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Abstract

In this paper we present an evaluation framework for predictions of binary events in probabilistic
electricity price forecasting. It employs the MSE-equivalent QPS together with the DM test and
allows for further insights about deficiencies of the considered models. Additionally, techniques
from the field of classification are considered, which extend our framework and are particularly
suited for the evaluation of predictions of rare events. We consider binary events with direct
applicability to a generator’s daily decision making such as profitability of a pumped-hydro
storage plant and evaluate the respective forecasts statistically. We show that the task of forecast
evaluation can be simplified from assessing a multivariate distribution over prices to assessing a
univariate distribution over a binary outcome, fully characterized by a single probability.
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1 Introduction

Electricity Price Forecasting (EPF) has become an indispensable part of energy companies’ asset
scheduling and short-term trading decision making. Since the advent of the EPF literature a
plethora of forecasting models rooted in various fields such as econometrics and engineering have
been studied. Among the considered evaluation measures for point forecasts both the Mean
Absolute Error (MAE) and the Root Mean Squared Error (RMSE), paired with the Diebold
Mariano (DM) test to establish statistically significant deviations in prediction performance,
have proven to be the most popular (e.g., Jonsson et al. 2013,Weron 2014, Ziel 2016, Gürtler
and Paulsen 2018). With the increasing infeed of intermittent Renewable Energy Sources (RES),
relevance of demand response and the associated elevation of uncertainty in electricity prices, the
literature has turned to Probabilistic Electricity Price Forecasting (PEPF) (e.g., Pape et al. 2017,
Marcjasz et al. 2018, Nowotarski and Weron 2018). Forecasts are considered probabilistic if they
constitute probability distributions over future events or quantities, Gneiting and Katzfuss 2014.
In context of PEPF one aims to either characterize the full multivariate distribution of electricity
prices or other associated characteristics such as marginal densities, intervals or specific quantiles
(e.g., value-at-risk). The evaluation of such probabilistic forecasts is complicated by the fact
that one only observes one realization of the underlying predicted distribution. The literature
has established the evaluation paradigm of maximizing sharpness subject to calibration (e.g.,
Gneiting et al. 2007, Gneiting and Katzfuss 2014). The latter measures the correspondence
between the probabilistic forecast and the realization. Calibration can be assessed using the
Probability Integral Transform (PIT). For a forecast to be calibrated the PIT values should be
uniformly identically and independently distributed between zero and one. Sharpness captures
the concentration of the forecast distribution and can be assessed using the average width of
prediction interval or using sharpness diagrams, which are less influenced by the presence of
conditional heteroskedasticity, Gneiting et al. 2007. Additionally, calibration and sharpness may
be assessed simultaneously using proper scoring rules. A score is considered proper if issuing
the true underlying distribution as forecast distribution minimizes the score in expectation. In
PEPF the Pinball Score (PS) and the Continous Ranked Probability Score (CRPS) haven proven
to be popular (e.g., Jónsson et al. 2014, Pape et al. 2017, Nowotarski and Weron 2018). Yet,
both the PS and the CRPS allow only for the evaluation of marginal distribution forecasts. The
Energy Score (ES) can alternatively be used to assess the validity of a multivariate distribution
forecast, Weron and Ziel 2018. All aforementioned evaluation techniques are statistical in nature.
Consequently, some authors have noted that they are not ideal in the sense that they may not
sufficiently reflect the associated economic consequences of preferring a particular forecasting
model over another (e.g. Delarue et al. 2010, Zareipour et al. 2010, Mohammadi-Ivatloo et al.
2011, Doostmohammadi et al. 2017). Additionally, the notion of an optimal forecast may differ
across applications and forecast users. Thus, rather than the forecast alone, the application to
which it constitutes an input should form the basis of forecast evaluation. Mohammadi-Ivatloo
et al. 2011 study the self-scheduling problem of an electricity generator under perfect-foresight
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as well as predicted prices and assess the economic value of improved forecast accuracy using
both statistical and profit-based measures. The notion of application-based forecast evaluation
has also been recently introduced to the realm of electricity trading and risk management (e.g.,
Bunn et al. 2018, Kath and Ziel 2018). Furthermore, focusing on the eventual application of
the forecast may also be extended to its actual derivation. A related idea is what Weron 2014
terms threshold forecasting. It also constitutes an approach motivated by the application of
forecasts, as it may be sufficient to establish whether future prices surpass a specific threshold
or fall into a predefined interval in the set of all possible prices for a generator’s decision making
(e.g., Zareipour et al. 2010). It is thus closely related to the work presented here. A price
falling within a specific predefined interval constitutes an event, the occurrence of which could
be predicted discretely or probabilistically with a certain probability assigned to its occurrence.
Cast in this way it represents a univariate event; yet, by defining a threshold for a succession
of prices turns the event into a multivariate event, the prediction and evaluation of which
are the subject of the present paper. Probabilistic forecasting in the realm of EPF is thus far
understood as forecasting the entire distribution of a continuous variable. As such PEPF mirrors
a paradigm shift across a wide area of fields, where forecasting distributions across general
types of variables becomes increasingly common. Similarly, probabilistic forecasts over binary
events have a long tradition in other fields such as weather forecasting and economics, (e.g.,
Murphy 1988, Stephenson 2000, Diebold et al. 1998, Lahiri and Wang 2013). Such probabilistic
forecasts of binary events have not yet been fully considered in the realm of PEPF and no
coherent evaluation framework has been established. In this paper we fill the void by presenting
methods to derive probabilistic forecasts over binary events and to evaluate such probabilistic
forecasts. For illustration purposes we consider well-established expert models (e.g., Ziel and
Weron 2018) as well as classification models. As the whole series of prices is of primary interest,
the considered events are multivariate in nature, an issue that we take up in a later section.
Moreover, by considering forecasts over binary events applicable to the daily decision making of a
generator and evaluating them statistically, we bridge the gap between the strand of the literature
concerned with the practical applicability and the forecasting literature rooted in the realm of
statistics. From a practical standpoint it may often be sufficient to define a statistical event
of interest motivated by a particular business problem, to forecast the associated probability
and to evaluate this probability forecast, rather than to characterize and evaluate the entire
multivariate distribution. The remainder of the paper is organized as follows: In section 2
we present the illustrative binary events considered and motivate their applicability. Section 3
introduces the econometric and classification models, while the proposed evaluation framework
for event forecasts is presented in section 4. The results are presented and discussed in section
5. Section 6 concludes.
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2 Binary Events

A binary event constitutes an outcome that assumes a value of zero or one. Generally, the event
is considered to occur when it takes a value of one. In the context of the present paper the
event’s occurrence depends on the underlying path of day-ahead electricity prices. Specifically,
we define two illustrative events motivated by the daily decision making of a generator and
predict the probability of occurrence. Yet, as the occurrence of the event depends on all 24 day-
ahead electricity prices of a given day and thus the full multivariate distribution, the underlying
stochastics are multivariate. Consequently, we contribute to the literature by simplifying the
task of forecast evaluation from assessing a multivariate distribution over continuous outcomes
to assessing a univariate distribution over a binary outcome, fully characterized by a single
probability and directly linked to the eventual application of the forecast.

2.1 Pumped-hydro Storage Plant Event

The first illustrative event is concerned with the profit from time spread arbitrage of a pumped-
hydro storage plant exceeding a specified threshold on a given day. We refer to it as the 10k-pump
event in the remainder of the present paper. A RES-based energy system is associated with
increased importance of storage and flexibility options. Pumped-hydro storage plants constitute
such a flexibility option and have thus received considerable attention in the literature (e.g.,
Brown et al. 2008, Steffen and Weber 2016, Braun and Hoffmann 2016). Steffen and Weber 2016
maintain that the traditional modus operandi in thermal-dominated electricity markets has been
to pump at night and to turbine around noon. However, the economic rationale for pumped-
hydro storage plants has been undermined by the success of PV generation in particular as this
has largely suppressed peak electricity prices around noon. It is thus of importance for operators
of pumped-hydro storage plants to assess whether the asset’s operation will be profitable in the
day-ahead market above a specified threshold, potentially derived from considerations of fixed
cost coverage, or whether the flexibility should be held for more short-term markets.1 To forecast
the probability of profitability the optimal operation program for a given price curve has to be
solved. The optimization problem considered in this study closely follows Steffen and Weber

1We should not that the natural profit threshold is zero, as the conventional logic of the merit order model
implies that a power plant should run, if a positive contribution margin can be generated. Yet, given the
simplified pumped-hydro storage optimization problem considered here and the focus on the presentation of
the evaluation framework, we have opted to consider an arbitrary threshold of 10, 000, which subsequently
constitutes an event with balanced occurrence and non-occurrence.
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2016 but is formulated in discrete rather than continuous time. It is described by the following
equations.

max
Tt,St,Ft

H∑
t=1

Pt(Tt∆t− St∆t) (1)

s.t. Ft − Ft−1 = −Tt∆t+ ηSt∆t (2)

0 ≤ Tt ≤ Ks (3)

0 ≤ St ≤ Ks (4)

0 ≤ Ft ≤ KF (5)

F0 = F 0 (6)

FH ≥ F0 (7)

It is assumed that the reservoir is filled with F0 ≤ 0 at t = 0 and the profits from operation
of the pumped-hydro storage plant (1) are optimized subject to the set of constraints. The
equation of motion (2) ensures that the change in the fill level of the reservoir is equal to the
sum of turbining Tt and pumping St, accounting for the efficiency factor η. Constraints 3 -5
ensure that the control variables remain within the possible ranges. Since we are considering
the profitability of time spread arbitrage the fill level of the reservoir cannot fall below the fill
level at the beginning of the optimization period. Following Steffen and Weber 2016 we consider
a hydro-pumped storage with pumping and turbining capacity of 200 MW, a maximum storage
level of 1000 MWh and a starting storage level of 500 MWh. η is assumed to be 0.8. After
solving for the optimal schedule given a price path, we calculate the profits and compare them
to the profit threshold which is assumed to be 10, 000 Euros. Repeating the optimization over a
variety of price paths allows us to derive a forecast of the likelihood of profitability as outlined
in section 3.

2.2 Six Hours of Negative Electricity Prices Event

The occurrence of n or more consecutive hours of negative electricity prices constitutes the
second considered event and we refer to it as the 6h-negative event. Increasing intermittent
RES capacity in combination with conventional generation of limited flexibility has raised the
likelihood of negative electricity prices (e.g., Agora Energiewende 2014). These reduce the
market reference value of RES generation and subsequently increase the pay-out under the
German renewable subsidy scheme. Consequently, the German Renewable Energy Sources Act
(§51 EEG 2017) stipulates that subsidy payments to RES are retrospectively withheld in case
of six or more hours with negative electricity prices. Energy Brainpool GmbH & Co. KG 2017
estimates the revenue shortfall associated with the so-called six-hour rule to amount to 54, 000
Euros per installed MW for an onshore wind asset over a period of twenty years. Operators and
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direct marketers are thus incentivized to cut infeed in these hours and do thus have an incentive
to correctly forecast the occurrence of this event.

3 Event Probability Forecasting

The present study considers two approaches to derive probability predictions for the occurrence
of binary events related to electricity prices. In what we term the econometric approach, day-
ahead electricity price paths are simulated based on an EPF model and the probability forecast
is calculated as the relative frequency of occurence across the ensemble of simulation paths.
Specifically, each simulated day-ahead price path is mapped to the event indicator variable IEm,
which takes a value of one if prices along path m are such that event E occurs. The day-
ahead probability forecast for the binary event E is given by the relative frequency, that is;
1
M

∑M
m=1 I

E
m, across the ensemble of price paths. We set M = 3000. To the contrary, the second

approach, termed the classification approach here, directly provides predictions for the event’s
occurrence. Fawcett 2006 defines a classification model as a mapping from instances to classes,
where an element of the set of class labels, that is zero or one, is assigned to each instance,
using information about that instance. It may output either a predicted class label directly
or a predicted probability of class membership, being referred to as a discrete or probabilistic
classifier, respectively. Specifically, a series of binary event indicators is modelled using electricity
prices of the preceding days. To this end, similar to above, given the vector of electricity prices
of day t, Pt, one can define the event indicator variable IEt , which takes a value of one if prices
on day t are such that event E occurs. Clearly, using the available information at day t− 1, one
may construct a classifier to predict the class label IEt . It should be noted that the considered
models serve merely as examples in the exposition of the evaluation framework for binary event
probability predictions.

3.1 The Econometric Approach

The econometric approach is based here on two well-established models from the literature. In
the naive model, the electricity price of a particular hour h on day t is equal to the price of the
same hour the week before, if t constitutes a Monday, Saturday or Sunday, or it is equal to the
price of the same hour the day before for all other days (e.g., Conejo et al. 2005a, Conejo et al.
2005b).

Pt,h =

Pt−7,h, Dt ∈ {1, 6, 7}

Pt−1,h, Dt /∈ {1, 6, 7}
(8)

The second model belongs to the class of so-called expert models and is directly taken from
Ziel and Weron 2018. It characterizes the electricity price of a particular hour h on day t as a
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function of autoregressive terms, non-linear terms, the price of the last hour of the preceding
day and dummy variables that capture calendar information.

Pt,h = βh,0 + βh,1Pt−1,h + βh,2Pt−2,h + βh,3Pt−7,h

+ βh,4P
Max
t−1,h + βh,5P

Min
t−1,h

+ βh,5Pt−1,24 +
6∑
i=1

βh,6+iD
i
t + εt,h

(9)

We estimate the parameters of the expert model using the Ordinary Least Squares (OLS) es-
timator (mean regression) and the Quantile Regression (QR) estimator with τ = 0.5 (median
regression). Additionally, a Support Vector Regression (SVR) with the same explanatory vari-
ables is considered. The hyperparameters of the SVR are selected using the analytic approach of
Cherkassky and Ma 2002. The day-ahead price for each individual hour is then forecasted based
on both models and random disturbances are added to generate an ensemble of simulated day-
ahead price paths. The present study considers two approaches to generate said disturbances.
They are either drawn from a multivariate Student’s t-distribution, which has been fit to the
sample of residuals, or derived using residual-based bootstrapping. It should be noted that we fit
both a multivariate Student’s t-distribution as well as a multivariate normal distribution, as the
limiting case of the former, to the residuals. We subsequently consider whichever achieves the
higher likelihood and refer to it as multivariate Student’s t-distribution. The non-parametric
bootstrapping algorithm is also multivariate in the sense that it returns a vector of twenty-
four residuals of a particular day to preserve the intraday correlation structure. The various
combinations of econometric models, estimation techniques and simulation approaches provide
eight different specifications, the details of which are summarized in Table 1. The probability
predictions are subsequently derived as outlined above.

N-Boot Ex-Boot QREx-Boot SVREx-Boot
Naive Expert Expert Expert

- OLS QR (τ = 0.5) SVR
Bootstrap Bootstrap Bootstrap Bootstrap

N-t Ex-t QREx-t SVREx-t
Naive Expert Expert Expert

- OLS QR (τ = 0.5) SVR
Student’s t Student’s t Student’s t Student’s t

Table 1: Specification Overview

3.2 The Classification Approach

We model the probability of event E occurring, P(IEt = |Pt−1, Pt−2, Pt−7, D1, . . . , D6), given the
available price and calendar information, with a regularized logistic regression (RLog) and a
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Naive Bayesian classifier (NBayes). It should be noted that both models constitute probabilistic
classifiers. The logistic regression model is described by the following equation.

P(IEt |Pt−1, Pt−2, Pt−7, D1, . . . , D6) (10)

= 1

1 + e
−(β0+

∑24
h=1

∑
k∈{1,2,7} βh,kPt−k,h+

∑6
i=1 Di+εt

Its parameters are estimated by regularized maximum likelihood. Following the estimation of
the parameters, the model directly provides probability forecasts for the next-day occurrence
of the binary event under study. Similarly, the Naive Bayesian classifier also lends probability
forecasts directly yet does not require any parameter estimation. The probability of the event’s
occurrence is calculated based on Bayes’ theorem and a conditional independence assumption.

P(IEt |Pt−1, Pt−2, Pt−7, D1, . . . , D6) (11)

= P(IEt )P(Pt−1|IEt ) . . .P(D6|IEt )
P(Pt−1, Pt−2, Pt−7, D1, . . . , D6)

The logistic regression and Naive Bayesian classifier constitute the ninth and tenth specification
considered in the present study.

4 Evaluation of Event Probability Forecasts

We predict the day-ahead probability of the event’s occurrence over the out-of-sample test period
and thus observe a series of probability forecasts ft for each specification. Additionally, the
corresponding event indicator series xt is observed. It should be noted that xt constitutes the out-
of-sample equivalent to IEt defined above with the event superscript E suppressed for notational
convenience. To evaluate forecasting accuracy, one may compare the predicted probabilities
with the realizations of the event. The average of the squared deviations over the out-of-
sample period lends the Quadratic Probability Score (QPS), which constitutes the equivalent
to the Mean Square Error (MSE) for probability forecasts. However, the precedign approach is
suboptimal for the evaluation of probability predictions for rare events. Murphy 1991 defines a
rare event as an event that occurs on less than five per cent of forecasting occasions. To suitably
evaluate probability predictions of rare events, machine learning techniques developed for the
evaluation of classifiers are additionally considered. These techniques also provide further tools
for the analysis of more frequent events.
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4.1 Quadratic Probability Score

The QPS averages the squared deviation over the out-of-sample period.

QPS(f, x) = 1
T

T∑
t=1

(ft − xt)2 (12)

The QPS constitutes a proper, negatively oriented score that takes values between zero and one,
where zero denotes perfect forecast accuracy. Since it evaluates accuracy over the entire range of
probabilities, the QPS is a global measure of forecast accuracy. To establish statistically signif-
icant conclusions on deviations in forecasting accuracy between any two model, as indicated by
differences in their QPS, the DM test is applied (e.g., Diebold and Mariano 2002, Ziel and Weron
2018). One can also obtain an understanding of the deficiencies of the considered forecasting
models, using decompositions of the QPS. The Murphy Decomposition (MD) decomposes the
QPS into the following sum of five terms.

QPS(f, x) = x̄(1− x̄)︸ ︷︷ ︸
UNC

+ 1
T

J∑
j=1

Tj(f̄j − x̄j)2

︸ ︷︷ ︸
REL

− 1
T

J∑
j=1

Tj(f̄j − x̄j)2

︸ ︷︷ ︸
RESO

+ 1
T

J∑
j=1

Tj

Tj∑
t=1

(ftj − f̄j)2

︸ ︷︷ ︸
WBV

− 1
T

J∑
j=1

Tj

Tj∑
t=1

(xtj − x̄j)(ftj − f̄j)2

︸ ︷︷ ︸
WBC

(13)

It should be noted that Murphy 1972 proposes a decomposition into the first three terms, while
the formulation above is due to Stephenson et al. 2008. The original MD requires the evaluation
of conditional means of the event indicator series given the forecasts. To this end, one can either
condition on the individual probability forecasts directly or assign them to predefined bins of
probability. Stephenson et al. 2008 maintains that the binning approach is more common in
the literature but requires the effect of binning to be considered in the derivation of the MD.
We apply the binning approach by considering J bins of probability and adjust for the effect
via the fourth (Within-Bin Variance (WBV)) and fifth term (Within-Bin Covariance (WBC))
as proposed by Stephenson et al. 2008. The first term (Uncertainty (UNC)) represents the
uncertainty a forecaster faces when issuing the forecast. It is given by the variance of the event
indicator series xt, which is unobserved at the time of forecast issuance. Note that the uncertainty
term is also equivalent to the QPS of a constant probability forecast given by the unconditional
mean of the event indicator series over the hold-out sample. The notion of reliability, given
by the second term (Reliability (REL)), captures the correspondence between conditional mean
observation and conditioning forecast; that is, the correspondence between the mean of the event
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indicator series and forecasts within a particular bin. Ideally, for the forecast to be reliable, the
probability attached to the realization of the event in a bin should equal its average occurrence
within it. Any deviation from perfect reliability increases the QPS above uncertainty. To the
contrary, resolution, the third term (Resolution (RESO)), reduces the QPS. It represents the
relation between the conditional mean observation and the unconditional mean observation;
that is, how well a particular forecasting model distinguishes a particular probability case from
relative frequency and attaches different probabilities to different realizations. Thus, the notion
of resolution is what makes forecasts useful. Clearly, a forecaster is faced with a trade-off
between resolution and reliability in decreasing uncertainty and the issued forecast is useful if
it can reduce the QPS below this uncertainty. To adjust the decomposition of the QPS for the
effect of binning we follow Stephenson et al. 2008 and calculate the WBV and WBC, which
will both be zero if only one forecast value is issued per bin. Stephenson et al. 2008 propose
to combine the two within-bin terms with the resolution term to form a generalized resolution
term that is less sensitive to the binning of probability forecasts.
The present study considers two approaches to binning, where both of them lend a series of
partitions of the unit interval with the number of subintervals ranging from one to ten. The first
approach simply divides the unit interval into the specified number of subintervals of equal size.
The second approach utilizes a slightly altered version of the constrained k-means algorithm
of Bradley et al. 2000. It clusters the probability predictions of all models for a particular
event but the constraint set is such that at least five observations of each model fall within
each cluster. The bin boundaries are derived from the respective midpoints between the cluster
centroids. We find that, when using the binning-robust form of the MD, the differences between
the decompositions under the two binning approaches are negligible. Some gains in accuracy
are uncovered for constrained k-means binning, when the non-robust decomposition is used but
our results are unaffected.
Another, yet more crude, decomposition of the QPS is the Yates Decomposition (YD) (e.g.,
Yates 1982). It is written as

QPS(f, x) = x̄(1− x̄) + s2
f + (f̄ − x̄)2 − 2sf,x (14)

As in the MD the first term captures the faced uncertainty when issuing the forecast. The third
term reflects the notion of bias; that is, how well the forecasting model under consideration
performs on average by comparing the unconditional mean forecast to the unconditional mean
observation. Clearly, any deviation between these two increases the QPS. The second and fourth
term constitute the unconditional variance of the predicted probabilities and the covariance with
the observations, respectively. While the variance increases the QPS, the covariance decreases
the QPS. One does, however, face a trade-off between the two terms. It should be noted that
the variance of the predicted probabilities could be minimized to zero by issuing a constant
forecast, which would, however, reduce the covariance to zero as well, implying that one has
to strike a balance. Since the covariance between observations and forecasts can be written
as sf,x = (f̄x=1 − f̄x=0)x̄(1 − x̄) (Lahiri and Wang 2013) one can consider it as fixing a given
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difference between the mean of the forecasts conditional on the value of the instances. It can
be shown that required variance, the minimum so to say, to support a given wedge is equal to
s2
f,min = (f̄x=1 − f̄x=0)2. To better reflect the effect of variance, one can reformulate the YD
to

QPS(f, x) = x̄(1− x̄) + ∆s2
f + s2

f,min + (f̄ − x̄)2 − 2sf,x (15)

where the third term reflects the minimum variance, while the second term reflects the ex-
ceedance of this minimum variance by the variance of the predicted probabilities. Any nonzero
excess variance constitutes variability in the predicted probabilities that is unnecessary to sup-
port a given wedge of the conditional means and thus the skill of the forecaster is reflected in
the ability to minimize this excess variance. Thus, while the covariance can be interpreted as
the forecaster’s responsiveness to information related to the occurrence of the event, the excess
variance represents her responsiveness to information unrelated to the occurrence of the event.
Naturally, this should be minimized.

4.2 Evaluation of Classification Models

Consider a discrete classifier for a binary outcome; that is, a model that directly predicts occur-
rence or non-occurrence rather than probabilities of occurrence. The accuracy of said classifier
over the out-of-sample test set can be summarized in a so-called contingency table, which illus-
trates the correspondence between forecasts and realizations. To analyze the performance of the

xt = 1 xt = 0

ft = 1 True Positives False Positives
ft = 0 False Negatives True Negatives

P N

Table 2: Contingency Table

discrete classifier, define the True Positive Rate (TPR) and False Positive Rate (FPR), which
denote the proportion of observations where the event was predicted and did occur (TPR = TP

P )
and the proportion of observation where it was predicted but did not occur (FPR = FP

N ), re-
spectively. One can subsequently plot the FPR against the TPR in a two-dimensional graph.
Since both measures lie strictly between 0 and 1, the potential space is given by the unit square
and referred to as Receiver Operating Characteristic (ROC) space. A discrete classifier is repre-
sented by a single point in the ROC space with the point of optimality given by (0, 1), where a
discrete classifier exhibits a TPR of 1 and an FPR of 0. Thus, over a set of binary classifiers the
one closest to (0, 1) achieves the highest forecasting accuracy. By focusing solely on the cases,
where the event was forecast to realize, it constitutes a better approach for the evaluation of a
rare event’s probability predictions, especially when its occurrence is of primary concern to the

10



forecast user. Yet, the approach requires the forecasts from a probabilistic classifier to be trans-
formed to discrete forecasts, taking values of zero or one. Said transformation can be achieved
by specifying a probability threshold, where the event is predicted when a probability lies above
it. By varying the threshold one can trace out a number of points in the ROC space, which
lend the ROC curve of a probabilistic classifier. ROC curves themselves constitute a tool of
classifier evaluation and exhibit the nice property of being invariant to class distribution. Thus,
if we were to consider two out-of-sample test sets with different number of occurrences of the
rare event, the ROC curve of a particular classifier would not change. Nevertheless, although
it is possible to compare prediction models on the basis of their corresponding ROC curves, it
is more common to derive a scalar measure of aggregate performance, which is the Area un-
der Receiver Operating Characteristic Curve (AUROC). Since the AUROC always constitutes
a subarea of the unit square, it lies strictly between 0 and 1. One established shortcoming
is that ROC curves may cross, implying that one curve and hence one model may exhibit a
larger AUROC although the alternative model may exhibit a better performance, as indicated
by a higher ROC curve, over the majority of the range of classification thresholds. Hand 2009
derives another fundamental deficiency of the AUROC as measure of forecasting performance.
He shows that a comparison of AUROC values amounts to comparing the forecasting models
using metrics that themselves depend on the models, essentially meaning that the comparison
uses a different metric per model. To address said problem of evaluation, Hand 2009 proposes
the so-called H-Measure, which the present study reports alongside the AUROC to evaluate
forecasting accuracy for rare events.

5 Empirical Results and Discussion

To illustrate the applicability of the proposed evaluation framework for binary event probability
predictions, we conduct an out-of-sample forecasting study on German day-ahead electricity
prices using a rolling window approach. The in-sample period covers the last 730 days and we
predict the probability of the illustrative events for the following day over the out-of-sample test
set, ranging from 1st January 2016 to 31st December 2017, comprising T = 731 days. We dis-
play the time series of probability forecasts across events and models for 2017 in Figure 1. The
colored lines constitute the probability forecasts while the dashed black vertical lines indicate
the occurrence of the respective event. Clearly, the considered 10k-pump event constitutes a
rather common event in 2017. In contrast the 6h-negative event rarely realized. In fact, with
14 occurrences over the out-of-sample period it falls within the rare event definition of Murphy
1991. Figure 1 indicates that the predicted probabilities vary both across time and models. For
example, the exceedance of the predefined profit threshold for the pumped-hydro storage plant
is ex ante more likely during winter when less peak shaving due to Photovoltaic (PV) generation
occurs. Also, the specifications based on the naive electricity price model structurally assign
higher probabilities to the event, while the naive Bayesian classifier mainly provides extreme

11
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(a) 10k-Pump Event

●●

●●

●

●●
●
●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●

●●●

●

●●●●●●

●

●●●●●●

●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●
●●●●●

●

●

●

●

●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●
●

●

●●
●●●●●●●

●●
●●●●

●
●●●●●●

●
●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●

●

●●●●●
●●

●●●●●

●

●

●●●●●●●●●●●●●●●

●

●

●●

●
●

●

●●●●●●●●●●●●●●

●
●
●

●

●●
●

●●●

●

●

●

●●●●●●●●●●●●●

●

●
●
●●●

●

●

●
●●●●●

●●●●●●

●
●●●●●

●●

●

●●●●●●

●
●●●●●●●●●●●

●
●●

●●●●●●●●

●
●

●●

●

●

2017

0
0.

2
0.

4
0.

6
0.

8
1

P
ro

ba
bi

lit
y

N−Boot N−t RLog NBayes Event Realization

●
●

●●

●

●●
●
●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●●
●

●●●

●

●●●●●●

●

●●●●●●

●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●
●
●●●

●

●
●●●●●

●

●

●

●

●●●●

●

●

●●●●●●●●●●●●●●●●●
●●

●

●●●●●●

●

●●
●

●

●●
●●●●●●●

●●
●●●●

●
●●●●●●

●
●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●

●

●●●●●
●
●

●●●●●

●

●

●●●●●●
●●●●●●●●●

●

●

●
●

●
●

●

●●●●●●●●●●●●●●

●
●
●

●

●●
●

●●●

●

●

●

●●●●●●●●●●●●●

●

●
●
●●●

●

●

●
●●●●●

●
●●●●●

●
●
●●●●

●●

●

●●●●●●

●
●●●●●●●●●●●

●

●●

●●●●●●●●

●
●

●
●

●

●

2017

0
0.

2
0.

4
0.

6
0.

8
1

P
ro

ba
bi

lit
y

Ex−Boot QREx−Boot SVREx−Boot Event Realization

●
●

●●

●

●●
●
●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●●

●

●●●

●

●●●●●●

●

●●●●●●

●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●
●
●●●

●

●
●●●●●

●

●

●

●

●●●●

●

●

●●●●●●●●●●●●●●●●●
●●

●

●●●●●●

●

●●
●

●

●●
●●●●●●●

●●
●●●●

●
●●●●●●

●
●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●

●

●●●●●
●
●

●●●●●

●

●

●●●●●●
●●●●●●●●●

●

●

●
●

●
●

●

●●●●●●●●●●●●●●

●
●
●

●

●●
●

●●●

●

●

●

●●●●●●●●●●●●●

●

●
●
●●●

●

●

●
●●●●●

●
●●●●●

●
●
●●●●

●●

●

●●●●●●

●
●●●●●●●●●●●

●

●●

●●●●●●●●

●
●

●
●

●

●

2017

0
0.

2
0.

4
0.

6
0.

8
1

P
ro

ba
bi

lit
y

Ex−t QREx−t SVREx−t Event Realization

(b) 6h-Negative Event

Figure 1: Probability Time Series for Events
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predictions of zero or one. Similarly, the specifications based on the expert model assign much
lower probabilities to six consecutive hours of negative prices than the naive model with the
majority of days with larger probability in the second half of 2017. Additionally, it seems that
the models predict the realization of the rare event rather well, which is however misleading.
Close inspection reveals that the realization of the rare event is predicted for the day after its
occurrence; the reason being that the prices, which are such, that the event occurs subsequently
form the basis for the day-ahead prediction and thus assign a high probability to the event’s
occurrence. QPS values for the considered forecasting models are reported in Table 3. For the
10k-pump event one can observe from Table 3 that the expert-based specifications and the reg-
ularized logistic regression outperform the naive approaches, while the SVR models outperform
both the mean- and median-regression models. SVREx-t constitutes the best overall model and
has a slightly lower QPS value than SVREx-Boot and RLog. In Figure 2 we summarize the re-
sults of the corresponding DM tests. Each square displays the p-value of a pairwise test of equal
predictive performance against the alternative hypothesis that the model in the row predicts sig-
nificantly less accurately than the model in the corresponding column. White squares indicate
that no significant difference in forecasting performance can be uncovered, whereas green squares
indicate significant deviations in forecasting performance at the ten, five and one per cent level
of significance with lighter green implying a more significant difference. The results of the DM
tests underscore the preceding discussion based on Table 3, as the deviations in forecasting per-
formance between the expert-based models as well as the regularized logistic regression and the
naive models are found to be significant at the one per cent level. Furthermore, the superiority in
predictive ability of the support-vector-regression-based specifications is confirmed. The overall
best model (SVREx-t) significantly outperforms the second-best model (SVREx-Boot). Yet, the
null of equal predictive performance between SVREx-t and the third-best model (RLog) cannot
be rejected, despite a higher deviation in the QPS value. This somewhat surprising result is due
to the difference in the standard deviation of the respective loss differential time series, affecting
the test statistic of the DM test. Interestingly, within each subclass of expert-based specifica-
tions, the model using the t-distribution outperforms the bootstrap approach, suggesting that
the assumed distribution of the innovations is critical to the achieved performance. With the
exception of the naive Bayesian classifier, we find the overall level of the QPS to be much lower
for the 6h-negative event than for the 10k-pump event, which illustrates the influence of the
frequent realization of the rare event on the evaluation measure. Since the models generally
assign low probabilities to the day-ahead occurrence of the event, their respective scores are low.
In contrast, the naive Bayesian classifier predicts the event’s occurrence rather frequently and
thus exhibits a large QPS value. Consequently, we find it to be significantly outperformed by all
other models. Similarly, the expert-based specifications significantly outperform the naive and
logistic specification. QREx-t constitutes the best overall model and has just a slightly lower
QPS value than QREx-Boot. In fact, the median regressions perform significantly better than
the mean regression. Yet, among them no significant difference in predictive performance can
be uncovered, suggesting that it is the median-regression approach rather than the assumed dis-
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Figure 2: p-Values of DM Test

tribution of innovations that drives the result. Nevertheless, the median-regression-based model
fail to significantly outperform the SVR models.

Event N-Boot N-t RLog NBayes Ex-Boot
10k-Pump 0.2746 0.2797 0.1798 0.2675 0.1860
6h-Negative 0.0315 0.0314 0.0339 0.2201 0.0155

Event QREx-Boot SVREx-Boot Ex-t QREx-t SVREx-t
10k-Pump 0.1844 0.1756 0.1852 0.1808 0.1728
6h-Negative 0.0141 0.0157 0.0154 0.0140 0.159

Table 3: Quadratic Probability Score

The MD provides further insights into the deficiencies of the considered models. Plots of the
MD and its respective components are presented in the two left panels of Figure 3. It should
be noted that the uncertainty component, being derived from the event indicator series over
the out-of-sample test set, is the same across all models for a given event. We find that the
naive specifications increase the QPS above said uncertainty for the 10k-pump event, as they are
highly miscalibrated and provide little resolution. In contrast, the expert-based specifications
and regularized logistic regression succeed in reducing the uncertainty. The RLog model pro-
vides slightly lower resolution than the expert-based models, meaning it is less able to distinguish
between the respective cases of the event, but does so at a lower level of miscalibration, thus
explaining its lower QPS value. Additionally, the MD provides an explanation why the specifica-
tions based on SVR perform better than the other models in a respective class. For similar levels
of resolution achieved, the SVR models are the least miscalibrated. For the 6h-negative event
we find that the naive specifications and the regularized logistics regression increase the QPS
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above uncertainty, due to substantial miscalibration, which is particularly acute for the naive
Bayesian classifier. It should be noted that both the QPS and reliability bar have been capped at
0.035. In contrast, the expert-based specifications succeed in reducing the uncertainty. Within
that class the median-regression-based models are the least miscalibrated with slightly higher
resolution, implying that overall the issued forecasts correspond well with the realization of the
event and that the models are most effective in using the provided information to distinguish
cases of occurrence and non-occurrence of the event.
The YD provides additional insights regarding the deficiencies of the considered forecasting
models. Its components are shown in the two right panels of Figure 3. It should be noted
again that the uncertainty component is the same across all models for a given event. For the
10k-pump event the expert-based specifications all achieve similar levels of covariance between
forecasts and observations as well as similar levels of excess variance. Yet, the SVRs do so at
a lower level of bias, explaining their overall best performance. Similarly, the RLog model ex-
hibits lower covariance and higher excess variance, but it achieves the lowest level of bias among
all models. Interestingly, the naive Bayesian classifier achieves the highest overall covariance
between forecasts and observation, yet it also has the highest excess variance. The percentage
of excess variance of overall variance is found to be 79%, 80%, 71%, 80%, 65%, 65%, 65%, 65%,
64% and 64%, respectively. Thus, the considered models have problems to sufficiently incor-
porate information related to the event’s occurrence and the subjective forecasts are scattered
unnecessarily around the conditional means of the forecasts. We establish similar results for
the 6h-negative event. The naive specifications together with the regularized logistics regression
again increase the QPS above uncertainty. It should be noted that the values for naive Bayesian
classifier have again been capped. As before it achieves the highest covariance between fore-
casts and observations but at the cost of excessive bias. Among the expert-based specifications
the SVR-based specifications achieve the lowest excess variance but also the lowest covariance.
The trade-off between variance and covariance is best achieved by the median-regression-based
models. Overall, the percentage of excess variance of the overall variance is rather elevated. It
is found to amount to 98%, 98%, 93%, 96%, 75%, 72%, 80%, 75%, 72% and 81%, respectively.
Thus, for the rare event the problem of sufficiently incorporating information related to the
event’s occurrence is even more acute.
In contrast to the QPS both the AUROC and the H-Measure are positively oriented measures
of forecasting accuracy, focusing on the event’s occurrence. The respective values per model are
provided in Table 4 and Table 5. It should be noted that all AUROC values are larger than 0.5
implying that all models perform better than random class guessing. For the 10k-pump event the
naive specifications exhibit the lowest AUROC among all considered models, underscoring the
results derived from the QPS comparisons. Additionally, the expert-based specifications exhibit
the highest AUROC values and within each subclass the model using the t-distribution outper-
forms the model using the bootstrap, which confirms our previous findings. Yet, the model with
the highest AUROC (QREx-t) is not equivalent with the model with the lowest QPS (SVREx-t),
despite the DM test suggesting a significant difference in forecasting performance. Interestingly,
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(c) MD for 6h-Negative Event
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Figure 3: QPS Decompositions for Events

the RLog model, which constitutes the third-best model according to QPS is outperformed by
all expert-based specifications. The reason may be that the RLog model fails to correctly predict
numerous occurrences of the event during the summer months (Figure 1). For the 6h-negative
event the naive power price specifications (N-Boot and N-t) exhibit the lowest AUROC values
among all considered models. Among the remaining specifications the QREx-t model achieves
the highest AUROC value and it is also the model that achieves the lowest QPS value. Yet, both
RLog and the naive Bayesian classifier achieve higher AUROC values than some specifications
in the expert-based class. This finding is in stark contrast to the results presented above, where
the two models are significantly outperformed by all expert-based specifications. The result
seems to suggest that an evaluation that does not account for the frequent realization provides
misleading conclusions when forecasting probabilities for rare events. In particular, the finding
suggests that the RLog and especially the naive Bayesian model exhibit very high QPS values
overall, as they forecast the occurrence of the rare event too frequently but they seem to exhibit
a higher hit rate, when the rare event actually occurs.
Yet, as Hand 2009 derives some series deficiencies of the AUROC as a measure of forecasting
accuracy, we additionally evaluate our models with his proposed H-Measure. We find the Ex-

16



Event N-Boot N-t RLog NBayes Ex-Boot
10k-Pump 0.776 0.774 0.805 0.762 0.839
6h-Negative 0.610 0.652 0.885 0.894 0.855

Event QREx-Boot SVREx-Boot Ex-t QREx-t SVREx-t
10k-Pump 0.839 0.837 0.840 0.842 0.838
6h-Negative 0.843 0.856 0.902 0.903 0.898

Table 4: AUROC

Boot model to outperform all other models for the 10k-pump event. Additionally, the bootstrap
approach outperforms the t-distribution approach in each subclass of the expert-based speci-
fications, which is contrary to out result established using the QPS. Yet, the all expert-based
specifications achieve a higher H-Measure than the RLog model. This result mirrors our find-
ings for the AUROC measure but is at odds with our conclusion reached for the QPS. Thus,
it suggests that, focusing on its occurrence for model evaluation, the 10k-pump event is best
forecast using the expert-based specifications. For the 6h-negative event the results using the
H-Measure and the AUROC are very similar. The QREx-t model constitutes the overall best
model and again the RLog model as well the naive Bayesian classifier are less deficient accord-
ing to the H-Measure than according to the QPS, suggesting that they forecast the realization
of the rare event rather well. However, the expert-based specifications all achieve a higher H-
Measure, which resuscitates our findings based on the QPS, where they clearly outperformed
the remaining models.

Event N-Boot N-t RLog NBayes Ex-Boot
10k-Pump 0.290 0.281 0.363 0.275 0.423
6h-Negative 0.204 0.220 0.527 0.569 0.582

Event QREx-Boot SVREx-Boot Ex-t QREx-t SVREx-t
10k-Pump 0.420 0.414 0.417 0.419 0.413
6h-Negative 0.575 0.609 0.578 0.626 0.585

Table 5: H-Measure

6 Conclusion

Probabilistic forecasts over binary events have a long tradition in fields such as weather fore-
casting and economics. Despite a paradigm shift from point to probabilistic forecasting in the
realm of EPF, such forecasts of binary events have not yet been fully considered and no coher-
ent evaluation framework has been established. The present study fills the void by proposing
an evaluation framework that ties in and extends the existing EPF framework. It employs the
MSE-equivalent QPS together with the DM test and allows for further insights about deficiencies
of the considered models. Additionally, we consider techniques from the field of classification,
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which extend our framework and are eparticularly suited for the evaluation of predictions of rare
events. We demonstrate the applicability of our framework with two illustrative examples mo-
tivated by energy companies’ daily asset scheduling. Overall, we find that the well-established
expert models also form a reliable basis for probability forecasts of binary events. Concerning
the evaluation of such forecasts, we establish that our proposed framework provides valuable
insights about the considered specifications and that care needs to be taken, when evaluating
forecasts with just the traditional QPS, especially for events that rarely realize. Decompositions
of the QPS and additional evaluation techniques are worthwhile considering for the identification
of the overall best specification. Furthermore, we reconcile the strand of the literature concerned
with the practical applicability of forecasts and the forecasting evaluation literature rooted in
the realm of statistics. By considering binary events with direct applicability to a generator’s
daily decision making and evaluating the respective forecast statistically, we show that the task
of forecast evaluation can be simplified from assessing a multivariate distribution over continu-
ous outcomes to assessing a univariate distribution over a binary outcome, fully characterized
by a single probability. Whether a forecaster utilizes the former or the latter approach depends
on her preferences and the specific forecasting problem at hand, which we do not address. Yet,
we find that our simplified evaluation approach is sufficient from the perspective of the eventual
application of the forecast, provides benefits in its own right and provides an interesting path
for future research.
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