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Abstract
Various fields of economic analysis (e.g. growth and produc-
tivity) and economic policy (e.g. monetary and social policy) 
rely on accurate measures of price change. Unfortunately, 
the price index formulae that most price statisticians consider 
as particularly accurate—the superlative indices of Fisher, 
Törnqvist, and Walsh—are believed to violate the property 
of consistency in aggregation. This property, however, is in-
dispensable for economic studies that attempt to disaggregate 
the overall result into the contributions of individual entities 
such as sectors of the economy or groups of products. The 
present paper introduces a thoroughly motivated formal defi-
nition of consistency in aggregation and proves that, contrary 
to general perception, the three superlative price indices can 
be considered as consistent in aggregation. Furthermore, 
many other price indices are shown to be consistent in ag-
gregation. The theoretical findings are applied to the Swedish 
consumer price index.

K E Y W O R D S

consistent aggregation, CPI, decomposition, index theory, 
superlative price index

1 |  INTRODUCTION

In most fields of applied economic analysis, the diversity of individual changes must be aggregated 
into some single number measuring the average change. Prominent examples are the changes in 
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national income, unemployment, money supply or prices. To provide additional insights, the com-
putation of the average change is often conducted in a two-stage procedure, where on the first stage 
average changes of subgroups are computed and on the second stage these individual results are ag-
gregated into the overall change.

For example, some central banks and many financial analysts decompose the universe of consumer 
products into the ‘core products’ (all products except for energy and seasonal food) and the ‘non-core 
products’ (energy and seasonal food). The average price change of the core products is called the core 
inflation, whereas the average price change of the non-core products could be denoted as the non-core 
inflation.

Core inflation is often considered as a measure of the long-run inflation trend and, therefore, as a 
key indicator for monetary policy. Averaging the core inflation and the non-core inflation yields the 
overall inflation rate of the economy. The overall inflation rate is often used for indexing various types 
of contracts and for transforming nominal values into real values (e.g. national income). The separate 
compilations of the core inflation and the non-core inflation reveal how strongly the economy’s cur-
rent overall inflation is driven by its long-run inflation trend.1

Alternatively, the overall inflation rate could be directly computed from the complete universe of 
products, without decomposing this universe into the core products and the non-core products. This 
single-stage computation is simpler, but provides fewer insights.

The calculation of an average price change is accomplished by some price index formula. It is 
considered as a major advantage of a price index formula, when it computes the same overall infla-
tion, regardless of whether it is applied in a single-stage or two-stage calculation. When a price index 
formula satisfies this postulate, the formula is denoted as consistent in aggregation.

The notion of consistency in aggregation has been alluded to by van Yzeren (1958). Vartia 
(1976a,b) fleshed out this notion and Blackorby and Primont (1980) formalized and generalized it. 
Stuvel (1989) and Balk (1995, 1996, 2008) take the position that in the field of price measurement 
the general notion proposed by Blackorby and Primont is not adequate. They recommend Vartia’s 
narrow notion. von Auer (2004) contests this position and advocates a definition of consistency 
in aggregation that is more general than the definition of Balk and Vartia, but less general than 
that of Blackorby and Primont. Pursiainen (2005, 2008) provides a rigorous formal treatment of 
Vartia’s original notion.

All of these studies agree that consistency in aggregation of a price index not only requires that 
the single-stage and the two-stage computations yield the same outcome, but also that three additional 
conditions (details are spelled out below) must be satisfied. In the following, this common view is 
referred to as the ‘four consensus conditions’ of consistency in aggregation. As the above dispute 
suggests, however, endorsement of the consensus conditions still leaves much space for disagreement.

The present paper’s first main contribution is an attempt to settle this dispute. For this purpose, it 
develops a thoroughly motivated new definition of consistency in aggregation. It is more general than 
those proposed by von Auer (2004, p. 390), Balk (1995, p. 85, 1996, pp. 358–360), Pursiainen (2005, 
p. 21; 2008, p. 18), Stuvel (1989, p. 36), van Yzeren (1958, p. 432), and Vartia (1976a, pp. 85–89, 
1976b, p. 124). The analysis reveals that several attractive price indices that, hitherto, have been per-
ceived as violating the consensus conditions, turn out to be fully consistent with these conditions. We 
show that these attractive price indices are consistent in aggregation and, therefore, perfectly appro-
priate for multi-stage computations in applied empirical analysis. In other words, when using these 

 1There is a vivid controversy on the rationale for using the core inflation as a yardstick for monetary policy (e.g. Crone et al., 
2013). The present paper, however, is not concerned with this controversy, but merely uses the notions of core inflation and 
non-core inflation to illustrate the process and the benefits of a two-stage computation.
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price indices in a two-stage computation, it is possible to recover the same index numbers that would 
have been obtained if everything had been computed in a single stage. For practical purposes, this is 
an extremely valuable property.

It would be useful, if among these price indices were a superlative one. The concept of super-
lative price indices has been introduced by Diewert (1976). These indices are often advocated as 
generating particularly reliable results and being firmly anchored in economic theory. The most 
vehemently recommended superlative price indices are the Fisher, Törnqvist, and Walsh indices. 
However, these indices have been perceived as not being consistent in aggregation (e.g. Balk, 
2008, pp. 110–111; Diewert, 2004a, pp. 349–350). The present paper proves that this perception 
cannot be maintained in the context of our new definition of consistency in aggregation. This is 
the second contribution of this study. As a third contribution it shows that many other price indi-
ces are consistent in aggregation.

This paper is organized as follows. Section 2 provides a more detailed account of the consen-
sus conditions. Section 3 leaves the field of price indices and develops a precise mathematical 
definition of consistent aggregation rules. In Section 4, we return to the analysis of price indices 
and provide a rigorous mathematical definition of price indices. In Section 5, we apply this defi-
nition to a multi-stage computation of the Swedish consumer price index. The results suggest 
that superlative price indices may well be consistent in aggregation. Section 6 connects the the-
oretical concepts developed in Sections 3 and 4. It presents a rigorous mathematical definition 
of a price index that is consistent in aggregation. In Section 7, we examine whether superlative 
price indices exist that are consistent in aggregation. In Section 8, we show that many (non-su-
perlative) price indices are consistent in aggregation. An application to the Swedish price data 
is presented in Section 9. For practical price measurement purposes, additional requirements 
can be attached to our definition of consistency in aggregation. Section 10 explains these re-
quirements, examines which price index formulae satisfy these requirements and relates the new 
definition of consistency in aggregation to alternative definitions proposed in the literature. 
Concluding remarks are contained in Section 11.

2 |  TWO-STAGE COMPUTATION OF PRICE CHANGES

In an economy, a vast number of goods and services are sold. The prices of these ‘items’ change over 
time. A price index attempts to measure the items’ average price change between a base and a com-
parison period. It is assumed that during both periods all N items are available and that their prices 
and quantities are correctly recorded. Let D denote the finite set containing the N items’ prices and 
quantities. A price index formula P (e.g. Laspeyres index) is usually considered as a function that 
maps the recorded prices and quantities into a single positive number that indicates the N items’ aver-
age price change.

The single-stage computation of the overall price change applies a given price index formula P 
to the complete set D. In contrast, a two-stage computation starts by partitioning the set D into sev-
eral subsets Dk. For each of these subsets, a price index Pk is computed. In the second stage of this 
two-stage procedure, the numbers Pk are aggregated into the overall price change. Such a two-stage 
computation provides important additional insights, because it allows to identify the individual forces 
driving the overall result. Of course, the single-stage and the two-stage computations should be ‘con-
sistent’. The precise meaning of ‘consistency’, however, is difficult to define.

As pointed out before, some consensus conditions exist that spell out the meaning of consistency 
in more detail. These consensus conditions relate only to price indices P that are continuous in the 
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prices and quantities (continuity axiom) and that are invariant with respect to changes in the units in 
which the quantities are measured (commensurability axiom).2 For such price indices, the consensus 
conditions specify how a two-stage computation should be conducted and how it should relate to the 
single-stage computation (e.g. von Auer, 2004, p. 385; Balk, 1995, p. 85; Balk, 1996, pp. 358–59; 
Balk, 2008, pp. 108–109; Vartia, 1976b, p. 124):

1. For all possible partitions of the set D, the two-stage computation of the overall price change 
of D must yield the same index number as the single-stage computation.

2. On both stages of the two-stage computation, the ‘same index formula’ must be applied as in the 
single-stage computation (only the number of variables can be different).

3. In the first stage of the two-stage computation, for each subset Dk, a price index number Pk and one 
or more aggregate values are computed. The price index numbers Pk and the aggregate value(s) 
depend only on the prices and quantities of the items in subset Dk.

4. In the second stage of the two-stage computation, the index number for the complete set D depends 
only on the index numbers Pk and the aggregate values computed in the first-stage computations.

Unfortunately, these consensus conditions leave much space for ambiguity and disagreement. It 
is therefore necessary to transform the four consensus conditions into a thoroughly motivated formal 
definition of consistency in aggregation. As a preliminary step we develop the notion of a consistent 
aggregation rule.

3 |  CONSISTENT AGGREGATION RULES

An aggregation rule is a procedure which aggregates a finite set of data into a single datum. The para-
digmatic example is the sum of finitely many numbers (or vectors) where, for each size of the data set, 
the procedure has the ‘same functional form’. Formally, the expression ‘same functional form’ does 
not make much sense as, for example the maps A2 : ℝ2

→ ℝ, (d1, d2 ) ↦ d1 + d2 and A3 : ℝ3
→ ℝ, 

(d1, d2, d3 ) ↦ d1 + d2 + d3 have different domains and, therefore, are totally different objects. The 
link between A2 and A3 is the law of associativity 

for all d1, d2, d3 ∈ ℝ. As we will see, consistency of an aggregation rule is just a slight generalization.
Let I be any set of possible data d (typically belonging to some ℝk).

Definition 1 An aggregation rule for the set I is a sequence A = (An )n∈ℕ of maps 

with A1 (di ) = di for all di ∈ I.

 2There is a large body of literature discussing the axioms a sensible price index formula should satisfy (e.g. Eichhorn & 
Voeller, 1976; Martini, 1992; Olt, 1996). In his comprehensive survey, Diewert (2004b, pp. 293–294) points out that the 
continuity axiom is informally discussed in Fisher (1922, pp. 207–215) and that the commensurability axiom can be traced 
back to Jevons (1865, p. 23) and Pierson (1896, p. 131).

A3 (d1, d2, d3 ) = A2 (A2 (d1, d2 ) , d3 ) = A2 (d1, A2 (d2, d3 ) ) ,

An: In
→ I, (d1,…, dn ) ↦ An (d1,…, dn )
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However, Definition 1 covers also meaningless aggregation rules such as An (d1, …, dn ) = d1.  
To come closer to the intuitive idea of a meaningful aggregation rule, one needs further proper-
ties. In the first place, a meaningful aggregation rule requires that the ordering of the data vector 
(d1, …, dn ) ∈ In is irrelevant, that is, An are symmetric. Second, one would expect that the ag-
gregation of (d1, …, dn ) ∈ In in one step, An (d1, …, dn ), yields the same result as the follow-
ing procedure: (1) (d1, …, dn ) is partitioned into two arbitrary “groups” (d1, …, dm ) ∈ Im and 
(dm+1, …, dm+ k ) ∈ Ik, with n = m + k; (2) Am (d1, …, dm ) and Ak (dm+1, …, dm+ k ) are computed; 
(3) these results are treated as new data and aggregated by A2.

These two requirements for a meaningful aggregation rule can be summarized in the following 
definition:

Definition 2 An aggregation rule A = (An )n∈ℕ is consistent, if it is symmetric and 

for all m, k ∈ ℕ with n = m + k, (d1, …, dm ) ∈ Im, and (dm+1, …, dn ) ∈ Ik.

As another example of an aggregation rule for I = ℝ, consider the calculation of a product: 

with d1, …, dn ∈ ℝ. This aggregation rule is symmetric. Since for all m, n ∈ ℕ, 

the aggregation rule also satisfies condition (1). Therefore, it is a consistent aggregation rule.
Recall that a binary operation ⊕ on I, that is a function I2

→ I, (d1, d2 ) ↦ d1 ⊕ d2, is commuta-
tive and associative, if d1 ⊕ d2 = d2 ⊕ d1 and (d1 ⊕ d2 ) ⊕ d3 = d1 ⊕ (d2 ⊕ d3 ) for all d1, d2,  
d3 ∈ I.

Proposition 1 A = (An )n∈ℕ is a consistent aggregation rule for I, if and only if some commutative 
and associative binary operation ⊕A exists, such that for all n ∈ ℕ and d1, …, dn ∈ I. For n = 1, 
the right-hand side of Equation (3) is interpreted as d1.

3

Proof.  For proving the necessity of Equation (3) assume that A is consistent and define 
d1 ⊕A d2 = A2 (d1, d2 ). The symmetry of A2 precisely means commutativity of ⊕A. 
Associativity of ⊕A follows from 

(1)An (d1,…, dn ) = A2 (Am (d1,…, dm ) , Ak (dm+1,…, dm+ k ) ) ,

(2)An (d1,…, dn ) =

n∏
i= 1

di,

n∏
i= 1

di =
(
d1 ⋅… ⋅ dm

)
⋅

(
dm+1 ⋅… ⋅ dn

)
,

(3)An (d1,…, dn ) = d1⊕Ad2⊕A⋯⊕Adn,

 3This proposition resembles Theorem 1 in Pursiainen (2008, p. 8).

(d1⊕Ad2 ) ⊕Ad3= A2 ( (A2 (d1, d2 ) , A1 (d3 ) )

= A3 (d1, d2, d3 )

= A2 (A1 (d1 ) , A2 (d2, d3 ) )

= d1⊕A (d2⊕Ad3 ) .
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The representation for the general case An is shown by induction on n ∈ ℕ. For n = 1, it follows 
from A1 (dj ) = dj. If the necessity of Equation (3) is true for some n ∈ ℕ, we get 

It is obvious that the existence of a commutative and associative binary operation ⊕A that satis-
fies Equation (3) is sufficient for A = (An )n∈ℕ to be a consistent aggregation rule. ▪

Relationship Equation (3) can be interpreted as a formal specification of the rather vague notion 
‘same functional form’. For example, multiplication is a commutative and associative binary operation 
⊕ of form Equation (3). This confirms that Equation (2) is a consistent aggregation rule.

There is a simple but nevertheless quite general method to produce consistent aggregation rules or, 
conversely, to prove consistency of some given aggregation rule. It utilizes the concept of a ‘quasi-sum’.

Definition 3 Let M ⊆ ℝk be a set which is stable under addition (i.e. m1 + m2 ∈ M for all 
m1, m2 ∈ M). If Φ  :  I → M is any invertible map with inverse Φ−1 : M → I, we define a 
quasi-sum of d1, …, dn ∈ I by setting 

Proposition 2 In the situation of Definition 3, the aggregation rule 

is consistent.
Proof.  In view of Proposition 1, it is to be shown that the binary operation ⊕ defined by Equation 

(4) is commutative and associative. Commutativity of ⊕ is obvious. For n = 3, one gets which 
is associativity ▪.

 
It follows from Equation (5) that an aggregation rule A satisfies (4), if and only if 

 An aggregation rule that satisfies Equation (6) is denoted here as quasi-additive.4 Proposition 2 says that 
quasi-additive aggregation rules are consistent. In order to verify that a given aggregation rule A is 

An+1 (d1,…, dn+1 ) = A2 (An (d1,…, dn ) , A1 (dn+1 ) )

= An (d1,…, dn ) ⊕Adn+1

= (d1⊕A⋯⊕Adn ) ⊕Adn+1.

(4)d1 ⊕⋯⊕ dn = Φ−1

[
n∑

i= 1

Φ
(
di

)]
.

An (d1,…, dn ) = d1 ⊕⋯⊕ dn

(5)

(
d1 ⊕ d2

)
⊕ d3= Φ−1

[
Φ
[
Φ−1

[
Φ
(
d1

)
+Φ

(
d2

)]]
+Φ(d3 )

]
= Φ−1

[
Φ
(
d1

)
+Φ

(
d2

)
+Φ (d3 )

]
= Φ−1

[
Φ
(
d1

)
+Φ

[
Φ−1

[
Φ
(
d2

)
+Φ (d3 )

]]]
= d1 ⊕

(
d2 ⊕ d3

)
,

(6)Φ(An (d1,…, dn ) ) =

n∑
i= 1

Φ (di ) for all n ∈ ℕ.

 4There is quite some literature on the question which aggregation rules are quasi-additive. A good overview is given in the 
dissertation of Pursiainen (2005). The minimum of d1 and d2 (d1, d2 ∈ I) is a consistent aggregation rule for I = ℝ

> 0 which is 
not quasi-additive.
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consistent, it is therefore sufficient to find some invertible map Φ : I → M such that Equation (6) holds for 
all n ∈ ℕ and di ∈ I.

Of course, the simple summation is additive and therefore also quasi-additive with Φ(d) = d. As an-
other example, consider aggregation rule (2). For I = ℝ>0 it is consistent, because with Φ(d) =  log d 
Equation (6) is satisfied: 

We have emphasized the similarity between consistent aggregation rules and the sum or product 
of numbers or vectors. Aggregating a finite set of data to a kind of average or ‘typical value’ is an 
alternative form of aggregation. A simple example is the arithmetic mean 

for d1, …, dn ∈ ℝ. Although symmetric, this aggregation rule fails to be consistent, because it is not 
associative: 

except for special cases.
However, the aggregation rule 

overcomes this problem. By ‘inflating’ the set I from ℝ to ℝ × ℝ>0, the aggregation rule becomes a 
function of 

∑
n
i=1

widi and 
∑

n
i=1

wi. With Φ(d) = Φ(d,w) = (wd,w), we get 

log

(
n∏

i= 1

di

)
=

n∑
i= 1

logdi.

(7)An (d1,…, dn ) =
1

n

n∑
i= 1

di,

1

3

(
d1 + d2 + d3

)
≠

1

2

[
1

2

(
d1 + d2

)
+ d3

]
,

(8)An ( (d1, w1 ) ,…, (dn, wn ) ) =

⎛⎜⎜⎝

�
n�

i= 1

wi

�−1 n�
i= 1

widi,

n�
i= 1

wi

⎞⎟⎟⎠

Φ(An (d1,…, dn ) ) = Φ

⎛
⎜⎜⎝

�
n�

i= 1

wi

�−1 n�
i= 1

widi,

n�
i= 1

wi

⎞
⎟⎟⎠

=

⎛⎜⎜⎝

n�
i= 1

wi

�
n�

i= 1

wi

�−1 n�
i= 1

widi,

n�
i= 1

wi

⎞⎟⎟⎠
=

�
n�

i= 1

widi,

n�
i= 1

wi

�

=

n�
i= 1

�
widi, wi

�

=

n�
i= 1

Φ (di ) .
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This verifies that aggregation rule (8) satisfies (6). Therefore, it is consistent. The relation between 
Equations (7) and (8) is that the arithmetic mean (7) is the first component of An ( (d1, 1) , …, (dn, 1) ). 
This shows how consistency is only achieved after augmenting the original aggregation rule.

Another simple example is the geometric mean 

for d1, …, dn ∈ ℝ>0. Since 

this aggregation rule is not associative. However, the aggregation rule 

is a function of 
∏

n
i=1

d
wi

i
 and 

∑
n
i=1

wi. With Φ(d) = Φ(d,w) = (w log d, w), we get 

This establishes consistency of aggregation rule (10). Then, the geometric mean (9) is the first component 
of An ( (d1, 1) , …, (dn, 1) ) and n is its second component.

4 |  PRICE INDICES AND THEIR ATTRIBUTES

Price index formulae, too, are maps that compute some kind of average, namely the ‘overall price 
change’. Therefore, one can attempt to transform them into a consistent aggregation rule. As a pre-
liminary step, the concept of primary and secondary attributes of a price index must be introduced. 
The actual transformation of a price index into a consistent aggregation rule is deferred to Section 6.

Let S denote the set of integers i = 1, …, N, where each integer represents one of the N items of an 
economy. All items are available during the base period (t = 0) and the comparison period (t = 1). The 
period t vector of prices is denoted by pt = (pt

1
, …, pt

N
), and the corresponding vector of quantities 

(9)An (d1,…, dn ) =

(
n∏

i= 1

di

)1∕n

,

(
d1d2d3

)1∕3
≠

[(
d1d2

)1∕2
d3

]1∕2

,

(10)An ( (d1, w1 ) ,…, (dn, wn ) ) =

⎛
⎜⎜⎝

�
n�

i= 1

d
wi

i

�1∕
∑

n
i = 1

wi

,

n�
i= 1

wi

⎞
⎟⎟⎠

Φ(An (d1,…, dn ) ) = Φ

⎛
⎜⎜⎝

�
n�

i= 1

d
wi

i

�1∕
∑

n
i = 1

wi

,

n�
i= 1

wi

⎞
⎟⎟⎠

=

⎛⎜⎜⎝

�
n�

i= 1

wi

�
log

�
n�

i= 1

d
wi

i

�1∕
∑

n
i = 1

wi

,

n�
i= 1

wi

⎞⎟⎟⎠
=

�
n�

i= 1

wilogdi,

n�
i= 1

wi

�

=

n�
i= 1

�
wilogdi, wi

�

=

n�
i= 1

Φ(di ) .
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by xt = (xt
1
, …, xt

N
). It is customary to interpret a price index as a mapping of the N-dimensional 

vectors p0, x0, p1, and x1 into a single positive number, P ′ (p0, x0, p1, x1 ).
In practical work, the prices and quantities p0

i
, x0

i
, p1

i
 and x1

i
 are usually not known. Instead, only the 

expenditures v0
i
= p0

i
x0

i
 and v1

i
= p1

i
x1

i
 as well as the price ratios ri = p1

i
∕ p0

i
 are available.5 However, 

this does not represent a confinement as long as the applied price index formulae satisfy the commen-
surability axiom. This axiom postulates that 

where Λ is some arbitrary N  ×  N diagonal matrix with positive entries �i (e.g. von Auer, 2004, 
pp. 386–387; Eichhorn & Voeller, 1976, p. 24). For a price index that satisfies this axiom, the in-
formation in the four vectors p0, x0, p1 and x1 is equivalent to the information contained in the 
three vectors r = (r1, …, rN ), v0 = (v0

1
, …, v0

N
), and v1 = (v1

1
, …, v1

N
). Therefore, we get 

P � (p0, x0, p1, x1 ) = P � (1, v0, r, v1 ∕ r ) = P (r, v0, v1 ), where 1=(1, …, 1). This is the commensura-
bility for �i = 1∕p0

i
.

As an example, consider the Walsh index: 

 This price index satisfies the commensurability axiom. Therefore, it can be written in the following form: 

 Just like the Laspeyres index, 

the Walsh index can be interpreted as a weighted arithmetic mean of the price ratios, ri, where the weights 
represent expenditure weights. However, whereas the Laspeyres weights use only base period expendi-
tures, v0

i
, the weights of the Walsh index are geometric means of the base period expenditures, v0

i
, and the 

‘deflated’ comparison period expenditures, v1
i
∕ ri.

One can show (e.g. von Auer, 2004, p. 393) that all sensible price index formulae satisfy the com-
mensurability axiom. Therefore, any sensible price index can be written in the form P(r, v0, v1 ) and 
we can take J = ℝ

3
>0

 as the set of possible data, (ri, v0
i
, v1

i
), for every item i. With N items, the set of 

data is (r, v0, v1 ) ∈ JN.

 5In the price statistics literature, the variables v0

i
 and v1

i
 are usually denoted as ‘values’. However, in the present paper, the 

term ‘value’ would have multiple meanings. To avoid confusion, we denote the variables v0

i
 and v1

i
 as ‘expenditures’.

P �
(
p0Λ, x0Λ−1, p1Λ, x1Λ−1

)
= P � (p0, x0, p1, x1 ) ,

P �Wa (p0, x0, p1, x1 ) =

∑
i∈Sp1

i

�
x0

i
x1

i

∑
i∈Sp0

i

�
x0

i
x1

i

.

(11)PWa (r, v0, v1 ) =

∑
i∈S

�
v0

i
v1

i
ri

∑
j∈S

�
v0

j
v1

j
∕rj

(12)=
�
i∈S

ri

�
v0

i
v1

i
∕ri

∑
j∈S

�
v0

j
v1

j
∕rj

.

PLa (r, v0, v1 ) =
�
i∈S

ri

v0
i∑

j∈Sv0
j

,
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It is customary to interpret a price index formula as a rule that aggregates a finite set of data 
(r, v0, v1 ) into a single datum P(r, v0, v1 ) ∈ ℝ>0, where it is understood that for each size of the 
data set, this mapping has the ‘same functional form’. As pointed out before, the expression ‘same 
functional form’ is not quite appropriate, because these mappings have different domains, and there-
fore, are totally different objects. As a consequence, the customary definition of a price index formula 
is not fully satisfactory. To account for different domains, we introduce the following definition of a 
price index (see also Definition 3.1 in Pursiainen, 2005, p. 21).

Definition 4  A price index P for J = ℝ
3
>0

 is a sequence P = (Pn )n∈ℕ of symmetric and continu-
ous maps 

with P1 (ri, v0
i
, v1

i
) = ri for all (ri, v0

i
, v1

i
) ∈ J.

The primary purpose of a price index formula is the computation of the overall price change P 
of the N items in set S, given the data set (r, v0, v1 ) ∈ JN. Restricting the set S to a single item i, 
the ‘overall price change’ should be the item’s price ratio, ri = p1

i
∕ p0

i
. Therefore, the price ratio ri 

is denoted here as the primary attribute of a price index. A price index can be interpreted as a trans-
formation of the primary attribute’s values r into some aggregate value Pn. However, the value of Pn 
depends not only on r, but also on v0 and v1. Therefore, we denote v0

i
 and v1

i
 as secondary attributes. 

More generally, secondary attributes are defined in the following way:

Definition 5 A vector valued secondary attribute is a mapping 

where Q ≥ 1 and J = ℝ
3
>0

 is the set containing the original data (r, v0, v1 ).
This definition implies that a secondary attribute’s value corresponding to some item i, 

z
q

i
(q = 1, …, Q), exclusively depends on (ri, v0

i
, v1

i
). A price index can have alternative vectors of 

secondary attributes. For example, the Walsh index (12) can be viewed as a function of the primary 
attribute r and the secondary attribute z = (z1, z2 ) = (v0, v1 ). However, this index can be also inter-
preted as a function of the primary attribute r and the secondary attribute z =

√
v0v1 ∕ r.

Before we move on to develop a rigorous definition of consistency in aggregation of price indices, 
we present an empirical application of a two-stage price index computation.

5 |  APPLICATION TO SWEDISH PRICE DATA: PART A

The underlying data of this empirical application have been acquired from Statistics Sweden. They 
cover the base year 2010 (t = 0) and the comparison year 2011 (t = 1). The informational set is 
(r, v0, v1 ) ∈ J360 where the elements v0

i
 and v1

i
 are annual household expenditures on 360 basic head-

ings i and the elements ri are the respective price ratios. As pointed out before, for the purpose of 
computing a price index, this informational set is as good as the set 

(
p0, x0, p1, x1

)
.

Both the expenditure and price data are disaggregated at the four-digit level COICOP classifica-
tion. Table 1 shows an excerpt of the original data set. It lists for each basic heading i the COICOP 
number, the product group number, the product name, the price ratio ri, and the expenditures v0

i
 and v1

i
.  

The last column can be ignored for the moment.

Pn: Jn
→ ℝ>0, (r, v0, v1 ) ⟼ Pn (r, v0, v1 ) ,

z =
(
z1,…, zQ

)
: J → M ⊆ ℝ

Q

>0
,
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In 2005, Statistics Sweden implemented the Walsh index (12) for the compilation of its consumer 
price index (for details see Bäckström & Sammar, 2012, p. 2). Therefore, the same price index is used 
here. A single-stage computation of the Walsh index (12) yields the index number PWa = 1.0275, that 
is, an overall inflation of 2.75%.6

For the two-stage computation, the 360 items are partitioned into the two subsets S1 (core inflation) 
and S2 (non-core inflation), where the items i = 1, 2, …, 301 are assigned to the subset S1 while the 
items i = 302, …, 360 are assigned to the subset S2. An item’s price ratio, ri, is defined as its primary 
attribute and the term zi =

√
v0

i
v1

i
∕ ri is chosen as the only secondary attribute of the Walsh index 

(therefore, at zi no superscript is necessary). For each item i, the value of its primary attribute is listed 
in Table 1 in the column with the heading ri while the value of its secondary attribute zi =

√
v0

i
v1

i
∕ ri 

is listed in the last column.
For each subset, the value of its primary attribute (PWa

1
 and PWa

2
) is computed by the Walsh index 

formula 

 6Our data and our price index formulae are not completely equivalent to the data and methodology underlying the 
compilation of the official Swedish consumer price index.

(13)PWa
k

=
�
i∈Sk

ri

zi∑
j∈Ak

zj

.

T A B L E  1  Numerical illustrationa—two-stage aggregation of Walsh index

Basic heading information Sec. attrib.

i COICOP Group Product ri v0

i
v1

i
zi =

√

v0

i
v1

i
∕ ri

Core inflation( S1 )

1 01.1.1 1113 Wheat bread 1.0333 1524 1562 1517.8

2 01.1.1 1114 Danish pastry 1.0318 203 208 202.3

3 01.1.1 1116 Cookies 1.0131 664 676 665.6

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

76 03.1 3206 Men jacket 1.0774 3505 3571 3408.4

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

301 12.7 9704 Lawyer fees 1.0282 1067 1085 1061.1

PWa

1
= 1.0264 Z1 = 1 257 744.8

Non-Core inflation (S2)

302 01.1.3 1307 Herring 1.0438 155 128 137.9

303 01.1.3 1314 Cod 0.9234 272 164 219.8

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

312 01.1.6 1617 Pears 0.9446 501 469 498.7

313 01.1.6 1618 Apples 1.0455 1354 1775 1516.2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

356 04.5.x 4702 Fuel oil 1.1278 2150 1765 1834.3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

360 07.2.2 6225 E 85 fuel 1.0479 1205 1245 1196.5

PWa

2
= 1.0355 Z2 = 178 317.6

aSource: Statistics Sweden, Consumer Price Index Data for 2010–2011. 
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This yields PWa
1

= 1.0264 and PWa
2

= 1.0355. In other words, the Swedish core inflation is 2.64%, while 
the non-core inflation is 3.55%. Recall that the overall inflation rate was 2.75%, that is, slightly larger than 
the core inflation rate. Note that formula (13) is the same as Equation (12), the formula applied for the 
single-stage computation. The aggregate values of the secondary attributes are 

These two numbers are also listed in Table 1.
The second-stage index formula is 

with K = 2. This is again the same basic formula as in the single-stage computation. Inserting the results 
of the first-stage computations 

(
PWa

1
, Z1

)
 and 

(
PWa

2
, Z2

)
 in the second-stage formula (14) yields the two-

stage index number PWa = 1.0275. This is exactly the same index number as in the single-stage compu-
tation (13). Furthermore, the Walsh index (13) seems to satisfy all of the four consensus conditions. This 
suggests that the Walsh index might be consistent in aggregation.

This is a remarkable conjecture, because ‘…something resembling a consensus has emerged in the 
index number literature that inflation and growth should be measured using superlative index number 
formulae … (Hill, 2006, p. 27)’. The Walsh index is one of the three advocated superlative price indi-
ces, the others being the Fisher index, 

and the Törnqvist index, 

The concept of superlative price indices was introduced by Diewert (1976). A price index receives 
the title ‘superlative’, if an aggregator function (utility function or expenditure function) with a ‘flex-
ible’ functional form exists, such that its corresponding cost of living index yields the same result as 
the price index. An aggregator function is ‘flexible’, if it can provide a second-order approximation to 
an arbitrary twice differentiable linearly homogeneous aggregator function.

It is well known that the superlative indices of Walsh, Fisher and Törnqvist possess a num-
ber of desirable properties and that they approximate each other closely (e.g. Diewert, 1978, p. 888; 
Hill, 2006, p. 27). However, there is a general perception that none of these superlative price indices 
is consistent in aggregation (e.g. von Auer, 2004, p. 397; Balk, 2008, pp. 107–108; Diewert, 1978,  
p. 889; Diewert, 2004a, p. 349–350; van Yzeren, 1958, p. 432–433). Even though Diewert (1978,  
p. 889) shows that these indices are ‘approximately consistent in aggregation’, empirical studies that con-
duct a multi-stage analysis usually avoid superlative price indices. Possibly, a superlative index that is 
merely approximately consistent in aggregation, is not considered as suitable for a multi-stage analysis. 
The empirical application of the present paper suggests that, contrary to general perception, at least one of 
the (superlative) indices is consistent in aggregation. In the remaining sections, this conjecture is verified.

Z1 =
∑
i∈S1

zi = 1 257 744.8 and Z2 =
∑
i∈S2

zi = 178 317.6.

(14)PWa =

K�
k= 1

PWa
k

Zk∑
K
l=1

Zl

,

(15)PFi =

�∑
i∈Sv0

i
ri∑

i∈Sv0
i

∑
i∈Sv1

i∑
i∈Sv1

i
∕ri

�1∕2

,

(16)lnPT ö =
�
i∈S

ln
�
ri

� 1

2

�
v0

i∑
j∈Sv0

j

+
v1

i∑
j∈Sv1

j

�
.
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6 |  CONSISTENT AGGREGATION OF PRICE INDICES

A price index P in the sense of Definition 4 is not an aggregation rule in the sense of Definition 1, 
because the maps Pn have values in ℝ>0 instead of J = ℝ

3
>0

. However, a price index formula P can be 
transformed to become an aggregation rule in the sense of Definition 1. The first step is to transform 
the original data set: 

(
ri, v0

i
, v1

i

)
⟼ di = (ri, zi ) ∈ I = ℝ>0 × M ⊆ ℝ

Q

>0
, i  =  1,  …,  n, where 

z : J → M is a secondary attribute and zi = z
(
ri, v0

i
, v1

i

)
. In a second step, an aggregation rule must be 

specified in the sense of Definition 1, An

(
d1, …, dn

)
.

For example, the Walsh index (12) can be transformed into an aggregation rule AWa
n

(
d1, …, dn

)
 

with di =
(
ri, zi

)
 and zi = zi =

√
v0

i
v1

i
∕ ri. This aggregation rule has two components. The first one 

is the price index formula (12). It maps the data set In into ℝ>0, that is, into some aggregated value 
of the primary attribute. This aggregate value depends on the individual values of the primary and 
secondary attribute. The aggregation rule’s second component is a mapping that transforms the in-
dividual values of the secondary attribute zi into some aggregate value 

∑
n
i=1

zi. This aggregate value 
exclusively depends on the individual values of the secondary attribute. Finally, the two components 
are combined to 

with di =
(
ri, zi

)
=

(
ri, zi

)
=

(
ri,

√
v0

i
v1

i
∕ ri

)
. The maps AWa

n
 form an aggregation rule A for 

I = ℝ2
>0

 in the sense of Definition 1. The superscript “Wa” emphasizes that this aggregation rule corre-
sponds to the Walsh Index.

Formula (11) suggests that an alternative form for an aggregation rule relating to the Walsh index exists: 

with di =
(
ri, z1

i
, z2

i

)
=

(
ri,

√
v0

i
v1

i
ri,

√
v0

i
v1

i
∕ ri

)
. This alternative aggregation rule has three instead of two 

components. The first one is the price index formula (11). In contrast to the first component of AWa
n

, the 
first component of AWa ′

n
 does not depend on the values of the primary attribute, but only on the values of 

the secondary attribute zi.
As a second example, consider the Fisher index PFi defined by formula (15). It can be transformed 

into the aggregation rule 

with di =
(
ri, zi

)
=

(
ri, z1

i
, z2

i
, z3

i
, z4

i

)
=

(
ri, v0

i
ri, v0

i
, v1

i
, v1

i
∕ ri

)
.7 This aggregation rule has five 

components. The first component is the price index formula (15). As was true for the aggregation rule 
AWa ′

n
, this first component does not depend on the values of the primary attribute.

Similarly, the Törnqvist index can be written in the form 

(17)AWa
n

�
d1,…, dn

�
=

�
n�

i= 1

ri

zi∑
n
j=1

zj

,

n�
i= 1

zi

�
,

(18)AWa �

n

�
d1,…, dn

�
=

�∑
n
i=1

z1
i∑

n
i=1

z2
i

,

n�
i= 1

z1
i
,

n�
i= 1

z2
i

�
,

(19)AFi
n

�
d1,…, dn

�
=

⎛⎜⎜⎝

�∑
n
i=1

z1
i∑

n
i=1

z2
i

∑
n
i=1

z3
i∑

n
i=1

z4
i

�1∕2

,

n�
i= 1

z1
i
,

n�
i= 1

z2
i
,

n�
i= 1

z3
i
,

n�
i= 1

z4
i

⎞⎟⎟⎠
,

 7We owe this insight to Bjørn Kjos-Hanssen.
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 The corresponding aggregation rule is 

with di
=

(
r

i
, z

1
i
, z

2
i
, z

3
i
, z

4
i

)
=

(
r

i
, ln

(
r

i

)
v

0
i
, v

0
i
, ln

(
r

i

)
v

1
i
, v

1
i

)
. Again, the first component does not depend 

on the primary attribute.
In Definitions 4 and 5, a price index P and its secondary attribute z were defined. Consistency 

of an aggregation rule was defined in Definition 2. Building on these three definitions, we define 
consistency of aggregation of a price index formula P with an explicit reference to its secondary 
attribute:

Definition 6 A price index P = (Pn )n∈ℕ is consistent in aggregation with respect to a secondary 
attribute z : J → M, if there is a consistent aggregation rule A = (An )n∈ℕ for I = ℝ>0 × M 
with continuous An such that Pn (r, v0, v1 ) with (r, v0, v1 ) ∈ Jn is the first component of 
An

(
d1, …, dn

)
 for all n ∈ ℕ and di =

(
ri, zi

)
∈ I with i = 1, …, n, where zi = z

(
ri, v0

i
, v1

i

)
.

This definition emphasizes the continuity of the consistent aggregation rule A. In the Appendix 
(Proposition 9), it is shown that a neglect of continuity has absurd consequences.

In Definition 6, the phrase ‘with respect to a secondary attribute z’ is important, because the defi-
nition allows for a wide range of possible secondary attributes and not all of them may appear appeal-
ing. Different views on what constitutes an admissible secondary attribute have given rise to a wide 
variety of definitions of consistency in aggregation. However, a discussion of these definitions and of 
what constitutes an admissible secondary attribute, is deferred to Section 10. For the time being, we 
examine whether price indices exist that are consistent in aggregation with respect to some secondary 
attribute z in the broad sense of Definition 6. We begin with the three superlative price indices (Fisher, 
Törnqvist, Walsh).

7 |  CONSISTENCY OF SUPERLATIVE PRICE INDICES

To prove that some price index is consistent in aggregation with respect to some z, one has to trans-
form the price index in an aggregation rule that is consistent.

Proposition 3 Let P = (Pn )n∈ℕ be a price index and z =
(
z1, …, zQ

)
: J → M ⊆ ℝ

Q

>0
 a second-

ary attribute such that M is stable under addition and for some continuous function h : M → ℝ>0 
we have 

(20)lnP
Tö =

1

2

�∑
i∈S

ln
�
r

i

�
v

0
i∑

i∈S
v

0
i

+

∑
i∈S

ln
�
r

i

�
v

1
i∑

i∈S
v

1
i

�
.

(21)A
Tö

n

�
d1,…, d

n

�
=

�
exp

�
1

2

�∑n

i=1
z

1
i∑n

i=1
z

2
i

+

∑n

i=1
z

3
i∑n

i=1
z

4
i

��
,

n�
i= 1

z
1
i
,

n�
i= 1

z
2
i
,

n�
i= 1

z
3
i
,

n�
i= 1

z
4
i

�
,

P
n

(
r, v

0
, v

1
)
= h

(
n∑

i= 1

z
1
(
r

i
, v

0

i
, v

1

i

)
,…,

n∑
i= 1

z
Q
(
r

i
, v

0

i
, v

1

i

))
.
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 Then P is consistent in aggregation with respect to z with the aggregation rule for I = ℝ>0 × M 
defined by 

Proof.  We only have to check consistency of the stated aggregation rule (with the obvious addi-
tional definition A1 (r, z) = (r, z)). This follows from Proposition 1 and the representation 

since (r, z) ⊕  (s, w) =  (h(z + w), z + w) defines a commutative and associative binary 
 operation on I.  ▪

Proposition 3 is extremely useful in the context of superlative price indices. Diewert (1976, pp. 
131–135) derives two related price index families that are superlative. One family is denoted as the 
quadratic-mean-of-order-s price indices: 

 For s = 2, formula (22) yields the Fisher index (15). The second family is denoted as the implicit quadrat-
ic-mean-of-order-s price indices. The label indicates that this family is implicitly derived from the family 
of quadratic-mean-of-order-s quantity indices and the expenditure ratio 

�∑
N
i=1

v1
i

�∑
N
i=1

v0
i

�
: 

 Note that v1
i
∕ (v0

i
ri ) = x1

i
∕ x0

i
. For s = 1, formula (23) yields the Walsh index (11).

Proposition 4 The Fisher index (15) is consistent in aggregation with respect to the secondary attri-
bute z =

(
v0r, v0, v1, v1 ∕ r

)
. The Törnqvist index (20) is consistent in aggregation with respect 

to the secondary attribute z =
(
ln(r )v0, v0, ln(r)v1, v1

)
.

Proof.  As the first component of the aggregation rule As
n
 corresponding to the family of price indi-

ces (22), we can invoke Proposition 3 and define the function 

An ( (r1, z1 ) ,…, (rn, zn ) ) =

(
h

(
n∑

i= 1

zi

)
,

n∑
i= 1

zi

)
.

An ( (r1, z1 ) ,…, (rn, zn ) ) = (r1, z1 ) ⊕⋯⊕ (rn, zn ) ,

(22)
for s≠0: Ps

�
r, v0, v1

�
=

⎛⎜⎜⎜⎝

∑N

i=1

�
ri

�s∕2
�

v0
i

�∑N
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j

�
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�
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�
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i
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v1

j

�
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1∕s

,

for s=0: Ps
�
r, v0, v1

�
=PTö.
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s �
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with z =
(
v0rs∕2, v0, v1, v1r− s∕2

)
. For s = 2, function (24) simplifies to the Fisher index (15). For 

the first component of the aggregation rule AT ö
n

 defined in Equation (21), we can choose 

with z =
(
ln(r )v0, v0, ln(r)v1, v1

)
.  ▪

Proposition 5 The Walsh index (11) is consistent in aggregation with respect to the secondary 
attribute z =

�√
v0v1r,

√
v0v1∕r

�
 and, for s = 1, with respect to the secondary attribute 

z =
(

(v0r ) s∕2 (v1 ) ( 2− s )∕2, (v1∕r ) s∕2 (v0 ) ( 2− s )∕2, v1, v0
)
.

Proof.  The first component of the aggregation rule AWa ′

n
 defined in Equation (18) is 

with z =
�√

v0v1r,
√

v0v1∕r
�
. Alternatively, as the first component of the aggregation rule As

n
 

corresponding to the family of price indices (22), we can define the function 

with z =
(

(v0r ) s∕2 (v1 ) ( 2− s )∕2, (v1∕r ) s∕2 (v0 ) ( 2− s )∕2, v1, v0
)
. For s = 1, this function simplifies 

to the Walsh index defined in Equation (11).  ▪
Economic theory and practical considerations imply that not all secondary attributes are equally 

appealing. In Section 10, we will demonstrate that this is the reason why different notions of con-
sistency in aggregation have been proposed in the literature. We will introduce four potential re-
quirements that secondary attributes should possibly satisfy. For example, the secondary attributes 
z = (

√
v0v1r,

√
v0v1 ∕ r) corresponding to the aggregation rule AWa ′

n
 satisfy only two of these re-

quirements. However, we know that the aggregation rule AWa
n

 is another candidate for the Walsh index. 
In contrast to the aggregation rule AWa ′

n
, the aggregation rule AWa

n
 has a single secondary attribute: 

z =
√

v0v1 ∕ r. This attribute satisfies three of the four potential requirements.
But what can be said about the consistency in aggregation of AWa

n
 with respect to z =

√
v0v1∕r?  

Since the secondary attribute of the aggregation rule AWa
n

 does not have the form specified in 
Proposition 3, we need an alternative route to prove consistency. It turns out that this alternative route 
is also useful to prove the consistency in aggregation of many other price indices with respect to some 
secondary attribute.

Consider again the weighted arithmetic mean defined by Equation (8). Utilizing Proposition 2, 
we could show that this aggregation rule is consistent. The aggregation rule AWa

n
 defined in Equation 

(17) is a special case of Equation (8) with di = ri and wi = zi =
√

v0
i
v1

i
∕ ri. Therefore, the Walsh 

index is consistent in aggregation with respect to the secondary attribute z =
√

v0v1 ∕ r. The example 
reveals that Proposition 2 provides an elegant route to prove an aggregation rule’s consistency and that 
a similar route exists for proving that a price index is consistent in aggregation with respect to some 
secondary attribute z.
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Proposition 6 Let P = (Pn )n∈ℕ be a price index with a secondary attribute z : J → M ⊆ ℝ
Q

>0
,  

where M is stable under addition. Set I = ℝ>0 × M and assume that there is a continuous 
function f : I → L (where L is either ℝ>0 or ℝ) such that, for each m  ∈  M, the partial function 
r ↦ f(r,m) is invertible on ℝ>0 and that 

for all n ∈ ℕ, (r, v0, v1 ) = (ri, v0
i
, v1

i
) i≤n ∈ Jn, and zi = z

(
ri, v0

i
, v1

i

)
. Then P is consistent 

in aggregation with respect to z.
Proof.  We define Φ : I → L × M by Φ(r, m) = (f(r, m), m). The invertibility of r↦f(r, m) implies 

that Φ is also invertible. For di =
(
ri, mi

)
, we can define the quasi-sum 

It follows from Proposition 2 that An (d1, …, dn ) = d1 ⊕A ⋯⊕A dn is a consistent aggregation 
rule for I. The continuity of f implies that of An. It is left to be shown that Pn

(
r, v0, v1

)
 is the first 

component of An (d1, …, dn ). Using the definition of Φ and the assumptions on f, we have

This gives 

as required.  ▪
Utilizing Proposition 6, it is easy to formally prove the following result:

Proposition 7 The Walsh index (12) is consistent in aggregation with respect to the secondary at-
tribute z =

√
v0v1 ∕ r.

Proof.  Multiplying both sides of Equation (12) by 
∑

N
j=1

�
v0

j
v1

j
∕ rj, the Walsh index, PWa

n
, can be 

expressed as in Equation (25) with 

(25)f

(
Pn

(
r, v0, v1

)
,

n∑
i= 1

zi

)
=

n∑
i= 1

f (ri, zi )

d1⊕Ad2 = Φ−1 (Φ(d1 ) +Φ(d2 ) ) .

Φ

(
Pn

(
r, v0, v1

)
,

n∑
i= 1

zi

)
=

(
f

(
Pn

(
r, v0, v1

)
,

n∑
i= 1

zi

)
,

n∑
i= 1

zi

)

=

(
n∑

i= 1

f(ri, zi ) ,

n∑
i= 1

zi

)

=

n∑
i= 1

(
f(ri, zi ) , zi

)

=

n∑
i= 1

Φ(di ) .

(
Pn

(
r, v0, v1

)
,

n∑
i= 1

zi

)
= Φ−1

(
n∑

i= 1

Φ (di )

)

= d1⊕A⋯⊕Adn

= An (d1,…, dn ) ,
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and 

The function f satisfies the assumptions stated in Proposition 6.  ▪
Definition 6 leaves a lot of, perhaps too much, scope of discretion in our choice of secondary attributes. 

As pointed out before, in Section 10 we will return to this issue. There we discuss additional requirements 
that restrict the set of admissible secondary attributes and the way these attributes are aggregated.

Before we move on to show that many other price index formulae are consistent in aggregation with respect to 
some secondary attribute z, we emphasize a general insight from our discussion of the Walsh index. We learnt that 
for this price index formula different secondary attributes are available, including z = (v0, v1 ), z =

√
v0v1 ∕ r,  

z = (
√

v0v1r,
√

v0v1 ∕ r), and z = ( (v0r ) s∕2 (v1 ) ( 2− s ) ∕2, (v1∕r ) s∕2 (v0 ) ( 2− s ) ∕2, v1, v0 ). Of 
course, in the context of a single-stage computation, the choice of the secondary attribute does not affect 
the index number. All options are equivalent. However, this equivalence does not carry over to a two-stage 
computation. When z =

√
v0v1 ∕ r is chosen, the index number coincides with the index number obtained 

from the single-stage computation. However, when z =
(
v0, v1

)
 is chosen, a different index number is pro-

duced. Therefore, in a two-stage computation, the choice of the secondary attribute matters. This important 
difference between single-stage and two-stage computation applies not only to the Walsh index, but to all 
price indices P in the sense of Definition 4.

In Propositions 4, 5 and 7, we identified secondary attributes that ensure for superlative price in-
dices that the single-stage and two-stage computation yield the same index number. Next, we identify 
such secondary attributes for price indices that are not superlative.

8 |  CONSISTENCY OF OTHER PRICE INDICES

Besides the superlative price indices of Fisher, Törnqvist, and Walsh, numerous other price indices 
exist that are consistent in aggregation with respect to some secondary attribute z.

Proposition 8 The price index formulae P listed in Tables 2 and 3 are consistent in aggregation with 
respect to the secondary attributes specified in the last column of these tables.

Proof.  Tables 2 and 3 list for each price index the corresponding function f(ri, zi ) and the second-
ary attributes zq

i
. Via Proposition 6, the function f(ri, zi ) yields an explicit construction for the 

aggregation rule A required in the definition of consistency.  ▪

Table 2 lists a number of traditional price indices, whereas many indices that von Auer (2014) 
categorizes as generalized unit value indices are listed in Table 3.

9 |  APPLICATION TO SWEDISH PRICE DATA: PART B

The three superlative price indices and all price indices listed in Tables 2 and 3 have been applied to 
the Swedish data set described in Section 5. Table 4 reports the Swedish overall, core and non-core 

f

(
PWa

n
(d1,…, dn ) ,

n∑
i= 1

zi

)
= PWa

N
(d1,…, dn )

N∑
i= 1

√
v0

i
v1

i
∕ri

f (di ) = f

(
ri,

√
v0

i
v1

i
∕ri

)
= ri

√
v0

i
v1

i
∕ri.
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inflation rates as measured by the various price indices. In the last four columns, the table shows the 
aggregate values of the respective secondary attributes.

The various index formulae produce very similar results for the overall inflation (second column). 
The same is true for the core inflation as well as for the non-core inflation (fourth column). As ex-
pected, the largest values are produced by the Laspeyres index, whereas the Paasche index generates 
the smallest values.

10 |  SOME ADDITIONAL REQUIREMENTS AND 
RELATED LITERATURE

The studies of Vartia (1976a,b) are the first formal treatments of consistency in aggregation. A more 
general definition of consistency in aggregation is proposed by Blackorby and Primont (1980, p. 96) 

T A B L E  2  Traditional price indices and their secondary attributes

Name Price index formula
Function 
f ( ri, z1

i
, …, z

Q

i
)

Secondary 
attributes zq

i

Laspeyres PLa =
∑

v0
i
ri∑

v0
i

ri zi v0
i

Paasche PPa =
∑

v1
i

∑
v1

i
∕ ri r− 1

i
zi v1

i

Marshall-Edgeworth PME =
∑

ri

v0
i
+ v1

i
∕ ri∑

(v0
i
+ v1

i
∕ ri)

ri zi ( v0
i
+ v1

i
∕ ri )

Walsh-2
ln PWa2 =

∑
ln ri

√
v0

i
v1

i

∑ √
v0

j
v1

j

ln ( ri ) zi

√
v0

i
v1

i

Walsh–Vartia
ln PWV =

∑
ln ri

�
v0

i∑
j ∈ Sv0

j

v1
i∑

j ∈ Sv1
j

ln ( ri )

√
z1

i
z2

i
v0

i
, v1

i

Theil
ln PTh =

∑
ln ri

3
√

1

2
( v0

i
+ v1

i
) v0

i
v1

i

∑ 3
√

1

2
( v0

j
+ v1

j
) v0

j
v1

j

ln ( ri ) zi 3

√
1

2
( v0

i
+ v1

i
) v0

i
v1

i

Vartiaa ln PVa =
∑

ln ri

L ( v0
i
,v1

i
)

L (
∑

v0
i
,
∑

v1
i

)
 with

 L ( a, b ) =

{
b − a

ln b − ln a
for a ≠ b

a for a = b

ln ( ri ) L ( z1
i
, z2

i
) v0

i
, v1

i

aSee Vartia (1976b, pp. 122–123). The index is sometimes called the Montgomery-Vartia index (e.g. Balk, 2008, p. 87). 

T A B L E  3  Generalized unit value indices and their secondary attributes

Name Price index formula
Function 
f ( ri, z1

i
, …, z

Q

i
)

Secondary 
attributes zq

i

Banerjee (GUV-3)a PBa =
∑

v1
i∑

v0
i

∑
v0

i (1 + ri)∑
v1

i (1 + 1 ∕ ri)
ri

z1
i

z2
i

z3
i

v0
i
, v1

i
, v1

i

1 + ri

ri

Davies (GUV-4)a PDa =
∑

v1
i∑

v0
i

∑
v0

i

√
ri∑

v1
i

√
1 ∕ ri

ri

z1
i

z2
i

z3
i

v0
i
, v1

i
, v1

i
, ∕

√
ri

(GUV-5)a 
PGUV − 5 =

∑
v1

i∑
v0

i

∑
v0

i (1 + r − 1
i )

− 1

∑
v1

i (1 + ri)
− 1

ri

z1
i

z2
i

z3
i

v0
i
, v1

i
, v1

i
∕ ( ri + 1 )

(GUV-6)a 
PGUV − 6 =

∑
v1

i∑
v0

i

∑
v0

i
r

v1
i
∕ (v0

i
+ v1

i )
i

∑
v1

i
r
− v0

i
∕ (v0

i
+ v1

i )
i

ri

z1
i

z2
i

z3
i v0

i
, v1

i
, v1

i
ri

− v0
i

v0
i

+ v1
i

Lehr (GUV-7)a PLe =
∑

v1
i∑

v0
i

∑
v0

i (v
0
i
+ v1

i )(v
0
i
+ v1

i
∕r)∑

v1
i (v

0
i
+ v1

i )(v
0
i
ri + v1

i )
ri

z1
i

z2
i

z3
i

v0
i
, v1

i
, v1

i

v0
i
+ v1

i

riv
0
i
+ v1

i

aSee von Auer (2014, pp. 850–852). 
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who also introduce the notion of primary and secondary attributes. We take their definition as a start-
ing point for the following discussion.

As in our Definition 6, Blackorby and Primont (1980, p. 96) postulate that a secondary attribute 
of some item i must exclusively use information that specifically relates to this item. In contrast to 
Definition 6, however, they allow only for quasi-additive aggregation of secondary attributes and they 

T A B L E  4  Numerical illustrationa—results of one- and two-stage aggregation

Name

One-stage 
aggregation

Two-stage aggregation

Secondary attributes Zq

k

k Pk Z1

k
Z2

k
Z3

k
Z4

k

Fisher 1.027496 1 1.026370 1 243 742 1 306 914 1 277 026 1 273 822

2 1.035407 182 775 180 275 189 468 174 315

Törnqvist 1.027699 1 1.026586 1.023309 1 243 742 1.029874 1 306 914

2 1.035481 1.034459 182 775 1.036504 180 275

Walsh 1.027516 1 1.026388 1 257 745 — — —

2 1.035471 178 318 — — —

Laspeyres 1.028025 1 1.026761 1 243 742 — — —

2 1.036621 182 775 — — —

Paasche 1.026968 1 1.025979 1 306 914 — — —

2 1.034194 180 275 — — —

Marshall-
Edgeworth

1.027492 1 1.026365 2 517 564 — — —

2 1.035436 357 090 — — —

Walsh-2 1.027465 1 1.026329 1 273 094 — — —

2 1.035476 181 355 — — —

Walsh–Vartia 1.027425 1 1.026291 1 243 742 1 306 914 — —

2 1.035443 182 775 180 275 — —

Theil 1.027563 1 1.026441 1 273 834 — — —

2 1.035475 181 411 — — —

Vartia 1.027564 1 1.026442 1 243 742 1 306 914 — —

2 1.035475 182 775 180 275 — —

Banerjee 1.027503 1 1.026375 1 243 742 1 306 914 2 580 736 —

2 1.035428 182 775 180 275 354 590 —

Davies 1.027547 1 1.026419 1 243 742 1 306 914 1 289 079 —

2 1.035449 182 775 180 275 177 170 —

(GUV-5)b 1.027589 1 1.026463 1 243 742 1 306 914 643 902 —

2 1.035469 182 775 180 275 88 523 —

(GUV-6)b 1.027457 1 1.026333 1 243 742 1 306 914 1 291 609 —

2 1.035437 182 775 180 275 177 237 —

Lehr 1.027500 1 1.026376 1 243 742 1 306 914 1 290 319 —

(GUV-7)b 2 1.035458 182 775 180 275 177 113 —
aSource: Statistics Sweden, Consumer Price Index Data for 2010–2011. 
bSee von Auer (2014, pp. 850–852). 
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do not preclude ‘external information’, that is, information other than prices and quantities (e.g. qual-
ity of an item). Blackorby and Primont (1980, p. 96) are well aware of the (too) general nature of their 
approach. They conclude: ‘Thus, unless there is some a priori notion of how the attributes are defined, 
this generalized consistency in aggregation notion does not seem helpful’.

The present paper has argued that in the specific context of price measurement such an a priori 
notion exists. In a price index computation, the only available pieces of information are those in the 
informational set I. The secondary attributes must exclusively use information from set I, that is prices 
and quantities, or equivalently, price ratios, ri, and expenditures, v0

i
 and v1

i
. Accordingly, Definition 6 

precludes any “external information”.
Nevertheless, some practitioners may still regard Definition 6 as too general, because it neglects 

some additional requirements that one possibly wants to attach to the secondary attributes and their 
aggregation. We discuss four increasingly restrictive requirements (Requirements A–D).

In Propositions 4, 7 and 8, we listed 15 price indices that are consistent in aggregation with respect 
to some secondary attribute z in the sense of Definition 6 (Proposition 5 is redundant here, because 
of Proposition 7). Adding the new requirements reduces the number of price indices that are con-
sidered as consistent in aggregation. Only 4 out of the 15 price indices satisfy all four requirements. 
Unfortunately, there is no agreement as to which requirements are sensible and necessary and which 
are not. So far, the different positions are not thoroughly related to each other and it would be overop-
timistic to expect a complete agreement on the issue. However, our formalized exposition adds more 
structure to the dispute and, as a result, may create a greater consensus. Definition 6 in conjunction 
with the list of additional requirements enables us to pinpoint the differences in past attempts of de-
fining consistency in aggregation. Therefore, the following discussion also provides a comprehensive 
review of the price index literature on consistency in aggregation.

From an economic perspective, the secondary attributes zq

i
 (q = 1, …, Q and i = 1, …, N) must 

reflect the importance of item i. The item’s importance is best measured by a function zq

i
(r, v0

i
, v1

i
) 

that aggregates the item’s expenditures v0
i
 and v1

i
 in a meaningful way. For example, the Walsh index 

uses the secondary attribute zi =
√

v0
i
v1

i
∕ ri, that is the geometric average of the base period expen-

ditures and the deflated comparison period expenditures. Obviously, the relative importance of items 
i and j should be invariant with respect to currency changes. The following requirement formalizes 
this postulate.

Requirement A  The ratios of the secondary attributes are invariant with respect to proportional 
changes of all expenditures: 

for q = 1, …, Q and i, j = 1, …, n.

The secondary attributes of all price indices listed in Propositions 4, 7, and 8 fulfil Requirement A. 
This list includes the superlative indices of Fisher, Walsh, and Törnqvist.

A price index that is consistent in aggregation with respect to a secondary attribute z, is a con-
sistent aggregation rule, An, that determines how the individual values of each secondary attribute, 
z

q

i
(q = 1, …, Q and i = 1, …, n), are transformed into the respective aggregated value, Zq. It 

seems reasonable to postulate that in this transformation an aggregated value, Zq, depends only on the 
individual values of the secondary attribute q: zq

1
, …, z

q
n. Which types of transformation are accept-

able? Since the secondary attributes, zq

i
, represent the weighting system of the index compilation, one 

zq (ri, v0
i
, v1

i
)

zq (rj, v0
j
, v1

j
)
=

zq (ri, �v0
i
, �v1

i
)

zq (rj, �v0
j
, �v1

j
)

,
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may demand that the aggregated values of the secondary attributes, Zq

k
, must be expressed in the same 

units as the individual values, zq

i
. Simple summation of the individual zq

i
-values preserves the units of 

measurement. Furthermore, simple summation ensures that the sum Zq =
∑

K
1

Z
q

k
 does not change as 

we remove some item i from subset k and assign it to some other subset l. The preceding demands can 
be combined in the following requirement:

Requirement B  The secondary attributes are aggregated additively: 

This precludes other quasi-additive aggregator functions such as multiplication. All secondary 
attributes of the price indices listed in Propositions 4, 7, and 8 satisfy also Requirement B.

Consensus condition (ii) stated that on both stages of a two-stage computation the ‘same functional 
form’ must be applied. As an extensive interpretation of this condition, one may postulate that any 
functional relationship between the secondary attributes of the individual items must carry over to 
the aggregated secondary attributes. For example, consider the four secondary attributes of the Fisher 
index (15). They are linked by 

 Let Zq =
∑

i∈Sz
q

i
 (q = 1, …, 4) denote the aggregate values of the secondary attributes. Since 

the relationships between the secondary attributes of the Fisher index (15) do not carry over to their ag-
gregated counterparts. The same applies to the Törnqvist index (20). More formally, the postulate can be 
stated in the following way:

Requirement C  If a map g exists, such that zq

i
= g (ri, z

−q

i
), where z−q

i
 is the vector of all secondary 

attributes except for attribute q, then Zq = g(P, Z−q ), where Zq is the aggregate value of all zq

i
 

with i  ∈  S, P is the price index with respect to set S, and Z−q are the aggregated values of all 
secondary attributes except for attribute q.

The Walsh index (12) has only one secondary attribute: zi =
√

v0
i
v1

i
∕ ri. Therefore, no violation 

of Requirement C can arise. A price index with two secondary attributes may or may not satisfy 
Requirement C. For example, the Walsh–Vartia index, 

can be interpreted as a price index with the two secondary attributes v0
i
 and v1

i
. Between these two 

attributes no functional relationship exists. Accordingly, Requirement C is fulfilled. However, when a 
price index has more than two secondary attributes (e.g. all price indices listed in Table 3 and the Fisher 
index), Requirement C is usually violated. As a function of three variables (r, v0, v1 ), the transformed 

An

(
(r1, z1

1
,…, z

Q

1
) ,…, (rn, z1

n
,…, zQ

n
)
)
=

(
Pn,

n∑
i= 1

z1
i
,…,

n∑
i= 1

z
Q

i

)
.

z1
i
= riz

2
i

and z4
i
= z3

i
∕ri.

Z1 ≠ PZ2 and Z4 ≠ Z3∕P,

lnPWV =
�
i∈S

���� v0
i∑

j∈Sv0
j

v1
i∑

j∈Sv1
j

lnri,
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information (r, z1, …, zQ ) lies in a low-dimensional ‘variety’ of the set I = ℝ>0 × M ⊆ ℝ1+Q so 
that one expects that many functional relations should hold in that variety. In a sense, Requirement 
C would only allow ‘linear’ relations (respecting the aggregation rule ⊕A on I) but no non-linear 
relations.

The secondary attributes of the Walsh index (12) and of all price indices listed in Table 2 fulfil 
Requirements A, B and C, while the secondary attributes of the Fisher index (15) and the Törnqvist 
index (20) violate Requirement C. It should be noted that this result doesn’t rule out that the Fisher 
index and the Törnqvist index might be consistent in aggregation with respect to some alternative 
secondary attributes z that happen to satisfy Requirements A, B and C.

From a theoretical perspective, it would be interesting to derive conditions under which such 
alternative secondary attributes may exist. This task is left for future research. Furthermore, for 
practitioners, such an analysis would be of less relevance. They are primarily interested in find-
ings that identify reasonable secondary attributes of a price index, such that this index is con-
sistent in aggregation with respect to these secondary attributes. Our Propositions 4, 5, 7, and 8 
represent such findings.

Some former studies on consistency of aggregation added to Requirements A, B and C the follow-
ing even more restrictive requirement (Balk, 1995, 1996, 2008; Pursiainen, 2005, 2008; Stuvel, 1989, 
p. 36; Vartia, 1976a,b; van Yzeren, 1958, p. 432):

Requirement D  Only the secondary attributes v0
i
 and v1

i
 are admissible.

Since the secondary attributes of the Walsh, Marshall–Edgeworth, Walsh-2 and Theil indices vi-
olate Requirement D, the only remaining price indices are the Laspeyres, Paasche, Walsh–Vartia and 
Vartia indices.

Is it possible to provide some justification for Requirement D? In an extremely extensive in-
terpretation of consensus condition (ii), one may postulate that the relationship between a second-
ary attribute z

q

i
 and the three basic variables ri, v0

i
 and v1

i
 from which this attribute is computed, 

must carry over to the aggregated values. For example, the Marshall–Edgeworth index, PME, has 
the secondary attribute zi = v0

i
+ v1

i
∕ ri. However, for the aggregate value Z =

∑
i∈Szi we get 

Z ≠ V0 + V1 ∕ PME, with Vt =
∑

i∈Svt
i
. Therefore, the relationship for the individual items does 

not carry over to their aggregated counterparts. In fact, formal correspondence between the compu-
tation of a zq

i
-value and the computation of its aggregated counterpart Zq requires that z1

i
= v0

i
 and/

or z2
i
= v1

i
, that is Requirement D.

von Auer (2004, pp. 386–391) criticises Requirement D as being too restrictive and proposes a 
milder version. Besides v0

i
 and v1

i
, he allows also for the ‘hybrid’ secondary attributes v0

i
ri = p1

i
x0

i
 and 

v1
i
∕ ri = p0

i
x1

i
. With these four admissible secondary attributes, the Marshall–Edgeworth index would 

re-enter the list of price indices that are consistent in aggregation.
Definition 6 does not award the label ‘consistent in aggregation’. Instead, it awards the label ‘con-

sistent in aggregation with respect to a secondary attribute z’. We propose to reserve the label ‘consis-
tent in aggregation’ for those price indices that satisfy Definition 6 and from Requirements A–D those 
that are deemed as indispensable.

Unfortunately, there is no consensus on the list of indispensable requirements. Some index users 
may consider Requirements A and B as indispensable, but not the other two requirements. Then, all 
price indices listed in Table 4 are consistent in aggregation. If Requirements A–C are deemed as com-
pulsory, the Fisher index, the Törnqvist index and all price indices listed in Table 3 drop out. If index 
users regard all four requirements as indispensable, then the Laspeyres, the Paasche, the Walsh–Vartia 
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and the Vartia index remain in the list, while the Walsh, the Marshall-Edgeworth, the Walsh-2 and the 
Theil index no longer qualify for the label ‘consistent in aggregation’.8

The latter four indices share with the Laspeyres and the Paasche index another property that is 
often appreciated in applied work. The indices can be written in the following form: 

with Zk =
∑

i∈Sk
zi. For example, in Sections 5 and 9, we applied the Walsh index to the Swedish con-

sumer price index data and obtained PWa = 1.0275, that is an overall inflation of 2.75%. In applied work, 
one may want to decompose these 2.75% into the contribution of the core inflation and the contribution of 
the non-core inflation. We know from our calculations that the core inflation was 2.64% (PWa

1
= 1.0264)  

and the non-core inflation 3.55% (PWa
2

= 1.0355). To compute the individual contributions, though, these 
two numbers are not sufficient. We also need weights that reflect the importance of the items assigned to 
core inflation relative to the items assigned to non-core inflation. These weights can be obtained from the 
secondary attribute. In Equation (26) the weight of each subset k is quantified by Zk ∕

∑
K
l=1

Zl. In our 
Swedish example, Equation (26) becomes 

The aggregated values of the secondary attributes were Z1 = 1 257 744.8 and Z2 = 178 317.6. Inserting 
all numbers in Equation (27) yields 

Even though the core inflation is much smaller than the non-core inflation, the contribution of the core 
inflation to the overall inflation of 2.75% is 2.31%, whereas the contribution of the non-core inflation is 
merely 0.44%. A detailed exposition of the decomposition properties of price indices can be found in Balk 
(2008, pp. 140–151).

11 |  CONCLUDING REMARKS

The computation of the overall price change is often conducted in a two-stage (or multi-stage) 
procedure, where on the first stage price changes of subgroups are computed and on the sec-
ond stage price changes of the subgroups are aggregated into the overall price change. In the 
literature, it has been postulated that the price index formula applied in such a multi-stage 
analysis should be consistent in aggregation. The present paper has argued that consistency 
in aggregation is a complex concept that requires a careful definition. Blackorby and Primont 
(1980) distinguished between the primary attribute of a price index and its secondary attributes. 

 8In the proofs of Propositions 4 and 5, secondary attributes were identified such that the quadratic-mean-of-order-s price 
indices defined by Equation (22) as well as the implicit quadratic-mean-of-order-s price indices defined by (23) are consistent 
in aggregation with respect to these secondary attributes. These attributes satisfy Requirements A and B, but not 
Requirements C and D.

(26)P − 1 =

K�
k= 1

(Pk − 1)
Zk∑K

l= 1
Zl

,

(27)PWa − 1 =
(
PWa

1
− 1

) Z1

Z1 + Z2

+
(
PWa

2
− 1

) Z2

Z1 + Z2

.

2.75 = 2.31 + 0.44.
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Combining this distinction with the general concept of a consistent aggregation rule, yields a 
thoroughly motivated basic definition of consistency in aggregation, specifically designed for 
the context of price measurement.

Surprisingly many price index formulae satisfy this basic definition of consistency in aggregation. 
Among these are the price indices of Fisher, Törnqvist, and Walsh. This is a remarkable finding be-
cause these indices are known as superlative price indices. In the literature, there has been a general 
perception that superlative price indices are particularly reliable for single-stage computations, but 
that they are not consistent in aggregation and therefore unsuitable for multi-stage computations. Our 
findings show that this perception cannot be sustained in the context of our new definition of consis-
tency in aggregation.

It was argued that further requirements can be added to the basic definition of consistency in aggre-
gation. Such additional requirements shrink the list of price indices that are consistent in aggregation. 
Four such requirements were discussed, with Requirements A and B being the most obvious ones, 
and Requirement D being the most contentious one. From an applied perspective, Requirements A–C 
appear particularly relevant. The Törnqvist index and the Fisher index only satisfy Requirements A 
and B, whereas the Walsh index satisfies all three requirements. Furthermore, the Walsh index allows 
for a simple additive decomposition of the overall price change into the contributions of individual 
subgroups (e.g. core inflation and non-core inflation).

In the national statistical offices of the 20th century, these appealing properties of the Walsh index 
would have received little attention, because all superlative price indices require information on the 
transacted quantities of the comparison period, and such information was simply not available. As a 
result, superlative indices, though serving as a theoretical benchmark, have played hardly any role 
in the routine procedures of official price statistics. With the advent of scanner price data in official 
price measurement, however, the situation has completely changed. In many countries (e.g. Belgium, 
Denmark, Iceland, the Netherlands, Norway, Sweden and Switzerland), scanner data have replaced 
traditional price collectors. Today, scanner data cover important segments of the consumption basket 
and they provide information about the comparison period’s expenditures, prices, and therefore, quan-
tities. With such data at hand, superlative price indices can be applied. This paper has shown that these 
indices are even suitable for the compilation of some overall price change by a multi-stage procedure 
and that the Walsh index is the primary candidate for this purpose.
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APPENDIX 

Proposition 9 Without the continuity requirement in Definition 6, every symmetric price index 
would be consistent in aggregation with respect to some secondary attribute.

Proof.  Considered as a ℚ-vector space the reals are ℝ-dimensional and using the axiom of choice as 
well as the fact that J = ℝ

3
>0

 and ℝ have the same cardinality we can thus take a Hamel basis 
{ea : a ∈ J} of ℝ. Let M be the set of all finite linear combinations of elements ea with (strictly 
positive) integer coefficients and define z : J → M by z (a) = ea.
The linear independence then implies for all a1, …, an, b1, …, bm ∈ J that 

 In order to apply Proposition 3 (more precisely, the version neglecting the continuity aspects), we 
want to define a function f : ℝ>0 × M → ℝ>0 such that 

n∑
i= 1

z (ai ) =

m∑
i= 1

z (bi ) → n = m and ai = b� ( i ) for some permutation �.

https://doi.org/10.1111/rssa.12633
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for all n ∈ ℕ, ai = (ri, v0
i
, v1

i
) ∈ J, and zi = z (ai ) so that all partial functions r ↦ f(r, m) are 

invertible.
Given m  ∈  M there are (up to the order) unique a1, …, an ∈ J with m = z (a1 ) + ⋯ + z (an ).  
We then set � (m ) = Pn (a1, …, an ), � (m ) = r1 + ⋯ + rn (where, as previously, ri is the first 
component of ai), and 

Of course, the partial functions r ↦ f(r,m) are invertible on ℝ>0.
In order to show the condition of Proposition 3 we take n ∈ ℕ and ai = (ri, v0

i
, v1

i
) ∈ J. For 

zi = z (ai ) we have � (zi ) = P1 (a1 ) = r1 and � (zi ) = ri so that 

Moreover, for m = z1 + ⋯ + zn and � = Pn (a1, …, an ) we have α(m)  =  ϱ and 
� (m ) = r1 + ⋯ + rn and hence 

which completes the proof.  ▪

f

(
Pn (a1,…, an ) ,

n∑
i= 1

zi

)
=

n∑
i= 1

f(ri, zi )

f(r, m ) = r� (m ) ∕� (m ) .

f (ri, zi ) = riri∕ri = ri.

f

(
Pn (a1,…, an ) ,

n∑
i= 1

zi

)
= �� (m ) ∕� (m ) =

n∑
i= 1

ri =

n∑
i= 1

f ( (ri, zi ) )


