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Abstract
Danish municipalities monitor older persons who are at 
high risk of declining health and would later need home 
care services. However, there is no established strategy yet 
on how to accurately identify those who are at high risk. 
Therefore, there is great potential to optimise the munici-
palities’ prevention strategies. Denmark’s comprehensive 
set of electronic population registers provide longitudinal 
data that cover individual and household socio-demo-
graphics and medical history. Using these data, we de-
veloped and applied recurrent neural networks to predict 
the risk of a need of care services in the future and thus 
identify individuals who would benefit the most from the 
municipalities’ prevention strategies. We compared our re-
current neural network model to prediction models based 
on Cox regression and Fine–Gray regression in terms of 
calibration and discrimination. Challenges for the predic-
tion modelling were the competing risk of death and the 
longitudinal information on the registered life course data.
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1  |   INTRODUCTION

Providing optimal and resource-efficient care in an ageing society requires preventive interventions 
that are targeted towards older persons at high risk of declining health. In Denmark, anyone can ask 
for home care services from the municipality and the municipality has to ensure that everyone gets 
care when needed. As of 1 July 2019, Danish municipalities by law must assess the need of home care 
for all residents who turn 70 years old and living alone, or turn 75 and 80 regardless of their living 
situation. For everyone else between the ages of 65 and 80 years, the municipality must monitor which 
older persons are at high risk of declining health and in need of home care services (Borger.dk, 2019). 
However, so far there is no established strategy on how to accurately identify these older persons at 
high risk.

The overarching aim of this project is to build an algorithm that can identify older persons who are 
at high risk of declining health that would require long-term personal home care services. Here, we 
used a comprehensive set of register data on health and socio-demographics and developed methods 
to predict the future use of municipal home care services. Eventually, our models will be implemented 
to provide person-specific information in the form of an online tool to assist municipalities with 
the information on which older persons are at greater need of a preventive efforts than others. This 
online tool will help to optimise the municipalities’ preventive strategies for older citizens to delay 
functional decline and diminish its consequences, allowing individuals to live longer, healthier and 
independently in old age.

In this paper, we developed risk prediction models based on comprehensive longitudinal data. 
Methods for prediction based on longitudinal data have been investigated for time-to-event analysis 
(Maziarz et al., 2017; Sweeting & Thompson, 2011, 2012) and machine learning methods have been 
applied in similar settings as ours (Choi et al., 2017; Zhao et al., 2019). However, the situation where 
machine learning has to incorporate right censored outcome data and competing risks has not been 
explored much. As done by Sweeting et al. (2017), we compared two alternative forms of learning 
from the longitudinal trajectories. In the first, the predictor variables were summaries of the history 
of a marker derived by a subject matter expert. The expert-derived variables could then be used with 
standard regression models as well as with machine learning techniques. In the second form, a com-
plex machine learning algorithm was trained directly with the observed longitudinal trajectories.

Accounting for the right censored observations of our outcome, we implemented the expert-  
derived predictor variables in standard regression models for competing risks: cause-specific Cox 
regression (Benichou & Gail, 1990) and Fine–Gray regression (Fine & Gray, 1999). We also adapted 
artificial neural networks to the competing risk outcome with baseline predictor variables (Lee et al., 
2018) and extended recurrent neural networks (Hochreiter & Schmidhuber, 1997) in order to data 
adaptively derive predictor variables from person specific longitudinal trajectories. Next, we applied 
the modelling algorithms to register data from the Municipality of Copenhagen and obtained rival 
prediction models based on the regression and machine learning approaches. We then compared the 
predictive performance using a temporal validation study. We also investigated to what extent the 
models built in Copenhagen can be exported to other municipalities in Denmark (spatial validation). 
Finally, we analysed the relative utility of single data sources by repeating the validation when specific 
registers were left out of the model.

More generally, in this paper we discuss ways to validate and compare traditional regression mod-
els with machine learning models for time to event outcomes with competing risks. We illustrate the 
general steps of design, data analysis and modelling throughout by predicting the need of home care 
services as a motivating example. We start by discussing the time dynamics of the design and data 
collection where the object of the analysis is defined relative to a time zero, an event of interest and 
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a time horizon. This is followed by a discussion on the challenges of deriving predictor variables 
from register data where we distinguish the classical modelling culture, where predictor variables are 
derived based on expert knowledge, from the machine learning modelling culture, where predictor 
variables are learnt from the data (Breiman, 2007).

2  |   NATION-WIDE REGISTERS

There are advantages and disadvantages in using nation-wide registers as a data source for the pur-
pose of developing a prediction model. It is an advantage that they do not exclude individuals in a 
systematic way. It is also an advantage that the main reason for early end of follow-up, apart from 
administrative censoring, is moving out of the country. Hence, prediction models built on nation-wide 
registers are potentially applicable for everyone in the country. However, it is a disadvantage that 
these electronic records do not necessarily contain specific information for the current purpose. For 
example, information on physical functioning and lifestyle would be useful for predicting the need of 
home care. Unfortunately, such data are not available through the registers and can only be roughly 
approximated based on electronic medical and consumption records. Nonetheless, it is possible that 
an algorithm can extract specific information by searching through a person’s records across all avail-
able registers.

The start of a register limits how long back in time we have personal information on a given in-
dividual. With increasing age of the register, this limitation gets lessened, but generally the records 
can only be complete for subjects born after the start of the register. The end of the register also has 
consequences. For example, to predict the outcome within a 5-year horizon, subjects had to be eligible 
and registered at least 5 years ago. More generally, the longer the prediction horizon, the older the 
data. Here we restricted to a 17-year history and also compared to a 10-year history using registers 
with information on demographics, income, medications, hospitalisation, care services, death and 
immigration/emigration, see Figure S1 for a timeline overview of these registers.

Statistics Denmark is the central authority responsible for maintaining hundreds of high quality 
Danish registers and producing fine-grained statistics on changes in many aspects of life, for example, 
social, economic, biomedical conditions and geographical location over time (Frank, 2000). In general 
there are no missing values in the registers that record services use or consumption. Although these 
data are largely archived in cross-sectional registers, in 1968 the Danish Civil Registration System 
established a unique identifier for everyone in the population, making it possible to systematically 
trace individuals over time and space (Pedersen, 2011). The data used for this project are housed in 
a protected environment in concordance with national and international guidelines on the use of data 
for analytical purposes. Identifiable and re-identifiable data can per legal policy not be exported from 
Statistics Denmark (2017). Here, we used the following registers:

The Danish Civil Registration System. All persons alive and living in Denmark are registered by 
the Danish Civil Registration System, which has existed since 1968 (Schmidt et al., 2014). Here we 
used information on a person’s age, sex, country of origin, immigration and civil status, family and 
household types and municipality of residence.

The Population Education Register. This register contains information on an individual’s high-
est completed education ever since 1981, including main education group, type of education and 
exact title, which corresponds to The International Standard Classification of Education codes. Aalen 
& Johansen, 1978, there is information for 96.4% of the Danish population aged 15–69 (Jensen & 
Rasmussen, 2011). This means there are missing information on education for the oldest old, which 
we categorised as ‘unknown’.
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The Income Statistics Register. This register provides information for individuals and households 
regarding the composition of the population’s income and allowance, available and updated annu-
ally since 1970 (Baadsgaard & Quitzau, 2011). Here we used information on total salary including 
self-employed and honorary fees, income from wealth such as stocks and investments, social security 
allowance from the state such as cash benefits and parental leave, national and early retirement pen-
sion, private pension and disposable income. Data are also adjusted according to family situation, that 
is, number of people registered at the same address.

The National Prescription Register. Since 1995, this register has recorded detailed information on 
prescriptions redeemed by Danish residents at community pharmacies, including drugs prescribed to 
nursing home residents (Pottegård et al., 2016). Here we used information on the purchase date, the 
number of packages purchased, the Anatomical Therapeutic Chemical (ATC) classification system 
codes and the volume of packages. For our analysis, we aggregated the ATC codes to third-level clas-
sifications (pharmacological subgroups), for example, from A10BA02 (metformin) to A10B (blood 
glucose lowering drugs).

The National Patient Register. As one of the world’s oldest nationwide hospital registers, it pro-
vides detailed administrative and clinical data on all patient contact in Danish non-psychiatric hos-
pitals since 1977 and psychiatric specialty clinics or hospitals since 1995 (Schmidt et  al., 2015). 
Data includes admission date, discharge date, type of patient and primary diagnoses as World Health 
Organization International Classification of Diseases version 8 (WHO ICD-8) codes (until 1995) and 
WHO ICD-10 codes (since 1995). In our analysis we aggregated the ICD-10 codes into chapters, for 
example, from G30.0 (Alzheimer’s disease with early onset) to Chapter 6 (Diseases of the nervous 
systems).

The Older Persons Register on Home Care Visits. This register provides individual-level infor-
mation on permanent help in the form of care in residents’ own homes. Data includes dates of home 
care visits and the type and duration of home care services provided, recorded ever since 2008. This 
includes both personal and practical care. Personal care is defined as assistance given to persons who, 
due to reduced physical or mental disabilities or special social problems, are not able to perform tasks 
such as assistance with bathing, toilet visits, coming out of the bed, dressing, medication handling and 
so forth. Practical care is defined as instrumental assistance such as cleaning, food service, shopping, 
laundry and so forth. We used the dates and total minutes of combined personal and practical home 
care per month as one of our outcomes.

The Older Persons Register on Nursing Home. This register records detailed individual data on 
nursing home admittance ever since 2008. Here, we used dates of the first admittance into nursing 
home as one of our outcomes.

The Death Register. Since 1970, this register has been fully digitalised and includes all deaths of 
Danish residents dying only in Denmark. Ever since 1983, the registers also include deaths among 
Greenlanders and Faroese living in Denmark and dying in Denmark, Greenland or the Faroe Islands 
(Helweg-Larsen, 2011).

3  |   ANALYSIS DESIGN AND DATA STRUCTURE

3.1  |  Analysis design

For our application, we considered two alternative analysis designs: the screening design and the 
cross-sectional design (see Figure 1). In the screening design, all persons receive a predicted risk 
when they reach a certain age, say 70 years. The calendar dates at which the model is applied depends 
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on the birth year of the persons. The predicted risk can then in principle be updated for individual 
persons when they get older. In the cross-sectional design, all persons of the population in a given 
age range, say 65–80 years, receive a predicted risk at a single calendar date, that we call time zero. 
The prediction can then be repeated frequently, say once a year. Since our aim is to assist the Danish 
municipalities in optimising preventive strategies and not to design a screening tool, we only pursued 
and reported from the cross-sectional design.

We used longitudinal register data from an exposure window before time zero to predict 
event probabilities between time zero and the time horizon (see Figure 1). This is different from 
time-varying covariates observed during the outcome time, as typically analysed in inferential 
survival analysis (Kalbfleisch & Prentice, 2002). However, our analysis can be seen as a landmark 
analysis with a single time point (Blanche et al., 2015; Rizopoulos, 2012). Repeated predictions, 
as explained above, would add new time points to the landmark analysis to update predictions in 
a dynamic way.

3.2  |  Outcome event, competing risks and prediction horizon

The target parameter is the probability that the event of interest occurs within a given time ho-
rizon since time zero in any subject of the target population. We call this probability the τ-year 

F I G U R E  1   Illustration of the design of the prediction model data analysis. The cross-sectional design predicts the risk 
of all persons in a given age rage at a single calendar date (time zero). The screening design invites all persons who reach a 
single age value in a given calendar year to get a predicted risk [Colour figure can be viewed at wileyonlinelibrary.com]
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risk of the event for a suitably selected time horizon τ. The time horizon is seen from the stand-
point of time zero, that is, where the time scale is time since time zero. Thus, we need to define 
the event of interest and one or several time horizons. In our application, the event of interest is 
the combined endpoint need of home care or admittance to a nursing home. More formally, let 
N1 ( t) be a counting process which at any time t counts the current need of home care in minutes 
per month. We assume that N1 ( t) is a monotone increasing process and define a binary outcome 
variable defined when the home care process exceeds the threshold ξ at any time before the pre-
diction time horizon τ: 

In what follows we choose τ=1 year after the date of time zero as our prediction time horizon and 
use ξ=60 min per month to define the event: need of home care. Letting N2 ( t) count admittance to a 
nursing home (0=not in nursing home, 1=in nursing home), we define the binary outcome variable 
for the combined endpoint as 

Finally, we need a third counting process N3 ( t) which takes the value zero while the person is alive and 
the value one when the person died. The processes N1 and N2 do not change after death and N3 is also used 
to define the target population. The target population contains only subjects who are theoretically at risk 
of the event. That is, subjects for whom the event occurred before time zero are excluded. See Figure 2 
for a visualisation of this multi-state model. At time zero, all subjects from the target population are in the 
eligible state. At the time horizon, a person can be in the eligible state (no event), in the Need of home care 
or admittance to nursing home state (event of interest) or in the Death state (competing event). We do not 
consider transitions from Need of home care or admittance to nursing home to Death. Other competing 
risks could be defined if this improves the interpretation of the predicted risks, but it should be noted that 
this would usually alter the definition of the event of interest. For example, we could define our event of 
interest as need of home care and consider admittance to a nursing home as a competing risk. Then, the 
interpretation of the predicted risk would be the probability of need of home care before admittance to a 
nursing home.

Y1 (𝜏, 𝜉 ) =

{
0 N1(𝜏)<𝜉

1 N1(𝜏)≥ 𝜉.

Y (𝜏 ) = 1{ (Y1 (𝜏, 𝜉 ) + N2 (𝜏 ) ) > 0} .

F I G U R E  2   Multi-state model. At time zero, all persons are in the eligible state. At the time horizon, a person can 
be in either of the three states

Eligible at
time zero

Need of home care
or admittance
to nursing home

Death
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3.3  |  Predictor variables

To describe the structure of the predictor variables in our case study, we let R be the number of data 
sources from which predictor variables are extracted. A longitudinal or time varying variable is a vari-
able which can change over time. We denote by Xr

j
(s ) the jth variable extracted from the rth register 

evaluated at time s≤0 where 0 is time zero defined above. Longitudinal variables are evaluated at the 
cross-section with time zero and this current status value, Xr

j
(0), can be used for prediction. In addi-

tion to the current status value at time zero, there may be predictive value in the changes of the process 
Xr

j
(s ) over time. Thus, for longitudinal variables we fix a length of the exposure time window w and 

consider as predictors the trajectories in the w-year history of each person: 

Note that, in principle, one can use different exposure time windows for different variables and that 
the start of the register r is a natural upper limit for the value w (see Section 3.4). We use the notation 
X = {X

r
j,w

; j ≤ Jr, r ≤ R} to describe all observed trajectories across all registers in the considered expo-
sure time window.

A derived predictor variable Zk is any variable which arises from applying a function fk to the (w-
year) history of the other variables (across the registers), that is, 

We consider k=1,…,K derived predictor variables, where K is an integer which may in fact be larger than 
the total number of observed variables, 

∑
R
r=1

Jr. A simple example of a derived variable is when rare 
categories of a categorical variables are merged somehow. For example, we can collapse the country of 
origin into a new derived variable which has only two classes: {Denmark} and {Rest of the world}. A 
more complex example would be the number of hospital admissions in the w-year history which triggered 
at least one new drug purchase within 8 weeks after the discharge from hospital. Derived variables can 
either be specified by a priori expert knowledge (classical statistical approach) or learnt from the data in a 
supervised fashion (machine learning approach).

3.4  |  Censored observation

In our case study, we have to deal with different censoring patterns before and after time zero. To 
describe the censoring patterns before time zero, note that the register-specific processes are left-
censored at the start of the register. This means for example that we can see that a patient purchases 
anti-diabetic medicine but the onset of diabetes, that is, the date of the first purchase is unknown 
(left-censored). We deal with this by limiting the length of the exposure time window w to be short 
enough such that the registered history of all contributing persons is equally long. Furthermore, per-
sons are excluded from our analysis (and from being eligible for using our prediction model) if they 
immigrated into Denmark so late that they do not have the full exposure time window recorded in the 
Danish registers (see Figure 1). Persons are also excluded if they emigrated out of Denmark at any 
time point during the exposure time window, even if the immigrated into Denmark again before time 
zero. This is in order to be able to calculate the full w-year histories Xr

j,w
. After time zero, we right 

censor the outcome processes for persons when they emigrate out of Denmark before the prediction 
time horizon.

X
r
j,w

= {Xr
j
(s ) : w ≤ s ≤ 0} .

Zk = fk (X
r
j,w

: r = 1,…, R ; j = 1,…, Jr ) .
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Let C be the right censoring time, and T the time to need of home care, nursing home or death, 
whatever comes first. The observed event time is T̃ = min (T, C ) and the event variable and censoring 
indicator are Δ=D I{C≥min(T)} where D=1 if either need of home care or nursing home occurs and 
D=2 if death occurs without need of home care or nursing home. The observation is right censored 
when Δ=0 and in this case neither T nor D are observed. The observed data set Dn = (Xi, Zi, T̃i,Δi )

n
i=1

 
consists of data from n individual persons who are eligible according to the exposure time window w 
and alive (without event) at time zero.

4  |   MODELLING

In the competing risk setting (Figure 2), the standard survival analysis provides several alternative regres-
sion modelling strategies (see e.g. Gerds et al., 2012). Here, we focus on the most popular ones, that is, the 
cause-specific Cox regression and the Fine–Gray regression. Furthermore, we apply artificial neural net-
works for competing risks (Lee et al., 2018) and combine these networks with recurrent neural networks 
(Hochreiter & Schmidhuber, 1997) to learn from longitudinal data. In line with the classical modelling 
culture, we fit the two regression methods to derived predictor variables Z and, in line with the machine 
learning modelling culture, the two neural network methods to untransformed predictor variables X. In the 
following, we denote by M a prediction model, and by M̂(Znew, � ) and M̂(Xnew, � ) the predicted τ-year 
risks for predictor variables of a new individual Znew and Xnew, respectively.

4.1  |  Cause-specific Cox regression

Our first candidate prediction model combines several Cox regression models into a predicted risk 
of the outcome (Benichou & Gail, 1990; Ozenne et al., 2017). Specifically, we use a multiple Cox 
regression for the hazard rate of need of home care or nursing home: 

where Z = (Z1,…, ZK ) are the derived variables, �01 is an unspecified baseline hazard rate and 
� = �1,…, �K a vector of log-hazard ratios. Similarly, we specify another multiple Cox regression for the 
hazard rate of death 

Based on these two models we predict the probability of the outcome event for a new person’s-based de-
rived predictor values Znew with the formula: 

4.2  |  Fine–Gray regression

The Fine–Gray regression model (Fine & Gray, 1999) provides an alternative, more direct way of 
modelling the absolute risk of the outcome: 

�1 ( t |Z ) = �01 ( t )e{�T
Z}

�2 ( t |Z) = �02 ( t)e{ �T
Z}

M̂
CSC

(Z
new

, �)=

�

∫
0

exp

⎧
⎪
⎨
⎪
⎩

−

t

∫
0

�
�1(u�Z

new
)+�2(u�Z

new
)
�

du

⎫
⎪
⎬
⎪
⎭

�1(t�Z
new

)dt.
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Here, a01 is an unspecified sub-distribution hazard function and α a k−vector of sub-distribution hazard 
ratios.

4.3  |  Neural networks

Several artificial neural network methods for time to event outcomes have been proposed in the 
last 25 years (e.g. Biganzoli et al., 1998; Faraggi & Simon, 1995; Gensheimer & Narasimhan, 
2018; Katzman et al., 2018). However, only few methods are available for competing risks (e.g. 
Biganzoli et  al., 2006; Lee et  al., 2018). Here, we adapt the time-discrete setting of Lee et  al. 
(2018) but use a different loss function. Our loss function corresponds to a time-discrete approxi-
mation of the direct parameterisation of the cumulative incidence function (Jeong & Fine, 2006). 
Let {0 = t1 < t2 <… ≤ tL = 𝜏 } be an equidistant partition of the interval [0,τ]. Using a network 
architecture as illustrated in Figure 3, the output nodes consist of predicted non-conditional event 
probabilities of events q=1,2 in the time intervals [ tl−1, tl ), l=1,…,L, denoted by f̂q ( tl |X). Then, 
the cumulative incidence function for the event of interest (event 1) can be computed as a simple 
cumulative sum of the output nodes: 

We implemented the method in the R package survnet, available at https://github.com/bips-hb/
survnet.

By construction, these neural networks cannot handle longitudinal input variables such as the w-
year history described above without considering derived predictor variables (Sweeting et al., 2017), 
as we do with the classical modelling approaches described above. Instead, we use Xr

j
(0), that is, the 

M̂
FGR

(Znew, � ) = exp
{
−a01 (� )exp

[
�T

Znew

]}
.

M̂
ANN

(Xnew, � ) =

L∑

l= 1

f̂1 ( tl |Xnew ) .

F I G U R E  3   Computational graph of a neural network for competing risks with two causes. The network inputs 
X1,…, Xp are numeric vectors. The output is the probabilities of event q in the time partition [ tl−1, tl ), l=1,…,L. [Colour 
figure can be viewed at wileyonlinelibrary.com]

https://github.com/bips
www.wileyonlinelibrary.com
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longitudinal variables evaluated at time zero and describe recurrent neural networks, a method from 
the machine learning modelling culture which is able to data adaptively learn derived variables from 
the w-year history for prediction, in the next section.

4.4  |  Recurrent neural networks

Recurrent neural networks (RNNs) are neural networks that process sequential or longitudinal data. 
Typically, the covariate data are represented by a three-dimensional array. In our case, we observe 
several variables for several persons at several time points. Figure 4a shows how this can be incorpo-
rated into the input layer of a neural network. For every time interval tl, an input unit is created and 
connected with the previous time interval. Figure 4a shows the so-called unfolded representation of 
the unit. To simplify computational graphs, these units are often drawn in the folded representation, 
as shown in Figure 4b.

In principle, one could use standard neural network units with any activation function as units in 
the RNN. However, this would lead to overrepresentation of the last elements of the sequence because 
these are more closely connected to the output layer of the network. This phenomenon is called the 
vanishing gradient problem (Hochreiter et al., 2001) or sometimes short-time memory because the 
network tends to ‘forget’ the first time intervals. As a consequence, several specific recurrent units 
have been proposed. The most popular ones are the long short-term memory (LSTM, Hochreiter & 
Schmidhuber, 1997) and gated recurrent units (GRU, Cho et al., 2014).

Here, we combined Lee et  al. (2018)’s methods for competing risks with recurrent layers and 
created RNNs for competing risks. We used a combination of recurrent layers, shared layers and 
cause-specific layers and predict non-conditional event probabilities for each cause and time interval, 
as described in Section 4.3. See Figure 5 for an overview of the network architecture. The prediction 
was obtained in the same way as for the non-recurrent neural network: 

We also implemented the RNNs in the R package survnet, available at https://github.com/bips-hb/
survnet.

M̂
RNN

(Xnew, � ) =

L∑

l= 1

f̂1 ( tl |Xnew ) .

F I G U R E  4   Computational graph of the unfolded and folded representation of a recurrent unit [Colour figure can 
be viewed at wileyonlinelibrary.com]

Xt1 Xt2 Xt3 Xt4 Xt5

Unfolded

Xt1,...,t5
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(a)

(b)

https://github.com/bips
www.wileyonlinelibrary.com
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4.5  |  Performance metrics and validation

To evaluate the prediction performance, we considered the following time-dependent metrics. The 
Brier score of a model M at prediction time horizon is the expected value of the squared difference 
between the binary outcome of a new person and the predicted risk by the model: 

Note that the neural network methods do not use the derived predictor variables and thus Znew is replaced 
by Xnew. We also considered the null model M0 which ignores the covariates and uses the Aalen–Johansen 
estimator (Aalen-Johansen, 1978) to estimate the outcome risk. Based on the Brier score for the null 
model, Brier(�, M0 ) = E{Ynew (� ) − M̂

0
(� ) }2, we construct the index of prediction accuracy (IPA) for 

model M (Kattan & Gerds, 2018): 

The IPA measures both discrimination and calibration of the model. To look further into the model per-
formance, we also calculated calibration plots (Gerds et al., 2014) and the time-dependent area under the 
curve (AUC) for the competing risk setting (Blanche et al., 2013). The latter is defined as the probability 
that a randomly selected person with the event at time τ receives a higher predicted risk than a randomly 
selected person who either died without the event before time τ or is event-free at time τ: 

As above Znew is replaced by Xnew for the neural network methods. To deal with the right censored out-
come data, we used inverse probability of censoring weighted estimates of the Brier score and the AUC, 
described elsewhere (Blanche et al., 2013; Gerds & Schumacher, 2006).

In order to predict how well the models will predict the τ-year future of a future person we esti-
mated the prediction performance metrics to assess the models and differences between the models. 

Brier(�, M) = E{Ynew (� ) − M̂ (Znew, � ) }2.

IPA(�, M ) = 1 −
Brier(�, M)

Brier(�, M0 )
.

AUC(𝜏, M) = P( �M (Znew1
, 𝜏 ) > �M(Znew2

, 𝜏 ) |Ynew1
(𝜏 ) = 1, Ynew1

(𝜏 ) = 0) .

F I G U R E  5   Computational graph of a recurrent network for competing risks with two causes. The network inputs 
X

t1,…,tK
1

,…, X
t1,…,tK
p

 are matrices with observations for time points t1,…, tK. The output is the probability of event q in 
the time partition [ tl−1, tl ), l=1,…,L [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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The general idea was to first train all candidate models in a learning set of data and to use a validation 
set of data to estimate the prediction performance metrics. Here, we used temporal validation and spa-
tial validation. With temporal validation, we applied our modelling strategies to the 2014 data of the 
Municipality of Copenhagen (time zero: 1 January 2014) and validated the selected models in the 2015 
data of the Municipality of Copenhagen (time zero: 1 January 2015). With spatial validation, we ap-
plied our modelling strategies to the data of the Municipality of Copenhagen and validated the selected 
models in the data of the Municipality of Aarhus as well as the rest of Denmark. Model development 
and validation were conducted in accordance with the transparent reporting of a multivariable predic-
tion model for individual prognosis or diagnosis (TRIPOD) statement (Collins et al., 2015).

5  |   RESULTS

Here, we present the results of our application to predict the need of future home care services. First, we 
show descriptive statistics on the population and the event of interest. Second, we compared our candidate 
models, as described in Section 4, in temporal and spatial validation (see Section 4.5). Third, we analysed 
the relative utility of single data sources, that is, the registers included in the prediction models.

We compared the cause-specific Cox model (CSC), Fine–Gray regression (FGR), non-recurrent arti-
ficial neural network (ANN) and recurrent neural network (RNN). For the RNN, a model using the whole 
17 years of personal history (RNN-w17) and a model using the last 10 years history (RNN-w10) were 
compared. For CSC and FGR, we used the following (derived) predictor variables: age, sex, house type, 
disposable income quantiles, number of different hospital diagnoses in the year before time zero and num-
ber of different prescribed medications in the year before time zero. In the neural networks, we included 
all available variables without any data preprocessing or feature engineering (see Table S2 for a list of all 
variables). The hyperparameters of the neural networks were tuned on the Copenhagen (2014) data. We 
did not look at the validation data before fixing the hyperparameters. The used hyperparameters are shown 
in Table S1. We also included a benchmark model, which is a CSC with only age and sex as covariates.

5.1  |  Descriptive statistics

Table 1 shows the population characteristics for Copenhagen in 2014, Aarhus in 2015 and the whole of 
Denmark in 2014. Figure 6 shows the percentage of persons in the population who used home care or 
were admitted to a nursing home in the year 2014 according to municipalities in Denmark. Figures S2 and 
S3 show the percentage of persons in the population who used home care or were admitted to a nursing 
home in the year 2014 according to age and sex in all of Denmark and the cumulative incidence for the 
Municipality of Copenhagen between January 2014 and December 2017, respectively. The event rates 
increased with age and, in old age, were higher for women than for men, whereas mortality was higher for 
men than for women. Figure 6, Figures S2 and S3 were created using Aalen–Johansen estimates.

5.2  |  Temporal validation

To evaluate the temporal transportability of fitted models, we built models on the Copenhagen data 
where time zero is 1 January 2014. With these models, we calculated performance metrics using the 
data of the Copenhagen population for those who were eligible 1 January 2015 to predict need of home 
care in the following year, that is, until 31 December 2015. Figure S4 shows the predicted 1-year risks, 
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comparing CSC, FGR, ANN, RNN-w17 and RNN-w10. CSC and FGR predicted similar risks (A), 
however, the CSC risks were systematically higher as slightly more dots were below the diagonal. 
Comparing the CSC risks with the ANN risks (B) shows that individuals can have very different risk 
predictions by the two models. The same is true for the comparison between ANN and RNN-w17 (C). 
However, the deviations of RNN-w10 risk to RNN-w17 risk did not have a large magnitude for the 
majority of the population (D). Our analyses also show that the performance of FGR was very similar 
to the performance of CSC and that RNN-w17 had slightly worse performance than RNN-w10, see 
Figure S5. Based on these observations, we did not further consider FGR and RNN-w17 and restricted 
the remaining analyses to the models Benchmark, CSC, ANN and RNN-w10.

Figure 7 (left) shows the AUC and IPA (see Section 4.5) over 12 months, beginning 1 January 
2015. We see that CSC outperformed the benchmark model as much as it was outperformed by ANN 
which in turn was slightly outperformed by the RNN using a 10-year time history window. All models 

T A B L E  1   Population characteristics

Variable Level

Copenhagen (2014) Aarhus (2015) Denmark (2014)

n=173,280 n=57,249 n=1135,865

Sex Female 90,812 (52.4%) 29,813 (52.1%) 581,398 (51.2%)

Male 82,468 (47.6%) 27,436 (47.9%) 554,467 (48.8%)

Age at entry 55–65 56,642 (32.7%) 14,802 (25.9%) 313,300 (27.6%)

65–70 53,128 (30.7%) 17,287 (30.2%) 329,775 (29.0%)

70–75 32,406 (18.7%) 12,128 (21.2%) 228,431 (20.1%)

75–80 17,084 (9.9%) 7,424 (13.0%) 145,860 (12.8%)

80–90 12,564 (7.3%) 5209 (9.1%) 109,518 (9.6%)

>90 1456 (0.8%) 399 (0.7%) 8981 (0.8%)

Marital status Single man 28,154 (16.2%) 6036 (10.5%) 113,879 (10.0%)

Single woman 45,874 (26.5%) 11,558 (20.2%) 204,519 (18.0%)

Married couple 70,884 (40.9%) 32,713 (57.1%) 687,964 (60.6%)

Incidental couple 9814 (5.7%) 3029 (5.3%) 57,340 (5.0%)

Other 18,554 (10.7%) 3913 (6.8%) 72,163 (6.4%)

Number of drugs 
purchased

0 23,400 (13.5%) 6616 (11.6%) 134,405 (11.8%)

1 20,578 (11.9%) 6507 (11.4%) 129,636 (11.4%)

2 20,794 (12.0%) 6717 (11.7%) 135,796 (12.0%)

3–5 55,322 (31.9%) 18,761 (32.8%) 370,917 (32.7%)

6–10 44,320 (25.6%) 15,580 (27.2%) 303,368 (26.7%)

11–20 8820 (5.1%) 3054 (5.3%) 61,472 (5.4%)

>20 46 (0.0%) 14 (0.0%) 271 (0.0%)

Number of hospital 
admissions

0 84,634 (48.8%) 27,421 (47.9%) 504,441 (44.4%)

1 48,654 (28.1%) 15,888 (27.8%) 337,369 (29.7%)

2 23,524 (13.6%) 8301 (14.5%) 175,007 (15.4%)

3 10,008 (5.8%) 3569 (6.2%) 74,395 (6.5%)

4–5 5536 (3.2%) 1824 (3.2%) 39,214 (3.5%)

>5 924 (0.5%) 246 (0.4%) 5439 (0.5%)



1212  |      WRIGHT et al.

show a good calibration for risks below about 25%, but on average overestimate risks above 25%. 
Note that only few observations with risk above 50% existed and most observations were below 25%.

5.3  |  Spatial validation

Next, we evaluated the spatial transportability of prediction models by building models in Copenhagen 
municipality and evaluating them in Aarhus municipality. We used the models built in the previous 
section with time zero at 1 January 2014 and calculated performance metrics on the data of the Aarhus 
population eligible 1 January 2015. See Figure 7 (right) for the results. The results are mostly similar 
to the temporal validation described in Section 5.2.

In particular, calibration is important in the attempt to transport a model from one region to an-
other. Even though the results for Aarhus were very promising, a map of the whole country in terms of 
IPA (Figure 8) shows that in some regions the IPA was negative. This means that a very simple model, 
which predicted the same risk to every subject, outperformed the recurrent network model. On further 
reflection, a similar pattern is present with the CSC (see Figure S6) and note that the municipalities 
with negative IPA matched the ones with very low observed risk (compare Figure 6).

5.4  |  Relative utility of single data sources

To evaluate the importance of the registers described in Section 2, we repeated the temporal validation 
as described in Section 5.2 but left out single data sources. Figure 9 shows the difference in AUC, 
when a given register was left out. We see that the CSC strongly relied on demographics, that is, age 
and house type, whereas the RNN shows higher importance of medications and hospital admissions. 

F I G U R E  6   Percentage of persons in the population who used home care or were admitted to a nursing 
home within 1 year since January 2014 according to municipalities in Denmark [Colour figure can be viewed at 
wileyonlinelibrary.com]
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F I G U R E  7   Results of the temporal validation (left) and spatial validation (right), showing IPA (top), AUC 
(centre) and calibration (bottom) of the benchmark model, cause-specific Cox model (CSC), artificial neural network 
(ANN) and recurrent neural network using 10 years of personal history (RNN-w10) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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The importance of medications and hospital admissions decreased over time, while the importance of 
income increased.

6  |   DISCUSSION

Using Danish register data, we improved neural networks for competing risks (Lee et al., 2018) by 
combining them with RNNs to predict the risk of needing long time care services (home care or 

F I G U R E  8   Validation of RNN (10-year window, trained in Municipality of Copenhagen) in the rest of Denmark 
[Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  9   Results of the temporal validation when single data sources were left out. For the CSC, 
Demographics consists of the variables age and house type, Income of disposable income quantiles, Medications 
of the number of prescribed medications and Hospital of the number of hospital diagnoses. For the RNN, these 
correspond to the whole registers [Colour figure can be viewed at wileyonlinelibrary.com]
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nursing home) in the future with death as competing risk and thus identify older individuals who are 
at high risk of declining health. We then assessed its performance by comparing our improved RNN 
with other established models. Temporal validation indicates the CSC outperformed the benchmark 
model as much as it was outperformed by the non-recurrent neural network (ANN), which in turn was 
outperformed by our RNN using a 10-year time history window. While the spatial validation from 
Copenhagen to Aarhus municipality showed promising results, comparisons across the whole country 
indicated that in some municipalities with very low observed risk, a very simple model that predicted 
the same risk to every individual, outperformed our improved RNN. This indicates that these mu-
nicipalities are structurally different from the other municipalities in Denmark. In terms of relative 
utility of single data sources, CSC heavily relied on demographics, while the RNN assigned higher 
importance to medications and hospital admissions. Remarkably, the importance of health informa-
tion decreased over time, whereas the importance of income increased.

The outcome of interest that we have modelled was either receiving home care for at least 1 hour 
per month or admittance to a nursing home, whichever comes first, with death as competing risk. 
From a care provider standpoint, if a person dies earlier than expected, it can be seen as a saving, as 
a long-term care trajectory is prevented (Taniguchi et al., 2018). Therefore, in terms of prediction, 
the classification as a negative is correct as there is no use of long-term care. Although correlated, 
the distinction of these outcomes is of vital interest to correctly predict long-term care services pro-
visions. Moreover, prevention of care services dependency necessitates a different intervention than 
prevention of mortality (Connolly et  al., 2016). When longevity would be the primary interest, a 
screening model would be more appropriate, whereas mortality would be the primary outcome instead 
of a competing risk. From a care provider’s perspective, there is further complexity as older persons 
transition between care services, that is, there is a vast heterogeneity in care trajectories with different 
services and intensity (Colmorten et al., 2004). For example, some may require long term yet simple 
instrumental help, for example, food delivery, without ever needing the more resource-heavy personal 
medical care, while some may not need care at all until they are nearing death (Taniguchi et al., 2018). 
Therefore, the next logical step would be to analyse and predict the various types of care trajectories 
and what kind of predictors distinguish the one from the other. This is particularly relevant for munic-
ipalities since they have to target-specific high risk groups and prioritise which kind of services they 
should allocate their resources into.

This new way of using data to shape health care strategies introduces new ways of understanding 
and approaching health and disease (Beam & Kohane, 2018). Furthermore, it also reveals an unfore-
seen opportunity to compare practice performances, for example, the various preventive programmes 
the municipalities have to offer. Here, we found considerable differences between the municipalities 
in the risk of receiving home care or admittance to nursing home. This could be due to differences in 
health status between the citizens, the social cohesion of people in the community helping each other 
when in need, how the municipalities organise care or how need of care is reported by the different 
care providers (Kjaer & Siren, 2019). Whereas most of these differences in the need of care should be 
picked up by our modelling, the latter results into differences in data quality among the municipalities 
and may hamper validation and extrapolation of the prediction model. This kind of insight instigates 
further attention to differences in reporting as these register data were not recorded with the purposes 
of predicting need of health care services (Schmidt et al., 2019).

It should be emphasised that correctly identifying older persons at risk of long-term care services 
is just the first step. The obvious next step is to optimise the municipalities’ interventions to keep older 
persons independent and prevent dependency on care services. This is a pertinent goal for most older 
persons as well as the service provider. The effectiveness of better tailoring the presumed effective 
interventions however can only be studied using clinical trials (Moons et al., 2012). Note that the 
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moment these tailored interventions become effective in delaying functional decline and consequently 
need of health care services, the outcome of the prediction model changes as well, which necessitates 
continued updating, calibrations and validations of the prediction tool (Lenert et al., 2019).

While these prediction tools hold the promise of optimising preventive interventions in daily prac-
tice, ethical concerns with regards to privacy, confidentiality and control have arisen (Price & Cohen, 
2019). Since Statistics Denmark operates under the Danish law with the overarching principle to 
protect the identity of the persons, the use of register data necessitates that privacy and confidentiality 
are guaranteed (Statistics Denmark, 2017). Effectively, the modelling that we reported here could be 
performed within this legal and regulatory framework, however the future implementation of this 
prediction tool requires further ethical considerations (Char et  al., 2018). The principal hurdle to 
overcome is that the municipality as the responsible care provider is not allowed to run an analytic al-
gorithm on an individual’s register data to determine risk without explicit consent from the individual 
itself. Therefore, this risk estimation should be included as an option when offering care services and 
only used given the individual’s consent. With regards to control, a valid prediction tool can only serve 
as an advisory to help the municipality to target their prevention strategies but not to make decision 
on prevention or care service delivery (Ngiam & Khor, 2019). Decision making involves respect for 
citizens’ autonomy and consent. Using the prediction tool, the municipality can make a better offering 
of their preventive interventions and it is up to the individual to decide on whether or not they would 
accept. Arguably, this is the best way to utilise machine learning methods, at the very beginning as 
a preliminary assessment, taking into account a plethora of possibilities and providing evidence that 
would otherwise have not been obtainable given limited time and resources (Schwalbe & Wahl, 2020).

The unique combined strength of the present work lies in developing novel methods capable of 
handling the complexity of large, pre-existing longitudinal nationwide register data to pre-emptively 
help older persons maintain their functions thereby alleviating the burden of a societal problem. The 
novel use of our modelling exercise improved the predictive accuracy and calibration, which provided 
the municipalities with a tool to optimise their prevention strategies. Although there is traditionally a 
great emphasis on the predictive values of physical health in use of health care services, the use of care 
is apparently dependent on socio-demographic characteristics, some of which are readily available in 
the registers with significant information load. It needs to be explored which of these could ideally be 
detailed to improve the tool’s prediction performance. Although register data are considered as highly 
valued resource for research, still it is important to understand that its purpose of gathering data is 
administrative and not for scientific endeavours and or practical applications (Schmidt et al., 2019). 
Consequently, there may be biases, for example, potential misclassification due to residents in need of 
help and care was offered by the municipality, but the residents simply rejected the offer (Rostgaard, 
2011). Even though such cases are not the norm, nonetheless this means that our outcome could be 
more appropriately referred as ‘use of care’ and not ‘need of care’. Furthermore, it is a limitation that 
we did not include primary care data, for example, from general practitioners or physiotherapists as 
predictors in this study. Currently, these data are only available in a very coarse format as the number 
of contacts to the physician without a diagnosis code or treatment procedure. As a result, these vari-
ables did not pick up any signal in addition to hospital, medication and care data.

In conclusion, taking advantage of the high-dimensionality of Danish population registers, we 
created further value out of available data by developing a machine learning tool to address a societal 
problem due to population ageing. We found that our method is capable to accurately predict the use of 
care services with favourable performance when compared to other established methods, though there 
were limitations in some regions. Although results so far have been promising, further methodological 
explorations and ethical considerations leading to clinical experiments are essential to implement the 
tool.
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