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Abstract
In this paper, we propose a Weighted Stochastic Mesh

(WSM) algorithm for approximating the value of discrete-

and continuous-time optimal stopping problems. In this

context, we consider tractability of such problems via a

useful notion of semitractability and the introduction of

a tractability index for a particular numerical solution

algorithm. It is shown that in the discrete-time case the

WSM algorithm leads to semitractability of the corre-

sponding optimal stopping problem in the sense that its

complexity is bounded in order by 𝜀−4 log𝑑+2(1∕𝜀) with

𝑑 being the dimension of the underlying Markov chain.

Furthermore, we study the WSM approach in the context

of continuous-time optimal stopping problems and derive

the corresponding complexity bounds. Although we cannot

prove semitractability in this case, our bounds turn out to

be the tightest ones among the complexity bounds known

in the literature. We illustrate our theoretical findings by a

numerical example.

K E Y W O R D S
American options, complexity, Monte Carlo algorithms, optimal stopping

1 INTRODUCTION

The theory of optimal stopping is concerned with the problem of choosing a time to take a particular

action, in order to maximize an expected reward or minimize an expected cost. Such problems can

be found in many areas of statistics, economics, and mathematical finance (e.g., the pricing problem

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in

any medium, provided the original work is properly cited.

© 2020 The Authors. Mathematical Finance published by Wiley Periodicals LLC

Mathematical Finance. 2020;30:1591–1616. wileyonlinelibrary.com/journal/mafi 1591

https://orcid.org/0000-0002-9482-6430
https://orcid.org/0000-0002-4389-8266
http://creativecommons.org/licenses/by/4.0/


1592 BELOMESTNY ET AL.

of American options). Primal and dual approaches have been developed in the literature giving rise

to regression-type Monte Carlo (MC) algorithms for high-dimensional optimal stopping problems. So

far modern literature on numerical analysis of high-dimensional optimal stopping problems focused

almost exclusively on convergence analysis of various simulation-based stochastic algorithms. How-

ever, comparing different algorithms based only on their convergence rates is not possible since these

algorithms may have different costs. Therefore, it is important to carry out complexity analysis of

stochastic algorithms for optimal stopping problems. Such a complexity analysis will provide us with

convergence rates of a stochastic algorithm in terms of its cost and hence can be viewed as a univer-

sal criteria for comparing different algorithms. Complexity analysis has played and is still playing an

important role in numerical analysis of algorithms, see Novak and Woźniakowski (2008) and the ref-

erences therein. The key numerical problem studied in this literature is the computation of integrals by

means of deterministic and stochastic (randomized) algorithms. Optimal stopping problems cannot be

boiled down to the computation of a single integral but rather require computation of several nested

integrals (dynamic programming principle). Hence, the standard concepts and results from the existing

complexity theory cannot be directly transferred to complexity analysis of optimal stopping problems.

One of the most widely adopted regression algorithms by practitioners is the Longstaff and Schwartz

(LS) algorithm. It is based on approximating conditional expectations using least-squares regression

on a given basis of functions in each backward induction step. Longstaff and Schwartz (2001) demon-

strated the efficiency of their approach through a number of numerical examples, and in Clément,

Lamberton, and Protter (2002) and Zanger (2013) general convergence properties of the method were

established. In particular, it follows from corollary 3.10 in Zanger (2013) that for a fixed number 𝐿 of

stopping opportunities and a popular choice of polynomial basis functions of degree less or equal to

𝑚, the error of estimating the corresponding value function at one point is bounded by

𝜅 5𝐿

(√
𝑚𝑑

𝑁
+ 1

𝑚𝛼

)
, (1)

where 𝑁 is the number of paths used to perform regression, 𝛼 ≥ 1 is related to smoothness of the

corresponding conditional expectation operator, 𝑑 is the dimension of the underlying state space, and

𝜅 is some constant independent of 𝑁, 𝑑, and 𝛼. On the other hand, due to the computation of a (ran-

dom) pseudoinverse at every stopping date, the computational cost of the least-squares MC algorithm

is approximately proportional to 𝜅1𝑁𝑚2𝑑𝐿 where 𝜅1 is proportional to the cost of an elementary oper-

ation (multiplication for example). This leads to the following estimate for the complexity of the LS

algorithm, that is, the amount of “elementary” operations needed to construct an approximation for the

value function with accuracy 𝜀.

Proposition 1.1. For 𝐿 stopping opportunities and underlying dimension 𝑑, the computational work
for achieving an accuracy 𝜀 by the LS algorithm is bounded by

𝐿(𝜀, 𝑑) = 𝜅1
𝐿 5(𝜅2+𝐿)(2+3𝑑∕𝛼)

𝜀2+3𝑑∕𝛼
(2)

with 𝜅2 ∶= ln(2𝜅)∕ ln 5.

If we next consider a continuous-time optimal stopping problem, then we need to approximate it by

a discrete one with 𝐿 stopping dates, and then let 𝐿 → ∞. For instance, let us assume that the error due

to the time discretization is of order 𝐿−𝛽 for some 0 < 𝛽 < 1, independent of 𝑑. Then, for achieving

an overall accuracy of order 𝜀, we may take 𝐿 = 𝜅3𝜀
−1∕𝛽 for some 𝜅3 > 0, which gives by (2) the

complexity bound
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∞(𝜀, 𝑑) =
𝜅1𝜅35(𝜅2+𝜅3𝜀

−1∕𝛽 )(2+3𝑑∕𝛼)

𝜀2+3𝑑∕𝛼+1∕𝛽
. (3)

It follows that the complexity of the LS algorithm for continuous-time optimal stopping problems may

even grow faster than exp(𝜀−1∕𝛽). Similar complexity bounds can be derived for other simulation-based

regression algorithms, such as the value iteration algorithm by Tsitsiklis and Van Roy (2001) (TV).

See also for example, Egloff, Kohler, and Todorovic (2007) for more general regression algorithms or

Goldberg and Chen (2018) for a novel nested-type MC approach with complexity which is independent

of 𝑑 but exponential in 𝜀−1, unfortunately.

An interesting question is whether the complexity bounds (2) and (3) for the discrete and continuous-

time stopping problems, respectively, are attained in worst cases. The appearance of 1∕𝜀 in the expo-

nential in (3) and the number of exercise dates 𝐿 in the exponential in (2), respectively, is of course due

to the appearance of 𝐿 in the exponential of the convergence estimate (1). In fact, the latter appearance

is observed in all error bounds concerning regression-based backward dynamic programs for opti-

mal stopping in the literature (e.g., Egloff et al., 2007, Zanger, 2013). It also appears in a later result

by Zanger (2018), based on dependent samples, and in the convergence analysis by Belomestny and

Schoenmakers (2018) in the context of optimal stopping of McKean–Vlasov processes. This factor

seems to be unavoidable because at each backward step the projection error of the estimated continua-

tion function needs to be bounded in relation to the projection error of the true continuation function.

For details, see for instance, Zanger (2013), theorem 3.1 versus theorem 3.3, and Zanger (2018), the-

orem 5.1 versus theorem 5.6. It should also be noted that if we discretize a continuous-time optimal

stopping problem, then conditional variance of the underlying process decreases from one exercise

date to the next. However, this decrease is typically of order 1∕𝐿 with 𝐿 being the number of exercise

dates and as such is not fast enough to remove exponential dependence on 𝐿 in the above convergence

estimates. Thus, in view of the above considerations, the complexity bounds (2) and (3) for the LS algo-

rithm seem to be sharp in some sense, but, a rigorous proof of this assertion seems highly nontrivial

and therefore beyond the scope of this paper.

An important notion in complexity analysis is tractability of a numerical problem. A 𝑑-dimensional

numerical problem, for example, computation of an integral ∫[0,1]𝑑 𝑓 (𝑥) 𝑑𝑥 is called tractable, if there

is an algorithm to solve it with complexity (𝜀, 𝑑) satisfying

lim
𝑑+𝜀−1↗∞

log(𝜀, 𝑑)
𝑑 + 𝜀−1

= 0. (4)

Unfortunately in the case of optimal stopping problems, this definition is not very meaningful and

rather restrictive. It turns out that for all regression-type algorithms one has, already in the case of

discrete-time optimal stopping problems,

lim sup
𝑑+𝜀−1↗∞

log(𝜀, 𝑑)
𝑑 + 𝜀−1

= ∞ (5)

(based on the convergence rates known in the literature), that is, any discrete-time optimal stopping

problem is intractable according to this definition. As an example, consider again the LS algorithm

in the case of analytic (hence infinitely smooth) continuation functions. Using results from Trefethen

(2017), it can be shown that the error (cf. Equation 1) of the estimated value function in this case has

the form:
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5𝐿

(√
𝑚𝑑

𝑁
+ 𝑒−𝜃𝑚

)
, 𝜃 > 0,

where 𝑚 is again the maximal polynomial degree. Similar to Proposition 1.1, it then follows that

𝐿(𝜀, 𝑑) = 𝐿
52𝐿

𝜀2

(
log 5𝐿∕𝜃

𝜀1∕𝜃

)3𝑑
(6)

is an upper bound for the LS complexity and so we get (5) (take 𝜀−1 = 𝑑 and let 𝑑 ↗ ∞). Thus even in

the case of analytic continuation functions tractability of discrete-time optimal stopping problems in the

sense of (4) cannot be established by the LS algorithm. However, the latter observation also applies to

any other simulation-based algorithm addressed in this paper, including the Weighted Stochastic Mesh

(WSM) algorithm that we are going to present below.

In fact, the problem with criterion (4) is that it puts too much weight on the dimension 𝑑 on

the one hand, but on the other hand, is too relaxed regarding the dependence of (𝜀, 𝑑) on 𝜀. For

instance, it is not difficult to see that it renders a problem with an algorithmic complexity of order

𝑑2 exp(𝜀−1∕ log log… log 𝜀−1) to be (weakly) tractable while an algorithm with complexity 2𝑑∕𝜀 is

not. However, running an algorithm with a complexity growth of exp(𝜀−1∕ log log… log 𝜀−1), hence

faster than any 𝜀−𝑘, 𝑘 ∈ ℕ, when 𝜀 ↘ 0, is in practice impossible (even when 𝑑 = 1). In the setting of

optimal stopping problems, the dimension 𝑑 is typically fixed, though can be large. Therefore, in our

paper we propose a more meaningful definition of tractability based on the quantity called tractability

index.

Definition 1.2.

(i) For an algorithm with complexity (𝜀, 𝑑) the so-called tractability index is defined as

Γ
def
= lim sup

𝑑↗∞
lim sup

𝜀↘0

log(𝜀, 𝑑)
𝑑 log(1∕𝜀)

. (7)

(ii) We call a problem semitractable if there is an algorithm to solve it which has zero-tractability

index, that is,

Γ = 0. (8)

For example, it is easily seen from Proposition 1.1 that for continuation functions with smoothness 𝛼 the

discrete time LS algorithm has tractability index Γ = 3∕𝛼, whereas in the case of analytic continuation

functions (6) implies

log𝐿(𝜀, 𝑑)
𝑑 log(1∕𝜀)

≲
log𝐿 + log 1

𝜀
+ 𝑑 log log 1

𝜀

𝑑 log 1
𝜀

,

hence Γ𝛼=∞ = 0 and semitractability in our sense follows. However, we see from (3) (for 𝛼 < ∞)

and a similar expression obtained from (6) in the case of analytic continuation functions, that the LS

algorithm has tractability index ∞ for continuous-time optimal stopping problems.
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In this paper, we introduce WSM algorithm and show (under mild assumptions) that a discrete-time

optimal stopping problem may be computed by this algorithm with tractability index 0, and so is semi-

tractable in the sense of Definition 1.2(ii). Furthermore, we show that the continuous-time stopping

problems may be computed via this algorithm with finite tractability index equal to 2. The construction

of this algorithm in the discrete time case follows closely the idea of the mesh method by Broadie and

Glasserman (2004). By enhancing the latter method with a suitable regularization, we prove that the

complexity of the resulting WSM algorithm satisfies (8) (under mild conditions), provided the transi-

tion densities of the underlying Markov chain are analytically known or can be well approximated. It

turns out that for solving a continuous-time optimal stopping problem we do not need to assume that

the transition densities are known but can use Gaussian transition densities of the corresponding Euler

scheme. This results in an algorithm with complexity of order 𝑐𝑑𝜀−(2𝑑+14) for some constant 𝑐 > 1.

Although this does not imply semitractability of continuous-time optimal stopping problems, the pro-

posed algorithm is very simple and its complexity remains provably polynomial in 𝜀−1 as opposed to

the LS approach. In particular, it follows that the WSM algorithm for continuous-time optimal stopping

problems has tractability index 2, and as such has the smallest tractability index among the existing

algorithms for continuous-time optimal stopping problems.

Let us remark that a complete convergence analysis as well as complexity analysis of the stochas-

tic mesh method for optimal stopping in discrete and continuous time is still missing in the literature,

apart from some preliminary results for the discrete case in Agarwal and Juneja (2013). But, Agar-

wal and Juneja (2013) does not trace the dependence of the errors on the underlying dimension and

the number of stopping times, and is moreover based on a rather restrictive assumption of a compact

state space. Furthermore, the WSM algorithm presented in this paper bears some similarities to the

random grid algorithm of Rust (1997). However, the Rust (1997) algorithm was constructed and stud-

ied for Markov Decision Problems in discrete time and is not directly applicable to optimal stopping

problems. As such the corresponding convergence analysis in Rust (1997) differs in several respects.

For example, it assumes a compact state space and Lipschitz continuity of transition densities with

Lipschitz constant basically not depending on the dimension. (The latter assumption is violated by a

𝑑-dimensional Gaussian kernel with small enough variance, due to exponentially growing Lipschitz

constants in 𝑑, for instance.)

The paper is organized as follows. A description of the proposed algorithm is given in Section 2.

Section 2.2 is devoted to convergence and complexity analysis of our algorithm. In Section 3, we turn

to continuous-time optimal stopping problems. Section 4 concisely highlights the main achievements

of the paper. Some numerical experiments are presented in Section 5 and all proofs are collected in

Section 6.

2 DISCRETE-TIME OPTIMAL STOPPING PROBLEMS

We begin with the description of the WSM algorithm for discrete-time optimal stopping problems. Let

us assume a finite set of stopping dates {0,… , 𝐿}, for some natural 𝐿 > 0, and let (𝑍𝑙, 𝑙 = 0,… , 𝐿) be

a Markov chain in ℝ𝑑 , adapted to a filtration (𝑙, 𝑙 = 0,… , 𝐿). For a given set of nonnegative reward

functions 𝑔𝑙, 𝑙 = 0,… , 𝐿, on ℝ𝑑 , we then consider the discrete Snell envelope process:

𝑈𝑙 = 𝑈𝑙(𝑍𝑙)
def
= esssup

𝜏∈𝑙,𝐿
𝖤𝑙

[
𝑔𝜏 (𝑍𝜏 )

]
, (9)
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where 𝑙,𝐿 stands for the set of  -stopping times with values in the set {𝑙,… , 𝐿}, and 𝖤𝑙 ∶= 𝖤𝑙
stands

for the 𝑙-conditional expectation, and the measurable functions 𝑈𝑙(⋅) exist due to Markovianity of the

process (𝑍𝑙)𝑙≥0.

For simplicity and without loss of generality, we assume that the Markov chain (𝑍𝑙)𝑙≥0 is time

homogeneous with 𝑙-steps transition density denoted by 𝑝𝑙(𝑦|𝑥) and one-step density denoted by

𝑝(𝑦|𝑥) = 𝑝1(𝑦|𝑥), so that

ℙ
[
𝑍𝑘+1 ∈ 𝑑𝑦||𝑍𝑘 = 𝑥

]
= 𝑝(𝑦|𝑥)𝑑𝑦, 𝑝(𝑦|𝑥) > 0

for all 𝑥, 𝑦 ∈ ℝ𝑑 . Fix some 𝑥0 ∈ ℝ𝑑 and assume that 𝑍0 = 𝑥0. It is well known that the Snell envelope

(9) satisfies the dynamic program principle,

𝑈𝐿(𝑍𝐿) = 𝑔𝐿(𝑍𝐿), (10)

𝑈𝑙(𝑍𝑙) = max
{
𝑔𝑙(𝑍𝑙),𝖤

[
𝑈𝑙+1(𝑍𝑙+1)||𝑍𝑙

]}
, 𝑙 = 0,… , 𝐿 − 1.

Next we fix some 𝑅 > 0 and define a truncated version of the above dynamic program via

𝑈𝐿(𝑍𝐿) = 𝑔𝐿(𝑍𝐿) ⋅ 𝟙𝑍𝐿∈𝐵𝑅
, (11)

𝑈𝑙(𝑍𝑙) = max
{
𝑔𝑙(𝑍𝑙),𝖤

[
𝑈𝑙+1(𝑍𝑙+1)

|||𝑍𝑙

]}
⋅ 𝟙𝑍𝑙∈𝐵𝑅

, 𝑙 = 0,… , 𝐿 − 1,

where 𝐵𝑅

def
= {𝑧 ∶ |𝑧 − 𝑥0| ≤ 𝑅}. Thus, by construction, 𝑈𝑙 vanishes outside the ball 𝐵𝑅. Also by

construction it holds that

‖𝑈𝑙‖∞ ≤ 𝐺𝑅

def
= max

0≤𝑙≤𝐿
sup
𝑧∈𝐵𝑅

𝑔𝑙(𝑧), (12)

which is easily seen by backward induction. In view of (11), we may write

𝖤
[
𝑈𝑙+1(𝑍𝑙+1)

|||𝑍𝑙 = 𝑥
]
= ∫ 𝑈𝑙+1(𝑦)

𝑝(𝑦|𝑥)
𝑝𝑙+1(𝑦|𝑥0) 𝑝𝑙+1(𝑦|𝑥0) 𝑑𝑦.

Now assume that we have a set of trajectories 𝑍
(𝑛)
𝑙

, 𝑙 = 0,… , 𝐿, with 𝑍
(𝑛)
0 = 𝑥0, 𝑛 = 1,… , 𝑁 , simu-

lated according to the one-step transition density 𝑝, and consider the approximation:

𝖤
[
𝑈𝑙+1(𝑍𝑙+1)

|||𝑍𝑙 = 𝑥
]
≈ 1

𝑁

𝑁∑
𝑛=1

𝑈𝑙+1(𝑍
(𝑛)
𝑙+1)

𝑝
(
𝑍

(𝑛)
𝑙+1|𝑥)

𝑝𝑙+1

(
𝑍

(𝑛)
𝑙+1|𝑥0) ,

where in view of the Chapman–Kolmogorov equation

𝑝𝑙+1

(
𝑍

(𝑛)
𝑙+1|𝑥0) = ∫ 𝑝

(
𝑍

(𝑛)
𝑙+1|𝑧)𝑝𝑙(𝑧|𝑥0) 𝑑𝑧 ≈ 1

𝑁

𝑁∑
𝑚=1

𝑝
(
𝑍

(𝑛)
𝑙+1|𝑍(𝑚)

𝑙

)
.

Hence, we have approximately

𝖤
[
𝑈𝑙+1(𝑍𝑙+1)

|||𝑍𝑙 = 𝑥
]
≈

𝑁∑
𝑛=1

𝑈𝑙+1

(
𝑍

(𝑛)
𝑙+1

) 𝑝(𝑍(𝑛)
𝑙+1|𝑥)∑𝑁

𝑚=1 𝑝
(
𝑍

(𝑛)
𝑙+1|𝑍(𝑚)

𝑙

) . (13)
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We thus propose the following algorithm. We start with

𝑈𝐿

(
𝑍

(𝑛)
𝐿

)
def
= 𝑔𝐿

(
𝑍

(𝑛)
𝐿

)
𝟙
𝑍

(𝑛)
𝐿

∈𝐵𝑅

for 𝑛 = 1,… , 𝑁 . Once 𝑈𝑙+1 is constructed on the grid for 0 < 𝑙 + 1 ≤ 𝐿, we set

𝑈𝑙

(
𝑍

(𝑟)
𝑙

)
def
= max

⎧⎪⎨⎪⎩𝑔𝑙

(
𝑍

(𝑟)
𝑙

)
,

𝑁∑
𝑛=1

𝑈
(𝑛)
𝑙+1

(
𝑍

(𝑛)
𝑙+1

) 𝑝
(
𝑍

(𝑛)
𝑙+1|𝑍(𝑟)

𝑙

)
∑𝑁

𝑚=1 𝑝
(
𝑍

(𝑛)
𝑙+1|𝑍(𝑚)

𝑙

)⎫⎪⎬⎪⎭𝟙𝑍
(𝑟)
𝑙
∈𝐵𝑅

(14)

for 𝑟 = 1,… , 𝑁 . By construction, each function 𝑈𝑙 vanishes outside the ball 𝐵𝑅. Working all the way

down to 𝑙 = 0 results in the approximation:

𝑈0 = max
⎡⎢⎢⎢⎣𝑔0(𝑥0),

𝑁∑
𝑛=1

𝑈
(𝑛)
1

(
𝑍

(𝑛)
1

) 𝑝
(
𝑍

(𝑛)
1 |𝑥0)∑𝑁

𝑚=1 𝑝
(
𝑍

(𝑛)
1 |𝑥0)

⎤⎥⎥⎥⎦
for 𝑈0. As such the presented algorithm is closely related to the mesh method of Broadie and Glasser-

man (2004) apart from truncation at level 𝑅 and a special choice of weights.

2.1 Cost estimation
Let us estimate the cost of carrying out the backward dynamic program (14). One needs to compute

𝑝(𝑍(𝑛)
𝑙+1|𝑍(𝑚)

𝑙
) for all 𝑙 = 1,… , 𝐿, 𝑛, 𝑚 = 1,… , 𝑁 . This can be done at a cost of order 𝑁2𝐿𝑐

(𝑑)
𝑓

, where

𝑐
(𝑑)
𝑓

is the cost of evaluating a (typical) function of 2𝑑 arguments. In the typical situation 𝑐
(𝑑)
𝑓

is pro-

portional to 𝑑. The evaluation of

1
𝑁

𝑁∑
𝑚=1

𝑝
(
𝑍

(𝑛)
𝑙+1|𝑍(𝑚)

𝑙

)
for 𝑙 = 1,… , 𝐿, 𝑛 = 1,… , 𝑁 , has a cost of order 𝑁2𝐿𝑐∗ with 𝑐∗ being the cost of an elementary

numerical operation, which is negligible if 𝑐∗ ≪ 𝑐
(𝑑)
𝑓

. So the overall cost of carrying out the backward

dynamic program (14) is of order 𝑁2𝐿𝑐
(𝑑)
𝑓

.

2.2 Error and complexity analysis
In this section, we analyze convergence of the WSM estimate (14) to the solution of the discrete optimal

stopping problem (9) for 𝑙 = 0 and a fixed 𝑥0 ∈ ℝ𝑑 as 𝑁 → ∞. Let us first bound a distance between

𝑈𝑙 and 𝑈𝑙,𝑙 = 0,… , 𝐿.

Proposition 2.1. With

𝜀𝑙,𝑅

def
= ∫|𝑥−𝑥0|>𝑅

𝑈𝑙(𝑥)𝑝𝑙(𝑥|𝑥0) 𝑑𝑥
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𝑙 = 0,… , 𝐿, it holds that

∫ |||𝑈𝑙(𝑥) − 𝑈𝑙(𝑥)
|||𝑝𝑙(𝑥|𝑥0) 𝑑𝑥 ≤

𝐿∑
𝑗=𝑙

𝜀𝑗,𝑅. (15)

Proposition 2.2. Suppose that

max
0≤𝑙≤𝐿

𝑔𝑙(𝑥) ≤ 𝑐𝑔(1 + |𝑥|), 𝑥 ∈ ℝ𝑑 (16)

and that

𝖤

[
max

𝑙≤𝑙′≤𝐿

||𝑍𝑙′
||||||𝑍𝑙 = 𝑥

]
≤ 𝑐𝑍 (1 + |𝑥|), 𝑥 ∈ ℝ𝑑. (17)

Suppose further that for some 𝜘, 𝛼 > 0, and 𝑙 = 1,… , 𝐿,

0 < 𝑝𝑙(𝑦|𝑥) ≤ 𝜘
(2𝜋𝛼𝑙)𝑑∕2

𝑒
− |𝑥−𝑦|2

2𝛼𝑙 (18)

for all 𝑥, 𝑦 ∈ ℝ𝑑 . One then has

∫ |||𝑈𝑙(𝑥) − 𝑈𝑙(𝑥)
|||𝑝𝑙(𝑥|𝑥0) 𝑑𝑥

≤ 𝐿𝑐𝑔𝜘
(
1 + 𝑐𝑍 + 𝑐𝑍

||𝑥0|| + 𝑐𝑍

√
𝑑𝛼𝐿

)
2𝑑∕4𝑒−

𝑅2
8𝛼𝐿 . (19)

Next we control the discrepancy between 𝑈0 and 𝑈0.

Proposition 2.3. With

𝐹 2
𝑅

def
= max

1≤𝑙≤𝐿∫ ∫|𝑦−𝑥0|≤𝑅

𝑝2(𝑦|𝑥)
𝑝𝑙+1(𝑦|𝑥0) 𝑝𝑙(𝑥|𝑥0) 𝑑𝑥𝑑𝑦, (20)

and 𝑁 such that (1 + 𝐹𝑅)∕
√

𝑁 < 1, it holds that

𝖤
[|||𝑈0 − 𝑈0

|||] ≤ (
3 +

√
2
)
𝐿𝐺𝑅

1 + 𝐹𝑅√
𝑁

.

Corollary 2.4. Under the assumptions of Proposition 2.2, we have for (20) the estimate

𝐹 2
𝑅
≤ 𝜘

(2𝜋𝛼)𝑑∕2
𝚅𝚘𝚕(𝐵𝑅) =

𝜘𝑅𝑑

(2𝛼)𝑑∕2Γ(1 + 𝑑∕2)
≤ 𝜘(𝑒∕𝛼)𝑑∕2𝑅𝑑𝑑−𝑑∕2,

where the last inequality follows from Γ(1 + 𝑎) ≥ 𝑎𝑎𝑒−𝑎 for any 𝑎 ≥ 1∕2. Then by combining (19) with
Proposition 2.3 we obtain the error estimate,

𝖤
[|||𝑈0 − 𝑈0

|||] ≤ 𝐿𝑐𝑔𝜘
(
1 + 𝑐𝑍 + 𝑐𝑍

||𝑥0|| + 𝑐𝑍

√
𝑑𝛼𝐿

)
2𝑑∕4𝑒−

𝑅2
8𝛼𝐿

+
(
3 +

√
2
)
𝐿𝑐𝑔(1 +𝑅)

1 + 𝜘1∕2(𝑒∕𝛼)𝑑∕4𝑅𝑑∕2𝑑−𝑑∕4√
𝑁

. (21)
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Proposition 2.5. Under the assumptions of Proposition 2.2 the complexity of the WSM algorithm is
bounded from above by

(𝜀, 𝑑) = 𝑐1𝛼
2𝑐4𝑔𝜘2𝑐(𝑑)

𝑓
𝑐𝑑
2𝐿

𝑑+7𝜀−4

× log𝑑+2
⎡⎢⎢⎢⎣
𝐿
(
1 + 𝑐𝑍 + 𝑐𝑍

||𝑥0||)𝑒 𝑐𝑍

√
𝛼𝐿

1+𝑐𝑍+𝑐𝑍 |𝑥0| 23∕4(𝑐𝑔𝜘 ∨ 1
)

𝜀

⎤⎥⎥⎥⎦, (22)

where 𝑐1 > 0 and 𝑐2 > 1 are natural constants and 𝑐
(𝑑)
𝑓

stands for the cost of computing the transition
density 𝑝𝑙(𝑦|𝑥) at one point (𝑥, 𝑦).

Corollary 2.6. For a fixed 𝐿 > 0, the discrete-time optimal stopping problem (9) with 𝑔 and (𝑍𝑙)𝑙≥0
satisfying (16), (17), and (18) is semitractable, provided that the complexity of computing the transition
density 𝑝𝑙(𝑦|𝑥) at one point (𝑥, 𝑦) is at most polynomial in 𝑑. Different approximation algorithms for
discrete-time optimal stopping problems can be compared using the tractability index (7). For example,
it follows from (2) that the tractability index of the LS approach is equal to 3∕𝛼. If the continuation
functions are analytic, then the tractability index for the LS approach becomes zero. Moreover, from
inspection of theorem 2.4 in Bally, Pagès, and Printems (2005), we see that the Quantization Tree
Method (QTM) has tractability index 2.

2.3 Approximation of the transition density
A crucial condition for semitractability in the discrete exercise case is the availability of the transition

density 𝑝(𝑦|𝑥) of the chain (𝑍𝑙)𝑙≥0 in a closed (or cheaply computable) form. However, we can show

that, if a sequence of approximating densities 𝑝𝑛(𝑦|𝑥), 𝑛 ∈ ℕ, converging to 𝑝(𝑦|𝑥) can be constructed

in such a way that

||||𝑝𝑛(𝑦|𝑧) − 𝑝(𝑦|𝑧)
𝑝𝑛(𝑦|𝑧) |||| ≲

(
1 + |𝑦 − 𝑥0|𝑚 + |𝑧 − 𝑥0|𝑚)𝑛

𝑛!
, 𝑦, 𝑧 ∈ 𝐵𝑅𝑛

(23)

for some 𝑚 ∈ ℕ and a sequence 𝑅𝑛 ↗ ∞, 𝑛 ↗ ∞, then under proper assumptions on the growth of 𝑅𝑛

and the cost of computing 𝑝𝑛 (in fact it should be at most polynomial in 𝑑), one can derive a complexity

bound (𝜀, 𝑑) satisfying

lim
𝜀↘0

log(𝜀, 𝑑)
log 1

𝜀

is finite and does not depend on 𝑑.

The proof involves a (rather straightforward) extension of the present one based on exact transition den-

sities. But, on the one hand, one of the main results in this paper, tractability index 2 of the continuous-

time stopping problem, does not rely on transition density approximation, and on the other hand, such

a proof would entail a notational blow up and might detract the reader from the main lines, therefore

the details are omitted.

To construct a sequence of approximations 𝑝𝑛(𝑦|𝑧) satisfying the assumption (23), one can use var-

ious small-time expansions for transition densities of stochastic processes, see, for example, Azencott

(1984) and Li (2013). Let us exemplify this type of approximation in the case of one-dimensional

diffusion processes of the form:

𝑑𝑋𝑡 = 𝑏(𝑋𝑡) 𝑑𝑡 + 𝜎(𝑋𝑡) 𝑑𝑊𝑡, 𝑋0 = 𝑥0,
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where 𝑏 is a bounded function, twice continuously differentiable, with bounded derivatives and 𝜎

is a function with three continuous and bounded derivatives such that there exist two positive con-

stants 𝜎◦, 𝜎
◦ with 𝜎◦ ≤ 𝜎(𝑥) ≤ 𝜎◦. Consider a Markov chain (𝑍𝑙)𝑙≥0 defined as a time discretization

of (𝑋𝑡)𝑡≥0, that is, 𝑍𝑙

def
= 𝑋Δ𝑙, 𝑙 = 0, 1, 2,… for some Δ > 0. Under the above conditions the following

representation for the (one-step) transition density 𝑝 of the chain 𝑍 is proved in Florens-Zmirou (1993)

(see also Dacunha-Castelle & Florens-Zmirou, 1986 for more general setting):

𝑝(𝑦|𝑥) = 1√
2𝜋Δ

1
𝜎(𝑦)

exp
(
−(𝑠(𝑥) − 𝑠(𝑦))2

2Δ

)
𝑈Δ(𝑠(𝑥), 𝑠(𝑦)), 𝑥, 𝑦 ∈ ℝ,

with 𝑈Δ(𝑥, 𝑦) = 𝑅Δ(𝑥, 𝑦) exp[∫ 𝑥

0 𝑏̄(𝑧) 𝑑𝑧 − ∫ 𝑦

0 𝑏̄(𝑧) 𝑑𝑧],

𝑅Δ(𝑥, 𝑦) = 𝖤

[
exp

(
−Δ∫

1

0
𝜌̄(𝑥 + 𝑧(𝑦 − 𝑥) +

√
Δ𝐵𝑧) 𝑑𝑧

)]
, (24)

where 𝐵𝑧 is a standard Brownian bridge, 𝑠(𝑥) = ∫ 𝑥

0
𝑑𝑦

𝜎(𝑦) , 𝑔 = 𝑠−1 and

𝜌̄ = (𝑏̄2 + 𝑏̄′)∕2 with 𝑏̄ = (𝑏∕𝜎)◦𝑔 − 𝜎′◦𝑔∕2.

Note that the expectation in (24) is taken with respect to the known distribution of the Brownian bridge

𝐵𝑧. By expanding the exponent in (24) into Taylor series, we get for Δ small enough

𝑝(𝑥|𝑦) = 1√
2𝜋Δ

1
𝜎(𝑦)

exp
(
−(𝑠(𝑥) − 𝑠(𝑦))2

2Δ

)

× exp
[
∫

𝑥

0
𝑏̄(𝑧) 𝑑𝑧 − ∫

𝑦

0
𝑏̄(𝑧) 𝑑𝑧

] ∞∑
𝑘=0

Δ𝑘

𝑘!
𝑐𝑘(𝑥, 𝑦)

with

𝑐𝑘(𝑥, 𝑦) = (−1)𝑘𝖤
⎡⎢⎢⎣
(
∫

1

0
𝜌̄(𝑥 + 𝑧(𝑦 − 𝑥) +

√
Δ𝐵𝑧) 𝑑𝑧

)𝑘⎤⎥⎥⎦.
If 𝜌̄ is uniformly bounded by a constant 𝐷 > 0, then the above series converges uniformly in 𝑥 and 𝑦

for all Δ small enough. Set

𝑝𝑛(𝑥|𝑦) = 1√
2𝜋Δ

1
𝜎(𝑦)

exp
(
−(𝑠(𝑥) − 𝑠(𝑦))2

2Δ

)

× exp
[
∫

𝑥

0
𝑏̄(𝑧) 𝑑𝑧 − ∫

𝑦

0
𝑏̄(𝑧) 𝑑𝑧

]{ 𝑛∑
𝑘=0

Δ𝑘

𝑘!
𝑐𝑘(𝑥, 𝑦)

}
.

It obviously holds 𝑝𝑛(𝑦|𝑥) > 0 for Δ < Δ0(𝐷) and||||𝑝𝑛(𝑦|𝑧) − 𝑝(𝑦|𝑧)
𝑝𝑛(𝑦|𝑧) |||| ≤ (Δ𝐷)𝑛

(1 − Δ𝐷 exp(Δ𝐷))
(25)

uniformly for all 𝑥, 𝑦 ∈ ℝ. Hence the assumption (23) is satisfied with 𝑚 = 0, provided that Δ < Δ0
for some Δ0 depending only on 𝐷. Similarly if 𝜌̄ ≤ 0, then (23) holds. To sample from 𝑝𝑛 we can use
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the well-known acceptance rejection method which does not require the exact knowledge of a scaling

factor ∫ 𝑝𝑛(𝑦|𝑥) 𝑑𝑦.

3 CONTINUOUS-TIME OPTIMAL STOPPING FOR
DIFFUSIONS

In this section, we consider diffusion processes of the form

𝑑𝑋𝑖
𝑠 = 𝑏𝑖(𝑋𝑠) 𝑑𝑠 +

𝑚∑
𝑗=1

𝜎𝑖𝑗(𝑋𝑠) 𝑑𝑊 𝑗
𝑠 , 𝑋𝑖

0 = 𝑥𝑖
0, 𝑖 = 1,… , 𝑑, (26)

where 𝑏 ∶ℝ𝑑 → ℝ𝑑 and 𝜎 ∶ℝ𝑑 → ℝ𝑑×𝑚, are Lipschitz continuous and 𝑊 = (𝑊 1,… ,𝑊 𝑚) is an 𝑚-

dimensional standard Wiener process on a probability space (Ω, , 𝑃 ). As usual, the (augmented) fil-

tration generated by (𝑊𝑠)𝑠≥0 is denoted by (𝑠)𝑠≥0. We are interested in solving optimal stopping

problems of the form:

𝑈⋆
𝑡 = esssup

𝜏∈𝑡,𝑇
𝖤[𝑒−𝑟(𝜏−𝑡)𝑓 (𝑋𝜏 )|𝑡], (27)

where 𝑓 is a given real-valued function on ℝ𝑑 , 𝑟 ≥ 0, and 𝑡,𝑇 stands for the set of stopping times

𝜏 taking values in [𝑡, 𝑇 ]. The problem (27) is related to the so-called free boundary problem for the

corresponding partial differential equation. Let us introduce the differential operator 𝐿𝑡:

𝐿𝑡𝑢(𝑡, 𝑥) =
1
2

𝑑∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥)
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑡, 𝑥) +

𝑑∑
𝑖=1

𝑏𝑖(𝑥)
𝜕𝑢

𝜕𝑥𝑖
(𝑡, 𝑥),

where

𝑎𝑖𝑗(𝑥) =
𝑑∑

𝑘=1
𝜎𝑖𝑘(𝑥)𝜎𝑗𝑘(𝑥).

We denote by 𝑋
𝑡,𝑥
𝑠 (or 𝑋𝑡,𝑥(𝑠)), 𝑠 ≥ 𝑇 , the solution of (26) starting at moment 𝑡 from 𝑥 ∶ 𝑋

𝑡,𝑥
𝑡 = 𝑥.

Denote by 𝑢(𝑡, 𝑥) a regular solution of the following system of partial differential inequalities:

𝜕𝑢

𝜕𝑡
+ 𝐿𝑡𝑢 − 𝑟𝑢 ≤ 0, 𝑢 ≥ 𝑓, (𝑡, 𝑥) ∈ [0, 𝑇 ) ×ℝ𝑑, (28)(

𝜕𝑢

𝜕𝑡
+ 𝐿𝑡𝑢 − 𝑟𝑢

)
(𝑓 − 𝑢) = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ) ×ℝ𝑑,

𝑢(𝑇 , 𝑥) = 𝑓 (𝑥), 𝑥 ∈ ℝ𝑑,

then under some mild conditions (see, e.g. Jaillet, Lamberton, & Lapeyre, 1990)

𝑢(𝑡, 𝑥) = sup
𝜏∈𝑡,𝑇

𝖤[𝑒−𝑟(𝜏−𝑡)𝑓 (𝑋𝑡,𝑥
𝜏 )], (𝑡, 𝑥) ∈ [0, 𝑇 ] ×ℝ𝑑, (29)

that is, 𝑢(𝑡, 𝑥) = 𝑈⋆
𝑡 (𝑥).

With this notation established, it is worth discussing the main issue that we are going to address

in this section. Our goal is to estimate 𝑢(𝑡, 𝑥) at a given point (𝑡0, 𝑥0) with accuracy less than 𝜀 by an
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algorithm with complexity ⋆(𝜀, 𝑑) which is polynomial in 1∕𝜀. As already mentioned in the introduc-

tion some well-known algorithms such as the regression ones fail to achieve this goal (at least according

to the existing complexity bounds in the literature).

Let us introduce the Snell envelope process:

𝑈⋆
𝑡

def
= esssup𝜏∈𝑡,𝑇 𝖤𝑡

[
𝑔(𝜏,𝑋𝜏 )

]
, (30)

where (somewhat more general than in (27)) 𝑔 is a given nonnegative function on ℝ≥0 ×ℝ𝑑 . In the first

step, we perform a time discretization by introducing a finite set of stopping dates 𝑡𝑙 = 𝑙ℎ, 𝑙 = 1,… , 𝐿,

with ℎ = 𝑇 ∕𝐿 and 𝐿 some natural number, and next consider the discretized Snell envelope process:

𝑈◦
𝑡𝑙
(𝑋𝑡𝑙

)
def
= esssup

𝜏∈𝑙,𝐿
𝖤𝑡𝑙

[
𝑔(𝜏,𝑋𝜏 )

]
,

where 𝑙,𝐿 stands for the set of stopping times with values in the set {𝑡𝑙,… , 𝑡𝐿}. Note that the measur-

able functions 𝑈◦
𝑡𝑙
(⋅) exist due to Markovianity of the process 𝑋. The error due to the time discretization

is well studied in the literature. We will rely on the following result which is implied by theorem 2.1

in Bally et al. (2005) for instance.

Proposition 3.1. Let 𝑔 ∶ [0, 𝑇 ] ×ℝ𝑑 →ℝ be Lipschitz continuous and 𝑝 ≥ 1. Then one has that

max
𝑙=0,…,𝐿

‖‖‖𝑈⋆
𝑡𝑙
(𝑋𝑡𝑙

) − 𝑈◦
𝑡𝑙
(𝑋𝑡𝑙

)‖‖‖𝑝
≤ 𝑐◦𝑒

𝐶◦𝑇 (1 + ||𝑥0||)
𝐿

,

where the constants 𝑐◦, 𝐶◦ > 0 depend on the Lipschitz constants for 𝑏, 𝜎, and 𝑔, respectively.

In order to achieve an acceptable discretization error we choose a sufficiently large 𝐿, and then

concentrate on the computation of 𝑈◦.

In the next step, we approximate the underlying process 𝑋 using some strong discretization scheme

on the time grid 𝑡𝑖 = 𝑖𝑇 ∕𝐿, 𝑖 = 0,… , 𝐿, yielding an approximation 𝑋. It is assumed that the one-step

transition densities of this scheme are explicitly known. The simplest and the most popular scheme is

the Euler scheme,

𝑋
𝑖

𝑡𝑙+1
= 𝑋

𝑖

𝑡𝑙
+ 𝑏𝑖(𝑋𝑡𝑙

)ℎ +
𝑚∑

𝑗=1
𝜎𝑖𝑗(𝑋𝑡𝑙

)
(
𝑊

𝑗
𝑡𝑙+1

−𝑊
𝑗
𝑡𝑙

)
, 𝑋

𝑖

0 = 𝑥𝑖
0, (31)

𝑖 = 1,… , 𝑑, which in general has strong convergence order 1∕2, and the one-step transition density of

the chain (𝑋𝑡𝑙+1
)𝑙≥0 is given by

𝑝̄ℎ(𝑦|𝑥) def
= 1√

(2𝜋ℎ)𝑑|Σ| exp
[
−1
2
ℎ−1(𝑦 − 𝑥 − 𝑏(𝑥)ℎ)⊤Σ−1(𝑦 − 𝑥 − 𝑏(𝑥)ℎ)

]
(32)

with Σ = 𝜎𝜎⊤ ∈ ℝ𝑑×𝑑 and ℎ = 𝑇 ∕𝐿. Now we will turn to the discrete-time optimal stopping problem

with possible stopping times {𝑡𝑙 = 𝑙ℎ,𝑙 = 0,… , 𝐿}. To this end, we introduce the discrete-time Markov

chain 𝑍𝑙

def
= 𝑋𝑡𝑙

adapted to the filtration (𝑙)
def
= (𝑡𝑙

), and 𝑔𝑙(𝑥)
def
= 𝑔(𝑡𝑙, 𝑥) (while abusing notation

slightly) and consider the discretized Snell envelope process

𝑈𝑡𝑙
(𝑋𝑡𝑙

)
def
= esssup

𝜏∈𝑙,𝐿
𝖤𝑡𝑙

[
𝑔(𝜏,𝑋𝜏 )

]
= esssup

𝜄∈𝑙,𝐿

𝖤𝑙

[
𝑔𝜄(𝑍𝜄)

] def
= 𝑈𝑙(𝑍𝑙), (33)
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where 𝑙,𝐿 stands for the set of stopping indices with values in {𝑙,… , 𝐿}, and the measurable functions

𝑈𝑡𝑙
(⋅) (or 𝑈𝑙(⋅)) exist due to Markovianity of the process 𝑋 (or 𝑍). The distance between 𝑈 and 𝑈◦ is

controlled by the next proposition.

Proposition 3.2. There exists a constant 𝐶Euler > 0 depending on the Lipschitz constants of 𝑏, 𝜎, and
𝑔, such that

max
𝑙=0,…,𝐿

𝖤
[|||𝑈◦

𝑡𝑙
(𝑋𝑡𝑙

) − 𝑈𝑡𝑙
(𝑋𝑡𝑙

)|||] ≤ 𝐶Euler
√

ℎ.

Thus, combining Propositions 3.1 and 3.2 yields:

Corollary 3.3. If 𝑋 is constructed by the Euler scheme with time step size ℎ = 𝑇 ∕𝐿, where 𝐿 is the
number of discretization steps, then under the conditions of Propositions 3.1 and 3.2 we have that

𝖤
[|||𝑈⋆

0 (𝑥0) − 𝑈0(𝑥0)
|||] ≲ 𝐶Euler

√
ℎ for ℎ → 0, (34)

where ≲ stands for inequality up to constant depending on 𝑐◦, 𝐶◦, and 𝐶Euler.

Since the transition densities of the Euler scheme are explicitly known (see Equation 32), the WSM

algorithm can be directly used for constructing an approximation 𝑈0(𝑥0) based on the paths of the

Markov chain (𝑍𝑙). To derive the complexity bounds of the resulting estimate, we shall make the

following assumptions:

(AG) Suppose that 𝑐𝑔 > 0 is such that

𝑔(𝑡, 𝑥) ≤ 𝑐𝑔(1 + |𝑥|) for all 0 ≤ 𝑡 ≤ 𝑇 , 𝑥 ∈ ℝ𝑑. (35)

(AX) Assume that there exists a constant 𝑐𝑋̄ > 0 such that for all 0 ≤ 𝑙 ≤ 𝐿,

𝖤𝑡𝑙

[
sup

𝑙≤𝑙′≤𝐿

|||𝑋𝑙′ℎ
||||||𝑋𝑙ℎ = 𝑥

] ≤ 𝑐𝑋̄(1 + |𝑥|), 𝑥 ∈ ℝ𝑑, (36)

uniformly in 𝐿 (hence ℎ). This assumption is satisfied under Lipschitz conditions on the coef-

ficients of the stochastic differential equation (26), and can be proved using the Burkholder–

Davis–Gundy inequality and the Gronwall lemma.

(AP) Assume furthermore that (𝑋𝑙ℎ, 𝑙 = 0,… , 𝐿) is time homogeneous with transition densities

𝑝𝑙ℎ(𝑦|𝑥) that satisfy the Aronson-type inequality: there exist positive constants 𝜘 and 𝛼 such

that for any 𝑥, 𝑦 ∈ ℝ𝑑 and any 𝑙 > 0, it holds that

0 < 𝑝𝑙ℎ(𝑦|𝑥) ≤ 𝜘
(2𝜋𝛼𝑙ℎ)𝑑∕2

𝑒
− |𝑥−𝑦|2

2𝛼𝑙ℎ .

This assumption holds if the coefficients in (26) are bounded and 𝜎 is uniformly elliptic.

The next proposition provides complexity bounds for the WSM algorithm in the case of continuous-

time optimal stopping problems.

Proposition 3.4. Assume that the assumptions (AG), (AX), and (AP) hold, then
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• The cost of computing 𝑈0(𝑥0) in (33) for a fixed 𝐿 > 0 with precision 𝜀 > 0 via the WSM algorithm
is bounded from above by

(𝜀, 𝑑) = 𝑐1𝛼
2
𝑐4𝑔𝜘2𝑐(𝑑)

𝑓
𝑐𝑑
2
𝑇 𝑑+7

ℎ𝑑+5

× 𝜀−4 log𝑑+2

⎡⎢⎢⎢⎢⎣
𝑇

ℎ

(
1 + 𝑐𝑋̄ + 𝑐𝑋̄

||𝑥0||)𝑒 𝑐
𝑋̄

√
𝛼𝑇

1+𝑐
𝑋̄
+𝑐

𝑋̄ |𝑥0| 23∕4(𝑐𝑔𝜘 ∨ 1
)

𝜀

⎤⎥⎥⎥⎥⎦
. (37)

• The cost of computing 𝑈⋆
0 (𝑥0)with an accuracy 𝜀 > 0 via the WSM algorithm is bounded from above

by

⋆(𝜀, 𝑑) = 𝑐1𝛼
2
𝑐4𝑔𝜘2𝑐(𝑑)

𝑓
𝑐𝑑
2

𝑇 𝑑+7

𝜀2𝑑+14

× log𝑑+2

⎡⎢⎢⎢⎢⎣
𝑇
(
1 + 𝑐𝑋̄ + 𝑐𝑋̄

||𝑥0||)𝑒 𝑐
𝑋̄

√
𝛼𝑇

1+𝑐
𝑋̄
+𝑐

𝑋̄ |𝑥0| 23∕4(𝑐𝑔𝜘 ∨ 1
)

𝜀

⎤⎥⎥⎥⎥⎦
. (38)

The first statement follows directly from Proposition 2.5 by taking in (22), 𝛼 = 𝛼ℎ, 𝑐𝑍 = 𝑐𝑋̄ , and

𝐿 = 𝑇 ∕ℎ. Then by setting ℎ ≍ 𝜀2 we obtain (38) (with possibly modified natural constants 𝑐1, 𝑐2).

Discussion. As can be seen from (38),

ΓWSM = lim
𝑑↗∞

lim
𝜀↘0

log⋆(𝜀, 𝑑)
𝑑 log 𝜀−1

= 2 (39)

and this shows the efficiency of the proposed algorithm as compared to the existing algorithms for
continuous-time optimal stopping problems at least as far as the tractability index is concerned. Indeed,
the only algorithm available in the literature with a provably finite limit of type (39) is the QTM of Bally
et al. (2005). Indeed, by tending the number of stopping times and the quantization number to infinity
such that the corresponding errors in theorem 2.4(b) in Bally et al. (2005) are balanced, we derive the
following complexity upper bound:

⋆
QTM(𝜀, 𝑑) = 𝑂

(
1

𝜀6𝑑+6

)
. (40)

Hence, ΓQTM = 6.

4 SUMMARY

For discrete-time optimal stopping problems, we have established semitractability for the proposed

WSM algorithm with respect to rather general Markov chains governed by certain transition kernels. In

particular, apart from assumption (17) on the spatial decay of such kernels and some growth condition

on the payoff, no further smoothness assumptions are imposed. As a rule, if both the transition kernels
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T A B L E 1 Tractability index Γ of different algorithms for discrete-time optimal stopping problems

LS WSM QTM
3∕𝛼 0 2

T A B L E 2 Tractability index Γ of different algorithms for continuous-time optimal stopping problems

LS WSM QTM
∞ 2 6

and the rewards are nonsmooth, the continuation functions may be smooth only up to some finite

degree. (Examples may be easily constructed.)

In the most common case of infinitely smooth continuation functions, many regression algorithms

including the LS and TV algorithms are also semitractable for discrete-time optimal stopping prob-

lems. But when passing on to continuous stopping problems, the tractability index of the WSM method

remains bounded (equal to two) while the tractability index of the regression methods tends to infin-

ity. See Table 1 and Table 2 for the tractability indices of the different methods in the discrete and

continuous exercise case, respectively.

5 NUMERICAL EXPERIMENTS

In the following experiments,1 we illustrate the WSM algorithm in the case of continuous-time optimal

stopping problems. A lower bound for the value function 𝑢(𝑡0, 𝑥0) at a given point (𝑡0, 𝑥0) via the WSM

algorithm can be obtained using a suboptimal policy computed on an independent set of trajectories.

This policy can be constructed either directly via (13) or by using an interpolation of the likelihood

weights

𝑝(𝑍(𝑗)
𝑙+1|⋅)∑𝑁

𝑚=1 𝑝(𝑍(𝑗)
𝑙+1|𝑍(𝑚)

𝑙
)
.

The fastest and simplest way to do this is to use the nearest neighbor interpolation based on training

set of trajectories, in all experiments below the number of neighbors was set to 500.

5.1 American put option on a single asset
In order to illustrate the performance of the WSM algorithm in continuous time, we consider a financial

problem of pricing American put option on a single log-Brownian asset

𝑋𝑡 = 𝑋0 exp(𝜎𝑊𝑡 + (𝑟 − 𝜎∕2)𝑡), (41)

with 𝑟 denoting the riskless rate of interest, assumed to be constant, and 𝜎 denoting the constant volatil-

ity. The payoff function is given by 𝑔(𝑥) = (𝐾 − 𝑥)+ and a fair price of the option is given by

𝑈0 = sup
𝜏∈ [0,𝑇 ]

𝖤
[
𝑒−𝑟𝜏𝑔(𝑋𝜏 )

]
.

No closed-form solution for the price of this option is known, but there are various numerical meth-

ods which give accurate approximations to 𝑈0. The parameter values used are 𝑟 = .08, 𝜎 = .20, 𝛿 = 0,
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(b)(a)

NN

L L

F I G U R E 1 Lower bounds for the price of a one-dimensional American put option approximated using different

methods and a uniform grid 𝑡𝑘 = 𝑘𝑇 ∕𝐿, 𝑘 = 0,… , 𝐿, of exercise dates. The numbers of training paths are

𝑁train = 1, 000 (a) and 𝑁train = 2, 000 (b), and the number of new trajectories used to construct lower bounds is

𝑁test = 20, 000 in both cases. In LS and VF regression methods, a polynomial basis of degree 2 and 4 is used [Color

figure can be viewed at wileyonlinelibrary.com]

𝐾 = 100, 𝑇 = 3. An accurate estimate for the true price obtained via a binomial tree type algorithm

is 6.9320 (see Kim, Ma, & Choe, 2013). In Figure 1, we show lower bounds due to WSM, the least-

squares approach of Longstaff and Schwartz (2001) and the value function regression algorithm of

Tsitsiklis and Van Roy (2001) (VF) as functions of the number of stopping times 𝐿 forming a uniform

grid on [0, 𝑇 ]. These lower bounds are constructed using a suboptimal stopping rule due to estimated

continuation values evaluated on a new independent set of trajectories. The maximal degree of poly-

nomials used as basis functions in LS and VF are indicated by the numbers (2 and 4) in the legend.

As can be seen, WSM lower bounds are more stable when 𝐿 increases. The VF lower bounds seem

to diverge as 𝐿 → ∞. A similar behavior of regression algorithms for increasing 𝐿 was observed in

Stentoft (2014).

5.2 American max-call on five assets
Here, a model with 𝑑 = 5 identically distributed assets is considered, where each underlying has divi-

dend yield 𝛿. The risk-neutral dynamic of assets is given by

𝑑𝑋𝑘
𝑡

𝑋𝑘
𝑡

= (𝑟 − 𝛿)𝑑𝑡 + 𝜎𝑑𝑊 𝑘
𝑡 , 𝑘 = 1,… , 𝑑,

where 𝑊 𝑘
𝑡 , 𝑘 = 1,… , 𝑑, are independent one-dimensional Brownian motions and 𝑟 = .05, 𝛿 = .1, 𝜎 =

.2. At any time 𝑡 ∈ [0, 𝑇 ] with 𝑇 = 3, the holder of the option may exercise it and receive the payoff

𝑔(𝑋𝑡) = (max(𝑋1
𝑡 ,… , 𝑋𝑑

𝑡 ) −𝐾)+.

We consider the approximations of this continuous-time American option by discrete-time American

options with stopping possibilities 𝑡𝑖 = 𝑖𝑇 ∕𝐿, 𝑖 = 0,… , 𝐿, and apply the WSM approach to construct
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N

L

F I G U R E 2 Lower bounds for the price of a five-dimensional American put option approximated using different

methods and a uniform grid 𝑡𝑘 = 𝑘𝑇 ∕𝐿, 𝑘 = 0,… , 𝐿, of exercise dates. The numbers of training paths is

𝑁train = 2, 000. In the LS method, a polynomial basis of degree 2 is used [Color figure can be viewed at

wileyonlinelibrary.com]

a lower bound. The results for different 𝐿 are presented in Figure 2 where also the related results for

the LS algorithm with a polynomial basis of order 2 are reported.

6 PROOFS

6.1 Proof of Proposition 1.1
For achieving a target accuracy of order 𝜀, it is reasonable to divide the error equally over the variance

and the bias part of (1). One thus chooses 𝑚 such that 𝜅5𝐿∕𝑚𝛼 ≈ 𝜀∕2, that is, 𝑚 ≈ (2𝜅5𝐿∕𝜀)1∕𝛼 , and

then takes 𝑁 such that 𝜅5𝐿𝑚𝑑∕2∕𝑁1∕2 ≈ 𝜀∕2, that is, 𝑁 ≈ (2𝜅)252𝐿𝑚𝑑∕𝜀2, yielding a computational

work load 𝐿(𝜀, 𝑑) = 𝜅1𝑁𝑚2𝑑𝐿 as stated.

6.2 Proof of Proposition 2.1
For 𝑙 = 𝐿 the statement reads

∫ |||𝑈𝐿(𝑥) − 𝑈𝐿(𝑥)
|||𝑝𝐿(𝑥|𝑥0)𝑑𝑥 = ∫ 1|𝑥−𝑥0|>𝑅 𝑔(𝑥)𝑝𝐿(𝑥|𝑥0)𝑑𝑥 = 𝜀𝐿,𝑅,

so then it is true. Suppose (15) is true for 0 < 𝑙 + 1 ≤ 𝐿. Then, by using |max(𝑎, 𝑏) − max(𝑎, 𝑐)| ≤|𝑏 − 𝑐| and the fact that 𝑈𝑙(𝑥) vanishes for |𝑥 − 𝑥0| > 𝑅,

|||𝑈𝑙(𝑥) − 𝑈𝑙(𝑥)
||| ≤ 1|𝑥−𝑥0|≤𝑅

|||max
[
𝑔(𝑥),𝖤

[
𝑈𝑙+1(𝑋𝑙+1)||𝑋𝑙 = 𝑥

]]
−max

[
𝑔(𝑥),𝖤

[
𝑈𝑙+1(𝑋𝑙+1)

|||𝑋𝑙 = 𝑥
]]|||| + 1|𝑥−𝑥0|>𝑅𝑈𝑙(𝑥)
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≤ 1|𝑥−𝑥0|≤𝑅𝖤
[ |||𝑈𝑙+1(𝑋𝑙+1) − 𝑈𝑙+1(𝑋𝑙+1)

||||||𝑋𝑙 = 𝑥
]
+ 1|𝑥−𝑥0|>𝑅𝑈𝑙(𝑥).

Hence we have by induction,

∫ |||𝑈𝑙(𝑥) − 𝑈𝑙(𝑥)
|||𝑝𝑙(𝑥|𝑥0)𝑑𝑥

≤ ∫ 1|𝑥−𝑥0|>𝑅𝖤
[ |||𝑈𝑙+1(𝑋𝑙+1) − 𝑈𝑙+1(𝑋𝑙+1)

||||||𝑋𝑙 = 𝑥
]
𝑝𝑙(𝑥|𝑥0)𝑑𝑥 + 𝜀𝑙,𝑅

≤ ∫ |||𝑈𝑙+1(𝑦) − 𝑈𝑙+1(𝑦)
|||𝑝𝑙+1(𝑦|𝑥0)𝑑𝑦 + 𝜀𝑙,𝑅

=
𝐿∑

𝑗=𝑙+1
𝜀𝑗,𝑅 + 𝜀𝑙,𝑅 =

𝐿∑
𝑗=𝑙

𝜀𝑗,𝑅.

6.3 Proof of Proposition 2.2
Combining the assumptions (16) and (17) yields

𝑈𝑙(𝑥) = esssup
𝜏∈𝑙,𝐿

𝖤
[
𝑔𝜏 (𝑍𝜏 )||𝑍𝑙 = 𝑥

]
≤ 𝑐𝑔𝖤

[
1 + max

𝑙≤𝑙′≤𝐿

||𝑍𝑙′
||||||𝑍𝑙 = 𝑥

]
≤ 𝑐𝑔

(
1 + 𝑐𝑍

)
+ 𝑐𝑔𝑐𝑍 |𝑥|.

By the estimate

∫|𝑥−𝑥0|>𝑅

𝑒
− |𝑥−𝑥0|2

2𝛼𝑙 𝑑𝑥 ≤ 𝑒
− 𝑅2

8𝛼𝑙 (4∕3)𝑑∕2(2𝜋𝛼𝑙)𝑑∕2,

and (using Cauchy–Schwarz) the estimate

∫|𝑥−𝑥0|>𝑅

||𝑥 − 𝑥0||𝑒− |𝑥−𝑥0|2
2𝛼𝑙 𝑑𝑥 ≤

√
∫|𝑥−𝑥0|>𝑅

𝑒
− |𝑥−𝑥0|2

2𝛼𝑙 𝑑𝑥

√
∫ ||𝑥 − 𝑥0||2𝑒− |𝑥−𝑥0|2

2𝛼𝑙 𝑑𝑥

≤ 𝑒
− 𝑅2

8𝛼𝑙 2𝑑∕4(2𝜋𝛼𝑙)𝑑∕2
√

𝑑𝛼𝑙,

we get (note that (4∕3)1∕2 < 21∕4)

𝜀𝑙,𝑅 ≤ 𝜘
(2𝜋𝛼𝑙)𝑑∕2 ∫|𝑥−𝑥0|>𝑅

(
𝑐𝑔
(
1 + 𝑐𝑍

)
+ 𝑐𝑔𝑐𝑍 |𝑥|)𝑒− |𝑥−𝑥0|2

2𝛼𝑙 𝑑𝑥

≤ 𝜘𝑐𝑔
(
1 + 𝑐𝑍 + 𝑐𝑍

||𝑥0||)
(2𝜋𝛼𝑙)𝑑∕2 ∫|𝑥−𝑥0|>𝑅

𝑒
− |𝑥−𝑥0|2

2𝛼𝑙 𝑑𝑥

+
𝜘𝑐𝑔𝑐𝑍

(2𝜋𝛼𝑙)𝑑∕2 ∫|𝑥−𝑥0|>𝑅

||𝑥 − 𝑥0||𝑒− |𝑥−𝑥0|2
2𝛼𝑙 𝑑𝑥



BELOMESTNY ET AL. 1609

≤ 𝜘𝑐𝑔

(
1 + 𝑐𝑍 + 𝑐𝑍

||𝑥0|| + 𝑐𝑍

√
𝑑𝛼

√
𝑙
)
2𝑑∕4𝑒−

𝑅2
8𝛼𝑙

≡ (
𝐴 + 𝐵

√
𝑙
)
𝑐𝑔𝜘𝑒

− 𝑅2
8𝛼𝑙

for 𝑙 ≥ 1 (𝜀0,𝑅 = 0 for 𝑅 > 0). Now by (15), that is, Proposition 2.1, we get

∫ |||𝑈𝑙(𝑥) − 𝑈𝑙(𝑥)
|||𝑝𝑙(𝑥|𝑥0) 𝑑𝑥 ≤ 𝐿

(
𝐴 + 𝐵

√
𝐿
)
𝑐𝑔𝜘𝑒

− 𝑅2
8𝛼𝐿 ,

whence the estimate (19).

6.4 Proof of Proposition 2.3
Let us write the sample-based backward dynamic program (14) for step 𝑙 < 𝐿 in the form

𝑈𝑙

(
𝑍

(𝑖)
𝑙

)
= 𝟙|||𝑍(𝑖)

𝑙
−𝑥0

|||≤𝑅
max

[
𝑔𝑙(𝑍

(𝑖)
𝑙
),

𝑁∑
𝑗=1

𝑈𝑙+1(𝑍
(𝑗)
𝑙+1)𝑤𝑖𝑗

]
(42)

by defining the weights

𝑤𝑖𝑗 ∶=
𝑝(𝑍(𝑗)

𝑙+1|𝑍(𝑖)
𝑙
)∑𝑁

𝑚=1 𝑝(𝑍(𝑗)
𝑙+1|𝑍(𝑚)

𝑙
)
, (43)

where 𝑙 is fixed and suppressed. Let us further abbreviate

[𝑓 ](𝑥) = 𝖤
[
𝑓 (𝑍𝑙+1)||𝑍𝑙 = 𝑥

]
= ∫ 𝑓 (𝑦)𝑝(𝑦|𝑥)𝑑𝑦

for a generic Borel function 𝑓 ≥ 0. Using

𝑈𝑙

(
𝑍

(𝑖)
𝑙

)
= 𝟙|||𝑍(𝑖)

𝑙
−𝑥0

|||≤𝑅
max

[
𝑔𝑙(𝑍

(𝑖)
𝑙
), [𝑈𝑙+1](𝑍

(𝑖)
𝑙
)
]
,

(42) and |max(𝑎, 𝑏) − max(𝑎, 𝑐)| ≤ |𝑏 − 𝑐|, we thus get

|||𝑈𝑙 − 𝑈𝑙
|||𝑁 ∶= 1

𝑁

𝑁∑
𝑖=1

|||𝑈𝑙(𝑍
(𝑖)
𝑙
) − 𝑈𝑙(𝑍

(𝑖)
𝑙
)|||

≤ 1
𝑁

𝑁∑
𝑖=1

𝟙|||𝑍(𝑖)
𝑙
−𝑥0

|||≤𝑅

||||||
𝑁∑
𝑗=1

𝑈𝑙+1(𝑍
(𝑗)
𝑙+1)𝑤𝑖𝑗 − [𝑈𝑙+1](𝑍

(𝑖)
𝑙
)
||||||

≤ |||𝑈𝑙+1 − 𝑈𝑙+1
|||𝑁 +𝑙+1 (44)

with

𝑙+1 =
1
𝑁

𝑁∑
𝑖=1

𝟙|||𝑍(𝑖)
𝑙
−𝑥0

|||≤𝑅

||||||
𝑁∑
𝑗=1

𝑈𝑙+1(𝑍
(𝑗)
𝑙+1)𝑤𝑖𝑗 − [𝑈𝑙+1](𝑍

(𝑖)
𝑙
)
||||||,
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where we have used the fact that the weights in (43) sum up to one. One thus gets by iterating (44)

|||𝑈𝑘 − 𝑈𝑘
|||𝑁 ≤

𝐿−1∑
𝑙=𝑘

𝑙+1, (45)

since 𝑈𝐿 − 𝑈𝐿 = 0. Let us now introduce

𝑤◦
𝑖𝑗 ∶=

1
𝑁

𝑝(𝑍(𝑗)
𝑙+1|𝑍(𝑖)

𝑙
)

𝑝𝑙+1(𝑍
(𝑗)
𝑙+1|𝑥0) , (46)

and consider the generic term

𝑙+1 =
1
𝑁

𝑁∑
𝑖=1

𝟙|||𝑍(𝑖)
𝑙
−𝑥0

|||≤𝑅

||||||
𝑁∑
𝑗=1

𝑈𝑙+1(𝑍
(𝑗)
𝑙+1)𝑤𝑖𝑗 − [𝑈𝑙+1](𝑍

(𝑖)
𝑙
)
||||||

≤ 1
𝑁

𝑁∑
𝑖=1

𝟙|||𝑍(𝑖)
𝑙
−𝑥0

|||≤𝑅

𝑁∑
𝑗=1

𝑈𝑙+1(𝑍
(𝑗)
𝑙+1)

|||𝑤𝑖𝑗 −𝑤◦
𝑖𝑗
|||

+ 1
𝑁

𝑁∑
𝑖=1

𝟙|||𝑍(𝑖)
𝑙
−𝑥0

|||≤𝑅

||||||
𝑁∑
𝑗=1

(
𝑤◦

𝑖𝑗𝑈𝑙+1(𝑍
(𝑗)
𝑙+1) −

1
𝑁

[𝑈𝑙+1](𝑍
(𝑖)
𝑙
)
)||||||

=∶ Term1 + Term2.

We have

𝖤
[𝑙+1

] ≤ 𝖤
[
Term1

]
+ 𝖤

[
Term2

]
.

While the first term Term1 is small as (𝑤𝑖𝑗) are close to (𝑤◦
𝑖𝑗
), the second one Term2 tends to 0 as

𝑁 → ∞ by the law of large numbers. Indeed, due to (12) one has

Term1 ≤ 𝐺𝑅

𝑁

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝟙|||𝑍(𝑖)
𝑙
−𝑥0

|||≤𝑅
𝟙|||𝑍(𝑗)

𝑙+1−𝑥0
|||≤𝑅

|||𝑤𝑖𝑗 −𝑤◦
𝑖𝑗
|||,

and due to (43) and (46), we may write

|||𝑤𝑖𝑗 −𝑤◦
𝑖𝑗
||| = ||||||

𝑝(𝑍(𝑗)
𝑙+1|𝑍(𝑖)

𝑙
)∑𝑁

𝑚=1 𝑝(𝑍(𝑗)
𝑙+1|𝑍(𝑚)

𝑙
)
− 1

𝑁

𝑝(𝑍(𝑗)
𝑙+1|𝑍(𝑖)

𝑙
)

𝑝𝑙+1(𝑍
(𝑗)
𝑙+1|𝑥0)

||||||
=

𝑝(𝑍(𝑗)
𝑙+1|𝑍(𝑖)

𝑙
)∑𝑁

𝑚=1 𝑝(𝑍(𝑗)
𝑙+1|𝑍(𝑚)

𝑙
)

||||||1 −
1
𝑁

∑𝑁
𝑚=1 𝑝(𝑍(𝑗)

𝑙+1|𝑍(𝑚)
𝑙

)

𝑝𝑙+1(𝑍
(𝑗)
𝑙+1|𝑥0)

||||||
to obtain

Term1 ≤ 𝐺𝑅

𝑁

𝑁∑
𝑗=1

𝟙|||𝑍(𝑗)
𝑙+1−𝑥0

|||≤𝑅

||||||1 −
1
𝑁

∑𝑁
𝑚=1 𝑝(𝑍(𝑗)

𝑙+1|𝑍(𝑚)
𝑙

)

𝑝𝑙+1(𝑍
(𝑗)
𝑙+1|𝑥0)

||||||.
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Obviously, the expectation of the random variable inside of the above sum is independent of 𝑗. So by

taking 𝑗 = 1 and splitting off the with 𝑍(1) correlating term due to 𝑚 = 1, one gets

𝖤
[
Term1

] ≤ 𝐺𝑅

𝑁
𝖤

[
𝟙|||𝑍(1)

𝑙+1−𝑥0
|||≤𝑅

||||||
𝑁∑

𝑚=1

(
1 −

𝑝(𝑍(1)
𝑙+1|𝑍(𝑚)

𝑙
)

𝑝𝑙+1(𝑍
(1)
𝑙+1|𝑥0)

)||||||
]

≤ 𝐺𝑅

𝑁
𝐷𝑅,𝑙 +

𝐺𝑅

𝑁
𝖤

[||||||
𝑁∑

𝑚=2
𝟙|||𝑍(1)

𝑙+1−𝑥0
|||≤𝑅

(
1 −

𝑝(𝑍(1)
𝑙+1|𝑍(𝑚)

𝑙
)

𝑝𝑙+1(𝑍
(1)
𝑙+1|𝑥0)

)||||||
]

with

𝐷𝑅,𝑙 ∶= 𝖤

[
𝟙|||𝑍(1)

𝑙+1−𝑥0
|||≤𝑅

||||||1 −
𝑝(𝑍(1)

𝑙+1|𝑍(1)
𝑙
)

𝑝𝑙+1(𝑍
(1)
𝑙+1|𝑥0)

||||||
]
.

Now consider the i.i.d. random variables,

𝜂(𝑙+1)𝑚 ∶= 𝟙|||𝑍(1)
𝑙+1−𝑥0

|||≤𝑅

(
1 −

𝑝(𝑍(1)
𝑙+1|𝑍(𝑚)

𝑙
)

𝑝𝑙+1(𝑍
(1)
𝑙+1|𝑥0)

)
, 𝑚 = 2,… , 𝑁. (47)

It is easy to check by conditioning on 𝑍
(1)
𝑙+1 that they have zero mean. Then by applying Jensen’s

inequality to the square root, using the independence of the random variables (47), and that the latter

variables are identically distributed with zero mean, we derive

𝖤

||||||
𝑁∑

𝑚=2
𝜂(𝑙+1)𝑚

|||||| ≤
√√√√√𝖤

(
𝑁∑

𝑚=2
𝜂
(𝑙+1)
𝑚

)2

= 𝐸𝑅,𝑙

√
𝑁

with

𝐸2
𝑅,𝑙

∶= 𝖤
⎡⎢⎢⎣𝟙|||𝑍(1)

𝑙+1−𝑥0
|||≤𝑅

||||||1 −
𝑝(𝑍(1)

𝑙+1|𝑍(2)
𝑙
)

𝑝𝑙+1(𝑍
(1)
𝑙+1|𝑥0)

||||||
2⎤⎥⎥⎦.

Finally we get for Term1,

𝖤[Term1] ≤ 𝐺𝑅𝐷𝑅,𝑙

𝑁
+

𝐺𝑅𝐸𝑅,𝑙√
𝑁

.

Concerning Term2, let us write

[𝑈𝑙+1](𝑍
(𝑖)
𝑙
) = ∫ 𝑈𝑙+1(𝑦)

𝑝(𝑦|𝑍(𝑖)
𝑙
)

𝑝𝑙+1(𝑦|𝑥0)𝑝𝑙+1(𝑦|𝑥0)𝑑𝑦

= 𝖤
⎡⎢⎢⎣𝑈𝑙+1(𝑍

0,𝑥0
𝑙+1 )

𝑝(𝑍0,𝑥0
𝑙+1 |𝑍(𝑖)

𝑙
)

𝑝𝑙+1(𝑍
0,𝑥0
𝑙+1 |𝑥0)

⎤⎥⎥⎦,
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where 𝑍0,𝑥0 is an independent dummy trajectory. We thus have

𝖤
[
Term2

] ≤ 𝖤

[
𝟙|||𝑍(1)

𝑙
−𝑥0

|||≤𝑅

||||(𝑤◦
11𝑈𝑙+1(𝑍

(1)
𝑙+1) −

1
𝑁

[𝑈𝑙+1](𝑍
(1)
𝑙
)
)||||

]

+𝖤

[||||||
𝑁∑
𝑗=2

𝜁
(𝑙+1)
𝑗

||||||
]
,

where for 𝑗 = 2,… , 𝑁 , the random variables

𝜁
(𝑙+1)
𝑗

∶ = 𝟙|||𝑍(1)
𝑙

−𝑥0
|||≤𝑅

(
𝑤◦

1𝑗𝑈𝑙+1(𝑍
(𝑗)
𝑙+1) −

1
𝑁

[𝑈𝑙+1](𝑍
(1)
𝑙
)
)

=
𝟙|||𝑍(1)

𝑙
−𝑥0

|||≤𝑅

𝑁

⎛⎜⎜⎝
𝑝(𝑍(𝑗)

𝑙+1|𝑍(1)
𝑙
)

𝑝𝑙+1(𝑍
(𝑗)
𝑙+1|𝑥0)𝑈𝑙+1(𝑍

(𝑗)
𝑙+1) − 𝖤

⎡⎢⎢⎣𝑈𝑙+1(𝑍
0,𝑥0
𝑙+1 )

𝑝(𝑍0,𝑥0
𝑙+1 |𝑍(1)

𝑙
)

𝑝𝑙+1(𝑍
0,𝑥0
𝑙+1 |𝑥0)

⎤⎥⎥⎦
⎞⎟⎟⎠

are i.i.d. with zero mean. We so have by the Jensen’s inequality again,

𝖤

[||||||
𝑁∑
𝑗=2

𝜁
(𝑙+1)
𝑗

||||||
]
≤

√
𝑁𝖵𝖺𝗋

(
𝜁
(𝑙+1)
2

) ≤ 𝐹𝑅,𝑙𝐺𝑅∕
√

𝑁,

where

𝐹 2
𝑅,𝑙

= 𝖤
⎡⎢⎢⎣𝟙|||𝑍(2)

𝑙+1−𝑥0
|||≤𝑅

||||||
𝑝(𝑍(2)

𝑙+1|𝑍(1)
𝑙
)

𝑝𝑙+1(𝑍
(2)
𝑙+1|𝑥0)

||||||
2⎤⎥⎥⎦ = ∫ ∫|𝑦−𝑥0|≤𝑅

𝑝2(𝑦|𝑥)
𝑝𝑙+1(𝑦|𝑥0)𝑝𝑙(𝑥|𝑥0) 𝑑𝑥𝑑𝑦.

Second, by (46) one has

𝖤

[
𝟙|||𝑍(1)

𝑙
−𝑥0

|||≤𝑅

||||(𝑤◦
11𝑈𝑙+1(𝑍

(1)
𝑙+1) −

1
𝑁

[𝑈𝑙+1](𝑍
(1)
𝑙
)
)||||

]

≤ 1
𝑁

𝖤

[
𝟙|||𝑍(1)

𝑙
−𝑥0

|||≤𝑅

𝑝(𝑍(1)
𝑙+1|𝑍(1)

𝑙
)

𝑝𝑙+1(𝑍
(1)
𝑙+1|𝑥0)𝑈𝑙+1(𝑍

(1)
𝑙+1)

]

+ 1
𝑁

𝖤
⎡⎢⎢⎣𝟙|||𝑍(1)

𝑙
−𝑥0

|||≤𝑅
𝖤
⎡⎢⎢⎣𝑈𝑙+1(𝑍

0,𝑥0
𝑙+1 )

𝑝(𝑍0,𝑥0
𝑙+1 |𝑍(1)

𝑙
)

𝑝𝑙+1(𝑍
0,𝑥0
𝑙+1 |𝑥0)

⎤⎥⎥⎦
⎤⎥⎥⎦

≤ 𝐺𝑅

𝑁
𝖤

[
𝟙|||𝑍(1)

𝑙+1−𝑥0
|||≤𝑅

𝑝(𝑍(1)
𝑙+1|𝑍(1)

𝑙
)

𝑝𝑙+1(𝑍
(1)
𝑙+1|𝑥0)

]

+
𝐺𝑅

𝑁
𝖤
⎡⎢⎢⎣𝟙||||𝑍0,𝑥0

𝑙+1 −𝑥0
||||≤𝑅

𝑝(𝑍0,𝑥0
𝑙+1 |𝑍(1)

𝑙
)

𝑝𝑙+1(𝑍
0,𝑥0
𝑙+1 |𝑥0)

⎤⎥⎥⎦ =∶
𝐺𝑅

𝑁
𝐻𝑅,𝑙,
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where the latter inequality follows from (12) and the fact that 𝑈𝑙+1 vanishes outside the ball 𝐵𝑅. Com-

bining the above estimates, we get for Term2

𝖤[Term2] ≤ 𝐹𝑅,𝑙𝐺𝑅√
𝑁

+
𝐺𝑅

𝑁
𝐻𝑅,𝑙.

Thus we have expressed our bounds for 𝖤[Term1] and 𝖤[Term2] in terms of the quantities 𝐷𝑅,𝑙, 𝐸𝑅,𝑙,

𝐹𝑅,𝑙, 𝐻𝑅,𝑙, and 𝐺𝑅. Furthermore, it is easy to see that using (20)

𝐷𝑅,𝑙 ≤ 1 + 𝖤

[
𝟙|||𝑍(1)

𝑙+1−𝑥0
|||≤𝑅

𝑝(𝑍(1)
𝑙+1|𝑍(1)

𝑙
)

𝑝𝑙+1(𝑍
(1)
𝑙+1|𝑥0)

]

= 1 + ∫ 𝑝𝑙(𝑥|𝑥0) 𝑑𝑥∫|𝑦−𝑥0|≤𝑅

𝑝2(𝑦|𝑥)
𝑝𝑙+1(𝑦|𝑥0)𝑑𝑦

≤ 1 + 𝐹 2
𝑅
.

Similarly, it follows that 𝐸2
𝑅,𝑙

≤ 2 + 2𝐹 2
𝑅

, and that 𝐻𝑅,𝑙 ≤ 1 + 𝐹 2
𝑅

due to

𝖤
⎡⎢⎢⎣𝟙||||𝑍0,𝑥0

𝑙+1 −𝑥0
||||≤𝑅

𝑝(𝑍0,𝑥0
𝑙+1 |𝑍(1)

𝑙
)

𝑝𝑙+1(𝑍
0,𝑥0
𝑙+1 |𝑥0)

⎤⎥⎥⎦ ≤ 1.

By now taking the expectation in (45) and gathering all together we obtain,

𝖤
[|||𝑈𝑘 − 𝑈𝑘

|||𝑁] ≤ (𝐿 − 𝑘)𝐺𝑅

⎛⎜⎜⎜⎝
√

2 + 2𝐹 2
𝑅
+ 𝐹𝑅√

𝑁
+

2 + 2𝐹 2
𝑅

𝑁

⎞⎟⎟⎟⎠. (48)

By next taking 𝑘 = 0 and assuming that 𝑁 is taken such that (1 + 𝐹𝑅)∕
√

𝑁 < 1, Proposition 2.3

follows.

6.5 Proof of Proposition 2.5
In order to achieve a required accuracy 𝜀 > 0, let us take 𝑅 and 𝑁 large enough such that both error

terms in (21) are equal to 𝜀∕2. Hence, we first take

𝑅𝜀,𝑑 = (8𝛼𝐿)1∕2 log1∕2
𝐿𝑐𝑔𝜘

(
1 + 𝑐𝑍 + 𝑐𝑍

||𝑥0|| + 𝑐𝑍

√
𝑑𝛼𝐿

)
21+𝑑∕4

𝜀
,

that is 𝑅 ↗ ∞ when 𝑑 + 𝜀−1 ↗ ∞. Then take, with ≍ denoting asymptotic equivalence for 𝑅 ↗ ∞
up to some natural constant,

𝑁𝜀 ≍ 𝐿2𝑐2𝑔𝜘(𝑒∕𝛼)𝑑∕2𝑑−𝑑∕2𝑅𝑑+2
𝜀 𝜀−2 ≍ 𝛼𝑐2𝑔𝜘(8𝑒∕𝑑)𝑑∕2𝐿𝑑∕2+3

× 𝜀−2 log𝑑∕2+1
𝐿
(
1 + 𝑐𝑍 + 𝑐𝑍

||𝑥0|| + 𝑐𝑍

√
𝑑𝛼𝐿

)
21+𝑑∕4𝑐𝑔𝜘

𝜀
.
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Thus, the computational work load (complexity) is given by

𝑐
(𝑑)
𝑓

𝑁2
𝜀𝐿 ≤ 𝑐1𝛼

2𝑐4𝑔𝜘2𝑐(𝑑)
𝑓

(8𝑒∕𝑑)𝑑𝐿𝑑+7

× 𝜀−4 log𝑑+2
𝐿
(
1 + 𝑐𝑍 + 𝑐𝑍

||𝑥0|| + 𝑐𝑍

√
𝑑𝛼𝐿

)
21+𝑑∕4𝑐𝑔𝜘

𝜀
, (49)

where 𝑐1 is a natural constant. Now let us write

𝑑−𝑑 log𝑑+2
𝐿
(
1 + 𝑐𝑍 + 𝑐𝑍

||𝑥0|| + 𝑐𝑍

√
𝑑𝛼𝐿

)
21+𝑑∕4𝑐𝑔𝜘

𝜀

= 𝑑2 log𝑑+2
⎡⎢⎢⎢⎣
𝐿1∕𝑑

(
1 + 𝑐𝑍 + 𝑐𝑍

||𝑥0|| + 𝑐𝑍

√
𝑑𝛼𝐿

)1∕𝑑
21∕𝑑+1∕4

(
𝑐𝑔𝜘)1∕𝑑

𝜀1∕𝑑

⎤⎥⎥⎥⎦.

Then, using the elementary estimate (𝑎 + 𝑏
√

𝑑)1∕𝑑 ≤ 𝑎𝑒𝑏∕𝑎, for 𝑎, 𝑏 > 0, 𝑑 ≥ 1, and assuming that

𝜀 < 1, (49) implies (22).

6.6 Proof of Proposition 3.2
On the one hand, one has

𝑈◦
𝑡𝑙
(𝑋𝑡𝑙

) − 𝑈𝑡𝑙
(𝑋𝑡𝑙

) = esssup
𝜏∈𝑙,𝐿

𝖤𝑡𝑙

[
𝑔(𝜏,𝑋𝜏 )

]
− esssup

𝜏∈𝑙,𝐿
𝖤𝑡𝑙

[
𝑔(𝜏,𝑋𝜏 )

]
≤ esssup

𝜏∈𝑙,𝐿
𝖤𝑡𝑙

[
𝑔(𝜏,𝑋𝜏 ) − 𝑔(𝜏,𝑋𝜏 )

]
≤ esssup

𝜏∈𝑙,𝐿
𝖤𝑡𝑙

[|||𝑔(𝜏,𝑋𝜏 ) − 𝑔(𝜏,𝑋𝜏 )
|||],

and on the other one has similarly

𝑈𝑡𝑙
(𝑋𝑡𝑙

) − 𝑈◦
𝑡𝑙
(𝑋𝑡𝑙

) = esssup
𝜏∈𝑙,𝐿

𝖤𝑡𝑙

[
𝑔(𝜏,𝑋𝜏 )

]
− esssup

𝜏∈𝑙,𝐿
𝖤𝑡𝑙

[
𝑔(𝜏,𝑋𝜏 )

]
≤ esssup

𝜏∈𝑙,𝐿
𝖤𝑡𝑙

[
𝑔(𝜏,𝑋𝜏 ) − 𝑔(𝜏,𝑋𝜏 )

]
≤ esssup

𝜏∈𝑙,𝐿
𝖤𝑡𝑙

[|||𝑔(𝜏,𝑋𝜏 ) − 𝑔(𝜏,𝑋𝜏 )
|||].

Hence, we get
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𝖤
[|||𝑈◦

𝑡𝑙
(𝑋𝑡𝑙

) − 𝑈𝑡𝑙
(𝑋𝑡𝑙

)|||] ≤ 𝖤

[
sup

0≤𝑠≤𝑇

|||𝑔(𝑠,𝑋𝑠) − 𝑔(𝑠,𝑋𝑠)
|||
]

≤ 𝐿𝑔𝖤

[
sup

0≤𝑠≤𝑇

|||𝑋𝑠 −𝑋𝑠
|||
]
≤ 𝐶Euler

√
ℎ,

due to the strong order of the Euler scheme, with 𝐿𝑔 being some Lipschitz constant for 𝑔.
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ENDNOTE

1 The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Denis Belomestny https://orcid.org/0000-0002-9482-6430

John Schoenmakers https://orcid.org/0000-0002-4389-8266

REFERENCES

Agarwal, A., & Juneja, S. (2013). Comparing optimal convergence rate of stochastic mesh and least squares method for

bermudan option pricing. Proceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in
a Complex World (pp. 701–712). IEEE Press.

Azencott, R. (1984). Densité des diffusions en temps petit: développements asymptotiques. I. In Seminar on probability,
XVIII, volume 1059 of Lecture Notes in Math. (pp. 402–498). Berlin: Springer.

Bally, V., Pagès, G., & Printems, J. (2005). A quantization tree method for pricing and hedging multidimensional Amer-

ican options. Mathematical Finance, 15(1), 119–168.

Belomestny, D., & Schoenmakers, J. (2018). Optimal stopping of McKean-Vlasov diffusions via regression on particle

systems. Preprint, arXiv:1806.09483v1.

Broadie, M., & Glasserman, P. (2004). A stochastic mesh method for pricing high-dimensional American options. Jour-
nal of Computational Finance, 7(4), 35–72.

Clément, E., Lamberton, D., & Protter, P. (2002). An analysis of a least squares regression method for American option

pricing. Finance and Stochastics, 6(4), 449–471.

Dacunha-Castelle, D., & Florens-Zmirou, D. (1986). Estimation of the coefficients of a diffusion from discrete observa-

tions. Stochastics, 19(4), 263–284.

Egloff, D., Kohler, M., & Todorovic, N. (2007). A dynamic look-ahead Monte Carlo algorithm for pricing Bermudan

options. Annals of Applied Probability, 17(4), 1138–1171.

Florens-Zmirou, D. (1993). On estimating the diffusion coefficient from discrete observations. Journal of Applied Prob-
ability, 30(4), 790–804.

Goldberg, D. A., & Chen, Y. (2018). Beating the curse of dimensionality in options pricing and optimal stopping. Preprint
arXiv:1807.02227.

Jaillet, P., Lamberton, D., & Lapeyre, B. (1990). Variational inequalities and the pricing of American options. Acta
Applicandae Mathematica, 21(3), 263–289.

Kim, B. J., Ma, Y.-K., & Choe, H. (2013). A simple numerical method for pricing an american put option. Journal of
Applied Mathematics, 2013, 1–7.

https://orcid.org/0000-0002-9482-6430
https://orcid.org/0000-0002-9482-6430
https://orcid.org/0000-0002-4389-8266
https://orcid.org/0000-0002-4389-8266


1616 BELOMESTNY ET AL.

Li, C. (2013). Maximum-likelihood estimation for diffusion processes via closed-form density expansions. Annals of
Statistics, 41(3), 1350–1380.

Longstaff, F., & Schwartz, E. (2001). Valuing American options by simulation: A simple least-squares approach. Review
of Financial Studies, 14(1), 113–147.

Novak, E., & Woźniakowski, H. (2008). Tractability of multivariate problems. Vol. 1: Linear information, volume 6 of

EMS Tracts in Mathematics. Zürich: European Mathematical Society (EMS).

Rust, J. (1997). Using randomization to break the curse of dimensionality. Econometrica: Journal of the Econometric
Society, 65(3), 487–516.

Stentoft, L. (2014). Value function approximation or stopping time approximation: A comparison of two recent numerical

methods for American option pricing using simulation and regression. Journal of Computational Finance, 18(1), 1–

56.

Trefethen, L. (2017). Multivariate polynomial approximation in the hypercube. Proceedings of the American Mathemat-
ical Society, 145(11), 4837–4844.

Tsitsiklis, J., & Van Roy, B. (2001). Regression methods for pricing complex American style options. IEEE Transactions
on Neural Networks, 12(14), 694–703.

Zanger, D. Z. (2013). Quantitative error estimates for a least-squares Monte Carlo algorithm for American option pricing.

Finance and Stochastics, 17(3), 503–534.

Zanger, D. Z. (2018). Convergence of a least-squares Monte Carlo algorithm for American option pricing with dependent

sample data. Mathematical Finance, 28(1), 447–479.

How to cite this article: Belomestny D, Kaledin M, Schoenmakers J. Semitractability of

optimal stopping problems via a weighted stochastic mesh algorithm. Mathematical Finance.

2020;30:1591–1616. https://doi.org/10.1111/mafi.12271

https://doi.org/10.1111/mafi.12271

