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Updating Stochastic Choice
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When an economic agent makes a choice, stochastic models predicting those choices can
be updated. The structural assumptions embedded in the prior model condition the updated
one, to the extent that the same evidence produces different predictions even when previ-
ous ones were identical. We provide a general framework for models of stochastic choice
allowing for arbitrary forms of (structural) updating and show that different models can be
sharply separated by their structural properties, leading to axiomatic characterizations. Our
framework encompasses Bayesian updating given beliefs over deterministic preferences (as
implied by popular random utility models) and standard neuroeconomic models of choice,
which update decision values in the brain through reinforcement learning.

KEYWORDS: Stochastic preferences, Bayesian learning, Logit choice, Reinforcement,
Neuroeconomic theory.

1. Introduction

Consider the problem of developing a probabilistic model predicting the future choices of
an agent given past, observable behavior. With new choice observations, any prior model of
the agent’s choices can be refined and updated. However, updating might take different forms
depending on the structural assumptions of the initial model. For example, Bayesian updating
may be natural in some cases, but not if the initial model is not formulated in terms of prior
beliefs. What does updating mean in such a general context, and how can different updating
rules be compared and characterized?

As a first example, consider an external observer who has a belief on the deterministic prefer-
ence of an economic agent; that is, the observer’s model is a probability distribution on the set
of (strict) preferences, corresponding to a classical random preference model as in McFadden
and Richter (1990), which is a cornerstone of many stochastic choice theories. When the agent
makes a new choice, the observer can apply Bayes’ rule to obtain a posterior distribution which
is, in itself, a new model of stochastic choice within the same class. Equivalently, suppose that
the observer’s model describes a population, that is, the distribution describes the frequencies
of different types, each characterized by a deterministic preference. With individual-level data,
the observer applies Bayes’ rule to classify agents, e.g. in terms of the most likely type in
the corresponding posterior, or the average value of an individual-level preference parameter.
Such classification problems underlie finite-mixture models (e.g., El-Gamal and Grether, 1995,
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2 ALÓS-FERRER AND MIHM

Costa-Gomes et al., 2001, Bruhin et al., 2010, 2018). They also reflect current approaches to
preference estimation, where individual heterogeneity is modeled through an estimated popu-
lation distribution of preference parameters (the initial model), and individual-level parameters
are updated from the individual choices (e.g., see Bellemare et al., 2008, Conte et al., 2011,
Moffatt, 2015).

As a second example, consider a probabilistic choice model where a choice is made with a
probability proportional to a transformation of an underlying value or utility, as in the classical
model of Luce (1959), which is equivalent to logit choice, or as in more general models fol-
lowing Debreu (1958). The parameter of the model is not a prior distribution over types, but
rather a collection of utilities, and “updating” should be formulated in terms of the latter. This
example is particularly important in view of developments in neuroeconomics and decision
neuroscience. Extensive evidence from these fields indicates that economic choices follow cer-
tain decision values computed in the brain (Schultz, 1998, Padoa-Schioppa and Assad, 2006,
Ballesta et al., 2020), but those values are built on the basis of reinforcement learning (e.g.,
Holroyd and Coles, 2002, Daw and Tobler, 2014). Further, the mapping from decision values
to choices is intrinsically stochastic (e.g. Shadlen and Kiani, 2013) to the extent that standard
models in the literature always rely on logit or similar choice functions to derive choice fre-
quencies from decision values.1 Under this approach, given an actual, observable choice, the
human brain will update the decision value through a reinforcement process, resulting in an
updated internal model generating stochastic choices. The “observer” and the “agent” become
proxies for different brain functions concerned with updating decision values and implementing
choices, respectively.

As a third example, suppose that preferences are not stable over time, but are rather subject
to change on the basis of past choices or anchors (Brehm, 1956, Ariely and Norton, 2008,
Ariely, Loewenstein, and Prelec, 2003). This is a view frequently expressed in psychology, in
particular in the field of cognitive dissonance (Festinger, 1957, Joule, 1986). Although seldom
expressed formally, “choice-induced preference change” results in a formal object similar to
the first two examples, for the observation of a choice leads to an update of the original model
which does not necessarily respect Bayesian principles (as the “true” model changes after the
new choice is made).2

In this paper, we develop a formal binary-choice framework capturing all these (and other)
situations. A decision maker is described according to a stochastic choice model which pre-
dicts a priori stochastic choices that are updated as choices are observed without violating the

underlying structural assumptions of the model. Thus, we consider datasets that include not
only stochastic choices but rather history-dependent stochastic choices, where histories consist
of chains of successive previous choice observations. A model rationalizing such datasets must
explain not only the probabilities of choices, but also the structural properties by which those
are updated. We show that the fundamental cases described above are particular (but important)
examples of our framework, and provide full characterizations of the datasets (including his-
tories of choices) that can be rationalized by a given stochastic choice model, which includes

1The Drift-Diffusion Model of Ratcliff (1978), widely used in cognitive science and neuroscience, predicts logit
probabilities in binary choice. It can be seen as capturing neural processes which implement choices given decision
values (Shadlen and Shohamy, 2016), or as an evidence accumulation process aiming to uncover underlying utilities
(Fudenberg, Strack, and Strzalecki, 2018). See also Brocas and Carrillo (2012) for a related model.

2Interestingly, the self-perception literature in psychology (starting with Bem, 1967a,b) argues that humans do not
have conscious access to their own preferences and uncover them in the same way as an external observer would, by
updating them in response to their own observed choices. This view would be aligned with our first example, with
the (Bayesian) observer and the agent again being different aspects of the same decision maker.
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prior and posterior choice probabilities, and the updating rule used to transition from the former
to the latter.

The problem we tackle goes beyond the characterization of choice data. In particular, we
show that, even if a given set of choice frequencies can be described by alternative, formally
equivalent models, the equivalence breaks down when updating is considered, because the
structural assumptions will condition the posterior model. That is, two otherwise-equivalent
models, confronted with the same new information, will result in different predictions for poste-
rior choices. For example, consider random preference models (McFadden and Richter, 1990),
which describe choices as the result of a probability distribution over deterministic preferences.
For a finite set of alternatives, it is well-known that these models can alternatively be seen as
random utility models (RUMs), which postulate a fixed utility function that is perturbed by an
added noise term (Marschak, 1960, McFadden, 2001). For particular distributions of the noise,
the latter encompass logit choice and the model of Luce (1959). Thus, the same dataset can be
rationalized by a random preference model (a distribution over deterministic preferences) and a
random utility model (an underlying utility function plus a specification of noise). The parame-
ters of those models, though, are radically different, and updating in terms of these parameters,
even on the basis of the same data, will in general result in different updated choice proba-
bilities. This is why a dataset including histories can distinguish between otherwise-equivalent
models of stochastic choice, and why their respective characterizations will differ.

After formulating the general framework, we proceed to characterize the most important
cases in terms of first principles (axiomatic properties) which help clarify the differences
between alternative approaches, and offer new insights on standard approaches to stochastic
choice. On one hand, we consider the logit-reinforcement model, which relies on a given util-
ity or value function which is updated according to some reinforcement process, and predicts
stochastic choices through a logit choice function. We show that this model (which lies at the
foundation of modern decision neuroscience) is characterized by a set of axioms on (posterior)
choice probabilities. The first two key axioms state that updated choice probabilities for a cho-
sen alternative do not depend on the identity of the alternative that was rejected, and that when
an alternative is not chosen, its choice probabilities against third alternatives do not change.
The third key axiom is a form of history independence: the odds of choosing one alternative
over another, given a previous history of choices, depends on that history only through the most
recent choice. Together with classical properties due to Luce and Suppes (1965), these axioms
fully characterize the logit-reinforcement model.

On the other hand, we consider the RU-Bayesian model, which postulates a prior probability
distribution over strict preferences, to be updated according to Bayes’ rule in the face of new
choice observations. It is well-known that multiple probability distributions might generate the
same choice probabilities, creating an identification problem. We show that this problem is per-
vasive, in the sense that updating does not in general resolve the multiplicity. That is, there exist
different probability distributions over preferences which induce the same choice frequencies
even after updating, and do so even for any possible choice observation. Intuitively, however,
this problem must be resolved after enough rounds of updating, and indeed we show that in
the full dynamic case, a single axiom characterizes the RU-Bayesian model and solves the
identification problem. This Axiom of Bayesian Stochastic Preference requires that the product
of updated probabilities along a given history equals the sum of analogous products along all
maximal histories (in a well-defined sense) which can extend the given history without contra-
dicting it.

We also ask whether the models we consider can capture choice-induced preference. While
some of the properties implied by this theory are satisfied both by the logit-reinforcement and
the RU-Bayesian models, the key prediction arising from choice-induced preference change
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is that the probability of choosing a previously-chosen alternative must increase even if the
new choice is made against a new alternative. This prediction is indeed consistent with the
logit-reinforcement model, but contradicts the RU-Bayesian model. Taken as a condition on
primitives, it characterizes positive reinforcement within the class of logit-reinforcement mod-
els. This illustrates how our analysis clarifies which updating models can be used for which
research questions.

The paper is organized as follows. Section 2 relates our contribution to the recent literature.
Section 3 describes our general approach to stochastic choice models with updating and intro-
duces the two benchmark classes: the logit-reinforcement model and the RU-Bayesian model.
Section 4 presents the characterization of the logit-reinforcement model, and Section 5 does the
same for the RU-Bayesian model. This section also discusses how our results allow to disen-
tangle different models with updating, beyond the two benchmark classes. Section 6 discusses
the implications for preference change. Section 7 concludes. We prove theorems and proposi-
tions in the paper, but defer the proof of corollaries and other straightforward calculations to
the Appendix.

2. Related Literature

An extensive literature in both economics and psychology has concerned itself with the ra-
tionalizability of choice datasets. Specifically, the question asked is under which circumstances
can a given set of hypothetical or actual choices be reproduced (rationalized) as the result
of a specific theoretical model generating stochastic choices. Our work is related to a recent
strand of the literature which considers how enriched datasets can be modeled and explained
through models of stochastic choice. For instance, Caplin and Martin (2015) and Caplin and
Dean (2015) consider state-dependent datasets, which specify choice frequencies as functions
of observable states, and ask when those frequencies can be rationalized in terms of utility
maximization with Bayesian updating based on imperfect signals. Caplin and Martin (2015)
take the mapping from states to signals as given, while Caplin and Dean (2015) internalize it in
terms of a rational inattention model. In contrast to our work, in those contributions updating
is necessarily Bayesian and does not take previous choices as data, but rather signals on un-
derlying states of the world. Yet, we share the basic motivation of rationalizing choice datasets
including how the model is updated.

In Caplin and Martin (2015) and Caplin and Dean (2015) datasets are extended in the sense
that the observer knows the states of the world and has access to choice frequencies conditional
on those. In our case, the extension arises from the possibility to condition choice frequencies
on previous choices. In this sense, our work is also related to other approaches considering
datasets which add new dimensions to given choices. For instance, Alós-Ferrer, Fehr, and Net-
zer (2020) consider datasets where, in addition to choice frequencies, response times are also
available (and hence must be rationalized by the model).

Our work is also related to the small but growing strand of the literature examining the
axiomatic foundations of dynamic stochastic choice. Two important recent contributions are
Fudenberg and Strzalecki (2015), which is related to our analysis of the logit-reinforcement
model, and Frick et al. (2019), which is related to our analysis of the RU-Bayesian model. Fu-
denberg and Strzalecki (2015) consider an intertemporal choice framework where the decision
maker chooses from a menu of actions yielding an outcome for today and another menu of ac-
tions for tomorrow. They provide an axiomatic characterization of a Discounted Adjusted Luce
representation, which extends the classic logit model to a dynamic setting while allowing for
aversion to larger choice sets. Choice in each period is stochastic due to random i.i.d. prefer-
ence shocks. However, in contrast to our work, stochastic choice is not history-dependent, and
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the utilities of outcomes are constant over time. As a consequence, Fudenberg and Strzalecki
(2015) excludes the type of reinforcement dynamics that are at the center of our analysis for
the dynamic logit choice model.

Frick et al. (2019) study dynamic random expected utility, extending the characterization of
random expected utility in Gul and Pesendorfer (2006) to an intertemporal lottery framework.
In their model, the decision maker’s expected utility over lotteries (yielding an outcome for
today and menu of lotteries for tomorrow) is state dependent, and uncertainty about the state is
resolved over time. As such, their primitive is a dynamic history-dependent stochastic choice
correspondence, and they provide axioms that characterize when such data can be rational-
ized by a model of state-dependent dynamic expected utility maximization. We also look at
history-dependent stochastic choice, but both our primitives and our RU-Bayesian model differ
substantially from theirs. In particular, a framework with lotteries over dynamic menu-choice
problems is central to the analysis of expected utility maximization in Frick et al. (2019). In
contrast, we consider a more abstract dynamic choice environment, with repeated binary choice
problems for an arbitrary set of alternatives. The key axioms in Frick et al. (2019) are therefore
either vacuous in our framework (contraction history independence), or cannot be translated
into it (linear history independence and the axioms of Gul and Pesendorfer, 2006). Instead,
we provide a simple characterization of Bayesian updating for arbitrary (strict) preferences on
an abstract, finite set of alternatives, and show how the predictions of the model can be used
to distinguish stochastic choice generated by the RU-Bayesian model from alternative models
such as logit-reinforcement.

3. Stochastic Choice Models with Updating

In this section, we develop a binary-choice framework to study updating of stochastic choice
models based on new, observed choices. We first review the standard framework for stochas-
tic choice, and then extend the framework to incorporate updating. Then, we present the two
benchmark classes (logit-reinforcement and RU-Bayesian models) and use them to show that
different models initially rationalizing the same choice probabilities can make different predic-
tions on the basis of the exact same observed choices.

3.1. Stochastic Choice

Let A = {a, b, ...} be a finite set of alternatives, and let A = {(a, b) ∈ A2 : a 6= b} be the
set of all binary choices, i.e., ordered pairs of distinct alternatives. The ordered pair (a, b) is
interpreted as the observation that, when confronted with the binary choice problem {a, b},
the decision maker chooses a. The observed, predicted, or hypothetical choice probabilities
describing the decisions of an individual or a population are summarized by a stochastic choice

function.

DEFINITION 1: A (binary) stochastic choice function (SCF) is a mapping P : A → [0,1]
such that P (a, b) = 1− P (b, a) for all (a, b) ∈A.

The interpretation of the SCF is that P (a, b) is the probability that the decision maker chooses
alternative a from the choice set {a, b}, or, alternatively, the proportion of agents in a population
who choose a when facing that binary choice set. Conversely, P (b, a) = 1 − P (a, b) is the
probability (or frequency) of the choice of b from the same choice set. A SCF can be taken
to describe a data set, where P (a, b) and P (b, a) are the observed empirical frequencies of
choices, or the predictions of a particular stochastic choice model.
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While our work is ultimately about the rationalizability of SCFs, the question we ask is more
demanding, namely when can choice probabilities and their updated values given previously-

observed choices be rationalized by specific models. For our purposes, it is useful to formally
introduce the concept of a stochastic choice model at this point, which corresponds simply to
families of SCFs sharing a common structure.

DEFINITION 2: A stochastic choice model (SCM) is a family of SCFs indexed on a
nonempty set Θ, that is, {Pθ}θ∈Θ. A given SCF P can be rationalized by the stochastic choice
model if there exists θ0 ∈Θ such that Pθ0 = P . The value θ0 is then referred to as the parameter

of the SCM {Pθ}θ∈Θ that generates the SCF P .

The following examples briefly review some prominent stochastic choice models, both as an
illustration and for later reference.

EXAMPLE 1: A SCF P can be rationalized by the (binary) Luce model (Luce, 1959) if there
exists a strictly positive (utility) function v :A 7→R++ such that

P (a, b) =
v(a)

v(a) + v(b)
for all (a, b) ∈A. (1)

The Luce model is a stochastic choice model with ΘLuce = {v | v :A 7→R++ }, the set of all
strictly positive utility vectors. By using the transformation u(a) = lnv(a), the equation can be
rewritten as

P (a, b) =
eu(a)

eu(a) + eu(b)
for all (a, b) ∈A, (2)

with u : A 7→ R a (not necessarily positive) real-valued function, which can be interpreted as
a utility function representing deterministic underlying preferences. This is the well-known
(binomial) logit model (e.g., McFadden, 2001). Hence, the logit model is a SCM with ΘLogit =
{u | u :A 7→R}. By virtue of the logarithmic transformation, the Luce and the logit models
are equivalent in the sense that a SCF can be rationalized by one model if and only if it can be
rationalized by the other model.

EXAMPLE 2: A SCF P can be rationalized by the Fechnerian model (see e.g. Moffatt, 2015)
if there exist a utility function u :A 7→R and a cumulative distribution function (cdf) G :R 7→
[0,1] such that P (a, b) =G(u(a)− u(b)) for all (a, b) ∈A.

The Fechnerian model is a SCM with ΘFechner = G × {u | u :A 7→R}, where G is the set
of cdfs. Of course, for each fixed cdf G, one obtains a particular submodel, which is a SCM
in its own right, with ΘG = {u | u :A 7→R}. A particularly well-known example, the probit

model, is given when G = Φ, where Φ is the cdf of a standard normal distribution. Taking
G(x) = 1/(1+ e−x) instead generates the logit model of Example 1. That is, every SCF which
is rationalizable by the Luce or logit model is also rationalizable by a (particular) Fechnerian
model.

EXAMPLE 3: A SCF P can be rationalized by the Random Utility Model (RUM) if there
exists a vector of utilities u ∈ U and a vector of jointly distributed random variables (εa)a∈A

such that P (a, b) = Prob
(

u(a) + εa ≥ u(b) + εb
)

=Prob
(

u(a)− u(b)≥ εb − εa
)

.
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The RUM has gained considerable prominence in decision theory, discrete choice econo-
metrics, and many branches of applied economics (Anderson, Thisse, and De Palma, 1992).3

Of course, one can obtain particular submodels by fixing the distributions of noise, and, abus-
ing notation, we could also refer to the resulting submodel as a (particular) RUM. For in-
stance, if the random variables εb − εa are identically distributed according to a cdf G, then
P (a, b) =G(u(a)− u(b)) and the resulting submodel is a Fechnerian model. For instance, if
the εa are normally distributed, so are the εb − εa, and one obtains the probit model. If the εa
follow a double exponential distribution, then the εb − εa follow a logistic distribution and one
obtains the logit model.

The RUM can also be expressed in a different way that, for our purposes, gives rise to a
particularly relevant index set. Let R denote the set of strict preference orderings on A, with
typical element ≻∈R. For each ≻∈R, define the (degenerate) SCFs

P≻(a, b) =

{

1 if a≻ b

0 if b≻ a.

Let Θ = ∆(R) denote the set of probability distributions on R. For each distribution π ∈
∆(R), define Pπ(a, b) =

∑

≻∈R
π(≻)P≻(a, b). Following the terminology of McFadden and

Richter (1990), we refer to this approach as the random preference model. Block and Marschak
(1960) showed that the RUM and the random preference model are equivalent, in the sense that
choice probabilities for a finite set of alternatives can be rationalized by the RUM if and only
they can be rationalized by the random preference model. In that sense, the random preference
model is just a different way of conceptualizing the RUM.

3.2. Updating Choice Probabilities

We now turn to the description of stochastic choice functions incorporating updated choice
probabilities on the basis of previous choices. Choice probabilities correspond to a family of
SCFs, one describing the prior probabilities of choices, and others describing the updated (con-
ditional) probabilities after any given history of choices has been observed. A subtlety, however,
is that the latter should exclude counterfactuals, that is, they only describe probabilities after
the observations of choices that actually had a positive probability given previously observed
choices.

For notational convenience, let A∗ = A ∪ {∅} be the set of observable binary choices en-
riched with a distinguished element, denoted ∅, which indicates that no choice has been ob-
served. Hence, P (·|∅) below will refer to the prior. Now suppose that we are confronted with
several observed choices. A history of length n ≥ 1 is an ordered collection (i.e., a vector)
of n observations from A, h= (s1, . . . , sn) ∈ An, with the interpretation that s1 is the most-
recent choice observed (“one period ago”), s2 is the choice observed before s1, etc. A history

is an ordered collection of choice observations, of arbitrary but finite length. The set of all
histories is H =

⋃∞

n=0
An, where A0 = {∅} by convention. Given a history h ∈ H, denote

its length by ℓ(h), i.e. ℓ(h) = n if and only if h ∈ An. For convenience, given s ∈ A and
h = (s1, . . . , sN ) ∈ H, denote by s ◦ h the history formed by following up history h with the
choice s, i.e. s ◦ h= (s, s1, . . . , sn).

3Standard terminology speaks of “RUMs,” because every utility function and distribution of noise is a different
model in an econometric sense. In our terms, the entire family of RUMs is a SCM, which we refer to as the random
utility model, on the same footing as, say, the Luce model viewed as a SCM.
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Updated choice probabilities must be specified for any history which can actually be ob-
served according to the previous probabilities, in an iterative fashion. This is captured by the
following definition.

DEFINITION 3: A dynamic stochastic choice function (DSCF) is a pair (H̄,P ) consisting of
a set of admissible histories, H̄ ⊆H, and a mapping P :A× H̄ 7→ [0,1] such that

(i) ∅ ∈ H̄,
(ii) for each s ∈A and h ∈H, s ◦ h ∈ H̄ if and only if h ∈ H̄ and P (s|h)> 0, and
(iii) for each h ∈ H̄, the induced mapping P (·|h) :A 7→ [0,1] is a SCF.

The interpretation of the DSCF is as follows. First, P (·|∅) describes the prior choice proba-
bilities. Then, P (a, b|h) is the posterior probability that the decision maker chooses alternative
a from the choice set {a, b} given a previous collection of choices as described in the history
h. Again, P (·|h) might include zero values, but the history h must be feasible in the sense that
each choice along h had positive probability given the preceding choices.

The question we ask is when can a DSCF be rationalized by a specific model of stochastic
choice which allows for updating. The following definition describes such models.

DEFINITION 4: A stochastic choice model with updating (SCM-U) is defined by a tuple
(Θ,{Pθ}θ∈Θ, f) where Θ is a nonempty index set and f : Θf 7→Θ is a choice-updating func-

tion, such that
(i) Pθ is a SCF for each θ ∈Θ,
(ii) Θf = {(θ, s) ∈Θ×A∗ | s= ∅ or Pθ(s)> 0}, and
(iii) f(θ,∅) = θ for all θ ∈Θf .

The interpretation of a SCM-U is that the decision maker has (or is believed to have) some
prior parameter θ0 ∈ Θ before making any choices, but after making an initial choice of c
from {c, d}, the parameter is updated to θ′ = f(θ0, (c, d)). Hence, her new (actual or predicted)
choice probabilities are given by the new SCF Pθ′ , and she will choose a from {a, b} with
probability Pθ′(a, b), instead of the original Pθ0(a, b).

Updating then proceeds iteratively when additional choices are observed. To describe this
iterative process, consider the following notation. Given a choice-updating function f as in
Definition 4, write f(θ,h) = f(θ, s) if h= (s) ∈A, and, iteratively, for each n≥ 2, f(θ,h) =
f(f(θ, (s2, . . . , sn)), s1) for h= (s1, s2, . . . , sn) ∈An. Thus, the function f yields an updated
parameter f(θ,h) following any history of choices h and the updated choice probabilities (or
frequencies) after history h are described by the SCF Pf(θ,h).

REMARK 1: By the above iterative process, any θ0 ∈Θ generates a DSCF with a set of ad-
missible histories H̄ (defined iteratively) and history-dependent SCFs defined by P (.|h) ≡
Pf(θ,h)(.) for all h ∈ H̄. Hence, we say that θ0 is the prior parameter of the SCM-U
(Θ,{Pθ}θ∈Θ, f) that generates the DSCF (H̄,P ). Since every prior parameter generates a
DSCF, a SCM-U can be interpreted simply as a collection of DSCFs, providing a dynamic
analog of SCMs as a collection of SCFs in Definition 2.

The following definition formalizes when an SCM-U rationalizes a given DSCF.

DEFINITION 5: A DSCF (H̄,P ) can be rationalized by a SCM-U (Θ,{Pθ}θ∈Θ, f) if there
exists θ0 ∈Θ such the SCM-U with the prior parameter θ0 generates the DSCF, i.e., P (a, b|h) =
Pf(θ0,h)(a, b) for all (a, b) ∈A and h ∈ H̄.
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Whenever a DSCF can be rationalized by a SCM-U, the model provides not only the struc-
ture linking underlying parameters (e.g., utilities or beliefs) to stochastic choices, but also the
structure of the updating process. The following proposition shows that every DSCF admits
such a rationalization, showing that our definition of SCM-Us is general enough to encompass
all possible DSCFs in an abstract binary-choice framework.

PROPOSITION 1: Every DSCF can be rationalized by some SCM-U.

PROOF: Let (H̄,P ) be a DSCF. To construct a SCM-U that rationalizes (H̄,P ), let Θ= H̄,
so that each θ ∈Θ corresponds to an admissible history of the DSCF. To define the collection
of SCFs {Pθ}θ∈Θ, consider θ = h and let Pθ(.) = P (.|h), where the right-hand-side is the
stochastic mapping of the given DSCF. Finally, define the updating function f : Θf → Θ as
follows. First, for θ = h and s ∈ A∗, let (θ, s) ∈ Θf if and only if s ◦ h ∈ H̄, which defines
the nonempty set Θf . Finally, for (θ, s) = (h, s) ∈ Θf , let f(θ, s) = s ◦ h, which is in Θ by
definition. It is then easily verified that the SCM-U (Θ,{Pθ}θ∈Θ, f) rationalizes the DSCF
(H̄,P ) in terms of the prior parameter θ0 = ∅. Q.E.D.

Together with the observations in Remark 1, Proposition 1 can be interpreted as an abstract
representation result: SCM-Us provide a parsimonious, structural representation for DSCFs.
Our main results identify the axiomatic properties of those DSCFs that can be rationalized
by two specific SCM-Us that are of particular interest given the prominence of the logit and
random utility models in the literature on stochastic choice.

3.3. Logit Models with Reinforcement Learning

We first consider a stochastic choice model with updating that is especially important in view
of recent developments in neuroeconomics. Extensive evidence from neuroscience (see, e.g.,
Holroyd and Coles, 2002, Schultz, 2013, Daw and Tobler, 2014) shows that the dopaminergic
system in the brain reflects value learning through elementary reinforcement processes. In-
deed, reinforcement is generally viewed as the most basic learning process for human beings,
and accordingly has received a great deal of attention in economics, psychology, and other
fields as computer science (Sutton and Barto, 1998). The classical formal models of reinforce-
ment learning are those of Bush and Mosteller (1951, 1955), first introduced to economics by
Cross (1973, 1983). In those models, the probability of choosing an action is adjusted by a
quantity proportional to the reward resulting from that action. For instance, when all possible
rewards are positive, the model can be seen to capture habit formation. An analytically incon-
venient characteristic of those models, however, is that the probabilities of actions not chosen
also need to be adjusted to preserve the total sum. However, this formal difficulty is bypassed if
reinforcement acts on some abstract propensities which are converted into probabilities by an
appropriate function, as e.g. any Luce-like functional form. Hence, when considering Luce or
logit models, it is natural to consider an adjustment of choice probabilities through reinforce-
ment of the values u(x).

Formally, denote by U = {u | u :A 7→R} the set of all real-valued (utility) functions on
A, and fix a strictly increasing transformation ω : R 7→ R++. Let Θ= U and, for each u ∈ U ,
define Pω

u (a, b) =
ω(u(a))

ω(u(a))+ω(u(b))
. Letting v = ω ◦ u, this formula describes a different param-

eterization of the Luce model. If ω(x) = ex, it corresponds to the logit model. As observed in
Example 1, every SCF which can be rationalized by the Luce model can also be rationalized
by the logit model.
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Now consider a function R :A→R, interpreted as a reinforcement function, and define the
choice-updating function fR : Θ×A∗ →Θ by fR(u, s) = us where, for all a ∈A,

us(a) =

{

u(a) if s= ∅ or s= (c, d) with c 6= a

u(a) +R(a) if s= (c, d) with c= a.

For any ω : R 7→ R++ and function R as above, the tuple (U ,{Pω
u }u∈U , fR) describes a

stochastic choice model with updating which we refer to as the Luce-reinforcement model with
reinforcement function R. When ω(x) = ex, we refer to it as the logit-reinforcement model

with reinforcement function R.
A case of particular interest is positive reinforcement, where R(a)> 0 for all a ∈ A, which

is natural if none of the alternatives is aversive, or in models of habit formation. In general,
however, reinforcement could be positive or negative. This does not necessarily mean that the
options themselves deliver negative or unpleasurable experiences, as models with negative re-
inforcers arise naturally in the neuroeconomics literature.

EXAMPLE 4: A standard model in neuroeconomics, based on extensive neural evidence,
posits that reinforcers correspond to Reward Prediction Errors (e.g., Schultz, Dayan, and
Montague, 1997, Daw and Tobler, 2014). Let u represent the current decision value, which
is used to make decisions. The brain employs it as a predicted reward (implemented by a
brain network relying on the neurotransmitter dopamine; Platt and Glimcher, 1999, Schultz,
2010, 2013). However, an actual reward r(a) is experienced when a is chosen from {a, b}.
The reward prediction error is RPE(a) = r(a) − u(a), i.e. the difference between the ex-
perienced and the predicted values (for an axiomatic characterization of such functions, see
Caplin and Dean, 2008 and Caplin et al., 2010). The decision value is then updated through
us(a) = u(a) + α · RPE(a) = (1 − α)u(a) + αr(a), where α ∈ (0,1) is the speed of ad-
justment. This model is a particular case of reinforcement with R(a) = αRPE(a). Even if
r(a)> 0 for all a ∈A, the reward prediction error can be positive or negative.

In Section 4, we characterize the DSCFs which can be rationalized by a logit-reinforcement
model, as well the special case of positive reinforcement.

3.4. The Random Utility Model with Bayesian Updating

Our second main model builds on the RUM. As discussed in Example 3, the RUM can
equivalently be formulated in terms of the random preference model. The difference, however,
is consequential for our approach, for the random preference view defines a SCM {Pπ}π∈∆(R),
with Pπ as given in the Example 3; that is, it indexes the different random preferences through
the distributions over deterministic preferences. This formulation facilitates a natural inter-
pretation. Imagine an external observer is unsure about the preferences of a decision maker,
and learns about them by observing the decision maker’s choices. Then the distribution π
can be seen as the prior distribution capturing the observer’s initial beliefs over the decision
maker’s preferences. Learning then reduces to defining an appropriate mapping over the space
Θ = ∆(R). Formally, the model also encompasses the idea of self-perception from psychol-
ogy, which originates with Bem (1967a,b) (see Section 6 below). Imagine a decision maker is
unsure about his or her own preferences, and learns their preferences by observing their own
choices, in very much the same way as he or she would learn the preferences of a different
agent. Then the distribution π is the prior distribution capturing the agent’s self-model.
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Formally, consider the random preference model {Pπ}π∈∆(R) as defined in Example 3. This
model is a SCM with Θ=∆(R). Rational learning in this setting considers an observed choice
(a, b) ∈A as new evidence allowing for a revision of the prior π by Bayesian updating. Hence,
we define the Bayesian-updating function fB : ∆(R)×A∗ →∆(R) by

fB(π, s) =

{

π if s= ∅

πs if s= (a, b) ∈A,
(3)

where, for each (a, b) ∈A with Pπ(a, b)> 0,

πa,b(≻) =

{

π(≻)

Pπ(a,b)
if a≻ b

0 if b≻ a.
(4)

The tuple (∆(R),{P≻}≻∈R, fB) is a stochastic choice model with updating, which we refer
to as the RU-Bayesian model. Note that a choice-updating function as given in Definition 4 is
only specified for observations which can actually be observed in the SCM-U. Accordingly,
the Bayesian updating function fB is only defined for pairs (π, (a, b)) ∈∆(R)×A such that
Pπ(a, b) > 0, since it is not specified for counterfactuals, i.e. if an observation (a, b) is not
possible under π.

In Section 5, we characterize the DSCFs which can be rationalized by the RU-Bayesian
model.

3.5. Updating Under Different Models

A given collection of choice probabilities can often be rationalized according to different
stochastic choice models. For example, suppose choice probabilities are derived from a utility
function u and a logit choice function. This corresponds to a random utility model for a specific
distribution of errors (e.g., McFadden, 2001). Hence, by the equivalence result of Block and
Marschak (1960), there exists a probability distribution over strict preferences which, if inter-
preted as a random preference model, generates exactly the original choice frequencies. Thus,
the modeler can equivalently adopt one view or the other, as long as he or she adopts a static
view and does not consider further updating.

To fix ideas, suppose we have a set of three alternatives A = {a, b, c} and we are given
choice probabilities P (a, b) = 2/3, P (a, c) = 4/5, and P (b, c) = 2/3. These probabilities can
be rationalized by a utility u such that u(a) = ln4, u(b) = ln2, and u(c) = 0, and the logit
choice function in (2). However, a straightforward computation shows that the same choice
probabilities can be rationalized as resulting from a distribution π over strict preferences given
by the following table:

Preference a≻ b≻ c a≻ c≻ b b≻ a≻ c b≻ c≻ a c≻ a≻ b c≻ b≻ a

π 1/3 1/3 2/15 1/5 0 0

The modeler does not need to take a stance on which model to favor, as they are both equiv-
alent in terms of stochastic choices. Suppose, however, that a new choice is observed, say
(a, b). If the modeler is a Bayesian observer employing the random preference model, he or
she will update the prior by applying Bayes’ rule, hence relying on the RU-Bayesian model
from Section 3.4. Trivially, this results in a posterior distribution placing probability 1/2 on
each of the two preferences a≻ b≻ c and a≻ c ≻ b. Hence, the updated choice probabilities
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are PB(a, b|a, b) = 1, PB(a, c|a, b) = 1, and PB(b, c|a, b) = 1/2. Alternatively, the modeler
could also decide on the logit model and adopt a reinforcement approach based on some rein-
forcement function R, hence relying on the logit-reinforcement model from Section 3.3. Let
r = eR(a). Utility is then updated to u′(a) = ln4 + ln r = ln4r, u′(b) = ln2, and u′(c) = 0,
and hence the updated choice probabilities are given by

PR(a, b|a, b) =
2

2 + (1/r)
PR(a, c|a, b) =

4

4+ (1/r)
PR(b, c|a, b) =

2

3
.

The two models, therefore, produce different updated choice probabilities when confronted
with the same new evidence. This results from the requirement that updating occurs within the

model, which creates different modes of updating. Since the parameter (in our terms, θ) in a
logit SCM is a utility function, it is that function which is updated, and this is the essence of
reinforcement. In contrast, the parameter in a random preference model is a distribution over
strict preferences, and the natural way to update is using Bayes’ rule.

Given the formal framework developed above, this observation becomes straightforward.
However, it is worth noticing that the differences are of a fundamental nature. For instance, if
one considers reinforcement models with r→∞, in the limit PR(a, b|a, b)→ 1 = PB(a, b|a, b)
and PR(a, c|a, b) → 1 = PB(a, c|a, b), i.e., the logit-reinforcement predictions approach the
Bayesian ones for these binary choice pairs. However, for any value of r, PR(b, c|a, b) = 2/3 6=
1/2 = PB(b, c|a, b), and so the posterior SCFs PR(.|a, b) and PB(.|a, b) are distinct even in
the limit. The axiomatic characterizations in the next two sections will clarify the structural
differences among the models.

4. The Logit-Reinforcement Model

In view of the prominence of the logit choice model and the empirical relevance of rein-
forcement learning, we proceed to characterize those DSCFs that can be rationalized by a
logit-reinforcement model. We first recall the characterization of SCFs (without updating) that
can be rationalized by a logit model. We then provide axioms that characterize a logit model
with reinforcement learning, with an additional result identifying the case of positive reinforce-
ment. Finally, we consider the generalization to Fechnerian models.

4.1. Logit Stochastic Choice Functions

Luce (1959, 1977) formulated stochastic choice models for choices from arbitrary sets (i.e.,
the primitives are P (b|B) for b ∈B ⊆A) and characterized choice rules of the form (1) through
two axioms. The first is positivity (all choice probabilities are strictly positive). The second is
the celebrated Luce’s choice axiom, which states that the probability that an option is chosen
from a set does not change if an intermediate subset containing that alternative is chosen first,
and then choice is restricted to that subset. One important implication of this property, often
called independence of irrelevant alternatives, is that the ratio of choice probabilities between
two alternatives a, b does not depend on which choice set is considered, provided it contains
both a and b. Since we focus on binary choice, the characterization in Luce (1959) does not
apply, because the choice axiom is void in this case: given a, b ∈ A, there exists only one
possible choice set containing both, namely {a, b}. However, Luce’s characterization can be
adapted to a binary choice framework by replacing the choice axiom with Luce’s Product Rule.
The two axioms are:

AXIOM—POS: For all (a, b) ∈A, P (a, b)> 0.



UPDATING STOCHASTIC CHOICE 13

AXIOM—LPR: For all distinct a, b, c ∈A, P (a, b)P (b, c)P (c, a) = P (a, c)P (c, b)P (b, a).

The product rule has a natural interpretation in terms of the probabilities of observing cycles
in choices (see, e.g., Baldassi et al., 2020). Given that choice probabilities are independent,
P (a, b)P (b, c)P (c, a) can be interpreted as the probability of observing the intransitive cycle
a→ b→ c→ a, while P (a, c)P (c, b)P (b, a) can be interpreted as the probability of observing
the cycle a→ c→ b→ a. The LPR then asserts that the probability of observing these choice
cycles should be the same, and so violations of transitivity are not systematic, but rather due to
pure noise.

The following result from Luce and Suppes (1965, p. 341) shows that POS and LPR charac-
terize stochastic choice functions (without updating) that can be rationalized by a logit choice
model. Here, we adapt the result to our notation, and provide a proof in Appendix A only for
completeness.

LEMMA 1: A SCF P can be rationalized by the Luce model (or by the logit model) if and

only if P satisfies POS and LPR.

For later reference, we also observe that the logit model is always identified up to an additive
utility constant (again, this is well-known and we provide a proof in Appendix A only for
completeness).

LEMMA 2: Suppose a SCF can be rationalized by the logit model with parameter (utility)

u, and also with parameter u′. Then, there exists a constant K such that u′(a) = u(a)+K for

all a ∈A.

As a result, one could define the logit model on the quotient set of the parameter space (utility
functions) given by the equivalence relation where two utility functions are equivalent if one
is a constant shift of the other. With this approach, the logit model is always fully identified in
the sense that a rationalizable SCF would always correspond to one and only one value of the
parameters in this quotient set (an equivalence class).

4.2. Axioms for the Logit-Reinforcement Model

We now state the axiomatic properties of a dynamic stochastic choice function (H̄,P ) that
can be rationalized as logit (or Luce) models with (positive) reinforcement. In view of Lemma
1, the first two axioms state that updating occurs within the class of logit models; that is, the
updated choice probabilities given any prior choices fulfill POS and LPR.

AXIOM—U-POS: For all h ∈ H̄, P (·|h) satisfies POS.

AXIOM—U-LPR: For all h ∈ H̄, P (·|h) satisfies LPR.

The following axioms are new and concern how choice probabilities are updated. The first,
stability of discarded alternatives (SDA), states that the choice probabilities for a discarded
alternative against third alternatives do not change. Note that this does not preclude that the
choice probability of a discarded alternative changes if the same binary choice problem is
encountered again.

AXIOM—SDA: For all distinct a, b, c ∈A and all h ∈ H̄, P (b, c|(a, b) ◦ h) = P (b, c|h).
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The second new axiom, independence of discarded alternatives (IDA), states that the updated
choice probabilities for a chosen alternative do not depend on the identity of the alternative
which was not chosen.

AXIOM—IDA: For all a, b, c, d ∈ A such that a /∈ {b, c, d} and all h ∈ H̄, P (a, b|(a, c) ◦
h) = P (a, b|(a,d) ◦ h).

The third, history independence (HI), states that the percentual change in the odds of choos-
ing an alternative a over another alternative, b, given a previous history h and given that a has
just been observed to be chosen over an alternative c, does not depend on the previous history
h.4

AXIOM—HI: For all a, b, c, d ∈A such that a 6= b, c, d and all h,h′ ∈ H̄,

P (a, b|(a, c) ◦ h)

P (b, a|(a, c) ◦ h)

P (a, b|h)

P (b, a|h)

=

P (a, b|(a, c) ◦ h′)

P (b, a|(a, c) ◦ h′)

P (a, b|h′)

P (b, a|h′)

(5)

whenever all involved probabilities are strictly positive.

The last axiom, boosting of chosen alternatives (BCA) states that the probability of an alter-
native to be chosen rises when the exact same choice is presented again. This axiom will help
us distinguish between models with and without positive reinforcement.

AXIOM—BCA: For all s ∈A and all h ∈ H̄ with 0<P (s|h)< 1, P (s|s ◦ h)>P (s|h).

Before providing the characterization results, we observe that, in the RU-Bayesian model, it
is always the case that P (s|s ◦ h) = 1 for s ◦ h ∈ H̄ and so axiom BCA is (trivially) satisfied
(see Section 5.4). However, all of the other new axioms (SDA, IDA, and HI) can, in general,
be violated by DSCFs that can be rationalized by the RU-Bayesian model. We show this with
a single example.

EXAMPLE 5: Suppose there are four alternatives A= {a, b, c, d} and consider the following
prior probability over strict preferences:

Preference d≻ a≻ b≻ c d≻ b≻ a≻ c c≻ a≻ b≻ d

π 1/3 1/3 1/3

Consider the RU-Bayesian model with the prior parameter π described above. To see that
the DSCF generated by this model does not satisfy SDA or IDA, let h= ∅. Then, P (b, c|a, b) =
1/2 6= 2/4 = P (b, c|∅), violating axiom SDA. Also, P (a,d|a, b) = 1/2 6= 0 = P (a,d|a, c),
violating IDA. To see that HI fails, note that, with h= ∅, P (a, b) = 2/3 and P (a, b|a, c) = 1/2,
thus the odds-quotient on the left-hand-side of Eq. (5) is 1/2. However, if we let h′ = (d, c),
then P (a, b|h′) = 1/2 and P (a, b|(a, c)◦h′) = 1/2, and thus the quotient on the right-hand-side
of Eq. (5) is equal to 1, violating HI.

4Axioms IDA and HI could be easily combined into one by stating independence from both the previous history
h and the alternative c in HI’s statement. We keep the axioms separate to make their respective role in our character-
ization more transparent.
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4.3. Characterization of Logit-Reinforcement Models

We are now ready to state and prove our first main result (independence of the axioms is
shown in Appendix B).

THEOREM 1: A dynamic stochastic choice function (H̄,P ) can be rationalized by a logit

model with reinforcement learning if and only if it satisfies U-POS, U-LPR, SDA, IDA, and HI.

In particular, H̄=H.

PROOF: The necessity of the axioms is straightforward. To see the sufficiency, let (H̄,P ) be
a DSCF that satisfies the five stated axioms. By U-POS, it follows that H̄=H. We proceed in
two steps: we first fix a history and consider the SCF after one additional choice observation,
and then establish a connection between the SCFs given different histories.
Step 1. [One-step updating.] For a fixed history h ∈H, consider the choice probabilities given
by P h(s|s′) = P (s|s′ ◦h). By Lemma 1, U-POS, U-LPR imply that, for every s ∈A∗, P h(·|s)
can be rationalized by a logit model: for each s ∈A∗, there exists us ∈ U , such that

P h(a, b|s) =
eu

h
s (a)

eu
h
s (a) + eu

h
s (b)

(6)

for all (a, b) ∈ A. Note that uh
s is not necessarily unique, but is unique up to the addition of a

constant (Lemma 2), which does not impact our arguments. For notational simplicity, denote
uh = uh

∅ and uh
a,b = uh

(a,b) for each (a, b) ∈A∗.
For any a, b, c ∈A with a 6= b, c, define the spreading of (a, b) given c by

S(a, b, c) =
(

uh
a,b(a)− uh

a,b(c)
)

− (u(a)− u(c)) .

We now observe some properties of this spreading function.
Step 1a. [S(a, b, c) is independent of c.] By SDA, for all a, b, c′ ∈ A pairwise different,
P h(b, c′|a, b) = P h(b, c′|∅). Hence, by (6), uh

a,b(c
′)− u(c′) = uh

a,b(b)− uh(b) for all c′ 6= a, b.
Define K(a, b) = uh

a,b(b)− uh(b). It follows that uh
a,b(c

′)− uh(c′) =K(a, b) for any c′ 6= a, b,
and in particular this quantity is independent of c′. Now note that

S(a, b, c) =
[

uh
a,b(a)− uh(a)

]

−
[

uh
a,b(c)− uh(c)

]

=
[

uh
a,b(a)− uh(a)

]

−K(a, b)

and is therefore independent of c for all c 6= a, b, as claimed. Moreover, if c= b,

S(a, b, b) =
[

uh
a,b(a)− uh(a)

]

−
[

uh
a,b(b)− uh(b)

]

=
[

uh
a,b(a)− uh(a)

]

−K(a, b).

Step 1b. [S(a, b, c) is independent of b.] By IDA, for all a, b, c, d ∈ A such that a 6= b, c, d,
P h(a,d|a, b) = P h(a,d|a, c). Hence, by (6) uh

a,b(d)− uh
a,b(a) = uh

a,c(d)− uh
a,c(a), implying

that uh
a,b(a)−uh

a,b(d) is independent of b as long as a /∈ {b, d}, i.e., uh
a,b(a)−uh

a,b(d) = T (a,d)

for some T (a,d) independent of b. Note that S(a, b, c) = T (a, c) − [uh(a)− uh(c)], and is
therefore independent of b, as claimed.
Step 1c. [S(a, b, c) is independent of (b, c).] Let b, c, b′, c′ ∈ A \ {a}. We have to show
that S(a, b, c) = S(a, b′, c′). By Step 1a, S(a, b, c) = S(a, b, c′). By Step 1b, S(a, b, c′) =
S(a, b′, c′). Hence, the claim follows.

In view of Steps 1a–1c, for a ∈ A, we can define Rh(a) = S(a, b, c) for any {b, c} 6∋ a and
we obtain that Rh :A→R is well-defined. Further, for any (a, b) ∈A,

uh
a,b(a) = uh(a) +

[

uh
a,b(a)− uh(a)

]

−K(a, b) +K(a, b)

= uh(a) + S(a, b, b) +K(a, b) = uh(a) +Rh(a) +K(a, b).
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and uh
a,b(b) = uh(b)+K(a, b). Further, for any c /∈ {a, b}, by the argument in Step 1, uh

a,b(c)−
uh(c) =K(a, b), hence uh

a,b(c) = uh(c) +K(a, b).
We now construct a choice-updating function by

f(uh, (a, b))(c) =

{

uh(a) +Rh(a) if c= a

uh(c) if c 6= a.

It remains to show that, for all (a, b), (c, d) ∈ A, P h(c, d|a, b) = Pf(uh,(a,b))(c, d). To see
this, note that

P h(c, d|a, b) =
1

1 + eu
h
a,b(d)−uh

a,b(c)
=

1

1+ ef(u
h,(a,b))(d)−f(uh,(a,b))(c)

= Pf(uh,(a,b))(c, d)

Step 2: [History independence of the reinforcement.] By Step 1, for each h ∈H there exists
a utility function uh and a reinforcement function Rh such that, for all (a, b) ∈A,

P (a, b|h) =
eu

h(a)

eu
h(a) + eu

h(b)
(7)

and, for any h∗ = (a′, b′) ◦ h with (a′, b′) ∈A, and for all (a, b) ∈A,

P (a, b|h∗) =
eu

h
h∗(a)

eu
h
h∗(a) + eu

h
h∗(b)

(8)

where

uh
h∗(c) =

{

uh(c) if s= ∅ or s= (c, d) with c 6= a

uh(a′) +Rh(a′) if s= (c, d) with c= a′.

This identifies one utility function and one reinforcement function per history. We now show
that the reinforcement functions are independent of history, Rh =Rh′

for all h,h′ ∈H. To see
this, note that, by (7) and (8), for a 6= b, c,

P (a, b|(a, c) ◦ h)

P (b, a|(a, c) ◦ h)

P (a, b|h)

P (b, a|h)

=

eu
h(a)+Rh(a)

euh(b)

eu
h(a)

euh(b)

=
eu

h(a)+Rh(a)

euh(a)
= eR

h(a)

and hence, by HI, Rh(a) =Rh′

(a) for all h,h′ ∈H.
We have obtained a family of utility functions, {uh | h ∈H∗ } and a history-independent

reinforcement function, denoted now simply by R, such that (7) and (8) hold. To show that the
DSCF can be rationalized by a logit-reinforcement model, it remains to be proven that we can
assume the utility functions uh to be derived from previous ones by using the reinforcement
function R.

To show this, consider the utility function u= u∅. By (7), for all (a, b) ∈A,

P (a, b|∅) =
eu(a)

eu(a) + eu(b)
.

By (7) and (8), for any (a′, b′) ∈ A, the choice probabilities P (a, b|a′, b′) are represented
both by a logit model with utility u(a′,b′) and by a logit model with utility u∅

(a′,b′). By Lemma



UPDATING STOCHASTIC CHOICE 17

2, these two utility functions differ by a constant. Without loss of generality, we can replace
u(a′,b′) with u∅

(a′,b′) in the family {uh | h ∈H∗ } without altering (7) and (8). By induction
over the length of a history shows that the DSCF can be rationalized by a logit-reinforcement
model with reinforcement function R and the prior utility u. Q.E.D.

4.4. Corollaries and Generalizations

Axiom BCA states that choosing a over b always leads to an increased probability to repeat
this choice. Adding this axiom to the previous ones suffices to characterize logit-reinforcement
models with positive reinforcement.

COROLLARY 1: A dynamic stochastic choice function (H̄,P ) can be rationalized by a logit

model with positive reinforcement learning if and only if it satisfies U-POS, U-LPR, SDA, IDA,

HI, and BCA.

By virtue of the equivalence between Luce and logit models (without updating), it is straight-
forward to show that U-POS, U-LPR, SDA, IDA, and HI are also necessary and sufficient for a
DSCF to be rationalized by reinforcement learning over an arbitrary Luce model with a given,
strictly increasing and strictly positive weighting function ω. The same applies for positive
reinforcement if axiom BCA is added.

COROLLARY 2: A DSCF (H̄,P ) can be rationalized by a Luce model with reinforcement

learning if and only if it can be rationalized by a logit model with reinforcement learning.

Moreover, the reinforcement in the Luce model is positive if and only if it is positive in the logit

model.

Recall that logit models are Fechnerian (Example 2) with the cdf given by GLogit = 1/(1 +
e−x). The results stated above can be generalized to the class of Fechnerian models for an
arbitrary but fixed cdf G, provided it is strictly increasing, as for example the class of probit
models. The generalization is immediate if Theorem 1 is restated as follows: a DSCF (H̄,P )
is rationalizable as a logit model with reinforcement if and only if it fulfills SDA, IDA, and HI,
and P (·|h) is rationalizable as a logit model for every h ∈ H̄. It is then straightforward that
replacing the cdf does not alter the structure of the arguments.

COROLLARY 3: Fix a strictly increasing cdf G. A DSCF (H̄,P ) is rationalizable as a Fech-

ner model with cdf G and reinforcement if and only if it fulfills SDA, IDA, HI, and P (·|h)
is rationalizable as a Fechner model with cdf G for every h ∈ H̄. Moreover, reinforcement is

positive if and only if, in addition, the DSCF satisfies BCA.

4.5. Identification of Logit-Reinforcement Models

By Lemma 2, if a DSCF can be rationalized by a logit-reinforcement model for some rein-
forcement function R, the prior utility u is unique up to an additive constant. The following
result shows that R is also unique and hence fully identified by the data.

PROPOSITION 2: Suppose a DSCF can be rationalized by a logit-reinforcement model with

reinforcement function R and prior utility u, and also by a logit-reinforcement model with

reinforcement function R′ and prior utility u′. Then, R(a) = R′(a) for all a ∈ A and there

exists a constant K such that u′(a) = u(a) +K for all a ∈A.
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PROOF: Suppose a DSCF (H̄,P ) can be rationalized by a logit-reinforcement model with
two alternative prior utilities u and u′, and two reinforcement functions R and R′. By Lemma
2, there exists a constant K such that u′(a) = u(a) +K for all a ∈A.

For any a ∈A, let b, c 6= a. Then,

eu(a)+R(a)

eu(a)+R(a) + eu(b)
= P (a, b|a, c) =

eu(a)+K+R′(a)

eu(a)+K+R′(a) + eu(b)+K

and hence u(a) +R(a)− u(b) = u(a) +K +R′(a)− u(b)−K , implying R(a) =R′(a) for
all a ∈A. Q.E.D.

Thus, logit-reinforcement models are identified in the sense that both the prior utility u and
the reinforcement function R for a given DSCF are unique, up to an additive normalization of
the prior utility. Moreover, as verified by inspection of the proof, identification of u relies only
on the stochastic choices given no initial history, while identification of R requires only one
round of updating. Hence, while the set of all feasible histories H̄ is infinite for the DSCF—
and a DSCF can therefore be viewed as generating an infinite dataset of stochastic choice
observations—only a finite number of history-dependent stochastic choice observations are
needed to identify the model parameters.

5. The RU-Bayesian Model

For the random utility model, Bayesian updating of the underlying stochastic preference is
a natural approach to incorporate information from choice observations. We hence now aim to
identify the axiomatic properties of the RU-Bayesian model. The problem is challenging for
an important conceptual reason, which requires taking a different approach to the axiomatic
characterization than for the logit-reinforcement model.

As shown in the previous section, the characterization of the DSCFs that can be rationalized
by the logit-reinforcement model follows a step-by-step procedure. First, axioms U-POS and
U-LRP characterize the SCFs that can be rationalized by a logit model for any given history
of choices, where the utilities are identified uniquely up to addition of a constant (Lemmata 1
and 2). Second, axioms IDA and SDA characterize updating with one new choice observation
in terms of a reinforcement of the utilities from the previous step. Moreover, as the proof of
Proposition 2 shows, one step of updating identifies a unique reinforcement function. Finally,
axiom HI implies that one-step updating fully summarizes the information contained in a his-
tory of arbitrary length by ensuring that updated utilities are derived by the accumulation of
reinforcements. Given a DSCF that satisfies the axioms, we can thereby identify features of the
logit-reinforcement model step by step.

This approach is more challenging for the RU-Bayesian model. There is a well-known coun-
terpart of axioms POS and LRP for the RUM—the Axiom of Revealed Stochastic Preference
(ARSP)—which characterizes when a SCF can be rationalized in terms of a distribution over
strict preferences. However, unlike the logit model, it is also well-known that RUMs suffer
from an identification problem: in general, the same SCF can be rationalized by different dis-
tributions over the set of strict preferences. This identification problem is pervasive because, as
we show below, simply adding conditional probabilities and requiring Bayesian updating does
not always solve the problem, e.g., if only one round of updating is considered. This makes a
step-by-step approach to the characterization challenging, since axioms should be expressed in
terms of choice probabilities, but choice probabilities do not pin down the underlying parameter
of the RUM for the next step of updating.
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Intuitively, this identification problem must be resolved with sufficient choice data since,
eventually, a single strict preference relation will be identified by the choice data. As a result,
our characterization of the RU-Bayesian model is based on a backward-induction logic, which
is quite different from the approach to the logit-reinforcement model. In particular, given the
aforementioned difficulties with a step-by-step approach in the RU-Bayesian model, it is not
sufficient for axiomatic properties to identify the implications of adding choice observations
one at a time. Instead, stochastic choices given any history can be related to the stochastic
choices for a set of “maximal” histories, each of which identifies a unique strict preference. This
relationship can then be used to recover distributions over strict preferences for earlier histories
by backward induction, solving the identification problem. Strikingly, our main result in this
section shows that a single axiom allows for a full characterization, the Axiom of Bayesian
Stochastic Preference (ABSP).

Our presentation of the RU-Bayesian model is, therefore, organized as follows. Subsection
5.1 recals the ARSP, which characterizes SCFs (without updating) that can be rationalized by
the RUM. Subsection 5.2 discusses the identification problem for the RUM and provides the
intuition for overcoming this issue in our framework. In Subsection 5.3, we then introduce the
ABSP and show that it characterizes the DSCFs which can be rationalized by the RU-Bayesian
model. Subsection 5.4 discusses implications of the ABSP and illustrates how different prop-
erties help discriminate among different classes of models.

5.1. RUM Stochastic Choice Functions

Falmagne (1978) and Barberá and Pattanaik (1986) provided the first characterizations of the
SCFs that can be rationalized by the RUM. McFadden and Richter (1990) provided an alterna-
tive characterization in terms of the now well-known Axiom of Revealed Stochastic Preference

(ARSP).

AXIOM—ARSP: For any finite collection of choice problems {(ai, bi) ∈A | i= 1, . . . ,m},
∑m

i=1
P (ai, bi)≤max≻∈R

∑m

i=1
1[ai ≻ bi], where 1[·] denotes the indicator function.

The ARSP asserts that the sum of the choice probabilities corresponding to any finite se-
quence of binary choice problems cannot exceed the maximal sum that could be induced by
some non-stochastic choice function. As such, choice probabilities can always be interpreted
as random deviations from non-stochastic choices of some strict preference.

The following Lemma shows that the ARSP characterizes SCFs that can be rationalized by
a RUM. The Lemma was proven by McFadden and Richter (1990).

LEMMA 3: A SCF P can be rationalized by the random preference model (hence by the

RUM) if and only if it satisfies the ARSP.

5.2. Identification in the RU-Bayesian Model

A fundamental and well-known difficulty of the RUM (e.g., Barberá and Pattanaik, 1986) is
that the probability distribution on the set of strict preference profiles representing a SCF (with-
out updating) is not unique, as the following example illustrates.5 The example we present here
makes the additional point that, in some cases, updating can potentially resolve the multiplicity
by identifying a unique prior.

5This observation also holds if one considers non-binary choices, see e.g. Fischburn (1998, pp. 297–298). A previ-
ous example was provided by Barberá and Pattanaik, 1986, Ex. 2.2, which is correct for binary choices but incorrect
for non-binary ones, although of course the point they make is correct.
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EXAMPLE 6: Let A= {a, b, c} and consider two distributions π1, π2 ∈∆(R) over the set of
strict preferences on A, as given in the first two rows of the following table.

Preference a≻ b≻ c a≻ c≻ b b≻ a≻ c b≻ c≻ a c≻ a≻ b c≻ b≻ a

π1 1/6 1/6 1/6 1/6 1/6 1/6
π2 1/2 0 0 0 0 1/2

fB(π1, (a, b)) 1/3 1/3 0 0 1/3 0
fB(π2, (a, b)) 1 0 0 0 0 0

By symmetry, Pπ1
= Pπ2

= P where P (x,y) = 1/2 for all x,y ∈ A, x 6= y. That is, both dis-
tributions generate and represent the same SCF, but they are different elements in the SCM.
Suppose now that the choice (a, b) is observed. The last two rows of the table spell out the re-
sults of Bayesian updating starting from π1 or π2, showing that fB(π1, (a, b)) 6= fB(π2, (a, b)).
That is, while the SCF is not identified, adding a single observation from the DSCF suffices to
distinguish the two possible representations.

In the example, adding an observation within a DSCF suffices to identify the correct proba-
bility distribution among the two given candidates, and this might suggest that incorporating a
round of updating could resolve the identification problem for the RUM. After all, examination
of the proof of Proposition 2 in Section 4.5 shows that the presence of a single round of updat-
ing already provides full identification in the case of logit-reinforcement models. Unfortunately,
this is not true for the RU-Bayesian model. That is, a single round of updating is not generally
sufficient for identification in the RU-Bayesian case. The following example shows that a given
SCF can be represented by two different probability distributions over strict preferences such

that the respective updated probability distributions given any observed choice still induce the
same (posterior) choice probabilities. That is, the identification problem persists after updating.

EXAMPLE 7: Let A = {a, b, b′, c} and consider the two distributions π1, π2 ∈∆(R) given
in the following table (preferences are listed omitting the symbol ≻).

Preference abb′c ab′bc acbb′ acb′b bb′ac b′bac bb′ca b′bca cabb′ cab′b cbb′a cb′ba all other

π1 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 0
π2 1/6 0 1/12 1/12 0 1/6 1/12 1/12 0 1/6 1/6 0 0

Clearly, Pπ1
= Pπ2

= P where P (x,y) = 1/2 for all (x,y) ∈ A. That is, as in the previous
example, both distributions generate and represent the same SCF. However, now suppose the
choice (a, b) is observed. Then π̂1 = fB(π1, (a, b)) is uniform over the six preferences in the
table above where a ≻ b. In contrast, π̂2 = fB(π2, (a, b)) places probabilities 1/3,1/6,1/6,
and 1/3 on the preferences a ≻ b ≻ b′ ≻ c, a ≻ c ≻ b ≻ b′, a ≻ c ≻ b′ ≻ b, and c ≻ a ≻ b′ ≻

b, respectively. However, Pπ̂1
= Pπ̂2

= P̂ with P̂ (a, b) = P̂ (a, b′) = 1, P̂ (a, c) = P̂ (c, b) =

P̂ (c, b′) = 2/3, and P̂ (b, b′) = 1/2. That is, after observing (a, b), Bayesian updating yields
two different distributions over strict preferences depending on whether the prior was π1 or π2,
but the induced choice probabilities are identical. Direct calculations show that updated choice
probabilities are indeed the same after any possible observed choice, and so both priors lead
to the same stochastic choice posteriors (see Table C.I in Appendix C). Hence, with a single
round of updating, the DSCF still has two different representations in terms of the Bayesian
model.

However, adding new choice data does mitigate the problem since, for example, the obser-
vation (a, b) at least “reveals” that b is not strictly preferred to a. Intuitively, the identification
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problem must, therefore, be resolved with sufficient choice data since, eventually, a single,
strict preference is identified by elimination. As such, DSCFs incorporate enough information
to ensure the following identification result.

PROPOSITION 3: Suppose a DSCF can be rationalized by the RU-Bayesian model with prior

π. Then, it cannot be rationalized by the RU-Bayesian model with a different prior.

The proof of Proposition 3 will be a by-product of our characterization result in the following
section (see Remark 2 below). For now, we only note that identification of the prior distribution
over strict preferences can always be achieved with a finite dataset consisting of the stochastic
choices for a finite set of maximal histories, which we define next.

5.3. Characterization of the RU-Bayesian Model

Our axiomatic characterization of RU-Bayesian model exploits the identification that is even-
tually achieved in our dynamic framework. We consider a specific subset of tight maximal histo-
ries that represent the most efficient way to identify strict preferences, and then relate stochastic
choices for arbitrary histories to the stochastic choices for tight maximal ones. Somewhat sur-
prisingly, the characterization does not directly use the ARSP but, instead, is based on a single
dynamic axiom that establishes the desired relationship of the updated stochastic choices for
tight maximal histories.

Let K be the number of alternatives in A, and write this set as A= {a1, . . . , aK}. A history
h ∈H is tight if there exists a permutation φ : {1, . . . ,K} 7→ {1, . . . ,K} such that

h= ((aφ(1), aφ(2)) , (aφ(2), aφ(3)) , . . . , (aφ(n), aφ(n+1))) ,

where n = ℓ(h) is the length of h. In this case, write B(h) = aφ(1) (“best alternative”) and
W (h) = aφ(n+1) (“worst alternative”). For instance, the history h = ((a, b), (b, c), (c, d)) is
tight, while the history h′ = ((a, b), (a, c), (a,d)) is not. The intuition is that the choices in
a tight history identify the preference among the involved alternatives, B(h) ≻ aφ(2) ≻ . . . ≻
aφ(n) ≻W (h), and do so in the most efficient way by removing redundancies from the choice
data. Thus, each tight history of length K − 1 identifies exactly one strict preference relation
on A, and vice versa. Call a tight history h maximally tight if ℓ(h) = K − 1, and denote by
T (H) the set of all maximally tight histories.

For a history h ∈ H and a pair (a, b) ∈ A, we write (a, b) ∈ h if (a, b) is one of the choices
observed in h, i.e. h= (. . . , (a, b), . . .). We can then define a partial order among histories by
writing h′ ⊆ h whenever, for all (a, b) ∈A, we have that (a, b) ∈ h′ implies (a, b) ∈ h.

For a history h ∈ H and distinct a, b,∈ A, we say that a is revealed preferred to b given h,
denoted a≻h b, if there is a tight history h∗ ⊆ h such that a=B(h∗) and b=W (h∗).

Consider a DSCF (H̄,P ). For any history h ∈ H̄, define the set of maximally tight histories
that is consistent with h by

H∗(h) =
{

h∗ ∈ H̄ | h∗ ∈ T (H) and, for all a, b ∈A,a≻h b⇒ a≻h∗ b
}

.

Note that H∗(∅) = H̄ ∩ T (H), the set of maximally tight histories admissible for the DSCF.
Finally, we want to establish a relationship between stochastic choices for an arbitrary his-

tory and the stochastic choices for the set of consistent maximally tight histories. Intuitively,
this relationship should be based on the joint probability of a set of choice observations, but
joint probabilities are not the primitive for a DSCF. However, we can replicate joint probabil-
ities using conditional probabilities, which do correspond to the data from a DSCF. For any
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h ∈ H̄, h= (s1, . . . , sn) 6= ∅, define6 Π(h) =
∏n

i=1 P (si|si+1, . . . , sn), where the last term in
the product is understood as P (sn|∅). Define also Π(∅) = 1. The quantity Π(h) captures the
probability of sequentially observing the choices listed in h according to the DSCF, and hence
is defined on primitives. The definition of a DSCF implies that Π(h) > 0 for all h ∈ H̄. Our
characterization relies on the relation between such probabilities for arbitrary histories and the
corresponding probabilities for consistent maximally tight histories, as captured in the follow-
ing Axiom of Bayesian Stochastic Preference.

AXIOM—ABSP: For all h ∈ H̄, Π(h) =
∑

h∗∈H∗(h)Π(h
∗).

The ABSP has an obviously Bayesian flavor. It requires that the chain (product) of up-
dated probabilities along a given history h add up to the sum of the analogous products along
all maximal but “efficient” (i.e., tight) histories that the observations in h can give rise to
by sequentially adding choices which do not contradict those in h. For example, suppose
A = {a, b, c} and consider the history h = (a, b), so that Π(h) = P (a, b|∅). The ABSP im-
plies P (a, b|∅) = P (a, b|b, c)P (b, c|∅) + P (c, a|a, b)P (a, b|∅) + P (a, c|c, b)P (c, b|∅), taking
into account the three possible maximally tight histories (each of them ex post identifying an
underlying preference).

The name ABSP will be justified after the fact since the characterization below, together
with Lemma 3, implies that the SCF P (·|h) must fulfill the ARSP for every history h ∈ H̄ (see
Section 5.4 below).

THEOREM 2: A dynamic stochastic choice function (H̄,P ) can be rationalized by the RU-

Bayesian model if and only if it satisfies the ABSP.

PROOF: Necessity is straightforward, as the ABSP then reduces to application of Bayes’
rule. To show sufficiency, first note that applying the ABSP to the empty history yields 1 =
Π(∅) =

∑

h∗∈H∗(∅)Π(h
∗), and H∗(∅) is the set of all maximally tight histories which are

feasible in the DSCF. Obviously, for every maximally tight history h ∈ T (H), there is one and
only one strict preference on A, ≻, such that ≻h=≻. Hence, we can define an SCF within the
RUM by setting π(≻) = Π(≻h) if there exists an h ∈ H∗(∅) such that ≻=≻h, and π(≻) = 0
if not. Consider now any s= (a, b) ∈A. Suppose first s ∈ H̄. A maximally tight h ∈H∗(∅) is
in H∗(s) if and only if a≻h b. By the ABSP,

P (s|∅) = Π(s) =
∑

h∗∈H∗(s)

Π(h∗) =
∑

{π(≻) | ≻∈R, a≻ b} .

If s /∈ H̄, this means P (s|∅) = 0 and H∗(s) = ∅, hence the last equality holds trivially. Thus,
the RUM rationalizes the probabilities P (s|∅).

Consider now any history h ∈ H̄, and let s= (a, b) ∈ A such that s ◦ h ∈ H̄. By definition,
Π(s ◦ h) = P (s|h) ·Π(h), and applying the ABSP yields

P (s|h) =
Π(s ◦ h)

Π(h)
=

∑

{Π(h∗) | h∗ ∈H∗(s ◦ h)}
∑

{Π(h∗) | h∗ ∈H∗(h)}

6We abuse notation slightly by writing P (s1|s2, . . . , sn) instead of P (s1|(s2, . . . , sn)).
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=

∑

{π(≻) | a≻ b and c≻ d for all (c, d) ∈ h}
∑

{π(≻) | c≻ d for all (c, d) ∈ h}

as required by Bayesian updating given the original SCF. If h ∈ H̄ but s◦h /∈ H̄, then P (s|h) =
0, and the numerator in this expression (but not the denominator) is also zero. Hence, the DSCF
is rationalized by the RU-Bayesian model. Q.E.D.

REMARK 2: The proof of Theorem 2 clarifies the identification result in Proposition 3. If
the DSCF (H̄,P ) can be rationalized by the RU-Bayesian model, then the prior distribution
over strict preferences π is defined by the condition that, for each ≻∈R, π(≻) = Π(h) for the
unique tight maximal history such that ≻h=≻. The set of tight maximal histories is finite, and
so a finite collection of history-dependent SCFs from the DSCF suffices to identify a unique
prior. Thus, the identification problem is fully resolved in our framework.

5.4. The ARSP and the ABSP

For the RU-Bayesian model, the SCF following any history can be rationalized by the RUM,
and this property of the SCF is characterized by the ARSP. As such, the following axiom is an
immediate implication of the ABSP (similar to Axioms U-POS and U-LRP in the context of
the logit-reinforcement model).

AXIOM—U-ARSP: For all h ∈ H̄, the SCF P (·|h) satisfies ARSP.

By Lemma 3, it is clear that a DSCF can be rationalized by the RU-Bayesian model only
if U-ARSP is satisfied.7 However, the distinctive implications of the RU-Bayesian model arise
because Bayesian updating imposes additional discipline across the updated SCFs following
different choice observations. The ABSP formalizes the relationship across SCF given differ-
ent histories by establishing a relationship with the complete set of stochastic choices given
maximally tight histories.

For instance, Axiom U-ARSP does not distinguish between DSCFs that can be rationalized
by the RU-Bayesian model and DSCFs that can be rationalized by a logit-reinforcement model,
since every SCF with choice probabilities defined by a logit function can also be rationalized
by the RUM (Block and Marschak, 1960), hence must also satisfy the ARSP. However, while
the history-dependent SCF generated by logit-reinforcement model satisfy the ARSP, they are
not characterized by the ARSP (which is necessary but not sufficient for Axioms POS and
LPR). The following example illustrates a SCM-U that, in terms of the properties of the SCF
following any given history, is indistinguishable from the RU-Bayesian model, and yet is not
observationally equivalent to the RU-Bayesian model in terms of DSCFs because it does imply
the ABSP.

EXAMPLE 8—Random-RU-Bayesian Model: As in the RU-Bayesian model, let ∆(R) be
the set of probability distributions on the set of strict preferences R for the set of alternatives
A. Let Θ=∆F (∆(R)) be the set of simple probability distributions on ∆(R), which can be
interpreted as the possible beliefs of an observer about the random preferences of a decision
maker. That is, θ ∈Θ is a probability distribution with finite support over ∆(R).8

7Further implications of the ABSP are discussed in Appendix D.
8We focus on probability distributions with finite support to avoid introducing new notation at this stage.
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For θ ∈ Θ, let θ(π) denote the probability of the distribution over strict preferences π ∈
∆(R), and let supp θ be the support of θ ∈Θ. We then definePθ(a, b) =

∑

π∈supp θ
Pπ(a, b)θ(π)

where Pπ(a, b) =
∑

≻∈R:a≻b
π(≻) as in the RU-Bayesian model.

Given some prior parameter θ0 ∈ Θ, reflecting the prior beliefs of the observer, there is a
strictly positive probability of observing the choice (a, b) if there is a random preference π in
the support of θ that assigns a strictly positive probability to this choice observation. The set of
admissible one-period histories is therefore Ā= {(a, b) :A : ∃π ∈ supp θ0 with Pπ(a, b)> 0}.
Confronted with a new choice observation s ∈ Ā, the observer updates beliefs using Bayes’
rule, and so

fRB(θ, s) =

{

θ if s= ∅

θs if s 6= ∅
,

where θs is defined by θs(π) =
Pπ(s)θ0(π)

∑
π′∈supp θ0

P
π′ (s)θ0(π′)

.

The tuple (Θ,{Pθ}θ∈Θ, fRB) is a SCM-U, which we call the random-RU-Bayesian model.
Given the prior θ0, the corresponding DSCF following history h is described by P (a, b|h) =
∑

π∈supp θh
Pπ(a, b)θh(π), where θh = fRB(θ0, h).

Note that Pπ(a, b) is not updated for the history h. If we were to replace Pπ(a, b) with
Pπ(a, b|h) we would obtain a model that is observationally equivalent to the RU-Bayesian
model, in which the prior π0 ∈∆(R) is defined by π0(≻) ≡

∑

π∈supp θ0
π(≻)θ0(π). By con-

trast, in the random-RU-Bayesian model, the decision maker has a random preference, rather
than a deterministic strict preference ≻. The random preference is unknown to the observer
and, confronted with a new choice observation, the observer updates prior beliefs θ0 over the
set of random preferences.

The random-RU-Bayesian model retains the flavor of Bayesian updating. Similarly to the
RU-Bayesian, any DSCF rationalized by the random-RU-Bayesian model satisfies U-ARSP.
Indeed, it is straightforward to show that, following any given history, a SCF can be rational-
ized by the RUM if and only if it can be rationalized by the random-RUM model. For a fixed
history, the random-RU-Bayesian model and RU-Bayesian model, therefore, generate stochas-
tic choices that are indistinguishable.

However, in general, the random-RU-Bayesian model makes different predictions across the
updated SCFs following new choice observations. A DSCF rationalized by the RU-Bayesian
model with prior π0 ∈∆(R) can also be rationalized by the random-RU-Bayesian model with
a prior θ0 ∈∆(∆(R)) given by θ0(δ≻) = π0(≻) for all ≻∈R, where δ≻ ∈∆(R) is the Dirac
distribution with probability 1 on the strict preference ≻. As such, the DSCFs that can be
rationalized by the RU-Bayesian model are a subset of the DSCFs that can be rationalized
by the random-RU-Bayesian model. However, the inclusion is strict because a DSCF that is
rationalized by the random-RU-Bayesian model can only be rationalized by the RU-Bayesian
model if the support of θ0 contains only Dirac distributions.

To see why, first observe that a DSCF can be rationalized by the RU-Bayesian model only if,
for any choice observation s ∈ A and history h such that s ◦ h is admissible, P (s|s ◦ h) = 1.
That is, if alternative a is ever observed being chosen over b, any predicted future choice
from {a, b} becomes deterministic. Therefore, we call this implication of the RU-Bayesian
model determinism. The determinism property of the RU-Bayesian model is immediate from
the representation but can be derived directly from the ABSP: consider any admissible his-
tory h and choice s such that P (s|h) > 0. Since h is admissible, it follows by definition that
Π(h) > 0. Moreover, the histories s ◦ h and s ◦ s ◦ h are consistent with exactly the same
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set of maximally tight histories, i.e., H∗(s ◦ h) =H∗(s ◦ s ◦ h). Therefore, the ABSP implies
P (s|s ◦ h)P (s|h)Π(h) = P (s|h)Π(h), and hence P (s|s ◦ h) = 1.

Now consider a DSCF rationalized by the random-RU-Bayesian model with prior θ0 where
π(≻), π(≻′) > 0 for some π ∈ suppθ0. If ≻6=≻′, there is some pair of alternatives a, b ∈ A
such that a≻ b and b≻′ a. As a result, Pπ(a, b) ∈ (0,1) and therefore

Pf(θ0,(a,b))(a, b) =

∑

π′∈suppθ0

Pπ′(a, b)2θ0(π
′)

∑

π′′∈suppθ0

Pπ′′(a, b)θ0(π
′′)

6= 1.

Therefore, a DSCF rationalized by the random-RU-Bayesian model with prior θ0 satisfies de-
terminism if and only if the support of θ0 is concentrated on Dirac distributions over strict
preferences.9

6. Preference Change

Our framework can also be used to model preference change in the presence of stochastic
choice. This provides a link to a large literature in psychology, neuroscience, and cognitive
science, which suggests that “attitudes,” a construct close to the economic idea of preferences,
are not stable. Widespread evidence going back to Brehm (1956) suggests that the mere act of
choice can feed back into and alter pre-existing attitudes: people adjust to “spread out” their
self-reported evaluations, typically adjusting the evaluation of chosen options up (see, e.g.,
Harmon-Jones and Mills, 1999, Ariely and Norton, 2008).10 A common explanation involves
cognitive dissonance (Festinger, 1957, Joule, 1986), whereby attitudes and beliefs are brought
in line with actions after the fact.

Choice-induced preference change lends itself to a formalization in terms of SCM-U. How-
ever, the translation of the statement into specific properties shows that some aspects may
be neither surprising nor particularly removed from “rationalistic” models. Consider, for in-
stance, axiom BCA, which asserts that the probability of choosing a over b should increase if
this choice has been previously made. As shown in Theorem 1 and Corollary 1, this prop-
erty is not always satisfied by the logit-reinforcement model, but is a characterizing prop-
erty of positive reinforcement. That is, BCA merely captures positive updating of decision
values for non-aversive options. Further, as discussed in Section 5.4, the ABSP implies that
P (a, b|(a, b) ◦ h) = 1, hence axiom BCA is always trivially satisfied for a DSCF that can be
rationalized by an RU-Bayesian model.

This BCA property, however, only captures one aspect of choice-induced attitude change
as discussed in the literature from psychology and neuroscience. A closer formalization of
“preference change” is as follows.

AXIOM—PC: For all a, b, c ∈ A with a 6= b, c and all h ∈ H̄ such that 0 < P (a, c|h) < 1,

P (a, c|(a, b) ◦ h)>P (a, c|h).

9A different model fulfilling Bayesian principles but violating determinism would be a trembling-hand model
where the decision maker has a deterministic preference but makes mistakes with a probability ε, and the modeler
uses Bayes’ rule while taking mistakes into account. This model is defined formally in Appendix D.

10The evidence is controversial (Fudenberg et al., 2012, Maniadis et al., 2014). Psychological paradigms have been
shown to exhibit a statistical bias that can result in apparent preference change even if participants have immutable
preferences (Chen and Risen, 2010, Izuma and Murayama, 2013, Alós-Ferrer and Shi, 2015), although results have
been reestablished with improved designs (Sharot et al., 2010, Alós-Ferrer et al., 2012).
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Axiom PC states that the probability of choosing an option increases after it has been cho-
sen, independently of which alternative it is paired with. Obviously, the RU-Bayesian model
does not, in general, exhibit this property. Suppose, for instance, that A= {a, b, c} and π puts
probability 1/2 each on the preferences c ≻ a ≻ b and b ≻ a ≻ c. Then, P (a, c|∅) = 1/2
but P (a, c|a, b) = 0, violating PC. The DSCF generated by a logit model with positive rein-
forcement fulfills PC, because a positive reinforcer R(a) > 0 results in larger updated utility
u(a) + R(a) and hence increased choice probability independently of which other option is
available, but the implication fails without positive reinforcement. Hence, the logit model with
positive reinforcement captures and reflects evidence on choice-induced attitude change, but
the other models considered here preclude this phenomenon. Indeed, in the presence of U-
POS, U-LPR, HI and SDA, the two axioms PC and BCA are equivalent: on one hand, PC
encompasses BCA as a particular case (c = b in the axiom’s statement); on the other hand, if
BCA is fulfilled in the presence of the other axioms, Corollary 1 shows that the DSCF can be
rationalized by a logit model with positive reinforcement, which in turn implies that the DSCF
satisfies PC.

PROPOSITION 4: A DSCF satisfies U-POS, U-LPR, SDA, HI and Axiom PC if and only if it

can be rationalized by a logit model with positive reinforcement learning.

In this sense, our approach suggests that logit models with positive reinforcement learning
are an appropriate formal framework to study (and test) the choice-induced preference change
phenomenon. Interestingly, our approach also sheds light on some long-standing questions
in the literature. For instance, self-perception theory advocates an alternative interpretation
of choice-induced attitude change, which differs fundamentally from interpretations based on
cognitive dissonance: the decision maker is assumed to be (consciously or not) unsure about
his or her own preferences, and uses their own observed choices as signals (Bem, 1967a,b).
The claim is that, in the face of these observations, chosen options are reevaluated upwards, but
this implication is not typically formalized. Our analysis shows that, to imply PC, this theory
must be complemented with a behavioral component e.g. updating of a decision value through
positive reinforcement. If, for instance, self-perception theory is formalized in a rationalistic
fashion (where the decision maker learns as an external, rational observer would), the decision
maker would hold beliefs on their own preferences and update them following Bayes’ rule, in
which case the model becomes equivalent to the RU-Bayesian model, which, as we have seen,
does not satisfy axiom PC.

7. Discussion

The problem of updating a model that predicts an agent’s decisions in response to new
choice information is pervasive in economics, psychology, and neuroscience. Normative eco-
nomics typically adopts a Bayesian approach, where beliefs on an appropriate space are up-
dated through Bayes’ rule. Decision neuroscience has identified decision values in the brain
and obtained widespread evidence that such values are updated following reinforcement pro-
cesses. Applied economics and microeconometrics typically consider random utility models,
which are equivalent to the first class in terms of static choices, but provide a utility function
which could be updated as in the second class. We show that those and many other models are
instances of a general, unified framework which jointly addresses how choices are derived from
an underlying (functional) parameter space, and how those parameters are updated. Once this
is done, the connections between the various approaches become apparent, and the structural
assumptions underlying each model can be identified.
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Those structural assumptions, however, condition how new information affects the posterior.
It is well-known that the same choice probabilities can be explained either through a probabil-
ity distribution over deterministic preferences (a random preference model) or through a fixed
utility function affected by noise (a random utility model). A Bayesian modeler would, how-
ever, focus on updating the beliefs, while neuroscience suggests that the human brain relies
on certain, cardinal decision values and updates them, very much as if the utility function in
a random utility model were updated. Starting with the same initial probabilities and adding
the same new choice evidence, both approaches will typically end up with different predic-
tions. Through our characterizations, we identify the structural assumptions behind the most
prominent stochastic choice models, which opens the door to model separation and testing. For
instance, we provide an approach to distinguish the value-based reinforcement approach and
the belief-based preference approach.

Each characterization we develop is also of independent interest. The “neuroeconomic” logit-
reinforcement model is characterized by simple properties, which essentially make clear that
only the values of the chosen options are updated, with no indirect inferences made. Posi-
tive reinforcement is not a structural part of the model but can easily be added, resulting in a
subclass which, interestingly, is characterized by a property reflecting choice-induced attitude
change, a phenomenon implied by cognitive dissonance and widely discussed in psychology.
The RUM suffers from identification problems which subsist after a round of updating, in the
sense that the same choice probabilities even after every possible updating can be explained by
different prior beliefs. However, those problems are solved in our framework, where histories
of arbitrary length are allowed, and the resulting characterization relies on a single property,
the Axiom of Bayesian Stochastic Preference.

Although we have focused on the two most-relevant models, our framework goes well be-
yond those. A myriad of model variants spring to mind, ranging from Bayesian updating while
allowing for errors or inherently noisy behavioral types to complex forms of reinforcement
where the discarded option is discounted or influences the value of the reinforcer. For each, we
provide a framework to identify the structural differences with previous models, and hence the
appropriate behavioral tests to separate and identify them. At a conceptual level, our contribu-
tion provides a common language to the study the observational implications of such models,
and shows that dialects of this language are already spoken both by Bayesian modelers and
neuroeconomists.
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APPENDICES

APPENDIX A: Omitted Proofs

A.1. Proof of Lemma 1

First, we show that POS and LPR are necessary. Fix any strictly increasing ω :R 7→R++ and
u ∈ U . Since ω has strictly positive values, Pω

u (a, b)> 0 for any (a, b) ∈A, and so Pω
u satisfies

POS. To show that LPR holds, let a, b, c ∈A be three distinct alternatives. Then,

Pω
u (a, b)

Pω
u (b, a)

Pω
u (b, c)

Pω
u (c, b)

=
ω(u(a))

ω(u(b))

ω(u(b))

ω(u(c))
=

ω(u(a))

ω(u(c))
=

Pω
u (a, c)

Pω
u (c, a)

,

and it follows immediately that Pω
u (a, b)P

ω
u (b, c)P

ω
u (c, a) = Pω

u (a, c)P
ω
u (c, b)P

ω
u (b, a), estab-

lishing LPR.
Now we show that POS and LPR are sufficient. Let P be a SCF that satisfies POS and LPR.

Fix an arbitrary alternative c ∈A, and define u(c) = 0. For a ∈A\{c}, let u(a) = ln
(

P (a,c)

P (c,a)

)

,

which is well-defined because P satisfies POS. Now consider any distinct alternatives a, b ∈
A \ {c}. By definition, eu(a) = P (a,c)

P (c,a)
, from which it follows that

P (a, c) =
eu(a)

eu(a) + 1
=

eu(a)

eu(a) + eu(c)
.

Since P satisfies POS and LPR, a direct computation shows

P (a, b)

P (b, a)
=

P (a, c)

P (c, a)

P (b, c)

P (c, b)

.

and using P (b, a) = 1− P (a, b) we obtain

P (a, b) =

P (a, c)

P (c, a)

P (a, c)

P (c, a)
+

P (b, c)

P (c, b)

=
eu(a)

eu(a) + eu(b)
.

Hence, P can be rationalized as a logit model (and hence as a Luce model).

A.2. Proof of Lemma 2

Suppose P can be rationalized by the logit model with either u or u′ as parameter. Fix b ∈A
and define K = u′(b)− u(b). Then, for any a ∈A,

eu(a)

eu(a) + eu(b)
= P (a, b|∅) =

eu
′(a)

eu
′(a) + eu

′(b)

which implies u(a)− u(b) = u′(a)− u′(b) or u′(a) = u(a) +K for all a.
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A.3. Proof of Corollary 1

It is obvious that BCA is satisfied in the case of positive reinforcement. To prove sufficiency,
proceed as in Step 1 of the proof of Theorem 1 to identify Rh(a) = S(a, b, c) for any a ∈A and
h ∈ H. We claim that, under BCA, S(a, b, c) > 0 in Step 1a. For, by BCA, for all (a, b) ∈ A
with P h(a, b)> 0, P h(a, b|a, b)>P h(a, b|∅). Hence, by Equation (6),

uh
a,b(b)− uh

a,b(a)< uh(b)− uh(a)

implying that

S(a, b, b) =
[

uh
a,b(a)− uh

a,b(b)
]

−
[

uh(a)− uh(b)
]

> 0.

Since, by Step 1a, S(a, b, c) = S(a, b, b) for all c 6= a, we obtain that Rh(a) = S(a, b, c) > 0,
as claimed. The remaining argument then follows the proof of Theorem 1.

A.4. Proof of Corollary 2

Let (H̄,P ) be a DSCF that can be rationalized by a Luce model with reinforcement learning:
for some strictly increasing ω :R 7→R++, u∗ ∈ U and function R∗ :A→R,

P h(a, b|s) = Pω
u∗
s
(a, b) =

ω(u∗
s(a))

ω(u∗
s(a)) + ω(u∗

s(b))
∀s ∈A∗, h ∈ H̄, and (a, b) ∈A,

(recall Section 3.3) where u∗
s(a) = u∗(a) when s = ∅ or s = (c, d) and c 6= a, and u∗

s(a) =
u∗(a) +R∗(a) when s= (c, d) and c= a.

For any a ∈A, define u(a) = ln (ω(u∗(a))) and R(a) = ln (ω(u∗(a) +R∗(a)))− ln (ω(u∗(a))).
Then, for a 6= b, c,

P (a, b|∅) = P (a, b|c, d) =
ω(u∗(a))

ω(u∗(a)) + ω(u∗(b))
=

eu(a)

eu(a) + eu(b)

P (a, b|a, c) =
ω(u∗(a) +R∗(a))

ω(u∗(a) +R∗(a)) + ω(u∗(b))
=

eu(a)+R(a)

eu(a)+R(a) + eu(b)
.

Hence, the DSCF P (·|·) can also be rationalized by a logit model with utility function u∗ and
the reinforcement function R∗ :A→R.

The converse implication is obtained by constructing u∗(a) = ω−1
(

eu(a)
)

and R∗(a) =

ω−1
(

ω(u(a)) · eR(a)
)

− u(a).
Finally, if R(a) > 0 in the previous argument, then ω(u(a) +R(a)) > ω(u(a)) and hence

R∗(a)> 0. An analogous argument holds for the converse.

A.5. Proof of Corollary 3

The argument is analogous to the proof of Theorem 1, with the strictly increasing cdf G
taking the place of the function 1/(1+ e−x).

APPENDIX B: Independence of Logit-Reinforcement Axioms

In view of Theorem 1 and Corollary 1, axiom BCA is obviously independent of SDA, IDA,
and HI. Any logit-reinforcement model where R(a) is not always positive will fulfill SDA,
IDA, and HI, but fail BCA (for instance, Example 4). The following examples show that axioms
SDA, IDA, and HI are independent of each other, even when BCA is satisfied.
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EXAMPLE 9: Axioms SDA, HI, and BCA do not imply IDA. Consider an SCM-U where the
SCM captures uncertainty through utility functions, Θ= U , and choice probabilities Pu(a, b)
are determined through the logit choice function (2) for each u. However, updating does not
follow reinforcement as considered above. Instead, let R∗ :A 7→R++ be a function assigning a
positive value to the chosen option for each choice, R(a, b)> 0. For each u ∈ U , let f(u,∅) =
u. For each (a, b) ∈A, let f(u, (a, b)) = ua,b be given by

ua,b(c) =

{

u(a) +R(a, b) if c= a

u(c) if c 6= a.
(9)

for each c ∈A.
Given some prior utility u, consider the DSCF generated by this SCM-U. SDA is obviously

satisfied because the utilities of options other than the chosen one are not updated. HI also holds,
because the update in utilities does not depend on the previous history. BCA follows because
R(a, b)> 0. However, IDA fails in general. For example, if A= {a, b, c, d} with u(x) = 0 for
all x ∈A, R(a, b) = ln2 and R(a, c) = ln3, then P (a,d|a, b) = 2/3 6= 3/4 = P (a,d|a, c).

EXAMPLE 10: Axioms IDA, HI, and BCA do not imply SDA. As in the last example, con-
sider an SCM-U with Θ = U such that choice probabilities Pu(a, b) are determined through
the logit choice function (2) for each u. Updating occurs as follows. For each u ∈ U , let
f(u,∅) = u, and define Mu = 1 + max{u(x)− u(y) | (x,y) ∈A}. By symmetry of A,
Mu > 0. For each (a, b) ∈A, let f(u, (a, b)) = ua,b be given by

ua,b(c) =

{

2 · u(a) +Mu if c= a

2 · u(c) if c 6= a.
(10)

for each c ∈ A. Given some prior utility u, consider the DSCF generated by this SCM-U.
IDA and HI are satisfied because the update in utilities does not depend on the identity of the
rejected option or on the previous history. To see BCA, let (a, b) ∈ A. For the history h ∈ H,
let uh = f(u,h). Then, under logit choice, Pf(u,(a,b)◦h)(a, b)> Pf(u,h)(a, b) holds if and only
if

2
(

uh(b)− uh(a)
)

+Muh > uh(b)− uh(a),

or, equivalently, Muh > uh(a)− uh(b). The latter holds by construction. However, this DSCF
does not satisfy SDA. Let, for instance, A = {a, b, c} and u(b) = ln2, u(c) = 1. Then,
P (b, c|a, b) = 4/5 6= 2/3 = P (b, c|∅).

EXAMPLE 11: Axioms SDA, IDA, and BCA do not imply HI. Consider again the set of
model parameters U and assume that choice probabilities Pu(a, b) are determined through the
logit choice function (2) for each u. Consider a history-dependent reinforcement function R∗ :
A×H 7→R++ such that R∗((a, b), h) = ℓ(h)+ 1, where ℓ(h) denotes the length of h. That is,
for each u ∈Θ, (a, b) ∈A and h ∈H, let ua,b,h denote the updated utility given by

ua,b,h(c) =

{

u(a) + ℓ(h) + 1 if c= a

u(c) if c 6= a.
(11)

for each c ∈ A. Hence, utilities are updated as in the logit-reinforcement model, but the re-
inforcers depend on the entire history. Given any prior utility u, iteration of this procedure
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generates a DSCF.11 BCA follows, because R∗(a, b) > 0 for all (a, b). SDA and IDA fol-
low because they only involve comparisons for a fixed history. However, HI fails in gen-
eral because the updated utilities depend on the length of the history. For instance, sup-
pose a, b ∈ A and u∅(a) = u∅(b) = 0. Then P (a, b) = 1/2, P (a, b|a, b) = e/(1 + e), and
P (a, b|((a, b), (a, b))) = e3/(1 + e3). Thus, taking h = ∅, the odds quotient on the left-hand-
side of (5) (with c= b) is equal to e, but taking h′ = (a, b), the quotient on the right-hand-side
is equal to e2. Thus, the DSCF does not satisfy HI.

APPENDIX C: Updated choice probabilities for Example 7

For Example 7, the following table provides the choice probabilities after a single round of
updating based on any possible choice observation.

Observation
Updated (a, b′) (b, a) (a, c) (c, a) (b, b′) (b′, b) (b, c) (c, b)

probabilities or (a, b′) or (b′, a) (a, c) (c, a) (b, b′) (b′, b) or (b′, c) or (c, b′)

(a, b) or (a, b′) 1 0 2/3 1/3 1/2 1/2 1/3 2/3
(a, c) 2/3 1/3 1 0 1/2 1/2 2/3 1/3
(b, b′) 1/2 1/2 1/2 1/2 1 0 1/2 1/2

(b, c) or (b′, c) 1/3 2/3 2/3 1/3 1/2 1/2 1 0

TABLE C.I

UPDATED PROBABILITIES IN EXAMPLE 7

APPENDIX D: Further Implications of the ABSP

As Theorem 2 shows, the ABSP fully characterizes the RU-Bayesian model. However, since
the characterization follows a very different approach to the logit-reinforcement model, di-
rect comparisons with the axioms for that model are difficult. We therefore consider some
implications of the ABSP which highlight the commonalities and differences with the logit-
reinforcement model.

As shown in Section 5.4, a first immediate implication of the ABSP is that, following any
admissible history, stochastic choices must satisfy the ARSP (Axiom U-ARSP). A second,
straightforward implications of the ABSP is determinism, as also mentioned in Section 5.4.
That is, once a choice (a, b) is observed, the probability of the opposite choice (b, a) is updated
to zero, i.e., the choice among a and b becomes deterministic. Formally:

AXIOM—DET: For all s ∈ Ā and all h ∈ H̄ such that P (s|h)> 0, P (s|s ◦ h) = 1.

It is straightforward to show that Axiom DET is implied by the ABSP: consider any admissi-
ble history h and choice s such that P (s|h)> 0. Since h is admissible, it follows by definition
that Π(h)> 0. Moreover, the histories s ◦ h and s ◦ s ◦ h are consistent with exactly the same
set of maximally tight histories, i.e., H∗(s ◦ h) =H∗(s ◦ s ◦ h). Therefore, the ABSP implies

11The procedure to generate a DSCF described in this example is not formulated as a SCM-U. However, Propo-
sition 1 implies that some SCM-U can rationalize the DSCF generated by the procedure for each prior parameter
u∅ ∈ U .
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P (s|s ◦ h)P (s|h)Π(h) = P (s|h)Π(h), and hence P (s|s ◦ h) = 1. However, the DSCF gener-
ated from a logit-reinforcement model cannot satisfy Axiom DET as this is inconsistent with
positivity (i.e., Axiom U-POS). Axiom DET therefore provides a simple condition to distin-
guish between the RU-Bayesian and logit-reinforcement models in terms of a single round of
updating.

A third implication of the the ABSP is reminiscent of the Luce Product Rule (LPR) but
concerns updated probabilities across cycles of three alternatives. We refer to it as the Bayesian
Product Rule (BPR).

AXIOM—BPR: For all distinct a, b, c ∈A and all h ∈ H̄ such that P (x,y|h)> 0 for x,y ∈
{a, b, c},

P (a, b|(b, c) ◦ h)P (b, c|(c, a) ◦ h)P (c, a|(a, b) ◦ h) =

P (a, b|(c, a) ◦ h)P (c, a|(b, c) ◦ h)P (b, c|(a, b) ◦ h)

and

P (a, c|(c, b) ◦ h)P (c, b|(b, a) ◦ h)P (b, a|(a, c) ◦ h)

P (a, c|(b, a) ◦ h)P (b, a|(c, b) ◦ h)P (c, b|(a, c) ◦ h).

The BPR follows immediately from the ABSP by recognizing that, for instance, the histories
(a, b) ◦ (b, c) ◦ h and (b, c) ◦ (a, b) ◦ h are consistent with the same set of maximally tight
histories, i.e., H∗((a, b) ◦ (b, c) ◦ h) =H∗((b, c) ◦ (a, b) ◦ h). However, the following example
shows that the BPR can be violated by a logit-reinforcement model.

EXAMPLE 12: Let A= {a, b, c} and consider a utility function given by u(a) = ln3, u(b) =
ln2, and u(c) = 0. Consider the prior probabilities P (·|∅) derived from a logit model with
utility u, and the updated probabilities P (s|s′) defined by a logit-reinforcement model with
reinforcement function given by R(a) = lnC − ln 3, R(b) = ln3− ln 2, and R(c) = ln2, for
some C ≥ 1.

Observation
Updated probabilities ∅ (b, c) (c, b) (a, c) (c, a) (a, b) (b, a)

(a, b) 3/5 1/2 3/5 C/(C + 2) 3/5 C/(C +2) 1/2
(b, c) 2/3 3/4 1/2 2/3 1/2 2/3 3/4
(c, a) 1/4 1/4 2/5 1/(C + 1) 2/5 1/(C + 1) 1/4

This defines a collection of one-period-updated SCFs which fulfill property U-ARSP. How-
ever, the collection of SCFs does not satisfy the BPR because

P (a, b|b, c)P (b, c|c, a)P (c, a|a, b) =
1

2

1

2

1

C + 1

and

P (a, b|c, a)P (c, a|b, c)P (b, c|a, b) =
3

5

1

4

2

3
=

1

10
.

Hence, the first equality in BPR holds only for C = 1.5. Analogously, the second identity holds
only for C = 1, and hence the BPR is not satisfied for any C .
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The BPR is therefore another property of a DSCF that can be used to distinguish between
the RU-Bayesian and logit-reinforcement models based on updating from a single new choice
observation. However, axioms U-ARSP, DET and BPR cannot be sufficient to characterize the
RU-Bayesian model as, given a history, they pertain only to updating from at most one addi-
tional choice observation. The following example illustrates that the axioms taken together are
not sufficient to characterize the RU-Bayesian model even for the case of just three alternatives.

EXAMPLE 13: Let A= {a, b, c} and consider a collection of SCF as given by the following
(updated) choice probabilities, for ε ∈ (0,1).

Observation
Updated probabilities ∅ (b, c) (c, b) (a, c) (c, a) (a, b) (b, a)

(a, b) 1/2 1 0 1 0 1 0
(b, c) 1/2 1 0 1 0 1− ε 0
(c, a) 1/2 1 0 1 0 ε 0

The U-ARSP reduces to the constraint that the updated probabilities of (a, b), (b, c), and
(c, a) given any fixed observation (possibly ∅) add up to at most two, which is true by direct
inspection of the table above. Property DET also holds immediately. As for BPR,

P (a, b|b, c)P (b, c|c, a)P (c, a|a, b) = 0 = P (a, b|c, a)P (c, a|b, c)P (b, c|a, b)

and analogously for the second identity. Hence, all three necessary conditions identified above
hold. Suppose this collection of SCFs could be rationalized in terms of a RUM with Bayesian
updating. Then, it follows that

P (a, b|b, c)P (b, c|∅) = P (b, c|a, b)P (a, b|∅)

which, in view of the choice probabilities above, yields the contradiction ε = 0. Hence, the
collection of SCFs is not consistent with a DSCF that is rationalized by the RU-Bayesian model.

For any model that a researcher might develop, a question of immediate interest is whether
the model can be encompassed by previous ones. Recall, for instance, the random-RU-Bayesian
model (Example 8). As discussed in Section 5.4, this model fails the ABSP but fulfills its im-
plication, the U-ARSP. Also, a DSCF rationalized by the random-RU-Bayesian model with
prior θ0 satisfies Axiom DET if and only if the support of θ0 is concentrated on Dirac dis-
tributions over strict preferences. The random-RU-Bayesian model is also not observationally
equivalent to a logit reinforcement model. On the one hand, since random-RU-Bayesian models
encompass RU-Bayesian models, the DSCFs generated by the model do not in general satisfy
the Luce Product Rule (Axiom U-LPR), which is always satisfied by the DSCF generated by
a logit-reinforcement model. On the other hand, it is straightforward to derive from Bayes’
rule that any DSCF that is rationalized by the random-RU-Bayesian model always satisfies
the Bayesian Product Rule (BPR), which can be violated by logit-reinforcement models as
shown above (Example 12). The random-RU-Bayesian model therefore provides an example
of a stochastic choice model with updating that is in the spirit of the Bayesian perspective on
dynamic stochastic choice, but potentially allows for choices to remain stochastic even after
being updated.

The following example is a different generalization of the Bayesian approach (that is, dif-
ferent from the random-RU-Bayesian model) that also allows for choice predictions to remain
stochastic even with an accumulation of past choice observations, hence violating Axiom DET.
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EXAMPLE 14—Trembling-Hand Model: Fix ε ∈ [0,1]. Let Θ = ∆(R), where, as in the
RU-Bayesian model, R represents the set of strict preferences over the set of alternatives A.
For ≻∈R, define

P ε
≻(a, b) =

{

1− ε if a≻ b

ε if b≻ a
.

Given π ∈∆(R), define P ε
π(a, b) =

∑

≻∈R
π(≻)P ε

≻(a, b). The collection {P ε
π}π∈∆(R) defines

a SCM which can be interpreted as follows. An external observer holds beliefs over the actual
preferences of a decision maker, ≻. However, the observer assumes that the decision maker
has a “trembling hand” and might always make decisions against the actual preference, with
probability ε.

Suppose the external observer is Bayesian, but respects the structural assumptions of the
model, including the error probability ε.12 When confronted with a new choice (a, b), the ob-
server must consider the possibility that the choice has been a mistake. Hence, the updating
function fε

B : ∆(R)×A∗ →∆(R) is given by

fε
B(π, s) =

{

π if s= ∅

πε
s if s= (a, b) ∈A,

where, for each (a, b) ∈ A, πε
a,b(≻) =

π(≻)·Pε
≻(a,b)

Pε
π(a,b)

. Let Pπ(a, b) be the error-free probability

as given in Example 3. Note that, if s = (a, b) ∈ A with Pπ(a, b) = 0, then P ε
≻(a, b) = ε for

all ≻∈ R with π(≻) > 0, and it follows that fε
B(π, s) = π. That is, if the observed choice

contradicts the prior, the observer concludes that it was a mistake and does not update.
The tuple (∆(R),{P ε

≻}≻∈R, f
ε
B) is a stochastic choice model with updating, which we call

the trembling-hand model.

When ε ∈ {0,1}, the Trembling-Hand model reduces to the RU-Bayesian model, but not
when the error probability ε ∈ (0,1), because the DSCF generated by a trembling-hand model
then clearly violates Axiom DET. Indeed, the DSCF generated by a trembling-hand model
satisfies Axiom DET if and only if ε ∈ {0,1} and, otherwise, satisfies Axiom U-POS. As such,
strict trembling-hand models, with an error probability ε ∈ (0,1), retain the basic intuitions
of the Bayesian approach but satisfy the positivity condition of logit-reinforcement models.
However, the strict trembling hand model is not encompassed by the logit-reinforcement model
either because the stochastic choices with updating do not, in general, satisfy the Luce Product
Rule U-LPR. For instance, suppose A = {a, b, c} and π places probability one on a ≻ b ≻
c. The probability of the intransitive cycle a → b → c → a is P (a, b)P (b, c)P (c, a) = (1 −
ε)2ε, while the probability of observing the cycle a→ c→ b→ a is P (a, c)P (c, b)P (b, a) =
(1− ε)ε2. Hence, in view of Lemma 1, the strict trembling hand model differs from the logit-
reinforcement model in terms of the prior probability of choices, even without considering
updating.

12A more general model could incorporate ε into Θ, allowing the external observer to update its value. For con-
creteness, we consider ε to be exogenous.
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