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Modeling Feedback Effects with Stochastic Liquidity *

Angelika Esser and Burkart Monch

Department of Finance, Goethe University, Frankfurt am Main, Germany

July 31, 2003

Abstract. We model the interactions between the trading activities of a large
investor, the stock price, and the market liquidity. Our framework generalizes the
model of Frey (2000), where liquidity is constant by introducing a stochastic liquidity
factor. This innovation has two implications. First, we can analyze trading strategies
for the large investor that are affected by a changing market depth. Second, the
sensitivity of stock prices to the trading strategy of the large investor can vary due
to changes in liquidity. Features of our model are demonstrated using Monte Carlo
simulation for different scenarios. The flexibility of our framework is illustrated by
an application that deals with the pricing of a liquidity derivative. The claim under
consideration compensates a large investor who follows a stop loss strategy for the
liquidity risk that is associated with a stop loss order. The derivative matures when
the asset price falls below a stop loss limit for the first time and then pays the price
difference between the asset price immediately before and after the execution of
the stop loss order. The setup to price the liquidity derivative is calibrated for one
example using real world limit order book data so that one gets an impression about
the order of magnitude of the liquidity effect. Furthermore, we present a pragmatic
approach to determine the market price of liquidity risk from traded European put
options.

JEL classification: G12

Keywords: stochastic liquidity, large trader, liquidity derivative

1. Introduction

Aspects of market liquidity include the time involved in acquiring or
liquidating a position and the price impact of this action. In this paper
we focus on the second issue. Especially for large institutional investors
many of the existing pricing models are only of limited use since they
assume perfect elastic supply and demand functions for the asset under
consideration. This assumption is often violated if the trading activity

* This research was partially supported by the Deutsche Forschungsgemeinschaft.
We are grateful to the Trading Surveillance Office of the Deutsche Borse AG for
providing us a limit order book dataset. Special thanks for inspiration and help-
ful comments to Riidiger Frey, Christian Schlag, Phillip Schénbucher, Francesco
Menoncin, an anonymous referee and our colleagues Christoph Benkert, Nicole
Branger, and Micong Klimes.
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2 Angelika Esser

of a large investor accounts for a significant fraction of the overall
turnover in an asset. In this case, ignoring liquidity issues can result
in a serious underestimation of the risk that is inherent in a certain
investment strategy.

We present a framework that incorporates the liquidity risk arising
for a large investor, whose trading volume cannot be absorbed by the
market without a price change. Our model has two main ingredients.
On the one hand the stock price process is influenced by the trading
activity of the large investor, whereas the impact of the trading strategy
on the stock price is modeled using a stochastic liquidity factor. On the
other hand the dynamics of the stock price and the liquidity factor can
have an impact on the trading strategy of the large investor.

In principle one could describe this scenario in two ways. First one
can build an equilibrium setup to explain the machinery of the market.
Such an approach is sensible if one intends to analyze the motivation
for trading or to investigate strategies that the large investor can use
in order to exploit the power to move prices in a certain direction.
However, for pricing purposes such complex frameworks are often un-
suitable, as they are difficult to calibrate. In this paper we follow a
second approach by directly modeling the asset price dynamics that
result if the large trader follows a certain trading strategy. We assume
that the liquidity in the market is given exogenously.

There is a growing theoretical literature that investigates the inter-
action of liquidity and trading strategies of large investors. Part of this
literature considers optimal liquidation strategies for large portfolios.
Dubil (2002), Almgren and Chriss (2000), Bertsimas and Lo (1998)
are just a few examples. Another branch of this literature investigates
how large traders can manipulate stock prices. Jarrow (1992), Allen
and Gale (1992), Schonbucher and Wilmott (2000) can be mentioned
in this line. Recently research focuses more and more on the modeling
and hedging aspects that are introduced by illiquidity and the pres-
ence of one or more large traders. Cvitani¢ and Ma (1996), Cuoco and
Cvitanié¢ (1998), Papanicolaou (1998), Frey (1998; 2000), Schonbucher
and Wilmott (2000), Kampovsky and Trautmann (2000), Frey and
Patie (2001), Liu and Yong (2001), Bank and Baum (2002) are some
prominent examples.

Our approach generalizes the model of Frey (2000), where liquidity
is constant and an extension by Frey and Patie (2001), where liquidity
is a deterministic function of the stock price. Modeling liquidity as a
stochastic factor first of all enables us to incorporate random changes
in market depth. Furthermore, we can significantly generalize existing
models by introducing the concept of liquidity feedback effects. The
presence of liquidity feedback effects implies that (i) trading strategies
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Modeling Feedback Effects 3

of large investors are affected by the degree of illiquidity and (ii) the
sensitivity of stock prices to the trading strategies of large investors
can vary due to changes in liquidity.

The objective of our model is to provide a large investor with a
flexible framework that allows to evaluate the liquidity risk associated
with different types of trading strategies. We use a stop loss order as an
example and analyze the effects of market liquidity for such a trading
strategy in detail. To get a flavour of the problem, imagine a pension
fund. The fund management has to limit the downside risk of the fund,
and in order to do so assume that it follows a simple stop loss strategy.
When the price of the security falls below a certain level the position
in this security is liquidated completely and immediately by placing
a market order. If the market is perfectly liquid the fund will always
receive the stop loss price for the asset. However, if the market becomes
illiquid, the investor will receive a price less than the stop loss limit.
If the degree of the illiquidity in the market does not change or can
be interpreted as a function of the asset price, this discount due to
illiquidity is deterministic. This means that the investor can adjust the
stop loss limit in advance, so that he or she will always receive a certain
amount for the assets. However, if the order book depth is stochastic,
a large investor faces liquidity risk.

We propose a liquidity derivative compensating for this liquidity
discount. We show how the setup can be calibrated to market data and
present a simple approach to determine the market price of liquidity
risk from traded European plain vanilla put options.

The paper is organized as follows: Section 2 summarizes the main
ideas of Frey’s model. In section 3 we briefly discuss economic and em-
pirical aspects of the question whether market liquidity can be modeled
as a function of the asset price or if liquidity need to be modeled as an
autonomous source of risk. Our general framework is presented in sec-
tion 4. In section 5 we derive the effective dynamics for the underlying
asset with stochastic liquidity. We use the results in order to compare
the feedback effects of the large investor’s trading strategy on the stock
price dynamics for the Black-Scholes (1973) model (henceforth BS) and
the model with stochastic liquidity. In section 6 we exemplify the effects
of stochastic liquidity by simulating sample paths of the asset price.
Section 7 describes the general setup for a liquidity derivative, in order
to illustrate how the stochastic liquidity model can be used to build
pricing tools. The setup to price the liquidity derivative is calibrated
for one example using real world limit order book data so that one
gets an impression about the order of magnitude of the liquidity effect.
Furthermore, we present an innovative approach to estimate the market
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4 Angelika Esser

price of liquidity risk. The paper concludes in section 8 with a brief
summary and a discussion of issues for further research.

2. The Deterministic Liquidity Model

Frey (2000) proposes the following model setup. There exists a risky
asset S (the stock) and a risk-free investment earning a zero interest
rate (the bond). There are no liquidity effects on the bond, only the
underlying S is affected by this source of risk. Further, there is a single
large investor whose trading strategy influences the price process of the
underlying. The underlying follows the stochastic differential equation

dS; = oS, dW} + pS;_dd; .

¢ denotes the trading strategy of the large investor, i.e. the number of
stocks held by the large trader, whereas ¢ denotes the right-continuous
version of ¢, and p > 0 is a constant liquidity parameter. An increase
in p means a declining liquidity in the market. For p = 0 the model
represents the standard BS setup with zero drift. 1/(pS) is called the
market depth, i.e. the order size that moves the price by one unit.
Furthermore, we need the assumption that pd¢; > —1 in order to
ensure non-negativity of the asset price.

The impact of the trading strategy on the price process is discussed
in the case of a smooth strategy ¢ = ¢(t,S) € C'2. The partial
derivatives of ¢ are denoted by subscripts for ease of notation. This
yields the effective dynamics for the underlying

dS; = b(t, S)dt + Su(t, S)dW;,

where
ag
v(t,S) = ———
(t,5) 1—pS¢s
_ pS 1 2 2)
b(t,S) = 1= pSds <¢t+ 2¢555 v

assuming pS¢g < 1. Note that volatility has changed from o to m
compared to a perfectly liquid market due to the trading strategy ¢
and the liquidity parameter p.

As discussed in Frey (2000), there are two basic types of trading
strategies to consider: On the one hand the large investor can trade
using a positive feedback strategy, i.e. ¢g > 0. That means he or she
buys the risky asset when the price is increasing, and he or she sells
when the price is declining which reinforces the effect of rising or falling

liquidity.tex; 8/08/2003; 10:18; p.4



Modeling Feedback Effects )

prices, since the true volatility increases in this case. For example in a
standard BS model one would use such a strategy to duplicate a convex
payoff like a long call. On the other hand the large trader can use a
contrarian feedback strategy, i.e. ¢g < 0, which means buying stocks
when prices drop and vice versa. This would be the strategy used to
duplicate a concave payoff, like a short call.

The basic model of Frey (2000) is extended in the paper of Frey and
Patie (2001) by introducing a deterministic liquidity function p(.5).

3. Is Market Liquidity Indeed Stochastic?

In this section we briefly discuss, whether variations in market liquidity
can be explained empirically by variations in the asset price or as a
function of time as proposed in Frey and Patie (2001) or if they need
to be modeled as an autonomous source of risk.

From an economic point of view one may argue that investors have
different motivations to submit orders to the stock market. On the one
hand there may be a close relationship between the trading activity and
the dynamics of the stock prices, for example if investors follow feedback
strategies and trade for speculative reasons. On the other hand so called
liquidity or noise traders buy and sell assets to invest cash not needed
for consumption or to meet cash needs in unforeseen situations. Imagine
that a lucky retail investors who has won the national lottery might
want to buy stocks or that an insurance company has to sell shares
after a major damaging event to compensate clients for suffered losses.
Individual liquidity shocks that occur independently of the stock price
dynamics induce stochastic changes in market liquidity. As a theoretical
reference serves for example Ericsson and Renault (2000). The authors
model explicitly individual liquidity shocks to investors in a market
for defaultable bonds and investigate optimal liquidation strategies if
market liquidity is stochastic in a tree setup .

From an empirical perspective one can state that a growing branch
of literature provides empirical evidence that market liquidity exhibits
an intraday U-shaped or a J-shaped pattern stable over time. A review
of related literature can be found in Coughenour and Shastri (1999) or
Ranaldo (2000). For a discussion of a functional form that is able to
reproduce an intraday U-shape pattern see for example Monch (2003).

However, the intraday patterns can explain variations in market
liquidity only to a certain extent, otherwise a time series of daily data
should not exhibit any variations in market liquidity. We analyzed daily
limit order book data collected at 12.00 a.m. every trading day from
January 03 to March 28, 2002 for Medion AG, which belongs to the
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Figure 1. Scatterplot for best bid prices S and percentage liquidity discounts p if
5,000 Medion shares are sold in a single trade (daily data collected at 12.00 a.m.
CET for every trading day from January 03 to March 28, 2002). The dotted line
represents the fitted function, proposed by Frey and Patie (2001). The dark solid
line shows a fitted cubic spline for 6 intervals. The bright solid line represents a
fitted cubic spline for 10 intervals.

most heavily traded shares at Neuer Markt, the market segment for
growing technology companies at the German stock exchange. Figure
1 shows a scatterplot for best bid prices S and percentage liquidity
discounts p if 5,000 Medion shares are sold in a single trade. At first
sight it is evident that daily liquidity discounts are not constant over
time. Furthermore, one can state the relationship between the stock
price and the relative liquidity discounts seems to be tiny. One can
not reveal a clear pattern that would motivate a certain functional
form between asset price and liquidity risk. For example, the fit of the
function proposed in Frey and Patie (2001) given by

p(S) = peonst [1 — (S —50)° (alf{sgso} + a21{5>50})]

provides only a moderate R? of 0.03. The fitted function is plotted as a
dotted line in figure 1. One may argue that other specifications of the
function might better explain variations in market liquidity. However,
even cubic splines that allow for a high degree of flexibility of the regres-
sion curve can not represent the arrangement of the data adequately for
a reasonable number of knots. For example, for 6 intervals (5 interior
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Modeling Feedback Effects 7

knots) we obtain a R? of 0.05, for 10 intervals (9 interior knots) the R? is
0.06. The calibrated splines are plotted as a dark and a bright solid line
in figure 1. Of course, one could increase the number of knots excessively
to improve the fit of the underlying dataset. In the limit all data points
may be taken as spline knots. In this case the spline interpolates the
data points. However, such a model is not robust concerning the time
window of the sample data used for calibration. Thus, its use would be
questionable from an economic point of view.

4. The Stochastic Liquidity Model

In our model the underlying asset price process is assumed to follow
the stochastic differential equation

dSt = MtSt_dt + OSt_thS + ,OtSt— dgﬁ?— (1)

In order to be slightly more general compared to Frey (2000) we relax
the assumption of zero drift and interest rate. Furthermore, we now
assume that p is stochastic with dynamics given by the continuous
process

dpy = B(t, p)dt + v(t, p)dW{ (2)
with
AW e AW} = ~dt. (3)

A sensible specification for p could be a mean-reversion process with
a natural long-run level of liquidity in the market. We further assume
that the process stays strictly positive for pg > 0. This restricts the
choices for the volatility function v(¢, p). For example one might use
functions of the type v(t,p) = (\/p.

Rewriting the above dynamics, using a Cholesky-decomposition we
obtain

dSt = }LtStfdt + O'St,th + ,OtStquﬁj (4)
dpr = B(t, p)dt + v(t, p)ydWy + v(t, p)y/1 — y2dW, (5)

with a two-dimensional Brownian motion (Wj, W;). We now assume
that ¢ - the number of shares held by the large investor - does not
depend on S and ¢ only as in the model with deterministic liquidity. In
our setup it can also depend on the stochastic liquidity factor p. The
effects on the trading strategy are now twofold: First, ¢ is influenced by
changes in S. Second, ¢ varies with changing liquidity. The impact of S

liquidity.tex; 8/08/2003; 10:18; p.7



8 Angelika Esser

on ¢ can be modeled by the two basic types of trading strategies. For a
positive feedback strategy ¢ is an increasing function of .S for all p, for
a contrarian feedback strategy ¢ is a decreasing function of S for all p.
To characterize the impact of p on ¢ consider the following scenario.
The more illiquid the market the fewer shares the large trader will hold
due to external or internal regulations, no matter whether a positive or
contrarian feedback strategy is considered. Thus, a reasonable choice
would be a decreasing absolute ¢-value with respect to p (for all .S).

5. The Effective Price Process in the Stochastic Liquidity
Model

In this section the effective price process for the stochastic liquidity
model is derived and analyzed in detail. Consider a smooth trading
strategy ¢ = ¢(t, Sy, pr) € C1?2. An application of Ité’s formula leads
to the following proposition.

PROPOSITION 1. (Dynamics of the State Variables) Suppose
the trading strategy of the large trader is given by ¢(t,S,p) € C1>2.
Then, under the assumption that pS¢ps < 1 holds for any point in time,

the solution to the system of stochastic differential equations (4) and
(5) satisfies

dS, = b(t, S, p)dt + v(t, S, p)SAW, + v(t, S, p) SAW, (6)
dpy = B(t, p)dt + v(t, pyadW, + vt /1 —2dWi,  (7)
where
0(t,8.p) = — Ly L s)
1—pSés 11— pSes

_ ¢
o(t, S, p) = \/1—72% (9)

S
bS.p) = o (B bt Do t)a + 500”) (10

1 _ _
+§<}55552(v2 + 1)2) +vShys (’yv +4/1— 7%” .

The proof is given in Appendix I.

In the case of p = 0 or ¢ = constant we are in the classical BS
scenario with zero drift. If p #£ 0 and ¢ # 0 the trading strategy of
the large trader has an effect on the instantaneous volatilities v and v,
as well as on the total volatility and the correlation between the two
processes.

liquidity.tex; 8/08/2003; 10:18; p.8



Modeling Feedback Effects 9

Now consider the special case where liquidity has no impact on
the strategy of the large trader, i.e. ¢, = 0. Then, v and the second
summand of v will vanish. This means we get close to the scenario
of Frey, where feedback effects are only incorporated due to the term
pS¢s. However, since the parameter p is stochastic in the proposed
model, the sensitivity of the stock price on the trading activity of the
large investor will vary in contrast to the deterministic liquidity model.

The analysis is more complex for ¢, # 0. We assume p > 0, in order
to discuss how variations in liquidity influence the trading strategy of
the large investor. As illiquidity increases the large trader has to reduce
the position in the stock. Thus, the investor sells stocks if he or she has
a long position or he or she buys back shares if a short position is
considered. In the first case ¢ is monotonically decreasing in p, starting
with a positive ¢. In the latter case ¢ is monotonically increasing in
p, starting with a negative ¢. Thus, ¢ is approaching zero in absolute
value (the large investor has closed the position in the stock almost
completely) as p tends to infinity.

We assume a positive ¢ in the following so that ¢, should be nega-
tive, no matter if a positive feedback or a contrarian trading strategy
is considered. From (8) we can see that the sign of v(¢, S, p) depends
on . For v = 0 the value of v is the same as in the deterministic
liquidity model. Nevertheless, in the stochastic liquidity model we have
an additional volatility parameter v contributing to total volatility.
The parameter v is negative since ¢, is negative. The instantaneous
quadratic variation d[S] is given by (see Appendix I)

o? + l/2p2¢/2, + 2yovpe, "
(1= pSes)?

so that the total instantaneous volatility v, is equal to

\/02 + v2p2¢2 + 2yovpd,

Vot = \/’U2+’T)2Z l—pSgﬁs (].].)

Note that the argument of the square root is non-negative since |y| < 1.
The instantaneous covariation of the two processes d[S, p] is given by

d[S,ply = Sv <’yv +4/1— 721_)> dt

vpp
= SV( p )dt.
1—pSes ' '1— pSes

Thus, the instantaneous correlation 7 equals

diS,p]  yw++1—-~%

= VSV dt Vo2 + v?

ﬂ%:ﬁ(

(12)
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10 Angelika Esser

_ vpdp + 0
\/02 + 1V2p2¢2 + 2yovpd,

(13)

In order to compare the formal setup of Frey (2000) and Frey and
Patie (2001) to the stochastic liquidity model (henceforth SLM) we an-
alyze the volatility and correlation structure for different specifications
of the respective liquidity related parameters. An overview is given in
table I.

Table I. Liquidity related parameters in different models

Model vy v v Vtot n
BS 0 o 0 v 0
Frey 0 17P0'5¢S 0 v 0
Frey/Patie | 1 T5505 0 v 1
o vpd / > v

SLM 0 1—pSéds l—psg)s 1)2 + 1)2 > v v;+??2 <0

odwpd, 1 APvpd, Vo) Via?viae
SLM #0 1_p5¢sp 1-pS¢s G \v2452

For p = 0 or ¢ = constant, respectively, we are in the standard BS
model with drift u, resulting in ¥ = 0 and v = o. The first additional
feature is included in Frey’s approach where liquidity is represented by
a constant p (i.e. dp = 0) implying 8 = v = 0. This yields v = 0 and

_ 7
1—pSe¢s’

The correlation parameter 1 must be zero in this scenario, since all
terms containing ¢, vanish so that the dependence of the strategy on
p is of no interest for the effective stock price dynamics.

Now, we take a closer look at the model of Frey and Patie (2001),
where p is a deterministic function of S. Therefore, the dynamics of
p are only driven by the first component W of the two-dimensional
Brownian motion, which implies v = 0 and v = 1 yielding n = v = 1.
Since ¢ only depends on S, the volatility is the same as in the Frey
setup. In formula (13) we can observe that 7 = 1 in this case. Thus,
the approach of Frey and Patie (2001) is a special case of the general

V = Vot =
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Modeling Feedback Effects 11

framework with v = 1 allowing the coefficients in the dynamics of p to
depend explicitly on S.

We now consider the stochastic liquidity model and start with the
correlation structure.

5.1. IMPACT ON CORRELATION

It is important to note that v = 0 does not imply that the increments of
the effective stock price process and the liquidity process are uncorre-
lated, see equation (13). In the stochastic liquidity setup the situation
where 1 = 0 cannot be obtained for a deterministic choice of . Even
for v = 0, there is still some correlation n < 0 induced by p¢,, which
is negative since ¢, < 0.

For v = 0 there is a negative correlation between S and p, given by

. 7 TR

/o2 + V222

This term ultimately models liquidity feedback effects. It vanishes for a
trading strategy independent of p, i.e. for ¢, = 0. The negative value of
7 can be interpreted in the following way: if liquidity is low over a longer
period the trader will be forced to close the position which will cause
the stock price to drop. For v # 0 the numerator of the correlation
7 in equation (13) carries an additional summand yo. Thus, 7 is an
increasing function of v. For ¢, = 0 this correlation is equal to -y, the
correlation between the increments of the components of the Brownian
motion. Thus, the difference between v and 7 is a result of the liquidity
feedback effect, exclusively.

Next, we discuss the changes in volatility caused by stochastic lig-
uidity.

5.2. IMPACT ON VOLATILITY

First, consider the case v = 0. Then, v is the same as in the deter-
ministic liquidity model, but in our framework there is the additional
volatility parameter

VPP,
1—pS¢s
The variable v incorporates the liquidity feedback effect. It contributes

to the total volatility if and only if the trading strategy depends on the
liquidity parameter p.

v =

liquidity.tex; 8/08/2003; 10:18; p.11



12 Angelika Esser

In this case the total volatility increases, compared to the determin-
istic liquidity model, and we obtain a total volatility of

/2 T+ 120242
1—pSps

Here we see a key result of our approach: For v = 0 the total volatility
of the stochastic liquidity model is greater than the volatility in the
constant liquidity setup, no matter which strategy is used.

For vy # 0 the direction of the changes in total volatility (see equation
(11)) depends on the sign of 4. The parameter v carries an additional
summand describing the liquidity feedback effect, and v is reduced in
absolute values due to v # 0 (see equations (8) and(9)). The total
volatility in (11) is a decreasing function of vy, since ¢, < 0. Thus, even
for v < 0 the total volatility is greater than the volatility in Frey’s
setup. Only for large positive values of y it is possible that the total
volatility is lower than the volatility in Frey’s model. This will be the
case if

Vtot =

1
129> = vl (14)

For a strategy ¢ independent of p the volatility in the stochastic
liquidity model is equal to the volatility in the constant liquidity model,
again reflecting the lack of the liquidity feedback effect in this case.

Finally, we look at the two basic types of trading strategies with
respect to S.

5.2.1. Positive Feedback Strategy
A positive feedback strategy, i.e. ¢g > 0, leads to

Vtot > \/02 + p22¢2 4 2yovpd,.

The expression on the right hand side is greater than or equal to o if
and only if

1
v < %wkﬁpl- (15)

Especially, vy is greater than the Black Scholes volatility o for v < 0.
This is similar to the result derived in Frey’s model.

liquidity.tex; 8/08/2003; 10:18; p.12



Modeling Feedback Effects 13

5.2.2. Contrarian Feedback Strategy
A contrarian feedback strategy (i.e. ¢s < 0) implies that the total
volatility satisfies

Vit < \/02 + p?v2¢2 + 2yovpd,

which is less or equal to o if and only (14) holds. Thus, for non-positive
values of v the instantaneous volatility in the stochastic liquidity model
is not lower than the Black Scholes volatility in this case in contrast to
the result in Frey’s model.

6. Numerical Results

In order to visualize the formal analysis of the previous section we
present some simulation-based results. We compare a sample path of
stock prices in the BS model to stock prices in the stochastic liquidity
setting for both a positive and a contrarian feedback strategy.

6.1. PARAMETER SPECIFICATION

In order to ensure non-negativity and a stationary behaviour of the
liquidity process we specify the dynamics for p in equation (2) as a
square-root-process with a mean-reverting drift component (see Cox,
Ingersoll and Ross (1985)):

B(t,p) =60 —p), v(t.p) = C\/ﬁ

To create paths of the underlying and the liquidity parameter Monte
Carlo Simulation techniques are used. For a fixed realization of (W;, W;)
we have plotted the dynamics of equations (4) and (5) for Sy = 80.0,
o =0.1 and

1. for the BS setting: p = 0 and
2. for the stochastic liquidity framework:

k = 0.35 0=po = 0.05 ¢ =02
v = 00

The stochastic processes are discretized with an Euler scheme with
N = 4000 steps and At = 1/360.

Figure 2 shows the stock holdings of the large investor as a function
of p and S for a positive (left graph) and a contrarian feedback strategy
(right graph).

liquidity.tex; 8/08/2003; 10:18; p.13
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Figure 2. Positive and Contrarian Feedback Strategy

The shape of the functions can be explained by the following intu-
ition. If liquidity drops, i.e. p increases, the large trader is forced to sell
shares. Therefore, ¢ is assumed to be monotonically decreasing in p for
all S and for any feedback strategy, i.e. the derivative of ¢ with respect
to p is negative. It seems reasonable to assume that for very small and
for very large values of p the value of ¢, is small in absolute values. In
the first case the asset still has a sufficient market depth. In the latter
case the large trader has already sold almost all of his holdings in the
stock. Thus, in both scenarios, the large trader adjusts the position in
the stock only by a small amount.

In order to characterize the relationship between ¢ and S we have to
distinguish between the positive feedback and the contrarian feedback
strategy. In the first (second) case, the large trader buys (sells) assets as
the stock price increases and sells (buys) when the stock price declines.
Thus, ¢ is monotonically increasing (decreasing) in S for all p in the case
of the positive (contrarian) feedback strategy. For very small and very
large values of S the changes of the stock holdings of the large trader
are negligible when the asset prices vary (similar to the relationship
between p and ¢). However, for asset prices in between the absolute
value of ¢g increases when S increases and a positive (contrarian)
feedback strategy is considered.

There is a variety of functional forms for ¢ = ¢(S, p) that are able
to reproduce the features described above. We used the incomplete
gamma function to model this scenario. The exact functional form can
be found in Appendix II.

6.2. POSITIVE FEEDBACK STRATEGY

In figure 3 we compare BS to a positive feedback strategy in the
stochastic liquidity model.
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Figure 3. Sample pathes for the stock price in the BS model and the stochastic
liquidity setup if large trader follows a positive feedback strategy.

As shown theoretically (see equation (15)) one can see that for our
choice of parameters the volatility of the stock price in the stochastic
liquidity model is increased compared to BS. Path 1 exceeds path 3
when the BS price is increasing over a longer period. Rising stock prices
motivate the large investor to buy additional stocks which will cause
the stock price to grow even further. One can notice the opposite effect
for a decreasing S since in this case the large investor wants to get rid
of the holdings which will accelerate the decline in the stock price.

The role of the liquidity parameter p is more subtle. In fact it can
have two different implications: First, all else equal, the trader has
to sell stocks if they become more and more illiquid. Second, if p is
very high, the stock becomes more volatile so that a large trader who
follows a positive feedback strategy can cause the stock price to rise to
tremendously high values in bullish markets. However, when illiquidity
exceeds a certain threshold (p ~ 0.3 in figure 3), the large trader is
forced to close the position and the market collapses. Those features
that distinguish the stochastic liquidity model from the BS and the
deterministic liquidity model, become obvious around the time step
3,500 in figure 3.

If p approaches zero path 1 runs parallel to the BS path 3, as one
can observe around time step 500.
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6.3. CONTRARIAN FEEDBACK STRATEGY

In figure 4 we contrast stock prices simulated in the BS model to
stock prices generated in the stochastic liquidity model for a contrarian
feedback strategy.

— stock price, if rho stoch., contr. strategy (2)

—stock price in Black Scholes (3)

100 ~
——rho (4) 0.8
!
' o
|
9 + 0.6
. \ 2
70 VN“
+ 04
3
4 + 0.2
40 W\““‘ 0 ¢
0 2000 4000

Figure 4. Contrarian Feedback Strategy versus Black Scholes

In general volatility is reduced compared to BS. However, as one
can observe around time step 3,500, there are exceptions. If the asset
becomes very illiquid the trading activities of the large trader can
dominate the stock price dynamics and so have a destabilizing effect.
Again, this is a unique feature of the stochastic liquidity setup that
cannot be modeled in the constant liquidity framework.

7. Application: Liquidity Derivative

After having introduced the general framework of our model, we now
present an application that deals with the pricing of a liquidity deriva-
tive on an underlying that is traded in an illiquid market. To simplify
the explanation we take a step backward and restrict the general frame-
work so that the trading strategy of the large investor only depends
on the asset price S. The derivative under consideration compensates
the large investor who follows a stop loss strategy for the liquidity
discount if the stop loss order is executed. We provide an example of
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such a derivative that is priced with our sample data from the German
electronic limit order book XETRA for Medion.

In contrast to retail investors whose individual trading volume is too
small to affect prices adversely large traders have to consider liquidity
aspects before an investment is made. If the degree of illiquidity in a
certain market is rapidly changing over time one may hesitate to invest
substantial amounts although the risk reward profile of the investment
might be promising. A long position in the proposed liquidity derivative
hedges against the liquidity risk and enables a large trader to act like
a small retail investor. At the moment such liquidity derivatives are
not actively traded in the market. The lack of appropriate pricing tools
and orderbook data needed for calibration may explain this situation.
However, as competition among electronic trading platforms sharpens
many exchanges may provide clients with real time data to access
market liquidity.

Trading strategies that limit the downside risk of a portfolio and
that only depend on the asset price are heavily used by institutional
investors. However, considering a simple stop loss strategy one may
argue that typically a large trade in the stock market is broken down
into smaller packages to minimize the adverse impact on the overall
transaction price. However, we focus on this application since although
the calculus is simple, it already incorporates a basic structure that can
serve as a guideline to construct more elaborate pricing tools that are
suitable for a variety of purposes.

7.1. PRICING FORMULAS

Assume that ¢ is a stop loss trading strategy. The random variable
7 := inf{t|S; < S} denotes the stopping time when the underlying
falls below a certain level S for the first time, implying S, = S. The
initial price of the underlying is assumed to be Sq > S. Up to the hitting
time 7 the large trader does not trade, and at 7 he or she sells all assets.
Assuming a constant, positive initial value ¢ > 0 this implies

d¢+—{ 0 fort<r
t — ¢j_¢t:—¢0 fort =171

and

dS; = uSydt + oSy dW;°
dp, = B(t, p)dt + v(t, p)dW{

for t < 7. Equivalently using the uncorrelated Brownian motion (W, W)
this writes as

dS} = Mfﬁdt'+(75}d[L3
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dpr = B(t, p)dt + yv(t, p)dW; + MV(L p)dW;
for t < 7. Under a risk-neutral measure P the dynamics are given by
dS; = rSydt + oSy dW,; (16)
dpy = B* (L, p)dt + yu(t, p)dWy + v(t, p)y/1 = y2dW, (1)

for ¢ < 7, where 8* denotes the risk-adjusted drift. Using

A

dw, = APt + dw,
dw, = \Pat + awy

it holds as usual that Ags) = £~ and Agp ) arbitrary such that

B () = B(tsp) = w(t. )" = /1 = 42,

In total, the market price of liquidity risk is given by

Al = 7/\,25) +14/1— 72)\§p)

in this framework. Since the market is incomplete as liquidity is not
traded, this leads to one degree of freedom for the market price of
liquidity risk which cannot be eliminated in this setup. The market
price of liquidity risk manifests in the difference between dynamics
under P and P. To calculate the drift under P a unique price of at
least one derivative depending explicitly on liquidity is needed. We
provide a theoretical discussion how the market price of liquidity risk
can be calculated from traded European options subsection 7.4.

This provides a perfect analogy to the stochastic volatility model
where the market price of volatility risk can only be computed when
the price of a derivative is known.

At 7— the threshold is hit. This yields a jump in the stock price at
7 given by S;_ = S and the reduced price at 7:

S; = 8(1 = pr—¢ho) = S(1 — pro),

assuming a continuous version of p in 7. We propose a derivative con-
tract that compensates for the price difference between the reduced
price at 7 and the threshold S by paying Sp,¢ol(T < T) at 7 for one
unit of the underlying.

To model a more realistic scenario we additionally introduce a floor
F > 0 which represents a deductible for the investor. In this case
the contract would compensate only for a critical liquidity discount. If
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small settlement payments between both parties of the contract cause
significant transaction costs such an agreement would be appropriate.
Thus the payoff at 7 for one unit of the underlying is

Z, = max|(S¢op, — F)I(1 < T);0]

)

Sebo

The price of the contract is given by the following proposition:

PROPOSITION 2. The price at t = 0 of a derivative paying Z, =
max[(Spop; — F)I(1 < T);0] when the price process falls below the
threshold S for the first time is given by

Zo = Ele " Z,]

= (S¢opr — P)I(r < T:pr >

— ~ F F
— 4o [ew( pr = gg 7 <Tipr > 00)
— q e —rtg F
= S¢U/() /F/S¢06 (p —g%)g(t,p)dpdt (18)

where E denotes the expectation under the risk-neutral measure, and
g represents the joint (risk-neutral) density of 7 and p,. The parameter
p < oo denotes some upper bound for the liquidity process. In general,
the price of the derivative cannot be calculated explicitly, but for some
special cases we are able to derive explicit solutions of (18). One of
them is presented in the following.

First of all, we need the distribution of the hitting time. From (16)
we know that the process for the underlying S under a risk-neutral
measure P up to 7 is a geometric Brownian motion such that the log of
the process is an arithmetic Brownian motion. The distribution of the
first hitting time of a Brownian motion with drift is well-known (see, for
example, Borodin (1996)). In this scenario we ask for the distribution of
the first hitting time of In S, starting at In Sy > In S under a risk-neutral
measure. This is given by the risk-neutral density

n(S —(In(S —(r — 52 2
Finsoans(t) = %1{ (S50~ (r=*/2)) )

The specification of the diffusion process for liquidity is arbitrary
so far. In the following we consider some scenarios in which the price
of the liquidity derivative can be calculated explicitly under certain
assumptions on the liquidity process.

If liquidity is constant or a time-independent stochastic variable,
uncorrelated with the underlying asset, equation (18) simplifies to

Z = S0 (Bl - s%) ElemI(r < T)]
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F T —rt
_5_¢o>/0 ™" fin 5o,1m 5 ()dt.

If the Brownian motions exhibit zero correlation, i.e. v = 0, the hitting
time 7 and the process p are independent. In this case we can calculate
the expectation taking the product of the corresponding risk-neutral
densities, i.e. g(t,p) = f(t)hi(p), where h; denotes the risk-neutral
density of the process p at time ¢ and we get

= S¢o (E (]

Zo = S¢oB [e ™ p, I(1 < T)]
_ T [ P F
= 5¢0/0 </p (p— T%)ht(P)dP> e fin 5o 5(t)dt (19)

F/S¢o

For F' = 0 this expression simplifies to

— T ~
70 =590 | (Blod) e fn s 501t (20)

Now, we are free to choose an appropriate process for p. To our knowl-
edge the question which specification of the liquidity process is empir-
ically adequate, is still unanswered in the literature.

One may argue that a mean reversion type is sensible, since there
exists a natural level of liquidity in the market. Thus, we again assume
a CIR process for liquidity given by the following specification of the
risk-neutral parameters in equation (17):

B(t,p) = K*(6" —p)
v(t,p) = (Vp

The asterisks denote risk-neutral parameters. For zero correlation the
dynamics are given by

dpi = k(0 — py)dt + C\/pr dW; under P
dpy = &*(0" — py)dt + C\/;Ttdﬁ/t under P

with dﬁ/t = \/Ektdt—i—th, where we set )\gp) = /Pt + A such that the
liquidity process is again a CIR-process after the change of measure.
The parameter are then given by

K

Y = k+(\, 0= —6. (21)

H;*

In order to assure a strictly positive liquidity path we have to consider
the constraint:

C2

0* >
2K*

(22)
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The risk-neutral probability density of p at ¢ with initial value pq is
given by

v\ /2
h(t, p; po) = ce ™" (;) Z,(2vuw)

where
2K*
u = cpoe Ft
v = cp
2K*0* — 2
q = T

T, denotes the modified Bessel function of the first kind of order z, i.e.

_ (¥ > WA
Ll = <§> nz:% [(z+mn+1)n!"

Note that if the floor F' is equal to zero the expectation value of
liquidity in equation (20) can be computed explicitly in this case:

Elp] = poe " 40" (1- 1), (23)

Hence, equation (20) simplifies to

Zo = Séo /UT (Poef'ﬁ*t + 0" (1 - 67'”)) ¢ " fin 5o, 5 (1)t

If one additionally assumes a zero market price of liquidity risk (6* = 6),
then the price of the liquidity derivative does not depend on the volatil-
ity parameter of the liquidity process (. However, as soon as this re-
strictive assumptions are relaxed, for example by considering a non-zero
market price of liquidity risk (A” # 0) or a non linear payoff function
(F > 0), the volatility of the liquidity process has an impact on the
price of the liquidity derivative. This property is visualized later on in
figures (6) and (7) in subsection 7.2.

7.2. EXAMPLE

As an example we use the limit order book data for Medion already
introduced in section 3 to calibrate the stochastic processes for the best
bid price and the market liquidity. For numerical reasons we scaled
the liquidity parameter with 5,000. Thus, it can be interpreted as
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55.00 0.15
S P

45.00 + 0.075 +

35.00 0
03.01.2002 28.03.2002 03.01.2002 28.03.2002

Figure 5. Best bid prices and percentage liquidity discounts if 5,000 Medion shares
are sold in a single trade (daily data at 12.00 a.m. CET).

the relative price difference between the best bid price and the av-
erage execution price if a hypothetical market order of 5,000 shares is
executed.

Applying the standard maximum likelihood estimation techniques
and assuming a zero market price of liquidity risk the following param-
eter estimates were obtained:

o = 0.48 0* = 0.020188
K = 248.12 ¢ = 3.1906347

The correlation between the best bid prices and the illiquidity dis-
counts in the sample is -0.0354. Thus, presuming zero correlation seems
to be a sensible assumption.

We assume that the derivative under consideration compensates for
the price difference between the stop loss limit of EUR 40.00 and the
average execution price if a stop loss order of 5,000 shares will be
executed within the next month.! Since the initial liquidity parameter
po is scaled with 5,000 we have ¢g = 1.0.

Furthermore, we set Sg = 47.61, pg = 0.05 and r = 0.05 and in
the model with deterministic liquidity p = 6* = 0.020188. Now we are
able to calculate prices for the liquidity derivative. In the model with
constant liquidity one obtains a price of 0.465449 whereas in the model
with stochastic liquidity the price for one derivative is 0.489582. Thus
the price difference for one contract (in our example 5,000 derivatives)
between the stochastic and the deterministic liquidity model would be
EUR 120.67.

! For the sake of simplicity we assume that a stop loss order is executed if the
best bid price falls to the stop loss limit for the first time.
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0.6

0. 46

Figure 6. Price of the liquidity derivative Zy as a function of the parameters ¢, 6
(in the left figure) and ¢, k (in the right figure). All other parameters are chosen
in accordance with the example, especially we assume F' = (0 and A = (0. While the
checked dark surfaces represent Zj in the stochastic liquidity framework, the bright
flat surfaces represent Zy in the constant liquidity setup.

7.3. SENSITIVITY ANALYSIS

How does a variation of relevant parameters changes the results? Recall
that the parameters of the CIR process have to meet the boundary
condition 6* > (?/(2k*) in order to assure positive outcomes. Thus,
the choice of parameters is restricted. When the boundary condition
becomes binding a reduction in k* or 6* implies a reduction in ¢ (for a
given 0* or k*) to get an admissible solution.

First we stay for a while in the the rather unrealistic world of the
previous example and consider a contract that is linear in p; (= F = 0)
and assume a zero market price of liquidity risk. Figure 6 illustrates in
two three-dimensional plots how the price of the derivative Z; varies
when altering combinations either of 6 and ( for fixed x (left graph)
or of k and ¢ for fixed 6 (right graph) such that the restriction in
inequality (22) is satisfied. The derivative in the stochastic liquidity
framework is represented by the checked dark surfaces. The brighter
surfaces represent the derivative in the constant liquidity setup that
serves as a benchmark. Under the given assumptions (F = 0 and \(?) =
0 = 0" =0,r" = k) the world is simple. Remember, in this case
equation (19) simplifies to (20). In the stochastic liquidity setup the
price of the liquidity derivative Zj is a linear increasing function of the
long term mean 6 and an exponentially decreasing function of the mean
reversion parameter . The volatility parameter ¢ has no impact on the
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price of the derivative Z;. Reconsidering the definition of E [p;] given by
equation (23) one can state that the stochastic and the deterministic
liquidity setup give almost identical results if pg and 6 are close to
p°°$t and if the parameters t and s are large enough.

If the assumptions of the previous examples are relaxed and either a
contract that is non-linear in p; or a non-zero market price of liquidity
risk is taken into consideration the volatility parameter ¢ has an impact
on the price of the liquidity derivative Zy. Figure 7 shows the price of
the derivative Zj for admissible combinations of { and F' (left graph)
and of ¢ and A (right graph) for fixed x and 6.

If the parameter F' is increased, the derivative becomes less expen-
sive. In this case the contract pays out in less states of the world.
However, the price reduction is less pronounced if the volatility param-
eter ( is large. To put it differently: an increase in { transfers weight to
the tails of the distribution and raises the price of the derivative Z; for a
given positive F'. A similar phenomenon can be observed in a BS world.
A derivative that is linear in the asset price, for example a forward
contract is insensitive to the volatility of the underlying. In contrast, the
volatility of the underlying influences the price of plain vanilla options
that are non-linear contracts in the asset price. Furthermore, the Vega
of a plain vanilla European call option is a positive function of the
strike price which coincides with the fact that the greater the floor
F' the higher the sensititity of the price with respect to changes in
volatility.

The parameter X influences the drift of the liquidity process under
the risk-neutral measure. Additionally, if A # 0, the volatility param-
eter ¢ appears in the risk-neutral drift, see equation (21). If A > 0,
an increase in { causes an increase in £* and an reduction in 6*. Both
aspects reduce the price of the derivative Z;. The opposite effects can
be observed for A < 0.

7.4. MARKET PRICE OF LIQUIDITY RiISK

7.4.1. QOwverview

Recent literature provides strong evidence that investors care about
liquidity risk which implies that liquidity risk is priced into asset re-
turns. For example, Acharya and Pedersen (2003) analyze daily return
and volume data from 1962 until 1999 for all common shares listed
on NYSE and AMEX. They corroborate the hypothesis that investors
require a premium for a security that is illiquid when the market as a
whole is illiquid and that investors are willing to pay a premium for
a security that is liquid when stock returns are low. More over, they
show that investors are willing to pay a premium for a security with a
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Figure 7. Price of the liquidity derivative Zp as a function of the parameters ¢, F
(in the left figure) and ¢, A (in the right figure). All other parameters are chosen in
accordance with the example.

high return when the market is illiquid. This is empirically supported
by Pastor and Stambaugh (2002) who use monthly data for 34 years
of common stocks traded on NYSE, AMEX and NASDAQ. They find
that stocks which are more sensitive to aggregated market liquidity
have higher expected returns. A comprehensive review of theoretical
and empirical approaches can be found in Pritsker (2002).

From this perspective and with the results of subsection 7.2 in mind
it seems important to provide a reasonable approach to determine the
market price of liquidity risk from traded instruments. As an example
for such a traded claim we consider a plain vanilla European put option
that gives the holder the right to sell ¢g units of the stock for the strike
price X at maturity 7. In the following we make four assumptions to
simplify the explanation, specifically we suppose that

— if the option is exercised the holder has to deliver the shares
physically,

— the day of execution coincides with the day of delivery (Note that
in practice there may be some exchange trading days in between.)

— the short seller of the put liquidates the ¢y units of the stock
immediately if the option is exercised,

— neither the long nor the short party trades the underlying before
the maturity of the option.

The first assumption is met at many exchanges for equity options. The
second and the third assumption are not critical and can be relaxed if
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a more realistic framework is desired. The last assumption ensures that
the underlying price process and the liquidity process are independent.
Easing this restriction for example by assuming that the short seller
hedges the option in the stock market results in more complex dynamics
for the underlying as we have seen before when considering general
trading strategies of a large investor.

7.4.2. Intuition

Assume, that the holder of the put has to liquidate a long position in
the underlying at a certain time 7. For this purpose the investor can
either sell the securities at the exchange or execute the put option and
deliver the stocks to the short seller of the put. Since the market for
the underlying is illiquid, the terminal payoff of the put is given by
Pr = max[X — S7(1 — préo),0]. This can be explained as follows:

The execution of the put is optimal if it provides higher revenues
than the liquidation of the underlying in the market. In the latter case
one will receive S7(1 — pre¢g) due to the market illiquidity. Thus, it is
optimal to exercise the put option if and only if X > Sp(1 — prdy).
If the put is exercised the short party faces a liquidity risk. Assume
that the underlying is liquidated immediately after the execution of the
put. Then the short seller has to bear a liquidity discount amounting
to Stprdo.

The story is similar to the liquidity derivative considered in the pre-
vious section for a floor F' = 0. If one holds the liquidity derivative and
the stop loss order is executed at 7 < T', one would sell the underlying
at the market for S(1 — p,¢g) and receive the payoff of the derivative
Spr¢o. In total one would obtain S¢yg. If one is hedged by the European
put option one delivers at T' the shares to the short seller and receives
Xpréo-

Although the payoff of the European put option and the liquidity
derivative seem closely related to each other, assuming X = S, there
are important differences. The European put option matures at time 7'.
Therefore, it may be suitable for an investor who has to liquidate stocks
at a fixed point in time. In contrast to that, the liquidity derivative
matures at the stopping time 7 < T, when the stock price hits S for
the first time, in order to compensate an investor who follows a stop loss
strategy for the liquidity discount. Considering this particular trading
strategy an European put option would not hedge the large investor
perfectly. Imagine for example a situation, where S is hit at time 7 < T,
but then the stock price rises again and we observe Sp > S. In this
case the put will not be exercised at T, although the stop loss order
was executed. Only for 7 = T (which is an event with zero probability)
the investor would be indifferent between the two claims.
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One may argue, that an American put option may better meet the
needs of an investor who follows a stop loss strategy than an European
put since it could be exercised at any stopping time 7 < T'. However,
early execution of an American put option following this particular
strategy does not have to be optimal. Since there are infinitely many
possible stopping strategies the American put option will be more
expensive than the liquidity derivative. Thus, a long position in the
liquidity derivative would be the most effective and cheapest way to
hedge against the liquidity risk arising from a stop loss trading strategy.

7.4.3. Pricing Formula for the Put Written on an Illiquid Stock
The price of the European put option can be computed analytically in
our framework. The put price is not unique, since the market is incom-
plete. As before, the underlying follows a geometric Brownian motion
with drift » under the risk-neutral measure. For the liquidity process we
again consider a CIR-process. It exhibits one degree of freedom since
the unknown market price of liquidity risk shows up in the risk-neutral
dynamics in equation (17). However, comparing the theoretical price
with market data would give an explicit specification of the market
price of liquidity risk.

By fixing a risk-neutral measure P the risk-neutral pricing formula
is given by

P =

I(X > Sr(1 - préo))]

fE[
DE[Srprdel(X > ST(1 — préo))]

In integral representation - where f denotes the risk-neutral density
of the asset price process at ¢ and ¢ the risk-neutral density of the
CIR-process at t - this yields

P, = ¢ / F()g(p)dsdp
X>s(1—peo)
e 51 (s)g(p)dsdp
X>s(1—peo)

+e (T g, / spf()g(p)dsdp
X>s(1—peo)
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using the substitution z = s(1 — p¢y) in the last step. The density of
the CIR-process is non-central x? with the adjusted drift containing the
market price of liquidity risk. Thus, in order to determine the market
price of liquidity risk one has to solve the following root finding problem

PEPS — Pl (M) Z0

numerically by adjusting AP) iteratively.

8. Conclusion

Criteria such as consistency with empirical phenomena, flexibility and
also computational aspects should be considered in the development of
a liquidity model. We have presented a framework that we feel meets
these requirements and has proved worthy of investigation.

This paper introduces a continuous-time model for an illiquid mar-
ket, where the trading strategy of a large investor can move prices. The
innovating features of our setup include on the one hand a time varying
market depth and on the other hand the modeling of liquidity feedback
effects.

We have analyzed two basic types of trading strategies. For positive
feedback strategies and non-positively correlated Brownian motions
volatility generally is increased compared to BS. For contrarian feed-
back strategies one can observe basically the opposite. The picture can
change completely if the asset becomes highly illiquid and the asset
price dynamics are completely dominated by the trading activities of
the large investor. These features are discussed both analytically as
well as numerically by using some simulation results.

Furthermore, an application of the general framework is proposed.
A closed form expression to price a liquidity option, that’s payoff de-
pend on the price difference between a stop loss limit and the average
execution price of a stop loss order, is provided. Furthermore, a prag-
matic way to determine the market price of liquidity risk from traded
European plain vanilla put options is presented.
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Further research may focus on derivative pricing under the effec-
tive price processes or the application of hedging strategies from in-
complete markets to this setting. An investigation in order to reveal
optimal liquidation strategies in the proposed framework seems to be
promising.
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Appendix
I. PROOF OF PROPOSITION 1

Using It6 for ¢(t, .S, p) where subscripts denote partial derivatives gives

1
dp = gudt + ¢sdS + ¢pdp + ¢s,d[S, pli + §(¢Ssd[5]t + ppridt).
Plugging this into equation (4) we get

dSt = (O’ + qupy'y)Stth + ,0¢pl/Sth + ptSt ((,utSt + ¢t)dt + ¢5dS
- 1
+¢pdp + V¢Spd[S, W]t + 5 (¢55d[8]t + ¢pplj2dt)>

which implies

1 i}

dSy = HTQbS ((U + pqﬁpl/'y)Stth + St(pqépl/\/ 1-— ’)/2)th
1

S0 | (B 41+ Blpr )+ 5

+ossdiSh + vgs,dS WL ).
assuming p;Si¢s < 1. Using the trial solution
dS; = b(t, Sy, py)dt + v(t, Sy, pr) SedWy + v(t, Sy, pt) Sy dW;
and comparing coefficients leads to

o+ pPpry
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vpdp/1 —+2

o(t,5,0) = —— 2505
pS 1 2
b(t,S,p)dt = 1= pSds [( + ¢y + Blpest)dp + §¢ppy )dt
+—q§55d[S]t + v, dS, W]t}
S 1
= 1_’% [( + ¢y + Blpest)dp + §¢ppy2)
202 + ,021/2qb% + 2ypove,
+—¢555 (1= pS4s)?
vpdp + 0o
+vds, Si&ﬁs } dt
since
d[S]; = S*(v* +v%)dt
w2 o? + p2u2¢% + 2vypov,
-0 ( i—psgsy )"
and

dS,pli = Sv(yv+4/1—

vpg, —i—’ya)
— s dt
1—pS¢s

IT. FUNCTIONAL FORM OF ¢(S, p)

In order to incorporate the idea that ¢ is a function of both S and p
we chose a product approach by separating the strategy with respect
to S and p:

#(S, p) = ap(S)x(p)

A function that is able to model the features described in section 6 is
the incomplete gamma function, defined by

[(z,2) :/ et ae.

We read I'(z, z) as a function of z for fixed z-values. It is monotonically
decreasing to zero for z — oco. The incomplete gamma function captures
the dependency of the trading strategy with respect to p for fixed S.
For the contrarian feedback strategy the scenario is similar with respect
to S for fixed p. Since the image is reversed for the positive feedback
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strategy the functional form has to be adjusted. Therefore we multiply
the gamma function by —1 and then shift it to positive quadrant. Thus,
we chose the following representation for the dependency on p

x(p) = L'(b1, c1p)
and for the dependence on S

['(bg, c2S) (contrarian strategy)
P(S) =

['(by) — I'(b2,c2S)  (positive strategy)
Consequently, the contrarian feedback strategy is given by
¢ (S) = al'(br, c1p)L' (b2, c2.5) (24)
whereas the positive feedback strategy is given by
¢" (S, p) = al (b1, c1p) [T (b2) — T(b2, c25)] - (25)

where I'(z) denotes the standard gamma function. For the simulation
in section 6 we use the following parameter constellation:

by = 2.1 b = 6.0
c1 = 8.5 co = 0.05 a = —0.05
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