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Non-technical summary

Research Question

In many central banks, models with unobserved components or time-varying parameters

are now routinely applied for policy analysis and forecasting. When the models are

estimated in a Bayesian framework with iterative algorithms, recurrent sampling of the

unobserved components and time-varying parameters is necessary.

Contribution

The paper proposes a conditional sampler for unobserved states in state-space models

when observations are missing in the data. To illustrate the method, the approach is

applied to a large dynamic factor model with many variables. The approach extends the

existing literature on precision-based sampling, where typically complete-data applica-

tions are considered. The sampler not only provides estimates of the factors, but also

of the missing values in the data. The paper compares the estimation accuracy and the

computing time of different precision-based samplers. As an empirical application, we

estimate international factors in GDP growth and compare estimation results based on

balanced data and results on larger, unbalanced data.

Results

The estimation accuracy of the different precision-based samplers turns out to be very

similar. In terms of computational speed, a 2-step approach performs best, which sequen-

tially samples factors and missing observations. In the empirical application we find that

global factors and the common components for GDP growth of the G7 countries are very

similar when estimated on balanced and unbalanced data. However, African and Asian

factors are more precisely estimated when using the larger, unbalanced data.



Nichttechnische Zusammenfassung

Fragestellung

In vielen Zentralbanken werden Modelle mit unbeobachteten Komponenten oder zeit-

variierenden Parametern, sogenannte Zustandsraummodelle, regelmäßig für die Analy-

se wirtschaftspolitischer Maßnahmen und Prognosen verwendet. Bei der bayesianischen

Schätzung solcher Modelle kommen häufig iterative Algorithmen zum Einsatz, in denen

wiederholt aus der stochastischen Verteilung der unbeobachteten Komponenten oder zeit-

variierenden Parameter gezogen wird.

Beitrag

Dieses Papier schlägt ein Verfahren zum Ziehen von unbeobachteten Komponenten in

Zustandsraummodellen vor, wenn der verwendete Datensatz zum Teil fehlende Beobach-

tungen aufweist. Die Methode wird anhand eines Faktormodells mit einem großen Daten-

satz veranschaulicht. Der Ansatz ergänzt die bestehende Literatur zur Ziehung auf Basis

von Präzisionsmatrizen, die typischerweise von fehlenden Beobachtungen abstrahiert. Das

Verfahren liefert dabei nicht nur eine Schätzung der unbeobachteten Faktoren des Modells,

sondern auch der fehlenden Beobachtungen. Das Papier vergleicht die Schätzgenauigkeit

und die Rechenzeit verschiedener präzisionsbasierter Ansätze in Simulationen. In der em-

pirischen Anwendung werden internationale Faktoren aus den Veränderungsraten des BIP

für verschiedene Länder geschätzt. Wir vergleichen Ergebnisse auf Grundlage von balan-

cierten Daten, bei denen Zeitreihen mit fehlenden Beobachtungen aus den Daten entfernt

wurden, mit Ergebnissen auf Basis des umfangreicheren Datensatzes, in dem Datenlücken

bestehen.

Ergebnisse

Die Schätzgenauigkeit der verschiedenen präzisionsbasierten Ansätze unterscheidet sich

nur unwesentlich. In Bezug auf die Rechenzeit schneidet ein iterativer 2-Schritt-Ansatz

am besten ab, bei dem erst die Faktoren und dann die fehlenden Beobachtungen geschätzt

werden. In der empirischen Anwendung zeigen sich geringe Unterschiede beim globalen

Faktor und den gemeinsamen Komponenten der BIP-Veränderungsraten der G7-Länder,

wenn man Ergebnisse auf Basis balancierter und unbalancierter Daten vergleicht. Fak-

toren für afrikanische und asiatische Länder werden jedoch genauer geschätzt, wenn der

umfangreiche Datensatz mit teilweise fehlenden Beobachtungen verwendet wird.
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1 Introduction

In the recent literature, conditional samplers for unobserved states given data and pa-
rameters based on the precision matrix have received considerable attention. First ap-
plications of precision-based samplers to address economic questions have been provided
by Chan and Jeliazkov (2009) and McCausland (2012), building on seminal work by Rue
(2001) and Rue and Held (2005) on Gaussian Markov random fields. There is now a
huge number of applications of precision-based samplers in the empirical macroeconomic
literature. Recent examples of state-space models with unobserved components such as
output gaps or inflation trends and time-varying parameters are Chan, Koop, and Potter
(2013, 2016), Grant and Chan (2017), and Chan, Clark, and Koop (2018) or time-varying
parameter vector autoregressive (VAR) models with a vast number of applications such
as Chan and Eisenstat (2018), Chan (2020), Chan, Eisenstat, and Strachan (2020) and
references cited therein. Factor model applications are provided by Chan and Jeliazkov
(2009), McCausland (2015), and Kaufmann and Schumacher (2017, 2019). These applica-
tion typically employ precision-based sampling of states given data as part of a Bayesian
estimation procedures like the Gibbs sampler, whose aim is to draw from the posterior
density p(θ, η|x), where η are the unobserved states, x denotes data, and θ are model
parameters. A standard Gibbs sampler iterates between drawing from the conditional
posteriors p(η|x, θ) and p(θ|x, η). Drawing from p(η|x, θ) can be carried out efficiently
by precision-based samplers, as the underlying precision matrix of states and variables
is banded in many economic models and allows for the application of fast sparse matrix
techniques (Rue, 2001).

The literature cited above applies precision-based samplers to complete data sets. In
practice, however, observations in multivariate data sets can often be missing. In this
case, an analyst has the choice of removing all time series with missing observation and
using balanced data only. This, however, implies a loss of information. The alternative is
to use the larger unbalanced data, but this raises the need for estimation methods that
can tackle missing observations.

In this paper, we propose a precision-based sampler for unobserved states in the pres-
ence of partly missing observations. In line with the literature cited above, the state-
space model is assumed to be (conditionally) linear and the disturbances follow normal
distributions. If the data are completely available, the states can be sampled from a
conditional distribution of a multivariate normal using fast band-matrix computation as
in Rue (2001) and Chan and Jeliazkov (2009). Important alternative samplers from the
literature based on the Kalman filter are provided in the seminal papers Carter and Kohn
(1994), Frühwirth-Schnatter (1994), and Durbin and Koopman (2002). The main con-
tribution of this paper is the extension of the literature on precision-based samplers by
considering missing observations. We do so by implementing an efficient reordering of
states, observed and unobserved variables that facilitates fast band-matrix computation.
The sampler provides draws from the conditional posterior distribution p(η, xm|xo, θ) for
the states and the missing observations xm conditional on observed data xo and param-
eters. Thus it can easily be integrated into Gibbs samplers to tackle missing data as
proposed by Little and Rubin (2002).

To illustrate the sampling method, we use a factor model with vector autoregressive
(VAR) dynamics for the factors and autoregressive (AR) idiosyncratic components in a
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Bayesian framework (McCausland, 2015; Kaufmann and Schumacher, 2019). Alterna-
tive missing-data approaches for factor models in the literature are Angelini, Henry, and
Marcellino (2006) and Marcellino (2007) for backdating and interpolation in a principal-
components framework, see also Bai and Ng (2019) for a recent contribution. In a Bayesian
framework, Otrok and Pourpourides (2017) interpolate data in panel data and Müller,
Stock, and Watson (2019) interpolate international long-run growth data. Further ap-
proaches based on the Kalman filter have been proposed by Jungbacker, Koopman, and
van der Wel (2011) and Banbura and Modugno (2014), amongst others.

For the factor model, we derive alternative precision-based samplers for the factors
and missing values in the data, which differ with respect to the permutations of η, xm
and xo in the precision matrix. We compare the accuracy and computational efficiency
of the precision-based samplers in simulations. As an empirical application, we estimate
international factors in GDP growth along the lines of the literature on international busi-
ness cycles with Bayesian techniques (Kose, Otrok, and Whiteman, 2003, 2008; Francis,
Owyang, and Savascin, 2017; Müller et al., 2019). We compare estimation results based on
balanced data for about 50 country-GDP time series using the standard precision-based
sampler and results on a larger, unbalanced data set consisting of more than 180 GDP
time series. We check whether results based on balanced data are robust when using the
larger information set.

The paper proceeds as follows. In Section 2, we introduce the factor model, whereas
Section 3 describes its estimation using Bayesian methods given complete data with a
focus on precision-based sampling of the unobserved factors. Section 4 provides alternative
precision-based samplers for partly missing observations. A simulation exercise to compare
the alternative precision-based samplers is provided in Section 5. In Section 6, we discuss
the results of the empirical application. Section 7 briefly discusses the calculation of the
marginal likelihood and extensions to other models such as time-varying parameter (TVP)
Bayesian VAR models. Section 8 concludes.

2 The factor model

The factor model explains the (N × 1)−dimensional vector of variables xt = (x1,t, x2,t,
. . . , xN,t)

T in time period t according to

xt = ληt + εt, (1)

ηt = φηt−1 + uη,t, εt = ψεt−1 + uε,t. (2)

The (r×1)−dimensional vector of factors is denoted as ηt, and λ is the (N×r)−dimensional
matrix of factor loadings. The factor representation (1) holds for t = 1, . . . , T . The fac-
tors follow a VAR(1) process with the (r× r)−dimensional lag parameter matrix φ. The
factor VAR disturbances are distributed as uη,t ∼ N (0r×1, ωη). The idiosyncratic com-
ponents collected in the (N × 1)−dimensional vector εt = (ε1,t, ε2,t, . . . , εN,t)

T each follow
AR(1) processes such that the (N × N)−dimensional coefficient matrix ψ is diagonal
containing the AR(1) lag parameters ψi for i = 1, . . . , N on the main diagonal. The one-
lag specification only serves to illustrate the methods. The empirical applications later
in the paper will consider a factor VAR(p) with AR(q) idiosyncratic components where
p, q > 1. The idiosyncratic disturbances are distributed as uε,t ∼ N (0N×1, ωε), where ωε
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is also diagonal with diagonal elements ωε,i for i = 1, . . . , N . We assume that uη,t and
uε,t are mutually independent and that the VAR and AR processes in (2) are stationary.
In addition, the equations in (2) are defined for time periods t = 2, . . . , T . For t = 1, let
η1 ∼ N (η1|0, ϑη,1|0) and ε1 ∼ N (ε1|0, ϑε,1|0), respectively. The means of the distributions
are set equal to their unconditional mean, which is zero in our case, so η1|0 = 0r×1 and
ε1|0 = 0N×1, respectively. As the processes underlying (2) are stationary, ϑη,1|0 and ϑε,1|0
are set equal to the unconditional covariances implied by the model equations: For the
states, we define ϑη,1|0 = ϑη, where ϑη is equal to the solution of the vector equation
ϑη = φϑηφ

T + ωη, and ϑε,1|0 is a diagonal matrix with ωε,i/(1− ψ2
i ) on the main diagonal

for i = 1, . . . , N .
For compact notation, we stack all time periods for the variables xt into one (NT ×

1)−dimensional vector according to x = (xT1 , x
T
2 , . . . , x

T
T )T. In the same way, define the

(Tr×1)−dimensional stacked vector of factors η = (ηT1 , η
T
2 , . . . , η

T
T )T and the idiosyncratic

components, ε = (εT1 , ε
T
2 , . . . , ε

T
T )T. We collect all the model parameters in the vector θ.

3 Precision-based sampling with complete data

For Bayesian estimation of the factor model, we first assume the data are complete and
later generalize to the case when some observations are missing. Complete or balanced
data means that we have one observation xoi,t available for each variable explained in the
model xi,t = xoi,t for all i = 1, . . . , N and t = 1, . . . , T , or x = xo in brief.

Our aim is to sample from the posterior distribution

p(η, θ|x) ∝ L(x|η, θ)p(η|θ)p(θ), (3)

where the likelihood function L(x|η, θ) is implied by (1) and (2), and the priors are chosen
closely in line with the existing factor model literature, see Appendix A for details. To
obtain draws from the posterior distribution, we sample sequentially from the following
conditional posterior distributions:

1. p(η|x, θ)

2. p(θ|x, η)

The precision-based sampler to draw from p(η|x, θ) is discussed in detail below, whereas
details on the samplers for p(θ|x, η) and further model specifications are provided in
Appendix A.

To prepare the application of conditional sampling from partitioned multivariate nor-
mals, we follow McCausland (2015) and define the joint vector

z =

(
η
x

)
=

(
ITr 0Tr×TN
Λ ITN

)(
η
ε

)
(4)

as a function of unobserved factors and idiosyncratic components. The matrix Λ is given
by the Kronecker product Λ = IT ⊗ λ. According to (4), the joint vector z = (ηT, xT)T

is an affine transformation of (ηT, εT)T, which are Gaussian and mutually independent.
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Hence, z also follows a multivariate normal distribution by

z|θ ∼ N
(
0T (r+N)×1, Q

−1
)
, (5)

where Q−1 is the (T (r + N) × T (r + N))−dimensional covariance matrix and Q the
corresponding precision matrix, which is conditional on model parameters. To facilitate
efficient sampling, we have to find a tractable blocked expression for the precision matrix
Q, which will allow us to apply general rules for sampling from partitioned Gaussian
vectors.

We start by deriving the covariance matrix of z and write the factor VAR as Φη = uη,
where uη|θ ∼ N (0Tr×1,Ωη),

Φ =


Ir
−φ Ir

−φ . . .
. . . Ir
−φ Ir

 , and Ωη =


ϑη,1|0

ωη
. . .

ωη

 . (6)

In stacked form, the vector of factors follows the distribution η|θ ∼ N (0Tr×1,Φ
−1ΩηΦ

−T),
where Φ has full rank and, hence, is invertible. Similarly, the stacked idiosyncratic compo-
nents are defined as Ψε = uε where uε|θ ∼ N (0TN×1,Ωε), and Ωε is a matrix containing the
matrix ϑε,1|0 on the first main diagonal block and the matrices ωε on the final t = 2, . . . , T
main diagonal blocks. Ψ is constructed in a similar way as Φ above, but the main diagonal
blocks consist of IN matrices, and all the subdiagonal blocks are equal to −ψ. It follows
that the vector of idiosyncratic components is distributed as ε|θ ∼ N (0TN×1,Ψ

−1ΩεΨ
−T).

We obtain the covariance matrix Q−1 of the joint vector z = (ηT, xT)T in (5) by

Q−1 =

(
I 0
Λ I

)(
Φ−1ΩηΦ

−T 0
0 Ψ−1ΩεΨ

−T

)(
I ΛT

0 I

)
, (7)

and we can directly derive the partitioned precision matrix

Q =

(
ΦTΩ−1

η Φ + ΛT(ΨTΩ−1
ε Ψ)Λ −ΛT(ΨTΩ−1

ε Ψ)
−(ΨTΩ−1

ε Ψ)Λ ΨTΩ−1
ε Ψ

)
=

(
Qηη Qηx

Qxη Qxx

)
. (8)

Given complete data, we can make use of the general rules for conditional sampling
from a partitioned multivariate normal distribution as in Anderson (2003), Theorem 2.5.1.
In terms of the partitioned precision matrix, Rue (2001), Section 3.1.1, provides the
conditional distribution of η given x = xo defined as

p(η|x = xo, θ)
D
= N

(
−Q−1

ηηQηxx
o, Q−1

ηη

)
. (9)

To efficiently draw a sample η∗ from this distribution, Rue (2001) and Chan and
Jeliazkov (2009) propose the application of fast band-matrix techniques. In the factor
model, Qηη = ΦTΩ−1

η Φ + ΛT(ΨTΩ−1
ε Ψ)Λ is a block-banded matrix. Sampling proceeds as

follows: Compute first the sparse Cholesky decomposition Qηη = LLT, which implies a
banded Cholesky factor L. Then, following Rue (2001), solve Lw = −Qηxx

o for w with
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a matrix equation solver. Afterwards, solve LTµ = w for µ. Solve LTv = v∗ for v, where
v∗ is drawn from the standard normal distribution N (0Tr×1, ITr). Finally, a draw of the
factors is provided by η∗ = µ+ v.

To compute the Cholesky decomposition and solve for the factors as outlined above,
matrix programming languages such as Matlab can exploit the sparse structure of Qηη

efficiently, see Chan and Jeliazkov (2009) and McCausland, Miller, and Pelletier (2011)
for details.

4 Precision-based sampling with missing observations

Now consider the case when we do not observe all values in xi,t for i = 1, . . . , N and
t = 1, . . . , T . We assume a fraction κ - chosen such that κTN is an integer - of the
observations is missing, and the missing observations can be distributed randomly across
the indexes (i, t) as in Angelini et al. (2006) and Marcellino (2007). We do not model the
process which generates the missing observations explicitly, and rather take the patterns of
missing observations as given in the data. Following Rubin (1976), we thereby assume that
the missing-data mechanism is ignorable, which is common when using macroeconomic
data.

We define those model variables with missing observations as xm, whereas variables
with available observations are denoted as xo. In the presence of missing observations, we
modify the posterior sampler from Section 3 along the lines of Little and Rubin (2002).
The general Gibbs sampler by Little and Rubin (2002) starts by sampling values for miss-
ing observations from their conditional posterior distribution. In subsequent steps, these
samples are combined with observed data, and enter the conditional posterior distribu-
tions for sampling the remaining model parameters.

In our case of the factor model (1) and (2), we want to sample from the posterior
distribution p(η, xm, θ|xo). Following Little and Rubin (2002), we do so by sequentially
sampling factors, missing observations, and model parameters from their conditional pos-
terior distributions:

1. p(η|xo, xm, θ)

2. p(xm|xo, η, θ)

3. p(θ|xo, xm, η)

Alternatively, we provide a joint sampler for factors and missing observations conditional
on parameters and observed data in a single step. In this case, the conditional distribution
p(η, xm|xo, θ) replaces the first two in the sampler above.

Our general sampling strategy works as follows: Given complete data in Section 3,
we have used the variable ordering z = (ηT, xT)T, where variables x were ordered last.
In the presence of missing observations, the main idea is to permute the variables in z
and obtain reordered or permuted zPz such that we can apply the same techniques for
conditional sampling as in Section 3. In particular, we move those variables with available
observations xo to the bottom of zPz and apply the same rules for conditional sampling
from a Gaussian as in (8) and (9).
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The reordering of variables in the vector z can be implemented by using a properly
defined permutation matrix Pz such that zPz = Pzz. In general, a permutation matrix
Pz is defined as a square binary matrix that has exactly one entry of 1 in each row and
each column and zeros elsewhere. Permutation matrices are orthogonal matrices such that
P−1
z = PT

z and PzP
T
z = PT

z Pz = I. The permutation by Pz implies a linear transformation
of z in (5), and the distribution of the transformed Gaussian zPz becomes

zPz |θ ∼ N
(
0T (r+N)×1, PzQ

−1PT
z

)
, (10)

following standard rules for linear transformations of Gaussian vectors as in Anderson
(2003), Theorem 2.4.1. Note that PzQ

−1PT
z is equal to the row- and column-permuted

covariance matrix of z since

PzQ
−1PT

z = ((PT
z )−1QP−1

z )−1 = (PzQP
T
z )−1 = Q−1

z . (11)

Thus, the permuted covariance is equal to the inverse of the permuted precision matrix. A
variable ordering and permutation in z is associated with a column- and row-permutation
of the elements in the precision matrix. After permutation, we can partition the permuted
precision matrix and apply a similar conditional sampling from a Gaussian as in (9).1

All the permutations we consider order the variables with observed data xo last in zPz .
The reordering of variables in x into variables with missing observations xm above the
variables with available observations xo can be implemented by using the permutation
matrix Px defined as

xPx =

(
xm
xo

)
= Pxx =

(
Pxm
Pxo

)
x. (12)

The matrix Pxo has TN columns corresponding to the TN elements in x = (xT1 , x
T
2 , . . . , x

T
T )T,

and the number of rows is equal to (1−κ)TN , the number of observations available for es-
timation. If observations were available for all variable values, Px would equal the identity
matrix. To construct Px in the presence of missing observations, we can set Pxo equal to
the identity matrix and remove all those rows for which the corresponding observations
are missing in the empirical data set. The matrix Pxm just consists of these removed
rows. Note that the position of missing observations in the data set is the only necessary
information to derive the permutation matrix Px. In particular, the permutation does not
depend on model parameters.

Apart from the position of xo, different sampling schemes can be derived depending on
how the factors and variables with missing values are ordered. In this paper, we discuss
two alternative samplers in the subsequent sections of the text:

1. Sequential 2-step sampler in Section 4.1 in the spirit of Little and Rubin (2002):

(a) p(η|xo, xm, θ): Sampling factors conditional on a sample of missing values,

1Note that we show matrix permutations in the paper only for expositional purposes. The Matlab
computer codes underlying the quantitative results in the paper are based on equivalent, but more efficient
index permutations (Golub and Van Loan, 2013). Let P be a permutation matrix of dimension (K ×K)
and p be a permutation vector defined as p = (1, 2, . . . ,K)× PT. For a (K ×K)-dimensional matrix S,
indexing by S(p,:) in Matlab is equivalent to row permutation PS, and S(:,p) is equivalent to column
permutation SPT. To reverse the original permutation, we can use the inverse of the permutation matrix
PT or the corresponding index r defined as r(p)=1:K;.
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observed data, and parameters. No permutation is needed in this step.

(b) p(xm|xo, η, θ): Conditionally sampling of missing observations given factors,
data, and parameters using the permutation zP2s = (xTm, η

T, xTo )T.

2. Joint sampling from p(η, xm|xo, θ) using the period-wise time permutation zPτ =
(ηT1 , x

T
m,1, η

T
2 , x

T
m,2, . . . , η

T
T , x

T
m,T , x

T
o )T, see Section 4.2.

Of course, both samplers aim at drawing from the same conditional posterior dis-
tribution p(η, xm|xo, θ). Differences between the samplers can arise with respect to a)
convergence and mixing of the Markov chain, and b) computational efficiency. Concern-
ing a), sequential samplers are in many cases easy to implement, because conditional
distributions can generally be easier derived than joint distributions. On the other hand,
sequentially sampling in two blocks using conditional distributions might lead to more
correlated samples and slower convergence compared to sampling from the joint distri-
bution in one block. Concerning b), computational efficiency, the joint sampler relies on
the sparse Cholesky decomposition of one huge precision matrix, whereas the sequential
sampler is based on decompositions of two smaller precision matrices for factors and miss-
ing observations, respectively. In addition, the alternative permutations of variables can
influence the speed of the sparse Cholesky decomposition (McCausland et al., 2011). Fur-
thermore, set-up costs to fill the precision matrices in each step of the Gibbs sampler vary
between the samplers. Finally, there are differences between the samplers with respect to
model evaluation using the marginal likelihood.

We will provide details on the samplers in the next subsections. A discussion of their
differences is provided in Section 5 by using simulation experiments. Details on how the
marginal likelihood can be derived using the joint sampler are provided in Section 7.

4.1 Sequential sampling of factors and missing observations

This precision-based sampler iterates between sampling factors conditional on interpo-
lated missing values from p(η|xo, xm, θ) and, thereafter, values for missing observations
conditional on factors from p(xm|xo, η, θ):

1. p(η|xo, xm, θ): Assume we have a draw for missing values xm = xm∗. We can stack
the interpolated missing data and the observed data in x∗Px = ((xm∗)T, (xo)T)T. By
reversing the data permutation from (12) according to P−1

x = PT
x , we can move the

interpolated values to the positions of the missing observations in the original data
set using x∗ = PT

x x
∗
Px

. Given the partly interpolated data, we can use the complete-
data sampler from (9) to draw factors conditional on the data and parameters from

p(η|xo = xo, xm = xm∗, θ) = p(η|x = x∗, θ)
D
= N

(
−Q−1

ηηQηxx
∗, Q−1

ηη

)
. (13)

Note that the moments in (13) differ from those in the complete-data case (9) only
with respect to x∗ in the mean.

2. p(xm|xo, η, θ): We draw values for missing observations conditional on a factor sam-
ple η∗ from step 1 and observed data. We use the permutation zP2s = (xTm, η

T, xTo )T,
where the variables corresponding to missing observations in the data are ordered
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first, whereas factors and observed data are ordered last. We permute by zP2s = P2sz
with permutation matrix

P2s =

 0κTN×Tr Pxm
ITr 0Tr×TN

0(1−κ)TN×Tr Pxo

 , (14)

where the permutation matrices Pxm and Pxo decompose the model variables as in
(12). As (10) holds for any permutation matrix, the distribution of the transformed
Gaussian zP2s is

zP2s|θ ∼ N
(
0T (r+N)×1, P2sQ

−1PT
2s

)
, (15)

and the permuted covariance is equal to the inverse of the permuted precision matrix
by P2sQ

−1PT
2s = (P2sQP

T
2s)
−1 = Q−1

2s . The precision matrix can be derived as the
inverse of a block matrix product by

Q2s = P2s

(
I −ΛT

0 I

)(
Qη 0
0 Qε

)(
I 0
−Λ I

)
PT

2s

=

PxmQεP
T
xm −PxmQεΛ PxmQεP

T
xo

−ΛTQεP
T
xm Qη + ΛTQεΛ −ΛTQεP

T
xo

PxoQεP
T
xm −PxoQεΛ PxoQεP

T
xo

 , (16)

where we have defined Qε = (Ψ−1ΩεΨ
−T)−1 = ΨTΩ−1

ε Ψ and Qη = (Φ−1ΩηΦ
−T)−1 =

ΦTΩ−1
η Φ to simplify notation from (7). The variable ordering in zP2s = (xTm, η

T, xTo )T

is useful for conditional sampling, as the first block contains the variables with miss-
ing observations, whereas the rest contains the conditioning information, namely,
factors and observed data. We thus partition the precision matrix by

Q2s =

(
Qxm,xm Qxm,ηxo

Qηxo,xm Qηxo,ηxo

)
, (17)

where the top-left (κTN × κTN)-dimensional block is defined asQxm,xm = PxmQεP
T
xm .

Similarly to (9), we can derive the conditional distribution of missing observations
conditional on factors and observed data

p(xm|xo = xo, η = η∗, θ)
D
= N

(
−Q−1

xm,xmQxm,ηxo((η
∗)T, (xo)T)T, Q−1

xm,xm

)
. (18)

Note that in the precision matrix Qxm,xm , the matrix Qε = ΨTΩ−1
ε Ψ is the precision matrix

of the idiosyncratic components’ prior distribution. Since the idiosyncratic components
follow a VAR(1) process, the precision matrix is block-banded (Chan and Jeliazkov, 2009).
Permutation using P2s just selects those idiosyncratic components corresponding to miss-
ing observations in the data and thus leaves the precision matrix Qxm,xm = PxmQεP

T
xm

block-banded.
In the subsequent parts of the text, we call this method ’Sequential 2-step sampling’.
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4.2 Joint sampling of factors and missing observations with time
permutation

To efficiently sample from the joint distribution, we permute z such that factors and
missing values are ordered together for each time period t, (ηTt , x

T
m,t)

T. These vectors are
stacked for t = 1, . . . , T and placed on top of the variables with observed data xo. We
obtain the permuted vector of variables zPτ = (ηT1 , x

T
m,1, η

T
2 , x

T
m,2, . . . , η

T
T , x

T
m,T , x

T
o )T. Note

that the variables in z = (ηT, xT)T are already ordered period-wise within the blocks for
factors η = (ηT1 , η

T
2 , . . . , η

T
T )T and variables x = (xT1 , x

T
2 , . . . , x

T
T )T in (4). To reorder the

variables, we permute by zPτ = Pτz with

Pτ =



Pη,1 0r×NT
0Nm,1×rT Pxm,1
Pη,2 0r×NT

0Nm,2×rT Pxm,2
...

...
Pη,T 0r×NT

0Nm,T×rT Pxm,T
0(N−

∑
tNm,t)×rT Pxo


, (19)

where Nm,t denotes the number of missing values in x at time t.
The matrices Pη,t for t = 1, . . . , T are equal to the rows from the identity matrix

IrT = IT ⊗ Ir matrix corresponding to period t such that

Pη,t =
(

0r×r(t−1) Ir 0r×r(T−t)
)
. (20)

Note that the matrix Pη,t can be considered as a block row vector having T blocks, each
consisting of r columns. The period-t block is just the (r × r) identity matrix, because
all r factor values are ordered first in (19) in each period.

The matrices Pxm,t for t = 1, . . . , T contain the block rows of the matrix Pxm as defined
in (12) that correspond to missing observations in xt according to

Pxm =


Pxm,1
Pxm,2

...
Pxm,T

 . (21)

The number of rows of Pxm,t, Nm,t, is equal to the number of missing values in xt at time
t, whereas the number of columns is equal to TN . Note that Pxm,t can also be considered
as a block row vector having T column blocks, each consisting of N columns, according
to

Pxm,t =
(

0Nm,t×(t−1)N Pxm,(t,t) 0Nm,t×(T−t)N
)
, (22)

where the (Nm,t × N) matrix Pxm,(t,t) selects the missing observations in period t, as
implicitly defined in (12), taking into account the stack of variables x = (xT1 , x

T
2 , . . . , x

T
T )T

in (4).
Note that all vectors and matrices above follow the convention that a block matrix
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with zero row or column size implies the matrix is empty, and the corresponding blocks
in the matrices above represent empty placeholders. This applies to either time periods
without any missing observations or time periods without data observations.

Given the permutation matrix Pτ , we can obtain the permuted vector of variables
zPτ = Pτz and the permuted precision matrix Qτ = PτQP

T
τ . In Appendix B, we derive

the precision matrix Qτ by exploiting the period-wise block structure implied by zPτ .
Our aim is to jointly sample factors and values for missing observations from the

conditional distribution p(η, xm|xo = xo, θ). The final block in the vector zPτ is xo and the
corresponding observations serve as the conditioning set. Thus, the permuted precision
matrix Qτ can be partitioned in the following way

Qτ =

(
Qηxm,ηxm Qηxm,xo

Qxo,ηxm Qxo,xo

)
, (23)

where the upper-left block Qηxm,ηxm has dimensions (rT +
∑T

t=1 Nm,t)× (rT +
∑T

t=1Nm,t),
and we can directly derive the conditional distribution

p(η, xm|xo = xo, θ)
D
= N (−Q−1

ηxm,ηxmQηxm,xox
o, Q−1

ηxm,ηxm) (24)

for factors and missing values conditional on observed data. In Appendix B, we show that
Qηxm,ηxm is a block-banded matrix. In particular, it has block bandwidth equal to one,
thus, representing a block tridiagonal matrix (Golub and Van Loan, 2013). The reason
is that the reduced form of the factor model can be written as a VAR process of order
one in the factors and explained variables. Following Rue and Held (2005), precision
matrices of AR processes have a bandwidth equal to the lag order of the AR process. In
the appendix, we show that this result also holds in the factor model (1) and (2) with
missing observations, where the precision matrix is block tridiagonal.

In the subsequent parts of the text, we call this method ’Joint sampling, time permu-
tation’.

5 Comparing the precision-based samplers by simu-

lations

Based on simulations, we compare the convergence properties, the computing time of the
precision-based samplers as well as their equivalence in terms of mean-squared errors of
simulated factors and missing observations.

5.1 Data-generating process and model estimation

The data-generating process (DGP) has a factor structure with r = 2 factors, which follow
a VAR process with one lag. The idiosyncratic components each follow AR processes with
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one lag. The variables xi,t for i = 1, . . . , N are simulated according to

xi,t = λi·ηt + εi,t, (25)

ηt =

[
0.4 0
0 0.8

]
ηt−1 + uη,t, uη,t ∼ N (0, I2), (26)

εi,t = 0.4εi,t−1 + uε,i,t, uε,i,t ∼ N (0, ωε). (27)

For the loading matrix λ, we specify a point-mass normal mixture distribution often used
for variable selection as in George and McCulloch (1993, 1997), and Geweke (1996):

p(λij)
D
= (1− ρj)δ0(λij) + ρj N (mj,M), (28)

p(ρj)
D
= B(r0s0, r0(1− s0)), (29)

where δ0(·) represents the Dirac function with point mass at zero and ρj is a factor-specific
probability of a non-zero loading. The inclusion probabilities ρj follow a beta distribution,
B(r0s0, r0(1−s0)), with mean s0 = 0.5 and precision r0 = 30. The non-zero factor loadings
are simulated out of the normal distributions N (mj,M) with m1 = 0.60, m2 = 0.40, and
M = 0.01. The variance M = 0.01 is relatively tight in order to clearly separate zero
and non-zero loadings. For the variances of the idiosyncratic components, we assume an
inverse gamma distribution according to ωε ∼ IG(2, 0.5).

Concerning sample size, we consider T = 100 time-series observations and N = 100
variables. Given this specification, we sample factors ηDGP and data xDGP from (25) and
(27). To address missing observations, we assume that 20% of observations are missing,
κ = 0.20. We randomly set κNT observations in the sample xDGP to missing values,
yielding the data set xo used for Bayesian estimation of factors and missing observations.
In the experiment, we sample K = 100 times from the DGP and estimate the factor model
on each data set. We ran further experiments with different specifications for (T,N, κ)
and alternative priors. As the results in the alternative experiments are very similar
compared to the baseline case summarized below, we only report the baseline results.

In the simulation experiments, the factor model is estimated using the posterior
sampler outlined in Appendix A for each data xo,(k) set sampled from the DGP for
k = 1, . . . , K. Each time, we draw G = 10000 times from the posterior. We obtain
samples for factors, missing values, and parameters according to η(k,g), xm,(k,g), θ(k,g) ∼
p(η, xm, θ|xo = xo,(k)) for g = 1, . . . , G and k = 1, . . . , K. To address convergence and
computing time depending on the number of draws, we consider different partitions of
the raw posterior draws. In particular, we compare alternative numbers of burn-in draws
Gburn-in and numbers of posterior evaluation draws Geff.

5.2 Comparing inefficiency factors

We compute inefficiency factors to discuss convergence and mixing of the Gibbs Sampler.
The inefficiency factor can be defined as in Chib (2001) by

IEη,j,t,k = 1 + 2
M∑
m=1

(1− m

M
)ρη,j,t,k(m), (30)
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where ρη,j,t,k(m) is the estimated autocorrelation at lag m of the posterior draws for model

factors η
(k,g)
j,t |xo = xo,(k) over the draws g = Gburn-in + 1, . . . , Gburn-in +Geff. The maximum

lag order is M = 150. Values of IEη,j,t,k greater than one indicate autocorrelation in the
chain that might be due to poor mixing or lack of convergence. We compute inefficiency
factors for the posterior samples of the model factors for j = 1, 2, time periods t = 1, . . . , T ,
and for k = 1, . . . , K samples from the DGP. In the left panel of Figure 1, we show box
plots for the whole distribution of inefficiency factors for model factors IEη,j,t,k across j,
t, and k and for different numbers of burn-in and evaluation draws. In the right panel
of Figure 1, we show box plots for the inefficiency factors of posterior draws of values for
missing observations.

Figure 1: Inefficiency factors for posterior samples of model factors and missing observa-
tions.
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Note: In the left figure, box plots of inefficiency factors are based on the posterior samples of model
factors for different numbers of burn-in and posterior evaluation draws. The first number shown in the
labels of the horizontal axis refers to the number of burn-in draws Gburn-in, whereas the second number
refers to the number of draws used for posterior evaluation after burn-in Geff. In the right figure, box
plots show inefficiency factors for the estimated values of missing observations.

The results for model factors in the left panel of Figure 1 show that a number of
burn-in draws greater or equal than Gburn-in = 1000 generally leads to a median of in-
efficiency factors around 10 for all three precision-based samplers. The upper bound of
the interquartile ranges are in most cases below 20 for Gburn-in ≥ 1000. Across different
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posterior sample splits, there are differences with respect to the whiskers of the boxplots,
which mark the 5th and 95th percentiles. However, with increasing numbers of burn-in and
evaluation draws, the bands tend to become smaller, and we find no systematic differences
between the two precision-based samplers. For sample splits with zero or 1000 burn-in
draws, Gburn-in, the upper bounds of the interquartile ranges for the 2-step precision-based
sampler are higher than for the joint time-permutation sampler. For Gburn-in > 1000, we
see no substantial differences in terms of convergence in the model factors between the
two precision-based samplers.

The results for missing observations in the right panel of Figure 1 show that conver-
gence is very fast for all precision-based samplers. The median of the inefficiency factors
is slightly greater than one, the upper bound of the interquartile range is about 1.3, and
the bound of the upper whisker is slightly below 3. Note that the convergence for missing
observations is substantially faster than for model factors. Convergence issues in factor
models are often due to the lack of identification between factor loadings and factors,
because ληt = (λH)(H−1ηt) holds for any invertible H as documented in Lopes and West
(2004); Ghosh and Dunson (2009); Bai and Wang (2014); Conti, Frühwirth-Schnatter,
Heckman, and Piatek (2014); Kastner, Frühwirth-Schnatter, and Lopes (2017); Chan,
Leon-Gonzalez, and Strachan (2018), amongst others. As discussed in parts of this lit-
erature, blocked sequential sampling of model factors conditional on loadings and subse-
quently loadings conditional on factors can sometimes lead to correlated draws and poor
convergence, whereas joint sampling of model factors and loadings generally improves
convergence, albeit making more complicated samplers necessary (Ghosh and Dunson,
2009; Chan and Jeliazkov, 2009; Conti et al., 2014; Kastner et al., 2017). This paper has
a conceptually different focus on sampling missing values in the data and model factors
given factor loadings. The key point is that the missing values in the data are a function
of the common components, not of either the factors or the loadings alone. In Figure 2,
we show the inefficiency factors for factor loadings and the common components to ad-
dress this issue. The inefficiency factors of the loadings are comparable in magnitude to
the inefficiency factors of the model factors, whereas the inefficiency factors of the com-
mon components are close to one, and thus comparable to the inefficiency factors of the
estimated missing values.

Overall, the simulation results indicate that convergence of estimates of missing values
and common components do not to seem to be affected by any loadings-factor identifi-
cation issue as mentioned above. Despite the fact that loadings and model factors show
slower convergence, we see no major convergence issues for a reasonably chosen number
of burn-in draws in general. The two precision-based samplers perform quite similar.

5.3 Comparing computing time

In Figure 3, the average computing time needed for posterior sampling is shown for
different numbers of burn-in draws Gburn-in and evaluation draws Geff for the precision-
based samplers. A box plot in the figure refers to the distribution of computing time
across k = 1, . . . , K data sets sampled from the DGP.

The results in Figure 3 show an overall better performance of the 2-step precision-
based sampler than the time permutation sampler. The median and the bounds of the
interquartile ranges of the 2-step sampler are in the majority of cases smaller than those
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Figure 2: Inefficiency factors for posterior samples of model factor loadings and common
components.
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Note: In the left figure, box plots of inefficiency factors are based on the posterior samples of model
factor loadings for different numbers of burn-in and posterior evaluation draws. The first number shown
in the labels of the horizontal axis refers to the number of burn-in draws Gburn-in, whereas the second
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box plots show inefficiency factors for the common components.
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Figure 3: Average computing time for posterior samples for different numbers of posterior
draws.
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15



of the time permutation sampler. Despite some overlap of the 90% intervals, which are
marked by the whiskers of the boxplots, the results overall indicate some computational
advantages of the 2-step precision-based sampler.

To get an understanding of the better performance of the 2-step approach, we have a
closer look at the flops needed for precision-based sampling as in Rue (2001); McCausland
et al. (2011). In general, the Cholesky factorization Q = LLT of a banded, symmetric,
and positive definite matrix Q with dimensions (K × K) and bandwidth b implies Kb2

flops, where the bandwidth is the maximum number of off-diagonals, which have non-zero
elements. For the forward and backward substitutions outlined at the end of Section 3,
we need 4Kb flops, and we need Kb2 + 4Kb flops in total. The 2-step sequential approach
of Section 4.1 requires two samples based on different precision matrices, whereas time-t
permutation sampling requires one decomposition only. Both the matrix size and the
bandwidth have a positive effect on the computing time according to the formulae for the
overall flops. However, as the bandwidth also enters the formulae Kb2 + 4Kb squared,
it has a comparatively huge impact on the overall computing time. The farther away
non-zero elements are from the main diagonal, the more computing time is need for
decomposing and solving. In Figure 4, we show the precision matrices for 2-step and
time-t sampling. Each entry in the figures receives a blue sign, if the corresponding entry
of the precision matrix is non-zero. Panel A and B show the two precision matrices for the
sequential 2-step sampler. Panel C shows the precision matrix for the time-permutation
sampler. The top-left blocks highlighted by a black rectangle refer to the submatrix,
which will be decomposed by sparse Cholesky factorization. The dimensions of theses
submatrices are K2s,η = 200 and K2s,xm = 2000 for the 2-step sampler, and Kτ = 2200
for the time-permutation sampler. Note that the position of the missing κNT = 2000
observations is chosen randomly in the data and thereby affects the shape of the precision
matrices and bandwidths. To highlight the bandwidth near the main diagonal, a subplot in
the top-right of Figure 4 zooms the first top-left (100×100)-dimensional block of elements
of the precision matrix. In the figure, the bandwidth of the precision matrix underlying
the time-permutation sampler is larger than the bandwidths of the precision matrices
used for 2-step sampling. In detail, the bandwidths are b2s,η = 3 and b2s,xm = 31 for the
2-step sampler, and bτ = 59 for the time-permutation sampler. Thus, the comparatively
large bandwidth of the time-permutation sampler contributes to the slower computational
performance. Note, however, that the bandwidth of the precision matrix is only one
source to explain the differences in computing time. There are also set-up costs to fill the
precision matrix with model parameters every recursion of the sampler, which contribute
to the computing time in the simulations. In the same way, permuting the moments of z
at each draw is also costly. Note, however, that the permutation matrices depend only on
the position of missing observations in the dataset, not the model parameters, and thus
only have to be computed once for Bayesian estimation. The simulation results reflect all
these different determinants of the overall computing time.
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Figure 4: Precision matrices after permutation
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Note: The figure shows the non-zero elements in the precision matrices used in the alternative samplers.
The top-left blocks highlighted by a black rectangle refer to the submatrices, which will be decomposed by
Cholesky factorization. In Panel A, the highlighted part of the precision matrix is the block Qηη in (13).
In Panel B, the highlighted part of the precision matrix is Qxm,xm

in (18). In Panel C, the highlighted
part shows the block Qηxm,ηxm under the joint time-permutation sampler in (24). To show the structure
and bandwidth of these submatrices near the main diagonal in more detail, a subplot in the top-right of
the figure zooms the first top-left (100× 100)-dimensional block of elements of the precision matrix.
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5.4 Comparing samples of factors and missing observations

As a final check of the accuracy of the precision-based samplers, we compare the mean-
squared error MSEη,t,j for the factor posterior samples defined as

MSEη,j,t =
1

Geff

Gburn-in+Geff∑
g=Gburn-in+1

(ηDGP,j,t − η(g)
j,t |xo = xo)2, (31)

for each factor indexed by j for j = 1, 2 and time period t = 1, . . . , T . In the MSE, the
posterior samples of the factor η

(g)
j,t |xo = xo are subtracted from the ”true” factor values

sampled from the DGP ηDGP,j,t. As the samplers should provide draws from the same
posterior distribution, we expect very similar values for large Geff. Accordingly, we also
compute the MSE for the missing observations by subtracting the sampled values drawn
by the conditional samplers from the true values simulated from the DGP.

The results presented below are based on one data set and factors sampled from the
DGP. We take G = 10000 raw draws from the posterior and discard the first Gburn-in =
5000 as burn-in. The MSEs are computed over the remaining Geff = 5000 draws. The
left panel of Figure 5 provides the MSEs for the first of the two factors obtained from
the different samplers for each time period. As expected, the samplers yield very sim-
ilar MSEs for all t = 1, . . . , T . The results show no signs of any systematic differences
between the samplers. We obtain very similar results when looking at the MSEs for the
missing observations in the right panel of Figure 5, where the MSEs of the first 50 missing
observations in the data are shown. The results indicate a very high similarity across the
precision samplers.

To sum up the simulation results, we only find differences between the samplers with
respect to the computing time. In this regard, the 2-step sampler tends to be faster than
the time-permutation sampler. However, the precision-based samplers yield similar MSEs
for factors and missing observations, and inefficiency factors indicate no major convergence
issues for a reasonably chosen number of burn-in draws. Due to these similarities in the
simulations, we only consider the 2-step sampler in the empirical application below.

6 Empirical application: Bayesian estimation of in-

ternational factors in GDP growth

To illustrate the precision-based sampler in the presence of missing observations in data,
we estimate the factor model with Bayesian techniques on multi-country GDP growth
data. The application follows the literature on international business cycles estimated in
large factor models (Kose et al., 2003, 2008; Francis et al., 2017; Müller et al., 2019).

6.1 Data and motivation for the empirical exercise

Francis et al. (2017) estimate global and regional business cycles from a large set of
country-specific annual GDP growth series. We follow these authors and choose the Penn
World Tables (PWT) to construct the data set. We use PWT version 9.1 (Feenstra,
Inklaar, and Timmer, 2015) and take annual real GDP (output concept) series for all
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Figure 5: MSE comparison for one simulated dataset and posterior samples of first model
factor and missing observations.
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Note: In the left figure, the mean-squared errors (MSE) are computed by averaging the squared difference
between Geff = 5000 posterior draws for the first model factor and the corresponding factor sample from
the DGP as defined in (31). The effective samples used are obtained by taking G = 10000 raw samples
from the posterior and discarding the first Gburn-in = 5000 as burn-in. In the right figure, the MSE is
shown for posterior draws of 50 randomly chosen missing values.
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available countries. Growth rates are computed by taking first differences of the logarithm
of the series in levels. We end up with T = 67 time series observations for the years 1951
to 2017 and N = 182 countries in the cross section. The data is unbalanced with respect
to available observations per country. Overall, 2391 of the observations are missing, which
is 19.6% in relation to TN = 12194 potential values in the data. The number of missing
observations at each period in time are shown in Figure 6.

Figure 6: Missing observations in international GDP growth data
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Note: The bars in the figure show the sum of missing observations in each time period. The maximum
number of cross-section observations per period is equal to Nunbal = 182.

In the data we find that observations are mostly missing in earlier periods of the
sample: In 1951 we have 127 observation missing out of 182, whereas no observations
are missing at the end of the sample after 2005. The decline of the number of missing
observations in the intermediate time periods can be roughly described as being step-wise
across the covered decades. From 1952 to 1960, there are more than 100 observations
missing per year, whereas the number of missing observations drops to about 70 until
1970. Between 1970 and 1990, slightly more than 20 time series observations are missing.

Compared to the existing literature by Kose et al. (2003) and Francis et al. (2017), the
data set used here contains a larger number of variables with Nunbal = 182 and thus more
cross-country information. If we remove all time series with any missing observations over
the sample period 1951 and 2017, we end up with a balanced data set of Nbal = 55 time
series, which is very close to the countries covered in Kose et al. (2003) and Francis et al.
(2017). We estimate the factor model with these two different data sets and compare
the results. In general, time-series data with partially missing observations encompasses
balanced time-series data where all time series with any missing observations have been
removed. Thus, estimation methods, which can tackle missing observations, can take
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into account larger data sets and use more information to estimate models. Note that in
general we cannot expect that larger data always improves factor estimation. Whether
additional information is beneficial for factor estimation, depends - amongst other things -
on the number of missing observations as well as the information content in the additional
data. Boivin and Ng (2006) show that noisy data can even deteriorate accuracy of factor
estimates.

The empirical comparison proceeds along several dimensions: We compare the factor
estimates obtained from using the two different information sets. We also identify the
relevant and irrelevant variables in both data sets along the lines of Kaufmann and Schu-
macher (2017). Irrelevant variables are defined as not being related to factors via the
loading matrix and generally cannot contribute to estimating the factors in a state-space
model (Koopman and Harvey, 2003). We also investigate how variables, which are part
of both information sets, are explained by the different factor estimates. In particular,
we estimate the common and idiosyncratic components and investigate how the variance
contributions of the common components differ for the two different information sets.

6.2 Model specification and Bayesian estimation

In the model for the empirical application, the loading matrix has a group structure with
r = 6 factors. Following the literature on international business cycles like Kose et al.
(2003) and Francis et al. (2017), we define the first factor in the model as the global factor,
such that all variables can load on this factor. Accordingly, there are no zero restrictions
in the first column of the loading matrix. The other five factors are continental factors
for Africa, Asia, Europe, North America, and South America. The continental group
structure is imposed by zero restrictions: Each country GDP variable can load on only
one of the continental factors in addition to the global factor. For each continental factor,
those country GDP variables not belonging to this particular continent receive a zero
loading element in the corresponding column of the loading matrix. Given these zero
restrictions from the continental factor structure, the factor model is identified according
to the Bekker criterion outlined in Bai and Wang (2014).

In the application, we use a more general model than specified in (1) and (2). We
use p = 2 lags in the factor VAR and q = 2 lags in the AR equations for idiosyncratic
components. Details on the extended model and the posterior sampler can be found
in Appendix A. In the empirical application, we take 100000 draws from the posterior
density, discard the first 50000 draws as burn-in, and take the remaining draws for final
posterior evaluation. We estimate the factor model on balanced and unbalanced data and
compare the results.

6.3 Results

The estimated factors using the balanced and unbalanced data set can be compared in
Figure 7. We show the median of the posterior samples together with 90% posterior
bands. The majority of the factors look similar when estimating the model on balanced
and unbalanced data: The global factor, the European factor, and the two American
factors do not change considerably with respect to the median and the posterior intervals.
The African and Asian factors, however, are different when comparing balanced and
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unbalanced data. Based on balanced data, the African and Asian factors are hardly
different from zero in terms of 90% posterior intervals across time periods. Based on
the larger unbalanced data, both factors are more precisely estimated and exhibit more
pronounced cyclical swings.

Figure 7: Factors estimated on balanced and unbalanced data
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Note: The straight lines refer to the median of the posterior distribution of the factors. The shaded ares
cover the 90% posterior intervals.

Given the posterior draws of the loadings, we investigate the relevance or irrelevance of
variables in the model. Following Kaufmann and Schumacher (2017), we define irrelevant
variables as having only zero factor loadings, whereas relevant variables are related to
at least one factor. Irrelevant variables are not explained by the factors and, vice versa,
do not contain information for factor estimation. To distinguish irrelevant from relevant
variables, we compute 90% highest posterior density (HPD) intervals for each element in
the loading matrix to check whether the loading element is different from zero. We define
relevant variables as having at least one non-zero factor loading in the corresponding
row of the loading matrix. In Table 1, the number of relevant variables is shown for
different continents. Within geographic regions, we observe some heterogeneity: Among

22



African GDP growth series in the balanced data set, we find only one out of nine (11%)
relevant variables. In the unbalanced data set, we have 50 African GDP growth time
series, and the proportion of relevant variables is 18% (9 of 50). In the balanced data,
the proportion of relevant Asian GDP series in the model is 20% and thus a bit higher
compared to African GDP series. Using unbalanced data implies an increase of the number
of Asian GDP time series from 10 to 50. The proportion of relevant variables compared
to balanced data increases to 38% (19 of 50). For Europe and North America, we observe
a relatively large proportion of relevant variables compared to the other continents when
using balanced data. However, there are very few relevant time series in the additional
unbalanced data. For Europe, for example, the proportion of relevant variables decreases
from 89% to 63% when adding unbalanced data. The results are similar for American
GDP growth data. We summarize by looking at results for all variables in the two models:
Overall we find 55% relevant variables in the balanced data, whereas we have only 37%
relevant variables in the unbalanced data. This indicates that only some of the added
unbalanced GDP growth time series provide additional information for factor estimation
on top of the balanced data only.

Table 1: Relevant variables

Data Unbalanced data Balanced data
Method Sequential 2-step Standard precision-based

Africa 0.18 (9 of 50) 0.11 (1 of 9)
Asia 0.38 (19 of 50) 0.20 (2 of 10)
Europe 0.63 (25 of 40) 0.89 (16 of 18)
North America 0.23 (7 of 31) 0.50 (5 of 10)
South America 0.64 (7 of 11) 0.75 (6 of 8)

All variables 0.37 (67 of 182) 0.55 (30 of 55)

Note: Entries in the table are equal to the proportion of relevant variables in the geographical region.
We compute highest posterior density (HPD) intervals for each element in the loading matrix to check
whether the loading element is significantly different from the zero. We define relevant variables as having
at least one significant non-zero factor loading in the corresponding row of the loading matrix.

We also look at the role of the common and idiosyncratic components for each time
series in the data set. Figure 8 and Figure 9 show variance shares of common components,
defined as the variance of the common component of a country GDP growth time series
divided by the overall variance of the time series. The difference between one and the
variance shares of common components provides the variance share of country-specific
idiosyncratic components (Kose et al., 2003). Thus, the larger the variance share of
common components, the more variance of GDP growth is explained by common factors
and co-movements with other countries’ GDP growth. The smaller the number, the more
important are country-specific sources of GDP fluctuations. To summarize the posterior
variability of variance shares of common components, we provide box plots. Green boxes
refer to the results based on balanced data, whereas yellow boxes refer to the results based
on unbalanced data. Figure 8 shows the variance share of the common components for
those countries which are part of both the balanced an unbalanced data sets. Generally,
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European countries (abbreviated by EU in the table) have a comparatively high share
of common component variances, followed by South American (SA) countries. African
(AF) and Asian (AS) countries’ GDP growth have a comparatively low variance share of
common components on average. When comparing estimates for balanced and unbalanced
data, the box plots are often quite similar. For a large number of GDP growth series,
there is no clear advantage from using larger unbalanced data with respect to the variance
share of common components. This holds, for example, for the big developed countries
USA, Canada, France, and Germany, amongst others. In Figure 9, we look at the variance
share of the common components for those countries which are only part of the unbalanced
data set. These are Nunbal −Nbal = 182− 55 = 127 countries. We can see that there are
some country GDP series with a considerable variance share of the common components,
for example, Brunei, Georgia, and several Asian countries. The majority of GDP series,
however, shows quite small numbers only up to 0.2, indicating a big role of idiosyncratic
country-specific movements for many countries in the unbalanced data set.

To sum up the empirical results, many GDP series for Asian and African countries
are not related to the factors. However, the proportion of Asian and African countries
related to the factors is larger when using the unbalanced data rather than the balanced
data. In the results based on unbalanced data, we generally find that the idiosyncratic
components seem to dominate for the majority of countries, despite some country GDP
growth series having a high variance share of the common components. The additional
unbalanced data also has no strong effect on the commonality of the variables that are
part of both the balanced and unbalanced data set. If an analyst were mostly interested
in results for G7 countries, it might suffice to look at the posterior results from the smaller
balanced data and using the simpler estimation methods. The use of the factor model
based on the larger unbalanced data and the more demanding sampling methods to tackle
missing observations may provide relevant insights, if the countries, which are exclusively
part of the unbalanced data, are interesting in themselves to an analyst.

7 Extensions: Integrated likelihood, other state-space

models

7.1 Integrated likelihood

The methods discussed in this paper can also be employed for model evaluation using the
marginal likelihood. Following Chan and Grant (2016), the integrated likelihood function,
obtained by integrating the unobserved states out of the conditional or complete likelihood
function, p(x|θ) =

∫
p(x, η|θ)dη =

∫
p(x|η, θ)p(η|x, θ)dη, is the key quantity to derive the

marginal likelihood. For factor models and given complete data for estimation, Chan and
Grant (2016) and McCausland (2012) show that the integrated likelihood function has
a normal distribution function. Given the quantities derived in this paper, we can show
that the model (1) and (2) given missing observations also implies a normal density for
the observed data.

In Section 4, we have used joint normals for factors, variables with missing observa-
tions, and variables with observed data to derive conditional samplers. The permutations
of variables zP2s = (xTm, η

T, xTo )T and zPτ = (ηT1 , x
T
m,1, η

T
2 , x

T
m,2, . . . , η

T
T , x

T
m,T , x

T
o )T have all
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Figure 8: Variance share of the common components, countries covered in both balanced
and unbalanced data

Note: The figure shows box plots reflecting the posterior sample variability of the of the common
components’ variance divided by the overall variance of each GDP growth time series. The whiskers refer
to 90% posterior interval bounds. Abbreviations for continents: AF Africa, AS Asia, EU Europe, NA
North America, SA South America.
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Figure 9: Variance share of the common components, countries only covered in unbalanced
data

Note: The figure shows box plots reflecting the posterior sample variability of the of the common
components’ variance divided by the overall variance of each GDP growth time series. The whiskers refer
to 90% posterior interval bounds. Abbreviations for continents: AF Africa, AS Asia, EU Europe, NA
North America, SA South America. 26



in common that the variables with observed data xo are ordered last.
According to (10), the permuted vector zP is distributed as

zPz |θ ∼ N
(
0T (r+N)×1, Q

−1
z

)
, (32)

with Qz = PzQP
T
z and the corresponding covariance matrix Ωz = Q−1

z . For later use, we
define the partitions

Qz =

(
Qηxm,ηxm Qηxm,xo

Qxo,ηxm Qxo,xo

)
, Ωz =

(
Ωηxm,ηxm Ωηxm,xo

Ωxo,ηxm Ωxo,xo

)
. (33)

If variables jointly follow a normal distribution, the marginal distributions are also nor-
mal distributions, and the moments of the marginal distributions can be taken from the
partitions of the joint moments (Anderson, 2003, Theorem 2.4.3). In our case, we obtain
the marginal distribution of the variables with observed data p(xo|θ) according to

p(xo|θ)
D
= N

(
0(1−κ)TN×1,Ωxo,xo

)
. (34)

It implies the log integrated likelihood function

log p(xo = xo|θ) =− (1− κ)TN

2
log(2π)− T

2
log
∣∣Ω−1

xo,xo

∣∣− 1

2
(xo)TΩ−1

xo,xox
o. (35)

To evaluate the integrated likelihood function, we can make use of the time-permutation
sampler from Section 4.2. From the definition of the covariance and precision matrix(

Ωηxm,ηxm Ωηxm,xo

Ωxo,ηxm Ωxo,xo

)(
Qηxm,ηxm Qηxm,xo

Qxo,ηxm Qxo,xo

)
= I (36)

we obtain four matrix equations. From them, we can derive Ω−1
xo,xo as an expression of the

components of the precision matrix according to

Ω−1
xo,xo = Qxo,xo −Qxo,ηxmQ

−1
ηxm,ηxmQηxm,xo , (37)

and the log integrated likelihood function becomes

log p(xo = xo|θ) =− (1− κ)TN

2
log(2π)− T

2
log
∣∣Qxo,xo −Qxo,ηxmQ

−1
ηxm,ηxmQηxm,xo

∣∣
− 1

2
(xo)T

(
Qxo,xo −Qxo,ηxmQ

−1
ηxm,ηxmQηxm,xo

)
xo. (38)

Evaluating the quantities is straightforward using the results from the time-permutation
sampler. In Appendix B, we show that Qηxm,ηxm is block-banded, so the methods outline
before can be directly applied in line with McCausland (2012) and Chan and Grant (2016).

Note that these results also allow to estimate a factor model with stochastic volatility
as proposed in Chan and Eisenstat (2018).
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7.2 Other state-space models

The methods in the paper were so far applied to a factor model. However, they can be
easily adopted to other state-space models in applications with missing data.

If we set ψ = 0N×N in (2), we obtain a general state-space model, where ηt represents
the state vector. In this case, we have Ψ = ITN , which simplifies the precision matrix in
(8). We can also consider cases where the number of disturbances in the state equation
is smaller to the number of states, for example, if ηt = φηt−1 +Rtuη,t with the number of
columns in Rt and the length of uη,t smaller than r, as in the general state-space models
discussed in Durbin and Koopman (2002).

In a similar way, we can generalize the TVP-BVAR models as in Chan and Eisenstat
(2018) to applications with missing observations in the data. Consider the model

B0,tyt = µt +B1,tyt−1 + · · ·+Bp,tyt−p + εt, εt ∼ N (0,Σt), (39)

where yt is an N -dimensional vector of model variables, µt is a vector of time-varying
intercepts, B1,t, . . . , Bp,t are time-varying VAR coefficient matrices, B0,t is a lower trian-
gular matrix with ones on the diagonal, and time-varying volatilities Σt for t = 1, . . . , T .
In the literature such as Chan and Eisenstat (2018); Chan (2020); Chan et al. (2020),
estimation of the VAR coefficients using precision-based samplers given complete data
proceeds by conditioning on lags of yt on the right-hand side. If some of the observations
are missing, this conditioning is not feasible. In this case, the methods developed in this
paper can be adopted to obtain a Gibbs sampler for TVP-BVAR models in the presence
of partly missing observations along the lines of Little and Rubin (2002). In particular,
we can provide a sampling step for missing observations in yt. Given augmented data, the
samplers as proposed in the papers cited above can be applied for Bayesian estimation of
the model parameters in (39).

To derive the conditional posterior distribution for missing observations, rewrite the
model (39) in stacked form with y = (yT1 , y

T
2 , . . . , y

T
T )T and µ̃y = (µT

1 , µ
T
2 , . . . , µ

T
T )T as

Φyy = µ̃y + εy (40)

with

Φy =



B0,1

−B1,1 B0,2

−B2,1 −B1,2 B0,3
...

. . . . . . . . .

−Bp,1
. . . . . . . . .

. . . . . . . . . B0,T−1

−Bp,T−p · · · −B2,T−2 −B1,T−1 B0,T


, (41)

εy ∼ N (0,Σ), and Σ = diag(Σ1,Σ2, . . . ,ΣT ).
Given model parameters θy, we have y|θy ∼ N (µy,Φ

−1
y ΣΦ−Ty ) with µy = Φ−1

y µ̃y and
precision matrix Qy = (Φ−1

y ΣΦ−Ty )−1 = ΦT
yΣ−1Φy. We can now reorder the variables in y

into variables with missing observations ym above the variables with available observations
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yo as in (12) by

yPy =

(
ym
yo

)
= Pyy =

(
Pym
Pyo

)
y (42)

such that the transformed vector yPy is distributed as

yPy |θy ∼ N
(
Pyµy, (PyQyP

T
y )−1

)
. (43)

We can now partition the mean and the precision matrix as in (42) and obtain

Pyµy =

(
µm
µo

)
, PyQyP

T
y =

(
Qym,ym Qym,yo

Qyo,ym Qyo,yo

)
, (44)

which provides us with the moments of the distribution for the missing observations ym
conditional on the observations yo = yo and the model parameters. The conditional
distribution of the missing values is given by

p(ym|yo = yo, θy)
D
= N

(
µm −Q−1

ym,ymQym,yo(y
o − µo), Q−1

ym,ym

)
. (45)

Note that it is not straightforward to jointly sample missing values and time-varying
VAR parameters in the TVP-BVAR model. The reason is that products of missing values
and time-varying VAR parameters are present on the right-hand side of the TVP-BVAR
model, rendering the resulting state-space system non-linear.

8 Conclusions

We propose a simple and efficient precision-based sampler for unobserved states and miss-
ing observations conditional on available data. The approach extends the existing liter-
ature on precision-based sampling, which typically considers complete-data applications.
By allowing the investigation of incomplete data sets, the sampler proposed here expands
the range of potential applications for precision-based samplers in practice.

The approach can be applied to a wide range of state-space models such as time-
varying parameter BVARs, as their corresponding precision matrix has a block-banded
structure. In this paper we apply the sampler to a large dynamic factor model. To
facilitate sampling in the presence of missing observations, we reorder the variables in the
precision matrix by alternative permutations. Based on the permuted precision matrices
with small bandwidth, we can employ fast band-matrix computing techniques to draw
from the conditional distributions of factors and missing observations given available
data. In the simulations, a 2-step precision-based sampler, which sequentially samples
factors and missing observations, turns out to be computationally efficient. On the other
hand, a joint sampler based on time permutation is slower, but facilitates computing the
integrated likelihood for model comparison more easily. Both can be directly integrated
into Bayesian estimation procedures like the Gibbs sampler.
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Appendix

A Posterior sampler

A more general specification of the factor model than (1) and (2) has p ≥ 1 lags in the
factor VAR and q ≥ 1 AR lags in the equations for idiosyncratic components. We obtain
the model equations

xt = ληt + εt, (46)

φ(L)ηt = uη,t, ψ(L)εt = uε,t. (47)

with polynomials φ(L) = Ir − φ1L − . . . − φpL
p and ψ(L) = IN − ψ1L − . . . − ψqL

q

in the lag operator Lyt = yt−1. The polynomial matrices in ψ(L) are assumed to be
diagonal. The factor VAR disturbances are distributed as uη,t ∼ N (0r×1, ωη), and we
assume for simplicity ωη = Ir. With respect to the idiosyncratic components we assume
uε,t ∼ N (0N×1, ωε), where ωε is also diagonal with blocks ωε,i for i = 1, . . . , N on the main
diagonal.

Concerning the prior specifications of the model, we follow closely the existing factor
model literature. We use sparse priors for the elements in the loading matrix as in George
and McCulloch (1993, 1997); Geweke (1996); Carvalho, Chang, Lucas, Nevins, Wang,
and West (2008); Kaufmann and Schumacher (2017, 2019). The hierarchical prior for the
loadings is denoted as p(λ|θλ) with a prior for hyper-parameters p(θλ). The factors and
missing observations follow multivariate normal priors given model parameters, p(η|θ+)
and p(xm|θ+), where further model parameters are collected in θ+: It contains the fac-
tor VAR polynomial parameters φ(L) and the idiosyncratic components AR polynomial
parameters ψ(L), which follow normal distributions truncated to the stationary region
(Litterman, 1986). θ+ also contains the variances of the innovations in the idiosyncratic
components AR models ωε,i for i = 1, . . . , N . We use an inverse gamma distribution as
the prior. Details regarding the prior specifications can be found in the subsections below.

Given available data xo, we want to obtain samples from the posterior distribution

p(η, xm, λ, θλ, θ+|xo) ∝ L(xo|η, xm, λ, θλ, θ+)p(xm|θ+)p(λ|θλ)p(η|λ, θ+)p(θ+)p(θλ). (48)

The sampler closely follows the Gibbs sampler proposed by Little and Rubin (2002) to
tackle missing data. In a first step, Little and Rubin (2002) sample missing observations
for xm, and combine these samples with observed data. In subsequent steps, complete-data
conditional posterior distributions are used for sampling the remaining model parameters.
The use of the complete-data conditional posterior distributions in these steps is valid
because the product of L(xo|η, xm, λ, θλ, θ+) and p(xm|θ+) in (48) equals the complete-
data likelihood L(xo, xm|η, λ, θλ, θ+), as implied by the model equations (46) and (47).

In our case, we expand on Little and Rubin (2002) by also estimating unobserved
factors in the first block of the Gibbs sampler along with the missing observations. The
sampler proceeds with the following three steps:

1. p(η, xm|xo, λ, θλ, θ+): To sample factors and missing observations, we have two op-
tions:
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(a) When applying time permutation precision-based sampling, we provide a joint
draw of η, xm|xo, λ, θλ, θ+ in a single step.

(b) When applying the 2-step precision-based sampling, we sample sequentially
from p(η|xo, xm, λ, θλ, θ+) and p(xm|xo, η, λ, θλ, θ+).

2. p(λ|xo, xm, η, θλ, θ+), p(θλ|xo, xm, λ): Sampling the loadings λ, and hyper-parameters
related to the hierarchical prior for the loadings θλ given loadings λ.

3. p(θ+|xo, xm, η, λ, θλ): Sampling the rest of the model parameters.

A.1 Factors and missing observations: p(η, xm|xo, λ, θλ, θ+)

With lag orders p, q > 1 in the factor model, the precision-based samplers as described
in the main text for p = q = 1 have to be modified only in terms of the precision matrix
Q. With respect to the stacked factors, we have η|φ(L), ωη, ϑη,1|0 ∼ N (0Tr×1,Φ

−1ΩηΦ
−T),

where

Φ =



Ir
−φ1 Ir
−φ2 −φ1 Ir

...
. . . . . . . . .

−φp
. . . . . . . . .

. . . . . . . . . Ir
−φp · · · −φ2 −φ1 Ir


, Ωη =


ϑη,1|0

ωη
. . .

ωη

 . (49)

The matrix entries for the VAR lag polynomial φ(L) are taken from the previous Gibbs
draw. We set ωη = Ir. As the initial covariance of factors ϑη,1|0 = ϑη, we use the covariance
matrix of factors and their lags implied by the VAR in companion form

ηt
ηt−1

...
ηt−p


︸ ︷︷ ︸

η̃t

=


φ1 · · · · · · φp
Ir 0

. . .
...

Ir 0


︸ ︷︷ ︸

φ̃


ηt−1

ηt−2
...

ηt−(p+1)

+


uη,1
0
...
0


︸ ︷︷ ︸

ũη,t

. (50)

The VAR innovations in the companion form ũη,t have the (pr×pr) covariance matrix ω̃η =
Var(ũη,t), which contains ωη in the top-left block and zeros elsewhere. The companion
form implies the (pr × pr) second-moment matrix of stacked factors lags ϑ̃η = Var(η̃t)
from solving the equation vec(ϑ̃η) = [I(pr)2− φ̃⊗ φ̃T]−1×vec(ω̃η). As the initial covariance

of factors ϑη,1|0 = ϑη, we use the first (r × r) block-diagonal element in ϑ̃η.
With respect to the stacked idiosyncratic components, we have ε|ψ(L), ωε, ϑε,1|0 ∼

N (0TN×1,Ψ
−1ΩεΨ

−T), where Ψ and Ωε are constructed along the lines of (49). The matrix
entries for the lag polynomial φ(L) and the innovation variances ωε are taken from the
previous Gibbs draw. To initialize the second moments of the idiosyncratic components
by ϑε,1|0, we use the second moments implied by the AR models for the idiosyncratic
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components, which can be computed using a companion form in the same way as for the
factors.

Given Φ, Ωη, Ψ, and Ωε, we define the precision matrix Q in the same way as in (7) and
(8) in the main text and can apply the alternative precision-based samplers accordingly.

A.2 Loadings: p(λ|xo, xm, η, θλ, θ+), p(θλ|xo, xm, λ)

Following George and McCulloch (1993, 1997); Geweke (1996); Kaufmann and Schu-
macher (2019), we use a sparse point-mass normal mixture prior on the loadings with a
common probability of non-zero loading on factor j across variables according to

p(λij)
D
= (1− ρj)δ0(λij) + ρj N (0, τj), (51)

p(ρj)
D
= B(r0s0, r0(1− s0)), (52)

where the Dirac delta function δ0(·) assigns all probability mass to zero. To capture
potential factor-specific scaling of loadings, we specify an inverse gamma distribution for
τj ∼ IG(g0, G0). The expected probability of non-zero factor loading, s0, and precision r0

are hyperparameters. In the empirical application, we specify s0 = 0.5, r0 = 3.0, g0 = 2,
and G0 = 0.5. We define the hyper-parameters by θλ = {ρj, τj} for j = 1, . . . , r.

Given complete data x, which combines samples of missing data and the observed
data, we can sample from p(λ|x, η, θ, θλ) in the following way. The posterior odds of a
non-zero factor loading in (51) are given by

P (λij 6= 0|x, ·)
P (λij = 0|x, ·)

=
p(λij)|λij=0

p(λij|·)|λij=0

ρj
1− ρj

=
N (0; 0, τj)

N (0;mij,Mij)

ρj
1− ρj

, (53)

where the moments mij and Mij are

Mij =

(
1

σ2
i

T∑
t=q+1

(ψi(L)ηjt)
2 +

1

τj

)−1

, mij = Mij

(
1

σ2
i

T∑
t=q+1

(ψi(L)ηjt)x
∗
it

)
, (54)

and x∗it is a transform of the variables by

x∗it = ψi(L)xit −
k∑

l=1,l 6=j

λilψi(L)ηlt = λijψi(L)ηjt + εit,

which isolates the effect of factor j on variable i. Note that the conditional sampler in
the empirical application is applied only to those elements in λ, which are not fixed to
zero in the continental group factors.

We choose λij 6= 0 if U ≤ POij/(1 + POij), where U is a draw from the uniform
distribution over [0, 1]. If we choose λij 6= 0, λij is drawn from N (mij,Mij), otherwise it
is set equal to zero.

Given λij, we can update the hyper-parameters θλ. The conditional posterior of ρj

is p(ρj|x, ·)
D
= B(r1j, r2j) with r1j = r0s0 + Sj, r2j = r0(1 − s0) + Nj − Sj, and Nj is

the number of loading elements not fixed to zero a-priori in the continental factors for
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j = 2, . . . , 6, whereas for the global factor indexed by j = 1, we have N1 = N . We also
define Sj =

∑N
i=1 I {λij 6= 0}. In the simulation experiments in Section 5, we do not set

zero restrictions in the loadings. In that case, we have to use r2j = r0(1− s0) +N − Sj.
The conditional posterior of the τj is p(τj|x, ·)

D
= IG(gj, Gj) with gj = g0 + 0.5Nj and

Gj = G0 + 0.5
∑N

i=1 λ
2
ij.

A.3 Further parameters: p(θ+|xo, xm, η, λ, θλ)
In the VAR polynomial for the factors and the AR polynomial for the idiosyncratic com-
ponents, we employ a standard Minnesota prior specification (Litterman, 1986). The prior
variance for the first autoregressive lag is set to ϑ2

0 = 0.09, whereas the shrinkage factor for
the prior variance on lags of other variables is equal to ϑ2

1 = 0.03. The normal prior mo-
ments for the VAR polynomial parameters are mean zero and variance Var(φl,i,j) = ϑ2

0/l
2

for i = l at lag l, and Var(φl,i,j) = ϑ2
1ϑ

2
0/l

2 for i 6= l at lag l.
With respect to the variance of the innovations in the idiosyncratic components AR

model, we choose p(ωε,i)
D
= IG(2.0, 1.0) for i = 1, . . . , N . The conditional posteriors are

standard in the literature and not reported here. More details can be found in Appendix
A.3 in Kaufmann and Schumacher (2019).

B Precision matrix of joint time-permutation sam-

pler

Given the permutation matrix Pτ , we obtain the permuted precision matrix Qτ = PτQP
T
τ

for sampling factors and missing observations. Below we show that Qτ is a block-banded
matrix. In particular, it is a block tridiagonal matrix with varying block dimensions,
having blocks in the lower diagonal, main diagonal and upper diagonal, and all other
blocks being zero matrices (Golub and Van Loan, 2013, Chapter 4.5).

To derive Qτ , first note that the precision matrix Q from (8) is a function of the prior
precision matrices Qη and Qε according to

Q =

(
ΦTΩ−1

η Φ + ΛT(ΨTΩ−1
ε Ψ)Λ −ΛT(ΨTΩ−1

ε Ψ)
−(ΨTΩ−1

ε Ψ)Λ ΨTΩ−1
ε Ψ

)
=

(
Qη + ΛTQεΛ −ΛTQε

−QεΛ Qε

)
. (55)

As factors and idiosyncratic components follow VAR(1) processes, both precision matrices
Qη and Qε are block tridiagonal (Chan and Jeliazkov, 2009). In particular, we have

Qη = ΦTΩ−1
η Φ

=


ϑ−1
η,1|0 + φTω−1

η φ −φTω−1
η

−ω−1
η φ ω−1

η + φTω−1
η φ −φTω−1

η
. . . . . . . . .

−ω−1
η φ ω−1

η + φTω−1
η φ −φTω−1

η

−ω−1
η φ ω−1

η + φTω−1
η φ

 ,

(56)
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and Qε = ΨTΩ−1
ε Ψ can be written accordingly.

Given Qη and Qε, we can show that the four submatrices of Q in (55),

Q =

(
Qη + ΛTQεΛ −ΛTQε

−QεΛ Qε

)
=

(
Qηη Qηx

Qxη Qxx

)
, (57)

are also block tridiagonal matrices each. Note that Λ is a block-diagonal matrix. Pre-
and post-multiplying the block tridiagonal matrix Qε by Λ leads to a block tridiagonal
matrix without altering the block bandwidth. The sum of two block tridiagonal matrices
Qη + ΛTQεΛ is also a block tridiagonal matrix. In particular, we obtain

Qηη =



Qηη,(1,1) Qηη,(1,2)

Qηη,(2,1) Qηη,(2,2) Qηη,(2,3)

Qηη,(3,2) Qηη,(3,3) Qηη,(3,4)

. . . . . . . . .

Qηη,(T−1,T−2) Qηη,(T−1,T−1) Qηη,(T−1,T )

Qηη,(T,T−1) Qηη,(T,T )


(58)

with

Qηη,(1,1) = ϑ−1
η,1|0 + φTω−1

η φ+ λT(ϑ−1
ε,1|0 + ψTω−1

ε ψ)λ, (59)

Qηη,(t,t) = ω−1
η + φTω−1

η φ+ λT(ω−1
ε + ψTω−1

ε ψ)λ for t = 2, . . . , T, (60)

Qηη,(t,t+1) = −φTω−1
η − λT(−ψTω−1

ε )λ for t = 1, . . . , T − 1, (61)

Qηη,(t+1,t) = −ω−1
η φ− λT(ω−1

ε ψ)λ for t = 1, . . . , T − 1. (62)

Accordingly, the non-zero submatrices of Qηx =
(
Qηx,(t1,t2)

)
t1,t2=1,...,T

are given by

Qηx,(1,1) = −λT(ϑ−1
ε,1|0 + ψTω−1

ε ψ), (63)

Qηx,(t,t) = −λT(ω−1
ε + ψTω−1

ε ψ) for t = 2, . . . , T, (64)

Qηx,(t,t+1) = λT(ψTω−1
ε ) for t = 1, . . . , T − 1, (65)

Qηx,(t+1,t) = λT(ω−1
ε ψ) for t = 1, . . . , T − 1, (66)

and all other submatrices are zero blocks, Qηx,(t1,t2) = 0 for |t1 − t2| > 1. Finally, the
non-zero submatrices of Qxη =

(
Qxη,(t1,t2)

)
t1,t2=1,...,T

are given by

Qxη,(1,1) = −(ϑ−1
ε,1|0 + ψTω−1

ε ψ)λ, (67)

Qxη,(t,t) = −(ω−1
ε + ψTω−1

ε ψ)λ for t = 2, . . . , T, (68)

Qxη,(t,t+1) = (ψTω−1
ε )λ for t = 1, . . . , T − 1, (69)

Qxη,(t+1,t) = (ω−1
ε ψ)λ for t = 1, . . . , T − 1, (70)

and Qxη,(t1,t2) = 0 for |t1 − t2| > 1.
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The precision matrix Qτ = PτQP
T
τ can be obtained by block multiplication

Qτ =



Pη,1 0
0 Pxm,1
Pη,2 0

0 Pxm,2
...

...
Pη,T 0

0 Pxm,T
0 Pxo


(
Qηη Qηx

Qxη Qxx

)(
PT
η,1 0 PT

η,2 0 · · · PT
η,T 0 0

0 PT
xm,1 0 PT

xm,2 · · · 0 PT
xm,T

PT
xo

)

(71)
with Pη,t =

(
0r×r(t−1) Ir 0r×r(T−t)

)
and Pxm,t =

(
0Nm,t×(t−1)N Pxm,(t,t) 0Nm,t×(T−t)N

)
.

Note that the permuted variables zPτ permutation matrix Pτ can be considered as having
T+1 row blocks, where T row blocks contain model factors ηt and variables corresponding
to missing observations xm,t for each period t, and the (T + 1)-st row block contains
variables corresponding to observed data xo. This blocking is implied by the variable
ordering in zPτ = (ηT1 , x

T
m,1, η

T
2 , x

T
m,2, . . . , η

T
T , x

T
m,T , x

T
o )T. Given the blocking in Pτ , the

corresponding precision matrix can be partitioned in the same way. We obtain Qτ as

Qτ =



Qτ,(1,1) Qτ,(1,2) Qτ,(1,T+1)

Qτ,(2,1) Qτ,(2,2) Qτ,(2,3) Qτ,(2,T+1)

. . . . . . . . .
...

Qτ,(T−2,T−3) Qτ,(T−2,T−2) Qτ,(T−2,T−1) Qτ,(T−2,T+1)

Qτ,(T−1,T−2) Qτ,(T−1,T−1) Qτ,(T−1,T ) Qτ,(T−1,T+1)

Qτ,(T,T−1) Qτ,(T,T ) Qτ,(T,T+1)

Qτ,(T+1,1) Qτ,(T+1,2) . . . Qτ,(T+1,T−1) Qτ,(T+1,T ) Qτ,(T+1,T+1)


,

(72)
with (T+1)×(T+1) blocks. Note that the dimensions of the blocks inQτ are time-varying,
depending on the number of missing observations in each period, Nm,t.

The submatrices of Qτ are given by

Qτ,(t,t) =

(
Qηη,(t,t) Qηx,(t,t)P

T
xm,(t,t)

Pxm,(t,t)Qxη,(t,t) Pxm,(t,t)Qε,(t,t)P
T
xm,(t,t)

)
(73)

for t = 1, 2, . . . , T on the main diagonal, and

Qτ,(t,t+1) =

(
Qηη,(t,t+1) Qηx,(t,t+1)P

T
xm,(t+1,t+1)

Pxm,(t,t)Qxη,(t,t+1) Pxm,(t,t)Qε,(t,t+1)P
T
xm,(t+1,t+1)

)
, (74)

Qτ,(t+1,t) =

(
Qηη,(t+1,t) Qηx,(t+1,t)P

T
xm,(t,t)

Pxm,(t+1,t+1)Qxη,(t+1,t) Pxm,(t+1,t+1)Qε,(t+1,t)P
T
xm,(t,t)

)
, (75)

for t = 1, . . . , T − 1 on the upper and lower block diagonal, respectively. Furthermore,
Qτ,(t1,t2) = 0 for |t1 − t2| > 1 and t1, t2 = 1, . . . , T . Concerning the (T + 1)-st row and
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column, we obtain

Qτ,(T+1,T+1) = PxoQεP
T
xo , (76)

Qτ,(T+1,t) = Pxo
(
QxηP

T
η,t QεP

T
xm,t

)
for t = 1, . . . , T, (77)

Qτ,(t,T+1) =

(
Pη,tQηx

Pxm,tQε

)
PT
xo for t = 1, . . . , T. (78)

To sample from p(η, xm|xo = xo, θ), the precision matrix Qτ will be partitioned ac-
cording to

Qτ =

(
Qηxm,ηxm Qηxm,xo

Qxo,ηxm Qxo,xo

)
, (79)

where the upper-left block Qηxm,ηxm contains the first top-left T ×T sub-blocks from (72)

and has dimensions (rT +
∑T

t=1Nm,t)× (rT +
∑T

t=1Nm,t), whereas the lower-right block

Qxo,xo has dimensions (NT−
∑T

t=1Nm,t)×(NT−
∑T

t=1Nm,t). The conditional distribution

becomes p(η, xm|xo = xo, θ)
D
= N (−Q−1

ηxm,ηxmQηxm,xox
o, Q−1

ηxm,ηxm). From (72), we can see
that Qηxm,ηxm is block tridiagonal and thus facilitates precision-based sampling efficiently.
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