation areas. As discussed in Section 3.2, this shadow price may change over 

time, yet it will stay constant within one half-cycle.  

If the steps of the merit-order are all distinct, the storage charging and discharging quantities are 

entirely determined by the position in the merit order, even in the case of marginal charging or 

discharging. More precisely we get for marginal discharging 𝑠𝑗,𝑡
+ = 𝐴𝑡 − 𝐾𝑗+

𝑐−1 and for marginal 

charging 𝑠𝑗,𝑡
− = 𝐾𝑗𝑜

𝑐 − 𝐴𝑡   (𝑠𝑗,𝑡
0 = 𝐴𝑡 − 𝐾𝑗𝑜

𝑐−1). At the same time, the storage volume constraints are 

binding at the beginning and the end of each half-cycle and hence the sum of all charging and 

discharging activities is prespecified. In general, this leads to an overdetermined equation system 

without solution– unless the assumption of distinct steps in the merit order is abandoned, leading 

to the following proposition:  

Proposition 3 [price levels and operation modes] 

P 3.1. In a system with only generation technologies and load shedding, the prices correspond 

to the variable cost of one technology except for time steps where 𝐴𝑡 = 𝐾𝑖
𝑐 holds for some 

technology 𝑖. For those time steps, the following equality holds: 

∀𝑖  ∑ (𝜇𝑡 − 𝑐𝑖
𝑜𝑝

⋅ Δt)

𝑡|𝐴𝑡=𝐾𝑖
𝑐

= (𝑐𝑖
𝑖𝑛𝑣 − 𝑐𝑖+1

𝑖𝑛𝑣) − 𝑇𝑖+1 ⋅ (𝑐𝑖+1
𝑜𝑝

− 𝑐𝑖
𝑜𝑝
) ⋅ Δt (22) 

Thereby 𝑇𝑖+1is the integer such that 𝑇𝑖+1 = 𝑐𝑎𝑟𝑑({𝑡|𝐴𝑡 > 𝐾𝑖
𝑐}). At the same time, it must 

satisfy the relations 𝑇𝑖+1 ≤
𝑐𝑖
𝑖𝑛𝑣−𝑐𝑖+1

𝑖𝑛𝑣

(𝑐𝑖+1
𝑜𝑝

−𝑐𝑖
𝑜𝑝

)⋅Δ 
 and 𝑇𝑖+1 ≥

𝑐𝑖
𝑖𝑛𝑣−𝑐𝑖+1

𝑖𝑛𝑣

(𝑐𝑖+1
𝑜𝑝

−𝑐𝑖
𝑜𝑝

)⋅Δ 
− 𝑐𝑎𝑟𝑑({𝑡|𝐴𝑡 = 𝐾𝑖

𝑐}). 

P 3.2. In a system including generation and storage technologies as well as load shedding, the 

storage shadow values for a storage technology 𝑗 with 𝑁𝑗 half-cycles will align in up to 

𝑁𝑗 − 1 half-cycles with the variable costs of some other (reference) control 𝑘𝑟 (not 

necessarily the same in all half-cycles). Thereby the two main operation modes (MOM) 

may be distinguished: 

MOM 1 – flexible charging of storage 𝑗 in half-cycle 𝑛𝑗: 

∃𝑘𝑟 ∈ 𝒦 \{𝑗}   ∀𝑡 ∈ {𝑡𝑛𝑗
𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑛𝑗

 𝑛𝑑} , 𝜆𝑗,𝑡 =
1

𝜂𝑗
− ⋅ 𝜅𝑘𝑟,𝑡 ⋅

1

Δ𝑡
 (23) 

 



 

15 
 

MOM 2 – flexible discharging of storage 𝑗 in half-cycle 𝑛𝑗: 

∃𝑘𝑟 ∈ 𝒦 \{𝑗}  ∀𝑡 ∈ ∀𝑡 ∈ {𝑡𝑛𝑗
𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑛𝑗

 𝑛𝑑} , 𝜆𝑗,𝑡 = 𝜂𝑗
+ ⋅ 𝜅𝑘𝑟,𝑡 ⋅

1

Δ𝑡
 (24) 

P 3.3. In the system described in P 3.2, other shadow prices will occur in selected half-cycles 

and time steps in order to satisfy the investment payback equalities (18) to (21). 

Proof see Appendix D 

The two main operation modes distinguished in P 3.2 are discussed in the subsequent sections. 

In MOM 1 (see Section 5.1), storage (unused-)charging and the use of the reference control 𝑘𝑟 

are at the same cost level in the merit order. Hence the system optimizer (or the market 

equilibrium) is indifferent between (unused-)charging and the reference control, as long as other 

constraints like the energy balance of the storage are fulfilled. Hence charging is at least partly 

flexible in time while storage discharging patterns are clearly defined (constrained). MOM 2 (see 

Section 5.2), on the contrary, has predetermined storage charging and partly flexible discharging 

patterns. Flexible thereby means that multiple optimal solutions exist with differences in capacity 

usage over time. 

5.1 Main operation mode 1 (MOM 1) – flexible storage charging 

Put somewhat differently, MOM 1 corresponds to half-cycles with given storage discharging 

pattern and a surplus of chargeable energy through some control 𝑘𝑟. This surplus makes charging 

energy not scarce and drives the water value to the level of marginal cost of 𝑘𝑟, divided by the 

charging efficiency 𝜂𝑗
− (see equation (11) and Figure 4). Note that the control 𝑘𝑟 will typically be 

a generation technology with constant marginal cost over the entire optimization horizon. 

However, it could also be another storage that is larger (in terms of its volume-to-capacity ratio) 

so that the marginal cost remains constant over the half-cycle of storage 𝑗. 

 

Figure 4: Combined dispatchable supply stack for MOM 1 
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During states II in MOM 1, (unused-)charging with control 𝑘𝑟 is not constrained by available 

energy, which implies indifferences of capacity usage over time, meaning that during state II in 

MOM 1the half cycle control 𝑘𝑟 and storage charging 𝑗− indifferently set the price to 𝜅𝑘𝑟,𝑡 (see 

equation (23)). 

𝜇𝑡  = 𝜅𝑘𝑟,𝑡 = 𝜆𝑗,𝑡 ∙ 𝜂𝑗
− ⋅ ∆t (25) 

Therefore temporarily, marginal (unused-)charging 𝑠𝑗,𝑡
𝑜  and marginal operation 𝑢𝑘𝑟,𝑡 (see equation 

(8)) are in a tie position, and only the sum is well defined: 

𝑢𝑘𝑟,𝑡 + 𝑠𝑗,𝑡
𝑜 = 𝐴𝑡 − 𝐾𝑘𝑟

𝑐−1 (26) 

Discharging is extra-marginal in this state II as indicated before: 𝑠𝑗,𝑡
+ = 0. 

For state IV, discharging is marginal, and the price will then align on the efficiency-adjusted 

water-value: 

𝜇𝑡  =  𝜆𝑗,𝑡 ∙
1

𝜂𝑗
+ ⋅ ∆t = 𝜅𝑘𝑟,𝑡 ∙

1

𝜂𝑗
− ⋅ 𝜂𝑗

+ (27) 

i.e., the price in state IV corresponds to the costs of the reference technology-adjusted by the 

cycling efficiency of the storage.  

5.2 Main operation mode 2 (MOM 2) – flexible storage discharging 

MOM 2 corresponds to half-cycles with limited storage charging, and through discharging, the 

storage 𝑗 is able to substitute generation of 𝑘𝑟 partly. In comparison to MOM 1, storage 

discharging is flexible in time although restricted by available energy. Correspondingly the water 

value gets up to the cost level of the next marginal technology 𝑘𝑟, corrected by the discharging 

efficiency 𝜂𝑗
− (see equation (12) and Figure 5). 

 

Figure 5: Combined dispatchable supply stack for MOM 2 
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During states IV in MOM 2, discharging is a perfect substitute for the use of control 𝑘𝑟 (except 

for the energy restriction), which implies indifferences in discharging capacity usage over time. 

Correspondingly, marginal discharging 𝑠𝑗,𝑡
+  and marginal operation 𝑢𝑘𝑟,𝑡 are in a tie position 

during state IV in MOM 2, and only their sum is well defined (see equation (8)). 

𝑢𝑘𝑟,𝑡 + 𝑠𝑗,𝑡
+ = 𝐴𝑡 − 𝐾𝑘𝑟

𝑐−1 (28) 

Half cycle control 𝑘𝑟 and storage discharging 𝑗+ hence both set the price to 𝜅𝑘𝑟,𝑡 (see equation 

(24)). 

𝜇𝑡  = 𝜅𝑘𝑟,𝑡 =
𝜆𝑗,𝑡

𝜂𝑗
+ ⋅ ∆t (29) 

The corresponding marginal charging in state II then occurs at a price: 

𝜇𝑡  = 𝜆𝑗,𝑡 ∙ 𝜂𝑗
− ⋅ ∆t = 𝜅𝑘𝑟,𝑡 ∙ 𝜂𝑗

− ⋅ 𝜂𝑗
+ (30) 

i.e., the price in state II in MOM 2 is again determined by the costs of the reference technology-

adjusted by the cycling efficiency of the storage. 

6 Storage as part of the efficient portfolio – An application 

The previous sections have provided analytical insights in the drivers for storage operation and 

investment, notably on the changing role of storage over time within efficient technology 

portfolios. In the subsequent application, the operation and investment characteristics are 

discussed for a discretized and numerically solved optimization problem. The intention is now 

to provide illustrations of the described properties in a stylized but not entirely artificial example. 

After describing the scenario assumptions (see Section 6.1), the main results are summarized for 

Lithium-Ion (Li-Ion) and Pumped Hydro Storage (PHS) as part of the efficient portfolio (see Section 

6.2). Thereby scenarios with only one of the two technologies are considered as well as both 

technologies in combination. Section 6.3 highlights main operation modes by analyzing specific 

examples as well as illustrating the effects on the merit order. To conclude, payback of the 

investment costs is shown in Section 6.4. 

6.1 Scenario assumptions 

This application serves to illustrate the analytics using a case study for Germany for the year 2040 

(see, e.g., Böcker et al., 2015). Besides four conventional technologies, two storage technologies 

are considered as possible elements of the efficient portfolio (see Table 1). 
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Table 1: Main input parameter8 

 
Capacity 

costs 
Volume 

costs 
Technical 

lifetime 
Efficiency Operational 

costs 
Fuel costs 

 
k€/MW k€/MWh years % €/MWh €/MWh 

Lignite  1,500 0 40 49% 37.9 8.2 

Hard coal 1,200 0 40 51% 50.6 23.9 

CCGT 700 0 30 62% 63.4 50.5 

OCGT 400 0 25 41% 95.9 76.3 

VoLL 0 0 -- -- 10.000 -- 

PHS 840 20 50 80% -- -- 

Li-Ion 100 150 20 90% -- -- 

 

In this application, renewable capacities are set exogenously (see Table 2), so that the given 

residual demand has to be covered by the efficient portfolio of conventional and storage 

technologies. The time series for demand and renewable feed-in are taken from historical 

observations in 2011 and scaled to the installed capacities. Furthermore, it is assumed that no 

penalty for renewable curtailment has to be paid. The operational costs for fossil technologies 

are derived from the fuel prices given in Table 1 and a CO2 price set to 40 €/tCO2. The charging 

efficiency is set to the cycle efficiency of the storage, and the discharging efficiency is 

correspondingly set to one. As shown in Table 1, load shedding is included as an additional 

technology with the operational costs of 10€/kWh (VoLL). 

Table 2: Installed renewable capacities 

Wind onshore 60.1 GW 

Wind offshore 54.0 GW 

Photovoltaic 74.5 GW 

 

Transmission capacities to neighboring countries are not taken into account, nor are internal grid 

restrictions. 

6.2 Main results 

The application shows that with the given cost structure in this greenfield approach, hard coal is 

not part of the efficient portfolio in 2040. In the scenario without storage, the efficient portfolio 

includes 81 GW of conventional generation, including 43% Lignite, while lost load sums up to 

7.3 GWh, corresponding to roughly 0.0015 % of total demand (see Table 3). 

 
8 based on data by (Kost et al. 2013; Fürstenwerth und Waldmann 2014; IEA 2013; Sterner und Stadler 
2014) and own analyses 
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If the option Li-Ion can be chosen, the total capacity rises to 82 GW and storage with a capacity 

of 7 GW, and a volume of 27 GWh is found to be efficient. The storage is then discharged in 

about four full load hours. The storage capacity replaces gas-fired generation, especially OCGT, 

but also CCGT. The lost load decreases to less than 2 GWh.  

In contrast, the PHS scenario leads to an efficient storage capacity of about 11 GW and 259 

GWh, i.e. the storage configuration has a power-to-energy ratio of 1:23. This results from the fact 

that storage volume is cheaper in case of PHS whereas charging and discharging capacities are 

cheaper for Li-Ion batteries. Consequently, the investment into PHS storage substitutes for various 

conventional technologies, not only gas technologies. 

Table 3: Efficient capacities and system costs with and without Li-Ion and PHS storage 

 No storage Li-Ion PHS Li-Ion & PHS 

Lignite 34.8 GW 34.9 GW 33.2 GW 33.2 GW 

Hard Coal 0 GW 0 GW 0 GW 0 GW 

CCGT 17.7 GW 15.8 GW 13.3 GW 13.2 GW 

OCGT 28.2 GW 24.3 GW 23.1 GW 22.0 GW 

Li-Ion 0 GW 7.1 GW 
(27.4 GWh) 

0 GW 4.2 GW 
(12.9 GWh) 

PHS 0 GW 0 GW 11.1 GW 
(259.3 GWh) 

9.1 GW 
(239.8 GWh) 

Lost Load (max) 2.8 GW 

(sum) 7.3 GWh 

(max) 1.3 GW 

(sum) 1.8 GWh 

(max) 2.8 GW 

(sum) 7.3 GWh 

(max) 1.7 GW 

(sum) 3.0 GWh 

Total Capacity 80.7 GW 82.1 GW 80.7 GW 81.7 GW 

System Cost 16.94 bn€ 16.77 bn€ 16.70bn€ 16.64 bn€ 

 

In an energy system with PHS, additional Li-Ion storage will lead to a decrease in efficient PHS 

capacity by 2 GW. Lignite and CCGT stay almost constant; only the efficient capacity of OCGT 

peakers decreases by 1 GW. 

6.3 Storage operation and main operation modes  

As indicated in Table 4, Li-Ion storage has significantly more half-cycles (such as changes in the 

marginal storage value) than pumped hydro storage. Even for one storage technology, the length 

of the half cycles varies strongly, for example, for PHS the longest half-cycle encompasses more 

than 400 hours for a mean of approximately 85. Moreover, these half-cycles correspond to 

somewhat different storage values as indicated in Figure 9. 
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Table 4: Half Cycles for Li-Ion and PHS storage 

 Li-Ion PHS Li-Ion & PHS 

Li-Ion num 

 max duration [h] 

 min duration [h] 

 mean duration [h] 

388 

140 

3 

20 

--- 

--- 

--- 

--- 

455 

115 

3 

17 

PHS  num 

 max duration [h] 

 min duration [h] 

 mean duration [h] 

--- 

--- 

--- 

--- 

103 

404 

3 

82 

96 

378 

6 

87 

 

Subsequently, we focus on the application case of PHS as sole storage technology for further 

insights into the main storage operation modes. In the following two figures, the main operation 

modes (MOM 1 in Figure 6 and MOM  2 in Figure 7) are illustrated for the case that the marginal 

storage value aligns with the marginal cost of lignite.  

 

Figure 6: Exemplary energy supply (left axis) and storage level (right axis) during half cycles of PHS in 
MOM 1 aligned on lignite as marginal technology. Start and end filling levels combinations as follows: top 
left: empty-empty; top right: empty-full; bottom left: full-empty; bottom right: full-full, bottom right. 
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Each of the four subfigures shows a different type of half-cycle, i.e. with another combination of 

start and end filling levels (full or empty). As deduced in Section 5, the operation of storage in a 

selected half cycle (with a corresponding marginal technology) has some flexibility due to 

indifferences during state II in MOM 1 – this is observable through the fluctuations between 

storage unused-charging and lignite in Figure 6. In MOM 2, this flexibility is observable during 

state IV (see Figure 7), where storage discharging and lignite production alternate frequently. On 

the contrary, the optimal operation pattern is fully predetermined by the augmented demand 

𝐴𝑡  during the other states.  

 

Figure 7: Exemplary energy supply (left axis) and storage level (right axis) during half cycles of PHS in 
MOM 2 aligned on lignite as marginal technology. Start and end filling levels combinations as follows: top 
left: empty-empty; top right: empty-full; bottom left: full-empty; bottom right. 

When augmented residual demand gets negative, this indicates that the excess renewable feed-

in is larger than the storage charging capacity (state I). Then charging occurs at full rate (since 

(unused-)charging is extra-marginal), and additionally, renewable curtailment occurs. When 

(unused-)charging is marginal (state II), the use of the charging is entirely determined in MOM 2 

(see Figure 7). On the contrary, the operation is flexible (and thus numerically fluctuating, see 
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Figure 6) in MOM 1 due to the indifference between storage (unused-)charging and lignite. State 

III is empty in both MOMs since there is no generation technology with marginal costs close to 

lignite, which would fall between the marginal costs of (unused-)charging and discharging. In 

state IV, discharging is used to complement 𝐴𝑡 in MOM 1. In MOM 2, a flexible use of lignite 

and discharging is on the contrary observed (see Figure 7). However, during state V, when 

discharging gets inframarginal, discharging and lignite entirely operate in both MOMs. 

In both figures, we furthermore find examples illustrating that reaching the lower or upper limit 

of the storage filling level is not a sufficient condition for changes in the storage shadow value 

and hence the start of another half cycle. Instead, we see, such as in the bottom left of Figure 7, 

that the storage is full again around 5 a.m. on 1st June, yet before and after the marginal storage 

value corresponds to the marginal cost of lignite in MOM 2. 

Switching between operation modes over time leads to a profile of irregular steps for the water 

value (illustrated in Figure 8). Six primary levels can be distinguished with roughly 100 changes 

in the investigated year (see half-cycles Table 4) and accumulation in the medium range. One 

additional level may be observed in mid-October (see Figure 8), which results from the 

discretization of the model and the condition to refinance PHS volume-based investment costs 

(see equation (17) and Proposition 2). 

 

Figure 8: Water values (marginal storage value) of PHS over time with the corresponding MOM and the 
related generation technology (in parentheses). 

Figure 9 summarizes the obtained electricity prices in the model (marked as cycles) as a function 

of the augmented residual demand and plotted against the supply stack of the corresponding 

MOM. In contrast to conventional electricity systems with stable supply stacks (merit-order), the 

combined dispatchable supply stack (see Proposition 1) changes between half-cycles depending 

on the relevant operation mode; therefore, six different supply stacks are shown in Figure 9. The 

functional relationship between residual demand and marginal costs is hence not stable over 
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time. As expected, the computed electricity price is a monotonic function of augmented residual 

demand within each MOM. For every single value of residual demand, a fixed marginal control 

is used, and the marginal costs are correspondingly fixed. However, across different MOMs, 

different price levels may correspond to the same residual demand level. For example, at an 

augmented residual load of 50 GW, prices may vary between the cost of lignite and the cost of 

charging the PHS that is discharging at the marginal cost of an OCGT. 

Besides the three levels of marginal costs for the three conventional technologies and the zero 

marginal cost level for cases with the excess supply by renewables, five further price levels are 

hence observed due to storage discharging and unused-charging (hatched areas in Figure 9). The 

price level corresponding to load shedding has thereby been omitted in the graphs since it occurs 

very rarely and would require another scale. 

In the MOM 1 (upper part of Figure 9), there is always an excess of chargeable energy through a 

generation technology 𝑘𝑟 (indicated in parentheses in Figure 9), which is tantamount to 

indifferences between both controls. This indifference during charging sets the water value in the 

MOM 1 and during discharging the storage sets the price above the respective marginal 

generation costs of 𝑘𝑟(with the reciprocal of the cycling efficiency as multiplier). In case of RES, 

this price remains zero. During MOM 1, storage technologies are hence similar to a new 

generation technology in the supply stack. 

 

Figure 9: Merit-Order (marginal costs to cover augmented residual demand) for different MOM´s. 

In the MOM 2 storage charging is limited while storage discharging partly substitutes generation 

of  𝑘𝑟, leading to the supply stacks displayed in the lower part of Figure 9. In these cases the 

water value is set by marginal discharging while indifference with marginal generation from  𝑘𝑟 

occurs. Up to the installed capacity of 𝐾𝑘𝑟, discharging and generation substitute each other 

(within the energy limits of the storage) and beyond 𝐾𝑘𝑟, the storage has to discharge to meet the 

augmented residual demand. 
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Figure 9 illustrates the changes in the supply stack due to the main operation modes but does not 

show which operation margins help to pay back the investment costs of the technologies. As 

stated in Proposition 3, some additional price-levels occur - these have been omitted clarity in 

Figure 9 but will be discussed subsequently. 

6.4 Paying back investment costs 

In the competitive market equilibrium, not only demand will be served in (almost) every hour, 

but also the investment costs for the different technologies have to be balanced by corresponding 

operating margins (zero excess profit condition). Without storage, lignite can generate operating 

margins (or capacity rents) while CCGT and OCGT set the price due to the difference in marginal 

costs as well as during periods of load shedding (see Figure 10, top left). CCGT collects capacity 

rents while OCGT or load shedding sets the price. The peak-technology OCGT is not able to 

generate capacity rents during regular operation; they only occur in those hours where load 

shedding occurs.9 

 

Figure 10: Paying back investment costs - capacity rents earned differentiated by marginal technology. 

When storage is included in the energy system, conventional technologies generate somewhat 

lower capacity rents in cases where other conventional technologies set the price. However, 

additional revenues compensate this loss in hours where storage sets the price. In comparison to 

 
9 If such situations are prevented through regulation, the well-known missing-money problem occurs 
Newbery 2016.  
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the conventional technologies, storage can generate capacity rents by exploiting a wide variety 

of price-spreads; even when renewables drive the price to zero – then the storage may recover 

capacity rents when charging. 

7 Conclusions 

The paper provides analytical insights into the optimality of storage investment and usage in 

power systems with large shares of renewables. It, therefore, complements large-scale 

optimization models, which allow a detailed assessment of specific scenarios, by highlighting the 

main driving forces and trade-offs determining the implementation of storage in a competitive 

environment. 

The analysis provides a unified framework that incorporates storage operation into the supply 

stack – yet emphasizing its time-variable place in the merit order. The place in the supply stack 

is driven by changing marginal storage values. However, these so-called “water values” remain 

constant as long as storage levels do not reach the boundaries. During such “half-cycles,” the 

marginal storage value, moreover, frequently aligns with the marginal costs of generation 

technologies, giving rise to two main operation modes of storage. Within these main operation 

modes, either charging or discharging is determined by the storage energy balance and therefore 

follows a given pattern, while the reverse operation has at least partly some flexibility, given 

indifferences in operation with some generation technology.  

The water value changes with the changing scarcity of supply over time and hence increases in 

periods with high residual demand and decreases in periods with abundant renewable supply. If 

residual demand decreases, it is notably more efficient to “hand over” empty storage to the next 

half-cycle, allowing charging during lower prices, which means a cheaper technology sets the 

price, and therefore the water value decreases. If the need for energy increases (due to higher 

residual demand), the value of the storage content increases as well due to the increasing 

marginal costs of the marginal generation technology, moving the storage at the same time more 

to the right of the supply stack. 

Overall, this not only leads to more complex price patterns with obvious tendencies towards 

peak shaving and valley filling. It also induces more diverse patterns of operation margins, which, 

in turn, allow to pay back all components of the original investment cost. 

At the same time the developed analytical framework is sufficiently compact that it may serve as 

basis for further generalizations in future work. On the one hand, the framework may be 

transposed to a setting in continuous time, which should enable the use of more analytical tools 

and avoid some of the nasty details of integer mathematics. On the other hand, uncertainties in 

feed-in and demand may be considered in another step to address a further crucial challenge of 
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renewables. The combination of both extensions could hopefully path the way to a sound 

analytical treatment of a theoretically very intriguing and at the same time, practically very 

relevant problem: the generation adequacy problem in the presence of fluctuating renewables 

and storage. Solving this problem is a prerequisite to transforming the dream of a 100 % 

renewable electricity system into reality based on a solid foundation in terms of security of supply. 
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Appendix 

Appendix A Lagrange-Function and first-order derivatives 

Lagrange function: 

𝐿 = ∑(∑𝑐𝑖
𝑜𝑝

⋅ ∆t ∙ 𝑦𝑖,𝑡
𝑖

+ 𝜇𝑡 ⋅ (𝐷𝑡 +∑𝑠𝑗,𝑡
−

𝑗

−∑𝑦𝑖,𝑡
𝑖

−∑𝑠𝑗,𝑡
+

𝑗

)

𝑡

+∑𝜈𝑖,𝑡 ⋅ (𝑦𝑖,𝑡 − 𝑏𝑖,𝑡 ∙ 𝐾𝑖)

𝑖

+∑𝜈𝑗,𝑡
+ ⋅ (𝑠𝑗,𝑡

+ − 𝐾𝑗
+)

𝑗

+∑𝜈𝑗,𝑡
− ⋅ (𝑠𝑗,𝑡

− − 𝐾𝑗
−)

𝑗

+∑𝜆𝑗,𝑡 ∙ (𝑥𝑗,𝑡+1 − 𝑥𝑗,𝑡 − 𝜂𝑗
− ⋅ 𝑠𝑗,𝑡

− ∙ ∆t +
1

𝜂𝑗
+ ⋅ 𝑠𝑗,𝑡

+ ∙ ∆t)

𝑗

+∑𝜈𝑗,𝑡
𝑉 ⋅ (𝑥𝑗,𝑡 − 𝑉𝑗)

𝑗

) +∑𝑐𝑖
𝑖𝑛𝑣 ∙ 𝐾𝑖

𝑖

+∑𝑐𝑗
𝑖𝑛𝑣,− ∙ 𝐾𝑗

−

𝑗

+∑𝑐𝑗
𝑖𝑛𝑣,+ ∙ 𝐾𝑗

+

𝑗

+∑𝑐𝑗
𝑖𝑛𝑣,𝑉 ∙ 𝑉𝑗

𝑗

 

(A - 1) 

 

Derivatives with respect to primal variables: 

Conventional capacity (differentiation with respect to 𝐾𝑖): 

𝜕𝐿

𝜕𝐾𝑖
= 𝑐𝑖

𝑖𝑛𝑣 −∑𝜈𝑖,𝑡 ∙ 𝑏𝑖,𝑡
𝑡

≥ 0 ⊥ 𝐾𝑖 ≥ 0 (A - 2) 

Storage charging capacity (differentiation with respect to 𝐾𝑗
−): 

𝜕𝐿

𝜕𝐾𝑗
− = 𝑐𝑗

𝑖𝑛𝑣,− −∑𝜈𝑗,𝑡
−

𝑡

≥ 0 ⊥ 𝐾𝑗
− ≥ 0 (A - 3) 

Storage discharging capacity (differentiation with respect to 𝐾𝑗
+): 

𝜕𝐿

𝜕𝐾𝑗
+ = 𝑐𝑗

𝑖𝑛𝑣,+ −∑𝜈𝑗,𝑡
+

𝑡

≥ 0 ⊥ 𝐾𝑗
+ ≥ 0 (A - 4) 

Storage volume (differentiation with respect to 𝑉𝑗): 

𝜕𝐿

𝜕𝑉𝑗
= 𝑐𝑗

𝑖𝑛𝑣,𝑉 −∑𝜈𝑗,𝑡
𝑉

𝑡

≥ 0 ⊥ 𝑉𝑗 ≥ 0 (A - 5) 

Generation (differentiation with respect to 𝑦𝑖,𝑡): 

𝜕𝐿

𝜕𝑦𝑖,𝑡
= 𝑐𝑖

𝑜𝑝
⋅ ∆t − 𝜇𝑡 + 𝜈𝑖,𝑡 ≥ 0 ⊥ 𝑦𝑖,𝑡 ≥ 0 (A - 6) 
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Storage charging (differentiation with respect to 𝑠𝑗,𝑡
− ): 

𝜕𝐿

𝜕𝑠𝑗,𝑡
− = 𝜇𝑡 + 𝜈𝑗,𝑡

− − 𝜆𝑗,𝑡 ∙ 𝜂𝑗
− ⋅ ∆t ≥ 0 ⊥ 𝑠𝑗,𝑡

− ≥ 0 (A - 7) 

Storage discharging (differentiation with respect to 𝑠𝑗,𝑡
+ ): 

𝜕𝐿

𝜕𝑠𝑗,𝑡
+ = −𝜇𝑡 + 𝜈𝑗,𝑡

+ + 𝜆𝑗,𝑡 ∙
1

𝜂𝑗
+ ⋅ ∆t ≥ 0 ⊥ 𝑠𝑗,𝑡

+ ≥ 0 (A - 8) 

Storage level (differentiation with respect to 𝑥𝑗,𝑡): 

𝜕𝐿

𝜕𝑥𝑗,𝑡
= 𝜆𝑗,𝑡−1 − 𝜆𝑗,𝑡 + 𝜈𝑗,𝑡

𝑉 ≥ 0 ⊥ 𝑥𝑗,𝑡 ≥ 0 (A - 9) 

Derivatives with respect to dual variables: 

Wholesale price (differentiation with respect to 𝜇𝑡): 

𝜕𝐿

𝜕𝜇𝑡
= 𝐷𝑡 +∑𝑠𝑗,𝑡

−

𝑗

−∑𝑦𝑖,𝑡
𝑖

−∑𝑠𝑗,𝑡
+

𝑗

= 0 ⊥ 𝜇𝑡 (A - 10) 

Water value (differentiation with respect to 𝜆𝑗,𝑡): 

𝜕𝐿

𝜕𝜆𝑗,𝑡
= 𝑥𝑗,𝑡+1 − 𝑥𝑗,𝑡 − 𝜂𝑗

− ⋅ 𝑠𝑗,𝑡
− ∙ ∆t +

1

𝜂𝑗
+ ⋅ 𝑠𝑗,𝑡

+ ∙ ∆t ≤ 0 ⊥ 𝜆𝑗,𝑡 ≥ 0 (A - 11) 

Generation capacity value, generation (differentiation with respect to 𝜈𝑖,𝑡): 

𝜕𝐿

𝜕𝜈𝑖,𝑡
= 𝑦𝑖,𝑡 − 𝑏𝑖,𝑡 ∙ 𝐾𝑖 ≤ 0 ⊥ 𝜈𝑖,𝑡 ≥ 0 (A - 12) 

Storage discharging capacity value (differentiation with respect to 𝜈𝑗,𝑡
+ ): 

𝜕𝐿

𝜕𝜈𝑗,𝑡
+ = 𝑠𝑗,𝑡

+ − 𝐾𝑗
+ ≤ 0 ⊥ 𝜈𝑗,𝑡

+ ≥ 0 (A - 13) 

Storage charging capacity value (differentiation with respect to 𝜈𝑗,𝑡
− ): 

𝜕𝐿

𝜕𝜈𝑗,𝑡
− = 𝑠𝑗,𝑡

− − 𝐾𝑗
− ≤ 0 ⊥ 𝜈𝑗,𝑡

− ≥ 0 (A - 14) 

Storage volume value (differentiation with respect to 𝜈𝑗,𝑡
𝑉 ): 

𝜕𝐿

𝜕𝜈𝑗,𝑡
𝑉 = 𝑥𝑗,𝑡 − 𝑉𝑗 ≤ 0 ⊥ 𝜈𝑗,𝑡

𝑉 ≥ 0 (A - 15) 

 

Appendix B Shadow price of the demand - Proof of Proposition 1 

Proposition 1 [dispatch of generation and storage technologies – control variable] 

The operation of the generation and storage technologies, which may be considered as control 

variables, follows the following principles. 

P 1.1 The dispatch of the generation technologies, corresponding to the choice of the control 

variables 𝑦𝑖,𝑡 is done in the order of increasing variable costs 𝑐𝑖
𝑜𝑝

⋅ ∆t. 
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P 1.2 The dispatch of storage discharging 𝑠𝑗,𝑡
+  is based on the same principle with 

1

𝜂𝑗
+ 𝜆𝑗,𝑡 ⋅ ∆t as 

corresponding variable (opportunity) cost. 

P 1.3 Storage charging 𝑠𝑗,𝑡
−  is done based on the variable (opportunity) value of charging in 

height of 𝜂𝑗
−𝜆𝑗,𝑡 ⋅ ∆t. 

Alternative decision variable and combined dispatchable supply stack 

P 1.4 Define the not-operation of storage (unused charging) as an alternative control 

variable 𝑠𝑗,𝑡
𝑜 = 𝐾𝑗

− − 𝑠𝑗,𝑡
−  and split generation technologies into dispatchable 𝑖𝑑 ∈ 𝐼𝑑 and 

non-dispatchable (renewable energy) 𝑖𝑅𝐸 ∈ 𝐼𝑅𝐸 technologies as well as storage 

technologies into the not-charging 𝑗𝑜 ∈ 𝐽𝑜 and discharging 𝑗+ ∈ 𝐽+ part. 

This allows representing all dispatchable controls as 𝑘 ∈ 𝒦 with 𝒦 = 𝐼𝑑 ∪ 𝐽𝑜 ∪ 𝐽+ with 

their operation variable 𝑢𝑘,𝑡 with 𝑢.,𝑡 = [𝑦⋅,𝑡′   𝑠⋅,𝑡
𝑜 ′   𝑠⋅,𝑡

+ ′]′ and marginal costs  𝜅𝑘,𝑡 in a merit-

order as a combined dispatchable supply stack and define a corresponding augmented 

residual demand (see Figure 1)  

𝐴𝑡 = max{𝐷𝑡 − 𝑌𝑅𝐸,𝑡 + 𝐾𝑡𝑜𝑡𝑎𝑙
−  ,0} 

(7) 

. Then the supply-demand equilibrium restriction (see 𝑅𝐷, equation (2)) can be written as: 

∑ 𝑢𝑘,𝑡
𝑘

= 𝐴𝑡 
(8) 

and the optimal operation at any electricity price 𝜇𝑡 is described through the merit-order 

of the combined dispatchable supply stack: 

  Inframarginal operation:  If 𝜅𝑘,𝑡 < 𝜇𝑡, then 𝑢𝑘,𝑡 = 𝐾𝑘 

  Marginal operation:  If 𝜅𝑘,𝑡 = 𝜇𝑡, then 𝑢𝑘,𝑡 ∈ [0 𝐾𝑘] 

  Extramarginal non-operation: If 𝜅𝑘,𝑡 > 𝜇𝑡, then 𝑢𝑘,𝑡 = 0 

(9) 

 

Proof of Proposition 1. 

Regarding P 1.1: The dispatch of generation technologies is determined by the complementarity 

condition (or Karush-Kuhn-Tucker condition) related to the production variable 𝑦𝑖,𝑡: 

𝜕𝐿

𝜕𝑦𝑖,𝑡
= 𝑐𝑖

𝑜𝑝
⋅ ∆t + 𝜈𝑖,𝑡 − 𝜇𝑡 ≥ 0 ⊥ 𝑦𝑖,𝑡 ≥ 0 see (A - 6) 

and the complementarity condition corresponding to the dual variable representing the capacity 

rent 𝜈𝑖,𝑡 for a conventional generation technology:  

𝜕𝐿

𝜕𝜈𝑖,𝑡
= 𝑦𝑖,𝑡 − 𝐾𝑖 ≤ 0 ⊥ 𝜈𝑖,𝑡 ≥ 0 see (A - 12) 
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These constraints allow for three combinations of 𝑦𝑖,𝑡 and 𝜈𝑖,𝑡, depending on the shadow price of 

demand 𝜇𝑡 and its relation to the variable operation cost: 

• 𝑐𝑖
𝑜𝑝

⋅ ∆t < 𝜇𝑡: This implies that 𝜈𝑖,𝑡 > 0 in order to fulfill the first part of (A - 6). This, in 

turn, implies according to (A - 12) that 𝑦𝑖,𝑡 = 𝐾𝑖 . 

➢ Technology 𝑖 operates at its capacity limit and is infra-marginal 

• 𝑐𝑖
𝑜𝑝

⋅ ∆t = 𝜇𝑡: Then necessarily 𝜈𝑖,𝑡 = 0 because otherwise, the second part of (A - 6) and 

the first part of (A - 12) lead to a contradiction. 𝑦𝑖,𝑡 is then not determined by these two 

complementarity conditions. If there is only one technology fulfilling equality, the 

production 𝑦𝑖,𝑡 is determined through the supply-demand balance (A – 10). 

➢ Technology 𝑖 is the (or at least one) marginal technology and may operate in the 

range [0 𝐾𝑖]. 

• 𝑐𝑖
𝑜𝑝

⋅ ∆t > 𝜇𝑡: Then necessarily 𝑦𝑖,𝑡 = 0 given the fact that 𝜈𝑖,𝑡 is non-negative by 

construction and the complementarity condition in (A - 6). (A - 12) then implies 𝜈𝑖,𝑡 = 0. 

➢ Technology 𝑖 is not running and is extra-marginal. 

With increasing shadow price 𝜇𝑡 , the generation units with the lowest marginal cost will hence 

operate first. Then the others will follow in the order of increasing operation costs, i.e., according 

to the “merit order.” 

Regarding P 1.2: The complementarity condition determines the dispatch of storage discharging 

with respect to the charging variable 𝑠𝑗,𝑡
+  

𝜕𝐿

𝜕𝑠𝑗,𝑡
+ =

1

𝜂𝑗
+ 𝜆𝑗,𝑡 ⋅ ∆t + 𝜈𝑗,𝑡

+ − 𝜇𝑡 ≥ 0 ⊥ 𝑠𝑗,𝑡
+ ≥ 0 see (A - 8) 

Similar to the generation technologies, the KKT condition with respect to the capacity constraint 

and the corresponding dual variable (capacity rent) 𝜈𝑗,𝑡
+  also has to be considered: 

𝜕𝐿

𝜕𝜈𝑗,𝑡
+ = 𝑠𝑗,𝑡

+ − 𝐾𝑗
+ ≤ 0 ⊥ 𝜈𝑗,𝑡

+ ≥ 0 see (A - 13) 

These equations are strictly analogous to those for the generation technologies, only the 

operational cost 𝑐𝑖
𝑜𝑝

⋅ ∆t has been replaced by the term 
1

𝜂𝑗
+ 𝜆𝑗,𝑡 ⋅ ∆t and the nomenclature of the 

primal and dual variable is different (𝑠𝑗,𝑡
+  and 𝜈𝑗,𝑡

+  instead of 𝑦𝑖,𝑡 and 𝜈𝑖,𝑡). Hence the same 

operation rules apply. 

Regarding P 1.3: The dispatch of storage charging is similarly determined by the complementary 

condition related to the charging variable 𝑠𝑗,𝑡
−  

𝜕𝐿

𝜕𝑠𝑗,𝑡
− = 𝜈𝑗,𝑡

− − 𝜆𝑗,𝑡 ∙ 𝜂𝑗
− ⋅ ∆t + 𝜇𝑡 ≥ 0 ⊥ 𝑠𝑗,𝑡

− ≥ 0 see (A - 7) 
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The complementarity constraint with respect to the dual capacity rent variable 𝑣𝑗,𝑡
−  also has to be 

considered: 

𝜕𝐿

𝜕𝜈𝑗,𝑡
− = 𝑠𝑗,𝑡

− − 𝐾𝑗
− ≤ 0 ⊥ 𝜈𝑗,𝑡

− ≥ 0 see (A - 13) 

 

 

𝜕𝐿

𝜕𝜈𝑗,𝑡
− = 𝑠𝑗,𝑡

− − 𝐾𝑗
− ≤ 0 ⊥ 𝜈𝑗,𝑡

− ≥ 0 see (A - 13) 

Again, these complementarity conditions define three operation modes, yet with reversed 

inequalities regarding the shadow price of demand 𝜇𝑡. 

• 𝜆𝑗,𝑡 ∙ 𝜂𝑗
− ⋅ ∆t > 𝜇𝑡: This implies that 𝜈𝑗,𝑡

− > 0 in order to fulfill the first part of (A - 7). This, 

in turn, implies according to (A - 14) that 𝑠𝑗,𝑡
− = 𝐾𝑗

−. 

➢ Charging of storage 𝑗 operates at its capacity limit and is infra-marginal 

• 𝜆𝑗,𝑡 ∙ 𝜂𝑗
− ⋅ ∆t = 𝜇𝑡: Then necessarily 𝜈𝑗,𝑡

− = 0 because otherwise, the second part of (A - 7) 

and the first part of (A - 14) lead to a contradiction. 𝑠𝑗,𝑡
−  is then not determined by these 

two complementarity conditions. If there is only one technology fulfilling equality, the 

charging 𝑠𝑗,𝑡
−  is determined through the supply-demand balance (A – 10). 

➢ Charging of storage 𝑗 is the (or at least one) marginal technology and may operate in 

the range [0 𝐾𝑖]. 

• 𝜆𝑗,𝑡 ∙ 𝜂𝑗
− ⋅ ∆t < 𝜇𝑡: Then necessarily 𝑠𝑗,𝑡

− = 0 given the fact that 𝜈𝑗,𝑡
−  is non-negative by 

construction and the complementarity condition in (A - 7). (A - 14) then implies 𝜈𝑗,𝑡
− = 0. 

➢ No charging of storage 𝑗 occurs, and the charging is hence extra-marginal. 

 

In contrast to storage discharging, storage charging is hence an extra-marginal operation, if the 

current electricity price 𝜇𝑡 is above the marginal value (𝜆𝑗,𝑡 ∙ 𝜂𝑗
− ⋅ ∆t) of the storage content.  

Regarding P 1.4: Introducing an alternative decision variable 𝑠𝑗,𝑡
𝑜  for not-operation of storage 

charging 

𝑠𝑗,𝑡
𝑜 = 𝐾𝑗

− − 𝑠𝑗,𝑡
−   (B - 1) 

as well as the split of generation technologies into supply dependent 𝑖𝑑 and renewable-based 𝑖𝑅𝐸  

∑𝑦𝑖,𝑡
𝑖

= ∑𝑦𝑖𝑑,𝑡
𝑖𝑑

+∑𝑦𝑖𝑅𝐸,𝑡
𝑖𝑅𝐸

  (B - 2) 

and defining the aggregated renewable feed-in as 𝑌𝑅𝐸,𝑡 
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 ∑𝑦𝑖𝑅𝐸,𝑡
𝑖𝑅𝐸

= 𝑌𝑅𝐸,𝑡 (B - 3) 

allows redefining the supply stack as well as the demand. 

The supply-demand equilibrium restriction 

∑𝑦𝑖,𝑡
𝑖

+∑𝑠𝑗,𝑡
+

𝑗

= 𝐷𝑡 +∑𝑠𝑗,𝑡
−

𝑗

  ⊥ 𝜇𝑡 ≥ 0 see (2) 

may then be rewritten replacing corresponding terms according to (B - 1) to (B - 3): 

(∑𝑦𝑖𝑑,𝑡
𝑖𝑑

+ 𝑌𝑅𝐸,𝑡)+∑𝑠𝑗,𝑡
+

𝑗

= 𝐷𝑡 +∑(𝐾𝑗
− − 𝑠𝑗,𝑡

𝑜 )

𝑗

  ⊥ 𝜇𝑡 ≥ 0 

∑𝑦𝑖𝑑,𝑡
𝑖𝑑

+∑𝑠𝑗,𝑡
+

𝑗

+∑𝑠𝑗,𝑡
𝑜

𝑗

= 𝐷𝑡 − 𝑌𝑅𝐸,𝑡 +∑𝐾𝑗
−

𝑗

  ⊥ 𝜇𝑡 ≥ 0 

(B - 4) 

With the following definitions of total charging capacity 𝐾𝑡𝑜𝑡𝑎𝑙
−  

∑𝐾𝑗
−

𝑗

= 𝐾𝑡𝑜𝑡𝑎𝑙
−   (B - 5) 

and augmented demand 𝐴𝑡 

𝐴𝑡 = max{𝐷𝑡 − 𝑌𝑅𝐸,𝑡 + 𝐾𝑡𝑜𝑡𝑎𝑙
−  ,0}   (7) 

the final version of the modified supply-demand balance is obtained: 

∑𝑦𝑖𝑑,𝑡
𝑖𝑑

+∑𝑠𝑗,𝑡
+

𝑗

+∑𝑠𝑗,𝑡
𝑜

𝑗

= 𝐴𝑡   ⊥ 𝜇𝑡 ≥ 0 (B - 6) 

The left-hand side of this equality consists throughout of non-negative terms. Therefore, the 

maximum operator in the definition of 𝐴𝑡 is necessary to prevent infeasibilities in case of a 

negative residual load that exceeds the absorbing capacity of storage charging. 

Collecting the variables on the left-hand side in one control vector 𝑢.,𝑡 

𝑢.,𝑡 = [

𝑦⋅,𝑡
𝑠⋅,𝑡
𝑜

𝑠⋅,𝑡
+
] (B - 7) 

yields the following compact formulation of the demand-supply equilibrium 

∑ 𝑢𝑘,𝑡
𝑘∈𝒦

= 𝐴𝑡 (B - 8) 
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The operation of the controls 𝑢𝑘,𝑡 according to the principle of a merit-order have already been 

demonstrated above for the controls 𝑦𝑖,𝑡 and 𝑠𝑗,𝑡
+ . They remain unchanged since the derivatives 

of the modified Lagrangian  

𝐿𝑚 = ∑(∑𝑐𝑖𝑑
𝑜𝑝

⋅ ∆t ∙ 𝑦𝑖𝑑,𝑡
𝑖𝑑

+ 𝜇𝑡 ⋅ (𝐴𝑡 −∑𝑠𝑗,𝑡
𝑜

𝑗

−∑𝑦𝑖𝑑,𝑡
𝑖𝑑

−∑𝑠𝑗,𝑡
+

𝑗

)+∑𝜈𝑖,𝑡 ⋅ (𝑦𝑖,𝑡 − 𝑏𝑖,𝑡 ∙ 𝐾𝑖)

𝑖𝑡

+∑𝜈𝑗,𝑡
+ ⋅ (𝑠𝑗,𝑡

+ − 𝐾𝑗
+)

𝑗

+∑𝜈𝑗,𝑡
𝑜 ⋅ (𝑠𝑗,𝑡

𝑜 − 𝐾𝑗
−)

𝑗

+∑𝜆𝑗,𝑡 ∙ (𝑥𝑗,𝑡+1 − 𝑥𝑗,𝑡 − 𝜂𝑗
− ⋅ (𝐾𝑗

− − 𝑠𝑗,𝑡
𝑜 ) ∙ ∆t +

1

𝜂𝑗
+ ⋅ 𝑠𝑗,𝑡

+ ∙ ∆t)

𝑗

+∑𝜈𝑗,𝑡
𝑉 ⋅ (𝑥𝑗,𝑡 − 𝑉𝑗)

𝑗

+) +∑𝑐𝑖
𝑖𝑛𝑣 ∙ 𝐾𝑖

𝑖

+∑𝑐𝑗
𝑖𝑛𝑣,− ∙ 𝐾𝑗

−

𝑗

+∑𝑐𝑗
𝑖𝑛𝑣,+ ∙ 𝐾𝑗

+

𝑗

+∑𝑐𝑗
𝑖𝑛𝑣,𝑉 ∙ 𝑉𝑗

𝑗

 

with respect to 𝑦𝑖,𝑡 and 𝑠𝑗,𝑡
+  are the same as for the original Lagrangian. 

Yet the (unused-)charging variable 𝑠𝑗,𝑡
𝑜  is now determined by the complementary slackness 

conditions with respect to 𝑠𝑗,𝑡
𝑜 : 

𝜕𝐿𝑚

𝜕𝑠𝑗,𝑡
𝑜 = 𝜆𝑗,𝑡 ∙ 𝜂𝑗

− ⋅ ∆t + 𝜈𝑗,𝑡
𝑜 − 𝜇𝑡 ≥ 0 ⊥ 𝑠𝑗,𝑡

𝑜 ≥ 0 (B - 9) 

and with respect to 𝑣𝑗,𝑡
𝑜 :  

𝜕𝐿𝑚

𝜕𝑣𝑗,𝑡
𝑜 = 𝑠𝑗,𝑡

𝑜 − 𝐾𝑗
− ≤ 0 ⊥ 𝑣𝑗,𝑡

𝑜 ≥ 0 (B - 10) 

These are now similar to those derived for conventional generation technologies, except that the 

variable (opportunity) costs of unused-charging in time step 𝑡 are given by 𝜆𝑗,𝑡 ∙ 𝜂𝑗
− ⋅ ∆t. Hence 

unused-charging is also part of the supply merit order. 

 

Appendix C Shadow price of the storage level (water-value) - Proof of Proposition 2 

Proposition 2 [storage value over time] 

The shadow price 𝜆𝑗,𝑡 describes the current position of discharging and charging options for 

storage 𝑗 in the merit order. Its trajectory is derived from the following principles: 

P 2.1 The marginal storage value remains constant  (𝜆𝑗,𝑡+1 = 𝜆𝑗,𝑡), if the storage operates strictly 

between its filling level bounds, i.e., 0 < 𝑥𝑗,𝑡 < 𝑉𝑗 holds. 
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P 2.2 The marginal storage value increases (𝜆𝑗,𝑡+1 = 𝜆𝑗,𝑡 + 𝜈𝑗,𝑡
𝑉 ) only in times 𝑡, when the storage 

level reaches the upper bound (𝑥𝑗,𝑡 = 𝑉𝑗).  

Note that the reverse implication is not valid, i.e. the water value may stay constant while the 

filling level reaches the upper bound. 

P 2.3 The marginal storage value decreases (𝜆𝑗,𝑡+1 < 𝜆𝑗,𝑡) only in times  𝑡, when the storage 

level reaches the lower bound (𝑥𝑗,𝑡 = 0).  

Again, the reverse implication does not hold, i.e., the water value may stay constant while the 

lower bound of the storage level is reached. 

Proof of Proposition 2. 

We analyze possible changes in the water value based on the complementarity condition with 

respect to storage level 𝑥𝑗,𝑡: 

𝜕𝐿

𝜕𝑥𝑗,𝑡
= 𝜆𝑗,𝑡−1 + 𝜈𝑗,𝑡

𝑉 − 𝜆𝑗,𝑡 ≥ 0 ⊥ 𝑥𝑗,𝑡 ≥ 0 see (A - 9) 

Moreover, the complementarity condition resulting from the restriction related to the installed 

storage volume:  

𝜕𝐿

𝜕𝜈𝑗,𝑡
𝑉 = 𝑥𝑗,𝑡 − 𝑉𝑗 ≤ 0 ⊥ 𝜈𝑗,𝑡

𝑉 ≥ 0 see (A - 15) 

According to the former, decreases in the marginal storage value require the storage to be empty, 

i.e. 𝑥𝑗,𝑡 = 0, since 𝜈𝑗,𝑡
𝑉  is non-negative by construction: 

𝜆𝑗,𝑡 < 𝜆𝑗,𝑡−1   ⇒  𝑥𝑗,𝑡 = 0  (C - 1) 

(Proposition P 2.3) 

Conversely, the first part of (A - 9) implies that the marginal storage value may only increase 

through a strictly positive 𝜈𝑗,𝑡
𝑉 . According to (A - 15) this may only occur when the storage is full. 

Hence 

𝜆𝑗,𝑡 > 𝜆𝑗,𝑡−1   ⇒  𝑥𝑗,𝑡 = 𝑉𝑗   (C - 2) 

(Proposition P 2.2) 

 

In this case  

𝜆𝑗,𝑡 = 𝜆𝑗,𝑡−1 + 𝜈𝑗,𝑡
𝑉  (C - 3) 

By inversion of the arguments we may conclude from (C – 1) and (C – 2): 

𝑥𝑗,𝑡 > 0  ⇒   𝜆𝑗,𝑡 ≥ 𝜆𝑗,𝑡−1   (C - 4) 
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𝑥𝑗,𝑡 < 𝑉𝑗   ⇒   𝜆𝑗,𝑡 ≤ 𝜆𝑗,𝑡−1   

Combining both reverse implications, we obtain: 

0 < 𝑥𝑗,𝑡 < 𝑉𝑗   ⇒   𝜆𝑗,𝑡 = 𝜆𝑗,𝑡−1   (C - 5) 

(Proposition P 2.1) 
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Appendix D Price levels and operation modes - Proof of Proposition 3 

Proposition 3 [price levels and operation modes] 

P 3.1 In a system with only generation technologies and load shedding, the prices correspond 

to the variable cost of one technology except for those time steps where 𝐴𝑡 = 𝐾𝑖
𝑐 holds 

for some technology 𝑖. In those time steps, the following equality holds: 

∀𝑖  ∑ (𝜇𝑡 − 𝑐𝑖
𝑜𝑝

⋅ Δt)

𝑡|𝐴𝑡=𝐾𝑖
𝑐

= (𝑐𝑖
𝑖𝑛𝑣 − 𝑐𝑖+1

𝑖𝑛𝑣) − 𝑇𝑖+1 ⋅ (𝑐𝑖+1
𝑜𝑝

− 𝑐𝑖
𝑜𝑝
) ⋅ Δt (22) 

Thereby 𝑇𝑖+1is the integer such that 𝑇𝑖+1 = 𝑐𝑎𝑟𝑑({𝑡|𝐴𝑡 > 𝐾𝑖
𝑐}). At the same time, it must 

satisfy the relations 𝑇𝑖+1 ≤
𝑐𝑖
𝑖𝑛𝑣−𝑐𝑖+1

𝑖𝑛𝑣

(𝑐𝑖+1
𝑜𝑝

−𝑐𝑖
𝑜𝑝

)⋅Δ 
 and 𝑇𝑖+1 ≥

𝑐𝑖
𝑖𝑛𝑣−𝑐𝑖+1

𝑖𝑛𝑣

(𝑐𝑖+1
𝑜𝑝

−𝑐𝑖
𝑜𝑝

)⋅Δ 
− 𝑐𝑎𝑟𝑑({𝑡|𝐴𝑡 = 𝐾𝑖

𝑐}). 

P 3.2 In a system including generation and storage technologies as well as load shedding, the 

storage shadow values for a storage technology 𝑗 with 𝑁𝑗 half-cycles will align in up to 

𝑁𝑗 − 1 half-cycles with the variable costs of some other control 𝑘𝑟 (not necessarily the 

same in all half-cycles). Thereby the two main operation modes (MOM) may be 

distinguished: 

MOM 1 – flexible charging of storage 𝑗 in half-cycle 𝑛: 

∃𝑘𝑟 ∈ 𝒦 \{𝑗}   ∀𝑡 ∈ 𝑇𝑗,𝑛, 𝜆𝑗,𝑡 =
1

𝜂𝑗
− ⋅ 𝜅𝑘𝑟,𝑡 ⋅

1

Δ𝑡
 (23) 

MOM 2 – flexible discharging of storage 𝑗 in half-cycle 𝑛: 

∃𝑘𝑟 ∈ 𝒦 \{𝑗}  ∀𝑡 ∈ 𝑇𝑗,𝑛, 𝜆𝑗,𝑡 = 𝜂𝑗
+ ⋅ 𝜅𝑘𝑟,𝑡 ⋅

1

Δ𝑡
 (24) 

P 3.3 In the system described in P 3.2; other shadow prices will occur in selected half-cycles 

and time steps in order to satisfy the investment payback equalities (18) to (21) 

Regarding P3.1: 

We consider two conventional generation technologies 𝑖 and 𝑖 + 1 that are part of the optimal 

generation mix (i.e. 𝐾𝑖 > 0 and 𝐾𝑖+1 > 0) and occupy successive positions in the merit order. If 

the two technologies do not have identical characteristics, this implies 𝑐𝑖
𝑖𝑛𝑣 > 𝑐𝑖+1

𝑖𝑛𝑣 and 𝑐𝑖
𝑜𝑝

< 𝑐𝑖+1
𝑜𝑝

 

(see (Sunderkötter und Weber 2012)).  

From the complementarity condition (A – 2), we then know: 

𝑐𝑖
𝑖𝑛𝑣 −∑𝜈𝑖,𝑡

𝑡

= 0  (D - 1) 

Moreover, according to the complementarity condition (A – 6), strictly positive capacity rents are 

given by: 

𝜈𝑖,𝑡 = 𝜇𝑡 − 𝑐𝑖
𝑜𝑝

⋅ ∆t (D - 2) 
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They occur for those 𝑡 when: 

𝐴𝑡 ≥ 𝐾𝑖
𝑐 (D - 3) 

Taken together, this yields: 

𝑐𝑖
𝑖𝑛𝑣 − ∑ (𝜇𝑡 − 𝑐𝑖

𝑜𝑝
⋅ ∆t)

𝑡|𝐴𝑡≥𝐾𝑖
𝑐

= 0  (D - 4) 

And analogously for the next technology in the supply stack: 

𝑐𝑖+1
𝑖𝑛𝑣 − ∑ (𝜇𝑡 − 𝑐𝑖+1

𝑜𝑝
⋅ ∆t)

𝑡|𝐴𝑡≥𝐾𝑖+1
𝑐

= 0  (D - 5) 

Taking differences, we obtain: 

𝑐𝑖
𝑖𝑛𝑣 − 𝑐𝑖+1

𝑖𝑛𝑣 + ∑ (𝑐𝑖
𝑜𝑝

− 𝑐𝑖+1
𝑜𝑝

) ⋅ ∆t

𝑡|𝐴𝑡≥𝐾𝑖+1
𝑐

+ ∑ (𝑐𝑖
𝑜𝑝

− 𝑐𝑖+1
𝑜𝑝

) ⋅ ∆t

𝑡|𝐾𝑖
𝑐<𝐴𝑡<𝐾𝑖+1

𝑐

+ ∑ (𝑐𝑖
𝑜𝑝

⋅ ∆t − 𝜇𝑡)

𝑡|𝐴𝑡=𝐾𝑖
𝑐

= 0  

(D - 6) 

Thereby the first sum results from the elimination of 𝜇𝑡 when taking the difference between the 

two original sums for those 𝑡 included in both of them. The second sum contains terms included 

only in the sum for technology 𝑖 where the price is set by the variable costs of technology 𝑖 + 1 

since technology  𝑖 + 1 is marginal (given that 𝐾𝑖
𝑐 < 𝐴𝑡 < 𝐾𝑖+1

𝑐 ). However, in the third sum, 

technology 𝑖 + 1 is not operating, but technology 𝑖 is used up to its capacity limit. Hence capacity 

rents may occur for technology 𝑖 while 𝜇𝑡 is not determined by the marginal cost of the next 

technology. 

Rearranging terms yields: 

𝑐𝑖
𝑖𝑛𝑣 − 𝑐𝑖+1

𝑖𝑛𝑣 = ∑ (𝑐𝑖+1
𝑜𝑝

− 𝑐𝑖
𝑜𝑝
) ⋅ ∆t

𝑡|𝐴𝑡>𝐾𝑖
𝑐

+ ∑ (𝜇𝑡 − 𝑐𝑖
𝑜𝑝

⋅ ∆t)

𝑡|𝐴𝑡=𝐾𝑖
𝑐

  (D - 7) 

The first sum on the right side of (D – 7) yields an integer multiple of (𝑐𝑖+1
𝑜𝑝

− 𝑐𝑖
𝑜𝑝
) ⋅ ∆t. Thereby 

the multiplier is given by: 

𝑇𝑖+1 = 𝑐𝑎𝑟𝑑({𝑡|𝐴𝑡 > 𝐾𝑖
𝑐}) (D - 8) 

At the same time, the first sum cannot be larger than the left-hand side since the second sum is 

non-negative by construction. Hence 

𝑇𝑖+1 ≤
𝑐𝑖
𝑖𝑛𝑣 − 𝑐𝑖+1

𝑖𝑛𝑣

(𝑐𝑖+1
𝑜𝑝

− 𝑐𝑖
𝑜𝑝
) ⋅ Δt

 (D - 9) 

On the other hand, 𝜇𝑡 in the second sum cannot exceed 𝑐𝑖+1
𝑜𝑝

, since then technology 𝑖 + 1 would 

be infra-marginal instead of extra-marginal. Consequently 

𝑇𝑖+1 ≥
𝑐𝑖
𝑖𝑛𝑣 − 𝑐𝑖+1

𝑖𝑛𝑣

(𝑐𝑖+1
𝑜𝑝

− 𝑐𝑖
𝑜𝑝
) ⋅ Δt

− 𝑐𝑎𝑟𝑑({𝑡|𝐴𝑡 = 𝐾𝑖
𝑐}) (D - 10) 

Regarding P3.2: 
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We start with the assumption that within each of 𝑁𝑗 half-cycles for storage 𝑗, the controls 𝑘.,𝑡 are 

characterized by different marginal (opportunity) costs 𝜅𝑘,𝑡. 

Then the operation of storage 𝑗 may be summarized as follows: 

𝑠𝑗,𝑡
+ = 𝟏𝐾

𝑗+,𝑡
𝑐−1<𝐴𝑡≤𝐾𝑗+,𝑡

𝑐 ⋅ (𝐴𝑡 − 𝐾𝑗+,𝑡
𝑐−1 ) + 𝟏𝐴𝑡>𝐾𝑗+,𝑡

𝑐 ⋅ 𝐾𝑗
+ (D - 11) 

𝑠𝑗,𝑡
− = 𝟏𝐾

𝑗𝑜,𝑡
𝑐−1≤𝐴𝑡<𝐾𝑗𝑜,𝑡

𝑐 ⋅ (𝐾𝑗𝑜,𝑡
𝑐 − 𝐴𝑡) + 𝟏𝐴𝑡<𝐾𝑗𝑜,𝑡

𝑐−1 ⋅ 𝐾𝑗
− (D - 12) 

Summing the storage level changes (see equation (4)) overall time steps within one half cycle 𝑛𝑗 

we get: 

𝑥𝑗,𝑡𝑛𝑗
𝑒𝑛𝑑 − 𝑥𝑗,𝑡𝑛𝑗

𝑠𝑡𝑎𝑟𝑡 = ∑ (𝜂𝑗
− ⋅ 𝑠𝑗,𝑡

− −
1

𝜂𝑗
+ ⋅ 𝑠𝑗,𝑡

+ ) ∙ ∆t 

𝑡|𝑡≥𝑡𝑛𝑗
𝑠𝑡𝑎𝑟𝑡∧𝑡<𝑡𝑛𝑗

𝑒𝑛𝑑

= ∑ (𝜂𝑗
−

𝑡|𝑡≥𝑡𝑛𝑗
𝑠𝑡𝑎𝑟𝑡∧𝑡<𝑡𝑛𝑗

𝑒𝑛𝑑

⋅ (𝟏𝐾
𝑗+,𝑡
𝑐−1<𝐴𝑡≤𝐾𝑗+,𝑡

𝑐 ⋅ (𝐴𝑡 − 𝐾𝑗+,𝑡
𝑐−1 ) + 𝟏𝐴𝑡>𝐾𝑗+,𝑡

𝑐 ⋅ 𝐾𝑗
+)    −  

1

𝜂𝑗
+

⋅ (𝟏𝐾
𝑗𝑜,𝑡
𝑐−1≤𝐴𝑡<𝐾𝑗𝑜,𝑡

𝑐 ⋅ (𝐾𝑗𝑜,𝑡
𝑐 − 𝐴𝑡) + 𝟏𝐴𝑡<𝐾𝑗𝑜,𝑡

𝑐−1 ⋅ 𝐾𝑗
−)) ∙ ∆t  

(D - 13) 

On the right-hand side, all terms are determined, if the capacities 𝐾𝑘 , including notably 𝐾𝑗
− 

and 𝐾𝑗
+, are fixed. On the left-hand side, we have 

𝑥𝑗,𝑡𝑛𝑗
𝑒𝑛𝑑 − 𝑥𝑗,𝑡𝑛𝑗

𝑠𝑡𝑎𝑟𝑡 = 𝐵𝑛𝑗 ⋅ 𝑉𝑗 (D - 14) 

There 𝐵𝑛𝑗 is equal to 1 for an empty-full half-cycle and equal to -1 for a full-empty half-cycle. For 

the other half-cycles (empty-empty and full-full), 𝐵𝑛𝑗 is equal to zero. With 𝑁𝑗 half-cycles, we 

have hence 𝑁𝑗 equations for at most three specific decision variables, namely 𝑉𝑗, 𝐾𝑗
− and 𝐾𝑗

+. 

Moreover, 𝐾𝑗
− and 𝐾𝑗

+ are subject to constraints similar to (D – 7), hence the effective number of 

degrees of freedom related to the equations of type (D – 13) is 1. Consequently, (up to) 𝑁𝑗 − 1 

half-cycles are not subject to a restriction of type (D – 13); this is the case when the marginal 

storage value 𝜆𝑗,𝑡 aligns with the marginal cost of another (generation) technology according to 

MOM 1 or MOM 2 as defined in equations (23) and (24). Then only the sum of storage activity 

and conventional generation is well defined as indicated in equations (26) and (28). 

Correspondingly the marginal charging activities in MOM 1 may be complemented by 

conventional generation 𝑢𝑘𝑟,𝑡 as required to meet the energy restriction of the half-cycle: 
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𝑥𝑗,𝑡𝑛𝑗
𝑒𝑛𝑑 − 𝑥𝑗,𝑡𝑛𝑗

𝑠𝑡𝑎𝑟𝑡

= ∑ (𝜂𝑗
−

𝑡|𝑡≥𝑡𝑛𝑗
𝑠𝑡𝑎𝑟𝑡∧𝑡<𝑡𝑛𝑗

𝑒𝑛𝑑

⋅ (𝟏𝐾
𝑗+,𝑡
𝑐−1<𝐴𝑡≤𝐾𝑗+,𝑡

𝑐 ⋅ (𝐴𝑡 − 𝐾𝑗+,𝑡
𝑐−1 ) + 𝟏𝐴𝑡>𝐾𝑗+,𝑡

𝑐 ⋅ 𝐾𝑗
+)               −  

1

𝜂𝑗
+

⋅ (𝟏𝐾
𝑘𝑟,𝑡
𝑐−1≤𝐴𝑡<𝐾𝑘𝑟,𝑡

𝑐 ⋅ (𝐾𝑘𝑟,𝑡
𝑐 − (𝐴𝑡 − 𝑢𝑘𝑟,𝑡)) + 𝟏𝐴𝑡<𝐾𝑗𝑜,𝑡

𝑐−1 ⋅ 𝐾𝑗
−)) ∙ ∆t  

(D - 15) 

Similarly, the marginal discharging activities in MOM 2 may be complemented by conventional 

generation 𝑢𝑘𝑟,𝑡 to meet the energy restriction of the half-cycle: 

𝑥𝑗,𝑡𝑛𝑗
𝑒𝑛𝑑 − 𝑥𝑗,𝑡𝑛𝑗

𝑠𝑡𝑎𝑟𝑡

= ∑ (𝜂𝑗
−

𝑡|𝑡≥𝑡𝑛𝑗
𝑠𝑡𝑎𝑟𝑡∧𝑡<𝑡𝑛𝑗

𝑒𝑛𝑑

⋅ (𝟏𝐾
𝑗+,𝑡
𝑐−1<𝐴𝑡≤𝐾𝑗+,𝑡

𝑐 ⋅ (𝐴𝑡 − 𝐾𝑗+,𝑡
𝑐−1 − 𝑢𝑘𝑟,𝑡  ) + 𝟏𝐴𝑡>𝐾𝑗+,𝑡

𝑐 ⋅ 𝐾𝑗
+)               

−  
1

𝜂𝑗
+ ⋅ (𝟏𝐾

𝑘𝑟,𝑡
𝑐−1≤𝐴𝑡<𝐾𝑘𝑟,𝑡

𝑐 ⋅ (𝐾𝑘𝑟,𝑡
𝑐 − 𝐴𝑡) + 𝟏𝐴𝑡<𝐾𝑗𝑜,𝑡

𝑐−1 ⋅ 𝐾𝑗
−)) ∙ ∆t  

(D - 16) 

 

Regarding P3.3: 

Part P3.2 of this proposition indicates that the prices in the combined system will align in most 

cases, namely for MOM 1 and MOM 2, on the marginal generation costs of conventional 

generation or the corresponding complementary cost levels of storage (see equations 

(25),(27),(29) and (30)). As in the case of P3.1, the matching of discrete operation margin levels 

in infra-marginal times with pre-specified investment cost requires then additional price levels. 

However, this is much more cumbersome in notation due to the time-varying position of storage 

in the supply stack. That has two implications: 1) in each supply stack there are additional cost 

levels (see P3.2). 2) the supply-stack changes with each new half-cycle of each storage 

technology. Consequently, when the investment pay-back equality similar to (D – 4) is stated for 

the general technology mix, this looks much more intriguing even if limited to two storage 

technologies: 

𝑐𝑘
𝑖𝑛𝑣 − ∑ ∑ ∑ (𝜇𝑡 − 𝜅𝑘,𝑡)

𝑡|(𝑡∈{𝑡𝑛1
𝑠𝑡𝑎𝑟𝑡,…,𝑡𝑛𝑗

𝑒𝑛𝑑})∧𝑡∈{𝑡𝑛2
𝑠𝑡𝑎𝑟𝑡,…,𝑡𝑛2

𝑒𝑛𝑑}∧𝐴𝑡≥𝐾𝑘,𝑡
𝑐

𝑁2

𝑛2=1

𝑁1

𝑛1=1

= 0  (D - 17) 

Yet the underlying logic for evaluation remains analogous to P3.1: for all 𝐴𝑡 that do not 

correspond to a capacity limit 𝐾𝑘,𝑡
𝑐  in the corresponding supply stack, the prices 𝜇𝑡 will strictly 

align to the variable cost 𝜅𝑚,𝑡 of some marginal control 𝑚 since this is control is not scarce. 
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Consequently (D – 17) requires integer multiples of predefined operation margins to be matched 

to also predefined investment cost. This will usually not be possible unless additional price levels 

occur in those time steps when 𝐴𝑡 = 𝐾𝑘,𝑡
𝑐 , i.e. when the capacities of the marginal technology are 

fully used. In the absence of ties or other ambiguities in 𝐴𝑡 and if not by chance the investment 

cost is matched just by integer multiples of standard operation margins; there will be as many 𝜇𝑡 

different from marginal costs of controls as there are controls. 
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