
Herrmann, Markus; Hibbeln, Martin

Article  —  Published Version

Seasonality in catastrophe bonds and market‐implied
catastrophe arrival frequencies

Journal of Risk and Insurance

Provided in Cooperation with:
John Wiley & Sons

Suggested Citation: Herrmann, Markus; Hibbeln, Martin (2021) : Seasonality in catastrophe bonds
and market‐implied catastrophe arrival frequencies, Journal of Risk and Insurance, ISSN 1539-6975,
Wiley, Hoboken, NJ, Vol. 88, Iss. 3, pp. 785-818,
https://doi.org/10.1111/jori.12335

This Version is available at:
https://hdl.handle.net/10419/233745

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1111/jori.12335%0A
https://hdl.handle.net/10419/233745
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Received: 17 October 2019 | Revised: 9 November 2020 | Accepted: 22 November 2020

DOI: 10.1111/jori.12335

OR IG INAL ART I C L E

Seasonality in catastrophe bonds and
market‐implied catastrophe arrival
frequencies

Markus Herrmann | Martin Hibbeln

Mercator School of Management,
University of Duisburg‐Essen,
Duisburg, Germany

Correspondence
Martin Hibbeln, Mercator School
of Management, University of
Duisburg‐Essen, Lotharstr. 65,
47057 Duisburg, Germany.
Email: martin.hibbeln@uni-due.de

Funding information

German Insurance Science Association
(DVfVW)

Abstract

We develop a conceptual framework to model the sea-

sonality in the probability of catastrophe bonds being

triggered. This seasonality causes strong seasonal fluctua-

tions in spreads. For example, the spread on a hurricane

bond is highest at the start of the hurricane season and

declines as time goes by without a hurricane. The spread is

lowest at the end of the hurricane season assuming the

bond was not triggered, and then gradually increases as

the next hurricane season approaches. The model also

implies that the magnitude of the seasonality effect in-

creases with the expected loss and the approaching ma-

turity of the bond. The model is supported by an empirical

analysis that indicates that up to 47% of market fluctua-

tions in the yield spreads on single‐peril hurricane bonds

can be explained by seasonality. In addition, we provide a

method to obtain market‐implied distributions of arrival

frequencies from secondary market spreads.
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1 | INTRODUCTION

Catastrophe bonds (“cat bonds”) are vehicles to transfer underwriting risk from sponsors,
which are mostly insurance or reinsurance companies but sometimes also corporates or so-
vereigns, to capital markets.1 The development of the cat bond market mirrors the growing
demand for major natural catastrophe protection. Climate change and growing properties in
coastal areas may have contributed to this demand. Although the main characteristic of cat
bonds is fungibility of catastrophe risk on the secondary market, the knowledge of the
secondary market of cat bonds is sparse. We want to reduce this gap by providing insights into
one of the most important drivers of secondary market spreads: seasonality. Whereas for the
vast majority of traditional corporate bonds there is no clear seasonality of default risk, the
default risk of cat bonds fluctuates with the likelihood of qualifying events, for example, U.S.
hurricanes mostly occur in summer or fall and do not occur in spring. Although seasonality
clearly has an impact on cat bonds, the link between the seasonal nature of catastrophic events
and cat bond spreads is unexplored in the scientific empirical literature.

A typical cat bond pays a flexible coupon that consists of a floating interest rate such as the
LIBOR or a money market rate plus a fixed additional coupon—the risk premium or spread.
While the fixed coupon of a bond remains unchanged, its implicit spread may fluctuate
throughout its lifetime depending on its price on secondary markets. These current secondary
market spreads are of utmost importance to investors and issuers alike: Investors purchase ad-
ditional cat bonds if spreads are high enough to satisfy their risk appetite, whereas they may
refrain from the purchase of new cat bonds on the primary markets if they do not offer the same or
better rates as cat bonds on the secondary markets. Issuers sell additional cat bonds if spreads on
the secondary market for similar risk are lower than rates for traditional reinsurance contracts.2

The empirical literature on cat bonds rarely investigates secondary market spreads. Braun
(2016) establishes an econometric pricing model to estimate cat bond spreads on primary
markets. Lane and Mahul (2008) investigate the influence of the expected loss, peril type, and
the reinsurance cycle on cat bond spreads. They use secondary market data in form of one
additional observation after issuance for each bond. Dieckmann (2010) uses secondary market
data to investigate the change in reinsurance rates for existing bonds after hurricane Katrina.
However, he abstracts from seasonality in windstorms by assuming constant exogenous
parameters, which can distort empirical results. Braun et al. (2019) indirectly rely on secondary
ILS data by determining common risk factors in ILS fund returns. Gürtler et al. (2016) use
secondary market data to investigate the impact of hurricane Katrina and the default of Leh-
man Brothers on spreads; moreover, they study the impact of bond‐specific factors and mac-
roeconomic variables on cat bond spreads. They acknowledge seasonality effects on secondary
markets but eliminate it by dropping all observations where the time to maturity deviates from
a multiple of a full year, thereby loosing up to 75% of their quarterly observations.

We develop a conceptual framework to model the seasonality in the probability of trigger
events in catastrophe bonds. This conceptual framework has two elements: A hazard rate

1Cat bonds have importance beyond the insurance sector: For example, developing countries issue cat bonds to receive
payments required for reconstruction and to support the population in case of the occurrence of natural catastrophes.
In 2018 the International Bank for Reconstruction and Development launched a series of cat bonds that protect Latin
American countries from earthquake damages for a total volume of US$ 1360 m. FIFA issued a US$ 262m cat bond to
protect itself against the possible cancelation of the 2006 World Cup in Germany.
2Braun (2016) provides a detailed description of the structure of a cat bond.

786 | HERRMANN AND HIBBELN



model and a modeled seasonality measure. (1) Based on the hazard rate model, we illustrate the
theoretical implications for cat bond spreads stemming from seasonal fluctuations in the
probability of a cat bond being triggered. From this hazard rate model, we derive a set of
hypotheses describing the seasonality on the cat bond market, for example, the general pattern
and its increasing amplitude with respect to maturity and riskiness. (2) We derive a compre-
hensible measure to model the seasonal fluctuations in spreads. This measure transforms
seasonally fluctuating arrival frequencies—that is, the distribution of the likelihood of peril
events occurring across 1 year—into the time‐varying expected loss of each individual cat bond.

We support this theoretical framework by analyzing fluctuations of secondary market cat
bond spreads based on a data set that includes 386 seasonality‐affected cat bonds issued be-
tween 2002 and 2017. This data set includes almost the entire cat bond universe. We acquire
these spreads from yearly market reports from Lane Financials LLC. Spreads supplied in these
market reports are quotes surveyed from dealers. These quotes from different dealers are then
averaged across dealers do acquire spreads for individual bonds (Gürtler et al., 2016).3 In
addition, we show seasonality effects for spreads drawn from actual trading data as reported in
the Trade Reporting and Compliance Engine (TRACE). To the best of our knowledge, we are
the first to use TRACE data on cat bonds in a scientific paper; however, our main analyses rely
on dealer quotes because the available timeframe for the TRACE data started only in 2015 and,
given the low trading frequency for cat bonds, the number of observations is much smaller than
in the quarterly Lane Financials LLC data set. To explain fluctuations on secondary markets,
we use linear fixed effects regression models, thereby explaining the changes in spreads within
each individual bond's observations. We use the relative distributions of arrival frequencies for
hurricanes and European winter storms modeled by Applied Insurance Research (AIR) on a
monthly basis. To obtain these distributions, we were in touch with a representative from AIR
and used information provided in Poliquin and Lalonde (2012). Additionally, we provide a
method to extract market‐implied arrival frequencies from secondary market spreads, thereby
offering an opportunity to access the additional information that investors possess.

We have three main results: First, we document how seasonality affects cat bond spreads.
We find that spreads peak right before the risk season starts and reach their lowest point right
after risk season ends; the amplitude of seasonal fluctuation increases as a bond nears maturity;
in absolute terms, bonds with high expected loss (EL)4 fluctuate more strongly than bonds with
low EL; single‐peril bonds fluctuate more strongly than multi‐peril bonds. Second, the proposed
“seasonality‐adjusted EL” measure, which is based on the developed conceptual framework,
captures seasonal fluctuations on cat bond spreads. It explains up to 47% of all secondary
market fluctuations among cat bonds that are affected by seasonality (measured by adjusted
within R²). The results on the seasonality measure are strongly supported by the robustness
check with TRACE data. Third, we are able to estimate the market‐implied distributions of
arrival frequencies from secondary market data. These market‐implied distributions explain
secondary market fluctuations as good as modeled distributions of arrival frequencies.

The remainder of this article is as follows: Section 2 provides an overview of related lit-
erature. In Section 3, we develop a conceptual framework to model the seasonality in the
probability of catastrophe bonds being triggered and establish hypotheses on seasonality.
Section 4 describes the data set. The econometric models are presented in Section 5.

3Yearly market reports from Lane Financials LLC are available at www.lanefinancialllc.com.
4The yearly EL can be taken from the cat bond prospectus. Our data source for the EL are yearly market reports from
Lane Financials LLC.
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Section 6 contains results on the hypotheses, the proposed seasonality measure, and a
robustness check. Section 7 presents the methodology for the market‐implied distribution and
its empirical results. Section 8 concludes.

2 | LITERATURE

2.1 | Seasonality on financial markets

Seasonality effects on the general financial markets have been investigated thoroughly in the
empirical literature. For stocks, Keim (1983) and Lakonishok and Smidt (1984) find depressed
returns on Mondays and week‐of‐the‐month patterns, while others (e.g., De Bondt & Thaler,
1987, Gultekin & Gultekin, 1983, Rozeff & Kinney, 1976) find abnormal returns for certain
months of the year most prominently defining the “January effect.” Jordan and Jordan (1991)
and Schneeweis and Woolridge (1979) find that corporate bonds exhibit January, turn‐of‐the‐
year, and week‐of‐the‐month effects. More recent literature relates the January effect to
systematic risk and fluctuating risk aversion (Sun & Tong, 2010), to the returns of the mo-
mentum strategy (Yao, 2012) and to the returns of mutual funds (Vidal‐García & Vidal, 2014).
Overall, the established empirical literature on seasonality in bond or stock returns has not
found strong evidence for the existence of abnormal returns of certain days of the week or
certain months of the year. Generally, the magnitude of seasonality for stocks and bonds is
small and unpronounced. Additionally, Zhang and Jacobsen (2013) find different monthly
effects with reversing directions depending on selected sub samples from a 300‐year long data
set of UK stock returns. They conclude that monthly return patterns are due to selection bias,
noise and data snooping but are no real effect.

For agricultural commodities, Black (1976) states that prices follow a seasonal pattern: Prices
are high before harvest and low after harvest. The success of a harvest is closely related to
external conditions such as sunshine, wind, and rainfall. Consequently, the price of these assets is
related to climate and weather. For futures of concentrated orange juice, Roll (1984) finds clear
empirical evidence for a seasonal pattern in relation to extreme weather events. Orange trees die
during prolonged periods of below freezing temperature. In Florida, where most U.S. orange juice
is produced, these extreme temperatures can only occur in the winter. Hence, the likelihood of
below freezing temperature is an important risk factor in the pricing of orange juice futures
during this time: Prices are high in autumn reflecting the probability of freezing temperatures
during the winter season. “Each day thereafter that passes without a freeze should be accom-
panied by a slight price decline, a relief that winter is one day closer to being over” (Roll, 1984).
For orange juice and other agricultural products, seasonal prices are supply‐driven. For prices of
other commodities, such as natural gas, which is typically used to heat houses during the winter,
prices are instead demand‐driven (see Gorton et al., 2013). The magnitude of seasonal fluctua-
tions in commodities is alleviated by costs of storage (see Fama & French, 1987).

For the property and casualty insurance industry, Ammar (2020) identifies seasonal
changes in the implied volatility smile of insurance stock options. Generally, the slope of the
implied volatility smile is much steeper for insurance stock options than for the whole econ-
omy. However, outside of the hurricane season, the smile for insurance stock options becomes
flatter than during the hurricane season. Ammar (2020) indicates that markets might demand
more in‐the‐money and at‐the‐money options outside of the hurricane season because large
drops in insurance stock prices are less likely.

788 | HERRMANN AND HIBBELN



2.2 | Seasonality on cat bond markets

As previous research has indicated, the EL is the primary driver of cat bond spreads (e.g.,
Braun, 2016, Galeotti et al., 2013, Gürtler et al., 2016, Lane & Mahul, 2008). As discussed by
Lane (2000), the EL is the product of the probability of first loss (PFL) and the conditional
expected loss (CEL).5 The PFL in turn is some function of the arrival frequency λt of qualifying
events. The EL is measured on a per‐year basis.

λEL = PFL( ) CEL.t t ⋅ (1)

Consider a bond, which triggers a default when certain predetermined parameters of a
catastrophe are fulfilled. This can be an earthquake of a certain level on the Richter scale or
a hurricane whose wind speed exceeds a certain threshold. This type of trigger is referred to
as a parametric trigger.6 The likelihood of qualifying events depends on two conditions: (a)
an event needs to take place and (b) this event has to be of a magnitude large enough to set
off the parametric trigger. For some perils, such as earthquakes, likelihood and severity of
events are independent and identically distributed (i.i.d.). Within a calendar year, these
events do not have seasons. Other events that depend on weather conditions are unevenly
distributed; namely, European winter storms, North‐American hurricanes, and Japanese
cyclones.7 For example, the likelihood of a hurricane is high between June and November
while it is almost zero between December and May. In consequence, the EL of a cat bond
can fluctuate substantially throughout a calendar year. This fluctuation is not represented
in coupons: Cat bonds typically pay a fixed coupon above LIBOR or some other money
market rate that does not adjust according to changes in underlying EL. This means con-
trary to the empirical asset literature on stocks and bonds, cat bond spreads are strongly
affected by seasonality, but no existing study explicitly analyzes their seasonal patterns.8

Overall, the seasonality of cat bonds follows a clear rationale: the uneven distribution of
default risk.9 As a consequence of seasonality, cat bond spreads are partially predictable.
However, seasonal fluctuation in spreads stem from fluctuations in the EL, which means

5In a credit risk context, different terms are used for the elements of the EL. The PFL is equivalent to the probability of
default (PD), the CEL is equivalent to the loss given default (LGD).
6The trigger types that are employed more frequently are “Indemnity” and “Index” triggers. The EL of these bonds
depends on the likelihood of events and their severity in a similar fashion as bonds with parametric triggers. Please
refer to Finken and Laux (2009) for a discussion on the benefits of index and parametric triggers and Braun (2016) for
further discussion on indemnity triggers.
7There are only seven single‐peril cyclone bonds in our data. This number is too low to separately model the Japanese
cyclone season with panel data regression models. Hence, we abstract from modeling this seasonality. Nevertheless, the
suggested methodology can be applied to Japanese cyclone bonds if more of these bonds are issued in the future.
Additional events, whose likelihood and severity are not independent and identically distributed across a calendar year,
are tornados, thunderstorms and hail. However, since cat bonds are usually created to cover extreme risk, we focus our
model on large‐scale seasonal perils: hurricanes and European winter storms.
8Only a few other financial securities, like industry loss warranties (ILWs), weather derivatives and some commodities,
are also known for having such strong seasonal fluctuations. For a discussion on contract features and pricing of ILWs
please refer to Gatzert and Schmeiser (2011); for a discussion on the pricing of weather derivatives please refer to
Alaton et al. (2002) and Campbell et al. (2005). It appears plausible that ILWs and weather derivatives exposed to
seasonal perils fluctuate in similar fashion as cat bonds. Hence, it may be worthwhile to apply the proposed metho-
dology to model seasonality in ILWs, too.
9Seasonal fluctuations on cat bonds can occur in the absence of new information in the market. In other words, such
seasonality is already contained in the current information set. On the contrary, announcements of loss events and
hurricane forecasts bring new information to the cat bond market, which is conceptually related to ad‐hoc profit
warnings in the context of other financial securities.
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that spreads react to the seasonality of the underlying risk. Thus, fluctuations of cat bond
spreads do not automatically allow for the creation of alpha, and they are not necessarily a
violation of the efficient market hypothesis (see Fama, 1970).

Hainaut (2012) models seasonality in tornados through a double stochastic Poisson process
whose arrival frequency fluctuates across a year following an Ornstein‐Uhlenbeck process fitted
to empirical data. We implement a variable that instead relies on the modelled arrival
frequencies of AIR, which is one of the leading risk modeling firms. They use weather models
and simulation methods to derive arrival frequencies for U.S. hurricanes and European winter
storms from empirical data. We have data on the relative distribution of arrival frequencies of
European winter storms and U.S. hurricanes on a monthly basis. Since we lack data on the
severity, we assume the severity of a peril event (hurricane or European winter storm) to be
i.i.d. for each time period within a year.

Table 1 illustrates the distributions of arrival frequencies for North American hurricanes
and European winter storms as provided by AIR. Using these data, we assume that the dis-
tribution of arrival frequencies is constant between years.10 The American hurricane season
begins in June and ends in November, and most hurricanes occur in August and September.
The European winter storm season begins in October and ends in March, and most winter
storms occur in December and January. In months where the arrival frequency is zero, it is
virtually impossible that a respective event can occur.

TABLE 1 Modeled distribution of arrival frequencies

U.S. hurricanes (%) EU winter storms (%)

January 0.0 26.0

February 0.0 16.5

March 0.0 11.5

April 0.0 0.0

May 0.2 0.0

June 3.6 0.0

July 12.5 0.0

August 28.7 0.0

September 34.6 0.0

October 18.3 11.0

November 2.0 14.0

December 0.1 21.0

Total 100.0 100.0

Note: Distributions of arrival frequencies for U.S. hurricanes and EU winter storms as modeled by AIR. These numbers describe
the relative share of arrival frequencies throughout a calendar year.

10If the seasonal pattern changed over time, time‐varying arrival frequencies would be required to capture these
changes. However, we have no information regarding such time‐varying arrival frequencies. Moreover, it should be
noticed that neither a general trend toward an increasing likelihood of natural catastrophes, nor cyclical event prob-
abilities between years (e.g., due to El Niño), as discussed in Goldenberg et al. (2001), imply that the within‐year
distribution is time‐varying, too.
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2.3 | Other drivers of cat bond spreads

The cat bond literature considers additional factors that influence cat bond spreads.11 We
separate these factors into two groups: (a) time‐invariant factors and (b) time‐variant factors.
While the factors of group (a) are very important for explaining cat bond spreads, we do not
include them in our empirical analysis due to their time‐invariant nature. Instead, we explain
within‐bond secondary market fluctuations through within transformations, thereby control-
ling for any observable and unobservable constant variables on bond level (see Section 5). On
the contrary, we include variables of group (b) as control variables in our following empirical
analyses. Nevertheless, we briefly describe the influencing factors of both groups (a) and (b) to
provide a more complete picture of factors that influence cat bond spreads.

Group (a) includes bond specific properties like trigger type, peril types and locations, peril
numbers, issue volume, rating, and sponsor. Bonds with indemnity trigger could exhibit higher
spreads due to possible moral hazard (Cummins & Weiss, 2009), but there is no clear empirical
evidence (Braun, 2016). Peril types and locations have been investigated thoroughly in the
literature (e.g., Braun, 2016, Lane & Mahul, 2008, Papachristou, 2011). Cat bonds with more
than one peril type12 or peril location exhibit a spread premium due to increased complexity
(Gürtler et al., 2016). Additionally, spreads are higher for peak peril types (hurricane) and
locations (U.S.). For cat bonds with a large issue volume, spreads could be lower due to higher
liquidity (Dieckmann, 2010), but empirical results are inconclusive (Braun, 2016, Gürtler et al.,
2016). Cat bonds with better ratings have lower spreads (Braun, 2016, Gürtler et al., 2016).
Spreads are lower for bonds sponsored by Swiss RE, which can be attributed to high sponsor
reputation (Braun, 2016).

The time‐variant variables of group (b) include variables that are bond specific like time to
maturity, but mostly refer to conditions on the financial market, like corporate bond spreads,
equity returns, and reinsurance prices. Concerning time to maturity, there is no empirical
evidence that declining time to maturity leads to declining spreads due to increasing liquidity
(Braun, 2016, Dieckmann, 2010, Gürtler et al., 2016). Cat bond spreads are positively related to
corporate bond spreads and equity returns (Braun, 2016, Gürtler et al., 2016). Furthermore,
while cat bonds are often considered zero‐beta bonds, they have exposure to general financial
market conditions through possible flight‐to‐quality effects in downturn scenarios (Gürtler
et al., 2016). As a substitute for reinsurance, cat bond spreads increase during a hard re-
insurance market (Braun, 2016, Gürtler et al., 2016, Lane & Mahul, 2008).

3 | CONCEPTUAL FRAMEWORK, MODELED
SEASONALITY, AND HYPOTHESES

3.1 | Conceptual framework

We develop a conceptual framework to model the seasonality in the probability of catastrophe
bonds being triggered based on a hazard rate model, and we suggest one comprehensible

11Please refer to Braun (2016) and Gürtler et al. (2016) for a thorough empirical investigation of many of these factors.
While most of the empirical cat bond literature employs ordinary least square (OLS) or panel data regression models,
Beer and Braun (2020) use Poisson intensities from a reduced form model to explain spreads.
12For a discussion on the pricing of multi‐peril bonds relative to single‐peril bonds please refer to Lane (2004).
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measure of a seasonality‐adjusted EL to model the seasonal fluctuations in secondary market
cat bond spreads.

To keep it simple, we value a cat bond that does not pay any coupons, that is, a zero‐coupon
bond, which is repaid at time of maturity T. In case of a default, there is no repayment, that is,
its CEL is 100%. Investors are risk neutral, the riskless interest rate is 0%, and there are no
transaction costs. Under these assumptions the valuation of nonseasonal cat bond at time t is
simple. The value equals the probability to survive until maturity multiplied by its face value.
We model the survival probability through a hazard rate model that follows a Poisson process.
The bond survives if the number of defaults until maturity N(T) is zero:

P N T λ T t[ ( ) = 0] = exp(− ( − )),h (2)

where λh denotes the (homogeneous) hazard rate. The value of the nondefaulted zero‐coupon
bond at time t equals:

V P N T λ T t= FV [ ( ) = 0] = FV exp(− ( − )),t h⋅ ⋅ (3)

where FV denotes the face value of the bond. The economic intuition behind this valuation
formula is the following: To a risk‐neutral investor with a riskless interest rate of zero, a cat
bond is worth its face value that is, paid out in case of survival multiplied by the probability the
bond survives until maturity. The longer the maturity of the bond (T – t) and the higher
the hazard rate, the lower is the probability of its survival. For a nonseasonal peril, the hazard
rate λh is constant throughout its maturity. The relation between the value and the spread st of a
zero‐coupon bond with continuous discounting is13

( )
V

e
s

T t
=

FV
=

ln

−
.t s T t t

V

( − )

FV

t

t
⇔ (4)

We can insert Equation (3) into Equation (4) to obtain a formula for the spread of a
nonseasonal cat bond based on the hazard rate model:

s λ= .t h (5)

Now, we assume the zero‐coupon cat bond is not exposed to a nonseasonal peril such as
earthquakes but is exposed to a seasonal peril, that is, the hazard rate λh fluctuates seasonally.
More precisely, we use an inhomogeneous Poisson process where the intensity function λh(t)
fluctuates within the year. We can determine the value of such a seasonal cat bond at time t,
which is nondefaulted at that time, based on the survival probability from t to T of an
inhomogeneous Poisson process as follows:

( )V λ τ dτ= FV exp − ( ) .t
t

T

h∫⋅ (6)

We can now insert Equation (6) into Equation (4) and solve for st to acquire the
corresponding fluctuating spread:

s
λ τ dτ

T t
=

( )

−
.t

t

T
h∫

(7)

13More generally, the spread can be defined as the difference between the yield to maturity and the risk‐free rate, but in
our model we assumed a risk‐free rate of zero.
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With λ0 as the total hazard rate for one calendar year λ τ dτ λ( )h0

1
0∫ ≕ , we can define the

ratio λ t λ λ t( )/ ( )h 0≕ as the density function of arrival frequencies. This results in:

s
λ τ dτ

T t

λ λ τ dτ

T t
=

( )

−
=

( )

−
.t

t

T
h t

T
0∫ ∫⋅

(8)

For illustration purposes, we provide an example for pricing a nonseasonal cat bond and a
seasonal cat bond whose hazard rate λh(t) follows a cosine function in Appendix A. Based on
this example, we illustrate the spreads of a seasonal cat bond in Figure 1.

First, we can observe that the spread of a seasonal cat bond fluctuates strongly. In Figure 1
the spread follows a clear pattern: Spreads peak a couple of months before the season reaches
its peak. The spread reaches its bottom when the season fades out at the end of the year.

FIGURE 1 Value and spread of hypothetical cat bonds. Value and spread of hypothetical zero‐coupon cat
bonds with a hazard rate λh= 8% and a conditional expected loss CEL= 100% in the case without default. The cat
bonds have a maturity of 3 years. The investors are risk‐neutral and riskless interest rates are 0%. The nonseasonal
cat bond has a hazard rate λ that is evenly distributed across a calendar year. The seasonal hazard rate λh(t) for the
seasonal cat bond follows a cosine function. This hazard rate λh(t) for a seasonal bond is highest in the middle of
the year and lowest at the end of the year. [Color figure can be viewed at wileyonlinelibrary.com]
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3.2 | Modeled seasonality measure

We now establish a new seasonality measure utilizing the EL as the most important variable to
explain cat bond spreads. In the hazard rate model, Equation (8) illustrates the seasonal
fluctuation in spreads. We translate this formula into a new seasonality measure ELt. The
intuition behind this translation is as follows: The EL is related to the hazard rate λh and should
fluctuate seasonally, accordingly. This “true” EL—the loss that investors expect at time t—thus,
fluctuates with seasonal arrival frequencies. On the secondary market, investors do not price a
cat bond according to the constant, yearly ELinitial provided by the risk modeler, which can be
taken from the offering circular, but rather evaluate the amount of remaining risk against the
background of its remaining time to maturity. Considering that the EL is effectively the ab-
solute amount of expected losses divided by the remaining time to maturity and the face value,
we define ELt as the relative expected loss on an annual basis which fluctuates depending on
changes in the absolute amount of expected losses remaining and the decreasing time to
maturity. Thus, we propose the following formula to create a seasonality‐adjusted expected loss
measure ELt:

λ τ dτ

T t
EL =

Remaining risk

Remaining time
=

EL ( )

−
,t

t

t

t

T
initial ∫⋅

(9)

where t stands for the time of risk evaluation, T is the time of maturity and λ(τ) is the density
function of arrival frequencies, which varies depending on the point in time τ. This seasonality‐
adjusted EL measure incorporates actual arrival frequencies. Since our data on spread is
on quarterly basis, we generally aggregate monthly arrival frequencies to quarterly arrival
frequencies, but the proposed formula can be used for arbitrary frequencies.

We obtain the modeled distributions of arrival frequencies λ for hurricanes and European
winter storms from AIR. These distributions are on a monthly basis and exogenous to our
model. As previously discussed, we do not have an exogenous distribution on the severity of
peril events but instead we assume the severity of a peril event to be i.i.d. for each time period
within a year. This could limit the accuracy of the proposed seasonality measure if the severity
of peril events varies during different parts of the season. However, the proposed methodology
could also be applied to severity if an exogenous distribution of severity is available. Such a
model could either have two separate or a single seasonality measure for a combined dis-
tribution of arrival frequency and severity.

3.3 | Hypotheses

The theoretical model in Sections 3.1 and 3.2 implies that the spread of a seasonal cat bond
fluctuates strongly. As illustrated in Figure 1, spreads peak a couple of months before the
season reaches its peak, and reach their bottom when the season fades out at the end of the
year. We expect a similar pattern for the real‐world distribution of hurricanes and European
winter storms and hypothesize the following:

H1: Seasonality pattern: Cat bonds follow a seasonal pattern that expresses its highest spreads
before risk season begins and its lowest spreads after risk season ends.
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Second, we can observe that the amplitude between seasonal peaks and bottoms increases
as a bond approaches its maturity. The reason for the increasing seasonal amplitude of spreads
when approaching maturity is as follows: While the amplitude of the seasonal value fluctuation
remains almost constant throughout the cat bond's maturity (see e.g., Figure 1), its remaining
time to maturity decreases. However, the bond's spread is more sensitive to changes in prices
the closer it is to maturity. Hence, we hypothesize the following:

H2a: Seasonality amplitude—maturity: The seasonal fluctuation of cat bonds increases with
decreasing time to maturity.

The theoretical model indicates that the amplitude of the seasonal fluctuation scales with the total
hazard rate of one calendar year (see Equations 8 and 9). This total hazard rate λ0 translates into the
yearly EL of a Cat Bond. This EL is typically reported in the offering circular. Cat bonds have
different yearly ELs. Some are very risky and have a high yearly EL of 15% while others have an EL
below 1%. This could have an impact on the amplitude of seasonal fluctuation: Although the relative
fluctuation of EL in seasonal cat bonds might be the same, the absolute fluctuation of EL might be
larger for cat bonds that have a high yearly EL. Hence, in absolute terms, the spreads of cat bonds
with a high yearly EL should fluctuate more strongly than the spreads of cat bonds with a low EL.

H2b: Seasonality amplitude—EL: The absolute seasonal fluctuation of cat bonds with a high
EL is larger than the seasonal fluctuation of cat bonds with a low EL.

While our modeled seasonality measure from Section 3.2 simultaneously captures the three
effects expressed in hypotheses H1, H2a, and H2b, we hypothesize two additional effects that
influence the amplitude of seasonal fluctuations in cat bond spreads: Many cat bonds protect
against more than one peril. Typically, these multi‐peril bonds also protect against earthquakes
that are not affected by seasonality; the arrival frequency of an earthquake is evenly distributed
across a calendar year. These multi‐peril bonds should express less pronounced seasonal
fluctuation. The remaining fluctuation should be proportional to the distribution of its risk
exposure between seasonal (e.g., wind or hurricane) and unseasonal perils (e.g., earthquake).

Consider a simple cat bond pricing model, where the spread (st) is the sum of some function
h(·) of a bond's exposure to hurricane risk and some function q(·) of the same bond's exposure
to earthquake risk. The weight (w∈ [0,1]) determines how the bond's overall risk exposure is
divided between hurricane and earthquake.

s w h w q= (EL ) + (1 − ) (EL ),t t initial⋅ ⋅ (10)

with aEL = ELt tinitial⋅ . ELinital is the constant yearly EL modelled by a risk modelling firm, which
can be taken from the offering circular. The parameter at is a random variable that fluctuates with the
U.S. hurricane season and is defined in such a way that E(at) = 1. As the model suggests, earthquakes
are not exposed to seasonality. Therefore, the second summand does not contain a seasonally
fluctuating EL. In this model, the bond's seasonal change in spread is proportional to the bonds
weight w in hurricane exposure. If w is close to one, the spread fluctuates strongly with the U.S.
hurricane season. When w is close to zero, the spread fluctuates only weakly with the U.S. hurricane
season. From our data, we do not know a bond's specific weightw. However, we know that 0<w<1
for any multi‐peril bond. Therefore, a multi‐peril bond exposed to some form of seasonality should
fluctuate less than a single‐peril bond that is affected by the same peril (in this case, U.S. hurricanes).
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H2c: Seasonality amplitude—multi‐peril bonds: The seasonal fluctuation of multi‐peril bonds
is lower than the seasonal fluctuation of single‐peril bonds.

Similar to multi‐peril and single‐peril bonds, there may also be differences between peril types.
U.S. hurricane bonds have very clear seasons: The arrival frequency of a hurricane is zero through
the first half of a calendar year and varies throughout the second half. European wind bonds do not
have a clear aggregate season: While the arrival frequencies for European winter storms fluctuates
with a similar magnitude as hurricanes, European wind bonds often also protect against hail and
thunderstorms that also occur outside of the winter storm season. In consequence, the arrival
frequency of European wind perils is more evenly distributed across a calendar year. Hence, sea-
sonality effects for European wind bonds should be less pronounced than seasonality effects for U.S.
hurricane bonds.

H2d: Seasonality amplitude—peril type: The seasonal fluctuation of North American hurri-
cane bonds is higher than the seasonal fluctuation of European wind bonds.

4 | DATA

Our initial data set consists of 587 cat bonds from 1996 to 2017. These bonds represent nearly the
whole cat bond universe. We collected data from Artemis (hand‐collected information on location
and type) and Lane Financial LLC (EL, coupon, volume, maturity, and spread).14 In additional
robustness checks, we consider cat bonds pricing information from actual cat bond trades reported
in TRACE. Our theoretical considerations and empirical analysis are based on (currently) non-
defaulted bonds, which could default at any time in the future. Accordingly, we drop all bonds that
were “distressed,” which can mean a cat bond incurred a permanent loss after a trigger event or
experienced a substantial temporary markdown.15 We only mark a bond as “distressed” if it is
reported as distressed in the Trade Notes of Lane Financials or part of the “Cat Bond Losses &
Bonds At Risk” list on artemis.bm. Additionally, we dropped the following bonds: mortality risk
bonds, bonds lacking crucial information such as EL, coupon, type or location and bonds lacking
spreads—Lane Financial provides quarterly spreads from 2002 onwards. Furthermore, we drop all
bonds whose perils are not affected by U.S. hurricanes or European winter storms. Ultimately, our
final sample includes 386 bonds and 3947 quarterly observations from 2002 to 2017. The specific
dates of the quarterly observations refer to 31st March for Q1, 30th June for Q2, 30th September for
Q3, and 31st December for Q4.

Table 2 provides summary statistics on important variables. Eighty‐nine percent of these cat
bonds have exposure in North America, with Europe and Japan following at 31% and 11%,
respectively. Concerning perils, hurricane is the most prominent whereas wind and earthquake
have similar shares.16 This means that the U.S. hurricane season is the most important season.

14Used information from Artemis can be acquired through the deal directory on www.artemis.bm. Used information
from Lane Financial LLC can be acquired from annual reviews of the ILS markets, authored by Morton Lane and Roger
Beckwith, provided on www.Lanefinancialllc.com.
15A temporary markdown occurs when a historic natural disaster threatens to trigger a bond, but the affected bond is
ultimately cleared from a loss.
16Earthquake bonds in our sample stem from seasonality‐affected multi‐peril bonds that have some exposure to
earthquakes.
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Region and Peril add up to more than 100% because multi‐peril and multilocation bonds are
included. Overall, more than half of the bonds are multi‐peril bonds while less than a quarter
are multilocation bonds. Table 3 provides summary statistics on the continuous variables
ELinitial, the proposed seasonality measure ELt for the hurricane season and the European
winter storm season, spread as well as control variables. For each cat bond deal, an external risk
modeling company provides a report of the underlying risk. It contains a distribution of
modeled losses on a yearly basis. Hence, the mean of the loss distribution is the EL over 1
calendar year. During a cat bond's maturity, this ELinitial stays constant over time.17 While the
ELinitial can reach almost 15%, the median and the mean of ELinitial are 1.67% and 2.63%,

TABLE 2 Cat bond specific information on 386 cat bonds

Variable No. of bonds Percentage (%)

Region

North America 342 88.60

Europe 121 31.35

Japan 41 10.62

Other 3 0.78

Peril

Hurricane 238 61.66

Wind 230 59.59

Earthquake 210 54.40

Peril number

Single‐peril 161 41.71

Multi‐peril 225 58.29

Peril location

Single‐location 302 78.24

Multilocation 84 21.76

Peril number and peril location

Single‐peril and single‐location 158 40.93

Multi‐peril and/or multilocation 228 59.07

Rating

AA 4 1.04

A 4 1.04

BBB 8 2.07

BB 162 41.97

B 101 26.17

NR 107 27.72

Note: For region and peril, the percentages of the categories exceed 100% because multi‐peril and multilocation bonds have
multiple peril types and locations, respectively. All other categories add up to 100%.

17For an example on risk modeling and the resulting loss distribution please refer to Lane (2012). For bonds, which
employ an indemnity trigger, the EL could change if the ceding insurance company, for example, underwrites more
business. However, such cat bonds usually contain reset clauses that reset attachment and exhaustion points at regular
time intervals to keep the EL constant in case the business of the insurance company has changed.
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respectively ELt fluctuates between 0% and 29%. It is 0% when the bond has gone through all of
its risk seasons but still has some time remaining until maturity. The maximum of 29% is
roughly twice as large as the maximum for ELinitial. Quarterly spreads are taken from yearly
market reports provided by Lane Financial LLC. For individual cat bonds, spreads can reach
almost 44%. However, the median spread is 5.99% and the average spread is 7.38%.

In the empirical analyses, we also include time‐variant control variables, namely re-
insurance prices, corporate bond spreads, equity returns, and remaining time to maturity.18 As
a measure of reinsurance prices, we use the Guy Carpenter Global Property Rate‐on‐Line
Index, which is on a yearly basis.19 As corporate bond spreads, we use the Bank of America
Merrill Lynch Option‐Adjusted Spread indices of various rating classes, which are on a daily
basis; concretely, we assign the corporate bond spread index with the same rating to the
corresponding cat bonds. If a cat bond is not rated, we assign the BB corporate bond spread
index because BB is the most common cat bond rating. For equity returns, we use the S&P500
performance index, which is on a daily basis.

5 | ECONOMETRIC MODEL

We are interested in explaining how secondary market spreads of each individual bond change
due to seasonality after they were issued on primary markets. Therefore, we explain the var-
iance of spreads within a group of observations on bond level. To do so, we use fixed effects
regressions. A side effect is that we do not need any control variables that stay constant over
time.20 We use the following model for the spread sit:

TABLE 3 Summary statistics for ELinitial, spread, and control variables

Obs. Mean SD Min. q25 q50 q75 Max.

ELinitial (%) 386 2.63 2.45 0.00 1.12 1.67 3.41 14.75

ELt‐U.S. modeled (%) 3431 2.25 2.71 0.00 0.71 1.38 2.87 28.58

ELt‐EU modeled (%) 1248 2.53 3.03 0.00 0.74 1.45 3.62 28.73

Spread (%) 3947 7.38 4.95 0.64 4.13 5.99 9.23 43.69

Reins. index (points) 16 233 32 170 215 241 251 293

Corp. bond spreads (%) 60 4.53 2.59 1.22 1.77 4.00 5.48 14.79

Equity return 90 days (%) 60 1.9 7.7 −18.3 −1.1 2.1 6.3 18.5

Remaining maturity (months) 3947 20.4 13.24 0 9 20 30 98

Note: Summary statistics for the continuous variables expected loss at issue (ELinital) on bond level and spread on observation
level. ELinitial, as provided by risk modelers, is constant over time. Control variables are on a yearly basis (Reinsurance Index),
quarterly basis (Corporate bond spreads and Equity return 90 days) and observation level (Remaining maturity).

18For a detailed discussion of the underlying effects of these time‐variant controls please refer to Section 2.3.
19Gürtler et al. (2016) use the Guy Carpenter Global Property Rate‐on‐Line Index. Braun (2016) uses the Lane Financial
LLC Synthetic Rate‐on‐Line Index.
20Examples for such controls include the number of perils, the number of locations, peril type, peril location, trigger
type, rating, volume or the constant yearly ELinitial.
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s β X η C α ε= ′ + ′ + + ,it it it i it (11)

where i stands for the individual cat bond at time t; in our case, these are separate quarters. The
vector Xit includes variables that fluctuate over time and are different on bond level. These
variables are the seasonality measure from Section 3.2 or seasonal dummy variables defined in
the subsequent section. The vector Cit contains all control variables that change over time.
These time‐variant variables are the remaining maturity, corporate bond spreads, equity re-
turns and reinsurance prices. The error term is denoted by εit. The variable αi is a bond‐specific
intercept that contains all variables of bond i that are constant over time. This variable dis-
appears when within transformation is applied, that is, subtracting the mean of each variable
from the respective variable in the model (e.g., s s s̈ = − ¯it it i):

s β X η C ε̈ = ′ ̈ + ′ ̈ + ̈ .it it it it (12)

Through the resulting fixed effect model, we estimate the coefficients in such a way that they
capture differences to their bond‐specific means. This way the model estimates the change of spreads
within bonds across time while abstracting from differences between bonds. We measure the ex-
planatory power based on the adjusted within R², which measures how much of the fluctuation of
secondary market spreads around the individual mean can be explained by the seasonality variables.

6 | EMPIRICAL RESULTS

6.1 | Results for the hypotheses

We illustrate the seasonal fluctuation in spreads in two steps: In the first step, we create
three different sets of seasonal dummy variables to test our hypotheses from Section 3.3. We
use dummy variables because these effects would otherwise be hidden in the new sea-
sonality measure. We employ: (a) interaction terms between the seasonal dummy variables
with a cat bond's years to maturity, (b) interaction terms between the seasonal dummy
variables with EL, and (c) separate dummy variables for European and North American
seasons. In the second step, we use the new seasonality measure to capture these effects
simultaneously and explain a large proportion of the secondary market fluctuation in cat
bond spreads.

Data on spreads are available on a quarterly basis. The specific dates of our quarterly
observations refer to 31st March for Q1, 30th June for Q2, 30th September for Q3 and 31st

TABLE 4 Definition of seasonal dummy variables

Quarter North American hurricanes European winter storms

Q1 No season U.S. After season EU

Q2 Pre season U.S. No season EU

Q3 High season U.S. Pre season EU

Q4 After season U.S. High season EU

Note: Seasonal dummy variables are on continental level. The seasonal dummy variables equal one in the corresponding
quarter and zero otherwise. If a cat bond is unaffected by the U.S. or EU season, the respective dummy variables are zero.
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December for Q4. Consequently, we define seasonal variables on this quarterly basis reflecting
the respective seasonal states of these quarters. Our four seasonal variables are: Pre season,
High season, After season, and No season.

Table 4 defines the set of seasonal dummy variables. U.S. seasonal dummies take the value
“1” if they have some exposure to US hurricane or U.S. wind perils; EU seasonal dummies take
the value “1” if they have some EU wind exposure. For both, U.S. and EU seasonal dummies,
this includes multi‐peril and multilocation bonds.

Table 5 shows a set of models with fixed effects estimation, which employ the seasonal
dummy variables. The sample is limited to bonds that are affected by seasonality. Standard
errors are clustered on bond level and robust to heteroscedasticity. Pre season is always the base
category where spreads are expected to be highest. We test the seasonality pattern (H1) with
model (1). We test for different seasonality amplitudes w.r.t. remaining maturity (H2a) and EL
(H2b) based on models (2) and (3), respectively. With models (4), (5), and (6), we test the
differences between multi‐peril and single‐peril bonds (H2c) as well as differences between U.S.
and EU bonds (H2d).

To investigate the general pattern of seasonality (H1), we look at the seasonal dummies in
model (1). Spreads are, on average, 1.85% points lower during High season than during Pre
season. After season, spreads drop further to 2.31% points below Pre season. From After season
to No season, spreads increase by 0.85% points, which is 1.46% points below Pre season. All
differences from Pre season are statistically significant at the 0.1% level. The order of the
seasons is in line with indicated theoretical arguments, lending support to H1.21 Lane and
Beckwith (2017) indicate the seasonal pattern can be reversed in large loss years to some
extent. Normally, spreads decline during the season when no losses or only very few losses
materialize. On the contrary, in large loss years with multiple distressed bonds, realized
losses can cause drops in prices leading to jumps in spreads. However, this effect should not
be pronounced in our analysis because we drop all distressed bonds.

To investigate the influence of a bond's approaching maturity (H2a), we use model (2).
Again, Pre season serves as the base category. The interaction terms between Ultimate year and
the seasonal dummies as well as Penultimate year and the seasonal dummies indicate whether
the amplitude of seasonal fluctuation increases in the last 2 years of maturity. For these time
variables, the time before the last 2 years of maturity serves as the base category.22 All six
interaction terms indicate increasing seasonal fluctuation as cat bonds near their maturity. Five
of these interaction terms are significant at the 0.1% level, while the interaction term between
No season and Penultimate year is significant at the 5% level. We exemplify the interpretation of
the corresponding coefficients for After season: The coefficient of the interaction term between
the Penultimate year and After season indicates that the amplitude of seasonal spread fluc-
tuation increases by 0.45% points when a bond enters its penultimate year of maturity. In total,
the amplitude between Pre season and After season is 1.62% points during this time. This effect
is further amplified in the ultimate year of a bond's maturity: The coefficient of the interaction

21We have also applied the seasonality dummies for the U.S. and European seasons to a different sample of single‐peril
earthquake bonds. These bonds should not exhibit a seasonal fluctuation. We find small quarterly fluctuations, but this
fluctuation appears negligible in size and of little explanatory power (R2 = 2%). This is substantially different, for
example, from single‐peril hurricane bonds, where seasonality can explain up to 47% of the spread variation (without
considering additional control variables). Detailed results are available upon request.
22Most cat bonds have a maturity of 3 years. For these bonds, the base category is the first year. For all other bonds with
a maturity of more than 3 years, the base category is a combination of all years before the ultimate and penultimate
years.
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TABLE 5 Impact of seasonality on spreads—test of hypotheses

Spread

H1 H2a H2b H2c H2c H2d

Dependent
variable

US
HU/wind

US
HU/wind

US
HU/wind US HU/wind US HU/wind EU wind

Test of
hypothesis

Full
sample

Full
sample

Full
sample Single‐peril Multi‐peril Single‐peril

Sample (1) (2) (3) (4) (5) (6)

High season U.S. −1.846*** −0.979*** −1.291*** −2.665*** −1.835***

(−20.01) (−14.28) (−9.15) (−10.96) (−17.12)

After season U.S. −2.311*** −1.170*** −1.200*** −3.648*** −1.980***

(−17.92) (−12.31) (−6.83) (−11.09) (−12.65)

No season U.S. −1.457*** −0.449*** −0.477** −2.293*** −1.063***

(−14.51) (−5.64) (−2.67) (−9.65) (−9.68)

Penultimate year 0.448**

(2.72)

Ultimate year 1.976***

(6.49)

High season U.S. #
Penultimate year

−0.394***

(−4.57)

High season U.S. #
Ultimate year

−2.356***

(−11.67)

After season U.S. #
Penultimate year

−0.450***

(−3.44)

After season U.S. #
Ultimate year

−3.035***

(−11.52)

No season U.S. #
Penultimate year

−0.208*

(−2.00)

No season U.S. #
Ultimate year

−2.899***

(−12.11)

High season # EL −0.230***

(−3.55)

After season # EL −0.457***

(−5.57)

No season # EL −0.404***

(−4.59)

High season EU 0.014

(0.14)

After season EU −0.851***

(−5.00)

(Continues)
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term between Ultimate year and After season indicates that the amplitude increases by 3.04%
points as compared to the years before the penultimate year. In total, the amplitude reaches
4.21% points.23 Overall, this indicates the seasonal amplitude has increased in the penultimate
year but even more strongly in the ultimate year of maturity. The coefficients of the remaining

TABLE 5 (Continued)

Spread

H1 H2a H2b H2c H2c H2d

Dependent
variable

US
HU/wind

US
HU/wind

US
HU/wind US HU/wind US HU/wind EU wind

Test of
hypothesis

Full
sample

Full
sample

Full
sample Single‐peril Multi‐peril Single‐peril

Sample (1) (2) (3) (4) (5) (6)

No season EU −0.085

(−0.45)

Reins. index 0.018*** 0.019*** 0.018*** 0.013+ (1.95) 0.015** 0.013*

(5.70) (6.18) (5.81) (2.63) (2.27)

Corp. bond spreads 0.486*** 0.476*** 0.482*** 0.441*** 0.541*** 0.385***

(17.31) (17.91) (17.47) (10.81) (13.42) (5.28)

Equity price index 0.033*** 0.031*** 0.033*** 0.038*** 0.022** 0.041***

(6.70) (6.47) (7.12) (4.20) (3.10) (3.98)

Rem. maturity 0.054*** 0.049*** 0.055*** 0.040** 0.072*** 0.002

(8.13) (4.21) (8.23) (3.12) (6.72) (0.32)

Constant 1.613* 0.791 1.614* 3.736* 1.042 0.335

(2.32) (0.99) (2.33) (2.55) (0.82) (0.25)

Observations 3411 3411 3411 871 1421 483

Number of bonds 342 342 342 84 128 40

Within R2 0.355 0.415 0.388 0.376 0.457 0.237

Adj. within R2 0.354 0.413 0.386 0.370 0.455 0.225

Note: This table uses fixed effects regression models to determine the effect of seasonal factors on spreads (in %). All models, except for
model (6), are limited to bonds that have exposure to U.S. storms (i.e., U.S. hurricane or U.S. wind bonds). Pre season is the base
category for seasonal dummy variables. Models (1), (2), and (3) use all bonds with exposure to U.S. hurricanes. Model (4) uses single‐
peril/single‐location U.S. hurricane bonds. Model (5) uses multi‐peril bonds with some exposure to U.S. hurricanes; these bonds have
exposure to U.S. hurricanes and other perils but do not cover other regions except North America. Model (6) uses single‐peril/single‐
location EU wind bonds. t‐values are shown in parentheses and heteroscedasticity robust standard errors are clustered at bond level.
The symbols *, **, and *** indicate statistical significance at the 5%, 1%, and 0.1% levels, respectively.

23Modell (2) also includes dummy variables for the Penultimate year and Ultimate year. These coefficients are large and
statistically significant. However, these coefficients must not be interpreted in such a way that the mean spread of a cat bond
changes as it approaches its maturity. If one is to determine the mean change in spreads for a cat bond as it moves to its
Penultimate year or Ultimate year implied by the dummy variables, he needs to include the mean coefficient of the respective
interaction terms between the year dummies and seasonal dummies including a hypothetical coefficient of zero
for the base category and add the year dummy. For the Penultimate year, this indicates an average shift in spreads of
(–0.394 – 0.450 – 0.208 – 0)/4+ 0.448= 0.185% points change in mean spreads. For the Ultimate year, this indicates an average
shift in spreads of (–2.356 – 3.035 – 2.899 – 0)/4+ 1.976= –0.097% points. Both of these shifts are close to zero.

802 | HERRMANN AND HIBBELN



interaction terms between High season and No season show the same effect with a similar
magnitude. The results from model (2) strongly support hypothesis H2a that the seasonal
fluctuation of cat bonds increases as their time to maturity decreases.

To investigate the influence of a bond's EL on amplitude (H2b), in model (3) we
interact the seasonal dummy variables with the individual yearly EL of each bond. The
coefficient of the interaction term between After season and EL of −0.46 indicates that the
absolute difference in spreads between Pre season and After season increases by 0.46%
points for each 1% point increase in EL. The coefficient is statistically significant at the
0.1% level. These results support hypothesis H2b that the absolute amplitude increases
with the EL of a cat bond.24

We use models (4) and (5) to compare single‐peril and multi‐peril bonds (H2c). Model (4) is
limited to single‐peril U.S. hurricane bonds whereas model (5) is limited to multi‐peril U.S.
hurricane bonds whose other perils are exclusively located in North America. For single‐peril
bonds, the After season coefficient is much higher than for multi‐peril bonds. In model (4), a
single‐peril bond has, on average, a 3.65% points higher spread right after risk season compared
to right before risk season. In model (5) for a multi‐peril bond, this difference is only 1.98%
points. This means that single‐peril bonds fluctuate more strongly with seasonality variables
than multi‐peril bonds, which supports hypothesis H2c.

To investigate differences between North American and European seasons (H2d), model (6)
contains the seasonal dummies for the European season. Its sample contains single‐peril wind
bonds exclusively located in Europe. Generally, the coefficients for the North American season
in model (4) are larger than the coefficients for the European season in model (6). Additionally,
the European season is less clear: We see a difference between Pre season and After season as
expected but spreads in High season and No season are almost on the same level as Pre season.
The likely reason is that most North American bonds contribute capacity towards hurricanes
while European wind bonds are not only triggered by European winter storms but also by other
wind perils such as hail or thunderstorms.25 In consequence, European wind bonds are less
susceptible to the European winter storm season. Overall, the results indicate that the ampli-
tude of U.S. hurricane bonds is larger than the amplitude of European wind bonds, which
supports hypothesis H2d.

In summary, all hypotheses from Section 3.3 are supported by our results. A model
that uses the complete set of dummy variables to combine the effects illustrated in Table 5
on a sample of all seasonality‐affected cat bonds yields an adj. within R2 of 0.301 without
control variables and 0.447 when controls are included.26 This means that 30% of all
secondary market within fluctuation in spreads can be explained by seasonal dummy
variables and the additional interaction terms between EL and respective year dummies
until maturity.

24Please note that the seasonal dummy variables must not be interpreted individually in model (3): The coefficient for
After season is now smaller (in absolute terms) than the coefficient for High season. However, this does not mean that
spreads are smallest during High season. The average EL in the sample is 2.3%, which results in
–1.291% – 0.230 * 2.3% = –1.820% for High season and –1.200% – 0.457 * 2.3% = –2.251% for After season.
25In Section 7 we determine the implied distribution for the observable seasonal fluctuation of European wind bonds.
In this implied distribution, we observe substantial amounts of arrival frequencies in July, August, and September.
26Detailed results are available upon request.

HERRMANN AND HIBBELN | 803



6.2 | Results for the modeled seasonality measure

Table 6 illustrates the effect of the new seasonality measure, the seasonality‐adjusted expected
loss (ELt), on secondary market spreads utilizing the exogenous arrival frequencies from AIR.27

The spread compensates the investor for the EL (corresponding to the actuarially fair premium)
and, additionally, for uncertainty in payoffs. Hence, the estimated EL coefficient, the EL
multiple, is usually >1 in the empirical cat bond literature. If the coefficient is much larger than
1, investors demand a higher compensation for each unit of EL. In model (1), the coefficient of
1.135 for the U.S. hurricane ELt indicates that a one‐percentage point change in ELt leads to
more than a one‐percentage point change in spreads of the same sign.28 The coefficient is
highly significant at the 0.1% level. Concerning differences between U.S. hurricane and EU
wind bonds, the coefficient for the European winter storm season is less than half the size of
the coefficient for the hurricane season. The smaller coefficient for the European winter storm
season lends further support to hypothesis H2d that U.S. hurricane bonds fluctuate more
strongly than European wind bonds. Overall, the seasonality measure ELt explains a large part
of the fluctuation on secondary markets: The adjusted within R² of 0.326 shows that almost a
third of all secondary market fluctuation of seasonality‐affected bonds can be explained by the
proposed seasonality measure. For comparison, a model that combines seasonal dummy
variables and interaction terms to reflect maturity effects and the EL (H2a and H2b) only yields
an adjusted within R2 of 0.301.29 This means that the proposed seasonality measure captures
the different seasonality effects mentioned above and leads to a better model fit.30

Models (2) and (3) split the sample from model (1) into two separate subsamples: Model (2)
contains single‐peril bonds, while model (3) contains multi‐peril bonds. For single‐peril bonds,
the coefficients for both seasons are larger than the coefficients for multi‐peril bonds, lending
further support to hypothesis H2c, which suggests that single‐peril cat bonds are more strongly

27Although data from Lane Financial LLC are quarterly, we also utilize the within‐quarter variation of arrival fre-
quencies from AIR through within quarter issue and maturity dates. However, the use of this within‐quarter dis-
tribution remains limited. We fully exploit the monthly distribution of exogenous arrival frequencies from AIR in the
robustness check based on TRACE data where we have the specific dates of real trades and interpolate between months
to obtain a daily distribution of arrival frequencies.
28Galeotti et al. (2013) investigate different functional relationships between the spread and the EL and find a linear
relationship to be most appropriate, which confirms that the risk premium can be described as a (constant) multiple of
the EL. On primary markets, Braun (2016) reports a multiplier between the expected loss and spread of 2.210 (between
estimation), which is double the amount we see on the secondary market (within estimation). The difference between
the coefficient of the seasonality measure ELt and the established coefficient in the literature is likely due to two effects:
First, the multiple of spread and EL had a tendency to decrease since the inception of the cat bond market so that the
multiplier could have declined over time; our sample ends 2017 while the sample of Braun (2016) ends 2009. A
univariate OLS regression of spread on EL at issuance for our data set reveals a multiplier of 1.884 (between),
confirming that the multiplier has indeed declined; results are available upon request. Second, the sample includes
multi‐peril bonds that contain risk, which are either not seasonality‐affected (like earthquakes) or other wind perils
whose seasonality we do not model (such as tornados or severe thunderstorms). For example, a cat bond that insures
against earthquakes and hurricanes in equal shares fluctuates at the same pro‐rata share with the hurricane season. To
account for this effect, we repeat model (1) for the subsample of single‐peril and single‐location bonds in model (2).
This analysis reveals a coefficient of 1.734 (within estimation). Ultimately, we acquire two coefficients that align quite
well after we accounted for these two effects (1.884 between vs. 1.734 within).
29The model combines the interaction terms between EL and seasonal dummy variables, as well as the ultimate and
penultimate years of maturity from models (2) and (3) in Table 5 using the full sample. Detailed results for this model
are available upon request.
30We compare these two models using the Bayesian information criterion (BIC). For the model with the new sea-
sonality measures, we acquire a BIC value of 15837 whereas the model with the set of dummy variables has a BIC value
of 16182. The difference in BIC values clearly exceeds 10, which is strong evidence for a better model fit based on the
new seasonality measure (see Raftery, 1995).
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affected by seasonality than multi‐peril bonds. The adjusted within R2 of 0.466 in model (2)
indicates that almost half of all secondary market fluctuation in single‐peril bonds can be
accredited to seasonality. With an adjusted within R2 of 0.282 in model (3), this share is much
lower for multi‐peril bonds due to exposure to other nonseasonal perils. Overall, results hold
for both single‐peril and multi‐peril bonds.

Throughout Table 6 the coefficients for the European winter storm season are below 1.
However, this does not mean the seasonal fluctuations in European winter storms are not
sufficiently reflected in spreads. Similar to the dampening effect of earthquake exposure in
multi‐peril bonds, the coefficient for the European wind bonds can also drop below 1 if wind
bonds have a relatively strong exposure to other wind perils that occur outside of the European
winter storm season. These other wind perils can be thunderstorms or hail which typically
occur in the summer and not during the winter storm season. Section 7 shows that a large
proportion of risk from July to September is implied in the trading activity of European wind
bonds lifting the coefficient for single‐peril European wind bonds to above 1.

TABLE 6 Impact of seasonality on spreads—seasonality‐adjusted EL using the modeled seasonality measure

Spread

Dependent
variable

Full
sample

Single‐
peril

Multi‐
peril

Full
sample

Single‐
peril

Multi‐
peril

Sample (1) (2) (3) (4) (5) (6)

ELt‐U.S. modeled 1.135*** 1.734*** 0.931*** 1.093*** 1.731*** 0.858***

(15.25) (13.36) (12.75) (15.30) (13.91) (13.27)

ELt‐EU modeled 0.461*** 0.736** 0.419*** 0.445*** 0.777*** 0.390***

(5.79) (2.77) (5.32) (5.83) (3.42) (5.12)

Reins. index 0.020*** 0.017*** 0.022***

(7.47) (4.78) (6.06)

Corp. bond spreads 0.413*** 0.342*** 0.473***

(20.59) (12.08) (18.02)

Equity returns 0.024*** 0.022*** 0.024***

(5.63) (3.54) (4.38)

Rem. maturity 0.030*** 0.014* 0.044***

(5.66) (2.24) (6.12)

Constant 4.795*** 4.795*** 3.559*** 5.463*** 3.559*** 5.463***

(30.03) (30.03) (15.30) (28.84) (15.30) (28.84)

Observations 3947 1573 2374 3947 1573 2374

Number of bonds 386 154 232 386 154 232

Within R2 0.326 0.466 0.282 0.494 0.576 0.509

Adj. within R2 0.326 0.466 0.282 0.494 0.574 0.508

Note: This table uses fixed effects regression models to determine the effect of seasonal factors on spreads (in %) using modeled
arrival frequencies from AIR. The sample is limited to bonds that are affected by seasonality. Model (1) introduces the seasonality‐
adjusted EL for the full seasonality sample. Models (2) and (3) use only single‐peril or multi‐peril seasonality bonds, respectively.
Models (4)–(6) include control variables. t‐values are shown in parentheses and heteroscedasticity robust standard errors are
clustered at bond level. The symbols *, **, and *** indicate statistical significance at the 5%, 1%, and 0.1% levels, respectively.
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Models (4)–(6) additionally include time‐variant control variables. We find that the coef-
ficients for the seasonality measures remain almost unchanged after the inclusion of controls.
The estimated coefficients of these controls are consistent with the empirical cat bond literature
(see Gürtler et al., 2016 and Braun, 2016), and almost all of them are significant at the 0.1%
level.31 Comparing the explanatory power of Models (1) and (4), an additional 17% of changes
in spreads can be explained through corporate bond spread, equity returns, and reinsurance
rates.32

6.3 | Robustness check: TRACE data

In this robustness check we repeat the analyses from Table 6 with a separate daily data set from
the Trade Reporting and Compliance Engine (TRACE). The results for the TRACE data set
strongly support the previous results on seasonality. Instead of only relying on dealer quotes,
we also use real trading data from TRACE. In general, TRACE contains the specific trading
dates, the traded volume, and real prices net of accrued interest for over‐the‐counter trades.
From January 2015 to March 2017, we acquired a data set that includes 134 bonds with 1537
daily prices. We drop all distressed bonds and use only seasonality‐affected bonds to analyze
seasonality effects, resulting in a TRACE data set with 1069 daily observations of 61 seasonality‐
affected bonds.

TRACE provides clean bond prices but no spreads. However, the TRACE prices allow us to
determine spreads if we know each cat bond's individual cash flow: Cat bonds are Floating Rate
Notes and usually pay a fixed coupon over a riskless interest rate. For the riskless interest rate,
we use the United States Treasury yield curve. Following Fabozzi (2005), we use the forward
rates determined from the United States Treasury yield curve to proxy unknown future spot
rates. We have acquired the fixed coupons over the riskless interest rate from the Lane Fi-
nancial data set and cross‐checked them with data from Thomson Reuters DataStream.
Compared to regular floating rate notes, cat bonds have a unique property: The fixed coupon
above the riskless rate does not necessarily stay fixed throughout a cat bond's maturity. A cat
bond's maturity is usually a bit longer than the length of the underlying reinsurance contract
between the sponsor and the special purpose vehicle (e.g., a 3‐year cat bond usually has a
maturity of 3 years and a few extra days or months). The time, when this reinsurance contract
is in effect, is often referred to as the “risk period” of a cat bond. Outside of the risk period, a cat
bond does not have exposure to the underlying insurance risk. During this time, a cat bond
usually pays a much smaller fixed spread above the riskless rate to reflect the lower default risk.
The specific end date of the risk period and the reduced spread above the riskless rate are
unavailable to us. However, we believe the risk season should mimic reinsurance contracts and

31The coefficient of Reinsurance index indicates that a 1‐point change in the Guy‐carpenter rate‐on‐Line index is
associated with a 0.02% point change in spreads, which confirms the results of Gürtler et al. (2016). A 1% point change
in Corp. bond spreads is associated with a 0.41% point change in cat bond spreads; this effect is twice as large as Gürtler
et al. (2016) and 1.5 times as large as in Braun (2016). A 1% point change in Equity returns is associated with 0.02%
points change in cat bond spreads, which is slightly larger than in Gürtler et al. (2016). Finally, a 1‐month decrease in
remaining maturity is associated with a 0.03% point decline in cat bond spreads, which is in line with Gürtler et al.
(2016). When comparing our coefficient of Rem. maturity to the coefficient of TTM in Gürtler et al. (2016), please note
that Rem. Maturity is formatted in months while TTM is formatted in years.
32Estimated seasonality coefficients are also robust to unknown covariates expressed by quarter fixed effects, year fixed
effects and year‐quarter fixed effects. Detailed results are available upon request.
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end on the last day of a month close to the cat bond's maturity date. Therefore, we assume the
risk period to end on the last day of the month before its maturity. We assume a cat bond to pay
a reduced spread above the riskless rate of 0.5% from the first day of the cat bond's month of
maturity up to its day of maturity.33 Consequently, this period of reduced coupons cannot be
longer than 31 days.

To determine the necessary seasonality variable, we have used the methodology from
Section 3.2. This time we have 365 steps per year corresponding to calendar days, accounting
for the daily nature of the TRACE data set. We again employ the monthly distributions of U.S.
hurricanes and European winter storms from AIR. We turn this monthly distribution into a
daily distribution by interpolating between the midpoints of each month in a linear fashion.
Hence, we gain a seasonality variable in a daily frequency.

Table 7 contains results on seasonality for the complete seasonality‐affected TRACE sample
as well as single‐peril and multi‐peril subsamples. For the complete TRACE sample in model

TABLE 7 Robustness check—impact of seasonality on spreads based on TRACE data

Spread

Dependent
variable

Full
sample

Single‐
peril

Multi‐
peril

Full
sample

Single‐
peril

Multi‐
peril

Sample (1) (2) (3) (4) (5) (6)

ELt‐U.S. modeled 1.588*** 2.013*** 1.232*** 1.341*** 1.633*** 1.136***

(7.65) (6.05) (7.93) (7.54) (5.06) (6.63)

ELt‐EU modeled 0.320 0.031 0.424 0.223

(0.92) (0.08) (1.55) (0.77)

Reins. index 0.031*** 0.029 0.034***

(3.46) (1.50) (4.56)

Corp. bond spreads 0.196* 0.126 0.190*

(2.59) (1.26) (2.30)

Equity price index −0.015 −0.011 −0.022*

(−1.50) (−0.53) (−2.65)

Rem. maturity 0.036* 0.037 0.026*

(2.52) (1.29) (2.14)

Constant 1.890*** 1.219** 2.651*** −4.958** −4.923 −4.774***

(5.60) (2.89) (8.42) (−2.99) (−1.54) (−3.53)

Observations 1069 454 615 1069 454 615

Number of bonds 91 30 61 91 30 61

Within R2 0.529 0.618 0.472 0.643 0.696 0.600

Adj. within R2 0.528 0.617 0.471 0.641 0.693 0.596

Note: Similar to Table 6, this table uses fixed effects regression models to determine the effect of seasonal factors on spreads
(in %) using modeled arrival frequencies from AIR, but based on TRACE prices from FINRA. Model (1) introduces the
seasonality‐adjusted EL for the full seasonality sample. Models (2) and (3) use only single‐peril or multi‐peril seasonality bonds,
respectively. Models (4)–(6) include control variables. t‐values are shown in parentheses and heteroscedasticity robust standard
errors are clustered at bond level. The symbols *, **, and *** indicate statistical significance at the 5%, 1%, and 0.1% levels,
respectively.
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(1), the coefficient for the U.S. season is highly statistically significant at the 0.1% level, while
the coefficient for the European winter storm season is not statistically significant. Generally,
only few European wind bonds were issued in the given period. Additionally, European bonds
are often not included in TRACE. Thus, the coefficients for the European season remain
insignificant due to the limited sample size. For the complete sample, 53% of the secondary
market fluctuation can be explained through the seasonality measure. For the single‐peril
subsample in model (2), explanatory power increases to almost 62%. The coefficient for the U.S.
season is larger than in model (1) and highly statistically significant at the 0.1% level. The
coefficient for the European winter storm season is omitted because no single‐peril European
wind bond trades were reported in TRACE from January 2015 to March 2017. For multi‐peril
bonds in model (3), the explanatory power declines to 47%. The coefficient for the U.S. season
remains highly statistically significant at the 0.1% level while its size has declined to a bit more
than half its previous level. As compared to results for the Lane Financials data set in Table 6,
coefficients and explanatory power have mostly increased. The increases in coefficients and
explanatory power could be attributed to the different timeframes of both data sets as well as a
more detailed modelling of seasonality through daily data. Although the seasonal coefficients
slightly decrease, results hold after the inclusion of controls in Models (4)–(6). Overall, the
results on the TRACE data set strongly support the results from earlier sections and highlight
their reliability. Statistical significance remains high and explanatory power increases. In ad-
dition to results from the quarterly Lane Financials data, the daily TRACE data exemplifies the
methodology's flexibility towards changes in data frequency.

7 | MARKET ‐IMPLIED SEASONALITY

7.1 | Methodology for the market‐implied seasonality measure

To create the seasonality measure described in Section 3.2, we employed a modeled distribution
of arrival frequency shares provided by AIR, which were exogenous to our model. However, it
is also possible to deduct a market‐implied distribution of arrival frequency shares from sec-
ondary market data. Through this channel, the investors' opinion on seasonality and their
distribution of arrival frequencies can be extracted from the data. Investors may have additional
information, which the risk modelers have not provided. For the remainder of the paper, the
externally modelled distribution of arrival frequencies from AIR is named modeled arrival
frequency as opposed to the market‐implied arrival frequency derived from secondary market
trading. Again, severity is assumed to be i.i.d. for each period across a year.

To estimate the distribution of market‐implied arrival frequencies, we create an econometric
model that estimates arrival frequencies in such a way that it explains observed secondary market
spreads as accurately as possible. To derive such a model, we utilize the seasonality measure from
Section 3.2 to “reverse‐engineer” the market‐implied distribution of arrival frequencies. Thus, λim,τ

denotes the estimates for the implied distribution of arrival frequencies:

33The risk period of Cranberry Re 2017‐1, for example, ends June 30, 2020, while the bond is repaid on July 13, 2020.
Between June 30, 2020 and July 13, 2020, this bond pays a coupon of 0.5% above the riskless rate.
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where we have used a discretized version of (9). We define H T tEL /( − )it i iinitial,≔ to simplify
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Consider a regression model that relates the spread s of bond i at time t to the fluctuating EL
of bond i at time t, the vector of time‐variate controls Cit and constant bond properties αi:
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A straightforward approach is to estimate every separate λim simultaneously. However, this
approach appears infeasible because the number of separate λim increases linearly with the
length of the data set. Consider the given data that ranges from 2002 to 2017 containing 15
years of spreads. In case of monthly estimation this results in estimating 180 separate para-
meters λ. Instead, it is possible to simplify the finite series by assuming a static seasonal pattern,
that is, seasons do not change from one year to the next year:

λ λ ,im τ im τ κ, , +≡ (16)

where κ corresponds to the number of periods reflecting 1 year. Thus, different λim take on
repeated values in cycles of 1 full year. Therefore, we define the following variables as the static
shares of arrival frequencies of the yearlong season: γ1, γ2, …, γτ. These variables are the
distribution of the arrival frequencies that we estimate from secondary market data. Since
seasons repeat on a yearly basis, each λim,τ can be matched with a single γ that refers to the
same seasonal period within each year. Consider the case of monthly arrival frequencies as
explicitly provided in Table 1. For monthly data, the number of yearly steps is κ= 12. Then, γ1
refers to the arrival frequency in January, γ2 refers to the arrival frequency in February and so
on. In consequence, γ1 is equal to all λim that reflect January data. Therefore, the finite series
from Equation (15) can be shortened to κ summands:

s β H γ m γ m γ m η C α ε= ( + + … + ) + ′ + + ,it it it it κ κ it it i it1 1 1, 2 2, , (17)

where mit describes how many times each arrival frequency γ is included in the remaining
maturity of bond i at time t. To obtain a model equation that we can estimate, we define

δ γ β d m Hand ,j j j it j it it1 , ,≔ ≔ (18)

which simplifies (17) to

s δ d δ d δ d η C α ε= + + … + + ′ + + .it it it κ κ it it i it1 1, 2 2, , (19)

In principle, we can estimate the unknown parameters δ with standard OLS regression. The
required values dj can be determined with Formula (18). However, since the estimated arrival
frequencies represent shares of peril events occurring for specific parts of a calendar year (e.g., days,
months, or quarters), we apply two natural constraints to the parameters δ. First, it is impossible
that less than 0% or more than 100% of all peril events occur at a specific day, month, or quarter.
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Thus, all parameters δ have to be larger than 0% and smaller than 100%. Second, the sum of all
parameters δ has to equal 100%. Therefore, we formalize the following constraints:

δ δ δ, …, 0 and = 1.κ

j

κ

j1

=1

∑≥ (20)

To implement these constraints, we use a nonlinear model following Gould et al. (2010).
For this purpose, we replace the parameters δ in (19) with the following terms:

δ
q

δ
q
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with q = 1 + exp(ϑ ) + exp(ϑ ) + + exp(ϑ )κ2 3 ⋯ . Applying (21) to (19) and applying fixed‐
effects transformations yields the following model:

s
q
d
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d η C ε¨ =
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κ

κ it it it1,
2

2, , (22)

We estimate the nonlinear model and its parameters ϑ and η with maximum‐likelihood esti-
mation. After we have estimated the parameters ϑ, we reapply Formula (21) to obtain the estimates
for the market‐implied distribution of arrival frequency shares δ under the proposed constraints.

7.2 | Results for the market‐implied seasonality measure

In the previous section, we have established a methodology to estimate market‐implied ar-
rival frequencies from secondary market spreads. While the proposed methodology allows for

TABLE 8 Months of maturity for seasonality‐affected cat bonds

Single‐peril U.S. hurricane Single‐peril EU wind Single‐peril and multi‐peril

January 9 8 78

February 4 0 12

March 3 3 21

April 3 8 39

May 21 3 52

June 18 12 102

July 5 1 16

August 0 0 2

September 0 1 2

October 0 0 2

November 3 0 6

December 18 4 54

Total 84 40 386

Note: Number of single‐peril U.S. hurricane bonds and single‐peril EU wind bonds that mature in the respective months of a
calendar year. The third column reports the same numbers for all seasonality‐affected bonds; in addition to single‐peril
hurricane and wind bonds, these bonds also include multi‐peril bonds.
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different lengths of time steps (e.g., days, months, quarters), the specific length of a possible
time step is limited by the frequency of available data. We have obtained quarterly spreads;
however, it is possible to estimate a monthly distribution of arrival frequencies from quarterly
data exploiting the specific dates of maturity. The estimation of each specific month is only
possible if a sufficient number of bonds mature during this month. For example, U.S. hur-
ricane bonds are typically tailored in such a way that they cover an entire hurricane season.
Therefore, the estimation of monthly arrival frequencies within the hurricane season is
difficult.

To estimate the market‐implied distribution of arrival frequencies of U.S. hurricanes and
European winter storms, we use single‐peril/single‐location subsamples of U.S. hurricane and
European wind bonds, respectively. Additionally, we estimate the implied distribution of ar-
rival frequencies of the aggregate cat bond market with a subsample of all seasonality‐affected
cat bonds that also contains multi‐peril bonds. Table 8 contains the number of bonds that
mature in the specific calendar months for the subsamples. The data confirm that no U.S.
hurricane bonds mature in August through October. For EU wind bonds we observe that no
bonds mature in February, August, October, and November, and for the aggregate seasonality‐
affected cat bond market, only few bonds mature August through October. To cope with these
shortcomings, we combine these months with other months that offer a higher availability of
data. For example, in U.S. hurricane bonds, we use a single parameter for October and
November to obtain an average across these 2 months. We apply this method to all months that
have too little data available. When combining months, we follow three rules: (a) We combine

TABLE 9 Market‐implied distributions of arrival frequencies

U.S. hurricanes EU winter storms Cat bond market

Estimate CI [95%] Estimate CI [95%] Estimate CI [95%]

January 1.6%** [0.6%; 2.6%] 11.5%*** [8.5%; 14.4%] 6.9%*** [5.5%; 8.2%]

February 0% 11.5%*** [8.5%; 14.4%] 0%

March 0% 11.5%*** [8.5%; 14.4%] 0%

April 0% 0% 0%

May 0% 0% 0%

June 0% 0% 0%

July 25.7%*** [24.7%; 26.8%] 12.3%*** [8.7%; 15.8%] 22.4%*** [21.8%; 23.0%]

August 25.7%*** [24.7%; 26.8%] 12.3%*** [8.7%; 15.8%] 22.4%*** [21.8%; 23.0%]

September 25.7%*** [24.7%; 26.8%] 12.3%*** [8.7%; 15.8%] 22.4%*** [21.8%; 23.0%]

October 10.6%*** [9.1%; 12.1%] 9.6%*** [6.7%; 13.8%] 13.0%*** [12.2%; 13.7%]

November 10.6%*** [9.1%; 12.1%] 9.6%*** [6.7%; 13.8%] 13.0%*** [12.2%; 13.7%]

December 0% 9.6%*** [6.7%; 13.8%] 0%

Total 100.0% 100.0% 100%

Note: Market‐implied arrival frequencies for U.S. hurricanes, EU winter storms and the seasonality‐affected cat bond market as
derived from secondary market data. The shares of arrival frequency were estimated taking the control variables used in
previous tables into account, namely Reinsurance index, Corporate bond spreads, Equity returns, and Rem. maturity. The
symbols *, **, and *** indicate statistical significance at the 5%, 1%, and 0.1% levels, respectively.
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months where only two bonds or fewer mature, (b) we only combine months adjacent to each
other, and (c) we do not combine months across quarters. Following these rules, we combine
the following months: For U.S. hurricanes, we combine July/August/September and October/
November. For EU Wind bonds, we aggregate January/February/March, July/August/Sep-
tember, and October/November/December. For the complete seasonality‐affected cat bond
market, we combine July/August/September and October/November.

The estimated market‐implied distribution of arrival frequencies and the corresponding 95%
confidence intervals are shown in Table 9. These arrival frequencies were estimated with the
same control variables as in the previous models. The arrival frequencies for U.S. hurricanes
and European winter storms mostly reflect the general pattern of the modeled distribution of
arrival frequencies of AIR (see Table 1). For U.S. hurricanes, July, August, and September are
the peak months for the hurricane season where investor trading implies hurricane arrival
frequencies of 25.7% for each month. The season fades out during October and November with
10.6% each. The investor trading indicates no more hurricanes in December. All of these
coefficients are statistically significant at the 0.1% level. For EU winter storms, January,
February, and March are peak months for the winter storm season where investor trading
implies winter storm arrival frequencies of 11.5% for each of these months. The other large
portion of the winter storm season is reflected in the market‐implied shares of arrival fre-
quencies for October, November, and December with 9.6% each. Surprisingly, in July, August,
and September, the market‐implied share of arrival frequency deviates from the modeled share
of arrival frequencies from AIR. In these months the shares of arrival frequencies are 12.3%
each. The likely reason is that many EU wind bonds do not only insure against winter storms
but also against other perils such as hail or severe thunderstorms, which typically occur in the
summer. Thus, the market‐implied arrival frequencies in July, August, and September can
probably be attributed to the hail and thunderstorm season. All coefficients are highly statis-
tically significant at the 0.1% level.

For the complete cat bond market, which includes all single‐peril and multi‐peril bonds, the
U.S. hurricane season is the predominant seasonality factor. Investor trading indicates that
most seasonal peril events occur from July through November. This also indicates that multi‐
peril bonds, whose distribution of risk among peril types is unknown to us, are also pre-
dominantly affected by U.S. hurricanes. The shares of peril events in January indicate the
presence of the winter storm seasons. The lack of market‐implied arrival frequency in February
can be attributed to a lack of single‐peril EU wind bonds that mature in February. If the
additional multi‐peril bonds, which mature in February, do not contain a substantial amount of
winter storm risk, the model estimates 0% for this month. All coefficients are highly statistically
significant at the 0.1% level.

As previously mentioned, the market‐implied distributions of arrival frequencies are in line
with the modeled distributions, while also picking up parts of the European hail and thun-
derstorm season. The results presented in Table 10 indicate how well the market‐implied
distributions explain the data by comparing them to models that use the modeled distributions.
The subsamples are the same samples that were used to estimate the market‐implied arrival
frequencies. For U.S. hurricane bonds in model (1), the seasonal variable that uses market‐
implied U.S. hurricane arrival frequencies and time‐variate controls explain 68% of all sec-
ondary market fluctuation. Comparing models (1) and (2), the coefficient for the U.S. hurricane
season is almost the same for market‐implied and modeled distributions of arrival frequencies.
In both models, the coefficient is large and highly statistically significant at the 0.1% level. For
European wind bonds in model (3), the seasonal variable that uses the market‐implied
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distribution of arrival frequencies and time‐variate controls explain roughly 30% of secondary
market fluctuation. This is likely a consequence of a less pronounced season, because generally,
EU wind bonds also insure against other perils that are not exclusively European winter storms.
The coefficient is significant at the 1% level. Comparing models (3) and (4), the distribution of
market‐implied arrival frequencies for European winter storms yields a higher explanatory
power than the modeled distribution of arrival frequencies. Additionally, the coefficient for the

TABLE 10 Comparison of market‐implied and modeled seasonality measures

Spread

US hurricane EU wind

Dependent variable Single‐peril Single‐peril Cat bond market

Sample (1) (2) (3) (4) (5)

ELt‐U.S. market‐implied 1.820***

(15.33)

ELt‐U.S. modeled 1.802***

(13.87)

ELt‐EU market‐implied 1.247*

(2.62)

ELt‐EU modeled 0.767**

(3.26)

ELt‐World market‐implied 1.124***

(15.32)

Reins. index 0.021*** 0.022*** 0.014* 0.014* 0.020***

(4.14) (4.00) (2.51) (2.64) (7.36)

Corp. bond spreads 0.334*** 0.329*** 0.419*** 0.404*** 0.413***

(12.20) (11.72) (5.80) (5.75) (19.13)

Equity returns 0.014* 0.013+ 0.050*** 0.043*** 0.027***

(2.03) (1.81) (5.20) (3.75) (5.98)

Rem. maturity 0.022+ 0.022+ −0.007 0.003 0.032***

(−1.06) (0.49) (5.71)(1.96) (1.98)

Constant −3.364** −3.549** −2.050 −1.689 −2.234***

(−2.89) (−2.83) (−1.11) (−1.08) (−3.58)

Observations 871 871 483 483 3947

Number of bonds 84 84 40 40 386

Within R2 0.679 0.666 0.304 0.294 0.458

Adj. within R2 0.677 0.664 0.297 0.287 0.457

Note: This table uses fixed effects regression models to determine the effect of seasonal factors on spreads (in %) using the
market‐implied distribution of arrival frequencies derived from secondary market data as well as our modelled seasonality
measure. Models (1) and (2) use a subsample that is limited to single‐peril/single‐location hurricane bonds. Models (3) and (4)
are limited to single‐peril/single‐location European wind bonds. Model (5) uses all single‐peril and multi‐peril cat bonds that
are affected by U.S. hurricane or European wind perils. t‐values are shown in parentheses and heteroscedasticity robust
standard errors are clustered at bond level. The symbols *, **, and *** indicate statistical significance at the 5%, 1%, and 0.1%
levels, respectively.
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market‐implied distribution in model (3) is larger than the coefficient for the modeled dis-
tribution in model (4). As previously mentioned, we believe the market‐implied shares of
arrival frequencies for European winter storms in Table 9 partially contain the hail and
thunderstorm season as indicated by the high arrival frequency in quarter 3; this separate sub‐
season is not reflected in the modeled distribution. On the contrary, the coefficients and the
explanatory power for the U.S. hurricane season are almost the same for market‐implied and
modeled distributions. For the complete market in model (5), the seasonal variable that uses
the market‐implied distribution of arrival frequencies and time‐variant controls explain 46% of
secondary market fluctuation. The coefficient is significant at the 0.1% level.

Generally, the results for market‐implied arrival frequencies for U.S. hurricanes and the EU
winter storms are in line with previous results from Section 6. The results indicate that the
market‐implied distribution of arrival frequencies can be a valuable alternative to modeled
arrival frequencies for modeling cat bond seasonality, particularly in the case that modeled
arrival frequencies are unavailable. However, the distributions of arrival frequencies of specific
perils depend on the availability of specific cat bond types. Single‐peril hurricane bonds allow
for the estimation of market‐implied shares of hurricane arrival frequencies while European
wind bonds mix European winter storms with thunderstorms and hail.

8 | CONCLUSION

Seasonal fluctuations are a major driver of cat bond spreads on secondary markets. We in-
vestigate their patterns for U.S. hurricane and European winter storm bonds. We propose a
conceptual framework to model seasonality. This framework includes a hazard rate model to
illustrate theoretical implications of seasonality on cat bonds and a new seasonality measure.
This measure integrates the distribution of peril arrival frequency in econometric cat bond
pricing models capturing theoretical implications from the hazard rate model.

Empirically, the seasonal pattern in spreads reflects the seasonal pattern in arrival fre-
quencies: Spreads peak before risk season starts, hit their bottom after risk season ends, and
adjust in between. The spreads' amplitude in seasonal fluctuation increases as a cat bond nears
its maturity. Additionally, risky bonds with a high EL express stronger seasonal fluctuation
than bonds with a low EL. Single‐peril bonds express a stronger seasonal fluctuation than
multi‐peril bonds that have only some exposure to seasonal perils. Similarly, cat bonds that
have a clear season (e.g., U.S. hurricane bonds) fluctuate more strongly than cat bonds whose
season is less pronounced (e.g., European wind bonds).

The new seasonality measure captures these effects and explains a large fraction of sec-
ondary market fluctuations in seasonality‐affected cat bonds. In addition, we provide a com-
prehensive method to deduct the market‐implied distribution of peril arrival frequencies from
observable secondary market spreads. Seasonal variables that use the market‐implied instead of
the modeled distribution of arrival frequencies explain secondary market spreads even slightly
better as modeled seasonal variables. Generating the market‐implied distributions of arrival
frequencies offers an alternative if modeled distributions of arrival frequencies are unavailable;
additionally, this method can be used to deduct the aggregate opinion of investors on arrival
frequencies. We model arrival frequency and assume severity to be i.i.d. for each peril event
during a calendar year. However, the methodology can be easily expanded to include two
separate seasonality measures for arrival frequency and severity or a combination of both if a
distribution of severity is available. On the contrary, the market‐implied measure does not
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require the i.i.d. assumption but solves for the time‐varying EL‐multiple that best fits the data.
The results for both seasonality measures are similar, which indicates that our modelling
assumption is rather unproblematic.

Our proposed seasonality measure provides a comprehensive method to academics, in-
surance companies, and investors to model seasonality and explain secondary market fluc-
tuation. For academics, the proposed seasonality measure offers an opportunity to model and
control for seasonality in future secondary market research, thereby avoiding a large loss of
observations. The methodology for deducting the market‐implied distribution of arrival fre-
quencies from secondary market spreads offers an opportunity to extract information from
market participants concerning these perils. For practitioners, the illustrated seasonality effects
could improve market transparency. When insurance companies decide between a cat bond
and a traditional reinsurance contract to transfer risk, they may turn to secondary cat bond
markets to project possible spreads for a cat bond placement. In this context, seasonality is an
important factor because it causes large fluctuations on the secondary markets. (Re‐)insures
should not over‐ or under‐estimate spreads due to reasons of seasonality. As investors, spe-
cialized ILS funds must value their cat bond portfolio correctly at investor entry or exit;34

however, trading is very infrequent creating extended periods without any market valuation.
Modelling seasonal fluctuation could allow for a fair valuation of cat bonds when a proper
market valuation is lacking. Overall, we provide new insights on the impact of seasonality on
secondary market spreads of cat bonds that could advance the markets maturity and further
facilitate its growth.

Predictable spread movements on secondary cat bond markets raise the question of a
potential trading strategy exploiting these predictable seasonal fluctuations. Such a trading
strategy would only offer abnormal returns if these seasonal, predictable price movements
implied mispricing. However, we believe the seasonal fluctuations follow a risk related ratio-
nale. Mispricing would only occur when the seasonal fluctuation is too strong or not strong
enough, that is, a unit of change in ELt is not priced properly. However, if we use the primary
market as an indicator for “correct” valuation of a unit of EL, we cannot identify such a
mispricing: In Section 6 the coefficient for ELt does not significantly deviate from the EL
coefficient on the primary market. Additionally, to make a potential trading strategy profitable,
the associated transaction costs need to be lower than the exploitable mispricing, so that these
deviations would need to be rather large. Although analyzing a potential mispricing on the
secondary cat bond market is beyond the scope of this paper, it would be a highly interesting
topic for future research.
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APPENDIX A
For illustration purposes, we model a seasonal zero‐coupon cat bond where λh(t) follows a
cosine function that peaks in the middle of the year and is zero at the turn of the year:

λ t λ πt( ) = (1 − cos(2 )),h 0⋅ (A1)

where λ0 is the total hazard rate for one calendar year: λ τ dτ λ( ) =h0

1
0∫ . The value of such a

cat bond is:
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and the spread equals:
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Figure 1 illustrates values and spreads of a hypothetical nonseasonal and a seasonal zero‐
coupon cat bond. They have a maturity of 3 years, a hazard rate λh (and λ0, respectively) of 8%
and a CEL of 100%. We use Equations (3) and (5) to determine the value and spread of the
nonseasonal cat bond and Equations (6) and (7) accordingly for the seasonal cat bond.

The value of the nonseasonal cat bond in Figure 1 (see Section 3.1) increases almost linearly
in the case without default. In the case of default, the value would immediately jump to zero
and remain at this value as we assumed a CEL of 100%. The value of the seasonal cat bond also
increases over time, but it fluctuates depending on the seasonal state. At the turn of the year the
value of the seasonal cat bond increases only slowly because the hazard rate is low, which
means the probability that the bond survives until maturity increases relatively slowly. In the
middle of a calendar year, the value of a seasonal cat bond increases strongly in the case
without default because the hazard rate is high, so that the probability the bond survives until
maturity increases relatively quickly.

The spread of a nonseasonal cat bond in Figure 1 is constant throughout its maturity, while
the spread of a seasonal cat bond fluctuates strongly. At maturity, the spread approaches zero
because the season ends on the same day as the bond matures. We can derive two main
observations from this figure: A general seasonal pattern and an increasing amplitude as a bond
nears its maturity. First, regarding the seasonal pattern, spreads peak a couple of months before
the season reaches its peak in the middle of the year. They reach their bottom a couple of
months before the season fades out at the end of the year. Second, the amplitude between
seasonal peaks and bottoms increases as a bond approaches its maturity. From the first to the
second year, the amplitude between the maximum and minimum in spreads increases from
1.12% points to 1.90% points, and increases further in the ultimate year.35 The reason for the
increasing seasonal amplitude of spreads when approaching maturity is as follows: While the
amplitude of the seasonal value fluctuation remains almost constant throughout the cat bond's
maturity, its remaining time to maturity decreases. However, the bond's spread is more sen-
sitive to changes in prices the closer it is to maturity.

35In the last year spreads approach zero as the bond approaches its maturity and its last season fades out.
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