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1. Introduction 
     

Standard auction theory predicts that, in a private value English oral auction, the 

winner will be the bidder with the highest valuation for the object, and the selling price 

will be the second-highest valuation.  In those auctions, a reasonable strategy for a bidder 

would be to increase each bid by the minimum bid increment. This solution is referred to 

as the “ratchet solution,” “straightforward bidding” or as “pedestrian bidding.” Jump 

biddings occur when a new offer is submitted that is above the old offer plus the 

minimum bid increment permitted.  

In this paper, I study the sequence of bidding in an open-outcry English auction to 

examine how the strategic bidding process affects price determination.  I do this by 

studying the nature of jump biddings in data I have collected from a series of public 

auctions of used cars in New Jersey. The auction literature has not fully addressed and 

characterized jump biddings in English auctions. 

In order to characterize jump biddings, and because the auctions I study have no 

seller’s reserve price, I define the “First Jump” as the first offer submitted by any bidder. 

The “Second Jump” is the difference between the second offer submitted by a bidder and 

the first offer. The “Last Jump” is the difference between the winning bid and the 

previous offer. I further define the “Average Jump”2 of all jumps excluding the First and 

Last jumps. Figure 1 describes these variables graphically.  

I find that jump biddings are a widespread empirical regularity in the sale of all 

items. The jumps depend on the presale estimate of the item’s price and are not affected 

by the selling order. For almost all items, bidders use jump biddings to increase the 

current offer. Furthermore, on average, the First Jump is greater than the Second Jump, 

which is greater than the Average Jump, which is greater than the Last Jump. I offer 

several explanations for the existence of jump biddings.  

 These findings suggest that there is some strategic bidding behavior in the way 

bidders advance their bids. Bidders consider the way the auction progresses, which 

implies that a bidder’s strategy includes not only the stopping point along the bidding 

                                                 
2 Qualitatively, the results are the same when I define the Average Jump as the average of all jumps 
excluding the First, Second and Last jumps. 
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path, but also the precise nature of the path that led there. I suggest a way to use the jump 

biddings to determine whether an open-outcry auction is best interpreted with models that 

assume private- or common-item valuations, and conclude that these auctions are 

consistent with the common value interpretation. Under the assumption of independent 

private values, the bidding history should not affect the point at which a bidder drops out. 

This is not the case in a common value auction, in which each stage of the auction is used 

as a device for signaling. The selling price in an English auction with common values 

will be path dependent. Hence, a simple test of the effect of the First Jump on the selling 

price determines the type of the auction.   

The paper is organized as follows. In the next section I will survey the literature. 

Section 3 describes the data I have collected and the nature of the auctions. Section 4 

shows that, although the presale estimate and other characteristics affect the size of the 

jumps, the order in which the cars are introduced does not. In Section 5, I analyze the 

relation between jump biddings and the selling price, and propose a method to evaluate 

alternative assumptions about item valuations. The final section offers concluding 

remarks. 

 

2. Literature Survey 
 

 The literature on bidding pattern in ascending auctions is divided into three parts. 

First is theoretical papers that usually demonstrate the condition under which 

straightforward bidding is equilibrium and when we expect jump bidding. The lack of 

any model of English auction with affiliated values and discrete bid levels is noticeable. 

Second is the experimental literature that demonstrates the existence of jump bidding, 

sometimes with a model that supports jump bidding. Third is empirical literature that 

demonstrates the existence of the jumps as well. The current paper is fills the gap by 

reporting and then analyzing jump bidding in a regular sequential open outcry English 

auction.  

 Rothkopf and Harstad (1994) explored the role of discrete bid levels in oral 

auctions. They addressed the question of when it is optimal to skip a bid level. They 

demonstrated that, in a two-bidder game with private valuations drawn from no 
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increasing distributions, “pedestrian bidding” by both bidders is equilibrium as long as 

the interval between allowed bids is not too big.  

 Daniel and Hirshleifer (1998) (DH hereafter) demonstrated that, when a single 

good is auctioned to two bidders with private values, if there is a cost to submit a bid, 

such a cost can lead to jump bids equilibrium. They demonstrated also that the jump 

between the first and the second bid is increasing in the first bid. The setup in the model 

is different from the usual English auction because there is no auctioneer in takeover 

contests.  

 Macskasi (2000) extended the model of DH to three players. Again, the 

motivation for the jump is a positive bidding cost, and the game is over after, at most, 

three positive bids. Under the suggested equilibrium, jump bids favor the bidders.  

 Easley and Tenorio (1999) argued that the cost associated with entering on-line 

bids and the uncertainty about future entry can explain jump bidding in an ascending-

price Internet auction. The model is similar to that of DH, with the difference that, even if 

bidders pass they will suffer the cost. The motivation for the jump is bidding costs and 

the use of the jumps as signals. The model involves two identical risk-neutral bidders 

with private valuation who will potentially compete over one unit. There is demand 

uncertainty and with probability q the opponent will not find the auction. They found 

that, when costs are zero, the ratchet solution is equilibrium. When costs are positive, the 

item can be sold only after one or two stages or remain unsold. They examined their 

model assumption using Yankee-type Internet auctions3  and found that jump bidding is 

more likely earlier in the auction and that the incentive for jump bidding increased as 

competition became stronger. They also found that jump bidders placed fewer bids and 

that increased early jump bidding in auctions reduced the total bids placed.  

 Avery (1998) has shown that a jump bid may be used to intimidate one’s 

opponents and serves as a correlating device among bidders. The choice of bids allows 

bidders to communicate within the auction, and the jump can signal aggressive behavior. 

The message of aggressiveness discourages competition because it suggests that the 

                                                 
3 This format is a variation of multi unit ascending auction that have the following properties: several 
identical goods are auction, each bidder may buy more than one unit but all units must demand at the same 
price, there is a time limit to the bidding process, the winning bidders pay their own prices, and ties broken 
on quantity first then time basis.  
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bidder values the good more than everybody else and that, if the opponent wins, he 

probably overbid. The model involves two risk-neutral bidders competing in a single 

English auction with affiliated valuation and signals and describes a public auction as a 

two-stage game. In the first stage, bidders can use their initial bid, 0, or a cutoff point, K, 

to communicate through jump. This communication has a cost because the initial bid may 

win the auction. In the second stage, the players proceed as in an ordinary open-exit 

auction, in which their initial bids serve to select their subsequent bidding strategies. 

Adding signaling stages to the game will reduce the average price and the set of 

equilibrium produce exactly the set of expected prices between the first-price and second-

price auction.  

 Isaac et al (2003, a) provided a dynamic model of bidding in ascending auctions. 

They solved the model using backward induction and dynamic programming to obtain 

the solution for two risk-neutral bidders with private valuations that draw their values 

from a uniform or normal distribution. They found that jump bidding occurs in 

equilibrium, is of moderate size, and is motivated by impatience and a combination of 

distribution and discreteness reasons. In addition, there is a convergence to the 

straightforward bidding, and the expected revenue in the straightforward bidding is 

slightly higher. The authors provided evidence from the FCC auction to the existence of 

jump biddings. Table 1 summarizes the different models’ predictions and assumptions. 

[Table 1 here] 

 The empirical and experimental literature on jump bidding is quite narrow. Plott 

and Salmon (2002) developed a model of the behavior of bidders in simultaneous 

ascending auctions, in each round, based on surplus maximization and bid minimization. 

The purpose is to give the auctioneer an idea of the bidders’ valuation during the auction 

process. They demonstrated that the model is valid in an experimental setting and also in 

the United Kingdom third generation mobile auction. The authors observed jump bids but 

concluded that their influence is only on speed and not on final prices or allocation.  

 Isaac et al. (2003, b) used economic experiments to empirically determine which 

of three alternative models described bidding behavior in a non clock ascending auction. 

They found that their model was superior and rejected the straightforward bidding 

because they observed jump biddings. They rejected DH’s model because it predicted 
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that the auction would end in the first or second stage. They claimed that, under a 

signaling model (like Avery’s), the expected selling price should be lower because this is 

the only reason to engage in signaling. If the revenues are not lower it is an evidence of 

model rejection. 

 Isaac and Schinier (2003) analyzed data from three silent auction4 field sessions. 

Their focus was on descriptive statistics and a parametric model of jump bidding. They 

also conducted a laboratory experiment. They found that bidders never jumped their own 

bids, seldom bid over publicly stated market values, and frequently submitted jump bids. 

In addition, they found that the number of bidders has a negative effect on the magnitude 

of the jump bids. 

 Borgers and Dustmann (2002) analyzed the United Kingdom’s sale of licenses for 

third-generation mobile telephone services. This auction was organized as a simultaneous 

ascending auction in which each competitor could win only one item and the auction 

stopped when bidding on all licenses had stopped. They focused on the hypothesis of 

straightforward bidding under private values and described systematic deviations from 

this benchmark hypothesis.  The deviations concerned mostly how bidders chose whether 

to bid for a large or small license.  They also found that, although the majority of bids in 

the auction were the lowest admissible bids, there were a significant number of jump 

bids. The motivation they offered for the jumps was that bidders try to avoid ties and try 

to speed up the auction. They reported that jump bids in early rounds were larger than in 

the later rounds. 

 Betton and Eckbo (2000) examined a sample of tender offers. When the bid 

contest lasted more than two stages, they found that the expected time to the second bid 

was 15 days and that the median jump bidding from the first offer to the second offer was 

10%. The setting of tender offers is different, theoretically and in practice, from an oral 

English auction for several reasons. Hirshleifer and Png (1990), for example, 

                                                 

4 A silent auction is a simultaneous ascending first price auction where usually donated items are placed in 
a central location with a bid sheet and a starting bid.  This institution usually used by churches and other 
non-profit organization for fund raising.   
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demonstrated that, when there is a cost to make and revise a takeover bid, the theoretical 

equivalence between an English auction and a takeover target breaks down.  

 Haile and Tamer (2003) documented jump biddings in a regular English auction 

and reported that the gap between first- and second-highest bids is usually above the 

minimum bid increment allowed.  

 

3. The Data 
 

I collected the auction data in 2001-02 from the New Jersey Distribution and 

Support Services (DSS) in Trenton, New Jersey.5 DSS sells surplus personal and 

government property through public oral English auctions and sealed-bid auctions. The 

open English oral auctions of cars are usually held on Saturdays once a month. Bidders 

can physically inspect the items the day before the auction and on the day of the auction 

until 9 A.M., when the auction begins. Each car that is auctioned is driven through a large 

warehouse and stopped in front of the auctioneer, and then the bidding process begins. 

The auctioneer stands up at the front and simply receiving shouted bids without offering 

any guidance. After the car is sold, it is driven to the parking lot, and a new car is 

auctioned off. The average time required to sell a car is between 1 and 2 minutes. Bids on 

operable vehicle units are only accepted in multiples of $25. At the time of sale, 

successful bidders are required to make a deposit in cash, bank money order, or certified 

check for $150 or 10% of the total amount of the bid, whichever is greater. If the high 

bidder fails to place the deposit, the vehicle is immediately resold.  

 The DSS reveals all information available about the car’s condition such as 

model, year, mileage and the source of the vehicle (Turnpike Authority, criminal justice 

seizure, Transportation Department, taxation seizure, etc.). The state also reveals all the 

mechanical information known about the vehicle’s condition, for example whether it has 

                                                 
5  For further information, see Raviv (2003). 
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bad transmission, bent rear axle, no vehicle identification number plate on the door, no 

power steering, etc. The coordinator of operations at DSS has stated that all the 

information known about the vehicles is made available to the bidders and that the cars 

are auctioned in random order (which I verified empirically in Raviv (2003)), so that 

there is no correlation between a cars’ presale value and the sequence in which it is 

auctioned off. 

 The day before each auction, I collected data on each vehicle’s condition. On the 

same day, I gathered the Kelly Blue Book (KBB) estimated market value of each car.  

KBB is a company that, among other things, provides market value estimates for cars on 

it Website. On the day of the auction, I collected the following data: the sequence in 

which the vehicles were auctioned, all the bids that each car received up to (and 

including) the winning bid, and data about the resold cars. During the week after each 

auction, I collected the official list of winning bids from DSS to compare with my notes. 

 Table 2 gives summary statistics from the different auctions. In the first and 

second columns, the presale estimator (the price from KBB) and the price for which the 

item was sold are reported. The mean of the presale estimator was $2,662.19, and it was 

above the mean of the winning bids, which was $1,520.42. It appears that some of the 

cars were sold quite cheaply. Some bidders bought operable cars for as little as $50.  The 

car with the highest presale value ($15,265) was a 1986 Porsche with 77,000 miles on its 

odometer. This car was eventually sold for $3,400. Although the governor of New 

Jersey’s car, a 1998 Buick Ultra, had a presale estimator of $11,270, it was sold for 

$8,650 and was the most expensive item sold in the auctions. To examine the jump 

bidding characteristics, I define four new variables. “First Jump” is the first offer 

submitted by a bidder. “Second Jump” is the difference between the second offer and the 

first offer. “Last Jump” is the difference between the winning bid and the previous bid. 

“Average Jump” is defined as the last offer before the wining bid minus the First Jump 

divided by n–2, where n is the total number of bids made on the car. 

[Table 2 here] 

 The mean number of bids is the average number of bids each item received 

before it was sold. The mean of this variable is 11.39, which indicates that it took, on 

average, 11.39 rounds for an item to be sold. The minimum of this variable is 1, which 
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means that some of the cars were won by the first bidder. Figures 2 through 5 show the 

empirical distribution of the First, Second, Average, and Last Jumps. 

 Figure 2 shows the empirical distribution of the First Jump variable. The size of 

the First Jump is on the x-axis, and the frequency is on the y-axis. For example, for 

almost 200 cars, the First Jump was $500. Because it is a logarithmic scale, the frequency 

determines the scale of the x-axis. For example, the First Jump was $100 96 times and 

$200 101 times. Because First Jump was never between $100 and $200 for any of the 

items sold, these two values are juxtaposed in the chart. On the other hand, one car 

received a first bid of $75. This number appears on the chart because, to make the chart 

clear, the First Jump values are reported on the chart scale in two-value increments.        

[Figure 2 here] 

 Figure 3 shows the empirical distribution of the Second Jump variable. Again, 

because it is a logarithmic scale, the values of this variable determine the scale of the x-

axis. If, for example, none of the cars receives $75 as Second Jump, this value is absent 

from the chart scale. We can see that the difference between the first and second bids was 

usually $100. For almost 100 cars, the Second Jump was $50.     

[Figure 3 here] 

 Figure 4 shows the empirical distribution of the Average Jump. The value of the 

Average Jump variable appears on the x-axis, its frequency on the y-axis. The minimum 

Average Jump is $25, which occurs 22 times. The scale, again, is a logarithmic scale. The 

Average Jump was $50 68 times, and it was $75 25 times. The most-frequent Average 

Jump (95 times) was $100.   

[Figure 4 here] 

 Figure 5 shows the empirical distribution of the Last Jump. The value of the Last 

Jump, which is the difference between the winning bid and the preceding bid, appears on 

the x-axis, with the frequency on the y-axis. We can see that the most frequent event is 

that the winner increases the current bid by $50, which is the case for 369 cars.    

[Figure 5 here] 

 We can conclude the following from the above charts and table. First, jump 

biddings are important phenomena. Of the four variables described above, all of them are 

significantly above the minimum bid increment. Bidders use jumps to advance their bids 
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in all the auction stages. In addition, there is a pattern, on average, that the First Jump is 

greater then the Second Jump, which is greater then the Average Jump, which is greater 

then the Last Jump.6 The question that arises is, “Why do jump biddings exist?” It does 

not seem rational for bidders to progress and submit offers that are above the minimum 

bid increment (the ratchet solution). This paradox is noticeable in the Last Jump chart. 

For more than 150 cars that were auctioned, the winning bid was increased by $100 or 

more when it could have been increased by only $25. The winner did not know when he 

bid that he would win, but it is still puzzling.  

There might be several explanations for the jump bidding phenomenon. 

1) Agents value their time: In this sense, a bidder will immediately jump to the lower 

bound of the valuation support (which explains the First Jump phenomena), and 

they might then progress in steps that are above the minimum bid increment. In 

addition, if there is a social pressure to finish the auction fast, bidders will feel 

uncomfortable to advance their bids by the minimum bid increment in the 

beginning and proceed instead in bigger steps.  

2) Comfort: It is easy to work with round numbers. It is easier for some of the agents 

to add 100 than increments of 25 or 75. As we can see from the figures describing 

the Second Jump, Average Jump and Last Jump, there are spikes at $100 and $50. 

In addition, none of the items had a second jump of $75 or $125. 

3) Signaling and threat: As pointing out by Avery (1998), under affiliated values 

paradigm, jumps may signal to and coordinate with opponents about an agent’s 

valuation. In addition, jumps may signal that an agent is a strong candidate and 

will bid aggressively to win the object. 

4) Distribution: We can observe a rational jump bidding because of distribution of 

the valuation. If, for example, the distribution is increased above the support in a 

two-bidder game with private values, we may observe optimal jump biddings. 

                                                 
6 This relationship holds not only when I look at the averages. When I examine within each item, the First 
Jump is greater than or equal to the Second Jump for 99% of the items sold, the Second Jump is greater 
than or equal to the Average Jump for 95% of the items sold, and the Average Jump is greater than or equal 
to the Last Jump for 95% of the items sold. There is equality between the First and the Second Jumps for 
13% of the items, between the Average Jump and Second Jump for 28% of the items, and between the 
Average Jump and Last Jump for 24% of the items sold. This pattern is justified because the probability of 
winning with jump bidding, and pay too much, increasing with the auction progress.  
 



 11

Also, it is easy to demonstrate that, even with uniform distribution of valuation, 

an optimal jump bidding may occur when the auction progresses only in discrete 

steps (Rothkopf et al., 1994).    

5) Agents: It might be the case that people participating in these auctions are 

following the orders of their employees. For example, a worker in a dealership 

might have instructions to bid a maximum of $x on an item, but have no 

instructions about the bidding process.   

6) Bounded rationality: People might behave sub optimally and deviate from optimal 

behavior as predicted by the theory.   

 

4. Initial Regression Analysis 
 

 To explore the relationship between jump biddings and car characteristics, an 

ordinary least squares (OLS) regression is applied.  Table 3 shows the regression results 

of the different types of jumps on a variety of explanatory variables. Each column 

corresponds to a different jump bidding variable. The explanatory variables in the models 

are the presale estimator (Estimator), the number of years the car has been used (Year) 

(2001/02 minus the manufacture year), the mileage that appears on the odometer divided 

by 10,000 (Mileage), the order in which the car was auctioned divided by the total 

number of cars in the particular auction7 (Order), and a dummy variable equal to 1 if the 

car was in poor condition (Poor) and 0 otherwise. In addition, there are fixed-effects 

dummies for the different auctions (Auction dummies). 

[Table 3 here] 

 In the first four columns, I run the regression using all observations, whereas in 

the last two columns I use only the items that received more than one offer.8 The constant 

is significant in all specifications and keeps the same pattern as in the means: First Jump 

is greater then the Second Jump, which is greater then the Average Jump, which is 

greater then the Last Jump. The Year variable is significant and with the “right sign” only 

                                                 
7 I define the order in this way to control for the different number of items in each auction.  
8 There is no difference in the Second Jump and Average Jump variables because these variables are 
defined only for items receiving more than one and two offers, respectively.   
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in the First Jump variable. On average, each additional year the car has been used will 

reduce the First Jump (offer) by $45. It is not significant in the Second Jump, Average 

Jump, or Last Jump variables. The Mileage is negative and significant in all of the 

specifications except the Last Jump. Another point of interest is that unlike the selling 

price, the order the object is auctioned has no effect on the jump biddings. The condition 

of the car (Poor) has no effect on the jump variables either. This could be because the 

presale estimator already captures this information.    

  The fact that the presale estimator and other measure condition affect all the jump 

bidding variables suggests that there is some strategic behavior in the way bidders 

advance their bids. If one believes that the bidders arrive at the auction place with just a 

number that they plan to stop at and do not consider the process leading up to this number 

(like in the usual model of the English oral auction with the continuous clock 

mechanism), those initial findings will dismiss these beliefs.   If there was not some 

strategic behavior in the bidding process, none of the covariates that appear in the 

regression except the constant should be statistically different from zero. 

             In the last two columns, I repeat the analysis, but this time I exclude the items 

that received only one offer, because in those cases, the First Jump and the Last Jump are 

the same. The mean of the offers ending in the first round was $248.75, which is far 

above the mean of the Last Jump variable. In addition, there were two outliers with 

respect to the Last Jump variable, but not an outlier with respect to the First Jump 

variable (rounds that end in the first offer and items sold for $500 and $1800, 

respectively). What we can see from the regression analyses in columns four and five is 

that, while the First Jump regression coefficients and 2R  do not change by much, there is 

a huge increase in the 2R  for the Last Jump regression because the two outliers are 

excluded. This leads me to conclude that the items sold after one round should be 

classified as a First Jump and not Last Jump.9   

 As a robustness check, and because I do not know the true theoretical model that 

governs the jumps, I run the same regressions, this time with log of the monetary 

                                                 
9Bidders in stage 0 do not know that the auction will end after one round. They know however that the next 
stage is the First Jump. 
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variables (the presale estimator and the different jump variables) instead of levels. The 

results, showed in Table 3A, are qualitatively very similar.  

[Table 3A here] 

 
5. Common Values or Private Values? 
  
 It is reasonable to assume that used car auctions are common value auctions, and 

in this section I will demonstrate that we cannot reject the hypothesis that the data are 

consistent with models assuming common valuations. The method I will use to 

distinguish between the common and private value paradigms in oral English auctions is 

different from the method usually suggested in the literature because the information 

available to the researcher in those auctions is different from the information available in 

sealed-bid auctions. First, even if the attendant number of bidders could be controlled for, 

the active number of bidders cannot. Second, information about each candidate bidding in 

each stage is not available. In addition, I will demonstrate that there is a positive 

relationship between jump biddings, which again suggests some strategic behavior during 

the auction process. 

 In Table 4, I report the results demonstrating the positive relationship between the 

jump biddings. Each column in the table corresponds to a different regression. When the 

column title is Average Jump, for example, it means that it was the dependent variable in 

that regression. All regressions include a constant, the presale estimator, the year of 

manufacture, the mileage as it appears on the odometer, the order the car was sold, and a 

dummy variable for the specific auction. Similar results were obtained when any subset 

of this model was applied. I report only the jump variable coefficients from those 

regressions because they are my main interest and it saves space.  

[Table 4 here]    

 The first column indicates that the size of the First Jump affects the size of the 

Second Jump,10 with an increase in the First Jump leading to an increase in the Second 

                                                 
10 Daniel and Hirshleifer (1998) provide a model for sequential bidding when there is a cost associated with 
submitting or revising a bid. Proposition 2 of their paper states that the jump between the first and the 
second bid is increasing in the initial bid for all identically distributed valuation densities satisfying some 
regular restriction on the density function. In our notation, the proposition states that we expect to have a 
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Jump. Although the effect is not big, it is positive and significant. We can conclude also 

that this phenomenon is not unique to the first stage. The same effect occurs when the 

Second Jump is a covariate in the Average Jump regression and when the Average Jump 

is a covariate in the Last Jump regression. In addition, the First Jump has a positive 

influence on the Last and Average Jumps. When the First and Second Jumps are 

introduced (in the Average Jump regression), the effect of the First Jump diminishes and 

becomes significant only at 10% significance level. Looking at the 2R , it can also be 

concluded that the best predictor for each jump variable is the variable that immediately 

precedes it (i.e. the Second Jump for the Average Jump and the Average Jump for the 

Last Jump). The predicting power declines with the distance between the variables. 

Again, as a robustness check I run the same regressions with log instead of levels. The 

results, showed in Table 4A, are qualitatively very similar.  

 Rothkopf and Harstad (1994) provide a model of an independent private value 

English auction with a discrete bid increment. In their model, bidders draw their values 

from nonincreasing distributions (e.g., uniform or exponential), and the pedestrian 

bidding by the bidders is equilibrium. Therefore, my findings so far refute their model’s 

assumptions. The fact that there are jump biddings implies that the assumption of the 

independent private values or of non increasing distribution is not appropriate to my data. 

 The results presented in Table 4 and Table 4A support the claim that there is some 

strategic bidding behavior in the auction process and that some of the jump variables 

affect other jump variables. Natural question that arise at this point is whether jump 

biddings have a real effect on the auction outcome and they affect the winning bid. Avery 

(1998) solved the English auction game of two risk-neutral bidders with affiliated 

common values. He found that, under the proposed equilibrium, jump biddings may be 

employed to intimidate one’s opponents and serve as a correlating device between 

bidders.  The fact that the jumps are used as a correlating device suggests that the selling 

price might be path dependent. In other words, the jumps might affect the winning bid 

outcome.  If one thinks, on the other hand, about the private value paradigm, the jumps 

should have no real effect on the winning bid. In that sense, the history of the bids will 

                                                                                                                                                 
positive significant sign on the First Jump variable when running a regression with the Second Jump as a 
dependent variable.  
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not affect the winning bid because there is no winner’s curse in a private value auction. A 

reasonable strategy, under the regular assumption of a private value auction game, is to 

advance the bid as long as the opponent’s current bid is below the valuation, no matter 

what the history is. Hence, we might have a test that will allow us to distinguish between 

common value and private value auctions. If the jumps affect the selling price of the good 

after controlling for all the other relevant covariates, we cannot reject the hypothesis that 

the auction involves a common value between bidders because the selling price is path 

dependent.   

 Table 5 shows the regression results. The sample includes items receiving more 

than a one offer, although similar results were obtained using the whole sample.  All 

regressions include fixed-effect auction dummies and interaction variables between the 

auction dummies and the other covariates (which are not reported here to save space). 

Similar results are obtained when the log of the variables is used instead of the variables’ 

level and when the model that is being used is a subset of the above model.   

 Table 5 shows that each of the jump variables is statistically significant and has 

prediction power for the selling price of the good. The goodness of fit is varied between 

the jump variables, and the best fit is for the First Jump. The First Jump is correlated with 

the selling price, which means that if there is causality between the First Jump and the 

selling price then the selling price is path dependent. This might lead to the conclusion 

that the auction data came from a common value auction.  

[Table 5 here] 

 Again, as a robustness check I run the same regressions with logs instead of 

levels. The results, showed in Table 5A, are qualitatively very similar. 

I used the term correlation and not causation because there might be an 

endogeneity problem in the last regression and maybe the direction of causality is from 

the selling price to the First Jump. If this is the case we cannot conclude that there is a 

path dependency.  First, to perform a Hausmann test to check for endogeneity, I had to 

find an instrument that is correlated with the First Jump, for example, but not with the 

winning bid. I have been unable to find such a variable, but even if I could, the problem 

would not be solved.  We can demonstrate exogeneity by two means: statistical tests, 

when we have an instrument, and context. In our auction, for example, it is obvious from 



 16

the context that all the covariates except the jump variables are exogenous: the year of 

manufacture, the mileage, and the condition of the car affect the selling price and not vice 

versa.  In the relationship between the First Jump and the winning bid, we are interested 

in endogeneity in the causality sense. Does the First Jump affect the winning bid or does 

the winning bid cause the size of the First Jump?  If the First Jump affects the winning 

bid, then we can be sure that the auction process is path dependent, and hence that is a 

common value auction.  

Although the First Jump happens before the final bids and might be considered to 

be predetermined, one can claim that a bidder’s strategy will be to bid a constant fraction 

of his valuation as the First Jump or to randomize his First Jump where the randomization 

is between 0 and his valuation. If this is the case, we will observe the same results with 

the opposite conclusion.11  

To be able to comment on this issue, and investigate if my data are consistent with 

the first model proposed, I constructed a new dummy variable. This variable equals 1 if 

the number of bids is even and 0 otherwise. The idea is that if the structure of the bidding 

process is usually the same (namely, for each item that is being sold, on average two 

bidders compete with each other over it), then an even number of bids means that on 

average the person who responded to the First Jump won the object.  In that case, the 

winning bid is a good proxy for the first bidder valuation under the private value auction 

assumptions. On the other hand, when the number of bids is odd, the winning bid is only 

a lower bound for the first bidder valuation.  If the data came from a private value 

auction, then when we introduce this dummy variable to the winning bids regression, it 

should be significantly negative. I am not reporting the results here, but in all the 

regression combinations I tried, with and without the First Jump and with and without the 

log of the variables, this variable never became significant. This led me to conclude that 

the auction cannot be characterized as one involving bidders with private valuations in 

which their First Jump is a constant fraction of their valuation.12   

                                                 
11 There might be other models consistent with the private valuation model as well.  
12 Further evidence on this appears when I plot the graph describing the relation between the number of 
bids variable and the ratio between the difference between the winning bid and First Jump and the first bid, 
and the ratio between the difference between the winning bid and the First Jump and the winning bid. If the 
First Jump were a constant fraction of the winning bid, the slope of these curves should be 0 (because the 
variables are supposed to be constant). This is not the case. 
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The second model I consider, which is consistent with the private valuation 

paradigm, is one where bidders randomize their first offers. In this model, a bidder with a 

valuation of y will choose randomly a First Jump and will bid until his valuation.  This 

kind of model fits the data and we cannot reject the hypothesis that the data can be 

characterized as a private values auction data.13   

 In addition some might claim that in this model there is a technicality problem. 

Because the jump variables are always less than or equal to the winning bid we might get 

positive and significant coefficients even when the jumps are drawn randomly. In order to 

deal with this claim I define a new variable: the ratio between the selling price and the 

presale estimator.  There is no technicality in the relation between this variable and the 

jumps variable and no reason to predict that an increase in the jump will increase this 

variable.  I report the results of these regressions in Table 5B (the results from regressions 

with logs are shown in Table 5C). Again, the results demonstrate that in both models the 

jumps have a positive and significant effect on the ratio. These regressions support the 

conclusion that the jumps have real effects on the selling price.   

[Table 5B here] 

[Table 5C here]  

In addition to the jump bidding, there is more evidence to support the above claim 

that this data came from a common value auction. First, I can identify that dealers make 

up a part of the population involved in this auction. This might support the common value 

assumption, because if the dealers came from the same market and did not know the 

exact demand, then two dealers that buying the same car would make the same profit, 

hence resulting in a common value auction.14 Additional evidence is provided in Raviv 

(2003), where I show (using the same data set) that the sequence of selling prices is 

upward sloping in the first part of the auction and then remains constant for the rest of the 

auction. These findings are in line with the predictions of Milgrom and Weber (1982), 

who demonstrate that, when the agents have affiliated common values, we expect an 
                                                 
13 Consider, for example, the following model:  bidders draw their private valuation y from a uniform (0, 1) 
distribution. Then they draw their First Jump x such that x=αy where α is drawn from a uniform (0, 1) 
distribution as well.  In this case, when we run the simple regression model y=a+bx the expected value 
estimator of b will be 0.75.  If we take the log of the variables the expected value of b will be 0.33. 
14 It is still possible, hypothetically, for dealers to participate in a private-valuation auction. This could 
happen if, for example, the dealers came from different independent markets, but this seems unlikely in the 
case of car dealers in New Jersey. 
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upward-sloping price pattern. In our data, this might suggest that returns to information 

revelation have been exhausted at some point and that agents have all the information 

they need about the common component of the objects. 

 The method suggested above of distinguishing between common- and private- 

value paradigms in oral English auctions is different from what is usually suggested in 

the literature.15 The way to differentiate between the two paradigms empirically usually 

involves all the bids submitted from all bidders (typically in sealed bid auctions) and the 

assumption that, with private value, we expect a monotonic increase of winning bids in 

the number of bidders, whereas with common value, we expect that the individual bid 

function may first increase (because of competition increase) but will eventually decrease 

(because of the winner’s curse). This information is not usually available to the 

researcher in an oral English auction because, even if the attendant number of bidders 

could be controlled for, the effective number of bidders cannot. Second, information 

about each candidate bidding in each stage is not available.  The suggested method (by 

relying on observable information) can help in determining the auction type. 

      

6. Conclusions 

 
Standard auction models describe the English oral auction as a clock auction in 

which an auctioneer raises the price continuously and each bidder chooses when to drop 

out. This description, however, prevents jump biddings from happening.  When a new 

offer is submitted that is above the old offer plus the minimum bid increment, we refer to 

that as a jump bidding. This phenomenon is known to occur in reality but has not been 

fully documented in the auction literature. A rigorous empirical investigation of jump 

biddings in English auctions does not exist.  

In this paper, the characteristics of bid offers and jump biddings in sequential 

English oral auctions is empirically examined using a car auction data set I collected 

during 2001 and 2002 from New Jersey DSS in Trenton. I defined four variables that 

measure jumps and found that jump biddings are an important real-world phenomenon. 

                                                 
15 See, for example, Paarsch (1992)  and Haile, Hong, and Shum (2002) 
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For almost all of the items sold, bidders do not follow the ratchet solution but rather use 

jump biddings to increase the current offer. Furthermore, there is a pattern in the jump 

size. On average, for each item sold, the first offer is the largest jump, and the last offer is 

the smallest jump. I offer several explanations for the existence of jump biddings and 

examine them using regression analysis.  The entire set of jump variables depends on the 

presale estimator but not on the order the items are sold. These findings suggest that there 

is strategic bidding behavior in the auction process.  

I use jump biddings, and specifically the First Jump, to determine whether the 

auction of interest is a private- or common- value auction. This approach uses the fact 

that selling prices in a common value auction may be path dependent, whereas in private 

value auctions, they are not. A simple test of the effect of the First Jump on the selling 

price then determines the type of the auction. I perform this test and conclude that the 

auctions I observed can be characterized as common value auctions. On the other hand, 

the data are also consistent with several private value models, since the regression 

analysis I performed demonstrates only correlation between the jumps and the selling 

price and not causation.  One problem that arises if indeed there is a path dependency is 

that an increase in the First Jump will on average increase the winning bid. Usually, in 

the theoretical models that accommodate jumps, the incentive to make jump bidding is to 

reduce the expected selling price.  If indeed there is path dependency and an increase in 

the first jump leads to higher selling price it does not seem rational to perform the jumps.  

But this is true for any jump during the auction process and the same intuitive 

explanation provided for the existence of jumps in general will hold for the First Jump as 

well.  For further empirical research, I suggest testing for the effect of the first offer on 

the selling price when pure private value goods are being auctioned. If there is no effect, 

it supports the proposed test for deciding between the private and common value 

paradigm in an oral English auction.  

In Table 1 I reviewed the main models describes bidding pattern. None of them 

can describe effectively the bid pattern in an open outcry English auction according to my 

data. Rothkopf and Harstad (1994) predict straight forward bidding under their model 

assumption and do not specify what type of jumps we expect to observe when we deviate 

from the model assumption.  Although I demonstrate that there is a positive correlation 
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between the jumps, and this finding is similar to the theoretical predictions of Daniel and 

Hirshleifer (1998) within the private value paradigm, their model predicts that the auction 

will end after two stages. This is the case also for Macskasi (2000) and Easley and 

Tenorio (2001). Isaac et al (2003) computed numerically an example of an English 

auction using backward induction and dynamic programming. They found jump bidding 

of moderate size with convergence to the straight forward bidding at some point of the 

auction. I don’t find this pattern in my data though.  

    An extension of the Avery (1998) model to discrete bid level might yield a 

model that describes bidding behavior in English auctions which is closer to reality. But 

this task is hard to achieve since it is difficult to analyze this kind of dynamic games 

theoretically. 
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Figure 1: Pictorial Description of the Jump Variables 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This drawing describes graphically the four different jump variables for an item that has 
been sold after n rounds. On the x-axis is the stage of the auction. Round 1 is the first 
offer by any bidder, round 2 is the counter offer by the next bidder, etc.  The first offer is 
the First Jump. The difference between the first offer and the second bid is the Second 
Jump. The difference between the winning bid and the preceding bid is the Last Jump. 
The Average Jump is last offer before the wining bid minus the First Jump divided by n-
2, and it is the slope of the linear curve connecting the first bid and the bid before the 
winning offer. 
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Table 1: Models Describes Bidding Pattern 
Model * Auction Format Reasons for 

Jumps 

Predictions Data Support  

Rothkopf and 
Harstad (1994) 

English auction 
discrete bid level 

Increase distribution, 
large interval, 
discreteness 

Straight forward 
bidding 

 

     
Daniel and 
Hirshleifer (1998) 

Takeover contest, cost 
to submit bids 

Cost and signaling Jump bidding, contest 
end after max two 
active stage  

 

     
Macskasia (2000) Takeover contest, cost 

to submit bid 
Cost and signaling Jump bidding, contest 

end after max three 
active stage  

 

     
Easley and 
Tenoriob (2001) 

Ascending Internet 
auction,  random 
demand 

Cost and signaling Straightforward 
bidding with 0 costs, 
the game over after 1 
or 2 rounds if the item 
sold. 

Yankee type internet 
auctions 

     
Averyc (1998) 2 stage English auction Signaling  If both players chose 

the same in the first 
stage than a regular 
clock English auction. 
expected prices 
between the first and 
second price auction 

 

     
Isaac et al (2003) English auction with 

Discrete bid levels 
Distribution and 
discreteness 

Jump bidding of 
moderate size, 
convergence to straight 
forward bidding 

Experiment 

     
Plott and Salmon 
(2002) 

simultaneous ascending 
auctions 

None surplus maximization 
and bid minimization, 
straightforward bidding 

FCC and 3GUK 
auctions 

 
*All models assume two risk neutrality bidders with private valuation and a unit demand. a This model is an 
extension of DH to three bidders. b This model is with the same assumptions as DH beside random demand 
and cost for each round of participation. c This model assumed affiliated valuation and signals. 
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Table 2: Summary Statistics 
 

 Presale 
Estimator 

Price First 
Jump 

Second 
Jump 

Average 
Jump 

Last 
Jump 

Number 
of Bids 

        
Mean 2662.19 

(1634.84) 
1520.42 

(1168.18) 
656.91 

(626.10) 
 

121.44 
(107.08) 

81.89 
(37.38) 

62.51 
(76.41) 

11.39 
(7.13) 

Minimum 318.75 50 25 
 

25 25 25 1 

Maximum 15265 8650 6000 
 

1000 533.33 1800 49 

Observations 678 683 662 633 610 637 641 
 
Standard errors are in parentheses. 

 
 
 

Figure 2: Empirical Distribution of First Jump 
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Figure 3: Empirical Distribution of Second Jump 
 

 
 
 

Figure 4: Empirical Distribution of Average Jump 
 

0
10
20
30
40
50
60
70
80
90

100

25

34
.4 45

53
.1

56
.3

58
.1

62
.5 65

67
.5 70

73
.7

78
.6

82
.1

86
.5

90
.9

93
.8

97
.1

10
6

11
2

11
9

12
6

13
5

14
6

17
3

Average Jump ($)

Fr
eq

ue
nc

y

 
 

 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

25 50 100 150 200 250 300 400 500 1000

Second Jump ($)

Fr
eq

ue
nc

y 



 26

Figure 5: Empirical Distribution of Last Jump 
 

0

50

100

150

200

250

300

350

400

25 50 75 100 200 250 500 1800

Last Jump ($)

Fr
eq

ue
nc

y

 
 

Table 3: OLS Regression Results 
 

 First Jump  Second 
Jump 

Average 
Jump 

Last Jump First Jump 
n>1 

Last Jump 
n>1 

Constant 914.41 
(115.57) 

 

93.41 
(27.75) 

66.729 
(9.27) 

58.11 
(22.187) 

932.16 
(117.64) 

44.26 
(7.36) 

Year -45.85 
(6.10) 

 

-2.559 
(1.459) 

-0.539 
(0.4829) 

-0.569 
(1.15) 

-46.37 
(6.19) 

0.186 
(0.384) 

Mileage -17.42 
(3.92) 

 

-1.79 
(0.94) 

-1.11 
(0.319) 

-0.484 
(0.763) 

-18.177 
(4.003) 

-0.422 
(0.253) 

Estimator 0.2016 
(0.0122) 

0.0248 
(0.0029) 

0.0098 
(0.0009) 

0.004 
(0.0023) 

0.2038 
(0.0124) 

0.0061 
(0.0007) 

Order 46.60 
(55.24) 

17.175 
(13.297) 

6.817 
(4.42) 

18.04 
(10.61) 

35.11 
(56.53) 

2.33 
(3.52) 

Poor  -77.00 
(43.92) 

-18.039 
(10.897) 

-3.46 
(3.67) 

-4.087 
(8.697) 

-92.97 
(46.03) 

0.626 
(2.88) 

Observations 655 627 605 632 635 630 
R2 0.5980 0.2427 0.3349 0.0444 0.5959 0.2078 

 
Standard errors are in parentheses. All the regressions include auction dummies fixed effects. Mileage is 
the mileage that appears on the odometer divided by 10000 and Order is the order the car was auctioned 
divided by the total number of cars in the particular auction. 
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Table 3A: OLS Regression Results 
 

 Log First 
Jump  

Log Second 
Jump 

Log 
Average 

Jump 

Log Last 
Jump 

Log First 
Jump 
n>1 

Log Last 
Jump 
n>1 

Constant 2.128 
(0.412) 

 

1.971 
(0.359) 

1.963 
(0.267) 

1.989 
(0.334) 

2.092 
(0.426) 

1.923 
(0.310) 

Year -0.094 
(0.008) 

 

-0.016 
(0.007) 

0.00002 
(0.005) 

0.005 
(0.007) 

-0.094 
(0.008) 

0.006 
(0.006) 

Mileage -0.031 
(0.005) 

 

-0.014 
(0.004) 

-0.013 
(0.003) 

-0.006 
(0.004) 

-0.032 
(0.005) 

-0.007 
(0.004) 

Log Estimator 0.720 
(0.042) 

 

0.384 
(0.037) 

0.323 
(0.027) 

0.268 
(0.034) 

0.727 
(0.044) 

0.273 
(0.032) 

Order -0.019 
(0.075) 

 

0.046 
(0.065) 

0.036 
(0.048) 

0.054 
(0.060) 

-0.032 
(0.077) 

0.020 
(0.056) 

Poor  -0.230 
(0.060) 

 

-0.137 
(0.053) 

-0.045 
(0.039) 

0.014 
(0.049) 

-0.237 
(0.063) 

0.028 
(0.046) 

Observations 655 
 

627 605 632 635 630 

R2 0.7072 
 

0.3768 0.4113 0.2163 0.6957 0.2391 

 
Standard errors are in parentheses. All the regressions include auction dummies fixed effects. Mileage is 
the mileage that appears on the odometer divided by 10000 and Order is the order the car was auctioned 
divided by the total number of cars in the particular auction. 
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Table 4: OLS Regression Results 
 

 Second 
Jump 

Average 
Jump 

Average 
Jump 

Average 
Jump 

Last 
Jump 

Last 
Jump 

Last 
Jump 

Last 
Jump 

         
First Jump 0.023 

(0.009) 
0.0089 
(0.0031) 

 0.0043 
(0.0024) 
 

0.005 
(0.002) 

  0.002 
(0.002) 

Second Jump   0.196 
(0.010) 

0.194 
(0.010) 

 0.032 
(0.009) 

 -0.058 
(0.010) 
 

Average Jump       0.347 
(0.027) 

0.453 
(0.033) 
 

Observations 
 

627 604 604 604 604 604 604 604 

R2 0.2470 0.3429 0.5822 0.5843 0.2345 0.2419 0.3948 0.4240 
 

Standard errors are in parentheses. All regressions include a constant, the presale estimator, the year of 
manufacture, the mileage as it appears on the odometer, the order the car was sold, and a dummy variable 
for the specific auction. Similar results are obtained when any subset of this model is applied 

 
 

Table 4A: OLS Regression Results 
 

 Log 
Second 
Jump 

Log 
Average 
Jump 

Log 
Average 
Jump 

Log 
Average 
Jump 

Log 
Last 
Jump 

Log 
Last 
Jump 

Log 
Last 
Jump 

Log 
Last 
Jump 

         
Log First Jump 0.074 

(0.033) 
0.085 
(0.024) 

 0.044 
(0.017) 

0.088 
(0.028) 

  0.033 
(0.023) 

Log Second 
Jump 

  0.501 
(0.021) 

0.496 
(0.021) 

 0.201 
(0.033) 

 -0.245 
(0.037) 

Log Average 
Jump 

      0.652 
(0.039) 

0.882 
(0.053) 

Observations 
 

627 604 604 604 604 604 604 604 

R2 0.3752 0.4215 0.6980 0.7011 0.2624 0.2947 0.4897 0.5249 
 

Standard errors are in parentheses. All regressions include a constant, the log of the presale estimator, the 
year of manufacture, the mileage as it appears on the odometer, the order the car was sold, and a dummy 
variable for the specific auction. Similar results are obtained when any subset of this model is applied. 
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Table 5: OLS Regression Results of Winning Bid 
 

 1 2 3 4 
     

Constant 465.12 
(441.93) 

 

572.68 
(522.09) 

387.17 
(522.45) 

535.66 
(527.74) 

Year -9.21 
(26.92) 

 

-10.94 
(31.81) 

-5.87 
(31.57) 

-9.63 
(32.09) 

Estimator 0.375 
(0.056) 

 

0.670 
(0.062) 

0.708 
(0.061) 

0.712 
(0.062) 

Poor  -0.070 
(0.062) 

 

-0.150 
(0.073) 

-0.182 
(0.076) 

-0.173 
(0.074) 

Mileage -37.72 
(12.41) 

 

-63.46 
(14.53) 

-71.02 
(14.94) 

-68.55 
(14.63) 

Order 132.37 
(68.52) 

120.44 
(81.61) 

99.95 
(82.56) 

118.33 
(82.14) 

     
First Jump 0.846 

(0.051) 
   

Second Jump  1.326 
(0.254) 

  

Average Jump   3.849 
(0.779) 

 

Last Jump    2.507 
(0.936) 

Observations 635 627 605 630 
R2 0.8447 0.7826 0.7827 0.7739 

 
Standard errors are in parentheses. The sample includes items receiving more than a single offer. Mileage is 
the mileage as it appears on the odometer divided by 10,000.  All regressions include auction fixed-effect 
dummies and interaction terms between the auction dummies and the other covariates. Similar results are 
obtained when the log variables, instead of the variables’ levels, are used and when the model used is a 
subset of the above model.  
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Table 5A: OLS Regression Results of Log Winning Bid 
 

 1 2 3 4 
     

Constant 2.339 
(0.846) 

 

2.995 
(1.019) 

2.356 
(0.983) 

3.383 
(1.046) 

Year -0.035 
(0.019) 

 

-0.068 
(0.023) 

-0.069 
(0.021) 

-0.078 
(0.023) 

Log Estimator 0.352 
(0.088) 

 

0.536 
(0.105) 

0.571 
(0.100) 

0.565 
(0.108) 

Poor  -0.011 
(0.014) 

 

-0.013 
(0.017) 

-0.017 
(0.017) 

-0.025 
(0.017) 

Mileage -0.021 
(0.008) 

 

-0.037 
(0.009) 

-0.040 
(0.009) 

-0.043 
(0.009) 

Order 0.152 
(0.044) 

0.142 
(0.053) 

0.130 
(0.052) 

0.151 
(0.055) 

     
Log First Jump 0.415 

(0.022) 
   

Log Second Jump  0.229 
(0.033) 

  

Log Average Jump   0.348 
(0.045) 

 

Log Last Jump    0.158 
(0.039) 

Observations 635 627 604 630 
R2 0.8733 0.8171 0.8284 0.8065 

 
Standard errors are in parentheses. The sample includes items receiving more than a single offer. Mileage is 
the mileage as it appears on the odometer divided by 10,000.  All regressions include auction fixed-effect 
dummies and interaction terms between the auction dummies and the other covariates. Similar results are 
obtained when the model used is a subset of the above model.  
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Table 5B: OLS Regression Results of the Ratio between the Winning Bid 
and estimator 

 
 1 2 3 4 
     

Constant 0.516 
(0.058) 

 

0.724 
(0.052) 

0.679 
(0.058) 

0.758 
(0.054) 

Year 0.003 
(0.003) 

 

-0.007 
(0.002) 

-0.005 
(0.002) 

-0.008 
(0.002) 

Poor  -0.00002 
(0.000007) 

 

-0.00002 
(0.000008) 

-0.00003 
(0.000008) 

-0.00003 
(0.000008) 

Mileage -0.006 
(0.002) 

 

-0.008 
(0.002) 

-0.008 
(0.002) 

-0.009 
(0.002) 

Order 0.041 
(0.028) 

0.051 
(0.029) 

0.051 
(0.029) 

0.054 
(0.029) 

     
First Jump 0.00012 

(0.00001) 
   

 Second Jump  0.0002 
(0.00008) 

  

Average Jump   0.0007 
(0.0002) 

 

Last Jump    0.00041 
(0.00032) 

Observations 635 627 604 630 
R2 0.2474 0.1957 0.1836 0.1869 

 
Standard errors are in parentheses. The sample includes items receiving more than a single offer. Mileage is 
the mileage as it appears on the odometer divided by 10,000.  All regressions include auction fixed-effect 
dummies. Similar results are obtained when the log variables, instead of the variables’ levels.  
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Table 5C: OLS Regression Results of the Log Ratio between the Winning 
Bid and estimator 

 
 1 2 3 4 
     

Constant -1.976 
(0.220) 

 

-0.814 
(0.202) 

-1.118 
(0.228) 

-0.409 
(0.196) 

Year 0.012 
(0.006) 

 

-0.020 
(0.005) 

-0.015 
(0.005) 

-0.025 
(0.005) 

Poor  -0.00005 
(0.00001) 

 

-0.00006 
(0.00001) 

-0.00006 
(0.000015) 

-0.00007 
(0.00001) 

Mileage -0.009 
(0.003) 

 

-0.017 
(0.004) 

-0.016 
(0.004) 

-0.021 
(0.004) 

Order 0.077 
(0.053) 

0.083 
(0.056) 

0.087 
(0.055) 

0.091 
(0.056) 

     
Log First Jump 0.214 

(0.022) 
   

 Log Second Jump  0.133 
(0.032) 

  

Log Average Jump   0.195 
(0.042) 

 

Log Last Jump    0.075 
(0.038) 

Observations 635 627 604 630 
R2 0.3346 0.2655 0.2540 0.2515 

 
Standard errors are in parentheses. The sample includes items receiving more than a single offer. Mileage is 
the mileage as it appears on the odometer divided by 10,000.  All regressions include auction fixed-effect 
dummies.  
 

 
 
 
 
 

 


