
Hefti, Andreas; Lareida, Julia

Working Paper

Competitive attention, superstars and the long tail

Working Paper, No. 383

Provided in Cooperation with:
Department of Economics, University of Zurich

Suggested Citation: Hefti, Andreas; Lareida, Julia (2021) : Competitive attention, superstars and the
long tail, Working Paper, No. 383, University of Zurich, Department of Economics, Zurich,
https://doi.org/10.5167/uzh-202542

This Version is available at:
https://hdl.handle.net/10419/234024

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.5167/uzh-202542%0A
https://hdl.handle.net/10419/234024
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 
 

 
Working Paper No. 383 

 
 

Competitive Attention, Superstars and the Long Tail 
 
 
 
 
 

Andreas Hefti and Julia Lareida 
 
 
 

April 2021 
 

 

 

 

 
 

 
 

University of Zurich 
 

Department of Economics 
 

 
 

Working Paper Series 
  

ISSN 1664-7041 (print) 
 ISSN 1664-705X (online) 

 
 

 
 

 
  
 
 
 
 
 
 



Competitive Attention, Superstars and the Long Tail

Andreas Hefti∗and Julia Lareida†

Abstract

We propose a model of competitive attention based on two key premises: i) People have

limited information processing capacities and ii) consideration sets are formed according

to relative salience. The equilibrium predictions we obtain can help to understand, and

connect, diverse empirical phenomena, such as the Paradox of Choices, the Power Law dis-

persions of key market data (sales, profits, online clicks,...), the relation between advertising

expenditures and market shares, the evolution of market inequality, or why evidence favoring

a “Long Tail” effect is mixed at best.
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1 Introduction

The modern, digitized competition looks like a textbook illustration for perfect competition.

Markets seem to become increasingly contestable as expensive “brick-and-mortar” stores are

replaced by cheaper online outlets, facilitating product entry. Consumers face an ever grow-

ing plethora of choice options, escorted by an omnipresence of product information. However,

information becomes relevant only insofar it enters cognition. As mental resources are limited

and information-processing consumes energy, only a subset of the available information may be

passed on to cognition. The corresponding information selection is commonly referred to as an

attention process in psychology (see, e.g., Pashler, 1998).

In this article, we study a setting with competing choice options, where the consumer atten-

tion process is described by two key factors emphasized by psychological and neuroscientific

research: (i) People have limited information processing abilities, and (ii) their allocation of

attention obeys stimulus-driven attentional control as described by Steven’s Law of Perception

(Stevens, 1957). The equilibrium model that we derive from these presumptions can explain

empirical phenomena observed in individual choices or in aggregate industry data, and connects

these phenomena through the competitive allocation of attention.

First, we show that a “Paradox of Choices” emerges for individual consumers, meaning that

choice satisfaction and the set of considered options diminish once the information load sur-

rounding the choice options increases beyond a certain threshold. Choice overload arises in our

model because the human brain is endowed with finite resources for information processing, and

consequently needs to economize on the mental resources directed towards a decision task. How

effective the brain is in processing the available information depends on the brain’s capacity

relative to the information load that it needs to handle. The larger this load, the slower infor-

mation processing becomes, much like more traffic on a given road causes congestion, reducing

the traveling speed of each individual vehicle. The brain then economizes on its resources by

“looking less carefully”, which is manifested in smaller consideration sets.

Second, we show that key market data, such as sales, profits or attention (e.g., online “clicks”)

ought to follow Power Law dispersions in equilibrium, as a consequence of competitive forces and

Steven’s Law of Perception. This empirically well-founded law describes the relation between

the objective intensity of a stimulus (the luminance of a figure, the volume of a sound,...) and

the subjective intensity of the mental sensation it evokes on the mind of the recipient. We embed

its key observation – that equal stimulus ratios generate equal mental sensation ratios – in our
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model by assuming that firms can influence the relative salience with which their products are

imprinted on a consumer’s mind by investing into attention-seeking efforts, such as advertising.

The choice alternatives which manage to evoke the strongest mental sensations relative to the

rest have the largest chance of entering the consideration set. Firms are individually rational

when choosing their attention efforts and correctly account for the consideration set formation by

consumers. The equilibrium allocation of attention therefore is not random, but systematically

reflects the competitive behavior of profit-oriented firms that differ in their abilities to attract (or

to monetize) attention. Steven’s Law then implies that the competitively chosen attention efforts

must be related by the principle of constant proportionality to each other, which necessarily

results in a Power Law dispersion of the equilibrium quantities.

In addition, we find an intimate relation between the dispersion of perception chances and

the average size of the consideration sets, as the latter must correspond to the sum of the prod-

ucts’ perception chances. This simple insight allows us to find the consideration set size of a

representative consumer that generates this data. The perception chances can principally be

deduced from attention data, such as an aggregate online click dispersion. Moreover, with an

additional assumption we can even obtain the full dispersion of this representative consumer’s

consideration sets that are consistent with the attention data.

Third, we study whether competitive attention works in favor of “Superstar products” or a

“Long Tail” effect. According to the Long Tail hypothesis, the products in the tail of the

sales distribution should benefit most from the improved economies of storage and distribution

resulting from digitized markets, leading to a gradual de-concentration, e.g., in the sales distri-

bution (Anderson, 2004). By contrast, theories of Superstar products suggests that the head

of the distribution grows more successful due to quality advantages, thereby increasing market

inequality (Rosen, 1981; Frank and Cook, 1995). Both theories do not account for consumer

attention and its allocation. We find that competitive attention induces a Superstar effect in

the empirically relevant cases where new products enter at the tail or total demand increases.

Moreover, the same forces that cause a Superstar effect also inhibit a Long Tail effect. That is,

the entry of new tail products tends to increase market concentration, and the firms with the

largest market shares may benefit most, which contrasts with conventional competition results.

Our findings reflect the equilibrium interplay between competitive forces and the individ-

ual formation of consideration sets. Intuitively, the market forces forming the competition for

attention can be described as firms shouting more for attention, while consumers respond by

hearing less, which inclines individual firms to shout even louder. More precisely, firms com-

pete in attention for becoming part of the consumers’ consideration sets. Product entry or

an increase in demand intensifies this competition and increases the information load imposed
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on consumers, which aggravates the choice overload effect. A stronger choice overload effect,

in turn, intensifies the competition for attention as attention has become scarcer. While this

increases attention expenditures, and more so for firms with larger market shares, it also allows

firms to better monetize the attention they manage to attract due to a competition softening

effect associated with smaller consideration sets. We show that the latter effect dominates if

products are complex, such that their evaluation consumes a lot of mental resources, and strong

substitutes in terms of true preferences. In such a case the firms that can afford the largest

market shares must also be the ones to benefit most, in absolute terms, from product entry at

the tail.

From the conceptual perspective, our framework offers a tractable theory of consideration set

formation. Consideration sets have been a key concept in marketing, as these sets are thought

of containing those alternatives from which a consumer makes her final purchase decision. We

assume that consideration sets, as the central output of the information processing problem, are

formed by the brain such that they contains as much information as can be analytically parsed.

With the latter, we mean that consideration sets have been formed exactly such that consumers

can identify the alternative that maximizes a fixed preference relation without mistakes. By

contrast, the formation of a consideration set is cognitively more challenging, and may therefore

involve an entirely different mental process, as emphasized by the relatively young literature

about the “power of the subconscious” for decision-making in case of complex problems (Dijk-

sterhuis et al., 2006). In this respect, our model draws a line between the mental operations

involved in “choosing an option from a consideration set”, and “forming a consideration set”.

Article structure The attention model is developed in Section 2, and Section 3 derives the

key properties of the attention equilibrium. In Section 4 we study whether a growing measure

of tail firms or market entry of new consumers cause a Superstar or a Long tail effect in the

attention model. Section 5 discusses the related literature and contains additional comments.

Section 6 draws a conclusion. All proofs of the formal statements in the main text can be

found in Appendix A. The supplementary material (Appendix B) contains additional results

and extensions meant to strengthen and further explore some of our key points. The respective

connections will be made explicit in the main text.

2 Choice Overload and Competitive Attention

On many occasions, decision-makers do not consider all available options when making a choice.

Starting with Miller (1956), research in different disciplines has found clear evidence that people
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fail to properly recognize all information items once total information exposure exceeds a certain

threshold. Such observations are frequently summarized under “information overload”, mean-

ing that somebody is exposed to “more information than the sensory or cognitive system can

handle”.1 In marketing, the idea that consumers choose from a “consideration set”, containing

only a few out of all available alternatives, dates back to Howard and Sheth (1969). Hauser

and Wernerfelt (1990) present a broad description of such consideration sets, emphasizing that

such sets empirically are small (≈ 4− 5 items) across very different product categories (soaps,

cars,...). Similarly, De los Santos et al. (2012) observe that shoppers visit only a small number

of websites for their online purchases. In social network research, several papers show that

users fail to account for all incoming messages due to constraints on information processing,

meaning that they only consider a subset of the information available to them when deciding

which messages to forward or promote (see, e.g., Hodas and Lerman, 2014; Rodriguez et al.,

2014; Feng et al., 2015).2

In the finite capacity model, developed in the next section, we formalize information overload

and its connection to economic choice based on the well-established observation that humans

are able to process the stream of available messages only with finite mental capacities. The

outcome is a fairly tractable model of consideration set formation consistent with research on

how the human brain appears to work. Intuitively, the consideration set is the result of a

possibly subconscious deliberation of the brain that attempts to economize on its resources for

information processing, and the relative salience of the various information stimuli that need to

be processed.

2.1 Finite Capacity Model

Suppose that there are n ∈ N+∪{∞} options available in a decision task. For a decision-maker,

these options matter only insofar they are represented on her mind, which requires mental

information processing. How many of the choice option are perceived, i.e., become a part of the

consideration set, depends on how much mental resource is dispatched, and how effective the

brain can process the available information.

Regarding the latter, we suppose that the processing rate τ > 0 quantifies how effective

an additional unit of mental resources is in the production of a consideration set for a given

decision situation. Specifically, if R measures consideration set size, we suppose that R = τT ,

1See Eppler and Mengis, 2004; Sutcliffe and Weick, 2009 for interdisciplinary surveys of information overload.
The term “information overload” was coined by Toffler in the book “Future Shocks” (Toffler, 1984).

2For example, in case of Twitter Rodriguez et al. (2014) estimate the threshold to be about 30 incoming
tweets per hour. Below this inflow rate, the likelihood that a users re-tweets an incoming tweet is constant, but
above the threshold it drops substantially.
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where T ≥ 0 quantifies the amount of mental resource that has been dispatched by the brain

for information processing. Lower values of τ or T thus imply, ceteris paribus, that fewer

alternatives are perceived, and become part of the decision-problem.3 Intuitively, this means

that the set of perceived options is smaller if the brain thinks less hard, or information processing

is challenging.

We suppose that the human brain economizes on the mental resources T allocated to the

decision task for a given processing rate τ > 0 by solving

max
T≥0

τT −H(T ), s.t. τT ≤ n, (1)

where H(·) is a strictly increasing, strictly convex C2-function with H ′(0) = 0. We think of

H(·) as the cost of allocating T units of mental resources to the decision problem, e.g., in terms

of metabolic energy used by the brain (Lennie, 2003), or in form of a general opportunity cost

(see Appendix B.3). The constraint in (1) captures that R ≤ n, where R = n means that

the consideration set encompasses all available information. If ϕ(·) denotes the inverse of the

function H ′(·), and ignoring the integer-value problem,4 the optimal attention span T ∗ solves

T ∗ = ϕ(τ), such that

R∗ = τϕ(τ). (2)

whenever R∗ < n, i.e., an interior solution results (which occurs iff τ > H ′(n/τ)). Condition

(2) implies that consideration set size and the processing rate are positively related (R′(τ) > 0)

at interior solutions. That is, it is optimal to decrease the attention span once information

processing is slower.5

Consistent with empirical evidence and mathematical information theory, we assume that the

processing rate τ is inversely related to the total information load Σ(n) ∈ R+ the brain needs

to handle when facing n alternatives. Specifically, we let

τ = min

{
C

h(Σ)
, 1

}
, (3)

where h(·) ≥ 0 is a strictly increasing C1-function. Expression (3) has its roots in information

theory (Shannon, 1948), where C is a fixed channel capacity, and h(Σ) quantifies the information

3See, e.g., Bettman et al. (1998) showing that the imposition of an external time constraint on the length of
the information evaluation period forces consumers to engage in a less systematic, and hence less informative,
evaluation of the available alternatives.

4To characterize the properties of the optimal solution R∗, it is analytically convenient to admit real-valued
solution in problem (1). While allowing that R ∈ R++ greatly simplifies the formal analysis, in particular in our
later equilibrium model, we do not see that the essential economic implications we derive hinge critically on this
simplification.

5R′(τ) > 0 would also result if the attention span were exogenously fixed to T̄ > 0.
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load that needs to be processed through the channel.6 We denote by R̄ ≡ ϕ(1) > 0 the maximal

amount of information that can be processed, achieved if the brain works at full capacity, and

accordingly normalize C ≡ h(R̄). For simplicity, we normalize the minimal information load

imposed by each option to one, which implies that Σ(n) ≥ n.7

By (3), we assume that τ depends on a measure of information load h(Σ), rather than just on

the mere number of alternatives n. This reflects an overarching consensus that the information

surrounding the choice options (e.g., marketing messages, the number of advertised attributes or

the overall information dimensions of the options) and not the pure size of the grand choice set

is the central determinant for the information (over-)load a decision-maker is exposed to (e.g.,

Jacoby, 1977; Payne, 1982; Payne et al., 1993; Lurie, 2004; Lee and Lee, 2004; Scheibehenne

et al., 2010; Chernev et al., 2015).

Condition (3) implies that whenever the processing requirement h(Σ) exceeds the capacity

limit C, information overload occurs, resulting in information congestion and a reduced rate of

information processing τ . Such a pattern has been robustly observed in humans.8

2.1.1 Choice Overload

We say that information overload occurs if one of the following equivalent conditions is met:

h(Σ) > C, Σ > R̄, or τ < 1. That is, information load occurs iff information is processed below

the maximal pace. It is easy to verify that R∗ < R̄ iff there is information overload, and that

τ ′(Σ) < 0 whenever there is information overload.

Choice overload occurs whenever R∗ < n, i.e., if less information is processed than the

decision-maker is confronted with. The following elementary proposition shows that information

overload is necessary for choice overload, and predicts a negative relation between consideration

set size and information exposure of a choice-overloaded decision-maker.

Proposition 1 Information overload is necessary for choice overload, and R′(Σ) < 0 whenever

there is choice overload.

Intuitively, if there is no information congestion (τ = 1), then R̄ ≥ n, such that it is optimal

6If τ is the transmission rate of a channel per unit of time, and an information source has a complexity as
measured by Log2(Σ) of symbols, then N(T ) = ΣTτ corresponds to the possible inflow of information if the
channel is open for duration T and symbols arrive randomly. The Shannon capacity is then defined as the limit
C = lim

T→∞
Log2(N(T ))

T
, which evaluates to C = τLog2(Σ). Thus, for a given capacity C, the transmission rate

must be τ = C/Log2(Σ).
7In the equilibrium model, the exposure Σ(n) will be endogenously determined by the aggregate attention-

seeking efforts, which can intuitively be thought of as the total number of messages sent to the consumer by the
competing senders.

8Schroder et al. (1967) examine a large body of experimental evidence, and conclude that information load
and information processing must be interdependent, where an increasing information load negatively influences
an individual’s processing capacity beyond a certain tipping point; also see Streufert and Driver (1965); Streufert
et al. (1967); Streufert (1970), and more recently Eppler and Mengis (2004), concluding that a slowdown in
information processing is a robust characteristic of information overload across many different decision tasks.
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to process all available information, and a choice overload effect cannot arise. For the second

result, an increase in the information load Σ intensifies information congestion given that choice

overload already has arisen, and the corresponding reduction in information processing τ makes

it optimal for the brain to dispatch less mental resources, resulting in smaller consideration sets.

To illustrate Proposition 1 with an example, let h(Σ) = Σ and H(T ) = δTµ with parameters

δ > 0 and µ > 1. It is easily verified that R(·) then is of the form

R = αΣ−β, α > 0, β ≡ µ

µ− 1
> 1, (4)

whenever choice overload occurs.

If Σ(n) is strictly increasing in n, a property which holds in our later equilibrium model, the

finite capacity model makes the behavioral prediction that a choice overload effect occurs, in

thus that R∗ follows an inverse-U in the number of available options n (see Figure 1).

Corollary 1 Let Σ(n) be a strictly increasing C1-function with Σ(0) = 0. Then there exists a

unique n̄ ≤ R̄, such that R∗ = n for n < n̄ and R′(n) < 0 for n > n̄.

The intuition is that an increase of n at some point must eventually lead to information overload

whenever an increasing number of choice options also increases the information load. Beyond

this threshold, a further increase of n leads to information congestion, resulting in a decreasing

transmission rate and a decreasing attention span.

45°
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Figure 1: Choice Overload Effect

2.1.2 Discussion

Proposition 1 and Corollary 1 entail the essential prediction that information recipients “look

less carefully” once overload occurs. The prediction of a diminished consideration in response

to information overload is consistent with a large body of empirical evidence on what has

been summarized as the negative effects of choice overload, sometimes also referred to as the

“Paradox of Choices”. Eppler and Mengis (2004) present an extensive interdisciplinary survey
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and conclude that an overloaded person has “difficulties in identifying the relevant information,

becomes highly selective and ignores a large amount of information...”(p.333). Parra and Ruiz

(2009) conduct a controlled experiment with a simulated online store for stereo systems, and

show that an increase in the information load, measured jointly by the number of products and

product attributes, leads to a reduction in the consideration set size. Pan et al. (2013) conduct

eye-tracking studies in case of hotel selection, where the size of the information set (number of

displayed hotels) is varied from 5 to 20. They find roughly double as many eye fixations on

each hotel in the small information set, meaning that each hotel in the small set received much

more processing. Moreover, many subjects missed to look at some hotels in the large set, but

not so in the small set. Rodriguez et al. (2014) show with social network data from Twitter

that the more incoming tweets an overloaded user is exposed to, the less information sources are

considered by this users for re-tweeting. A diminished consideration in response to increasing

information exposure has also been observed in case of catalog-based shopping (Eastlick et al.,

1993), apartment selection (Helgeson and Ursic, 1993), online information search (Oulasvirta

et al., 2009), the number of partner considers in online dating platforms (Finkel et al., 2012),

click-through rates in news articles (Dellarocas et al., 2015), or online shopping (Li, 2016).

Besides diminished consideration, choice overload is manifested through decision-makers ex-

pressing general sentiments of choice dissatisfaction or insecurity with the choice, see, e.g., Mal-

hotra (1982); Iyengar and Lepper (2000); Botti and Iyengar (2004); Oulasvirta et al. (2009);

Haynes (2009); Inbar et al. (2011); Chernev et al. (2015). A simple Envelope-Theorem argu-

ment shows that the value function V = τT − H(T ) in (1) is strictly decreasing in Σ for a

choice-overloaded decision-maker, consistent with these negative sentiments.9

Complexity The cognitive complexity of a task is a central empirical aspect of choice overload

(Chernev et al., 2015). According to Payne et al. (1993), the cognitive difficulty of a decision

task amounts to conceptual or structural challenges, which likely are independent from the

values of the option at stake. In the finite capacity model, the cognitive complexity of a task is

incorporated by the (task-specific) function h(Σ) in (3). To illustrate, suppose that h(Σ) = Σκ,

where a larger value of the parameter κ ≥ 1 indicates a more complex decision task. For

H(T ) = δTµ, (4) then is of the form R(Σ) = αΣ−κβ, implying that Ṙ(Σ)
R(Σ) = −κβ

Σ for an

overloaded subject. Hence, considerations sets diminish more quickly in the information load,

the more complicated the decision task is, ceteris paribus.10

9This also holds if the value function were an indirect utility function; see Appendix B.3.
10In view of this example, we can thus directly interpret a larger value of β in (4) as indicating a cognitively

more demanding decision.
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Consciousness One might ask whether our results depend on the fact that R enters linearly

into the objective function (1). We show in Appendix B.3 that the linearity assumption is not

decisive for the choice overload phenomenon to arise, nor for our later equilibrium predictions.11

Nevertheless, the formation of a consideration set most likely is far more complex compared to

“choosing an option” from a fixed and potentially small consideration set. Therefore, a model

based on (1) may lead to a more reasonable description of human behavior as if one and the

same mental processes were forced on each part of the decision-making process.

In this respect, a recent literature has argued that in case of utterly complex optimization

problems the brain makes a subconscious guess, rather than analytically working all possible

contingencies which, inter alia, requires to (correctly) anticipate all possible future contingen-

cies that can arise from the choices made (Dijksterhuis, 2004).12 For example, even the most

proficient human chess players must rely on their educated intuition, rather than conducting a

full analytical assessment, in sufficiently complex board situations. The simple form of (1) with

R = τT states that the brain associates a proportional value with an increased consideration

set size R, which seems like a reasonable forward guess, which may be particularly reasonable if

the possible alternatives in the consideration sets do not involve critical stakes (“movies rather

than houses”).

The consideration sets in our model are formed such that they contain exactly as much

information that can be analytically parsed. In particular, this means that consumers will be

able to evaluate their (fixed) preference relation for the options in their consideration set. In this

sense, we draw a line between the mental operations involved in decisions within a simple set of

objects, and the more complicated operations required to reduce a problem to such a simple set.

More generally, this procedure is compatible with the general notion of a two-phased decision

process, see, e.g., Payne (1982); Gensch (1987); Hauser and Wernerfelt (1990). In a “System 1

and System 2” context (Kahneman, 2011), one can interpret the finite capacity mode as stating

that the fast-thinking system prepares the information such that the slow-thinking system can

penetrate it.

2.1.3 Allocation of Attention

If the set of available choice options is Nn ≡ {1, 2, ..., n} and a consumer’s consideration set size

is R ∈ N+, the space of all possible consideration sets is

A(n,R) ≡ {A ⊂ Nn : |A| = min{n,R}}, (5)

11For example, we consider the case, where V = z(R)−H(T ), R = τT , and z(R) corresponds to an expected
indirect utility function.

12We discuss the relation of this literature to our approach in Appendix B.3.
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which we abbreviate by A. It is easily verified that A = Nn iff R ≥ n. In particular, A = Nn,

∀n, results iff the standard premise of unlimited mental capacities (R =∞) applies.

In psychology, attention is commonly defined as the gating mechanism selecting which infor-

mation items are processed, and which excluded from consideration, if a recipient is exposed to

more information than its sensory system can handle (see Pashler, 1998 for a survey). In our

model, we describe this selection problem by a probability function PA : P(A) → [0, 1], where

P(A) denotes the power set of A. For any A ∈ A, PA quantifies the likelihood that considera-

tion set A is formed.13 We refer to probability space A ≡ (A,P(A), PA) as an attention space,

and to PA as an allocation of attention.

Given any attention space, one can derive, for each choice option j ∈ Nn, the probability πj

of being in a consideration set. If Bj ≡ {A ∈ A : j ∈ A} denotes the set of all consideration

sets in A containing option j, then πj ≡ PA(Bj) =
∑

A∈Bj PA(A). In our later model, πj is

the perception probability of a product, where πj is determined by the relative salience of all

competing choice options.

We end this section by stating a fundamental connection between the perception probabilities

πj with the consideration set size R that generates A

Lemma 1 Let A be an attention space. Then
∑

j∈Nn πj = min{R,n}.

Thus, R always amounts to the sum of all individual perception chances. Let n > R and define

π̂j ≡ πj/R as the perception chance of j per unit of attention. Then, Lemma 1 implies that∑
j π̂j = 1. This simple observation together with the fact that πj = π̂jR will play a central role

in the equilibrium analysis. Moreover, as we show in Appendix B.4, this relation can be further

exploited if one seeks to identify the allocation of attention PA from empirical data (such as a

online “click” dispersion).

2.2 Competitive Attention and Market Competition

In the following, we develop the notion of competitive attention based on the above atten-

tion framework. There is a measure I of consumers and n > 1 single-product firms. Let

A = (A,P(A), P ) be the attention space of an average consumer where, for the moment, we

exogenously assume that n > R, such that there is choice overload, and thus a non-trivial

attention selection problem arises.

In Section 2.2.1 we define the average revenues that the firms can earn from any given

attention they attract, and relate their chances of perception to attention data, such as an

13If R ≥ n, then A = Nn, meaning that there is no selection problem, and the only possible probability
function PA is degenerate.
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online “click” dispersion. In Section 2.2.2, we endogenize the firm-side attention by assuming

that firms need to compete for attention in terms of relative salience, and show in Section 2.2.3

that Steven’s Law of perception pins down the relevant attention cost structure.

2.2.1 Attention Revenues and “Clicks”

Suppose that firm j can extract an attention revenue V j(A) from consideration set A ∈ A, where

the value function V j : A → R+ verifies V j(A) > 0 only if A ∈ Bj . In words, consideration is

necessary for monetization. Thus, the expected attention revenue earned by firm j in the market

is
∑

A∈Bj P (A)V j(A)I.14 In what follows, we assume that for any given A(n,R) with n > R,

firm j earns the same average revenue from each A ∈ Bj , such that V j(A) = V j(A′), ∀A ∈

Bj ⊂ A(n,R). Accordingly, we write (abusing notation) V j(R) instead of V j(A), and interpret

V j(R) as the average attention revenue per consumer that firm j earns from consideration sets

of size R. Then, the total expected attention revenue simplifies to

∑
A∈Bj

P (A)V j(R)I = πjIV
j(R), (6)

which greatly increases the tractability of the equilibrium analysis. As we show in Appendix

B.7, one foundation for the reduced form (6) is that V j(R) amounts to the average per-consumer

revenue earned from strategic price competition, where V j(R) = (pj − c)dj(p,R) and dj(·) a

(conditional) demand function.

Clicks The quantity Cj ≡ πjI in (6) measures the total amount of attention attracted by firm

j. To illustrate, suppose that the attention of each consumer is manifested by her “views” or

“clicks” at different options, such that RI measures the total volume of clicks in the market.

Then, firm j’s chance of obtaining a click is πj , the total measure of clicks going to j is πjI, and

the fraction of clicks going to j corresponds to π̂j , the perception chance per unit of attention.15

14In this expression, P (A) and V j(A) correspond to population averages which, by assumption, is the only
population information available to firms. Moreover, this expression would also apply if there were consumer-side
heterogeneity in the attention allocation Pi(·) and the value function V ji (·) for given R, where these distributions
are known by the firms, as long as Pi and V ji are uncorrelated in the consumer population. Then, P (A) and
V j(R) again would correspond to population averages. A simple example is obtained if either Pi or V ji is identical
across consumers.

15Such “click” data is typically available in internet data (see, e.g. Optify.net. In Section B.4 we discuss how
to retrace the attention space A that matches the average consumer from such data.
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2.2.2 Relative Salience

We suppose that the firms can influence their perception chances πj by investing into attention-

seeking activities, quantified by fj ≥ 0. Specifically, πj is determined according to

πj =
fj
Σ
R, (7)

where Σ ≡
∑

j fj is the information load generated by the attention-seeking of all firms. An

ad-hoc interpretation of (7) is that
fj
Σ is the chance of being sampled in a single random draw

from an urn, where fj is the mass of ball j. Then, (7) says that the perception chance is

proportional to the mass of ball j relative to all balls, and to the total number of draws R.16

That is, if one thinks of fj as collating the total volume of firm j’s advertising campaign imposed

on consumers, the chance of firm j to be “on a consumer’s mind” at the moment where the

consumer makes her final purchase decision is proportional to the size of j’s campaign relative

to total campaigning in the market.

Our main foundation for stipulation (7) that “standing out relative to the rest” determines

ones perception chances follows from the psychological principle of relative salience. The liter-

ature has established that the salience value of an impression is determined by the strength of

the impression relative to other impressions or a general background. Several papers document

that items which are relatively more visible, e.g., by their prominence in list positions, their

relative appearance (luminance, size, originality,...) or their relative frequency of occurrence,

are more likely to be perceived.17

Expressed in our model, relative salience requires that fj matters relative to the total infor-

mation load Σ for determining the perception chance πj . Accordingly, if πj = πj(fj ,Σ), then the

function πj(fj ,Σ) must be zero-homogeneous in (fj ,Σ). As πj ≡ π̂jR, also the perception chance

per unit of attention, π̂j , must be zero-homogeneous in (fj ,Σ). Thus π̂j(fj ,Σ) = g (fj/Σ), and

in Appendix B.1 we prove that g(·) is linear, i.e., g (fj/Σ) ≡ fj
Σ = π̂j . Therefore, πj must be

given by (7).

16This argument can be made formally correct in the sense of an approximation. Let π̂j = fj/Σ be the one-
shot sampling chance to draw j from an urn. The probability not to get any draw out of R independent draws
with replacement then is (1− π̂j)R. Thus, the probability of obtaining (at least) one draw is πj = 1− (1− π̂j)R,
the first-order approximation of which is πj = π̂jR at π̂j ≈ 0.

17See, e.g., Smith and Brynjolfsson (2001); Hothkiss (2006); Ghose and Yang (2009); Baye et al. (2009); Ellison
and Ellison (2009); Dellarocas et al. (2015) for evidence that the relative salience of various online links influences
the attention they grab, or Hodas and Lerman (2013, 2014) for evidence that the relative visibility of online
information explains which information is passed through social networks. Several marketing studies document
the importance of “top-of-mind advertising” (see, e.g., Iyer et al., 2005; Hefti and Heinke, 2015; Astorne-Figari
et al., 2019). At a lower level, such observations match the fact that the motion, color or luminance of an
object matters relatively to the surrounding of the object in abstract visual search experiments (Pashler, 1998;
Nothdurft, 2000; Treue, 2003; Pooresmaeili et al., 2014); likewise see Kahneman and Henik (1981); Yantis (1998);
Maunsell and Treue (2006) for the “spotlight effect” of attention.
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2.2.3 Attention Costs and Payoffs

Let attracting attention be a costly activity, captured by a cost function

Cj(f) = cjf
η, cj > 0, η > 1. (8)

As the revenue of attracting attention is (6), firm j’s payoff must be

Πj(fj) =
fj
Σ
RV j(R)I − cjfηj . (9)

The payoff function (9) shows that attention is a competitive resource, akin to a multi-prize

contest, where V j(R) is the value j earns from obtaining one of R prizes, and fj/Σ is the

chance of seizing such a prize.18 Cost function (8) is not arbitrary. In Appendix B.2 we provide

a technology-based and a psycho-physical foundation for (8). The main arguments are as follows.

The psycho-physical foundation derives (9) from Steven’s Law of perception (Stevens, 1957).

This empirical law relates the (objective) intensity of a sensory stimulus (sound, motion, lumi-

nance,...) to the intensity of the mental impression it evokes on the mind of an observer. In

this interpretation, fj = fj(ej) is the intensity of the mental impression generated by exposing

a consumer to an objective sensory stimulus of intensity ej . Based on numerous observations,

the law states that equal objective stimulus ratios generate equal subjective sensation ratios in

an observers’ minds, meaning that fj(ej) must be of the bijective form fj(ej) = kje
1/η
j . Let the

unit cost of producing an objective stimulus be normalized to one, such that e are the costs

associated with sending at intensity e. Rational firms ultimately care only about how much

attention they attract, i.e., how much sensory inputs it takes to achieve a mental impression

that yields a certain perception chance. Then, expressing the costs of ej in terms of the induced

mental impressions fj , where ej = f−1
j (fj), Steven’s Law implies that the payoff structure must

be given by (9). In this context, the assumption η > 1 captures that attention-seeking is subject

to diminishing returns. Such diseconomies of scale are a well-known empirical regularity in case

of advertising (e.g., Vakratsas and Ambler, 1999; Bagwell, 2007)

The technology-based foundation presumes that attention-seeking (e.g., advertising) is pro-

duced by a multi-input production process described by a homogeneous production function,

where firms differ in their efficiency of producing attention. In this interpretation, the param-

eter η captures the economies of scale in the production of attention, and cj capture efficiency

18We assume that V j(R) is independent of fj , as our main focus is on “prominence on the consumer’s mind”,
i.e., on the formation of the consideration sets themselves. The behavioral literature has emphasized that firms
may also have ways to manipulate the evaluations of the alternatives within a fixed and given consideration set
(see, e.g., Mullainathan et al., 2008; Bordalo et al., 2015, or Grubb, 2015 for a survey.). The two approaches are
complements rather than substitutes: The value of manipulating any given consideration set simply enters the
V j(·)-function in our framework.
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differences in the attention production across firms.

3 Equilibrium Analysis

We next characterize the market equilibrium and some of its key properties for a given number of

firms n and a fixed consideration set size R < n. While we generally think of R as endogenously

determined by the finite capacity model, it is a helpful intermediate step to first clarify the

equilibrium implications of competitive attention for the case of a fixed R. The equilibrium

implications if R responds to changing market conditions is the core subject of Section 4.

Regarding attention, payoff (9) shows that firms can differ in their abilities to attract atten-

tion (cj 6= ck) or to monetize the attracted attention (V j(R) 6= V k(R)). Here, we concentrate

on the former and set V j(R) = V k(R) ≡ V (R) for any two firms j, k. This does not require

that all consumers have identical preferences. For example, we show in Appendix B.7 that such

a symmetric situation results if consumers have heterogeneous preferences and horizontally dif-

ferentiated firms strategically compete in prices. Appendix B.6 studies the case where firms

differ in their abilities to monetize attention; the major equilibrium implications are similar.

3.1 Attention Equilibrium

Let n > R be exogenously given, where n,R ∈ R++ for analytical convenience. Firms differ in

their abilities to attract attention, and the attention costs are determined by a continuous and

strictly increasing bijection k : [0, n]→ [0, c̄], such that firm j’s cost parameter is cj ≡ 1 + k(j).

Thus, firms are ordered left-to-right, with j = 0 (j = n) as the most (least) efficient firm, and

henceforth we identify firms directly by their cost types as these capture the relevant information

about firm heterogeneity. Thus, the set of firms is J ≡ [1, 1 + c̄], and c ∈ J is the firm with

cost type c, and fc denotes attention-seeking of this firm. Given the continuum structure of the

type space, we replace summation by integration, such that Σ =
∫
J fcdc.

19

An attention equilibrium is a measurable function f∗ : J → R+, where
∫
f∗c dc = Σ∗ and the

number f∗c maximizes (9) at Σ∗ for each firm c ∈ J . The following proposition characterizes

the unique attention equilibrium.

Proposition 2 A unique attention equilibrium (f∗,Σ∗) exists, and the information load Σ∗, the per-

ception chances π∗c , profits Π∗c , attention expenditures E∗c and attention (clicks) C∗c are

Σ∗ =

(
RV (R)I

η

) 1
η

K
η−1
η K ≡

∫ 1+c̄

1

s
1

1−η ds (10)

19This formally implies that the perception chance per unit of attention, π̂c = fc/Σ, is a (Lebesgue) density
function of the firms types.
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π̂∗c =
f∗c
Σ∗

=
c

1
1−η

K
, π∗c = π̂∗cR, (11)

Π∗c = π̂∗cRV (R)I
η − 1

η
, E∗c = π̂∗c

RV (R)

η
I, C∗c = π∗c I. (12)

In equilibrium, each firm understands the principle of relative salience, and optimally chooses

its attention-seeking fj while forming rational expectations about the total information load

Σ∗.

3.2 Equilibrium Properties

We now discuss the key equilibrium implications of competitive attention, and highlight their

relation to various equilibrium regularities.

Advertising The equilibrium identified by Proposition 2 is consistent with various empirical

regularities. Expressions (11)-(12) show that f∗c , π
∗
c and Π∗c are ordered according to cost types,

where the firm with the lowest costs invests most, attracts most attention, and obtains the

largest payoffs. Moreover, the top firms also are those to incur the highest attention expendi-

tures, despite being most efficient in attracting attention.20 As such, Proposition 2 is consistent

with three central empirical regularities in advertising research: (i) There is a positive relation

between profitability and attention expenditures (Bagwell, 2007), (ii) advertising expenditures

are heavily skewed,21 and (iii) market and attention expenditure shares move in lockstep (Jones,

1990).

Power Law Property In our view, the most important prediction entailed in Proposition

2 is that perception chances, profits, attention (“clicks”), attention expenditures and sales

are dispersed by (right-truncated) power laws. This follows as π̂c in (11) adopts a power law

distribution over the interval of firms J , and profits Π∗c , expenditures E∗c , attention Cc, revenues

and sales are scaled version of π̂∗c .
22 If η = 2, then π̂(c) is inversely proportional in the cost c, in

which case the resulting distribution is called “Zipf’s Law”. Figure 2 illustrates the dispersion

of the aggregate attention data πjI (“clicks”), its characteristic linear shape in a log-log plot,

as well as the distribution of the firm-side market shares (revenues or sales) and attention

expenditures.

20This is not obvious because more efficient firms could also achieve a higher market share than less efficient
firms with lower attention expenditures.

21See Chauvin and Hirschey (1993) for such evidence across different industries; a nice exemplification is ad
spending in the US beer market.

22The revenue earned by firm c is πcV (R)I, and total revenue is RV (R)I, which as π̂c = πc/R implies that
π̂c is the fraction of total revenue that goes to firm c. If V (R)I = (p− c)d(p,R)I, then πcd(p,R)I are the total
sales of firm c, and it follows that π̂c is the fraction of total sales that go to firm c.
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Figure 2: Equilibrium distribution of attention, market shares and expenditures

Power law dispersions are among the best documented empirical phenomena, and “funda-

mental in understanding the marketplace economy”.23 Besides sales or revenues, quantities

related to the attention of consumers also seem to follow a Power Law. For example, power

laws were found in the online clicking or viewing-time distributions (Granka et al., 2004), in

the click-through and conversion rates of keywords (Skiera et al., 2010), or internet site visits

Adamic and Huberman (2000); Webster and Lin (2002). Such power laws are generally viewed

as a part of the “laws of the web”.24

To see why competitive attention implies such a distributional pattern, note first that a firm

with a comparably very strong attention ability (low c) can afford to invest more into attention-

seeking. The corresponding market share π̂(c) in turn burdens the firm with high equilibrium

expenditures, despite a low c. Now, if c were to increase slightly, this would therefore have a

severe impact on the expenditures needed to maintain the large market share, and a rational

firm would then economize on costs by strongly cutting back its attention-seeking. This explains

intuitively why the π̂-curve must be steep to its left. By contrast, the same hypothetical cost

increase would have almost no effect if c is comparably high, meaning that such a firm invests

only little in attention-seeking. Therefore, the π̂-curve must become flat to its right.

23See Marketplaces Power Law. Power Laws have been documented, e.g., in the sales distribution of online
books Chevalier and Goolsbee (2003), music purchases Newman (2005), mobile apps Zhong and Michahelles
(2013), consumer electronics Hisano and Mizuno (2011) or movies Tan et al. (2017), as well as in consumption
patterns in digital media marketplaces Webster and Ksiazek (2012), online news Hindman (2018) and mobile
news Nelson (2019). Kohli and Sah (2006) report Power Laws in the market shares of a vast array of branded
goods Zhang et al. (2009) and (Crawford et al., 2015) observe them in firm revenues, and Gaffeo et al. (2003)
document them in case of firm sales across G7 countries. Also see Brynjolfsson et al. (2003, 2010a); Andriani
and McKelvey (2011).

24See Huberman (2003); Sinha and Pan (2006); Clegg et al. (2010) for overviews.
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Now, the market share dispersion adopts a power law, rather than an arbitrary convex

distribution, as a consequence of Steven’s Law and competitive forces. To see this, note that

the characteristic property of a power law density f(·) is its constant proportionality, i.e., for

any λ > 0, f(λz)
f(z) is independent of z ∈ R++. Steven’s Law of perception and π̂c = fcΣ

imply that marginal costs MCc must be power functions of the current market share, where

MCc = ηcπ̂η−1
c Ση−1. Thus, a firm with c′ = λc, λ > 0, could afford a market share equal

to π̂c′ = λ
1

1−η π̂c at the same level of marginal costs. But competitive forces exactly equate

marginal costs in equilibrium across all firms, meaning that market shares necessarily adopt the

constant proportionality property π̂λc
π̂c

= λ
1

1−η . This implies that the market share distribution

π̂(·) must obey a power law.

In our static equilibrium model, Power Laws emerge as a consequence of competition and

Steven’s Law of perception, which contrasts with previous contributions that derive Power laws

as the limiting distribution of certain stochastic processes.25 In that literature, it is a frequently

posed question, whether Power Law patterns in the social sciences emerge from sheer chance

or from rationality (Perc, 2014), where our analysis clearly points towards the latter. This is

further strengthened in such that the attention equilibrium of our model can also arise as the

steady-state of a dynamic attention process, as we show in Appendix B.5.

3.3 Attention Effects

Attention enters the equilibrium equations by means of the variables R and η, where we interpret

the latter as capturing how sensitive consumer attention responds to the attention-seeking

stimuli. In the following, we discuss the equilibrium effects of these two variables.

Sensitivity Effects The equilibrium equations in Proposition 2 show that the value of η

matters for aggregate quantities as well as the distribution of attention, market shares and

profits. To illustrate how, consider an exogenous reduction of η, meaning that consumer atten-

tion responds more sensitively to attention-seeking. First, this intensifies the competition for

attention, which is manifested in higher aggregate attention expenditures and lower industry

profits (see (12)). Second, the fact that in equilibrium π̂c/π̂c′ = (c′/c)
1

η−1 shows that the relative

differences in attention abilities are magnified if attention becomes more sensitive, such that

there can be large differences in the perception chances despite small differences in the ability

to attract attention.

As a consequence of the second effect, the market share, profit share, and the click disper-

sion rotate clockwise, which can easily be seen in Figure 2 (b), showing that a decrease in η

implies a steeper Zipf plot. Thus, the more sensitively attention responds, the more market

25See, e.g., Blank and Solomon, 2000; Reed, 2001; Newman, 2005; Gabaix, 2016.
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inequality arises in equilibrium.26 Several empirical papers have estimated the slope coefficient

in a respective Zipf plot, e.g., of sales or attention data (see, e.g., Brynjolfsson et al., 2010b or

Tan et al. (2017)). Our model thus provides a new explanation for what such coefficients could

actually measure.

Regarding profitability, we note from (12) that the equilibrium return to attention is equal to

η for any firm.27 Thus, profitability diminishes if attention becomes more sensitive, which is

reflected in lower aggregate profits. Nevertheless, this does not affect the profits for all firms

equally. The profits of the bottom firms necessarily dwindle as a consequence of their loss in

market shares. By contrast, the top firms are harmed least, as their gain in market share tends

to compensate for the higher attention expenditures. The former effect may even dominate,

leading to an upswing in profits for the top firms.28

Consideration Set Size Effects We now consider the equilibrium effects of a reduction in

consideration set size R. Intuitively, such a reduction has two opposing effects on the expected

attention revenues. On the one hand, it is likely that firms manage to extract a higher revenue

from consideration if the consideration sets are smaller, and thus the firm is compared to fewer

competitors. On the other hand, a reduction of R means a lower chance of consideration, which

tends to decrease the expected attention revenues.

Formally, these two opposing forces of R enter payoffs (9) via the expression RV (R). In the

following analysis, we assume the first effect to dominate, such that RV (R) depends negatively

on R. This equivalently means that V (·) is sufficiently elastic, i.e.,

− V ′(R)R

V (R)
> 1, (13)

where V ′(R) < 0. Standard models of strategic price competition verify (13), mainly due to a

competition softening effect (see Section B.7). Intuitively, the consideration of additional com-

petitors intensifies the price competition among the firms in a given consideration set, leading

to lower prices and a loss of demand for each individual firm.

Given (13), a reduction in consideration set size (dR < 0) makes attracting attention more valu-

able. Accordingly, firms respond by boosting their attention-seeking activities, which implies

26A clockwise rotation implies that the new distribution features more inequality as measured by any Lorenz-
consistent inequality measure (Hefti and Teichgräber, 2020).

27The equilibrium attention revenue is π̂jRV (R)I. Dividing this by E∗j gives the return to attention.
28To see that bottom firms lose, note that Πc

Πc′
= π̂(c)

π̂(c′) . Thus, by (11) relative profits increase if dη < 0 and

c < c′. As aggregate profits diminish, this implies that the bottom firms must necessarily realize lower profits. To
see that the top firms may gain, let η < 2, and note that for the lowest cost firm with c = 1, Π1 = RV (R)I 2−η

η

as c̄→∞. This shows that Π1(η′) > Π1(η) for η′ < η.
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that the total information load Σ as well as expenditures E∗c increase, and most so for the firms

with the largest market shares.

Moreover, the equilibrium forces are such that individual attention-seeking increases in pro-

portion to Σ, implying that the equilibrium dispersion of market shares π̂c is invariant to R.

Nevertheless, the dispersion of attention in Figure 2 (a) is shifted downwards, because the area

under the figure is fixed to RI (see Lemma 1). Thus, all firms lose the same constant fraction of

clicks (attention), equal to dR/R, meaning that the top firms lose most clicks. That is, a lower

consideration set size leads to a more equal distribution of clicks in terms of absolute differences.

The equilibrium profits evolve in a substantially different manner. All profits increase if dR < 0,

despite higher expenditures. The reason is that, by competition, all firms must achieve the same

equilibrium return to attention, equal to η. Consequently, expenditures and revenues must

increase by the same proportion if dR < 0. Because revenues already exceeded expenditures

in the previous equilibrium, the proportionality argument implies that revenues must increase

more than expenditures in the new equilibrium, leading to higher profits.

Moreover, a lower consideration set size increases the absolute differences in profits between

different firms, inducing what has been frequently called a Matthew Effect (see Section 4). To

see this, note from (12) that relative profits are equal to relative market shares. Because the

latter are invariant to R but profits increase as dR < 0, profits must increase more for firms

with a larger market share - and thus the profit gap between any two different firms necessarily

widens.

4 Superstar and Long Tail Effects

The digital transition, in particular the rise of the Internet, brought major changes to markets,

among which are an accretion in the number of people having access to the various markets and

the entry of new products, mostly at the tail of the distribution.29 Regarding the latter, there

are two major views about who may gain or lose from an increasing product variety caused by

a digitized competition.

According to the Superstar effect, first introduced by Rosen (1981), quality differences in the

supplied services jointly with scale effects in production and consumption imply that a small

number of price-taking firms – a few “superstars” – manage to earn an ever larger share of

29For example, the number of book titles bought each year, e.g., in Australia has risen from 275’000 to 450’000
from 2004 to 2007 (see “A world of hits” (The Economist, Nov 26, 2009), or Brynjolfsson et al., 2003; Bar-Isaac
et al., 2012. ) The number of scripted TV shows in the US has more than doubled from 2010 to 2016 (see “The
paradox of Choice”, The Economist, Feb 11, 2017). The number of different movies rented on Netflix has more
than quadrupled from 2001 to 2005 (Tan et al., 2017), and similar for video sales (Elberse and Oberholzer-Gee,
2008), where by far most product entry has occurred at the tail of the distribution as measured by sales.
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sales or profits as new firms enter at the bottom of the distribution.30 By contrast, the Long

Tail Effect, coined by Anderson (2004), refers to a supposed increasing profitability of the tail

products as a consequence of technology-based changes associated with an increasingly digitized

economy and the structure of demand. In particular, the high costs of storage and distribution

in the pre-digital era made it imperative for companies to fill their shelves or magazine spaces

predominantly with mainstream products, despite a “taste-of-variety” in consumer preferences.

In addition, consumers may fail to discover various products of interest due to high search costs,

e.g., associated with physically visiting several outlets.31 Accordingly, a growing measure of tail

products in a digitized economy should “drive demand from the head to the tail” (Anderson,

2004), leading to less concentrated markets and “ultimate fragmentation”.

Neither the Superstar nor the Long tail effect includes attention in their analysis, which prac-

titioners have seen as a key component missing in the debate about the Long Tail.32 Our

model predicts that, as a consequence of competitive attention, sales and other quantities are

dispersed according to power laws, which is the type of market where the Long Tail should be

most effective (Anderson, 2004). We use our equilibrium model to study whether competitive

attention rather promotes the occurrence of a Superstar or a Long Tail effect (or both) as the

market size or the number of tail products increases.

4.1 Equilibrium Forces

Analyzing the effects of a growing tail or consumer entry amounts to studying the comparative-

statics of our equilibrium model, where consideration sets are determined by the Finite Capacity

Model of Section 2, and firms compete for attention as in Section 3. The equilibrium forces

are illustrated in Figure 3. For any given consideration set size R < n, individual firms ratio-
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Figure 3: Equilibrium Forces

nally choose their attention-seeking fj , taking into account that consideration sets are formed

30Such effects may be reinforced if consumers have tastes for conformity (Frank and Cook, 1995).
31See, e.g., Brynjolfsson et al., 2010b for an overview of the supply and demand side arguments favoring a

Long Tail effect.
32See, e.g., “The battle for consumers’ attention”, The Economist, Feb 09, 2017.
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according to relative salience. The corresponding competition for attention produces an infor-

mation load Σ, which affects the consideration formation process according to the finite capacity

model. Thus, two countervailing forces arise. If the “shouting” for attention becomes louder,

choice overload is aggravated, and consumers respond by “hearing less”. By contrast, smaller

consideration sets allow firms to better monetize the attention they manage to attract, which

increases the shouting for attention. These two forces are illustrated in Figure 4 (a) by the

functions R(Σ) and Σ(R).

An equilibrium is a triple (f∗,Σ∗, R∗), where R∗ = R(Σ∗) is determined by (2), and (f∗,Σ∗)

constitutes the attention equilibrium from Section 3.1 given that R = R∗ < n. By Proposition

1, R(Σ) is strictly decreasing if n > R, and from Section 3.3 we know that Σ(R) is also strictly

decreasing for n > R. An equilibrium with choice overload (R∗ < n) then is determined by an

intersection of the two functions.

Σ

𝑹𝑹 𝚺𝚺

𝚺𝚺(𝑹𝑹)

Σ∗

R∗

𝑅𝑅

(a) A stable equilibrium (Σ∗, R∗)

Σ

𝑅𝑅(𝑐𝑐)

𝑅𝑅

Σ(𝑐𝑐) Σ(𝑐𝑐′)

𝑹𝑹 𝚺𝚺

𝚺𝚺(𝑹𝑹; 𝒄𝒄)

𝚺𝚺(𝑹𝑹; 𝒄𝒄′)
𝑅𝑅(𝑐𝑐′)

(b) A lengthening of the tail (c′ > c)

Figure 4: Equilibrium consideration set size R∗ and information load Σ∗ with choice overload

Changes in the number of choice alternatives or the measure of consumers affect the compe-

tition for attention and formation of consideration sets because it alters individual attention-

seeking and the information load produced by the market, which both affect the formation of

the consideration set. In the following comparative-static analysis, we concentrate on the case

where a unique and stable equilibrium (f∗,Σ∗, R∗) with choice overload exists, which requires

that the R(Σ)-locus intersect the Σ(R)-locus from below, as illustrated in Figure 4 (a).33

4.2 Definitions

To study whether a Superstar or a Long Tail effect arises, we first need to clarify these concepts

in the context of our framework. We base our respective notions on the definitions invoked

33 If R(Σ) intersects Σ(R)-locus from below, this assures asymptotic stability for several standard dynamics
R(t),Σ(t) that can be defined via the equilibrium system (Hefti, 2016), where a stable equilibrium requires that

|V
′(R)R
V(R)

| < η| R(Σ)
R′(Σ)Σ

|, V(R) ≡ RV (R). Further, it is principally possible to derive sufficient conditions for such
an equilibrium to arise, which however have no further implications for our equilibrium predictions, in particular
because the changes we study aggravate rather than diminish the choice overload problem.
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frequently by a the empirical literature. Several empirical papers define the Long Tail and

Superstar effect, respectively, in relative terms, such as the top x% or bottom y% of firms (sales

or revenues).34 For example, Tan et al. (2017) refer to the Superstar effect as a relative increase

in profits of the top 1%, or 10% of movies on Netflix, and to the Long Tail effect as an increase

in the relative sales of the bottom 1% and 10% of movies; also see Cho and Roy (2004); Elberse

(2008); Elberse and Oberholzer-Gee (2008); Brynjolfsson et al. (2011); Zhou and Duan (2012);

Zhong and Michahelles (2013). We follow these papers, and define the Superstar and Long Tail

effects in relative terms.35

In the following definitions, F (·) denotes a measure of interest, such as profits, revenues,

sales or attention (“clicks”). Consistent with the equilibrium characterization in Proposition 2,

we identify different firms with their cost type c.

Definition 1 Let J ≡ [1, 1 + c̄] be the set of firms, and F (c, χ) be a C1-function, where c ∈ J and

χ ∈ R is a parameter. Fix x ∈ (0, 1/2) and denote by JT ≡ [1, 1 + xc̄] and JB ≡ [1 + (1− x)c̄, 1 + c̄] the

top and bottom x% of firms, respectively. Then

ZT (χ) ≡
∫
JT F (c, χ)dc∫
J F (c, χ)dc

, ZB(χ) ≡
∫
JB F (c, χ)dc∫
J F (c, χ)dc

, (14)

denote the F (·)-share of the top and bottom x% of firms. A Superstar effect in χ occurs if Z ′T (χ) > 0,

and a Long Tail effect in χ occurs if Z ′B(χ) > 0.

For example, if F (·) ≡ Π(·) corresponds to equilibrium profits, and χ ≡ I is the measure of

consumers, then a Superstar effect (Long Tail effect) occurs if the share of profits earned by the

top x% of firms (bottom x% of firms) increases in I. The firms in [1+xc̄, 1+(1−x)c̄] constitute

the “middle ground” and, ZM (χ) ≡ 1 − ZT (χ) − ZB(χ) is the share of profits earned by the

middling firms. Note that Superstar and Long Tail effect need not be mutually exclusive, and

should they both arise, the middling firms always lose.36

While we follow most of the empirical literature in our relative definitions of the Superstar and

Long Tail effects, we also want to consider absolute changes, e.g., of profits or clicks. Specifically,

we shall study whether the absolute gap between the top and bottom firms increases, to which

34One challenge is that different empirical metrics or definitions of these effects have been implemented, making
a conclusive comparison of the results difficult (see, e.g., Brynjolfsson et al., 2010b; Tan et al., 2017).

35In the taxonomy of Brynjolfsson et al. (2010b) we thus consider a “Relative Long Tail” measure. Also see
Tucker and Zhang (2007); Hinz et al. (2011); Skiera et al. (2010); Peltier and Moreau (2012); Gu et al. (2013)
for related empirical contributions.

36One might note that the x% lowest cost types, i.e., JT = [1, 1 + xc̄] does not necessarily coincide with x%
of the firms. For example, if n = 10 and cj = 1 + k(j) = 1 + j2, such that c̄ = k(n) = 100 then the set of the

10% lowest cost types is JT = [1, 11], which amounts to
√

10
10

% ≈ 31, 6% of all firms. Clearly, given the bijection
k(j) between j and cj , any given percentage x% of cost types can be converted into a corresponding percentage
of firms, and vice-versa. This is irrelevant for our equilibrium analysis because, as we shall see, our results do
not rely on any particular value of x.
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we refer to as a Matthew effect.37

Definition 2 Let x ∈ (0, 1/2) and F (c, χ) be as in Definition 1. Define

Mx(χ) ≡
∫
JT

F (c, χ)dc−
∫
JB

F (c, χ)dc. (15)

as the absolute gap between the top and bottom x% of firms. Then the parameter χ induces a (inverse)

Matthew effect in F (·) if M ′x(χ) > (<)0.

A (inverse) Matthew effect occurs, if the gap in F (c, χ) between the top χ% and the bottom

χ% of firms widens (narrows). The Matthew effect, in general, does neither imply nor preclude

the occurrence of a Superstar or a Long Tail effect.

4.3 Equilibrium Effects of a Longer Tail

Rosen (1981) and Anderson (2004) consider a lengthening of the tail, i.e., the entry of new

products at the bottom of the distribution, as an elementary part of their expositions.38 In our

model, “entry at the tail” means that the set of cost types increases from J (c̄) = [1, 1 + c̄] to

J (c̄′) = [1, 1 + c̄′], c̄′ > c̄.

4.3.1 Superstar or Long Tail Effect?

To analyze whether a Superstar or Long Tail effect arises once c̄→ c̄′, we first consider equilib-

rium profits, i.e., F (c) = Π(c), and study the tractable case where η = 2, such that Π(c) (12)

obey Zipf’s Law. For a given x ∈ (0, 1/2), using (12) in (14) yields

ZT (c̄) =

∫
JT Πcdc∫
J Πcdc

=

∫ 1+xc̄

1
π̂cdc =

∫ 1+xc̄

1

1

cK(c̄)
dc =

Ln(1 + xc̄)

Ln(1 + c̄)
. (16)

Standard algebra gives Z ′T (c̄) > 0, ∀x ∈ (0, 1), c̄ > 0, showing that a growing tail causes a

Superstar effect in profits. The intuition is as follows. If the tail grows longer, the joint profits

of the top x% of firms must increase more (or diminish less) than the total market profit for

a Superstar effect in profits to emerge. By (12) and (16), this boils down to how the joint

market shares of the top x% firms evolve, i.e., the dispersion of market shares and profits follow

37The Matthew effect, a term coined by sociology, refers to the observation that the “the rich get richer and the
poor get poorer”. Originally, the term was used to describe a pattern in scientific citations, were already famous
authors receive far more citations, thereby becoming even more famous, than their less known counterparts
(Merton, 1968). The notion of a Matthew effect has been used in the economics literature predominantly in the
context of a rising income inequality, but similar observations have been subsumed under a large class of names,
such as first mover advantage, path-dependent increasing returns, increasing dominance, the rich-get-richer or
reputational effects; see See DiPrete and Eirich (2006); Perc (2014) for surveys.

38Such entry could occur, e.g., due to the decreasing fixed costs typically associated with a digital economy,
allowing higher cost firms to enter the market.
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essentially the same pattern. There are two opposing effects.39

First, there is an attention dilution effect. The lengthening of the tail intensifies the compe-

tition for attention and increases attention expenditures. This amplifies consumer overload as

captured by smaller consideration sets (R′(c̄) < 0) (see Figure 4), which results in a downward

shift of the market share function in Figure 2 (c). By this effect, the top firms lose most, re-

flecting that their large equilibrium expenditures are most exposed to an intensified attention

competition. Second, there is a composition effect. An expansion of firms, say by q%, must

increase the measure of firms belonging to the top x%. As the firms around the top by definition

are the ones with the largest market shares, the aggregate market share of the top x% firms

tends to increase as more firms belong to the top x%.

With respect to these two effects, the power law shape of π̂(·) implies that the dilution ef-

fect must be dominated by the composition effect, which means that the reduction of market

shares due to attention dilution must be compensated by the aggregate market shares generated

through the additional firms entering the top x% segment. Therefore, a Superstar effect must

arise as a consequence of the power law dispersion of the market shares.

The same forces are at play in case of the Long Tail effect. In particular, the entrant firms

become part of the tail, and as such increase the market share captured by tail firms. However,

all previous tail firms lose some market share due to the entry, and some firms cease to be part

of the tail firms as defined by the Long Tail effect (those at the left margin of [1+(1−x)c̄, 1+ c̄]).

It is easy to see that ZB(c̄) = 1 − Ln(1+(1−x)c̄)
Ln(1+c̄) , and Z ′B(c̄) < 0 follows from the same algebra

assuring that Z ′T (c̄) > 0. Thus, the equilibrium forces leading to a Superstar effect, in particular

the power law shape of π̂(·) exactly prevent a Long Tail effect to occur from a growing tail. As

a consequence, we see that the tail must grow thinner as it grows longer.

The fact that the head of the distribution gains market shares while the bottom loses market

share makes the analysis of the middle ground non-obvious, as the middle ground could end up

as winner or loser. For any x ∈ (0, 1/2) the share of profits of the firms in the middle ground

is ZM (c̄) = Ln(1+(1−x)c̄)−Ln(1+xc̄)
Ln(1+c̄) , and differentiation reveals that Z ′m(c̄) < 0. Again, this result

is a consequence of the forces leading to a power law distribution of the market shares, which

imply that the loss of some large firms to the head jointly with the generally reduced market

shares due to diluted attention dominates the gains of the middle ground from some firms pre-

viously in the tail.

39See Brynjolfsson et al. (2010b) for a simple example where the sales share of the top x% of products increases
mechanically if a large number of tail products with the same low levels of sales enters the market and the sales
of the incumbent products remain fixed. In our model, sales, profits and market shares of the entrants and the
incumbents are endogenously determined by the competition for attention, making the relation between profit
shares and tail entry far from trivial.
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In sum, the above analysis shows that for η = 2 and any x%-definition of the head, the tail and

the middle ground lose profit shares to the head. The same pattern emerges in case of attention

(clicks), revenues or sales shares, as these shares are determined by the market share function

π̂(·) alone.40 These patterns generalize for any η > 1, as the next proposition summarizes.

Proposition 3 (Superstar and Long Tail effects) Let x ∈ (0, 1/2) and η > 1. A growing

tail (dc̄ > 0) increases the share of profits, attention, expenditures, revenues or sales of the top

x% of firms, while the shares of the bottom x% of firms and of the middling firms deteriorates.

Thus, a growing tail yields a Superstar effect in the dispersion of these quantities, but not a

Long Tail effect.

Figure 5 (a) illustrates Proposition 3 for the case of the Zipf distribution (η = 2) and x = 0.2,

showing how the profit share of the top 10% (ZT (c̄)), the bottom 10% (ZB(c̄)) and the middle

80% of firms evolve as the tail grows. Most remarkable is that the profit share of the 10%

top firms surpasses the one of the 80% middle firms once the tail is long enough. Regarding

𝑍𝑍𝑇𝑇( ̅𝑐𝑐)

𝑍𝑍𝑀𝑀( ̅𝑐𝑐)

𝑍𝑍𝐵𝐵( ̅𝑐𝑐)

(a) Profit shares (η = 2)

𝑍𝑍𝑇𝑇( ̅𝑐𝑐)

𝑍𝑍𝑀𝑀( ̅𝑐𝑐)
𝑍𝑍𝐵𝐵( ̅𝑐𝑐)

(b) Profit shares (η = 3/2)

Figure 5: The effects of a growing tail on profits

magnitudes, using (12) in (16) shows that the consumer sensitivity to attention-seeking, η,

affects the growth of ZT (c̄). Intuitively, we expect a growing tail to show more pronounced

effects on ZT (c̄) the more sensitive consumer attention is (i.e., the lower η is). The following

result confirms that the attention sensitivity indeed plays a key role for how the market shares

evolve if the tail grows arbitrarily long.

Corollary 2 Let ZT (c̄), ZB(c̄), ZM (c̄) denote the the share of profits, attention or revenues

held by the top x%, bottom x% and middling (1−2x)% of the firms, respectively. If η > 2, then

lim
c̄→∞

ZT (c̄) = x
η−2
η−1 ∈ (0, 1), lim

c̄→∞
ZB(c̄) = 1− (1− x)

η−2
η−1 ∈ (0, 1) and lim

c̄→∞
ZM (c̄) = (1− x)

η−2
η−1 −

x
η−2
η−1 ∈ (0, 1). If instead η ∈ (1, 2), then lim

c̄→∞
ZT (c̄) = 1 and lim

c̄→∞
ZB(c̄) = lim

c̄→∞
ZM (c̄) = 0.

40For the case where V (R) = (p(R)− c)d(p,R), sales correspond to π(c)d(p,R).
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If consumer attention is not too sensitive (η > 2), the profit shares ZT , ZM , ZB all stabilize

asymptotically at some positive number. In fact, in the extreme case where η →∞, such that

consumer attention does not react to the stimuli at all, the profit shares of the top and bottom

x% remain constant at x. By contrast, the Superstar effect literally turns into a “winner-takes-

all” effect if consumer attention is sufficiently sensitive (η ≤ 2), meaning that the profit shares

of the middle and the tail firms are completely eroded as the tail grows longer; see Figure 5(b).

4.3.2 Absolute Effects

Regarding the absolute effects of a growing tail, our perhaps most remarkable finding, derived

below, is that the equilibrium profits of the incumbents may increase due to a growing tail.

Moreover, this can occur despite that some attention is diluted due to entry, and despite that the

standard economic forces at play would suggest a reduction in profits absent limited attention.

To illustrate, consider the following simple example, where η = 2, R(Σ) = αΣ−β by (4), and

V (R) = R−2.41 It is easily verified that β < 2 in a stable equilibrium, which we assume in the

following. Further, (10) gives Σ2 = ILn(1 + c̄)/(2R), from which

R(c̄) =

(
ILn(1 + c̄)

2α

) −β
2−β

follows. Then, equilibrium profits are Πc(c̄) = Q(c)Ln(1 + c̄)
2(β−1)

2−β , while attention is Cc(c̄) =

W (c)Ln(1 + c̄)
−2

2−β , where Q(c) > 0 and W (c) are constants. It follows that C ′c(c̄) < 0 unam-

biguously while Π′c(c̄) > 0 iff β > 1. This shows two things. First, either all or no incumbent

benefits from a growing tail, while all incumbents lose on attention. Second, for the incumbents

to benefit, β must be sufficiently large, meaning that the overload effect due to the increasing

information load must be strong enough. Such a situation is depicted in Figure 6.

𝑐𝑐
1 + ̅𝑐𝑐1

𝜋𝜋 𝑐𝑐 𝐼𝐼

Clicks

1 + ̅𝑐𝑐′

(a) Click distribution

𝑐𝑐
1 + ̅𝑐𝑐1

Π(𝑐𝑐)

Profits

1 + ̅𝑐𝑐′

(b) Profit distribution

The figure shows schematically how the click (a) and profit (b) distribution change as the tail
grows from c̄ (black) to c̄′ (red) for a situation with β > 1.

Figure 6: Effects of a growing tail on attention and profits.

41This particular revenue function is obtained from a standard random utility model (see Appendix B.7).
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This result, while perhaps surprising relative to conventional competition theory, is highly

intuitive from the perspective of the underlying attention effects. By (12), equilibrium profits

of an incumbent firm is Πc = 1
2 π̂cRV (R)I, showing that firm entry at the tail imposes two

conflicting effects on an incumbent’s profits. First, the entry of new firms dilutes some attention

away from the incumbents, and decreases attention in general due to an increased choice overload

(dR < 0). This effect, ceteris paribus, reduces incumbents’ profits. Second, the increasing choice

overload itself softens competition and allows firms to better monetize the attention they attract

(RV (R) increases). This effect, ceteris paribus, increases profits. Moreover, this competition

softening effect is a central reason for why firm entry reduces profits of the incumbents absent

limited attention.42

The question of interest here is whether equilibrium forces dilute attention so much as to

compete away the additional revenues from consumer inattention. In our simple example, this

happens if and only if the choice overload effect is sufficiently weak, captured by a small β.

More generally, we would also expect the details of the economic competition to matter, as

captured by how sensitive V (R) responds to changes in R. The following proposition makes

this intuition precise, and shows that the patterns of our simple example generalize.

Proposition 4 Let η > 1 and consider a stable equilibrium, where profits Πc(c̄) and attention

Cc(c̄) = πcI are determined by Proposition 2. Let J (c̄) = [1, 1 + c̄] denote the set of incumbent

firms, and c, c′ ∈ J (c̄) with c < c′. A growing tail

(i) decreases each incumbent’s attention, C ′c(c̄) < 0, ∀c ∈ J (c̄), and decreases the attention

gap Cc − Cc′

(ii) increases industry-level profits, and increases profits of an incumbent firm iff the profit of

each incumbent increases,

(iii) increases the profit gap Πc − Πc′ between any two incumbent firms iff the profit of any

incumbent increases,

(iv) increases the profit for an incumbent firm iff
∣∣∣V ′(R)R
V(R)

∣∣∣ > ∣∣∣∣(R′(Σ)Σ
R(Σ)

)−1
∣∣∣∣, where V(R) ≡

RV (R), and

(v) yields a Matthew effect in profits.

Condition (iv) clarifies our previous intuition, and shows that if either competition softens

enough due to inattention (|V
′(R)R
V(R) | is large) or the consideration set size responds highly sensi-

tive to information overload (|
(
R′(Σ)Σ
R(Σ)

)−1
| is small), then the gains from choice overload earned

42Without limited attention, both V (n) and nV (n) are strictly decreasing in n by (13), yielding the standard
effect that firm entry reduces both incumbents’ and industry profits.
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from considering consumers exceed the losses due to attention dilution. Looking at the details,

competition softening due to inattention likely is substantial if products are strong substitutes,

i.e., we are in an economic environment where competition is intense and margins low by stan-

dard economic forces43 Likewise, example (4) shows that |
(
R′(Σ)Σ
R(Σ)

)−1
| is small if β is large,

which is more likely to hold, e.g., with complex products. Overall, this suggests that incumbents

are likely to benefit from a growing tail if products effectively are strong substitutes in terms

of underlying tastes, but their comparison involves a lot of effort, e.g., due to true product

complexity or because of firm-side obfuscation (Hefti et al., 2020). Finally, (v) shows that a

Matthew effect in profits emerges, meaning that the top firms either earn strictly more than

the bottom firms, or at least lose less. In any case, this shows that market inequality increases

in absolute terms.

Taking stock, the above results show a clear deviation from conventional models of economic

competition, where firm entry at the tail typically is harmful for incumbents and reduces in-

dustry profits due to an intensified competition. Moreover, we find a growing tail to yield both

a Superstar and a Matthew effect in profits, suggesting an increasing concentration on a few

rather than a leveling of the playing field as it occurs in conventional models, or as suggested

by Anderson’s Long Tail.

Sales Several empirical studies are concerned about the distribution of sales. Regarding the

corresponding market shares, we have already seen that sales show a Superstar effect if the

tail grows. By contrast, the gap between different incumbent firms narrows upon firm entry,

as we show next. Let d(p,R) denote the average per-consumer demand if firm c belongs to a

consideration set, such that the total sales are Sc = πcd(p,R)I. In the following, we assume

that d(p,R) = w(p)/R, where w′(p) ≤ 0 and p′(R) < 0. As we show in Appendix B.7 this

functional form is implied by standard competition models.44

Corollary 3 (Sales) Let Sc = πc
w(p)
R I denote the sales of incumbent c ∈ J . Then, S′c(c̄) < 0,

and ∂
∂c̄(Sc − Sc′) < 0 for any two incumbents c < c′.

Intuitively, entry causes the sales of each incumbent firm to diminish, because the dilution of

attention dominates the potential gain in demand due to smaller consideration sets if d(p,R) =

w(p)/R. Moreover, market forces imply that relative sales of any two incumbents must remain

constant. As sales decrease, this then implies that they must decrease more for incumbents

43For example, it is a simple exercise to show that with CES-demand
∣∣∣V′(R)R
V(R)

∣∣∣ is strictly increasing in the

substitution parameter.
44See Appendix B.7. In discrete choice models, d(p,R) = 1/R, such that w(p) = 1. In Euclidean models,

d(p,R) = m/(pR), where m > 0 is disposable wealth, such that w(p) = m/p.
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with larger market shares.

4.4 Market Size Effects

We next study the implications of a growing market size, i.e., an increase in the measure of

consumers dI > 0, for a given set of firms J . Proposition 2 immediately shows that the

equilibrium dispersion of market shares π̂c is invariant to I, meaning that I neither a Superstar

nor a Long Tail effect occurs in profits, attention, sales or revenues. Moreover, the fact that an

increase in the audience size I alone does not affect the shape of the attention distribution is

consistent with evidence from online news consumption (Nelson, 2019).

The main reason for these results goes back to competitive forces and the structure of the

attention costs. Intuitively, all firms strive for a larger market share if the amount of total

disposable consumer income increases. This, however, increases attention expenditures, and

more so for firms that already hold a large market share. In equilibrium, marginal costs are

equated, which by the power function form of these costs implies that the additional attention

investments must increase by the same proportion for all firms, leaving market shares unaltered.

Although market shares remain constant, dI > 0 induces absolute effects because all firms ramp

up their attention-seeking activities.

Proposition 5 Let η > 1 and consider a stable equilibrium, where profits Πc(c̄) and attention

Cc(c̄) = πcI are determined by Proposition 2. Let J (c̄) = [1, 1 + c̄] denote the set of firms, and

c, c′ ∈ J (c̄) with c < c′. A growing market size

(i) decreases each firm’s perception chance per consumer, πc, and more so for larger firms,

(ii) increases each firm’s attention Cc = πcI iff total market attention RI increases,

(iii) increases total market attention iff 1 +
∣∣∣V ′(R)R
V(R)

∣∣∣ < η
∣∣∣R′(Σ)Σ
R(Σ)

∣∣∣−1

(iv) yields a Matthew effect in attention if market attention increases, and an inverse Matthew

effect otherwise

(v) increases the profit for any firm, and yields a Matthew effect in profits.

A growing market increases the value of any given market share, which intensifies the competi-

tion for attention. By our analysis in Section 3, the concomitant choice overload effect implies

that the top firms must lose most attention per consumer (i) among all firms. However, such

losses may be more than compensated by the additional consumers entering the market (ii),

where the latter effect dominates by (iii) if the attention competition is not too intense (low η),

the information overload effect is not too pronounced, or product competition is not too intense
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(low
∣∣∣V ′(R)R
V(R)

∣∣∣). In our example with V (R) = R−2 and R(Σ) = αΣ−β, this holds iff β < η/2.

Finally, (iv) and (v) are a consequence of the fact that market shares π̂c remain constant, but

all profits increase while aggregate attention may or may not increase.

4.5 Discussion

We analyzed the effects of a growing tail or a growing market in a ceteris-paribus manner, while

both effects are likely to occur simultaneously in reality. For example, a growing measure of

consumers increases profits, which allows less efficient firms to cover a fixed entry cost, leading

to a growing tail. The equilibrium predictions then are a combination of both effects, where

our model predicts a Superstar effect but not a Long Tail effect in profits to arise if I increases

and the tail lengthens at the same time.

Our analysis shows that if attention is competitively allocated through the actions taken by

rational firms, a rising inequality in revenues, sales or profits is a likely outcome as markets

grow larger. In particular, the tail is predicted to grow thinner as it grows longer, with the

head benefiting most. Such a pattern may be hard to rationalize, e.g., with classical theories

of product differentiation (e.g. Lancaster, 1990), where an increasing product differentiation

generally reduces market concentration by fostering product competition. Nevertheless, our

predicted patterns fit the data in many cases.

Regarding the head, the attention predictions resonate well with a substantial empirical lit-

erature observing a Superstar effect in digital sales or revenues data. For example, Tan et al.

(2017) provide a careful econometric analysis based on movie rental data, strongly supporting

that the substantial increase in the number of available movies caused a Superstar effect, mea-

sured by relative sales, but not a Long Tail effect. A similar observation is made by Elberse

and Oberholzer-Gee (2008) who find that sales are increasingly concentrated on the top titles,

speaking in favor of a Superstar effect. Similar superstar effects, following an increase in product

variety, have been documented by Skiera et al. (2010), Zhou and Duan (2012)or Ordanini and

Nunes (2016). Further, Elberse and Oberholzer-Gee (2008) report that the entry of new movies

reduces the sales of incumbent movies, and more so for movies with larger sales. This is con-

sistent with the general dilution effect of attention and sales as well as with the corresponding

inequality effects identified by Proposition 4 and Corollary 3. A similar finding is reported by

Zhou and Duan (2012) in case of software downloads.

Regarding the tail, the empirical evidence is not fully conclusive, in parts because frequently

incongruent empirical metrics have been used (Brynjolfsson et al., 2010b). However, the em-

pirical findings surveyed by Napoli (2016) or Tan et al. (2017) strongly speak against a success

of the tail following a lengthening of the tail. Likewise, Elberse and Oberholzer-Gee (2008)
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conclude that in the movie industry events are best described as a tail which has grown longer

but thinner, which is exactly what the competitive allocation of limited attention predicts. A

similar pattern also has been observed in the music industry, and Webster and Ksiazek (2012)

find that fragmentation, in the sense of the Long Tail, has not occurred on digital media mar-

ketplaces, while popular brands have fostered their popularity .45

Taking stock, the evidence from different industries strongly suggests a Superstar effect to

emerge jointly with a substantially longer but thinner tail. The fact that an increasing product

diversity leads to an increasing sales concentration is hard to reconcile with the contrary effects

predicted by classical models of product differentiation, including models of consumer search,

but consistent with the equilibrium predictions offered by competitive attention. More generally,

the laws of attention and competition jointly can explain why a substantial increase in the size of

the audience and the diversity of the available choice options – two central premises of the Long

Tail effect that have been satisfied throughout the last two decades – have not qualitatively

altered the distributional appearance of consumption or revenue patterns (Hindman, 2018;

Nelson, 2019).

5 Related Literature

Rational Inattention and Consumer Search In economics, the predominant approach

towards attention is given by the rational inattention framework, starting with Sims (2003).

The key presumption of this approach is that the allocation of attention is under the mental

control of a rational decision-maker, and as such the outcome of a rational cost-benefit analysis.46

Besides formalistic differences, this is a conceptual similarity to search models, in thus that the

information acquisition problem is solved by the consumer via rational cost-benefit analysis.

In psychology, rational inattention or optimal search would be viewed as a goal-driven (or

top-down) attention process. By contrast, our paper explores the implications of stimulus-

driven (or bottom-up) attentional control. Nevertheless, the equilibrium allocation of attention

still is a rational outcome, in thus that it reflects the optimal decisions of the competing firms

how much to invest into attention. Such attraction effects have no existing counterpart in the

rational inattention literature.47

45See, e.g., Elberse, 2008; Dellarocas and Narayan, 2007; Tucker and Zhang, 2007; Gu et al., 2013; Zhong and
Michahelles, 2013 or “The paradox of choice” for evidence favoring a Superstar rather than a Long Tail effect.

46One scientific merit is that this approach yields a rational benchmark that can be used to identify systematic
anomalies, much in the same way as behavioral economics identified deviations from the standard rational choice
model.

47Hefti (2018) studies the welfare implications in an entirely symmetric model if strategic firms need to compete
for attention; also see De Clippel et al. (2014) for a cross-market welfare analysis with inattentive consumers.
See Falkinger (2007) for an early emphasis about the importance of stimulus-driven attention for economics.
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However, the formation of a consideration set does involve a goal-driven aspect in our model,

in thus that the human brain responds to an increasing information load by tightening the at-

tention span (Section 2.1). In this respect, one may note that our approach is less vulnerable to

a possible criticism held against the rational inattention framework, according to which the key

presumption motivating rational inattention – humans have information processing constraints

– contradicts the assumption that consumers still manage to solve highly complex decision prob-

lems correctly.

In context of digitization, some have advocated decreasing search costs, which induces more

search, intensifies competition and possibly promotes the firms in the tail (e.g., Brynjolfsson

et al., 2003; Cachon et al., 2008; Bar-Isaac et al., 2012). Our model of competitive attention

differs in at least two central aspects. First, the finite capacity model entails the opposite

prediction that consumers respond by a diminished attention to an increasing information load,

where we found the interrelated equilibrium forces not to be conducive to the tail firms. Evidence

indicates that the empirical consideration sets in online shopping may be astonishingly small

(Gu et al., 2012), and the prediction that consumers should search more (or at least threaten

to do so) is generally hard to reconcile with the evidence presented in Section 2. Second, a

central assumption of search models is that the consumer sampling probabilities are exogenously

given, meaning that firms have no means of influencing their perception chances, which is a

key difference to our model of competitive attention. The sampling chances in search models

typically are assumed to be uniformly distributed, which is rejected by empirical data Granka

et al., 2004; Skiera et al., 2010, and inconsistent with the power law dispersion of attention.

Informative Advertising According to the theory of informative advertising (see Bagwell,

2007 for a comprehensive survey), the information burden rests on the firms and not on the

consumers, which is a difference to consumer search and rational inattention, but at most a

superficial similarity to competitive attention. The key difference is that all information even-

tually reaching a consumer becomes a part of the consideration set in informative advertising.

By contrast, in our model only the information that passes through the attention gate can

enter consideration, where the amount of perceived information is endogenous and the selection

described by the principle of relative salience. Intuitively, informative advertising works like

throwing out many balls to hit as many urns with unbounded capacity as possible. The at-

tention problem means throwing out sufficiently “thick” balls that must pave their way against

other balls to enter an urn of finite capacity.

With respect to empirical data, competitive attention, requiring firms to become more salient

than others, seems a better fit particularly with digitized competition, where becoming or
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remaining “top-of-mind” has been persistently voiced as the key concern of advertising firms

(Iyer et al., 2005).

Regarding theoretical predictions, our model claims that market entry increases i) aggregate

attention expenditures, independent of the pre-existing market concentration, and ii) increases

a firm’s expenditures if its profit increases. This is a strong contrast to Grossman and Shapiro

(1984), where market entry decreases individual advertising expenditures, and also decreases

aggregate expenditures if advertising costs are of the type (8). The key reason for these differ-

ences is rooted in the assumption of unbounded consumer attention, where market entry implies

that, on average, consumers always become aware of more suitable products which reinforces

competition and lowers the propensity to advertise, independent of how the market actually

has become.

6 Conclusion

In a digitized economy, every second stands witness to an abundance of information produced,

keeping track of which is simply impossible for the human brain. As a recent article in “The

Economist” put it: “There is almost no limit to the supply of entertainment choices in every

category, but people’s awareness of these products and their ability to find them is constrained

by the time and attention they can spare”.48

In this article, we ask how individual choices, competition and market structure evolve if

attention is a competitive resource. Our model is based on two central tenets from psychology

and neuroscience: People have limited information processing capacities and their allocation of

attention is guided by relative salience. The former implies that attention is a rival, depletable

resource, a consequence of which is that the set of objectively given information items and

the set of subjectively perceived options can disagree. The latter implies that attention is a

competitive resource, where the profit-maximizing firms are forced to make their choice options

salient relative to the market. The equilibrium outcome then is a consequence of the choices

made by rational firms that need to respect the laws of attention by which the consumer-side

considerations sets are formed.

The model of competitive attention can account for – and connect – various empirical phe-

nomena at the micro and macro level. Specifically, it offers an explanation why the “Paradox

of Choices” prevails in a digitized economy, why firms continuously state “being on the con-

sumer’s mind” as their top concern regarding advertising, why sales, profits or attention data

persistently adopt power law dispersions, why there is a positive relation between profitability

and marketing expenditures, why market shares and advertising expenditures move in lockstep,

48 “Monetizing eyeballs”, Feb 11, 2017.
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or why the evidence on the “Long Tail effect” is mixed at best.

We therefore believe that the competitive allocation of limited attention can and should play

a major role for empirical assessments of the matter, and the scope for such examination seems

large and promising. In this respect, we hope that our framework and its theoretical predictions

may provide some guidance for future empirical work.
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A Proofs

Proof Proposition 1 By contradiction, let n > R∗(τ) but Σ ≤ R̄; hence τ = 1. As R∗(1) ≤

min{R̄, n}, we must have R∗(1) = R̄, as R∗(1) = n contradicts n > R∗(1). But then R∗(1) = R̄ < n ≤ Σ,

or Σ > R̄, which is impossible. Hence information overload is necessary for choice overload. Next, if

R∗(τ) < n, then Σ > R̄ by the previous claim, and thus τ < 1. Defining R∗(Σ) ≡ R∗(τ(Σ)) shows that

R′(Σ) < 0, because R′(τ(Σ)) > 0 and τ ′(Σ) < 0 by (3). �

Proof Corollary 1 Let n̄ > 0 be the unique number implicitly defined by Σ(n̄) = R̄. Note that

n̄ ≤ R̄. If n < n̄, then also n < R̄ and Σ(n) < R̄, meaning that there is no information overload; hence

also no choice overload. Thus R∗ = n. If n > n̄, then also Σ(n) > R̄, implying that τ < 1, and there

must be choice overload (R∗ < n). Defining R∗(n) ≡ R∗ (τ(Σ(n))) shows that R′(n) < 0 as R′(τ) > 0,

τ ′(Σ) < 0 and Σ′(n) > 0. �

Proof Lemma 1 : If R ≥ n, then πj = 1 ∀j ∈ Nn, and hence
∑
j∈Nn πj = n. Let R < n, and

define Bj ≡ {A ∈ A(n,R) : j ∈ A}. Hence πj = PA(n,R)(Bj). As An,R is a discrete probability space,

we can assume wlog that there is a (density) function ϕ : A → [0, 1] with
∑
A∈A ϕ(A) = 1, such that

PA(n,R)(B) =
∑
A∈B ϕ(A) for any B ∈ P. Then, P (Bj) =

∑
A∈A ϕ(A)1[j∈A](A), where 1[j∈A] is an

indicator variable. Thus

∑
j∈Nn

πj =
∑
j∈Nn

P (Bj) =
∑
j∈Nn

∑
A∈A

ϕ(A)1[j∈A](A) =
∑
A∈A

ϕ(A)
∑
j∈Nn

1[j∈A](A)

from which
∑
j∈Nn

πj = R follows, as
∑
j∈Nn

1[j∈A](A) = R ∀A ∈ A and
∑
A∈A ϕ(A) = 1. �

Proof Proposition 2 In equilibrium, f∗c > 0 is characterized by the first-order condition pertaining

to (9), evaluated at Σ∗. This directly yields

f∗c =

(
1

Σ∗
RV (R)I

ηc

) 1
η−1

Integrating this equation and using
∫
J f
∗
c dc = Σ∗ and rearranging gives (10), and π̂∗c = f∗c /Σ

∗ as well as

π∗c = π̂∗cR follow immediately. Plugging (10) and (11) into (9) gives Π∗c . Finally, E∗c = c(π̂∗cΣ∗)η. �

Proof Proposition 3 For reasons of tractability, we split the proof in various steps.

Lemma A1 Let J = [1, 1 + c̄], x ∈ (0, 1), and h : J → R++ integrable. Define

Sx(c̄) ≡
∫ 1+xc̄

1
h(s)ds∫ 1+c̄

1
h(s)ds

. (A.1)

Then S′x(c̄) > 0 ∀x ∈ (0, 1) if H(c) ≡
∫ 1+c

1
h(s)ds has a strictly decreasing c-elasticity on (0, c̄).
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Proof: Note that

Sx(c̄) =

∫ 1+xc̄

1
h(s)ds∫ 1+c̄

1
h(s)ds

=

∫ xc̄
0
h(1 + u)du∫ c̄

0
h(1 + u)du

=

∫ xc̄
0
g(s)ds∫ c̄

0
g(s)ds

,

where g(s) ≡ h(1 + s). Differentiation then shows that S′x(c̄) > 0 ∀x ∈ (0, 1) if and only if

cg(c)
c∫
0

g(s)ds

>
c̄g(c̄)
c̄∫
0

g(s)ds

. (A.2)

This inequality holds if cg(c)
c∫
0

g(s)ds
is strictly decreasing in c, i.e., H(c) has a strictly decreasing c-elasticity.

�

Lemma A2 Let J = [1, 1 + c̄], x ∈ (0, 1), and suppose that market shares are of the form

π̂c =
cm∫
J s

mds
, m < 0, (A.3)

Then Z ′T (c̄) > 0, i.e., the market shares display a Superstar effect as the tail grows.

Proof: Note first that

ZT (c̄) =

∫ 1+xc̄

1
π̂cdc∫ 1+c̄

1
π̂cdc

=

∫ 1+xc̄

1
cmdc∫ 1+c̄

1
cmdc

=

∫ 1+xc̄

1
h(c)dc∫ 1+c̄

1
h(c)dc

,

for h(c) ≡ cm. Let H(c) ≡
∫ 1+c

1
h(s)ds. To prove that Z ′T (c̄) > 0, it suffices to show that H̃(c) ≡

H′(c)c
H(c) = ch(1+c)

H(c) is strictly decreasing in c by Lemma A1. Integration yields

H(c) =

∫ 1+c

1

smds =
(1 + c)1+m − 1

1 +m

for m 6= −1.49 Then

H̃(c) =
c(1 + c)m(1 +m)

(1 + c)1+m − 1
,

and H̃ ′(c) < 0 if and only if

ε ((1 + c)ε − cε− 1) < 0, ε ≡ 1 +m. (A.4)

If m ∈ (−1, 0), then ε ∈ (0, 1), and (A.4) holds if and only if (1 + c)ε < 1 + cε. The last inequality is true

because i) the LHS and RHS both are 1 as c = 0, ii) the LHS is increasing and strictly concave in c, and

iii) its maximal slope is ε, which occurs at c = 0. Thus (A.4) holds for m > −1 and hence Z ′T (c̄) > 0. If

m < −1, then ε < 0 and (A.4) is equivalent to (1 + c)ε > 1 + cε, where the truth of the latter inequality

can be verified as before. �

49The case where m = −1 corresponds to η = 2, which is already solved in the main text, hence let m 6= −1
in the following.
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Corollary A1 A growing tail induces a Superstar effect in π̂c ∀x ∈ (0, 1).

Proof: By (11), π̂c has the form in Lemma A2. �

Corollary A2 A growing tail never induces a Long tail effect in π̂c ∀x ∈ (0, 1).

Proof: If π̂c is of the form (A.3), a Long Tail Effect in market shares occurs if

ZB(c̄) =

∫ 1+c̄

1+(1−x)c̄
cmdc∫ 1+c̄

1
cmdc

= 1−
∫ 1+(1−x)c̄

1
cmdc∫ 1+c̄

1
cmdc

(A.5)

is strictly increasing in c̄ or, equivalently, ZT (c̄) ≡
∫ 1+yc̄
1

cmdc∫ 1+c̄
1

cmdc
, y ≡ (1−x), is strictly decreasing in c̄. But

Lemma A2 implies that Z ′T (c̄) > 0 ∀y ∈ (0, 1), hence a Long Tail Effect cannot occur. �

Corollary A3 A growing tail decreases the joint market shares of the middle firms ∀x ∈ (0, 1/2).

Proof: The middle ground loses market share if

Mx(c̄) ≡
∫ 1+(1−x)c̄

1+xc̄
cmdc∫ 1+c̄

1
cmdc

=

∫ 1+(1−x)c̄

1
cmdc∫ 1+c̄

1
cmdc

−
∫ 1+xc̄

1
cmdc∫ 1+c̄

1
cmdc

= S1−x(c̄)− Sx(c̄)

is strictly decreasing in c̄. For m 6= −1 integration yields

Mx(c̄) =
(1 + c(1− x))

ε − (1 + cx)ε

(1 + c)ε − 1
, ε ≡ 1 +m.

Proceeding similarly as in the last part of the proof of Lemma A2, M ′x(c̄) < 0 follows. Further, as

S′x(c̄), S′1−x(c̄) > 0 (Lemma A2), M ′x(c̄) < 0 shows that the middle firms lose because the Superstar

effect is stronger for smaller values of x (S′x(c̄) > S′1−x(c̄)). �

By (11)-(12) and (14), the shares of profits, attention, expenditures, revenues or sales of the top x%

of firms are determined by the corresponding joint market shares of these firms. As m ≡ 1
1−η , the claim

in Proposition 3 now follows from Corollaries A1 - A3. �

Proof Corollary 2 As before, it suffices to show the claim for market shares π̂c. Define m ≡ 1
1−η < 0.

Let m 6= −1. Then

ZT (c̄) =

∫
Jx(c̄)

π̂cdc∫
J (c̄)

π̂cdc
=

∫ 1+xc̄

1
cmdc∫ 1+c̄

1
cmdc

=
(1 + xc̄)ε − 1

(1 + c̄)ε − 1
, ε ≡ 1 +m.

Taking the limit then directly shows that lim
c̄→∞

ZT (c̄) = xε ∈ (0, 1) if ε ∈ (0, 1), and lim
c̄→∞

ZT (c̄) = 1 if

ε < 0. If ε = 0, such that π̂c follows Zipf’s Law, then ZT (c̄) is given by (16), from which lim
c̄→∞

ZT (c̄) = 1

follows. The claim for ZB(c̄) is proved similarly, and the claim for ZM (c̄) follows from ZM (c̄) = 1 −

ZT (c̄)− ZB(c̄). �
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Proof Proposition 4 (i): C ′c(c̄) < 0 follows because Cc(c̄) = π̂c(c̄)RI, where π̂′c(c̄) < 0 by (11) and

R′(c̄) < 0.

∂
∂c̄ (πc(c̄)I − πc′(c̄)I) < 0 holds if π̂c(c̄)− π̂c′(c̄) is strictly decreasing in c̄, which holds by (11).

(ii): DefineRV (R) ≡ V(R), where V ′(R) < 0 by (13). By (12), the profit of firm c is Πc = π̂c(c̄)V(R(c̄))I η−1
η ,

and industry profits therefore are Π(c̄) =
∫
J Πcdc = V(R(c̄))I η−1

η . Then Π′(c̄) > 0 follows form R′(c̄) < 0

and V ′(R) < 0. Consider now any incumbent firm c. Noting from (11) that
π̂′c(c̄)
π̂(c) = −π̂1+c̄, where π̂1+c̄

denotes the market share of the highest-cost incumbent, it can easily be verified that, for any c ∈ J (c̄),

Π′c(c̄) > 0 iff π̂1+c̄ <
V′(R)
V(R) R

′(c̄). Thus all incumbents either gain or lose from a growing tail.

(iii): Define ∆(c̄) ≡ Πc(c̄)−Πc′(c̄), for any two incumbents. Then by (12)

∆(c̄) = V(R(c̄))I
η − 1

η

c
−1
η−1 − c′

−1
η−1∫

J c
−1
η−1 dc

,

and differentiation and (11) lead to ∆′(c̄) > 0 iff π̂1+c̄ <
V′(R)
V(R) R

′(c̄), which is the same condition assuring

increasing profits for each incumbent by (ii).

(iv): From Πc = π̂cV(R)I η−1
η we obtain that Π′c(c̄) > 0 iff

π̂1+c̄ <
V ′(R)

V(R)
R′(c̄). (A.6)

Let Σ(R) denote the inverse function of R = R(Σ) from Section 2.50 Then, plugging Σ(R) into (10)

yields

Σ(R)
η
η−1 =

(
V(R)I

η

) 1
η−1

∫
J
c
−1
η−1 dc (A.7)

as the equilibrium equation determining R(c̄). Differentiating this equation and rearranging terms gives

R′(c̄) = (η − 1)
V(R)

1
η−1 Σ(R)

ηV(R)
1

η−1 Σ′(R)− V(R)
2−η
η−1V ′(R)Σ(R)

π̂1+c̄,

where the denominator is negative in any stable equilibrium. Using this expression in (A.6) and some

algebraic manipulation yield the condition stated in claim (iv).

(v): Note that like Superstar and Long Tail effect, the Matthew effect is defined over all firms, including

the entrants. Consider first the case of profits, i.e., F (c, c̄) = Πc(c̄). Then, by Definition 2, Mx(c̄) =

V(R(c̄))I η−1
η A(c̄), where

A(c̄) ≡
∫ 1+xc̄

1

π̂cdc+

∫ 1+(1−x)c̄

1

π̂cdc− 1.

As ∂V(R(c̄))
∂c̄ > 0 it suffices for M ′x(c̄) > 0 that A′(c̄) ≥ 0. The proof of Lemma A2 implies that both

integrals indeed are strictly increasing in c̄, which completes the proof for profits. �

Proof Corollary 3 As Sc = π̂cw(p)I, π̂′c(c̄) < 0 and w′(p)p′(R)R′(c̄) ≤ 0 in a stable equilibrium,

S′c(c̄) < 0 follows. Further, Sc
Sc′

= π̂c
π̂c′

remains constant for any two incumbents. Because S′c(c̄), S
′
c′(c̄) < 0,

50As R′(Σ) < 0 by Proposition 1, the function R(Σ) is invertible.
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∂
∂c̄ (Sc − Sc′) < 0 follows. �

Proof Proposition 5 First, note from (10) that the Σ(R)-locus in Figure 4 is shifted upwards for

dI > 0, which implies that R′(I) < 0.

(i): Because πc = π̂(c)R(I), R′(I) < 0 and π̂c is constant, π′c(I) < 0 follows. The second claim holds as

πc/πc′ is constant while perception chances decrease.

(ii): As Cc = π̂cR(I)I and π̂c is constant, Cc(I) increases in I iff R(I)I increases.

(iii): The derivation parallels the one of claim (iv) in the proof of Proposition 4. Total market attention

R(I)I increases strictly in I iff R′(I)I
R(I) > −1. Now, differentiation of (A.7) yields

R′(I) =
1

I

V(R)Σ(R)

ηV(R)Σ′(R)− V ′(R)Σ(R)
,

where the denominator is negative in any stable equilibrium. Using this equation in the condition

R′(I)I
R(I) > −1 yields the condition in (iii).

(iv): From

Mx(I) =

∫ 1+xc̄

1

Cc(I)dc+

∫ 1+(1−x)c̄

1

Cc(I)dc− 1 =

(∫ 1+xc̄

1

π̂cdc+

∫ 1+(1−x)c̄

1

π̂cdc

)
RI − 1

it follows that dI > 0 induces a (inverse) Matthew effect iff market attention R(I)I increases (decreases).

(v): As Πc = π̂cV(R(I))I η−1
η and V ′(R), R′(I) < 0, it follows that each firm’s profit increases in I.

Further, the same type of argument as in the proof of (iv) shows that dI > 0 must results in a Matthew

effect, because both the measure of consumers I and the per-consumer attention revenue V(R) increase.

�
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B Supplementary Material (intended for Online Publication)

We begin by proving the claim of the main text about the supposed lineraity of the perception

chance per unit of attention. In Section B.2 we provide the technology-based and the psycho-

physical foundations for the cost function (8) mentioned in the main text. Section B.3 discusses

the finite capacity model from Section 2 through the lens of a recent theory about subconsious

deliberation. In Section B.4 we briefly explore how to retrace an average attention space from

aggregate choice data, and Section B.5 presents a dynamic model of attention. Section B.6

extends the equilibrium analysis to the case where firms differ in their abilities to monetize

the attention they attract. Finally, Section B.7 shows that standard models of strategic price

competition with horizontally differentiated goods yield the structure of the value function that

we assumed in the main text.

B.1 Perception chance per unit of attention

We prove the claim from Section 2.2.2 that the perception chance per unit of attention must be

a linear functional, meaning that π̂j = fj/Σ.

Proposition B1 The only C1-function g : R → R that satisfies
∫ n

0 g
(
fj
Σ

)
dj = 1 and Σ =∫ n

0 fjdj for any n > 0 and any integrable, non-negative function f : [0, n]→ R++ is g(x) = x.

Proof: Let Xn : [0, n]→ R++ , n > 0, be an integrable function with
∫ n

0
Xn(s)ds = 1. Let A be the set

of all such functions. The proof builds on the following Lemma:

Lemma B1 Let g : R → R be a C1-function, such that
∫ n

0
g(Xn(s))ds = 1 whenever Xn ∈ A. Then,

g(x) = x, i.e., g(·) must be linear.

Proof: By contradiction, suppose that g is a C1-function with
∫ n

0
g(Xn(s))ds = 1, ∀Xn ∈ A, but

∃x, x′ > 0 such that g′(x) 6= g′(x′), implying that g(·) is not linear.

Then, ∃n > α > 0 such that

αx+ (n− α)x′ = 1. (B.1)

To see this, let

α(n) =
1− nx′

x− x′

The pair (α(n), n) satisfies (B.1). α(n) > 0⇔ n < 1
x′ . n > α(n)⇔ n > 1

x . Thus n > α(n) > 0 whenever

n ∈ ( 1
x ,

1
x′ ). Since x > x′ > 0, we can always find such n. Let n̄ ∈ ( 1

x ,
1
x′ ) and denote ᾱ ≡ α(n̄). Then

(ᾱ, n̄) verifies (B.1), and n̄ > ᾱ > 0.

Consider the integrable function Xn̄ : [0, n̄]→ R+ defined by Xn̄(s) = x for s ∈ [0, ᾱ), and Xn̄(s) = x′

for s ∈ [ᾱ, n̄]. As
∫ n̄

0
Xn̄(s)ds = ᾱx+ (n̄− ā)x′ = 1 we have Xn̄ ∈ A By presumption, we then also must
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have
∫ n

0
g(Xn̄(s))ds = 1, hence

ᾱg(x) + (n̄− ᾱ)g(x′) = 1. (B.2)

Moreover, equation (B.2) must continue to hold for any small change in x, x′ as long as (B.1) remains

valid for the new values of x and x′. Solving (B.1) for x yields

x =
1− (n̄− ᾱ)x′

ᾱ
,

and plugging this into (B.2) gives

ᾱg

(
1− (n̄− ᾱ)x′

ᾱ

)
+ (n̄− ᾱ)g(x′) = 1.

Differentiation with respect to x′ yields

−ᾱg′(x)
(n̄− ᾱ)

ᾱ
+ (n̄− ᾱ)g′(x′) = 0,

which further implies that g′(x) = g′(x′), contradiction. �

We are now ready to prove Proposition B1. Let Xn ∈ A. Then the function fn : [0, n] → R++ defined

by fn(j) = Xn(j) has the property that
∫ n

0
fjdj = 1 = Σ, and fn(j)/Σ = Xn(j). Thus, for any Xn ∈ A,

a corresponding integrable function fn can be found in this manner. In particular, the presumption in

Proposition B1 requires that the conditions
∫ n

0
g (Xn(j)) dj = 1 and 1 =

∫ n
0
Xn(j)dj must hold for any

Xn ∈ A. Thus, the claim follows from Lemma B1. �

B.2 Cost function: Main foundations

Steven’s Law Building on empirical evidence dating back as far as the 1930’s, Steven’s

Law of perception describes the relation between the (objective) intensity of stimuli, quantified

by e ≥ 0, and the magnitude of the (subjective) mental sensation ψ(e) they invoke. The key

observation summarized by Steven’s Law is that “equal stimulus ratios generate equal sensation

ratios”, which requires that ψ(e′)/ψ(e) = (e′/e)α, or equivalently

ψ(e) = keα, (B.3)

where k, α > 0 are constants.51 To see that (B.3) provides a foundation for (9), let ej ≥ 0 denote

the (objective) intensity of the attention-seeking stimulus emitted by j, and fj = ψj(ej) ≥ 0

is the (subjective) intensity of the mental impression on a receiver’s mind triggered by ej . Let

producing a stimulus of intensity e be equally costly for all firms, with a price normalized to

51See Kello et al., 2010 for a survey on Steven’s Law.
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one. The impressions evoked on a consumer’s mind compete for attention according to relative

salience, such that π̂j =
ψj(ej)∫

s ψs(es)ds
. Thus Πj =

ψj(ej)∫
s ψs(es)ds

RVj(R)I − ej . Assuming that ψj(·)

is strictly increasing, we can equivalently state the payoff function in terms of the impression

intensity fj that firms seek to impose on consumers:

Πj =
fj
Σ
RVj(R)I − ϕj(fj),

where ϕj(fj) ≡ ψ−1(fj) and Σ =
∫
s fsds. It is now easy to see that if ψj(·) follows Steven’s

Law, such that ψj(ej) = kje
1/η
j , then ϕj(fj) = cjf

η
j with cj ≡ k−ηj , which leads to (9).

Regarding interpretation, we first note from (B.3) that heterogeneity in kj captures that

some firms may be more efficient in generating mental impressions than others. As the previous

derivation shows, such efficiency advantages translate directly into cost advantages. Further-

more, the cost parameter η captures how sensitive the intensity of the mental impression depends

on the stimulus intensity. In particular, a large value of η means that a large change of stimulus

intensity is needed to trigger a small change in mental impressions. In our model, this is further

reflected in the relative perception chances as
πj
πs

=
fj
fs

=
kj
ks

(
ej
es

)1/η
. Thus,

d(πj/πs)

πj/πs
=

1

η

dej
ej

∀j 6= s,

showing that η fully determines how elastic relative perception chances respond to a 1%-change

in effort.

Attention Production Function We now provide an alternative, more traditional founda-

tion for (9). Let πj =
fj
ΣR be the aspired perception chance given consideration set size R

and total volume Σ. Suppose that fj , the intensity of the attention-seeking activities of firm

j, is the output from a multi-unit input process with production function Hj : Rm+ → R+,

fj = H(ajxj), where xj ∈ Rm+ is a vector of inputs acquired on competitive markets, aj ≤ 1 is

an efficiency parameter, and H(·) is a strictly increasing production function homogeneous of

degree 1/η < 1.52 If w ∈ Rm++ denotes the factor prices, and

C(w, f, a) ≡ min
x≥0

w · x s.t. H(ax) ≥ f,

it follows from standard optimization theory that C(w, f, a) = 1/afηC(w, 1, 1). Normalizing

C(w, 1, 1) = 1 and 1/aj ≡ cj ≥ 1, it follows for a firm with efficiency aj that attaining a desired

52A similar result is obtained from assuming that fj = ajH(xj).
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intensity of fj comes at a cost of Cj(fj) = cjf
η
j .

B.3 On the optimal consideration set size

In this section, we revisit the notion of optimal consideration set size from Section 2.1. We

first show that the key prediction R′(Σ) < 0 also arises for more general objective functions,

e.g., reflecting the indirect utility associated with R. In Section B.3.2 we connect our general

approach to the recent literature on the “power of the subconscious”.

B.3.1 Value-based consideration set size

It is conceivable that the cost function H(·) in (1) depends on the processing rate τ . One

could, for example, imagine that a lower processing rate τ , ceteris paribus, could increase the

(opportunity) costs of devoting mental resources to the decision task. Another reason is that

such a cost function can capture the case, where consideration set size R = τT enters (1) via a

general function z(R), such that T maximizes z(τT ) −H(T ). Once we allow for H(T ; τ), the

assumption from Section 2.1 that R enters the objective function linearly is not restrictive. To

see this, note that the optimality condition is τ = H′(T )
z′(τT ) ≡ HT (T ; τ) for any given τ, T . Then,

the appropriate cost function H(T ; τ) is the anti-derivative of HT (T ; τ) with respect to T , and

maximizing τT −H(T ; τ) is equivalent to maximizing z(τT )−H(T ).

It is easy to see that the key condition R′(Σ) < 0 whenever overload occurs continues to

hold if z(R) – the value of consideration set size R – is given by an arbitrary, strictly increasing

C2-function, and z(τT ) − H(T ) is strongly quasi-concave in T . Due to overload, an interior

solution must occur with R∗ < n. This solution is uniquely determined by the first-order

condition τ = H′(T )
z′(τT ) , and as R = τT it follows that R∗ must solve τz′(R) = H ′(R/τ). The

Implicit Function Theorem then reveals that R′(τ) > 0, from which R′(Σ) < 0 follows.

As an illustration, suppose that a consumer has symmetric CES-preferences over all existing

goods. If all goods are priced at p, the consumer buys an equal amount x = w
Rp of all goods in

her consideration set A ∈ A(R), and the expected utility from a consideration set size R is

z(R) =
∑
A∈A

P (A)

∑
j∈A

x
σ−1
σ

j

 σ
σ−1

=
wR

1
σ−1

p
,

where σ > 1 is the elasticity of substitution. If h(Σ) = Σ and H(T ) = δTµ, then for γ ≡ 1
σ−1
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we obtain H(T ; τ) = w
p(µ−γ+1))τ

1−γTµ−γ+1, and the solution R(Σ) in case of overload is

R(Σ) = αΣ−β, β ≡ µ

µ− γ
∈ (1,∞)

for µ > γ, which formally coincides with (4). This derivation suggests an additional interpre-

tation of β in (4). In the CES context, a larger value of β occurs, the weaker substitutes the

products are (smaller σ). Accordingly, R responds more sensitively to changes in Σ, the smaller

σ is. The intuition is that the size of the consideration set becomes less relevant if the products

are rather substitutes than complements.

A similar procedure yields z(R)-functions for discrete choice models. Let the value of option

j to a consumer be Xj = u − pj + εj , where u is a constant, pj is the price, and εj is an iid

random variable with density f(ej). Then z(R) is given by the expected first order statistic

z(R) = u− p+R
∫
zf(z)F (z)R−1dz. For example, if εj is uniformly distributed on [0, 1], then

z(R) = u− p+ R
R+1 .

B.3.2 Consciousness

Whether the linear formulation in (1) or an indirect utility z(R) is more appropriate may

depend on how experienced a decision-maker is with the choice options. In particular, with lack

of experience, or with low-involvement products, it seems particularly reasonable to assume a

“guess” in thus that the value of consideration is roughly proportional to its size, rather than

a perfect forward-looking derivation of the true expected utility, which requires to correctly

anticipate all possible consideration sets that could arise.

More generally, the cognitive process guiding the pre-selection of options to pay attention

to may be substantially different from the one determining choice in a given consideration set.

Intuitively, the evaluation of a given (small) choice set is much more of a conscious deliberation

process compared to the choice of how much information to consider. The latter is a far more

complex problem, that may easily come up against the limit to information processing. In

such a situation, intuition and unconscious deliberation may become decisive. Dijksterhuis

et al. (2006); Dijksterhuis and Nordgren (2006); Dijksterhuis (2004); Mukherjee and Srinivasan

(2013) argue that such integrated problems are solved by the human brain with “power of the

unconscious”. In the “Unconscious Thought Theory”, conscious thought (“deliberation with

attention to the problem”) is a very precise and rule-based type of thinking (arithmetic, analytic,

comparative,...), that can only parse a small information set Dijksterhuis (2004). In terms of

our framework, this conscious thought process is suitable to describe the process of choosing an
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option from a given and sufficiently small consideration set. By contrast, unconscious thought

addresses a form of deliberation, where by the sheer complexity of the problem, the brain decides

“in the background”, relying on intuitive principles and memory. In particular, this suggests

to uncouple the precise valuation of R by the brain during the consideration set formation

process from a possible expected utility that requires, in principle, to work through all possible

consideration consequences in a fully analytical way.

B.4 Attention data: Retracing the allocation of attention

A recent literature has argued that it may be possible to elicit attention and preferences from

sufficiently rich choice data Masatlioglu et al. (2012); Manzini and Mariotti (2014). For example,

Dardanoni et al. (2018) demonstrate that if all agents have the same strict linear preference order

and the likelihood of any possible consideration set is uniformly distributed, then the probability

distribution over the various consideration set sizes can be calculated from aggregate choices.53

By contrast, our attention framework allows us to retrace the attention space A = (A,P, P )

that best matches a given aggregate attention data on average, independent from preferences.

That is, we can learn the average attention allocation P (·) over the possible consideration sets,

which Dardanoni et al. (2018) assume to be uniformly distributed.

The key observation we use is the simple connection between the consideration set size R and

the perception probabilities πj identified by Lemma 1. Suppose that a number of I consumers

generates data that yield some dispersive measure of of attention, e.g., online clicks frequencies.

Say that we observe the following dispersion of clicks on n = 10 different items produced by

I = 10′000 people:

{8620, 4926, 2815, 1608, 919, 525, 300, 172, 98, 56}.

This data is consistent with an average user having a consideration set size of (approximately)

R = 2. To see why, denote the observed clicks in the above list by Ĉj , j = 1, .., n. Then, Lemma

1 assures that
∑

s Ĉs/I = R, because Ĉj/I = πj , ∀j, gives the average perception chance of

option j, and
∑

s πs = R.

Once R is known, the set of all consideration sets A(R) is determined. It then is possible

to derive the allocation of attention P : A(R) → [0, 1] that best describes the data on average

by putting slightly more structure on the attention allocation process. An intuitive possibility

is to assume an “order-independent” attention allocation rule. Let N = {1, ...., n} and P̃ be a

53This result extends to heterogeneous preferences, but requires i) that preferences and attention are indepen-
dently distributed, and ii) to observe the decisions by the same agents for multiple choice situations.
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probability measure on (N ,P(N )) with

P (A) ≡ P̃ (A |A) =
P̃ (A)

P̃ (A)
=

∏
j∈A

π̂j∑
A∈A

∏
j∈A

π̂j
, A ∈ A, (B.4)

where π̂j is the unitary sampling chance of option j, i.e., π̂j = P̃ ({j}). Intuitively, π̂j is the

probability to “draw” item j from the urn containing all n items, and (B.4) constructs the

probability of a consideration set P (A) by assuming that the order of the draws is irrelevant.54

Because πj =
∑

A∈Bj P (A) for each j ∈ N , the unitary sampling chances π̂1, ..., π̂n can be

derived as the solution of the n− 1 equations

πj =

∑
A∈Bj

∏
j∈A

π̂j∑
A∈A

∏
j∈A

π̂j
, j = 1, ..., n− 1

and
∑
π̂s = 1 for a given dispersion of perception chances π1, ..., πn. These perception chances

corresponds to the relative frequencies of the clicks on the various items in our example. With

the above data, the unique numerical solution to the problem is

(π̂1, ..., π̂10) ∼= (0.69, 0.14, 0.08, 0.042, 0.024, 0.013, 0.008, 0.004, 0.002, 0.001)

Once the π̂j are known, (B.4) can again be used to calculate P (A) ∀A ∈ A. For example,

our data implies that P (1, 2) = 0.395, while P (1, 8) = 0.01. Put differently, a representative

consumer has R = 2, and if all consumers had R = 2, then about 40% of them would only

compare options 1 and 2, while only 1% would compare options 1 and 8.

B.5 Dynamic Attention

In this section, we study a dynamic version of the model, where firms compete in attention in

each period, but the attention they manage to attract depends on past attention as well. We

show that the equilibrium of our static model corresponds to the steady-state equilibrium of its

dynamic version. Moreover, we find that the path-dependence of the attention process has a

similar effect on the dispersion of attention or profits as consumer sensitivity η.

Indexing firms with cost types c ∈ [1, 1 + c̄] ≡ J , suppose that the firms’ perception chances

54For example, if A = {1, 2} then, assuming sampling with replacement, P̃ (A) = π̂1π̂2, meaning that the first
draw was j = 1 and the second draw was j = 2. We thus ignore that the order could also have been reversed.
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per unit of attention evolve according to a discrete-time dynamic process of the form

π̂c(t) =
f̃c(t)

Σ(t)
, f̃c(t) ≡ fc(t)h (π̂c(t− 1)) , Σ(t) ≡

∫
f̃s(t)ds, (B.5)

where h(·) is an increasing function. Thus, each firm’s current attention πc(t) = π̂c(t)R increases

in its current attention-seeking efforts, fj(t), as well as in the attention π̂j(t−1) it received in the

past. Intuitively, f̃c(t) ca be viewed as the effective attention stimulus produced by the firm in

period t. Such “attention-generates-attention” is a property associated, e.g., with collaborative

filters, such as with popularity-based recommender systems (Fleder and Hosanagar, 2009).

Then, firm profit in period t is of the form

Πc(t) =
fc(t)h (π̂c(t− 1))

Σ(t)
RV (R)I − cfc(t)η. (B.6)

Let the density function π̂c(0) be an exogenous initial condition. We suppose that for t = 1, 2, ....

each firm myopically chooses her period attention effort fc(t) to maximize (B.6), taking Σ(t)

and π̂c(t−1) as given.55 This leads to a sequence of effort functions {f(t)}∞t=1, f(t) : J → R++,

where for any given c ∈ J , fc(t) maximizes (B.6). The equilibrium dynamics of attention thus

are given by the sequence {π̂c(t)}∞t=0 of density functions π̂(t) : J → R++, where for each c ∈ J

and each t ≥ 1, π̂c(t) is determined by {f(t)}∞t=1 and (B.5).56

Replacing fc(t) by π̂c(t) from (B.5) into the optimality condition ∂
∂fc(t)

Πc(t) = 0, the period

t equilibrium value of π̂c(t) solves

RV (R)

η
I =

c

h (π̂c(t− 1))η
π̂c(t)

η−1Σ(t)η (B.7)

As (B.7) shows, the effective attention costs c
h(π̂c(t−1))η

borne by the firms depend dynamically

on attention. A firm managing to attract a lot of attention in the past faces lower costs, ceteris

paribus, of maintaining its attention share in the present.

We explore the equilibrium dynamics for the tractable case h(x) = xδ, where a larger value

of δ ∈ [0, 1) means that the allocation of attention exerts a stronger path dependence.57

Proposition B2 For η > 1
1−δ , the above dynamic model has a unique steady-state. In the

55Alternatively, one could seek to solve the full dynamic programming problem, where firms discount their
future payoffs and optimally choose their sequence of effort {fc(t)}t over time. Beside substantial formal compli-
cations, the main difference is that forward-looking firms seek to smooth their attention expenditures over time,
taking into account that today’s attention expenditures affect tomorrow’s attention costs.

56For simplicity we take R < n as constant and given by its steady-state value.
57A steady-state of the model can be shown to exist more generally.
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steady-state, the perception chances π̂∗c , and profit levels Π∗c are given by

π̂∗c =

(
1
c

) 1
η(1−δ)−1∫

J
(

1
s

) 1
η(1−δ)−1 ds

, Π∗c = π̂∗cRV (R)I
η − 1

η
. (B.8)

Proof: Using h(x) = xδ in (B.7) and rearranging yields

π̂c(t)
η−1

π̂c(t− 1)δη
=
RV (R)I

ηΣ(t)η
1

c
(B.9)

From (B.9) it follows that a unique steady-state (π̂∗c ,Σ
∗) exists if η > 1

1−δ where, using
∫
J π̂sds = 1,

Σ∗ =

(
RV (R)I

η

) 1
η
(∫
J
c

−1
η(1−δ)−1 dc

) η(1−δ)−1
η

,

and π̂∗c is determined by (B.8). The expression for steady-state profit levels follows from plugging (B.5)

in (B.6) and evaluating this expression at π̂∗c ,Σ
∗. �

Expression (B.8) is identical, up to δ, to its static counterpart in Proposition 2. In particular, a

Power Law dispersion of attention and profits results in the steady-state, and the comparative

statics of the steady-state with respect to R, n or I adopt the same pattern as in the main text.

In addition, (B.8) shows that a stronger path dependence in the allocation of attention (larger

δ) magnifies the long-run differences in attention and profits between the firms. The intuition is

that a stronger path dependence decreases the equilibrium costs borne by firms which attracted

more attention in the past.

To study the transitional dynamics of the model, we assume an equal initial dispersion of

attention, i.e., π̂c(0) = 1/c̄, ∀j ∈ J . Figure 7 illustrates the dynamics for the discrete case of

10 firms with cost parameters c ∈ {1, 2, ..., 10}, η = 2 and δ = 1/4. The transition dynamics

are such that π̂(t) features a gradually increasing inequality as t → ∞, where the steady-state

distribution π̂c is approximated by a sequence of clockwise rotations of π̂c(t). This pattern holds

more generally.

Corollary B1 Let η > 1
1−δ and π̂c(0) = 1/c̄, ∀c ∈ J . Then π̂(t′) is a clockwise rotation of

π̂j(t) whenever t′ > t as in Figure 7.

Proof: Let c < c′ and note from (B.9) that

π̂c(t)

π̂c′(t)
=

(
c′

c

) 1
η−1

(
π̂c(t− 1)

π̂c′(t− 1)

) δη
η−1

.
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Figure 7: Equilibrium dynamics

Because π̂c(0) = π̂c′(0) it follows that π̂c(t)
π̂c′ (t)

must be strictly increasing in t. As such an increasing ratio

condition must hold for any c < c′ it follows that π(t′) must be a clockwise rotation of π(t) for t′ > t

(Hefti and Teichgräber, 2020). �

B.6 Heterogeneous Abilities to Monetize Attention

In this section, we consider what happens if firms differ in their abilities to monetize the attention

they receive by assuming that Vj(R) > Vk(R) whenever j < k; as before, firms are ordered left-

to-right. We restrict attention to equilibria with choice overload (R < n). Such heterogeneity

could, e.g., reflect the differential revenues earned from quality-differentiated products (Rosen,

1981). In this spirit, we interpret firm j as offering a higher-quality product than firm k, while

other interpretations are possible.

The equilibrium shares many key properties with its counterpart from Section 3, such as the

Power Law dispersions and various distributional comparative-statics. However, there are some

differences, because changes in R now can have differential effects due to the different abilities

of monetizing attention.

Section B.6.1 derives the equilibrium properties and the effects of a change in the consider-

ation set size, similar to its counterpart in Section 3. Section B.6.2 considers the distributional

comparative-static effects of a growing market size and a growing tail similar to Section 4. All

proofs are in Section B.6.3.
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B.6.1 Equilibrium Analysis

To make the effects of a differential ability to monetize the attention received most salient, we

abstract from heterogeneity in attention-seeking abilities, and normalize cj = ck = 1 ∀j, k. The

payoff of a firm j ∈ [0, n] is

Πj =
fj
Σ
RVj(R)I − fηj . (B.10)

Compared to the main text, this version of the model is formally more challenging because there

is firm heterogeneity in terms of different functions Vj(·), rather than coefficients cj . Formally,

we assume that V : R+ × R++ → R++, (j, R) 7→ Vj(R) is continuous, strictly increasing in

j and strictly decreasing and continuously differentiable in R. Thus, for any firm j ∈ [0, n],

there is a unique revenue function Vj(R), which we think of as representing its quality type,

just as different cost coefficients identified different cost types. Because in the current model,

the “type” is a function rather than a number, it is more convenient to index firms by j rather

than by their types. Using fj = π̂jΣ, the equilibrium FOC can be stated as

RI

η
=

1

Vj(R)
π̂η−1
j Ση, (B.11)

where the RHS of (B.11) is the marginal cost of attention per unit of revenue. To make the

connection to the model from the main text explicit, recall from Section 3 that the equilibrium

optimality condition for a firm with cost type c is

RI

η
=

c

V (R)
π̂η−1
c Ση. (B.12)

For a given R, we thus can map (B.11) into (B.12) by defining c ≡ 1
Vj(R) . That is, for given R a

stronger quality type is as if this type had lower attention costs. The only meaningful difference

thus is that in the current model a change in R may have a differential impact for different

quality types.

Proposition B3 A unique attention equilibrium (f∗,Σ∗) exists, and total information load Σ∗,

perception chances π∗j , profits Π∗j and attention expenditures E∗j are

Σ∗ =

(
RI

η

) 1
η

K
η−1
η K ≡

∫ n

0

Vs(R)
1

η−1 ds (B.13)

π̂∗j =
f∗j
Σ∗

=
Vj(R)

1
η−1

K
, π∗j = π̂∗jR, (B.14)

Π∗j = π̂∗jRVj(R)I
η − 1

η
, E∗j = π̂∗j

RVj(R)

η
I, C∗c = π∗j I. (B.15)
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The equilibrium structure in Propositions 2 and B3 are similar. In particular, competitive

attention leads to a power law dispersion of attention (clicks), profits and expenditures over

quality types for a given R. To see this, fix R, and let v ≡ vj(R) ∈ R++ be firm j’s quality

type, such that [v, v̄] = [V0(R), Vn(R)] is the set of quality types. Then, expressing Proposition

B3 in terms of quality types v, the analogue to (B.14) is π̂v = v
1

η−1

K , K =
∫ v̄
v s

1
η−1

ds
showing the

power law shape over v.

Firms with a stronger ability to monetize their attention can also afford to maintain higher

attention expenditures, resulting in a larger market share. The reason for the power law shape of

the market shares parallels the one from the main text. Competitive forces equate the marginal

attention costs per unit of revenue Vj(R), and the functional form of the attention costs, as

implied by Steven’s Law, yields
π̂v
π̂v′

=
( v
v′

) 1
η−1

(B.16)

for any two quality types v > v′, from which it directly follows that π̂(·) must obey a power law.

Further, (B.16) shows that the sensitivity of consumer to the attention stimuli, η, continues

to play a key role for market inequality and market response. As before, small differences in

quality can lead to large differences in attention, revenues and profits if consumers are highly

sensitive to (changes of) the attention stimuli (low η), ceteris paribus.

The two essential differences to the case where firms differ only in their abilities to attract

attention are that i) revenues Vj(R)I conditional on attracting attention now are heterogeneous,

and ii) the equilibrium market share, π̂j(R), now depends directly on R through its effect on

Vj(R). These two differences imply some disparities to the equilibrium in Section 3.

First, the profit share distribution now must be a clockwise rotation of the distribution of

attention shares, as sketched in Figure 8 (a), whereas the two coincide with symmetric revenues.

To see this, note that π̂∗j is j’s market share of total attention RI, while s∗j ≡ Π∗j/
∫ n

0 Π∗sds is

j’s market share of total profits. By Proposition B3, we have
s∗j
s∗k

=
π̂∗j
π̂∗k

Vj(R)
Vk(R) , and hence

s∗j
s∗k
>

π̂∗j
π̂∗k

for any j < k, which implies that the dispersion of s∗j must be a clockwise rotation of π̂∗j (Hefti

and Teichgräber, 2020). The reason is that a comparably higher quality allows a firm to afford

a larger attention share and extract more money from the attention it attracts.

Second, the dispersions π̂∗j and s∗j can possibly rotate if R changes as depicted in Figure 8

(b), while R had no effect on these shares in the model of the main text. The reason is that the

marginal attention costs per unit of revenue may now depend differentially on R via Vj(·).
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Figure 8: Heterogeneous quality: Attention and Profits

Consideration Set Size Effects We now explore the equilibrium consequences of an ex-

ogenous change to the consideration set size R. Understanding these effects matters for the

general comparative statics, as R changes according to the finite capacity model if the infor-

mation load changes. Consistent with assumption (13) from the main text, we suppose that

consumer inattention is profitable, i.e., −V ′j (R) >
Vj(R)
R , ∀j.

Expression (B.14) reveals that the market shares of attention, profits or revenues are invariant

to R (similar to the main text) if and only if
V ′j (R)

Vj(R) =
V ′k(R)

Vk(R) , ∀j, k. The last condition further

is equivalent to Vj(R) being multiplicatively separable in (j, R), i.e., to Vj(R) = α(j)g(R).

Intuitively, this amounts to a situation where the average consumption expenditure shares

per firm are independent of R. In this case, the equilibrium analysis and the comparative-

static predictions coincide qualitatively with those from Section 3. In particular, the results in

Propositions 3 - 5 apply here as well.

For R to have an effect on the equilibrium dispersions, it is necessary and sufficient that some

agents are able to increase their attention revenues Vj(R) by a greater proportion than others

if R decreases. We exemplify this in the following proposition by assuming
∣∣∣V ′j (R)

Vj(R)

∣∣∣ > ∣∣∣V ′k(R)

Vk(R)

∣∣∣, ∀
j < k, i.e., that the revenues of those firms that better manage to monetize the attention they

receive are also more exposed to a change in R.

Proposition B4 If
∣∣∣V ′j (R)

Vj(R)

∣∣∣ > ∣∣∣V ′k(R)

Vk(R)

∣∣∣, ∀ j < k and R > 1, then a decrease in the consideration

set size (dR < 0) leads to a clockwise rotation of the attention and profit share functions.

Moreover, dR < 0 induces a Superstar effect in attention, revenues and profits but never a Long

tail effect.
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B.6.2 Market Size and Entry Effects

Proposition B4 further shows that attention and profit shares become less equally dispersed if

R declines whenever firms with stronger abilities to monetize their attention also have revenues

that react more volatile to changes in consumer R.Intuitively, if high-quality firms dispropor-

tionally benefit from consumer inattention, this allows them to disproportionally increase their

attention expenditures, which cannot be matched by optimally behaving low-quality firms.

Compared to the equilibrium analysis of Section 4, this implies that increases in market size

I or product diversity n can have additional effects through their impact on R. We now repeat

the comparative-static analysis of Section 4, assuming that
∣∣∣V ′j (R)

Vj(R)

∣∣∣ > ∣∣∣V ′k(R)

Vk(R)

∣∣∣, ∀ j < k, such that

a reduction in R causes a rotation as outlined by Proposition B4. Such a rotation means that

there must be winners and losers among the incumbent forms in terms of market shares. In the

following, we say that a firm j is a winner with respect to a measure Wj (e.g., profits, revenue

or attention) if dWj ≥ 0, and a losers otherwise.

A growing Market Size Our first result considers the effects of consumer entry (dI > 0).

Proposition B5 An increase in the market size (dI > 0) has the following effects.

(i) For any x ∈ (0, 1/2) there is a Superstar effect in attention, revenue or profits, but never

a Long Tail effect.

(ii) Regarding the distribution of attention, revenue or profits (each measure considered sep-

arately), the following patterns are possible: (a) all firms are winners, (b) all firms are

losers, (c) there is a j0 ∈ J , such that all firms in [0, j0] are winners while all firms in

(j0, n] are losers.

(iii) The gap in attention, revenues or profits between any two winners and between any winner

and any loser widens, while the gap between any two losers narrows.

(iv) For a given x ∈ (0, 1/2), there is a Matthew effect in attention, revenues or profits (for

each separately) if either all firms are winners or if there is a j0 ∈ [xn, (1−x)n] such that

all firms with j ≤ j0 are winners while all firms with j > j0 are losers. If all firms are

losers, then there is an inverse Matthew effect.

A central difference to Section 4 is that dI > 0 now causes a Superstar effect. The reason is that

the reduction of R due to choice overload now itself causes a Superstar effect. In addition, the

fact that the attention, revenue and profit share distribution rotates implies that dI > 0 now
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can cause winners and losers as measured by the absolute changes in the respective quantities.

Should winners and losers coexist, then there must be a firm j0, such that all firms on its left

must be winners, while all firms on its right must be losers.

Nevertheless, the essential insights are similar to Proposition 5: A Matthew effect in atten-

tion, revenues or profits arises whenever all firms end up as winners in the respective quantities.58

Moreover, a Matthew effect results if winners and losers coexist. The only difference is that if

all firms end up as losers, e.g., in profits, then dI > 0 causes an inverse Matthew in profits.

A growing Tail Compared to Section 4, the comparative-statics of a growing tail become

more cumbersome, because n now also affects the revenue Vj(R) via its effect on R. By (B.13),

it follows that Σ′(n) > 0 and thus also R′(n) < 0 in a stable equilibrium, as in the main text.

Our first result summarizes the effects of a growing tail on the incumbent firms, similar to

Proposition 4.

Proposition B6 A growing tail (dn > 0) has the following effects on the incumbents:

(i) Regarding the distribution of attention, revenue or profits (each separately), one of the

following patterns must occur: (a) all incumbents are winners, (b) all incumbents are

losers, (c) there is a j0 ∈ J , such that all incumbents in [0, j0] are winners while all

incumbents in (j0, n] are losers.

(ii) The gap in attention, revenues or profits between any two winners and between any winner

and any loser widens, while the gap between any two losers narrows.

Proposition B6 shows that all incumbents may be winners or losers due to a growing tail.

Moreover, the gap between any two incumbents widens (narrows) if all incumbents are winners

(losers). These results are identical to what Proposition 4 found. The only novel aspect is that

now only some incumbents may win while others lose.

Finally, we argue that a growing tail also is conducive to a Superstar effect, but not to a

Long Tail effect. Formally, this is more complicated than in the main text, because the type

space now is a functional space, rather than an real interval, and the new entrants come with

new functions Vj(R), rather than with new costs coefficients. Abstaining from a full analysis,

the following argument demonstrates that a Superstar (Long Tail) effect is likely to arise, in

58The actual determination of the winners and losers is more intricate compared to Section 4.1 and depends
on details of Vj(·). However, the following can be shown: A firm’s revenue increases iff its profit increases, and a
firm’s revenue increases if its attention does not decrease (the converse needs not hold in general).
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particular because now dR < 0 already yields a Superstar effect. For a similar reason, a Long

Tail effect does not occur.

Let x ∈ (0, 1), and note that ZT (n) is of the form

ZT (n) =

∫ xn
0 Gj(R)dj∫ n
0 Gj(R)dj

, Gj(R) ≡ Vj(R)m

in case of profits, attention or revenues. By definition, a Superstar effect emerges if Z ′T (n) > 0,

i.e., if
Gxn(R)

∫ n
0 Gj(R)dj −Gn(R)

∫ xn
0 Gj(R)dj∫ n

0 Gj(R)dj2
+
∂ZT (n)

∂R
R′(n) > 0 (B.17)

In a stable equilibrium, R′(n) < 0, and ∂ZT (n)
∂R < 0 by Proposition B4, which is the Superstar

effect in R. Thus, (B.17) implies that

Gj(R)j∫ j
0 Gs(R)ds

>
Gn(R)n∫ n

0 Gs(R)ds
(B.18)

is a sufficient condition for Z ′T (n) > 0. This condition simply requires that the elasticity of

H(j) ≡
∫ j

0 G(s)ds is strictly decreasing ∀j ∈ (0, n), which formally is exactly the same condition

that was identified by Lemma A1 to assure a Superstar effect upon a growing tail. For the same

reason, a Long Tail effect is not likely to occur. A Long Tail effect occurs if

ZB(n) =

∫ n
(1−x)nGj(R)dj∫ n

0 Gj(R)dj
= 1−

∫ (1−x)n
0 Gj(R)dj∫ n

0 Gj(R)dj

satisfies Z ′B(n) > 0. If (B.18) holds, then the above analysis directly excludes the occurrence of

a Long Tail effect for the same reason why a Superstar effect occurs.

B.6.3 Proofs

Proof Proposition B3 Proceed as in the proof of Proposition 2. �

Proof Proposition B4 The attention share distribution π̂j is determined by (B.14). Thus

π̂j(R)

π̂k(R)
=

(
Vj(R)

Vk(R)

)m
, (B.19)

where m = 1
η−1 > 0. If

∣∣∣V ′j (R)

Vj(R)

∣∣∣ > ∣∣∣V ′k(R)
Vk(R)

∣∣∣ ∀ j < k, then
π̂j(R)
π̂k(R) is strictly decreasing in R (as V ′j (R) < 0

∀j). This implies that for R′ < R the distribution π̂j(R
′) is a clockwise rotation of π̂j(R).59 Let

59See Hefti and Teichgräber (2020).

60



sj(R) ≡ Πj(R)∫
J Πs(R)ds

denote the profit share distribution. Then

sj(R) =
Vj(R)

η
η−1∫

J Vs(R)
η
η−1

by (B.19) and (B.15). This shows that sj(R)/sk(R) is of type (B.19), and the claim follows. The claim

about the Superstar and Long Tail effects is more involved, and needs the following Lemma.

Lemma B2 Let ϕ : [a, b]→ R++ and ϕ′ : [a, b]→ R+ be two integrable functions with

ϕ′(x)

ϕ(x)
>
ϕ′(y)

ϕ(y)
⇔ x < y (B.20)

Then for x, j ∈ (a, b): ∫ x
j
ϕ′(s)ds∫ x

j
ϕ(s)ds

<
ϕ′(j)

ϕ(j)
, x > j, (B.21)

∫ j
x
ϕ′(s)ds∫ j

x
ϕ(s)ds

>
ϕ′(j)

ϕ(j)
, j > x. (B.22)

Proof We only prove (B.21); (B.22) is proven similarly. Let x > j. Then (B.20) implies that

ϕ′(j)ϕ(s) > ϕ′(s)ϕ(j) for any s ∈ (j, x]. Thus also ϕ′(j)
∫ x
j
ϕ(s)ds > ϕ(j)

∫ x
j
ϕ′(s)ds, which implies

(B.21). �

Let x ∈ (0, 1/2) and define j ≡ nx ∈ (0, n). We show that the distribution of attention Cj = πjI exhibits

a Superstar effect for dR < 0. Then, by (14)

ZT (R) =

∫ j
0
π̂s(R)RIds∫ n

0
π̂s(R)RIds

=

∫ j
0
π̂s(R)ds∫ n

0
π̂s(R)ds

=

∫ j
0
Vs(R)mds∫ n

0
Vs(R)mds

. (B.23)

Define Gs(R) ≡ Vs(R)m. A Superstar effect exists for dR < 0 if Z ′T (R) < 0, hence if

∫ j
0
−G′s(R)ds∫ j

0
Gs(R)ds

>

∫ n
0
−G′s(R)ds∫ n

0
Gs(R)ds

. (B.24)

Because for any c < d we have
−V ′c (R)
Vc(R) >

−V ′d(R)
Vd(R) by presumption, it follows that

−G′c(R)

Gc(R)
=
−mV ′c (R)

Vc(R)
>
−mV ′d(R)

Vd(R)
=
−G′d(R)

Gd(R)
.

Then Lemma B2 assures that ∫ j
0
−G′s(R)ds∫ j

0
Gs(R)ds

>
−G′j(R)

Gj(R)
>

∫ n
j
−G′s(R)ds∫ n
j
Gs(R)ds

(B.25)
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The claim now directly follows from the fact that

a

b
> (<)

c

d
⇔ a

b
> (<)

a+ c

b+ d
. (B.26)

for positive numbers.

We now turn to the Long Tail effect, and again consider the distribution of attention. Fix x ∈ (0, 1/2)

and define j ≡ (1− x)n. By (14), a Long Tail effect fails to exist in consumer inattention if Z ′B(R) > 0,

where

ZB(R) =

∫ n
j
π̂s(R)RIds∫ n

0
π̂s(R)RIds

=

∫ n
j
Vs(R)mds∫ n

0
Vs(R)mds

. (B.27)

Define Gs(R) ≡ Vs(R)m. Then Z ′B(R) > 0 if

∫ n
j
−G′s(R)ds∫ n
j
Gs(R)ds

<

∫ n
0
−G′s(R)ds∫ n

0
Gs(R)ds

=

∫ j
0
−G′s(R)ds+

∫ n
j
−G′s(R)ds∫ j

0
Gs(R)ds+

∫ n
j
Gs(R)ds

. (B.28)

By (B.26), it suffices to show that

∫ n
j
−G′s(R)ds∫ n
j
Gs(R)ds

<

∫ j
0
−G′s(R)ds∫ j

0
Gs(R)ds

in order to verify (B.28). The previous inequality indeed holds by (B.25) as a consequence of the

presumption on Vj(·).

The proof is completed by noting that ZT (R) and ZB(R) are also of types (B.23) and (B.27), respec-

tively, in case of revenues or profits. �

Proof Proposition B5 We prove (i) in case of the attention distribution; the proof for revenues and

profits is entirely similar. By (B.13), we must have R′(I) < 0 in any stable equilibrium. Let x ∈ (0, 1)

and j ≡ xn. A Superstar effect in I occurs if

ZT (I) =

∫ j
0
π̂s(R(I))R(I)Ids∫ n

0
π̂s(R(I))R(I)Ids

=

∫ j
0
Vs(R(I))mds∫ n

0
Vs(R(I))mds

verifies Z ′T (I) > 0. The claim now follows from Proposition B4 because I affects ZT (I) only via R(I),

and an increase in I causes a decrease of R. Likewise, Proposition B4 that a Long Tail effect cannot

arise.

We now turn to claim (ii) of Proposition B5 in case of the attention distribution. By Proposition B4,

dR < 0 leads to a clockwise rotation of the attention share distribution π̂j ; thus there are winners and

losers in terms of attention shares. As the total attention of firm j is π̂j(R)RI the following situations

can arise. (a) All firms lose attention. (b) There is j0 ∈ J such that all firms with j ∈ [0, j0] win, while

all firms with j ∈ (j0, n] lose. (c) All firms win attention. To see this, note that
Cj(R)
Ck(R) =

(
Vj(R)
Vk(R)

)m
is

strictly increasing in inattention (dR < 0) for any j < k. Now, if firm j is a winner, i.e., dCj(R) > 0 as
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dR < 0, then necessarily also dCj′(R) > 0 for any j′ < j. Likewise, if j is a loser, i.e., dCj(R) < 0, then

any firm with j′ > j must also be a loser. The same type of argument applies to revenues as well as to

profits.

We next prove claim (iii). Consider two firms with j < k. If j is a winner and k a loser, the claim is

trivial. Hence, suppose first that both firms are winners. Expression (B.19) shows that relative attention

shares,
π̂j(R)
π̂k(R) , j < k, is strictly increasing as dR < 0 as a consequence of the assumed property regarding

Vj(·). Because both firms are winners, it must therefore be that firm j gains more attention than k; the

gap widens. By contrast, if both firms are losers, the fact that, again by (B.19), relative attention shares

also increase, necessarily implies that the attention gap between j and k narrows downs.

We finally prove claim (iv). Let Qj(I) denote the distribution of attention, i.e.,

Qj(I) = Cj(I) = π̂jRI =
Vj(R)m∫ n
0
Vs(R)m

RI, (B.29)

where m ≡ 1
η−1 . A Matthew effect in attention exists if

M(I) ≡
∫ xn

0

Qj(I)dj −
∫ n

(1−x)n

Qj(I)dj =

∫ xn

0

(
Qj(I)−Qj+(1−x)n(I)

)
dj

verifies M ′(I) > 0. If there is a j0 ∈ [xn, (1− x)n] such that all firms with j ≤ j0 are winners while all

firms with j > j0 are losers, then obviously M ′(I) > 0. For the remaining part of claim (iv), note that

the ratio
Qj(I)
Qk(I) is strictly increasing in I for any j < k by the presumption of the proposition. Thus, if

all firms are winners, (iii) implies that the gap between any two winners widens, which implies that also

M ′(I) > 0 in this case. If all firms are losers instead, then by (iii) the gap narrows, meaning that also

M ′(I) < 0; an inverse Matthew effect results. To complete the proof, suppose now that Qj(I) either

denotes revenues (Qj(I) = π̂jRVj(R)I) or profits (Qj(I) = π̂jRVj(R)I η−1
η ). In both cases, the claims

in (iv) follow from the previous arguments by noting that the ratio
Qj(I)
Qk(I) is strictly increasing in I for

any j < k also in these cases. �

Proof Proposition B6 : (i) Consider the distribution of attention Cj(n) = π̂jRI (the other cases

are proven similarly). Note that for any two incumbents j < k, the ratio
Cj(n)
Ck(n) =

(
Vj(R(n))
Vk(R(n))

)m
is strictly

increasing in n because R′(n) < 0. Thus, if j is a winner (C ′j(n) ≥ 0), then this must also hold for any

j′ < j. Likewise, the increasing ratio condition implies that if j is a loser (C ′j(n) < 0), then this must

also hold for any j′ > j. This implies that one of the cases (a), (b) or (c) must apply. (ii) All claims

follow from the fact that the ratio
Vj(R(n))
Vk(R(n)) is strictly increasing in n. �

B.7 Price Competition

In this section, we provide a foundation for the value function V j(·) based on strategic price

competition with differentiated products. The goal is to show that conventional models of

imperfect price competition yield the main properties we assumed in our analysis. In particular,
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we vindicate that the value functions V j(·) arising from such models verify the symmetry

property V j(A) = V j(A′), j ∈ A ∩ A′, whenever the distribution of preferences is unbiased

towards any particular firm. As an intermediate step, we establish that a symmetric price

equilibrium p∗ = p(R) always exists under standard regularity conditions, where this equilibrium

is invariant to the allocation of attention, and all firms earn the same average rent V (R) from

the consumers paying attention to them. Finally, we show that assumption (13), which played a

central role in our comparative-static analysis, is equivalent to the requirement that p′(R) < 0 in

the price equilibrium. The latter inequality captures that a larger (perceived) market intensifies

equilibrium price competition, which is a property common to conventional models of imperfect

price competition.

B.7.1 Imperfect Price Competition

Consider a number of n > R firms offering horizontally differentiated products. Let p =

(p1, ..., pn) ∈ Rn++ be the vector of product prices. All consumers are endowed with the same

attention space (A,P(A), P ).60 Consumer i’s demand for firm j is specified by a random vari-

able dji : A × Rn++ → R+, where dji (A, p) is the quantity i demands from j if consideration

set A ∈ A occurs and prices are given by p. Accordingly, the average demand for firm j from

attention set A ∈ A is dj(A, p) = E
[
dji (A, p)

]
. If all firms face the same constant unit pro-

duction cost c ≥ 0, the value of attention then is V j(A, p) = (pj − c)dj(A, p). Recalling that

Bj ≡ {A ∈ A : j ∈ A}, we assume dj(A, ·) = 0 whenever A /∈ Bj , and that prices of non-

considered products have no effects on a consumer’s choice from A. In addition, we impose the

symmetry assumption that the precise composition of the consideration set plays no role for the

average demand dj(A, p) as long as the prices of the competing products in A remain the same.61

The above properties arise naturally in conventional settings, including discrete choice models

or models with an additively separable utility function, if the underlying preferences are not

systematically biased towards any particular firm in the consumer population.

To see this, consider first the case where consumer demand is the outcome of maximizing an

additively separable utility function given a standard budget constraint and a fixed consideration

60This assumption is only for ex simplicity. Our results also hold, e.g., if consumer demand di and attention
Pi are uncorrelated.

61Formally, for any A ∈ Bj , let pjA ∈ RR−1
++ denote the subvector of prices of firms other than j that also

belong to A. Then, dj(A, p) = dj(A′, q) for any j, A,A′ ∈ Bj and any price vectors p, q, where pj = qj , and pjA
and qjA′ are permutations of each other.
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set A ∈ A. Consumer demand then is

di(A, p) = arg max
xj≥0

∑
j∈A

ui(xj) s.t.
∑

j∈A
pjxj = wi.

Conventional optimization methods reveal that a demand system with the above properties of

dj(A, p) emerges if for any A ∈ A and any i, ui(·) is strictly increasing and
∑

j∈A ui(xj) is strictly

quasi-concave. Further, it is easy to see that if all firms set the same price p̄, then dji (A, p̄) = wi
p̄R .

Accordingly, the aggregate attention rent of firm j is is V j(A, p̄) =
∫
V j
i (A, p̄)di = (p̄− c) wp̄RI,

with w ≡ 1
I

∫
widi.

Likewise, a demand system with the above properties arises in case of random utility models.

The (indirect) utility of a consumer i of option j is specified by Ui(j) = m− pj + εj , where the

match values (ε1, ..., εn) are distributed with a density function f(e1, ...., en) over the consumer

population of measure I > 0. Then, for a given A ∈ Bj , the market demand of firm j corresponds

to Pr (Ui(j) = max {Ui(k) : k ∈ A}) I, the measure of consumers that find j to be their first-

best choice within a given attention set. Let fA(eA1 , ..., e
A
R) denote the marginal density obtained

from f(·) by integrating out those n−R options that do not belong to A. Denoting the fraction

of consumers who perceive firm j to be their first-best choice in consideration set A ∈ Bj by

dj(A, p) ≡ Pr (Ui(j) = max {Ui(k) : k ∈ A}), we obtain

dj(A, p) =

∞∫
−∞

pA2 −pj+ej∫
−∞

. . .

pAR−pj+ej∫
−∞

fA
(
eA2 , ...ej , ..., e

A
R

)
deAR . . . de

A
2 dej , (B.30)

where pA2 , ..., p
A
R are the prices of the R− 1 options in A other than j. It is easy to verify from

(B.30) that if f(e1, ..., en) = f(es(1), ..., es(n)) for any permutation s of {1, ..., n}, capturing a

symmetric dispersion of tastes in the consumer population, a demand system with the respective

properties emerges, and the value function is V j(A, p) = (p − c)dj(A, p). Further, we observe

that if all firms set the same price p̄, then dj(A, p) = 1
R , such that V j(A, p̄) = (p̄− c) 1

R .

Applied work often considers the iid case, where f(e1, ...., en) = g(e1)·...·g(en) for a univariate

density function g(·). If Ui(j) = m−pj + tεj , where t > 0 is a “preference-intensity” parameter,

all εj are iid uniform on [0, 1], and p−j = p̄, (B.30) evaluates to

dj(A, p) =


1−
(
p̄−pj
t

)R
R +

p̄−pj
t ,

p̄−pj
t ≥ 0(

1+
p̄−pj
t

)R
R ,

p̄−pj
t < 0

, (B.31)

for pj ∈ (p̄− t, p̄+ t).
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B.7.2 Equilibrium Pricing

We now analyze the pricing equilibrium for given attention imposing the above symmetry as-

sumption on demand. Thus, the value function is of the form V j(A, p) = (pj−c)dj(A, p), where

V j(A, p) = V j(A′, p) for any A,A′ ∈ Bj and equal prices p1 = ... = pn.

As a first result we establish that a single symmetric price equilibrium p∗j = p(R) ∀j exists,

and the equilibrium price is independent from attention P (·). That is, despite that firms may

attract a substantially different amount of attention, and gain different profits, the Law of One

Price applies. Thus, identical prices need not indicate a competitive outcome in the sense that

all firms have the same attention shares.

Let Πj(pj) =
∑

A∈Bj P (A)V j(A, p)I. We assume that no firm goes completely unnoticed:

∀j∃A ∈ Bj : P (A) > 0 or, equivalently, πj > 0, ∀j = 1, ..., n. Each firm chooses its price pj

to maximize Πj(pj), taking the other prices and P (·) as given. A price equilibrium is a price

vector p∗ = (p∗1, ..., p
∗
n) ∈ Rn++ that is a solution to the first-order conditions

∑
A∈Bj

P (A)
∂V j(A, p)

∂pj
I = 0, ∀j = 1, ..., n. (B.32)

We claim that (B.32) has a single symmetric solution p∗1 = ... = p∗n.62 To derive any symmetric

price equilibrium, it suffices to consider the maximization problem of an arbitrary firm j under

the presumption that all other firms choose the same price p̄ ∈ R++, and evaluate its solution at

pj = p̄ (Hefti, 2017). Consider firm j and any price vector of the form p = (pj , p̄) where all firm

other than j choose the same price p̄ > 0. The symmetry in demand implies that V j(A, p) =

V j(A′, p) for any such p, and we shall therefore use the notation V̄ (pj , p̄, R) ≡ V j(A, p) ∀A ∈ Bj

and p = (pj , p̄). We impose the following regularity assumption on the function V̄ (pj , p̄, R):

Assumption 1 V̄ (pj , p̄, R) is twice continuously differentiable, and strictly quasi-concave in

pj. Further, the derivative function V̄1(p, p,R) ≡ ∂V̄ (p,p,R)
∂pj

satisfies

(i) V̄1(c, c, R) > 0 and ∃p̂ > c : V̄1(p̂, p̂, R) < 0

(ii) V̄1(p, p,R) = 0⇒ ∂V̄1(p,p,R)
∂p < 0, V̄ (p, p,R) > 0

(iii) V̄1(p, p,R) = 0⇒ ∂V̄1(p,p,R)
∂R < 0.

These assumptions amount to standard Inada and monotonicity conditions that would assure

equilibrium existence and uniqueness in conventional models of price competition with a full

62We do not consider the possible existence of asymmetric equilibria.
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consideration set of size n. Common examples, such as CES-demand or the above iid random

utility model, satisfy Assumption 1.

As the following result shows, Assumption 1 implies the existence of a single symmetric price

equilibrium p∗ = p(R), where p∗ is independent of the allocation of attention P (·). With respect

to our main analysis this means that, in the symmetric price equilibrium p(R), the attention

rent of a firm j is πj V̄ (p(R), p(R), R)I ≡ πjV (R)I, and thus of the type that we assumed

throughout the main text.63

Proposition B7 Under Assumption 1, a single symmetric price equilibrium with pj = p(R) ∈

(c,∞), ∀j, exists. Further, p(R) satisfies p′(R) < 0 and is invariant to P (·).

The proof is presented at the end of this section. The main intuition is that the firms price

to the market as perceived by consumers. While the various consideration sets may have very

different probabilities of occurring, reflecting the possible heterogeneity in P (·), the fact that

tastes are unbiased towards any particular firm implies that tastes are also unbiased across all

consideration sets. As a consequence, a symmetric price equilibrium exists.

Finally, we show that condition (13) applies in the current setting. Both the random utility

and the additive utility framework imply that the equilibrium attention rents are of the simple

form V (R) = v(p(R))
R , where v(p) = (p− c) in the former and v(p) = (p−c)w

p in the latter case. It

follows that v′(p) > 0 in both cases, capturing that a higher equilibrium price assures a higher

equilibrium revenue of attention from those consumers to whom the firm manages to sell. It is

now easy to see that condition (13) holds if and only if the equilibrium price satisfies p′(R) < 0,

where the latter condition is assured to hold in any symmetric equilibrium by Proposition B7.

Corollary B2 Let V (R) = v(p(R)
R and v′(p) > 0. Then −V ′(R) > V (R)

R holds in any symmetric

price equilibrium iff p′(R) < 0.

Proof: The claim follows from V ′(R) = R = v′(p(R))p′(R)R−v(p(R))
R2 . �

Proof Proposition B7 Note that any interior, symmetric price equilibrium, by (B.32), is character-

ized by πj V̄
j
1 (p, p,R)I = 0 or, equivalently, by V̄ j1 (p, p,R) = 0. The strong quasi-concavity of V̄ j(pj , p̄, R)

assures that any solution pj = p∗ to this equation is the unique, global maximizer of Πj(pj) given that

p̄ = p∗. Further, (i) are (Inada) conditions, assuring that V1(p, p,R), as a function of p, crosses zero

at least once, and (ii) assures that such a crossing is unique, and occurs for a price p∗ that is strictly

profitable for each firm. Finally, (iii) assures that p′(R) < 0 in the symmetric price equilibrium. To

63For example, for (B.31) we obtain p(R) = c+ t
R

in equilibrium, which yields V (R) = t
R2 .
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see this, denote V̄ j1p(p, p,R) ≡ ∂V̄ j1 (p,p,R)
∂p and V̄ j1z(p, p,R) ≡ ∂V̄ j1 (p,p,R)

∂R . Then, Assumption (ii) and the

Implicit Function Theorem assure that p′(R) = − V̄
j
1R(p,p,R)

V̄ j1p(p,p,R)
< 0. �
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