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Summary: Tests for identification through heteroskedasticity in structural vector autoregres-
sive analysis are developed for models with two volatility states where the time point of
volatility change is known. The tests are Wald-type tests for which only the unrestricted
model, including the covariance matrices of the two volatility states, has to be estimated.
The residuals of the model are assumed to be from the class of elliptical distributions, which
includes Gaussian models. The asymptotic null distributions of the test statistics are derived,
and simulations are used to explore their small-sample properties. Two empirical examples
illustrate the usefulness of the tests in applied work.
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1. INTRODUCTION

Identification by heteroskedasticity of structural shocks has become a standard tool in struc-
tural vector autoregressive (VAR) analysis (see, e.g., Kilian and Lütkepohl, 2017, Chapter 14).
Heteroskedasticity can complement identifying restrictions based on economic theory or subject
matter knowledge. The underlying idea is that if the variance of the structural shocks changes
during the sample period and there is heterogeneity in the variance changes of different shocks,
this feature can be used to distinguish (identify) the shocks. The objective of the present study is to
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2 H. Lütkepohl et al.

present a formal statistical test for the required variance heterogeneity and hence the identification
of the shocks.

Of course, identifying structural shocks purely through their statistical properties implies that
a further step is necessary to associate the identified shocks with economic shocks of interest.
Therefore, identification through heteroskedasticity is often complemented by conventional iden-
tifying restrictions on, for example, the impact effects of the shocks. In particular, if competing
identifying restrictions are available, which are just-identifying in a conventional setting, then
identifying information from heteroskedasticity can be used as overidentifying restrictions, which
opens up the possibility of formally testing identifying restrictions that are otherwise not testable.
Such tests are not considered in the present paper but are discussed in, for example, Lanne and
Lütkepohl (2008), Netšunajev (2013), and Lütkepohl and Netšunajev (2017).

A main advantage of identification via heteroskedasticity is that the data are in principle
informative on the conditions for identification. Thus, identification can be investigated by sta-
tistical tests. The problem in developing such tests is that the model is typically not identified
under the null hypothesis of no identification, which complicates the derivation of the asymp-
totic distributions of standard tests. Some authors still use standard Wald and likelihood ratio
(LR) tests for identification through heteroskedasticity and approximate the distribution under
the null hypothesis by the usual χ2 distributions. Examples are Lanne et al. (2010), Herwartz and
Lütkepohl (2014), Lütkepohl and Velinov (2016), Velinov and Chen (2015), Netšunajev (2013),
and Lütkepohl and Netšunajev (2014). However, so far the asymptotic distributions of these
tests have not been derived formally, and it is unlikely that the assumed χ2 distributions provide
precise approximations to the true asymptotic distributions of the test statistics. Alternatively,
some authors have proposed Bayesian methods for assessing identification in this context (e.g.,
Woźniak and Droumaguet, 2015, and Lütkepohl and Woźniak, 2020).

In the following, we will develop formal frequentist tests that can help in assessing identification
through heteroskedasticity for the special case of stable VAR models with two volatility regimes
of the residuals. Such simple models for the change in volatility have been considered by, for
example, Rigobon (2003), Lanne and Lütkepohl (2008, 2014), and Lütkepohl and Schlaak (2018).
(The actual models used for empirical analysis are more sophisticated in some of these articles,
where more volatility states and alternative volatility models are considered as well. We focus
on the simpler case to make the problem tractable and leave more general models for future
research.) For developing our tests, we assume that the distribution of the residuals is elliptically
symmetric, which covers the case of Gaussian VAR processes but also models where the residuals
have t distributions or mixtures of normal distributions. We develop Wald-type tests for which we
can derive the asymptotic distribution under the null hypothesis of no identification. Our results
shed further doubts on the previously assumed test distributions for related statistics. Of course,
if the test indicates identification through heteroskedasticity, the identifying information may still
be limited. In other words, there may still be weak identification. This issue in the context of
identification through heteroskedasticity has been discussed by Lewis (2018b), and more general
results on weak identification have been given by Andrews (2018). Such procedures may be used
in addition to or as an alternative to our approach.

Our tests may indicate only that there is some identifying information through heteroskedastic-
ity but may not suggest that the structural model is fully identified. We discuss a sequential testing
procedure that can be helpful in this context. Our tests can be used at different stages of such a
procedure. We show by simulation that the asymptotic theory is a good guide for small-sample
performance of the individual tests, if the sample size is sufficiently large. Finally, we present
examples that illustrate the usefulness of our tests for applied work.
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Testing identification via heteroskedasticity 3

The remainder of this paper is structured as follows. The model is set up in the following
section. Section 3 presents the tests for identification and their asymptotic properties. Section 4
considers the small-sample properties of the tests. Two empirical examples are discussed in
Section 5. The final section concludes. The proofs of the asymptotic results for the test statistics
are provided in Appendix A.

2. THE MODEL

Consider a stable K-dimensional reduced-form VAR(p) model,

yt = ν + A1yt−1 + · · · + Apyt−p + ut , (2.1)

where ν is an intercept term, and Aj (j = 1, . . . , p) are (K × K) VAR slope coefficient matrices
satisfying the usual stability condition,

det
(
IK − A1z − · · · − Apzp

) �= 0 for |z| ≤ 1.

The error process ut is independent white noise, with ut independent of us for s �= t, zero mean,
E(ut ) = 0, and (positive definite) covariance matrices,

E(utu
′
t ) =

{
�1 for t ∈ T1 = {1, . . . , T1},
�2 for t ∈ T2 = {T1 + 1, . . . , T }, (2.2)

where T signifies the sample size. Thus, the errors of the model are assumed to be heteroskedastic
so that the covariance matrix changes from �1 to �2 at time T1 + 1, which we assume to be
known. Moreover, we assume that for some fixed fraction τ ∈ (0, 1), T1 is the integer part of τT;
that is, T1 = [τT], so that the sample size for both volatility regimes goes to infinity as T → ∞.

The setup in (2.2) is used here for convenience. For our asymptotic analysis, it is in fact sufficient
that T1 contains a fraction τ of sample periods, whereas T2 contains the remaining fraction of 1
− τ periods in the sample. In other words, T1 and T2 do not have to contain consecutive parts of
the sample, but the size of both sets has to go to infinity with the sample size in such a way that
both �1 and �2 can be estimated consistently.

We consider the case in which the error term ut has an elliptically symmetric distribution or
briefly an elliptical distribution possessing a density

(√
det �m

)−1
g(u′

t�
−1
m ut ), where �m is a

symmetric positive definite matrix, g( · ) is a positive function such that the density integrates to
one, and the fourth moments of the distribution exist (see, e.g., Anderson, 2003, Section 2.7, for
further discussion of elliptical distributions). Note that the elliptical distributions are such that
all components of ut have the same kurtosis parameter. More precisely, denoting the kth diagonal
element of �m by σ 2

km, the kurtosis parameter [E(u4
kt )/3σ 4

km] − 1 is the same for k = 1, . . . , K
(see also Anderson, 2003, p. 54, Equation 36). We explicitly allow for the possibility that the
kurtosis parameter may be different for the different volatility regimes and define

[E(u4
kt )/3σ 4

km] − 1 = κm for t ∈ Tm, m = 1, 2.

Notice, however, that the case of Gaussian residuals is obtained as a special case by choosing
the kurtosis parameter equal to zero. Thus, even if the variance changes across the sample, we
may have κ1 = κ2 if, for example, the sample is Gaussian. Other distribution families covered by
our assumptions are t distributions and mixtures of normal distributions. We need the elliptical
distributions to apply limiting results from Anderson (2003) in our derivation of the test for
identification in Section 3.

C© 2021 Royal Economic Society.
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4 H. Lütkepohl et al.

The covariance matrices in (2.2) can be decomposed as follows:

�1 = BB ′, �2 = B�B ′, (2.3)

where � = diag(λ1, . . . , λK ) is a (K × K) diagonal matrix with positive diagonal elements, and
B is a nonsingular (K × K) matrix (see Lütkepohl, 2013). A standard assumption in the related
structural VAR (SVAR) literature is that only the volatility of the shocks changes, whereas the
responses of the variables remain time invariant. This is accomplished by obtaining the structural
shocks from the reduced-form errors as εt = B−1ut, such that B is the matrix of impact effects of
the shocks, and the covariance matrices of the structural errors are given by

E(εtε
′
t ) =

{
IK for t ∈ T1,

� for t ∈ T2.

Thus, the structural errors are instantaneously uncorrelated in both volatility regimes. Replacing
the reduced-form errors ut in (2.1) by the structural errors Bεt yields the SVAR(p) model

yt = ν + A1yt−1 + · · · + Apyt−p + Bεt . (2.4)

For the statistical results to be obtained later, we assume that the structural errors εt or, equivalently,
the reduced-form errors ut are temporally independent.

It is well known (see, e.g., Theorem A9.9 and its proof in Muirhead, 1982) that the diagonal
elements of the matrix � in (2.3) are the eigenvalues of the matrix �2�

−1
1 so that they satisfy the

(generalised) eigenvalue equations

det
(
�−1

1 − λk�
−1
2

) = 0, k = 1, . . . , K, (2.5)

whereas the columns of the matrix B = [b1: ···: bK] are the corresponding (generalised) eigen-
vectors that satisfy (

�−1
1 − λk�

−1
2

)
bk = 0, k = 1, . . . , K. (2.6)

Furthermore, if the eigenvalues λ1, . . . , λK are distinct, the matrix B is unique apart from
permutations and sign reversals of its columns (see the aforementioned theorem of Muirhead,
1982, or Lanne et al., 2010, Proposition 1). In what follows, we assume (without loss of generality)
that the eigenvalues λ1, . . . , λK are ordered from largest to smallest so that λ1 ≥ ··· ≥ λK > 0
holds. If the matrix B is not unique, we have an identification problem in the SVAR(p) model
(2.4). Testing for a possible lack of identification is therefore of interest and will be discussed in
the next section.

Clearly, our model is special in that it assumes two volatility regimes only. In practice, there
may be more than two volatility regimes (see, e.g., Rigobon and Sack, 2003, and Lanne and
Lütkepohl, 2008). In that case, the identification conditions become more elaborate and more
difficult to test formally (e.g., Kilian and Lütkepohl, 2017, Section 14.3.1). We leave this case for
future research. Moreover, more general volatility models have been considered in the literature.
For example, Lanne et al. (2010) and Herwartz and Lütkepohl (2014) used a Markov-switching
process to model endogenously changing volatility regimes. Unfortunately, we do not know
whether the tests developed in the following can be extended to that case even in situations in
which very similar identification conditions are of interest. Again, we leave extensions to such
models for future research.

C© 2021 Royal Economic Society.
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Testing identification via heteroskedasticity 5

3. A TEST PROCEDURE FOR IDENTIFICATION OF B

3.1. The testing problem

Given that the diagonal elements of the matrix � are ordered from largest to smallest, uniqueness
of the matrix B obtains if λ1 > ··· > λK and the possibility of sign reversals in B is eliminated.
One possibility to fix the column signs to be used in this study is to require that the first nonzero
element of each column of B be positive. In order to test for lack of identification, we consider
the pair of hypotheses

H0 : λs+1 = λs+2 = · · · = λs+r (= λ0) versus H1 : ¬H0

for s ∈ {0, . . . , K − 2} and r ∈ {2, . . . , K − s}. Thus, under the null hypothesis, r consecutive
eigenvalues of � are equal to a value λ0, implying lack of identification. The remaining eigenval-
ues, λ1, . . . , λs, λs + r + 1, . . . , λK, may have multiplicities larger than one but have to be different
from λ0, the common value under H0.

Let y−p + 1, . . . , y0, y1, . . . , yT be the available data. The reduced-form Gaussian log-likelihood
function (apart from a constant, and conditioning on the first p observations y−p + 1, . . . , y0) is
given by

l(ϑ, σ ) = −1

2

T1∑
t=1

log det(�1) − 1

2

T1∑
t=1

ut (ϑ)′�−1
1 ut (ϑ)

−1

2

T∑
t=T1+1

log det(�2) − 1

2

T∑
t=T1+1

ut (ϑ)′�−1
2 ut (ϑ),

where ϑ = vec(ν,A1, . . . , Ap), ut (ϑ) signifies ut in expression (2.1) when these quantities are
interpreted as functions of the underlying parameters and σ = (σ 1, σ 2) with σm = vech(�m)
(m = 1, 2). Here, ’vec’ denotes the usual column-stacking operator, and ’vech’ denotes the
operator that stacks the columns of a square matrix from the main diagonal downward. If the data
generating process (DGP) is Gaussian, maximising l(ϑ, σ ) with respect to the parameters gives
the maximum likelihood (ML) estimators, and if the true distribution is not Gaussian but of a
more general elliptical form, the resulting estimators are quasi-ML estimators.

Instead of ML estimation, one may use a feasible generalised least squares (GLS) procedure.
In that case, (2.1) is estimated with equationwise ordinary least squares in a first step. The
residuals ût obtained in that way are then used for estimating the covariance matrices as �̂m =
T −1

m

∑
t∈Tm

ût û
′
t , m = 1, 2, where T2 = T − T1. In a further step, the GLS estimator,

ϑ̃ =
(

T∑
t=1

Zt−1Z
′
t−1 ⊗ �̂−1

t

)−1 (
T∑

t=1

(Zt−1 ⊗ �̂−1
t )yt

)
,

is computed, where Zt−1 = (1, y ′
t−1, . . . , y

′
t−p)′ and �̂t = �̂m for t ∈ Tm (m = 1, 2). If the

VAR process is stable, these estimators have standard asymptotic properties and can be used
accordingly (see Lütkepohl, 2005, Chapter 17). Then, the GLS residuals can be used to estimate
the covariance matrices �1 and �2. In what follows, ϑ̃ can be any estimator of ϑ such that
ϑ̃ − ϑ = Op(T −1/2).

C© 2021 Royal Economic Society.
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6 H. Lütkepohl et al.

Then, one readily finds that �̃1 and �̃2 are asymptotically equivalent to their (unfeasible)
counterparts based on the reduced-form errors or, specifically,

�̃1 = 1

T1

T1∑
t=1

ũt ũ
′
t = 1

T1

T1∑
t=1

utu
′
t + op(T −1/2), (3.1)

�̃2 = 1

T − T1

T∑
t=T1+1

ũt ũ
′
t = 1

T − T1

T∑
t=T1+1

utu
′
t + op(T −1/2), (3.2)

where ũt signifies the GLS residuals described above; that is, ũt = yt − ν̃ − Ã1yt−1 − · · · −
Ãpyt−p (cf. Proposition 3.2 in Lütkepohl, 2005). Replacing the theoretical covariance matrices
�1 and �2 in equations (2.5) and (2.6) with the estimators �̃1 and �̃2, we obtain the vector of
eigenvalues λ̃ = (λ̃1, . . . , λ̃K ) and the matrix of eigenvectors B̃ = [ b̃1 : · · · : b̃K ]. Similarly to
their theoretical counterparts, the estimated eigenvalues λ̃1, . . . , λ̃K are ordered from largest to
smallest, and, because they are distinct with probability one, we have λ̃1 > · · · > λ̃K > 0 almost
surely. Eliminating the possibility of sign reversals in B̃ in the same way as in B, we therefore
have a one-to-one continuous correspondence between the estimators �̃1 and �̃2 and the elements
of the matrix B̃ and the vector λ̃. Thus, B̃ and λ̃ can be viewed as unrestricted estimators of B
and λ.

Deriving the asymptotic properties of estimated eigenvalues is known to be a complicated
problem when the theoretical eigenvalues are not distinct, which is the case under our null
hypothesis. In the context of principal component analysis, where the population eigenvalues
satisfy equation (2.5) with �1 = IK, and with independent observations, a complete solution to
this problem was provided by Anderson (1963) (see also Anderson, 2003, Section 11.7.3, and
Muirhead, 1982, Sections 9.5 and 9.6), whereas Anderson (2003, Section 13.6.3) treated the case
of a general �1 (again with independent observations). In what follows, we adopt Anderson’s
approach to our problem.

For setting up our test statistics, we also need consistent estimates of the kurtosis parameters.
One possible estimator is discussed in Schott (2001, p. 33),

κ̃m = 1

3K

K∑
k=1

zm
k

wm
k

− 1, m = 1, 2,

where

zm
k =

∑
t∈Tm

(ũkt − ūm
k )4 − 6σ̃ 4

k

Tm − 4
and wm

k = Tm

Tm − 1

(
σ̃ 4

k − zm
k

Tm

)
.

Here, ūm
k = T −1

m

∑
t∈Tm

ũkt is the mean of the residuals associated with the mth volatility regime.
Of course, if the ut are Gaussian and this fact is known to the analyst, the kurtosis parameters can
simply be replaced by zero; that is, κ̃1 = κ̃2 = 0 in the test statistic. Similarly, if the distribution
is such that κ1 = κ2, the kurtosis parameter can be estimated from the full sample by using the
formulas as above based on the full sample.

3.2. The test statistic

We base our test statistic on the eigenvalues λ̃s+1, . . . , λ̃s+r . In principal component analysis with
Gaussian independent and identically distributed (i.i.d.) data, the LR test for testing the equality
of eigenvalues is based on the ratio of the geometric mean and arithmetic mean of the ML

C© 2021 Royal Economic Society.
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Testing identification via heteroskedasticity 7

estimators of the eigenvalues assumed to be identical under the null hypothesis (see Anderson,
1963, or Anderson, 2003, Section 11.7.3). Proceeding according to this pattern, we consider the
test statistic

Qr (κ̃1, κ̃2) = −c(τ, κ̃1, κ̃2)2T r log

( ∏s+r
k=s+1 λ̃

1/r

k

1
r

∑s+r
k=s+1 λ̃k

)
(3.3)

= c(τ, κ̃1, κ̃2)2

[
−T

s+r∑
k=s+1

log(λ̃k) + T r log

(
1

r

s+r∑
k=s+1

λ̃k

)]
,

where κ̃1 and κ̃2 are consistent estimators of the kurtosis parameters, and the term

c(τ, κ̃1, κ̃2)2 =
(

1 + κ̃1

τ
+ 1 + κ̃2

1 − τ

)−1

is included to obtain a convenient limiting distribution. Because the test statistic involves unre-
stricted estimators only, the test is akin to a Wald test. Of course, other distance measures could
also be considered. The following proposition gives the asymptotic distribution of the test statistic
under the null hypothesis. As can be seen in the proof in Appendix A, the asymptotic distribution
consists of two independent terms having χ2 distributions. The first one has r − 1 degrees of
freedom and reflects the r − 1 restrictions on the λks under H0. The second term has 1

2 r(r − 1)
degrees of freedom and reflects the number of restrictions needed to identify the eigenvectors
corresponding to the restricted λks. Adding the two independent χ2 terms results in an overall χ2

distribution with 1
2 (r + 2)(r − 1) degrees of freedom.

PROPOSITION 3.1. Let ut be independent white noise with elliptical distribution possessing
a density as well as finite fourth moments with kurtosis parameters κm for t ∈ Tm (m = 1, 2),
where T1 = {1, . . . , T1 = [τT ]}, T2 = {T1 + 1, . . . , T }, and the fraction τ ∈ (0, 1)is assumed to
be known and fixed. Furthermore, let λ1 ≥ ··· ≥ λK be ordered from largest to smallest, and let
Qr (κ̃1, κ̃2) be the test statistic defined in equation (3.3) for testing the pair of hypotheses

H0 : λs+1 = λs+2 = · · · = λs+r (= λ0) versus H1 : ¬H0

for s ∈ {0, . . . , K − 1} and r ∈ {2, . . . , K − s}. Suppose that λs �= λs + 1 and λs + r �= λs + r + 1.
Furthermore, let κ̃1 and κ̃2 be consistent estimators of κ1 and κ2, respectively. Then,

Qr (κ̃1, κ̃2)
d→ χ2

(
1
2 (r + 2)(r − 1)

)
,

where
d→ denotes convergence in distribution.

The χ2-limiting distribution requires that r eigenvalues are equal to λ0 and all other eigenvalues
are different from λ0 (i.e., λs �= λs + 1 and λs + r �= λs + r + 1). In order to ensure this condition, the
following considerations may be helpful. If

H0 : λ1 = · · · = λK

does not hold, we know that λ1 �= λK, and Proposition 3.1 enables us to test

H0 : λ1 = · · · = λK−1 and H0 : λ2 = · · · = λK.

C© 2021 Royal Economic Society.
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8 H. Lütkepohl et al.

If these two null hypotheses are false, we can test all null hypotheses involving K − 2 consecutive
eigenvalues, etc. If all null hypotheses in this sequence are false, we can finally test

H0 : λ1 = λ2, . . . ,H0 : λK−1 = λK.

If all the null hypotheses are rejected, the tests support that all the structural parameters are
identified via heteroskedasticity.

For example, for K = 3, Proposition 3.1 implies that we can test the null hypothesis

H0 : λ1 = λ2 = λ3 (3.4)

by using Q3(κ̃1, κ̃2) with a χ2(5) distribution. If the null hypothesis is false, it follows that λ1 �=
λ3, so that we can test

H0 : λ1 = λ2 and H0 : λ2 = λ3 (3.5)

by using Q2(κ̃1, κ̃2) statistics with a χ2(2) distribution. Rejecting the latter two null hypotheses
is evidence of a fully identified structural model via heteroskedasticity.

Note that the two null hypotheses in (3.5) are each tested independently of the outcome of
the other test. In other words, H0 : λ2 = λ3 is not conditioned on the outcome of the test of
H0 : λ1 = λ2. Even if H0 : λ1 = λ2 is not rejected, this may be a problem of insufficient power
against the hypothesis, and hence, testing H0 : λ2 = λ3 in addition is not inconsistent with at least
two of the three λks being distinct.

As this example shows, a sequential testing procedure is needed if the dimension of the VAR
process is greater than two (i.e., K > 2). As usual, considering the sequential testing procedure
results in different Type I and Type II errors than the individual tests. For example, H0 in (3.5)
is considered only if (3.4) is rejected. Thus, the properties of the sequential testing procedure
depend on the power of the tests. We will explore the small-sample power of the tests and the
properties of sequential tests in Section 4.

In the previous literature, a related Wald test for equality of two eigenvalues of a similar type was
sometimes used with a χ2(1) distribution (e.g., Lanne et al., 2010, and Velinov and Chen, 2015).
Although somewhat different volatility models were used in these publications, Proposition 3.1
suggests that the χ2(1) distribution is a poor approximation to the actual asymptotic distributions
of the test statistics. An adjustment of the degrees-of-freedom parameter is likely to be useful.
Note that increasing the degrees-of-freedom parameter increases the correspondingly assumed
p-values and hence may reduce the number of rejections.

One may wonder whether other procedures for assessing identification could be used in the
context of our model. Other procedures have indeed been used for other volatility models. For
example, Lütkepohl and Milunovich (2016) used a different frequentist testing strategy for VAR
models with generalised autoregressive conditional heteroskedasticity (GARCH) errors. Like-
wise, Lewis (2018a) proposed a rank test for identification through heteroskedasticity. Moreover,
Woźniak and Droumaguet (2015) and Lütkepohl and Woźniak (2020) considered Bayesian pro-
cedures for assessing identification through heteroskedasticity in related models. Clearly, the
objective of the present paper is to develop frequentist tests. The advantage of our tests based on
the relative variances in the second volatility state is that they provide detailed information on
which shocks are identified. Thus, they are also useful in situations where only partial identifica-
tion through heteroskedasticity is obtained. Moreover, it is quite common in the related literature
to assess identification by considering the relative variances; see, for example, Lanne et al. (2010),
Herwartz and Lütkepohl (2014), Lütkepohl and Velinov (2016), Velinov and Chen (2015), and
Netšunajev (2013).
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Testing identification via heteroskedasticity 9

4. SMALL-SAMPLE PROPERTIES OF TESTS FOR IDENTIFICATION

4.1. Experimental design

We consider a range of DGPs to investigate the small-sample properties of our tests. All DGPs
have zero intercept, ν = 0. We still fit VARs with intercept. The error distributions are either
Gaussian, ut ∼ N (0, �m), have t distributions with five degrees of freedom [t(5) distributions],
or are χ2-distributed as specified below. Some of the simulation results are only summarised in
the following, and numbers are provided in the Online Appendix to this article, in which further
details of some of the DGPs are also presented. We report results for the following specific DGPs.

DGP1: A bivariate (K = 2) VAR(0) process, yt = ut, with volatility change at T1 = τT, where
0 < τ < 1. The errors ut are independent Gaussian and have t(5) or χ2 distributions
with covariance matrix �1 = I2 for t = 1, . . . , T1 = τT and �2 = diag(λ1, λ2) for
t > T1, where (λ1, λ2) = (2, 2), (2, 1). The t(5)-distributed ut are temporally and
contemporaneously independent and are generated as

√
λk × t(5) distributions for t

> T1 and k = 1, 2. The χ2-distributed errors are temporally and contemporaneously
independently distributed, with

ut ∼
(

χ2(2) − 2

2
,
χ2(5) − 5√

10

)′
and ut ∼

(√
λ1

χ2(2) − 2

2
,
√

λ2
χ2(5) − 5√

10

)′

for t = 1, . . . , T1 = τT and for t > T1, respectively.
DGP2: A Gaussian bivariate VAR(2) process,

yt =
[

0.190
0.523

]
+

[−0.036 −0.705
−0.093 1.211

]
yt−1 +

[
0.090 0.796

−0.085 −0.276

]
yt−2 + ut ,

where the slope coefficients are the estimated values for the first example process
considered in Section 5.1. The error process consists of independent Gaussian vectors,
ut ∼ N (0, �m) for t ∈ Tm, m = 1, 2, and τ = 0.3, which also corresponds to the
empirical value for the first example process. The covariance matrices are formed as in
equation (2.3), with

B =
[

0.317 1.059

0.242 −0.450

]
,

and � = diag(λ1, λ2), with (λ1, λ2) = (0.5, 0.5), (0.5, 0.1). The latter choice is also
inspired by the first example process. Thus, DGP2 has features similar to the first
example process.

Estimation of the VAR slope coefficients is done by GLS, and then the λk are obtained as
generalised eigenvalues by using (2.5) with estimated covariance matrices �̃1 = T −1

1

∑T1
t=1 ũt ũ

′
t

and �̃2 = (T − T1)−1 ∑T
t=T1+1 ũt ũ

′
t , where ũt are the GLS residuals. Even for the Gaussian

processes, we pretend that we do not know the true distribution and fit models with possibly two
distinct kurtosis parameters. We also vary the sample size because it is expected to affect the
properties of the tests. Specifically, T = 100, T = 250, and T = 500 are used. The number of
replications of all simulation experiments is 1,000.
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10 H. Lütkepohl et al.

Table 1. Relative rejection frequencies of tests for Gaussian DGP1 with different assumed or estimated
volatility shift points (nominal significance level 5%).

τ = 0.5 (true value) τ = 0.4 τ = 0.3 Estimated τ

(λ1, λ2) T Q2(0, 0) Q2(κ̃1, κ̃2) Q2(0, 0) Q2(κ̃1, κ̃2) Q2(0, 0) Q2(κ̃1, κ̃2) Q2(0, 0) Q2(κ̃1, κ̃2)

(2,2) 100 0.054 0.063 0.064 0.072 0.056 0.062 0.166 0.182
(size) 250 0.045 0.046 0.046 0.050 0.057 0.055 0.087 0.087

500 0.046 0.050 0.057 0.053 0.049 0.050 0.063 0.069
(2,1) 100 0.331 0.342 0.258 0.262 0.174 0.190 0.526 0.569
(power) 250 0.703 0.709 0.549 0.557 0.348 0.348 0.782 0.783

500 0.949 0.950 0.846 0.844 0.716 0.720 0.960 0.962

Note: DGP1 is a bivariate Gaussian VAR(0) process with τ = 0.5, independent ut ∼ N (0, I2) for t = 1, . . . , 0.5T, and
independent ut ∼ N (0, diag(λ1, λ2)) for t = 0.5T + 1, . . . , T.

Table 2. Relative rejection frequencies of tests for DGP1 with different distributions (nominal significance
level 5%).

Gaussian DGP t-Distributed DGP χ 2-Distributed DGP

(λ1, λ2) T Q2(0, 0) Q2(κ̃1, κ̃2) Q2(0, 0) Q2(κ̃1, κ̃2) Q2(0, 0) Q2(κ̃1, κ̃2)

(2,2) 100 0.054 0.063 0.173 0.047 0.224 0.086
(size) 250 0.045 0.046 0.187 0.048 0.232 0.054

500 0.046 0.050 0.214 0.048 0.239 0.053
(2,1) 100 0.331 0.342 0.400 0.195 0.388 0.181
(power) 250 0.703 0.709 0.618 0.391 0.647 0.358

500 0.949 0.950 0.802 0.598 0.837 0.588

Note: The underlying DGPs are a VAR(0) process with independent Gaussian, independent t-distributed, and independent
χ2-distributed errors, respectively.

4.2. Simulation results for individual tests

The results for the bivariate DGP1 and DGP2 are discussed first. They are presented in Tables 1–
3 and are also complemented by further results in the Online Appendix. Moreover, additional
results for other processes are briefly summarised in Section 4.2.2.

4.2.1. Bivariate DGPs. In Table 1, we report results for a Gaussian DGP1, not only for the case
where the change point of the volatility is specified correctly (τ = 0.5), but also the situation of
a misspecified or estimated volatility change point.1 In the panel for (λ1, λ2) = (2, 2) in Table 1,
it can be seen that the relative rejection frequencies of the tests in finite samples are roughly in
line with the nominal size of 5% if the true or a slightly misspecified volatility change point is
used (τ = 0.5, 0.4, 0.3). Even for sample size T = 100, the relative rejection frequencies are
reasonably close to 5%, regardless of the kurtosis parameters used. In other words, Q2(κ̃1, κ̃2) has
very similar rejection frequencies to Q2(0, 0) for a Gaussian process. Furthermore, the relative

1 Estimation of the change point is done by minimising the objective function T1 log det �̂1 + (T − T1) log det �̂2 over
τ ∈ [0.15, 0.85], where �̂1 = T −1

1

∑T1
t=1 ût û

′
t and �̂2 = (T − T1)−1 ∑T

t=T1+1 ût û
′
t are based on ordinary least squares

residuals ût and T1 = [τT].
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Testing identification via heteroskedasticity 11

Table 3. Relative rejection frequencies of tests for DGP2 (nominal significance level 5%).

VAR(2) VAR(1)

(λ1, λ2) T Q2(0, 0) Q2(κ̃1, κ̃2) Q2(0, 0) Q2(κ̃1, κ̃2)

(0.5,0.5) 100 0.076 0.100 0.059 0.065
(size) 250 0.064 0.062 0.043 0.046

500 0.065 0.066 0.039 0.041
(0.5,0.1) 100 0.330 0.360 0.255 0.272
(power) 250 0.644 0.650 0.561 0.570

500 0.910 0.909 0.869 0.866
(0.5,0.1) 100 0.253 0.243 0.234 0.194
(size-adjusted power) 250 0.613 0.622 0.584 0.580

500 0.904 0.892 0.876 0.879

Note: DGP2 is a bivariate Gaussian VAR(2) process with independent errors and τ = 0.3.

rejection frequencies under the null hypothesis are not much affected by using a misspecified
volatility change point (see the columns corresponding to τ = 0.4 and 0.3 in Table 1).

In this respect, the situation is quite different for the power of the tests. In the lower part of
Table 1, it is seen that the tests are more powerful if τ is specified correctly (τ = 0.5), and the
power declines when the volatility change point is misspecified (see τ = 0.4 or 0.3 in Table 1).
In fact, the farther away the assumed change point is from the true change point, the lower the
power. It is again worth noting that it does not seem to matter much for the power of the tests
whether the true kurtosis parameters are known or estimated (compare the corresponding results
for Q2(κ̃1, κ̃2) and Q2(0, 0) in Table 1).

The picture changes if τ is estimated (see the last two columns in Table 1). Note that estimating
the volatility change point is a challenge in our setup because the volatility does not change much.
The standard deviation of the errors in the second volatility regime is only about 1.4 times larger
than in the first regime for a λk = 2. Therefore, a precise estimation of the volatility change point
cannot be expected. This feature translates into larger rejection frequencies in small samples.
Even for T = 500, the rejection frequencies are a bit larger than 5% under the null hypothesis
(λ1, λ2) = (2, 2). Because the power in Table 1 is not size adjusted, it is also not surprising that
the rejection frequencies for (λ1, λ2) = (2, 1) are larger when τ is estimated than for fixed τ

values.
To explore the impact of misspecifying the kurtosis parameters, we have also simulated DGP1

with t-distributed errors ut and compare the results in Table 2 to results for Gaussian errors.
Clearly, if the errors are t-distributed and the kurtosis parameters are mistakenly set to zero as
for Gaussian processes, the corresponding test statistic Q2(0, 0) is considerably oversized even in
large samples. For example, for T = 500, the relative rejection frequency is 0.214 for Q2(0, 0) in
Table 2, instead of the desired 5% if the null hypothesis is true [(λ1, λ2) = (2, 2)]. In contrast, for
Gaussian and t-distributed errors, the relative rejection frequencies of Q2(κ̃1, κ̃2) are very close to
5% if the null hypothesis is true. Note, however, that the power of our test is considerably lower
for t-distributed errors than for Gaussian processes if estimated kurtosis parameters are used.
The substantial size distortions when incorrect kurtosis parameters are used suggest that it is
advisable to use the test statistics with estimated kurtosis parameters if, as is usual in practice, the
true distribution is unknown. Nothing much can be gained from using the true kurtosis parameters
if the distribution is known to be Gaussian.
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12 H. Lütkepohl et al.

We have also performed simulations of DGP1 with a non-elliptical error distribution to investi-
gate the importance of the distributional assumption in Proposition 3.1. The results for a process
with χ2-distributed errors are also shown in Table 2. When the incorrect Gaussian kurtosis pa-
rameters are used, the rejection frequencies are again larger than the nominal 5%. However, the
situation improves markedly if estimated kurtosis parameters are used. In that case, the rejection
frequencies for larger samples (T = 250, 500) are close to the nominal 5%. This result is reassur-
ing for using the tests in applied work, although there may, of course, be distributions where the
situation is different. As in the case of t-distributed errors, the power is, however, substantially
lower than for a Gaussian process.

So far we have considered only the situation in which the true DGP is white noise [VAR(0)].
From a practical point of view, this situation is not of much interest, of course, and in Table 3 we
present results for DGP2, which is a Gaussian VAR(2) process based on a real-life dataset. The
table presents the relative rejection frequencies for the situation where the VAR order is correctly
specified to be p = 2 and also for the case where VAR(1) processes are fitted and, hence, the order
is underspecified. Obviously, this situation may occur in practice and is therefore of interest here.

For the case of a correctly specified VAR lag order, the tests are slightly oversized in small
samples because of the larger dimensional parameter space. For example, for T = 100 and (λ1, λ2)
= (0.5, 0.5), the test based on Q2(κ̃1, κ̃2) has a relative rejection frequency of 0.100 in Table 3,
which is double the nominal significance level of 0.05. In this case, using the true instead of
estimated kurtosis parameters [i.e., using Q2(0, 0) instead of Q2(κ̃1, κ̃2)] improves the situation
slightly. We have also fitted VAR(4) processes to DGP1 and present the results in Tables S1 and
S2 of the Online Appendix, where it can be seen that the tests are even more oversized for larger
models with more parameters if the sample size is small (T = 100). As in Table 3, the relative
rejection frequencies are much closer to 5% for the larger sample sizes, however.

By comparing to the corresponding results in Table 1, it can also be seen in Table 3 that the
size-adjusted power declines for larger models. In Table 3, the unadjusted power of the test based
on Q2(κ̃1, κ̃2) is 0.360 for the VAR(2) and T = 100, which is similar to the power of the test for
the corresponding case in Table 1 for a VAR(0). However, if we account for the fact that the test
is oversized in Table 3 for the VAR(2) and compute the size-adjusted power, the relative rejection
frequency is only 0.243. Thus, the results in Table 3 clearly show that the tests are oversized
and the actual power of the tests is reduced for larger models in small samples when T = 100.
Fortunately, the small-sample distortions in size and power largely disappear for the larger sample
sizes (T = 250 and 500).

If we now consider the results for the misspecified VAR(1) process in Table 3, it turns out that in
this situation the tests can even be somewhat too conservative, with relative rejection frequencies
below the nominal 5% for larger samples. Also, the size-adjusted power may be distorted and
tends to be lower than for the correctly specified VAR(2) process.

In summary, on the basis of our specific bivariate DGPs, it appears that the number of lags and,
hence, the size of the model affects the rejection frequencies. Larger models result in oversized
tests in small samples with reduced actual power. Size and power distortions appear in small
samples if the VAR order is underspecified. If a slightly misspecified but fixed volatility change
point is used, the size of the tests is not much affected, but the power is reduced. Having to estimate
the volatility change point may affect the size of the tests, however. If the true distribution of the
DGP is not known to be Gaussian, then it makes sense to use the test statistics based on estimated
kurtosis parameters because they display similar rejection frequencies in the Gaussian case to the
test statistics based on known kurtosis parameters, and their empirical size is much closer to the
nominal size if the true distribution is non-Gaussian.
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Testing identification via heteroskedasticity 13

4.2.2. Extensions. We have also considered a number of extensions of the simulations reported
so far and present further detailed results in the Online Appendix to this article. In Tables S1 and
S2 of the Online Appendix, we explore the impact of the location of the volatility shift within the
sample. More precisely, we compare results based on DGP1 with break fractions τ = 0.5 and τ

= 0.2. In other words, we investigate the implication of the volatility change happening closer to
the beginning of the sample. The results for both Gaussian and t-distributed processes are very
similar for τ = 0.5 and τ = 0.2. Thus, even if the break point is not in the middle of the sample,
this seems to have no substantial impact on the small-sample properties of our tests. Note that in
this case, we have always fitted processes with correctly specified break dates.

In Table S3 of the Online Appendix, the properties for two Gaussian VAR(1) processes with
different persistence are compared. One of the processes has an autoregressive root much closer
to the unit circle than the other process. Again, this does not affect the small-sample properties
of our tests much.

Finally, in Table S4 of the Online Appendix, results for a five-dimensional Gaussian VAR(1)
process are presented, which indicate that the tests tend to reject too often under the null hypothesis
for larger models. This, of course, is in line with our previous finding in Table 3. Note that
individual tests rather than sequential tests are considered in Table S4. The magnitude of the
distortions is quite substantial for such a large model, and even for sample size T = 500 there
is still some bias. We have not found satisfactory small-sample corrections for our tests in large
models and leave the issue for future research.

4.3. Sequential testing

So far we have explored the properties of our tests when they are applied to a single null
hypothesis. However, in practice it is tempting to use them sequentially for higher-dimensional
processes, as discussed in Section 3.2. Although we emphasise that our asymptotic results do not
relate to this situation, we have also considered the possibility of applying the tests sequentially in
a simulation exercise. To this end, we have generated the following three-dimensional Gaussian
VAR(0) process.

DGP3: A three-dimensional (K = 3) Gaussian VAR(0) process, yt = ut, with volatility change
at T1 = 0.5T (i.e., τ = 0.5). The errors are independent over t, with ut ∼ N (0, �1 = I3)
for t = 1, . . . , τT1 and ut ∼ N (0, �2 = diag(λ1, λ2, λ3)) for t = T1 + 1, . . . , T, where
(λ1, λ2, λ3) = (2, 2, 2), (3, 2, 1) or (3,2,2).

Simulation results for this case are provided in Table 4. In that table, the notation H0i |¬H0j

means that the null hypothesis H0i is tested conditionally on H0j being rejected. Thus, for
example, H02|¬H01 : λ1 = λ2 means that the null hypothesis H02 : λ1 = λ2 is tested only for
those simulations in which H01 : λ1 = λ2 = λ3 has been rejected.

The results for T = 100 and (λ1, λ2, λ3) = (2, 2, 2) confirm that the test is slightly oversized
for larger models. It rejects the true hypothesis H01 : λ1 = λ2 = λ3 in roughly 8% of the cases
if Q3(κ̃1, κ̃2) is used with a nominal significance level of 5%. All other tests in the same panel
are conditional on this outcome, and, not surprisingly, false conclusions about the identification
of the process are rare. In particular, the false conclusion that the process is fully identified via
heteroskedasticity is never reached when Qr (κ̃1, κ̃2) is used. As one would expect, the same is
true if the sample size is increased and (λ1, λ2, λ3) = (2, 2, 2).

However, in the panels for (λ1, λ2, λ3) = (3, 2, 1), a full identification is also found rarely if T =
100, although the model is clearly identified. More precisely, Qr (κ̃1, κ̃2) finds full identification
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14 H. Lütkepohl et al.

Table 4. Relative rejection frequencies of tests for three-dimensional Gaussian DGP3 (nominal individual
significance level 5%).

T (λ1, λ2, λ3) Hypotheses Qr(0, 0) Qr (κ̃1, κ̃2)

100 (2,2,2) H01 : λ1 = λ2 = λ3 0.073 0.081
(size) H01 and H02|¬H01 : λ1 = λ2 0.020 0.022

H01 and H03|¬H01 : λ2 = λ3 0.008 0.012
H01 and H02|¬H01 and H03|¬H01 0.001 0

(3,2,1) H01 : λ1 = λ2 = λ3 0.548 0.570
(power) H01 and H02|¬H01 : λ1 = λ2 0.114 0.128

H01 and H03|¬H01 : λ2 = λ3 0.226 0.240
H01 and H02|¬H01 and H03|¬H01 0.008 0.013

(3,2,2) H01 : λ1 = λ2 = λ3 0.146 0.153
(power) H01 and H02|¬H01 : λ1 = λ2 0.035 0.043

H01 and H03|¬H01 : λ2 = λ3 0.026 0.027
H01 and H02|¬H01 and H03|¬H01 0 0

250 (2,2,2) H01 : λ1 = λ2 = λ3 0.056 0.053
(size) H01 and H02|¬H01 : λ1 = λ2 0.019 0.018

H01 and H03|¬H01 : λ2 = λ3 0.010 0.009
H01 and H02|¬H01 and H03|¬H01 0 0

(3,2,1) H01 : λ1 = λ2 = λ3 0.934 0.936
(power) H01 and H02|¬H01 : λ1 = λ2 0.270 0.272

H01 and H03|¬H01 : λ2 = λ3 0.612 0.616
H01 and H02|¬H01 and H03|¬H01 0.112 0.110

(3,2,2) H01 : λ1 = λ2 = λ3 0.252 0.264
(power) H01 and H02|¬H01 : λ1 = λ2 0.103 0.106

H01 and H03|¬H01 : λ2 = λ3 0.031 0.031
H01 and H02|¬H01 and H03|¬H01 0 0

500 (2,2,2) H01 : λ1 = λ2 = λ3 0.055 0.054
(size) H01 and H02|¬H01 : λ1 = λ2 0.018 0.017

H01 and H03|¬H01 : λ2 = λ3 0.009 0.010
H01 and H02|¬H01 and H03|¬H01 0 0

(3,2,1) H01 : λ1 = λ2 = λ3 1 1
(power) H01 and H02|¬H01 : λ1 = λ2 0.509 0.515

H01 and H03|¬H01 : λ2 = λ3 0.932 0.929
H01 and H02|¬H01 and H03|¬H01 0.480 0.451

(3,2,2) H01 : λ1 = λ2 = λ3 0.530 0.527
(power) H01 and H02|¬H01 : λ1 = λ2 0.309 0.305

H01 and H03|¬H01 : λ2 = λ3 0.036 0.038
H01 and H02|¬H01 and H03|¬H01 0.004 0.004

Note: The notation H0i |¬H0j means that the null hypothesis H0i is tested conditionally on H0j being rejected.

in only 1.3% of the cases for T = 100. Fortunately, the relative frequency goes up to 45.1% for T
= 500. Of course, even that means that full identification is not even found in half of the cases. In
other words, the tests do have some power in the sequential procedure, but it is rather small even
for larger samples. Note, however, that some identifying information through heteroskedasticity
is always found in this case because, for T = 500 and (λ1, λ2, λ3) = (3, 2, 1), the false null
hypothesis H01 : λ1 = λ2 = λ3 is always rejected.
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Testing identification via heteroskedasticity 15

It is perhaps also of interest to consider the case (λ1, λ2, λ3) = (3, 2, 2), which corresponds to
a partially identified model. In this case, it is in fact rather unlikely that full identification will be
diagnosed, even in small samples. In other words, even for T = 100, the three hypotheses H01,
H02|¬H01, and H03|¬H01 are never rejected jointly. Also, the true conditional null hypothesis
H03|¬H01 alone is not rejected very often. More precisely, the relative rejection frequency in the
testing sequence of Qr (κ̃1, κ̃2) for T = 100 is 0.027. In fact, this rejection frequency increases
when the sample size increases because the false null hypothesis H01 : λ1 = λ2 = λ3 is rejected
more often when the sample size increases. Thus, the actual rejection frequency for H03|¬H01

moves closer to the nominal 5%. On the other hand, the rejection frequency of the false null
hypothesis H02|¬H01 : λ1 = λ2 is also not rejected very often for sample size T = 250. For this
case, the relative rejection frequency of Q2(κ̃1, κ̃2) is 0.106.

The overall conclusion for the sequential testing procedure is that for our still relatively small
three-dimensional example process, the test is valuable, but one needs to be careful in drawing
conclusions about full and partial identification of the underlying model because the overall
procedure is obviously less powerful than the individual tests, and it is generally more prone to
error. Given the results for the individual tests, one may speculate that it becomes even more
difficult to reach correct conclusions if the process is larger (higher-dimensional or larger lag
order).

5. EMPIRICAL EXAMPLES

We present two empirical examples to illustrate the use of our tests for identification. The first one
reconsiders a bivariate model for US data originally proposed by Blanchard and Quah (1989),
and the second one looks at a model from Kilian (2009) for the crude oil market.

5.1. Blanchard-Quah model

Blanchard and Quah (1989) identified demand and supply shocks in a bivariate macro model for
US economic growth and unemployment by assuming that the demand shocks have no long-run
effects on output. Their model has become a textbook example for identification by restrictions on
the long-run effects of the structural shocks; see, for example, Breitung et al. (2004), Lütkepohl
(2005, Chapter 9), and Kilian and Lütkepohl (2017, Chapter 10). Chen and Netšunajev (2016)
used seasonally adjusted quarterly data for the period 1970q1–2007q4 and used identification
through heteroskedasticity to investigate the validity of the long-run neutrality of demand shocks
in a VAR(2) model for yt = (�gnpt, Ut), where gnpt denotes the log of gross national product
(GNP) and Ut is the unemployment rate. They modeled volatility changes by a smooth transition
in the reduced-form error covariance matrices. Their estimated change in the variances turned out
to be a decline in the error variances around 1983q1, which was roughly the time when the Great
Moderation started in the US (see also Figure 1 of Chen and Netšunajev, 2016). Therefore, it is
plausible to use the VAR model (2.1) with a change in the residual covariance matrix in period
1983q1.

We have used the data from Chen and Netšunajev (2016) and estimated a VAR(2) model with
error covariance change as in expression (2.2), with T1 = 1982q4. Because we have a sample
size of T = 152, the corresponding sample fraction of the break is τ = 0.34. The estimated
relative variances are λ̃1 = 0.457 (0.154) and λ̃2 = 0.152 (0.041), with the estimated standard
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Table 5. Estimated relative variances of oil market model.

Relative variance Estimate
Standard
deviation

λ1 2.174 0.275
λ2 0.358 0.050
λ3 0.186 0.025

errors given in parentheses. Both λ̃1 and λ̃2 are smaller than one so that the second part of the
sample is associated with lower residual volatility.

The estimated λks are clearly distinct, and on the basis of the standard errors, one may
expect that they are significantly different. This informal evidence was in fact used by Chen
and Netšunajev (2016) to justify the assumption of distinct relative variances. Using our test
statistic Q2(κ̃1, κ̃2), we can now formally test the null hypothesis H0 : λ1 = λ2. This test statistic
equals 8.600, follows a χ2(2) distribution, and has a p-value of 0.014, so that H0 is rejected at a
common level of significance. Thus, we support the assumption underlying the analysis of Chen
and Netšunajev (2016). Note that we use the test statistic with estimated kurtosis parameters to
avoid the assumption of a Gaussian error distribution.

5.2. Oil market model

Our second example is based on a benchmark study by Kilian (2009), who investigated the
interactions on the global market for crude oil by using a VAR model for yt = (�prodt, qt, pt)

′
,

where �prodt represents the percent change in global crude oil production, qt is the logarithm of
a detrended index of real economic activity, and pt is the logarithm of the real price of oil. Kilian
used a recursive scheme (corresponding to a lower-triangular B matrix) to identify an oil supply
shock, an aggregate demand shock, and an oil-market–specific demand shock.

Using monthly data for 1973m2–2006m12 and a VAR(3) model, Lütkepohl and Netšunajev
(2014) investigated Kilian’s model in the context of identification through heteroskedasticity.
Although these authors used different volatility models based on a Markov-switching mechanism,
their analysis suggests that a VAR model with a volatility change in the second half of 1987 may
also provide a reasonable approximation to the DGP. Therefore, we use their dataset with T =
407 and a VAR(3) model and estimate the volatility change point with the estimation procedure
used for DGP1 in Table 1 (see Footnote 1). The estimated change point turns out to be in October
1987, which corresponds to τ = 0.43. We have applied our identification tests using this model
and volatility change point.

The estimated relative variances are presented in Table 5. Because the estimates λ̃1, λ̃2, and
λ̃3 are clearly distinct and their estimated standard errors suggest that the underlying λks are
also different, it may be worthwhile to perform formal statistical tests to confirm what might
be concluded from an informal inspection. The results of our tests are given in Table 6. The
first test of the null hypothesis H0 : λ1 = λ2 = λ3 presents strong evidence against all three
relative variances’ being equal. However, the last test in Table 6 shows that there is little evidence
against λ2 = λ3. Thus, our formal tests show that an informal inspection may lead to misleading
conclusions.

In fact, on the basis of statistical procedures that are not backed by formal asymptotic theory,
Lütkepohl and Netšunajev (2014) concluded that their SVAR model was identified through
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Table 6. Identification tests for oil market model.

H0 Qr (κ̃1, κ̃2)
Degrees of

freedom p-value

λ1 = λ2 = λ3 44.367 5 1.950 × 10−8

λ1 = λ2 19.580 2 5.599 × 10−5

λ2 = λ3 2.859 2 0.239

Table 7. Test for lower-triangularity of B = [bij].

H0 LR statistic
Degrees of

freedom p-value

b12 = b13 = b23 = 0 6.056 3 0.109
2 0.048

heteroskedasticity, and on the basis of that assumption, they tested triangularity of B. They could
not reject the triangularity of B. However, such a result may be due to a lack of identification.
In fact, if no identifying information is available from volatility changes, a model with lower-
triangular B matrix would be just identified and would have the same likelihood maximum as the
reduced form and, hence, an LR test value of zero.

Because the analysis in Lütkepohl and Netšunajev (2014) was based on a different volatility
model, we also perform a corresponding LR test of the null hypothesis that B is triangular in the
context of our model. The results are reported in Table 7. If full identification of B through het-
eroskedasticity is assumed, the test statistic should have an asymptotic χ2(3) distribution because
we are testing three zero restrictions on B, which are all overidentifying. The corresponding p-
value is 0.109, which may be taken as support for a recursive model with triangular B matrix. Our
test results for the relative variances do not support full identification through heteroskedasticity,
however. Hence, the conclusion that B is lower-triangular is based on soft grounds, because not
rejecting triangularity of B may just be a reflection of insufficient identifying information in the
data. Consequently, the actual number of degrees of freedom of the LR test may be lower than
three. Note that even if there is no full identification through heteroskedasticity, we still have
a fully identified model under H0 because the zero restrictions imposed under H0 identify the
structural matrix B. Thus, the standard asymptotic theory that implies an asymptotic χ2 distri-
bution of the LR statistic is not in question here, but only its degrees of freedom. Assuming that
two of the λks are identical such that heteroskedasticity does not fully identify the B matrix and
the LR test for lower-triangularity has perhaps only two degrees of freedom would result in a
p-value of 0.048. Hence, one would reject a lower-triangular B at a 5% significance level. This
outcome shows that whether all or only some of the λks are distinct can make a difference for the
conclusions drawn from an empirical analysis.

6. CONCLUSIONS

In the present study, we have developed frequentist tests for identification through heteroskedas-
ticity in SVAR models. We consider VAR models with two volatility states. The change point
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of the volatility is assumed to be known. The tests are Wald-type tests, such that only the unre-
stricted model has to be estimated. The model errors are assumed to be from the class of elliptical
distributions. This class of distributions includes the Gaussian distribution, as well as t and mixed
normal distributions. We propose test versions where the kurtosis of the distribution is assumed
to be known and also allow for the possibility that the kurtosis is estimated.

The asymptotic null distributions of the test statistics are derived and are shown to be χ2

distributions, although the models are not identified under the null hypothesis. We have also
explored the small-sample properties of the tests by Monte Carlo simulations, and we have found
that the tests are oversized for large models when the sample size is small. However, for larger
samples and smaller models, the size and power of the tests are reasonable, and the properties
of the tests do not depend on the timing of the volatility break. However, misspecification of the
volatility change point is found to reduce power, and underspecification of the lag order may
lead to size and power distortions. Moreover, if the change point has to be estimated, this may
lead to size distortions. In most situations, the small-sample properties are not much affected by
estimating the kurtosis parameters. Thus, in practice we recommend the use of the test versions
that are based on estimated kurtosis parameters.

Two empirical examples are considered to illustrate the usefulness of the tests. The first example
considers a bivariate model for US data. Our tests support the assumption of earlier studies that
the model is identified by heteroskedasticity. The second example is based on a three-dimensional
model for the international crude oil market. We find that there is some identifying information
from heteroskedasticity, but there is little support for a full identification.

There are a number of desirable extensions of our tests. First, it would be useful if tests for more
than two volatility regimes could be developed. Moreover, the volatility model is very special. It
assumes that the change in volatility is extraneously generated. Other models have been used in
the literature on identification through heteroskedasticity. It would be desirable to have tests for
identification for other related models, as well.
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APPENDIX A: PROOF OF PROPOSITION 3.1

We assume that the ut have an elliptical distribution possessing a density as well as finite fourth moments
as in Proposition 3.1. Such assumptions are needed because we are using limiting results for elliptical
distributions from Anderson (2003).

We study λ̃1, . . . , λ̃K , the eigenvalues of �̃2�̃
−1
1 , and follow the pattern of proof in Anderson (2003,

Sections 13.6.1 and 13.6.2). As in Anderson (2003, Equation 9 on p. 550), for the theoretical developments
that follow, it will be convenient to transform the estimators �̃1 and �̃2 and consider the matrices

�̃1 = B−1�̃1B
′−1 and �̃2 = B−1�̃2B

′−1.

(As before, we here assume that the first nonzero element on each column of B is positive.) With this
transformation, the asymptotic distributions of �̃1 and �̃2 below will depend only on � and not on B (note
also that the theoretical counterparts of �̃1 and �̃2 are B−1�1B

′−1 = IK and B−1�2B
′−1 = �). Furthermore,

because λ̃1, . . . , λ̃K are the eigenvalues of �̃2�̃
−1
1 , they are also the eigenvalues of �̃2�̃

−1
1 or, equivalently,

the eigenvalues of �̃
−1/2
1 �̃2�̃

−1/2
1 . Thus, as far as asymptotic properties of the eigenvalues λ̃1, . . . , λ̃K or

their functions are concerned, we can use the matrices �̃1 and �̃2 instead of �̃1 and �̃2.
From (3.1) and (3.2), it follows that the asymptotic distributions of �̃1 and �̃2 can be derived by using

the (independent) errors ut in place of the residuals in the definitions of �̃1 and �̃2. For simplicity, denote
T2 = T − T1, and note that, because of the assumption T1 = [τT] for some τ ∈ (0, 1), both T1 → ∞
and T2 → ∞ when T → ∞. From Theorem 3.6.2 in Anderson (2003, p. 102), we can thus conclude
that T

1/2
1 (�̃1 − IK ) = Z̃1 and T

1/2
2 (�̃2 − �) = Z̃2, say, converge jointly in distribution, as T → ∞, to the

matrices Z1 = [z1, ij] and Z2 = [z2, ij] (i, j = 1, . . . , K). Here, Z1 and Z2 are independent, their elements
are jointly normally distributed, and their functionally independent elements are statistically independent.
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Furthermore, their elements have mean zero and covariance structure given by

Cov[vec(Z1)] = (1 + κ1)(IK2 + K)(IK ⊗ IK ) + κ1vec(IK )vec(IK )′

and

Cov[vec(Z2)] = (1 + κ2)(IK2 + K)(� ⊗ �) + κ2vec(�)vec(�)′,

where K (K2 × K2) is a commutation matrix and ⊗ denotes the Kronecker product. The Gaussian case is
obtained as a special case by choosing κ1 = κ2 = 0. In what follows, the null hypothesis is assumed to hold
unless otherwise stated.

As in Tyler (1983, p. 413, in the paragraph after Equation 1), we can describe the elements of Cov[vec(Z1)]
as follows. The distinct off-diagonal elements of Cov[vec(Z1)] are uncorrelated with each other and
uncorrelated with the diagonal elements, and each of them has variance 1 + κ1. All diagonal elements
have variance 2 + 3κ1, and the covariance between any two diagonal elements is κ1. In the special case
where � = λ0IK, the same description clearly applies to the elements of Cov[vec(Z2)], with κ1 replaced by
κ2, provided the variances and covariances are multiplied by λ2

0, and, by the definition of the commutation
matrix, the same is true when Z2 is replaced by the matrix [z2,ij ]s+r

i,j=s+1 and � is replaced by �2 = λ0Ir.
Theorem 1 of Amemiya (1990) implies that T 1/2(λ̃s+1 − λ0, . . . , λ̃s+r − λ0) converges in distribution to

an (r × 1) random vector consisting of the eigenvalues of the matrix U = [uij ]ri,j=1 = [(1 − τ )−1/2z2,ij −
λ0τ

−1/2z1,ij ]s+r
i,j=s+1. The elements of U are jointly normally distributed with mean zero and covariances

given in the following equations, where c(τ, κ1, κ2)2 = ( 1+κ1
τ

+ 1+κ2
1−τ

)−1
and i, j = s + 1, . . . , s + r:

E[u2
ij ] = (1 + κ2)λ2

0

1 − τ
+ (1 + κ1)λ2

0

τ
= λ2

0c(τ, κ1, κ2)−2 for i �= j

E[u2
ii] = (2 + 3κ2)λ2

0

1 − τ
+ (2 + 3κ1)λ2

0

τ
= 2λ2

0c(τ, κ1, κ2)−2 + λ2
0

( κ2

1 − τ
+ κ1

τ

)
E[uiiujj ] = λ2

0

( κ2

1 − τ
+ κ1

τ

)
for i �= j.

Distinct off-diagonal elements of U are independent of each other, and the off-diagonal and diagonal
elements of U are independent.

Now define the (infeasible) test statistic,

Qr (κ1, κ2) = c(τ, κ1, κ2)2

[
−T

s+r∑
k=s+1

log(λ̃k) + T r log

(
1

r

s+r∑
k=s+1

λ̃k

)]
,

for which we have

Qr (κ1, κ2)
d→ c(τ, κ1, κ2)2

λ2
0

∑
i<j

u2
ij + c(τ, κ1, κ2)2

2λ2
0

⎡⎣ s+r∑
i=s+1

u2
ii − 1

r

(
s+r∑

i=s+1

uii

)2
⎤⎦

def= Q∗
1,r (κ1, κ2) + Q∗

2,r (κ1, κ2).

Here, Q∗
1,r (κ1, κ2) and Q∗

2,r (κ1, κ2) are independent, and Q∗
1,r (κ1, κ2) has a χ 2 distribution with 1

2 r(r − 1)
degrees of freedom. As to Q∗

2,r (κ1, κ2), defining ws as

ws = c(τ, κ1, κ2)√
2λ0

(us+1,s+1, . . . , us+r,s+r )′,

and the (r × r) projection matrix Pr as Pr = Ir − 1
r
1r1′

r , where 1r = (1, . . . , 1)′ is an (r × 1) vector, we
have Q∗

2,r (κ1, κ2) = w′
sPrws . Hence, it follows that the random vector ws is normally distributed with zero
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mean and covariance matrix (see the above expressions of E[u2
ii] and E[uiiujj ] (i �= j))

Cov[ws] = Ir + c(τ, κ1, κ2)2

2

(
κ2

1 − τ
+ κ1

τ

)
Ir + c(τ, κ1, κ2)2

2

(
κ2

1 − τ
+ κ1

τ

)
(1r1′

r − Ir )

= Ir + c(τ, κ1, κ2)2

2

(
κ2

1 − τ
+ κ1

τ

)
1r1′

r .

Thus, we have PrCov[ws] = Pr , and we find that Q∗
2,r (κ1, κ2) has a χ 2 distribution with r − 1 degrees of

freedom. This fact can be justified by a well-known result of quadratic forms of normal random vectors;
see, for example, result (vii) in Rao (1973, p. 188).

From the preceding discussion, we can now conclude that Qr (κ1, κ2)
d→ Q∗

1,r (κ1, κ2) + Q∗
2,r (κ1, κ2),

where Q∗
1,r (κ1, κ2) and Q∗

2,r (κ1, κ2) are independent and have χ 2 distributions with degrees of freedom
1
2 r(r − 1) and r − 1. Therefore, the infeasible test statistic Qr(κ1, κ2) has an asymptotic χ 2 distribution with
1
2 (r + 2)(r − 1) degrees of freedom, and the same is true for its feasible version Qr (κ̃1, κ̃2), where κ̃1 and
κ̃2 are consistent estimators of κ1 and κ2, respectively. This proves Proposition 3.1.
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