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Preemption contests between groups

Stefano Barbieri∗
Kai A. Konrad∗∗
and

David A. Malueg∗∗∗

We consider a preemption game between competing groups; firms lobbying individually for their
groups’ interests provide an empirical example. Among symmetric groups, the first firm to take
action bears an (unobserved) cost and wins the prize on behalf of its group. In equilibrium, the
firm with the lowest cost takes action, but with delay. More competition and a smaller ratio of
costs to benefits reduce delay. Firms in larger groups wait longer, but group action can occur
earlier, as the probability of a low-cost firm is higher. Asymmetries in group size or strength of
externalities also matter.

1. Introduction

� We study incentives and equilibrium behavior when members of a group can preempt other
groups on behalf of their own group. In such a framework, group members’ free-riding incentives
inside the own group conflict with preemption motives that apply in the inter-group competition.
Each player prefers that his group preempts the other groups, but that another member of his
group is the preempting player who bears the costs of the preemptive action.

As an illustrative example, consider two industries, both of which can press a policy to im-
plement trade regulations in their favor. The CEOs of the companies of these two industries may
take action on behalf of their own groups: for example, when they talk to influential politicians,
they can explain why such protection policies are necessary for their industry. Similar considera-
tions apply to other lobbying contexts. Yackee (2019) surveys the general literature on the politics
of rule making. She alludes to Yackee (2012) who finds that “off the public record” communi-
cation between lobbyists and regulators may influence regulatory rules at an early preproposal
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stage: early lobbying can have an agenda-setting role. As access to decision makers is a scarce
resource and the mental readiness and receptiveness of politicians are limited, volunteering on
behalf of one’s own industry also has an opportunity cost: the CEO cannot use this opportunity
to lobby for a more firm specific interest, for instance. In the absence of competition from other
industries, a CEO may prefer to pitch for his or her own company interests and hope that other
CEO colleagues will stand up for the interests of their industries. CEOs can meet politicians in
different forums.1 Company leaders can also be members of the entourage of prime ministers
or governors on important state visits and travel with them in their government jets.2 Influence
attempts might rarely become public. An exception is “the memo…written by Robert E. Mur-
ray, a longtime Trump supporter who donated $300,000 to the president’s inauguration. In it,
Mr. Murray, the head of Murray Energy, presented Mr. Trump with a wish list of environmen-
tal rollbacks just weeks after the inauguration.” (Friedman, 2018.) This wish list, dated March
2017 and organized in order of priority, starts with the elimination of the Clean Power Plan, the
overturning of the “endangerment finding for greenhouse gases,” the elimination of tax credits
for solar and wind energy producers, and the withdrawal from the Paris Climate Agreement. It
is clear that the priorities identified by Mr. Murray benefit the entire fossil fuel industry, rather
than just the coal plants owned by Murray Energy. From a theoretical point of view, the CEOs’
problem describes a waiting game as analyzed in Bliss and Nalebuff (1984) and Fudenberg and
Tirole (1986). The incentives change if there is competition between industries for trade policy
favors, as we assume.

It is useful to relate our illustrative example to the approaches that describe lobbying in the
literature.3 A first branch of the literature starting with Olson (1965) focuses on the relationship
between resources mobilized and policy influence. Grossman and Helpman (1994) suggests a
menu-auction approach as a formal description of this allocation problem. A second branch of
the literature considers the role of lobbies as experts and the problem of strategic information
transmission (Austen-Smith and Wright, 1993; Cotton and Déllis, 2016) and distinguishes be-
tween buying access and issues of asymmetric information (Austen-Smith, 1995; Cotton, 2012).
A third branch of the literature focuses on the use of informal relationships and connections
to obtain access. The relationship between a firm’s CEO and a politician may be at a personal
level.4 But it may also be the case that a firm’s CEO decides to “hire” a lobbyist with the needed
connections.5

An important aspect is the role of group mobilization. Olson (1965) emphasized the
free-riding problems of interest groups. This topic is recurrent in the literature on rent-seeking
between groups (Katz, Nitzan, and Rosenberg 1990, Esteban and Ray 2001). The theory of
Grossman and Helpman (1994) elaborates on a framework that takes lobbies as unitary players.
Martimort and Lefevre (2019) advance these theories focusing on the role of information
asymmetries inside interest groups for whether and how they overcome free-riding incentives.
Recently, researchers also found substantial evidence that illustrates that single large firms often
take action directly and on their own (Bombardini and Trebbi 2012, Kim and Osgood 2019),
particularly if firms in an industry are sufficiently heterogeneous, offering examples of special
interests influencing policy outcomes, but without formation of a lobby.

Of course, the realities of lobbying are very complex, and no single theoretical model
can capture all of its facets. We view our model as focusing on relationships and access in a

1 An illustrative example is US President Donald Trump’s Manufacturing Council and the Strategy & Policy Forum,
both of which he founded early in 2017.

2 For a description of such missions see, for instance, the report by Washington Governor Jay Inslee Staff (2017).
3 Here we partially follow Rodrik (1995) and Groll and McKinley (2015). For general reviews on special interest

group and lobbying activities, see Olson (1965), Grossman and Helpman (2001) and Hall and Deardorff (2006).
4 This is common in Russia and other transition economies (see, e.g., Frye, 2002). Studies of politically connected

firms are also common, and we refer to Kerr, Lincoln, and Mishra (2014), who list several.
5 Connections to politicians are key and well-rewarded in lobbying, see, for example, Wise (2007), Bertrand, Bom-

bardini, and Trebbi (2014), and Blanes-i-Vidal, Draca, and Fons-Rosen (2012).
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framework in which large firms have an incentive to take stand-alone action, but with spillovers
between them. We highlight three elements: preemption competition, timing as a means to re-
solve incomplete information, and free riding.

First, policy requests from different branches or industries may directly contradict or pre-
clude each other. For instance, steel producers might like tariff protection on steel, but not on cars,
whereas car producers might dislike tariff protection on steel. But even if the different requests
do not interfere with each other directly, they can still be in resource rivalry to each other. For in-
stance, politics cannot implement any number of trade protection measures without discrediting
the country internationally, and politicians may also be limited in the number of bills they can
press for. Furthermore, it may be easier to implement measures during the “honeymoon” period
of a newly elected politician, who therefore has to prioritize possible policies.6 Finally, and most
importantly, the legislators’ resources may also be limited more generally and legislators have
opportunity costs of legislating. Legislatorial effort might also be subject to opportunity costs
such as the formation of costly voting coalitions (Glazer and McMillan 1990),7 and Ellis and
Groll (2019) state that: “It is well known that the evaluation and implementation of policy is an
expensive process. Policymakers faced with finite budgets must therefore decide how to allocate
their limited resources between activities associated with information acquisition or policy enact-
ment.” If such (regulatory) capacity constraints or convex opportunity costs exist, the incentive
to wait for one’s own CEO colleagues to become active faces the incentive to preempt colleagues
from other industries.

A second key element of our model is timing: the CEO decides not only whether, but also
when, to take action. In this context it is important to acknowledge the “power of the proposal
maker” that emerges in many contexts and most notably in the contexts of voting (see, e.g.,
Harrington 1990) and bargaining.8 It is also important to note that politicians may have pressure
on their time unrelated to lobbying. So if a CEO delays action, the politician may end up not
granting access at all because her time is otherwise occupied.9 These constraints will be mapped
by the assumption that the politician has time for exactly one initiative, namely, the first one
brought to the politician’s attention.

The final key element we highlight is free riding within the set of firms that have interests
that partially overlap. In our formal framework single firms or their CEOs may take individual
lobbying action. Recent empirical research provides strong evidence that this happens. Ludema,
Mayda, and Mishra (2018) study the political influence of individual firms on bills to suspend
tariffs on US imports. Kim (2017) provides a list of cases in which single firms lobbied for a
specific tariff bill in Table 4 of his article. See also the empirical work by Bombardini and Trebbi
(2012) and Osgood (2017) for further more detailed evidence and discussion. In their survey,
Kim and Osgood (2019) even write about a “prevalence of firm-level political activities around
trade.”

This firm-level intervention is strongly in line with our model, as long as these activities have
some positive spillovers to other firms in the same industry.10 A literature about the prelegislative

6 The honeymoon effect is well-studied in political science, see, for example, Buchler and Dominguez (2005) and
references therein.

7 The legislator’s time-opportunity-cost of legislating is the key element of the explanation for why legislation is
broad-based and tends to address the new rather than amend old legislation in Glazer and McMillan (1992).

8 Alternating bargaining in the Rubinstein tradition or alternating policy offers in a political economy context in
the Baron-Ferejohn tradition typically allow for future proposals by other players. At the cost of complexity, our model
could account for this explicitly.

9 Ellis and Groll (2019) elaborate on the evidence of increasing resource pressure and declining capacity of legis-
lators in the US.

10 An informative anecdotal example is the letter by Electronic Theatre Controls, Inc. (ETC), (see US International
Trade Commission, 2012) which expresses opposition to a tariff suspension bill. It alludes to the major disadvantages of
this bill for both ETC and “other US-based manufacturers of similar products.”

C© The RAND Corporation 2020.
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process in which specific proposals emerge is informative in this context, as it suggests a channel
for firm-level interventions.11

Lobbying by single firms describes a situation in which the firm that volunteers bears the
cost of volunteering but might draft its interventions according to its individual interests, such
that it has a larger gross benefit of its successful lobbying than would other firms in the same
industry. This fits with our model as long as the net benefit of such volunteers falls short of the
positive spillover that emerges to some set of member firms in the same industry. Furthermore,
we assume that what matters for the success of a group of firms with aligned interests is whether
a single player from this group decides to take action.12 This creates incentives for an extreme
form of free riding and raises the issue of which firm might push for its preferred trade policy.

Bombardini (2008) finds a positive correlation between firm size and individual activism
and Kim and Osgood (2019) suggest that highly skewed distributions of firm sizes may give
rise to industry associations dominated by large firms. The empirical observations relate to the
volunteering/waiting game aspect inside each set of heterogeneous firms and map many of its
elements well: if single firms take lobbying actions, their specific benefits and costs determine
which (or rather “when” a) firm becomes active.

A second, equally important model element is the preemption competition between sets of
firms (e.g., upstream and downstream producers) or competition for scarce legislative resources.
Indeed, Gawande, Krishna, and Olarreaga (2012) emphasize the element of competition between
opposing lobbying interests.13 Finally, if a larger number of lobbing interests compete for the
same legislator’s attention or time budget, or if the legislator’s constraints tighten such that there
are more groups per policy favor that can be granted, this corresponds, in our setup, to an increase
in the number of sets of firms that compete. As one might expect, this pushes individual firms to
act sooner.

The problem here combines incentives in a waiting game with incentives in a preemption
game: as in the trade-protection illustration, the waiting game emerges inside a group. A group
is defined here as a set of firms whose interests are at least partially aligned, such that the
lobbying action taken by an individual firm has some positive spillovers to these other firms.
The preemption game applies to the relationship between these groups. Our analysis shows
how the two motives affect the individual player’s decision making and addresses questions about
how the timing of action depends on the intensity of competition between groups (number of
groups), the general size of the groups overall, and the asymmetry between groups. Preemption
games tilt the timing of actions such that players act earlier. Waiting games tilt the timing of
actions such that players tend to delay action. With incomplete information, preemption games
and waiting games tend to assign the timing of action in equilibrium to the low-cost players.
As there are now multiple, partially countervailing incentives, we also ask whether this general
insight remains valid.

The literature indicates that individual-firm level action is significant in the trade policy con-
text, and preemption incentives and free-riding incentives often pose collective action problems
that yield socially inefficient outcomes. It would not be surprising if, with the exception of in-
formal and non-repeated contexts,14 institutions emerge that overcome the intra-group collective
action problem by making groups act as unitary players. Many of the empirical frameworks that

11 As West (2009) reports: “Informal conversations and e-mail exchanges are almost ubiquitous forms of partici-
pation in proposal development.”

12 For example, when analyzing individual firms who are proponents of tariff exemption bills, Ludema et al. (2018)
state that in their dataset of bills the percentage of bills with more than one proponent is only 3%.

13 They model this competition along the lines of the Grossman–Helpman model, but as is well known, this is only
one of several competing approaches. We have argued above why being first with a policy proposal might be important
for policy outcomes.

14 Possible examples outside industrial organization can be found in the military context when individuals volunteer
for suicide missions for their own troops, or when informal groups benefit from one of the members assuming special
responsibility in a leadership position.
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come to mind therefore assume that the intra-group free-riding problems are taken care of, with
examples ranging from entry problems15 to R&D competition16 and de facto standard setting in
industries with network effects17 in industrial organization. Whereas the de facto incentives to
institutionalize groups and coordinate their behavior internally may limit the number of exam-
ples in which the free-riding incentives and the preemption incentives are directly at work and
face each other, this does not make the study of the game with free-riding inside purely non-
cooperative groups less relevant. The study of the non-cooperative equilibrium is a benchmark
that establishes the implicit or explicit default threat point or status-quo for collective bargain-
ing that may take place inside a group. As is well-known from bargaining theory (see, e.g., the
discussion in Binmore, Rubinstein, and Wolinsky 1986), the payoff characteristics of the non-
cooperative equilibrium are relevant for the cooperative solution that might be reached, for the
sustainability of such cooperation in infinitely repeated games, and for how the group members
coordinate their actions and split the surplus from cooperation among themselves.

From a methodological point of view, our contribution brings together the problem of pre-
emption and the problem of contributing to a group public good. Starting with Olson and Zeck-
hauser (1966), many aspects of the problem of contributing to a public good have been studied.
Much of this literature assumes a group of uncoordinated players with overlapping interests and
whose efforts add linearly to determine the aggregate group effort. Hirshleifer (1983) introduced
alternatives to this technology—particularly the “best-shot” technology according to which only
the largest contribution of a member of the group matters. Barbieri and Malueg (2014) use this
group-contribution technology. The question of who volunteers has led to the study of the “vol-
unteer’s dilemma” game (Diekmann, 1985). In this, such a group of players gains and enjoys a
public good if at least one of its members makes a contribution, where the contribution has a
predefined cost for the contributor, and all players choose simultaneously whether to contribute.
A key issue in this volunteer’s dilemma is coordination. Lack of coordination may lead to inef-
ficiency: multiple (or no) players may expend effort.18 If players can choose when to contribute,
then “delay” may serve as a natural coordination device (Bliss and Nalebuff, 1984, Fudenberg
and Tirole, 1986). Players with a high contribution cost or with a low stake may be inclined to
wait. This can lead to provision by only the player with the lowest cost, but with some delay.

The preemption game between such uncoordinated sets of players adds an element of com-
petition to this dynamic volunteer’s game. It can be seen as a contest between multiple groups,
where the members of each group individually decide on their contributions to the group’s con-
test effort. Contest theory has studied group contests under a variety of assumptions about how
groups’ efforts determine the winner group, how group members’ efforts contribute to the aggre-
gate group effort, and what players know about each other, inside the group and across groups.
A first approach considered additivity of contributions.19 In an important departure, Fu, Lu, and
Pan (2015) allow for an allocation of tasks among the competing teams. Also more recently,
Hirshleifer’s best-shot effort-aggregation technology has been applied in inter-group contests.
This includes work by Barbieri, Malueg, and Topolyan (2014), Chowdhury, Lee, and Sheremeta

15 See, for example, Argenziano and Schmidt-Dengler (2014), Boyarchenko and Levendorskii (2014), Bloch, Fab-
rizi, and Lippert (2015), Fudenberg, Gilbert, Stiglitz, and Tirole (1983), Mason and Weeds (2010), Nishide and Yagi
(2016), and Ruiz-Aliseda (2016).

16 See, for example, Tirole (1983), Hopenhayn and Squintani (2011, 2016), and Nishihara (2018).
17 Similar problems might emerge for industries with network externalities (Katz and Shapiro, 1985; Farrell and

Saloner, 1986). Preemptive entry might be costly for the preempting firm, but set a de facto standard that benefits a subset
of firms who prefer this standard compared to one preferred by other firms.

18 Many aspects of this game have been studied. See, for example, Diekmann (1993) and He, Wang, and Li (2014)
for the role of players’ cost asymmetry, and Archetti (2009) and Peña and Noeldeke (2016) for considerations of group
size. For a contribution focusing on timing, see Bergstrom (2017).

19 Seminal contributions in this field are Katz, Nitzan, and Rosenberg (1990) and Esteban and Ray (2001).
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(2013), and Barbieri and Malueg (2016).20 The preemption game between groups relates to this
literature on group contests. It describes a group contest with heterogenous players, incomplete
information, and a dynamic timing structure of the contribution decision. This richer dynamic
structure plays a coordinating role. Unlike in the waiting games by Bliss and Nalebuff (1984)
or Fudenberg and Tirole (1986), however, the timing decision is shaped by two factors: the free-
riding incentives and the preemption threat by players of competing groups. Except for the case
of bunching when several players volunteer immediately, for symmetric teams the only player
who expends effort is the one with the lowest cost.21

We proceed in several steps. Section 2 provides the main analysis. First, we outline the
key building blocks of the formal model. Then, we study the equilibrium and its properties,
including welfare, in the parameter range in which the equilibrium is interior. Section 3 considers
asymmetry between the competing groups and strategies, focusing on group size, strength of the
externalities within groups, and the possibility that agents may be differentially informed about
teammates and competitors. Section 4 discusses the results and concludes. All proofs are in
the Appendix.

2. The formal framework

� We first describe the formal framework that combines the problem of preemption between
groups with the problems of free-riding and coordination within each group. Then we turn to the
characterization of equilibrium and study its properties.

� Players, actions, and payoffs. We define N as the set of all players i and {N1,N2, . . . ,NK}
a partition of these players into K groups of identical size with n players in each group. A rep-
resentative player is denoted by i. This player is further characterized by his cost of effort ci. All
players’ cost parameters are drawn independently from the same atomless cumulative distribu-
tion function F . We assume F is continuous and differentiable on its support [c, c̄] ⊂ (0,∞). We
denote the density of F by f and assume it to be strictly positive on (c, c̄). Each player i knows
the value of his own ci and knows the distribution from which all players’ valuations are drawn,
but not the values of other players’ realized costs, neither for members of his own group nor for
members of the other groups.22

Player i’s action is denoted by Ti and is chosen from the interval [0,∞]. The action is the
time until which player i waits to provide the public good to his own group (“grabs”), given that
none of the other Kn − 1 players grabbed prior to Ti. All players choose their Ti independently
and simultaneously, based on the information of their own costs, the distribution F , and the rules
of the game. Players cannot observe the actual choices of grabbing times Ti, except that, as time
goes on, they observe whether another player has grabbed. If a player has not observed any of the
other players grabbing prior to time Ti, then player i takes action at this point and the game ends.

The gross benefit for each member of a group is V if a member of the group grabs first. The
payoff of player i with cost c is equal to (V − c)e−ρT if he is the player who grabs first and at
time T , where ρ is the common discount rate.23 Should several players, from one or more groups,
choose simultaneously, a random mechanism selects one of these players to bear the cost and his

20 This literature also considered asymmetric conflict, by which one group aggregates effort according to a best-shot
technology and the other group aggregates according to a weakest-link technology (Clark and Konrad, 2007; Chowdhury
and Topolyan, 2016).

21 Related problems are discussed in Bonatti and Hörner (2011) and Sahuguet (2006). The latter looks at a group
whose members share several tasks. Some of them are more burdensome than others. Players prefer not to take any of
the costly tasks, but conditional on taking up one task, they prefer one with a lower cost.

22 See the discussion in Section 3 for a possible way to relax this assumption.
23 We interpret ρ as the sum of a standard time preference for money and an exogenous instantaneous probability

that the game ends.
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group receives the prize.24 The payoff of player i is equal to Ve−ρT if a teammate grabs first at
time T , and equal to zero if a player from another group grabs first.

We assume throughout that c̄ ≤ V . In light of the empirical literature on single firms’ trade
policy activism, this might appear restrictive. This literature emphasizes the correlation of firms’
trade-policy interest with firm size, such that a joint trade association would not represent them
all well, because a large firm might benefit from successful lobbying for a reduction in trade
barriers even if it bears the cost (c < V ), whereas this need not hold for small firms (c > V )
or even suffer from trade liberalization (V < 0). However, as described before, the borders of
what defines the set of firms forming a group might be drawn by whether its members have
some positive externalities from its members’ lobbying activities. And as described following
Proposition 4 and in footnote 37, c̄ ≤ V is a simplifying assumption and almost all of our results
go through when c̄ > V.And the choice of zero as the payoff of members of a non-winning group
is a normalization.25

Before we turn to the equilibrium analysis, we highlight that the reduced-form we study
encompasses the empirical framework with other, more general frameworks, and we also describe
limits of its generality.

First, the setup is a reduced form describing a situation in which the volunteer might have
a considerable cost of provision, but also considerable private benefits, whereas the positive
spillovers inside the group are smaller, and need not be homogenous. This is particularly rel-
evant in the context of single firms that lobby for their favorite trade policy. To be more specific,
consider the illustrative example on individual lobbying efforts in which the CEO uses personal
access to decision makers or a single firm in an industry lobbies for a policy that gives this firm
a benefit Bi + V , which is composed of the benefit V applying to each firm in this industry plus a
possible additional firm-specific benefit Bi. However, the lobbying decision has opportunity cost
of size Ci. In this case, the volunteering firm has a net benefit of (Bi + V ) − Ci = V − (Ci − Bi),
whereas all bystanding firms of the same industry enjoy just V . A firm’s idiosyncratic net cost
Ci − Bi might be the firm’s private information. For instance, a CEO’s opportunity cost Ci is
known to her, but unobserved by other CEOs and is the outcome of an independent draw from
the same random distribution for all CEOs, and similar considerations might apply to the com-
ponent Bi.26 This problem reduces to the one described above if we define ci ≡ Ci − Bi.

Second, our findings encompass frameworks in which the utility of grabbing and the utility
of a free-riding member of the winning group are non-linear functions of the benefit of winning
and the cost of grabbing. To see this, normalize the utility of a member of a losing group to zero:
u(0, 0) = 0, let u(V, 0) be the utility of a free-riding member of the winner group and u(V,−c) the
utility of the grabbing player with a grabbing cost c, such that u(V, 0) > u(V,−c) > u(0, 0) = 0.
Redefining quantities as

ĉ ≡ u(V, 0) − u(V,−c), and V̂ ≡ u(V, 0),

the utility of grabbing is simply V̂ − ĉ, that of free-riding and winning is V̂ , that of losing remains
0, and ĉ is a random variable that has a cumulative distribution function F̂ ([u(V, 0) − u(V,−c)]).
Structurally the resulting setup is equivalent to the one we consider, with (ĉ, V̂ , F̂ ) replacing
(c,V,F ).

Third, we follow the assumption that is common in the waiting-game literature: grabbing
time affects the payoff V and the grabbing cost ci of players just through exponential discount-
ing. The assumption may reasonably well apply to the CEOs’ decision problems that motivate

24 In a first-price auction with externalities, only the winning player pays a price and causes positive externalities
for the members of his group. In the preemption game all group members bear some waiting costs, and cost heterogeneity
drives the outcome. We thank a reviewer for this comparison.

25 The analysis can easily be modified to assume that members of non-winning groups receive a non-zero loser
prize and that the benefit of being a non-grabbing member of the winning group is some positive amount.

26 The empirical work on firm lobbying suggests that size is one of the determinants of Bi, but it is clear that other,
less well-observed factors also matter.
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our analysis. The cost of volunteering might decline over time, due to technical progress. The
cost could also increase if unsolved problems compound over time. Our assumption of time
independence rests safely in the middle between these alternatives. We discuss some possi-
ble implications of time-dependent benefits or grabbing costs when we turn to a discussion
of the welfare properties of preemption between groups.

� Properties of an interior equilibrium. The equilibrium is characterized by players’ de-
cision to grab at a time T if none of the other players grabbed earlier, with T a function of the
player’s own cost of grabbing. The characterization focuses on symmetric equilibria, so we de-
scribe each player’s strategy by a function T : [c, c̄] → [0,∞], where T (·) maps the player’s own
cost c to the conditional time of own grabbing, T (c).

The equilibrium characterization. Standard incentive compatibility arguments imply that a
player’s optimal strategy is weakly increasing in c. We define a (symmetric) equilibrium as inte-
rior if the equilibrium strategy T is strictly increasing on [c, c̄].27 Given that F is atomless and
T is strictly increasing, there are no ties—that is, more than one player grabbing at a given time.
Hence, delay that does not change the probability of grabbing first is wasteful. It follows that
T (c) = 0 and T is continuous. Because T is nondecreasing, T is differentiable almost every-
where. Our first proposition characterizes the interior symmetric equilibrium.

Proposition 1. If c ≥ c0 ≡ (K−1)n
Kn−1

V , then the unique interior symmetric equilibrium strategy T
satisfies

T (c) = 0 and T ′(c) = f (c)

(1 − F (c))

(Kn − 1)

ρ(V − c)

⎛
⎜⎜⎝c − (K − 1)n

Kn − 1
V︸ ︷︷ ︸

≡c0

⎞
⎟⎟⎠ ∀c ∈ (c, c̄). (1)

The equilibrium strategy28 in Proposition 1 follows intuitively from balancing the marginal
cost of delay with its marginal benefit as follows. It is opportune to combine marginal costs
and benefits into marginal changes in payoffs if the allocation is unaltered (i.e., a player is not
preempted while delaying own grabbing by an instant of time) and if the allocation is altered
(i.e., a player is preempted due to the choice of an additional delay). Consider a player i with cost
c who plans to grab at date T (c) in equilibrium. The marginal decrease in payoff at time T (c)
brought about by delaying slightly (i.e., by behaving as a player with a slightly higher cost) if the
allocation is unaltered is

ρ(V − c)dT, (2)

that is, the loss in the present (net) value of the prize. If the allocation is altered, that is, if
player i is not the first to grab anymore because of the delay, then the marginal benefit in payoff
at time T (c) is c − (K−1)n

Kn−1
V = c − c0, which is the saving in the cost of grabbing minus the loss

from being preempted by another group. Now let h(·) be the hazard rate function for F , that
is, h(c) ≡ f (c)/(1 − F (c)). The term h(c̃)(Kn − 1) is the hazard rate of the minimum cost of all
other agents at c̃: if the cdf of the minimum cost of all other agents is G(c̃) ≡ 1 − (1 − F (c̃))Kn−1,
then

g(c̃) ≡ G′(c̃) = (Kn − 1)(1 − F (c̃))Kn−2 f (c̃),

27 It will follow from Lemma A1 in the characterization of equilibrium with low costs (in the Appendix) that an
equilibrium strategy is interior if and only if it is strictly positive for all c > c.

28 Note that n ≥ 2 is necessary to get any delay in equilibrium. In the absence of possible preemption by another
group (K = 1), equation (1 ) reduces to equation (4) in Bliss and Nalebuff (1984) if we take into account that they assume
ρ = 1 and derive equilibrium for the game with n + 1 agents.
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so

g(c̃)

1 − G(c̃)
= (Kn − 1)(1 − F (c̃))Kn−2 f (c̃)

(1 − F (c̃))Kn−1 = (Kn − 1)
f (c̃)

1 − F (c̃)
= (Kn − 1)h(c̃).

Therefore, h(c)(Kn − 1) dc is the probability that by delaying slightly beyond T (c) player i is no
longer the first to grab. Combining these observations, the expected marginal change in payoff at
time T (c) brought about by delaying slightly when the allocation is altered turns out to be

h(c)(Kn − 1) dc (c − c0). (3)

Now setting (2) equal to (3) yields

dT

dc
= h(c)(Kn − 1)

ρ(V − c)
(c − c0),

which is equivalent to (1).
Note that, for c > c0, dT/dc > 0: players sort themselves such that those with a higher

grabbing cost choose to grab later. Thus, the equilibrium makes an efficient selection: only the
player with the lowest cost grabs. Whereas Proposition 1 deals with a case of “sufficiently high
costs,” where c ≥ c0, in the Appendix we deal with the possibility of “low costs,” where c <
c0.29 The arguments developed there establish that the equilibrium described in Proposition 1 is
the unique symmetric equilibrium if c ≥ c0, without restricting attention to strictly increasing
strategies. In the remainder of this section we maintain the assumption that c ≥ c0 and explore
the properties of the interior equilibrium.

Because T (c) = 0, we have

T (c) =
∫ c

c

T ′(y) dy, for all c ∈ [c, c̄].

Further, (1) implies that limc↑c̄ T (c) = +∞. Indeed, for any c̃ ∈ (c, c̄) we have

lim
ĉ↑c̄

T (ĉ) − T (c̃) = lim
ĉ↑c̄

∫ ĉ

c̃

T ′(c) dc = lim
ĉ↑c̄

∫ ĉ

c̃

h(c)
(Kn − 1)(c − c0)

ρ(V − c)
dc

≥ (Kn − 1)(c̃ − c0)

ρ(V − c̃)
lim
ĉ↑c̄

∫ ĉ

c̃

h(c) dc

= (Kn − 1)(c̃ − c0)

ρ(V − c̃)

[
− lim

ĉ↑c̄
log(1 − F (ĉ)) + log(1 − F (c̃))

]
= +∞.

Intuitively, equilibrium delay becomes unbounded for the highest-cost type because the rate of
payoff change in (3), which captures the marginal net benefit of delay, becomes infinite at c̄, by
limc↑c̄ h(c) = +∞, and this is true regardless of the form of F .30

Recalling from the proof of Proposition 1 that U (c∗, c), see (A2), is the payoff to a player
with cost c acting as if his cost were c∗, by the envelope theorem we can write the equilibrium
utility U E (c) ≡ U (c, c) as

U E (c) = V − c −
∫ c

c

e−ρT (y)(1 − F (y))Kn−1 dy. (4)

We next turn to the comparative-statics properties of the equilibrium. For this analysis it
matters whether the number of group members affects the size of the benefit V each member of

29 When costs lower than c0 are possible, those low-cost types of players will grab immediately, that is, there is
partial bunching at T = 0 and an interior equilibrium does not exist.

30 To see this, let H (c) ≡ − log(1 − F (c)) and note that limc↑c̄ H (c) = +∞, which, by c̄ < ∞, requires H ′(c̄) =
+∞. But H ′(c) = h(c); hence, limc↑c̄ h(c) = +∞.
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the winning group enjoys. If a given benefit has to be divided between the group members, then
V becomes a function of n. We concentrate here on the case in which the benefit V is non-rival
inside the group: winning is a pure public good for the group, such that V is invariant in n and
the aggregate benefit of the winner group increases linearly in n.

Individual grabbing time. First we examine how individual grabbing times change with model
parameters. For comparative statics we include the dependence of T and U E on K and n and
implicitly assume changes in parameters continue to yield interior equilibria.31

Proposition 2. For a player of a given type c, the grabbing time T (c; K, n) is (linearly) decreasing
in the number K of groups and it is (linearly) increasing in the size n of the groups. Consider
now a new cost distribution F̂ obtained from F by a parallel rightward shift by � > 0 (i.e.,
F̂ (y +�) = F (y)), and denote with T̂ and T the respective equilibrium strategies obtained from
(1). Then T̂ (c +�) > T (c) for any c ∈ (c, c̄).

According to Proposition 2 individual decision makers tend to grab earlier if K, the intensity
in competition, is higher, and they grab less hastily if the group has more members. If there are
more groups or smaller groups, the strict order of grabbing times is maintained but the whole
function T (·) shifts—for given behavior of other players, it turns out that each player has a
higher preemption motive and a smaller free-riding incentive. The intuition can be gained from
an individual player’s partial optimal response to changes in n and K, as overall equilibrium
effects qualitatively go in the same direction (although they may be attenuated). Delay becomes
less attractive for increased K: if a player does not grab and is preempted, for higher K it is
more likely that the preemptor is from a rival group and this ends up decreasing the payoff in
(3). Similarly, delay becomes more attractive for increased n. For a player who is just indifferent
between grabbing or waiting at some value T , it becomes more likely that another player grabs
between T and T + dT . Moreover, it is more likely that that this other player belongs to one’s own
group, because (n − 1)/[(n − 1) + n(K − 1)] is increasing in n. Thus, waiting becomes strictly
superior for a higher n.

The last part of Proposition 2 allows an interpretation of the consequences of a reduction
in the private benefit of grabbing B described in Section 2. As discussed there, a decrease in the
grabbing player’s private gross benefit B by � effects a �-sized rightward shift of the cost dis-
tribution. Intuitively, if grabbing becomes less beneficial for everyone, the incentive to preempt
decreases and agents grab later. But this does not simply result in a parallel rightward shift of the
equilibrium strategy by �: because the overall competitive pressure has decreased, there is also
an equilibrium effect that pushes each cost type to delay further.

The dynamic structure of the preemption conflict between groups can be compared to the
between-groups contest problem in Barbieri and Malueg (2016) in which all players choose their
all-pay contest efforts in a static game with a best-shot contest technology. In contrast to Barbieri
and Malueg (2016), it is interesting to note that the qualitative comparative static properties of
the grabbing time in the preemption game require no assumptions regarding the shape of F (e.g.,
nothing is invoked about elasticity of F ).32

Expected ending time. Next, we calculate the expected time at which the game stops. Denote by
ET E the stopping time at which the first grabbing occurs when there are K groups of n players
each and each player follows the strategy in Proposition 1. The following lemma relates ET E to
the model parameters.

31 The condition for interior equilibrium was c ≥ c0 ≡ (K − 1)nV/(Kn − 1). Because c0 is decreasing in n, starting
from an interior equilibrium a higher n yields an interior equilibrium, too. In contrast, c0 increases in K, with limit V .
Consequently, cet. par., as K becomes sufficiently large the symmetric equilibrium will not be interior.

32 In general, elasticity of F , which played a crucial role in determining the direction of many comparative statics
results in Barbieri and Malueg (2016), plays no role in our setup. See also footnote 35.
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Lemma 1. Suppose the expected time at which grabbing first occurs, ET E , is finite.33 Then ET E

satisfies

KρET E + (K − 1) =
∫ c̄

c

n − 1

n

y

V − y
d(1 − (1 − F (y))Kn). (5)

In what follows we assume ET E is finite. From (5) the next proposition derives comparative
statics for the expected duration of the game.

Proposition 3. The following comparative statics results hold for the expected time at which the
game ends: The expected end occurs sooner (i) if the discount rate ρ is higher or if the gross
benefit V for each group member is higher or (ii) if the number K of groups is higher. (iii) If
y(1−F (y))K

V −y
is decreasing (increasing) in y, then ET E increases (decreases) in n. (iv) A first-order

stochastic dominance (FOSD) increase in the costs increases ET E . (v) A second-order stochastic
dominance (SOSD) increase in the risk of the overall minimum cost increases ET E .

The unambiguous comparative static results (i) and (ii) in Proposition 3 are intuitively plau-
sible: increases in ρ and V make grabbing more attractive and so do increases in K, as shown in
Proposition 2. The possibility described in part (iii) that n may increase or decrease ET E is also
intuitive. An increase in n has two countervailing effects: each player with a given type c grabs
later, but as the number of players increases, the probability distribution of the lowest cost type
shifts. Indeed, the probability that the lowest realized cost, among those of Kn players, is higher
than a given c becomes less and less as n increases, for all possible c inside the support. We iden-
tify a sufficient condition for either effect to dominate. The result in part (iv) is also intuitive. For
instance, consider the rightward shift in the cost distribution analyzed in Proposition 2, which,
recalling our discussion in Section 2, can be interpreted as a decrease in the private benefit of
grabbing B. This rightward shift in costs increases T as described in Proposition 2, and therefore
it increases ET E as well. Part (iv) of Proposition 3 extends these consideration to FOSD increases
in costs. The results in parts (iii) and (v) deserve more attention, which we provide by way of two
examples after discussing welfare.34

The distribution of the cost of volunteering also matters for delay. Delay is, on average,
larger if the minimum cost of volunteering is more dispersed. But, as we show in Section 2, delay
can be shorter if the individual cost of volunteering is more dispersed.

It is instructive to apply these comparative statics to the main example on firm lobbying and
the empirical regularities described in the Introduction. The equilibrium shows that firms with the
smallest net cost of volunteering are active. As this is influenced by Ci as well as by Bi, for a given
cost of lobbying, the firm that has a higher idiosyncratic benefit is more likely to lobby. Likewise,
our result that grabbing time tends to infinity for firms with the largest realized cost, regardless
of the details of the distribution, reinforces the result that firms with small idiosyncratic benefit
never lobby. Furthermore, the results on the dispersion of the individual cost of volunteering
nicely correspond with the idea that firm lobbying tends to be more relevant if the industry is
more heterogeneous. Finally, increases in competition push agents to act sooner, which can be
interpreted as saying that tighter demands on scarce legislative resources increase lobbying.

Expected payoffs. Finally, we describe the effects parameter changes have on expected utility.

33 A sufficient condition is c̄ < V , or, if c̄ = V , limc↑c̄(1 − F (c))Kn−1/(c̄ − c) < ∞. Details are available from
the authors.

34 These results extend the homologous ones in Theorems 4 and 5 of Bliss and Nalebuff (1984); however, their
Theorem 5 characterizes only the behavior at the tails.
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Proposition 4. (i) The expected payoff of a player with a given cost type c is higher if the size
of all groups is larger. (ii) The expected payoff is constant with respect to changes in the number
of groups.

Intuitively, the main, direct effect of an increase in n is to dilute the cost burden of grab-
bing among a larger number of players, while at the same time keeping each player’s expected
gross benefit constant at V/K in a symmetric equilibrium. As determined in Proposition 3, the
expected time at which the game ends may increase, but this equilibrium effect is overwhelmed
by the direct effect. The proof of the proposition shows that this holds strictly, not only ex ante,
but also for all players, irrespective of their cost type, except for the type with the lowest pos-
sible cost realization who always grabs immediately. If there is only one group (as in Bliss and
Nalebuff, 1984), this is easy to understand: each player faces a higher probability that another
player from his group grabs first, which preserves the benefit, but probabilistically shifts the cost
burden of grabbing. Proposition 4 shows that this effect carries over to a multigroup framework
with preemption.

We assumed that for almost all possible cost types volunteering is better than not to volun-
teer if no one else takes action. What happens if the cost c exceeds the value V for some cost
types? It is a dominant strategy for them never to grab (T = +∞). But even if such types exist,
the differential equation in Proposition 1 continues to characterize the equilibrium strategy for
lower cost types, including T (c) → ∞ as the cost approaches V from below. Similarly, Proposi-
tion 2 continues to hold for c < V. However, Proposition 3 fails to hold because there is now a
positive probability that no one ever grabs, implying that the expected size of the delay becomes
infinite. Finally, Proposition 4 continues to hold because players with c ∈ (V, c̄] never take ac-
tion, such that they all have the same expected utility equal to U E (V ), and the analysis c ∈ (c,V ]
continues to apply.

The payoff neutrality with respect to the number of groups is less intuitive. A larger num-
ber of groups makes it more likely that a single group is preempted. This reduces all players’
expected payoffs. However, the increase in preemption pressure induces players of given types to
grab earlier. This reduces wasteful delay. The proposition shows that the two effects just offset
each other.

� Welfare. A natural measure of welfare in the preemption game is the sum of payoffs of
all players in all groups. A maximum nV − cimin

of this sum is reached in the context of ex ante
symmetric groups of given size n if the player imin who has the lowest cost cimin

of all players takes
action at T = 0. In comparison to this welfare benchmark, the welfare in equilibrium is [nV −
cimin

]e−ρT (cimin
). In the symmetric case with groups of equal size it does not matter for welfare

which group receives the public good. The player who has the smallest cost among all players in
all groups should grab and does grab in the equilibrium. The delay of taking action by T (cimin

) in
the equilibrium constitutes the only efficiency loss. It discounts the sum of total net benefits.

Proposition 4 discusses payoffs if the number of agents in the model is allowed to change.
An alternative comparison is what happens after reconstituting a given number of players into
a smaller number of larger symmetric groups. By Proposition 2, we know that decreasing the
number of groups (without changing team size) would increase individual grabbing times, and
then increasing the number of players per group would further increase grabbing times. As in-
dividual grabbing times increase, the reorganization also implies the expected duration of the
game increases. Finally, Proposition 4 implies that reorganizing the players into fewer larger
groups strictly increases expected payoffs for all types but c. As discussed, these conclusions
depend strongly on the question whether the winner prize is a pure public good for all members
of the group, or whether a change in group size affects the benefit V which each of the members
receives.

It is important to note that our setup has a time-invariant cost of grabbing. As discussed
above, there are reasons why the cost of grabbing may increase or decrease over time. We took
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FIGURE 1

EFFECTS OF INCREASING n ON ETE :V = K = 2 AND F(c) = 2(c− 3
2 ) ∀c ∈ [ 32 , 2] [Color figure can be

viewed at wileyonlinelibrary.com]

n5 10 15 20 25 302
0.58

the middle position, where these costs are constant, except for time discounting, and this is why
an immediate action is always efficient here. However, the analysis is suggestive for what would
happen if early action is inefficient due to a high social cost of early action. Free-riding incentives
that cause a delay might then reduce the efficiency costs from hasty preemption behavior. At the
same time, the fear that other groups might preempt a player’s group can reduce the efficiency
costs of free-riding. If there is a cost of excessive delay as well as a cost of premature action, the
specific parametric situation would determine whether action is taken too early or too late from
an efficiency perspective.

� Numerical examples. We illustrate some of the comparative-statics results by way of nu-
merical examples. The first illustrates a non-monotonicity result suggested by part (iii) of Propo-
sition 3.

Example 1 (The effect of n on expected stopping time). Let V = 2 and assume costs are dis-
tributed according to F (c) = 2t (c − 3

2
)t , for c ∈ [ 3

2
, 2].

First note that

sign

[
d

dy

(
y(1 − F (y))K

V − y

)]
= sign[V − Ky(V − y)h(y)]. (6)

We begin with K = 2, in which case c0 = n
2n−1

. Thus, the symmetric equilibrium is interior
for all n ≥ 2. Now consider t = 1. Here, we see that

V − Ky(V − y)h(y) = 2(1 − y),

which is negative for the relevant range. Therefore, (6) and part (iii) of Proposition 3 imply ET E

is increasing in n; Figure 1 depicts the relationship between ρET E and n for n = 2, . . . , 30.
A pattern similar to that in Figure 1 holds for any t ≤ 1. Thus, for t ≤ 1 we see that the free-

riding effect is very strong and it overwhelms the presence of additional agents on each team,
which would otherwise lead to a lower expected stopping time. In contrast, if t = 2, for example,
we find that ET E first increases and then decreases with n, as depicted in Figure 2. Here we
see that ET E increases for n going from 2 to 4, but further increases in team size decrease ET E

because the “order-statistic” effect of having a better distribution of the minimum cost eventually
prevails. Proposition 3 implies that y(1−F (y))K

V −y
must be increasing for at least a range of y; indeed,
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FIGURE 2

EFFECTS OF INCREASING n ON ETE :V = K = 2 AND F(c) = 4(c− 3
2 )

2 ∀c ∈ [ 32 ,2] [Color figure can be
viewed at wileyonlinelibrary.com]

n5 10 15 20 25 302
1.19

it is inverse U-shaped in y, which helps explain why ET E is first increasing with n, then it turns
decreasing and it stays so. As n grows, the distribution of the minimum costs is more and more
concentrated toward lower values of c. Therefore, for n sufficiently large, the relevant part of
y(1−F (y))K

V −y
is increasing and the result follows as for Proposition 3. A pattern similar to that in

Figure 2 is displayed by all parameterizations with t > 1.35 It is interesting to note that, with
more competing teams, the switch in the direction of the relationship between ET E and n occurs
later. Indeed, by (6), if K increases, then y(1−F (y))K

V −y
becomes decreasing for a larger set of y. For

example, if t = 2 and K = 3, then ET E remains increasing in n up to n = 7.36

We next illustrate the distributional effect described in part (v) of Proposition 3.

Example 2 (The effect of SOSD changes in the cost distribution). Fix K = 2, V = 3, ρ = 1, and
n = 3, and let costs be uniformly distributed on [c, c̄].

Consider first c = 2 and c̄ = 3. Then, the average overall minimum cost is approximatively
2.143 and (5) yields ET E ≈ 0.367. Consider now c = 2.1 and c̄ = 2.4. Then, the average min-
imum cost remains 2.143, approximatively, and one can show that we have effected a SOSD
reduction in risk of the cost distribution of the overall minimum cost. Using (5), we now have
that ET E decreases to approximatively 0.336, and the direction of the change is in accordance
with part (v) of Proposition 3.

If one instead performs a mean-preserving spread of the individual cost distribution, then
the result can be different. Consider for instance a uniform cost distribution with c = 2.1 and
c̄ = 2.9, which keeps the individual expected cost at 2.5, but is less risky than our initial uniform
distribution on [2, 3]. Note that the average minimum cost increases to 2.214 for individual costs
that are uniformly distributed on [2.1, 2.9]. And the direction of the comparative statics reverses,
as ET E increases to 0.465, approximatively.

35 In contrast with Barbieri and Malueg (2016), elasticity of F plays no role in determining the direction of our
comparative statics. Indeed, F (c) is elastic for any t > 1, but Figure 2 shows an ambiguous effect of n on ET E .

36 One needs to be a little careful here because for K = 3 and n = 2, c0 = 8/5 > 3/2, which implies we need to
analyze the corner solution. But as explained in the characterization of the equilibrium with low costs in the Appendix,
the comparative statics work out here, too. It is the case that for K = 3 and n ≥ 3, we have c0 ≤ 3/2.
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3. Two asymmetric groups

� The analysis of preemption between symmetric groups revealed the general trade-off be-
tween waiting and grabbing, and how it depends on the size of groups and their number. In many
areas in which preemption between groups emerges, groups are asymmetric; for example, they
may differ in size. In a grabbing competition between groups of different size the questions arise
whether a larger group is more likely to preempt, and whether its members earn larger payoffs
than the members of competing groups. Formally, we consider two groups of different size and
label the first group “small” and indicate the number of players in the small group with ns. Simi-
larly, the second group is “large” and has nl members, with nl ≥ ns. In what follows, we restrict
attention to interior equilibria in which all agents within a group adopt the same strategy, but these
strategies are allowed to vary between groups. We label these strategies as Ts and Tl , respectively.
Our focus is to characterize equilibrium, to identify systematic differences in behavior between
members of the small and large groups, and to establish which group is most likely to win.

Beyond size issues, we are also interested in payoff differences between groups and among
agents. As discussed in Section 2, we allow the grabbing agent to have a larger gross utility than
teammates who benefit from the externality. Unlike our treatment in Section 2, we now carry two
explicit separate values for each group, rather than reinterpreting c = C − B. Therefore, in the
small group the grabbing agent now receives V g

s , whereas the other members obtain V e
s . Similarly,

in the large group we now have V g
l and V e

l . Our objective is to determine how the strength of the
externalities affects the probability of victory and utility.

It turns out that, at a minor notational cost but with great benefit for exposition, it is pos-
sible to consider also two different cdfs of costs Fs and Fl , with densities fs and fl , respectively.
(Similarly, one could consider two different discount factors.) After characterizing equilibrium,
in our comparative statics we will consider changes one at a time: First, we will assume that the
only difference between groups is size, and then we will consider changes in the strength of the
externalities within groups.

Consider the calculus of a type-c player in the small group contemplating grabbing at Ts(c∗).
His expected utility is

Us(c
∗, c) =

∫ c̄

c∗
(V g

s − c)e−ρTs (c∗ )(1 − Fl (T
−1

l (Ts(c
∗))))nl d[1 − (1 − Fs(x))ns−1]

+
∫ c∗

c

V e
s e−ρTs (x)(1 − Fl (T

−1
l (Ts(x))))nl d[1 − (1 − Fs(x))ns−1], (7)

which is entirely analogous to (A2): the first addendum of the payoff displayed in (7) captures the
possibility that this player carries his group to victory, and the second corresponds to a teammate
carrying the group to victory.

We now use a construction due to Amann and Leininger (1996). Define k(c) ≡ T −1
l (Ts(c)),

so that k ′(c) = T ′
s (c)

T ′
l (k(c))

. Then, the first-order condition ∂Us (c∗,c)
∂c∗ = 0 at c∗ = c gives(

V e
s − (V g

s − c)
)
(1 − Fl (k(c))(ns − 1) fs(c) − (V g

s − c)(1 − Fs(c))nl fl (k(c))k ′(c)

(V g
s − c)(1 − Fs(c))(1 − Fl (k(c)))ρ

= T ′
s (c); (8)

and, proceeding similarly for the large group we have that(
V e

l − (V g
l − k(c))

)
(1 − Fs(c))(nl − 1) fl (k(c))k′(c) − (V g

l − k(c))(1 − Fl (k(c)))ns fs(c)

(V g
l − k(c))(1 − Fl (k(c)))(1 − Fs(c))ρ

= T ′
s (c). (9)

Equalizing (8) and (9) we obtain(
V e

s (ns − 1)

V g
s − c

+ 1

)
fs(c)

1 − Fs(c)

[(
V e

l (nl − 1)

V g
l − k(c)

+ 1

)
fl (k(c))

1 − Fl (k(c))

]−1

= k ′(c), (10)
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an ordinary differential equation for k(c). After solving (10) with the initial condition k(c) = c,
we can substitute k(c) into (8) and obtain the equilibrium Ts. Because we are considering an
interior equilibrium, we need to ensure that Ts is strictly increasing. Combining (9) and (10) , we
obtain

T ′
s (c) = fs(c)

1 − Fs(c)

ns

ρ

[(
V e

l − (V g
l − k(c))

)
(nl − 1)

V e
l (nl − 1) + (V g

l − k(c))
× V e

s (ns − 1) + (
V g

s − c
)

ns(V
g

s − c)
− 1

]
; (11)

therefore, T ′
s (c) ≥ 0 is ensured if(

V e
l − (V g

l − k(c))
)
(nl − 1)

V e
l (nl − 1) + (V g

l − k(c))
× V e

s (ns − 1) + (
V g

s − c
)

ns(V
g

s − c)
≥ 1, ∀c. (12)

Because the left-hand side of (12) is strictly increasing in c because ns > 1, a necessary and
sufficient condition for Ts to be strictly increasing is that (12) holds at c. By k(c) = c, (12) boils
down to (

V e
l − (V g

l − c)
)
(nl − 1)

V e
l (nl − 1) + (V g

l − c)
× V e

s (ns − 1) + (
V g

s − c
)

ns(V
g

s − c)
≥ 1. (13)

Because Tl (c) = Ts(k−1(c)), (13) also ensures that that Tl (c) is strictly increasing. Notice that if
Fs = Fl = F , nl = ns = n, and V e

l = V e
s = V g

l = V g
s = V , then k(c) = c solves (10) with initial

condition k(c) = c. As expected, this means Ts = Tl = T . Further, substituting k(c) = c into (9),
we obtain (1), and (13) simplifies to

c(n − 1)

1

1

n(V − c)
≥ 1 ⇐⇒ c(2n − 1) ≥ nV,

so we essentially recover Proposition 1 when the number of symmetric groups K equals two.
Although deriving equilibrium strategies proves analytically infeasible when groups are

asymmetric, some of the comparative statics of interest can be deduced using (10) directly. The
following result shows that, if values and distributions are identical, agents in the small group act
more aggressively.

Proposition 5. Consider the interior equilibrium described by (8), (9), and (10) with initial condi-
tion k(c) = c. If V e

l = V e
s = V g

l = V g
s = V, Fs = Fl = F , and nl > ns, then Ts(c) < Tl (c) for any

c ∈ (c, c̄).

Intuitively, at c it must hold that Tl (c) = Ts(c) = 0. In both groups, the players with the
lowest possible cost grab immediately as any such player cannot hope to be preempted by a
teammate. Moreover, T ′

l (c) > T ′
s (c) holds. To see this, consider the incentives of a player with

c = c + ε for small positive ε if he waits for some marginal unit of time dt. If the large group is,
for instance, twice as large as the small group, then compared to a member of the large group,
a member of the small group would face twice as high a probability of being preempted by a
member of the other group. Moreover, the chances that a teammate grabs in the interval [0, dt] is
smaller for members of the small group; thus, waiting is less attractive for members of the small
group. Similar arguments rule out any other crossings between Ts and Tl before c̄.

Also, it is not the case that there exists a positive measure of cost types in the large group that
never grab. In other words, any solution of (10) with initial condition k(c) = c ends up satisfying
k(c̄) = c̄. The apparent contradiction is resolved by noticing that limc↑c̄ Ts(c) = +∞, just as it
happens in the symmetric model.37 We collect these observations in the following result.

37 Here too our results go through if c̄ > V . For types c ∈ (V, c̄] it is a dominant strategy never to grab (T =
+∞). For c < V , (8), (9), and (10) with initial condition k(c) = c continue to characterize equilibrium. Proposition 5 is
unaffected for c < V . And now we have k(V ) = V and Ts(c) → ∞ as c ↑ V .
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TABLE 1 Ex Ante Winning Probability For The Small Group, V = 2, ns = 2, Fl (c) = Fs(c) = F(c) on [3/2, 2]

nl ↓ F (c) = 1 − (4 − 2c)5 F (c) = 1 − (4 − 2c)2 F (c) = 2c − 3 F (c) = (2c − 3)2 F (c) = (2c − 3)5

2 0.5 0.5 0.5 0.5 0.5
3 0.541360 0.535435 0.526259 0.518673 0.513964
4 0.559099 0.550223 0.536429 0.523292 0.514499

10 0.587210 0.573159 0.551014 0.522003 0.499090
20 0.595656 0.579926 0.554979 0.516549 0.483045
30 0.598380 0.582096 0.556211 0.513305 0.473895
50 0.600526 0.583802 0.557166 0.509585 0.463137
100 0.602114 0.585062 0.557862 0.505393 0.450186
1000 0.603447 0.586120 0.558421 0.497527 0.419639

Proposition 6. Consider the interior equilibrium described by (8), (9), and (10) with initial con-
dition k(c) = c. Any solution k(c) satisfies k(c̄) = c̄. And the corresponding Ts(c) derived from
(11) with initial condition Ts(c) = 0 has limc↑c̄ Ts(c) = +∞.

By Proposition 5, we see that a true trade-off emerges when we try to establish whether the
small or the large group is more likely to win. Agents of a given cost type are less hesitant in the
small group, but the distribution of the minimum cost in the large group is “better,” assuming
the only difference between groups is size. We denote the small group’s probability of winning
by Pw

s . By the definition of k, we have

Pw
s =

∫ c̄

c

(1 − Fl (k(c)))nl d[1 − (1 − Fs(c))ns ]. (14)

Table 1 describes Pw
s as we increase the size of the large group and hold the small group to two

members. The calculations are performed for variations of the power distribution cdf of costs in
Example 1.

We therefore see that either the large or the small group can be more likely to win.38 It is
worth noting that the large group can be less likely to win than the small group even if the prize
is a pure public good. Thus, the size trade-off does not have a simple solution.

We now turn to the effects of asymmetries in payoffs, performing the analysis for changes
in the values for the small group. However, our result applies equally well to the large group,
mutatis mutandis. In particular, we analyze the effect of a stronger within-group externality. Two
countervailing effects arise. On the one hand, agents benefit more when a teammate grabs. On
the other hand, one might expect free-riding to worsen and reduce the probability of grabbing.
Our next results resolves the trade-off between these two effects.

Proposition 7. Consider the interior equilibrium described by (8), (9), and (10) with initial con-
dition k(c) = c. An increase in V e

s reduces the probability of victory of the small group, but it
increases the payoff of any cost type in the small group, except for c = c.

Intuitively, consider an increase of V e
s to V e

s +�. Let player i in the small group be indif-
ferent whether to grab at time Ti for given V e

s . Suppose for a moment that the increase in V e
s to

V e
s +� does not change the grabbing behavior of all other players. If the benefit of grabbing

remains V g
s but the benefit of waiting and winning increases from V e

s to V e
s +�, the indifference

for i no longer holds and player i prefers to wait a little longer. This partial effect is indicative for
the equilibrium effect. Furthermore, an increase in V e

s also means that the public good of winning
is more valuable for each member of the small group if the member free-rides. The proposition
explains that this increase in the group’s payoffs overcompensates the the equilibrium effect of
decreased win probability.

38 In the Appendix, Proposition A1 gives a technical condition sufficient for the group-size effect to be negative.
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We conclude this section discussing the possibility that agents may be differentially in-
formed about teammates and competitors. In many of the examples described in the Introduc-
tion, it makes sense to posit that being part of the same team may reveal more information about
teammates than competitors. It turns out that the techniques developed in this section can be
used to characterize equilibrium when agents are differentially informed about teammates and
competitors.

An especially tractable framework has two ex ante symmetric groups. Within each group,
and independently across groups, agents’ values are independently drawn either from FH or from
FL. Within each group, team members are aware of their individual costs and of whether team-
mates’ costs are drawn from FH or FL, but they do not know which distribution is the “true”
one for the other group. Therefore, groups are (potentially) asymmetric at the interim moment
when the distribution of values becomes common knowledge among teammates. Thus, the tools
developed here for asymmetric groups become relevant.

In a symmetric equilibrium, there will be one grabbing function TH , which is optimal after
observing FH , and one grabbing function TL, which is optimal after observing FL. Characterization
of TH and TL proceeds just as in earlier in this section,39 with FOCs analogous to (8) and (9), and
a differential equation for T −1

L (TH (c)) similar to (10).
Although the resulting equations do not admit a closed-form solution, one can show that an

interesting pattern emerges. Suppose that FH (c) “hazard-rate dominates” FL(c), so that costs un-
der FH (c) tend to be higher than under FL(c). Then one can show that agents are more aggressive
in grabbing if they know that within their group costs are derived from the “higher” distribution,
rather than if they knew costs were drawn from the “lower” distribution. Intuitively, this occurs
because knowing that costs within a group tend to be large decreases the incentive to free-ride
on teammates, and therefore grabbing occurs sooner.

4. Conclusion

� We have given a full characterization of symmetric equilibrium preemption between groups
when each group member can volunteer to preempt other groups on behalf of his own group. The
analysis is based on the assumption that the act of preemption is costly for the member who car-
ries it out and members have private information about their own costs of the preemption activity.

For symmetric groups, the symmetric equilibrium exists and is unique. Other than for a
possible non-degenerate set of lowest costs types who all may act immediately, we found that
players wait some time before taking action. They wait longer the higher are their own costs
of acting. At an interior equilibrium no player acts immediately; hence, the preemption task is
carried out by the player with the lowest cost. A player of a given cost type also waits longer
the larger the group and the smaller the number of rival groups. Overall, however, an increase
in group size need not increase the expected equilibrium delay: although each player type plans
to wait longer in this case, the random composition of the minimum cost type improves as the
group size increases, and this makes it more likely that a group has a member with a very low
cost who would take early preemption action.

We have also analyzed differences in group size, concentrating on the case of two groups.
We find that members with a given cost type choose to act earlier if they belong to the smaller
group. The larger group has a “better” order statistic for the lowest-cost member, but has stronger
free-riding incentives. Consequently, depending on parameter values, either group may be more
likely to win. These results are important for the role of group size as a competitive factor,
showing no clear overall advantage for the small or the large group.

The described conflict between free-riding incentives and the fear of preemption should
play a role in many contexts. We refer to empirical findings and anecdotal evidence that this
problem is of immediate empirical relevance when single firms from different industries decide

39 The details of the derivation are available from the authors upon request.
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if and when they want to engage in stand-alone lobbying to further their group’s interest. In this
context, the analysis makes clear predictions as to which company will decide to act and when,
depending on its own costs and advantages, group sizes, cost distributions, and the competition
for influence on political decision-makers.

Appendix

Proof of Proposition 1. If the strategy T is strictly increasing, then a player with value c knows he will grab first,
preempting all others. Therefore, he will choose T (c) = 0 because if T (c) were larger than zero, then grabbing the
prize an instant sooner would be profitable deviation as it would reduce wasteful delay. Similarly, given that T is strictly
increasing it must be continuous, for otherwise some types just above the point of discontinuity could increase their
payoffs by reducing their grabbing time to avoid wasteful delay.

Now suppose T (·) is continuous and strictly increasing. Consider the calculus of a single player i contemplating
grabbing at T (c∗ ). We first determine the probability that someone else will take action before date t. This probability
depends on the minimum realized cost among the other Kn − 1 players. The cumulative distribution function of the
minimum cost among them, denoted by cmin, is given by

Pr(cmin ≤ x) = 1 − Pr(all other Kn − 1 costs exceed x) = 1 − (1 − F (x))Kn−1,

for which the associated density function is

(Kn − 1)(1 − F (x))Kn−2 f (x). (A1)

Moreover, if the game stops before T (c∗ ), then the probability that i’s team has won is n−1
Kn−1

because players are acting
symmetrically. Following Bliss and Nalebuff (1984), we can now write the payoff to a player with cost c (a “type-c
player”) acting as if his cost were c∗ as

U (c∗, c) = (V − c)e−ρT (c∗ ) (1 − F (c∗ ))Kn−1 + n − 1

Kn − 1
V

∫ c∗

c

e−ρT (x) (Kn − 1)(1 − F (x))Kn−2 f (x) dx

= (V − c)e−ρT (c∗ ) (1 − F (c∗ ))Kn−1 + (n − 1)V
∫ c∗

c

e−ρT (x) (1 − F (x))Kn−2 f (x) dx. (A2)

The first addendum of the payoff displayed in (A2) captures the possibility that this player carries his group to victory,
whereas the second corresponds to a teammate carrying the group to victory. The type-c player’s first-order condition for
choosing c∗ is

0 = ∂U (c∗, c)

∂c∗ = − (
ρT ′ (c∗ ) (V − c) e−ρT (c∗ ) (1 − F (c∗ ))

)Kn−1

− (Kn − 1) (V − c) e−ρT (c∗ ) (1 − F (c∗ ))Kn−2 f (c∗ )

+ (n − 1)Ve−ρT (c∗ ) (1 − F (c∗ ))Kn−2 f (c∗ )

= e−ρT (c∗ ) (1 − F (c∗ ))Kn−2

× {
V (n − 1) f (c∗ ) − (Kn − 1) (V − c) f (c∗ ) − ρ (V − c) (1 − F (c∗ )) T ′ (c∗ )

}
= e−ρT (c∗ ) (1 − F (c∗ ))Kn−2

× {
[(Kn − 1) c − (K − 1) nV] f (c∗ ) − ρ (V − c) (1 − F (c∗ )) T ′ (c∗ )

}
. (A3)

Where T (c) > 0, it must be that the first-order condition holds at c∗ = c, so (A3) implies

T ′(c) = f (c)

1 − F (c)
× (Kn − 1)c − (K − 1)nV

ρ(V − c)
. (A4)

Note that the monotonicity requirement for T (c) requires that (Kn−1)c−(K−1)nV
ρ(V −c)

is positive. This defines a lower bound
c0(K, n) for values of c. This lower bound is a function of K and n as stated in Proposition 1. Note further that T (c) as
described in (1) identifies the global best response: equations (A3) and (A4) imply

∂U (c∗, c)

∂c∗ = e−ρT (c∗ ) (1 − F (c∗ ))Kn−2 f (c∗ )

×
{

(Kn − 1)c − (K − 1)nV −
(

V − c

V − c∗

)
[(Kn − 1)c∗ − (K − 1)nV ]

}
︸ ︷︷ ︸

≡ϕ(c∗;c)

.
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Now observe that ϕ(c; c) = 0 and

∂ϕ(c∗; c)

∂c∗ = −(V − c)
(n − 1)V

(V − c∗ )2
< 0,

so U (c∗, c) is strictly quasi-concave in c∗ with a maximum at c∗ = c. Thus, ϕ(c; c) = 0 yields the best response in
(1). �

Proof of Proposition 2. Consider first an increase in K. We have, using (1),

∂T ′(c; K, n)

∂K
= h(c)n

ρ(V − c)
(c − V ) = − h(c)n

ρ
< 0. (A5)

We now have

T (c; K, n) − T (c; K + 1, n) =
∫ K

K+1

∂T (c; k, n)

∂k
dk

=
∫ K

K+1

(∫ c

c

∂T ′(y; k, n)

∂k
dy

)
dk

=
∫ K

K+1

(∫ c

c

− h(y)n

ρ
dy

)
dk

= n

ρ

∫ K

K+1

log (1 − F (c))dk

= − n

ρ
log (1 − F (c))

≡ �n(c),

where it is clear that �n(c) > 0 for all c ∈ (c, c̄) and �n(c) is independent of K. By induction, T (c; K + 1, n) =
T (c; 2, n) − (K − 1)�n(c).

Consider next an increase in n. We have

T (c; K, n + 1) − T (c; K, n) =
∫ c

c

h(z)[(K(n + 1) − 1)z − (K − 1)(n + 1)V − ((Kn − 1)z − (K − 1)nV )]

ρ(V − z)
dz

=
∫ c

c

h(z)

ρ(V − z)
[Kz − (K − 1)V ] dz ≡ �K (c).

Then, for z > c,

z > c ≥ c0 = (K − 1)n

Kn − 1
V ≥ K − 1

K
V,

implying�K (c) > 0 for all c > c. Consequently, T (c; n + 1) > T (c; n) for all c ∈ (c, c̄]. That is, as the number of players
per team increases, free-riding is more pervasive, with all types above c grabbing at a later dates. Further, because�K (c)
is independent of n, we have T (c; K, n + 1) = T (c; K, 2) + (n − 1)�K (c).

Consider now a cost distribution F̂ (y +�) = F (y) for y ∈ (c, c̄) that describes a parallel right-shift of the distri-
bution of cost types by some �. An interior equilibrium now has T̂ (c +�) = 0, and it has

T̂ ′(y +�) = f̂ (y +�)

1 − F̂ (y +�)
× (Kn − 1)(y +�) − (K − 1)nV

ρ(V − (y +�))

for y ∈ (c, c̄), which can be written equivalently as

T̂ ′(y +�) = f (y)

1 − F (y)
× (Kn − 1)(y +�) − (K − 1)nV

ρ(V − (y +�))

>
f (y)

1 − F (y)
× (Kn − 1)y − (K − 1)nV

ρ(V − y)

= T ′(y).

The inequality uses

∂
(Kn−1)c−(K−1)nV

ρ(V −c)

∂c
= V

n − 1

ρ(V − c)2 > 0.
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This implies: for all corresponding types y ∈ (c, c̄) for F and y +� ∈ (c +�, c̄ +�) for F̂ the respective types for F̂
grab later than for F . �

Proof of Lemma 1. The expected time at which the game stops equals

ET E ≡
∫ c̄

c

T (c) d(1 − (1 − F (c))Kn )

=
∫ c̄

c

(∫ c

c

T ′(y) dy

)
d(1 − (1 − F (c))Kn )

=
∫ c̄

c

T ′(y)

(∫ c̄

y

d(1 − (1 − F (c))Kn )

)
dy

=
∫ c̄

c

T ′(y)(1 − F (y))Kndy

=
∫ c̄

c

f (y)

1 − F (y)
× (Kn − 1)y − (K − 1)nV

ρ(V − y)
(1 − F (y))Kn dy

=
∫ c̄

c

1

Kρ

(
n − 1

n

y

V − y
− (K − 1)

)
d(1 − (1 − F (y))Kn ), (A6)

where the third equality follows from interchanging the order of integration, and the fifth uses the strategy in (1). Equation
(A6) can be rewritten as

KρET E + (K − 1) =
∫ c̄

c

n − 1

n

y

V − y
d(1 − (1 − F (y))Kn ).

�

Proof of Proposition 3.

(i) From (5) it is immediate that an increase in the discount rate ρ or in the value of the gross benefit V decrease ET E .
(ii) The result on an increase in the number of groups follows immediately from the comparative statics of T (·) in

Proposition 2 by which increasing K leads each type to grab sooner, which, even without there being more players
would result in the expected stopping time decreasing.

(iii) Consider an increase in n. We can rewrite the right-hand side of (5) as∫ c̄

c

y(1 − F (y))K

V − y
d
(
1 − (1 − F (y))K(n−1)

)
.

We see that the probability distribution in this equation is that of the minimum cost out of K(n − 1) independent
realizations. As n increases, this probability distribution decreases in the sense of first-order stochastic dominance;
therefore, if y(1−F (y))K

V −y
is decreasing (increasing) in y, then ET E increases (decreases) in n.

(iv) and (v) Consider equation (5), here reproduced:

KρET E + (K − 1) =
∫ c̄

c

n − 1

n

y

V − y
d(1 − (1 − F (y))Kn ).

A FOSD increase in individual cost effects a FOSD increase in the minimum cost, which is distributed with cdf
1 − (1 − F (y))Kn. The results follow because the function y

V −y
at the right-hand side of (5) is increasing and convex

for y ∈ (0,V ).

�

Proof of Proposition 4.

(i) Considering (4), we see that both e−ρT (y;n) and (1 − F (y))Kn−1 decrease with n, so U E (c) strictly increases for c > c,
and the larger c, the larger the increase.

(ii) Constancy of U E (c) with respect to changes in K follows from the fact that the integrand in (4) is constant with
respect to K. To see this, for notational convenience we begin by rewriting (4) as applied to cost type c′ as follows:

U E (c′ ) = V − c −
∫ c′

c

e−ρT (c) (1 − F (c))Kn−1 dc.

Then, we take the natural log of the integrand to get

−ρT (c; K ) + (Kn − 1) log (1 − F (c)),
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and finally we differentiate with respect to K to get

−ρ ∂T (c; K )

∂K
+ n log (1 − F (c)).

Now we use ∂T (c;K )
∂K

= ∫ c

c
∂T ′ (y;K )
∂K

dy and substitute for ∂T ′ (y;K )
∂K

from (A5) to obtain

−ρ
∫ c

c

−h(y)n

ρ
dy + n log (1 − F (c)) = n

(
log (1 − F (c)) +

∫ c

c

h(c) dc

)

= n

(
log (1 − F (c)) +

∫ c

c

f (y)

1 − F (y)
dy

)

= 0.

Because the log of the integrand is constant with respect to K, so too is the integrand itself.

�

Proof of Proposition 5. We prove Ts(c) < Tl (c) by showing the equivalent relation k(c) < c for all c ∈ (c, c̄). To see this,
note that, at c = c, (10) implies k′(c) < 1, so in a sufficiently small right-neighborhood of c we have k(c) < c. Consider
now by contradiction the smallest cost c̃ at which k(c̃) = c̃. Because k(c) starts smaller than c, this requires k′(c̃) ≥ 1.
But (10) and k(c̃) = c̃ imply the contradiction k′(c̃) < 1. �

Proof of Proposition 6. Assume by contradiction that k(c̄) < c̄. Consider an arbitrary c̃ ∈ (c, c̄). Using (10), we have

k(c̄) − k(c̃) =
∫ c̄

c̃

fs(c)

1 − Fs(c)
·

V e
s (ns−1)
V g

s −c
+ 1

fl (k(c))
1−Fl (k(c))

(
V e

l (nl −1)

V g
l −k(c)

+ 1
) dc.

Under the contradiction hypothesis, the second factor in the integrand displayed above is bounded below by a number
b > 0. Therefore, we obtain

k(c̄) − k(c̃) ≥ b

∫ c̄

c̃

fs(c)

1 − Fs(c)
dc = −b

[
lim
c↑c̄

log(1 − Fs(c)) − log(1 − Fs(c̃))

]
= +∞,

and we have a contradiction to k(c̄) < c̄. Similarly, assume by contradiction that T (c̄) < ∞. Using (11) we have

Ts(c̄) − Ts(c̃) =
∫ c̄

c̃

fs(c)

1 − Fs(c)

ns

ρ
·
[(

V e
l − (V g

l − k(c))
)
(nl − 1)

V e
l (nl − 1) + (V g

l − k(c))

V e
s (ns − 1) + (

V g
s − c

)
ns(V

g
s − c)

− 1

]
dc.

The term in brackets in the integrand above is bounded below by a number d > 0. This is because, by (13), (12) holds
with strict inequality away from c. Therefore, with similar steps as before, we obtain

Ts(c̄) − Ts(c̃) > d · ns

ρ

∫ c̄

c̃

fs(c)

1 − Fs(c)
dc = +∞,

a contradiction. �

Proof of Proposition 7. We consider two values for the externality, V e
s and Ṽ e

s , with Ṽ e
s > V e

s . The corresponding equi-
librium strategies are indicated with (Ts(c), Tl (c), k(c)) and (T̃s(c), T̃l (c), k̃(c)). Using (14), we prove that the probability
of victory of the small group decreases by showing that k(c) < k̃(c) for any c ∈ (c, c̄). To see this, note that, at c = c,
(10) and k(c) = k̃(c) = c imply k′(c) < k̃′(c), so in a right-neighborhood of c we have k(c) < k̃(c). Consider now by
contradiction the smallest cost z at which k(z) = k̃(z). Because k(c) starts smaller than k̃(c), this requires k′(z) ≥ k̃′(z).
But (10) and k(z) = k̃(z) imply the contradiction k′(c̃) < k̃′(z). We can now see that Ts(c) < T̃s(c) for any c ∈ (c, c̄) : we
know Ts(c) = T̃s(c) and, by (11) , T̃ ′

s (c) > T ′
s (c), because the term in brackets in (11) is increasing in k(c) and in V e

s . Now
consider the equilibrium utility U E

s (c) ≡ Us(c, c). Using the envelope theorem and (7), we have

U E (c) = V g
s − c −

∫ c

c

e−ρTs (y) (1 − F (k(y)))nl (1 − Fs(y))ns−1dy.

But because k(c) < k̃(c) and Ts(c) < T̃s(c) for any c ∈ (c, c̄), we conclude that an increase in V e
s increases the utility of

all cost types in the small group. �

Proposition A1 (A sufficient condition for a negative group-size effect). Consider an interior equilibrium described by
(8), (9), and (10) with initial condition k(c) = c. Let V e

l = V e
s = V g

l = V g
s = V , Fs = Fl = F , and nl > ns. Define the

function k̃(c) as the solution to

(1 − F (k̃(c)))nl = (1 − F (c))ns . (A7)
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If, ∀c ∈ [c, c̄], we have

k̃(c) >
V nl (ns − 1)c

V ns(nl − 1) − (nl − ns )c
, (A8)

then Pw
s > 0.5.40

Proof of Proposition A1. Proposition (A1) is stated for V e
l = V e

s = V g
l = V g

s = V and Fs = Fl = F . Therefore, we begin
by restating the differential equation for k in (10) under these assumptions. Further, to clarify the dependence on nl , we
include it, when needed, as an argument of the relevant functions. Recalling that h(·) denotes the hazard rate of F , we
obtain

k′(c; nl ) = V ns − c

V − c
h(c)

[
V nl − k(c; nl )

V − k(c; nl )
h(k(c; nl ))

]−1

. (A9)

Note also that, if nl were equal to ns, then the only solution to (A9) with k(c; ns ) = c would be k(c; ns ) = c.
Furthermore, in this case the probability of victory of the “small” group would be 0.5. The strategy of proof is to show
that (1 − F (k(c; nl )))nl > (1 − F (k(c; ns )))ns , for all c ∈ (c, c̄), so that (14) ends up implying Pw

s > 0.5.
Using (A9), we obtain

d

dc
(1 − F (k(c; nl )))

nl = −V ns − c

V − c
(1 − F (k(c; nl )))

nl

[
nl (V − k(c; nl ))

V nl − k(c; nl )

]
; (A10)

similarly,

d

dc
(1 − F (k(c; ns )))

nl = −V ns − c

V − c
(1 − F (k(c; ns )))

ns

[
ns(V − k(c; ns ))

V ns − k(c; ns )

]
. (A11)

Note that, by k(c; nl ) = c = k(c; ns ),(A10) yields

d

dc
(1 − F (k(c; nl )))

nl

∣∣∣∣
c=c

= −V ns − c

V − c

[
nl (V − c)

V nl − c

]
;

whereas (A11) gives

d

dc
(1 − F (k(c; ns )))

nl

∣∣∣∣
c=c

= −V ns − c

V − c

[
ns(V − c)

V ns − c

]
.

Hence, by

nl (V − c)

V nl − c
<

ns(V − c)

V ns − c
,

using (A10) and (A11) we obtain

0 >
d

dc
(1 − F (k(c; nl )))

nl

∣∣∣∣
c=c

>
d

dc
(1 − F (k(c; ns )))

ns

∣∣∣∣
c=c

.

So, we see that (1 − F (k(c; nl )))nl starts above (1 − F (k(c; ns )))ns in a right-neighborhood of c. Then, the proposition is
proven if there is no intersection in (c, c̄) between (1 − F (k(c; nl )))nl and (1 − F (k(c; ns )))ns .

Proceeding by contradiction, suppose there exists c̃ ∈ (c, c̄) such that

(1 − F (k(c̃; nl )))
nl = (1 − F (k(c̃; ns )))

ns . (A12)

As (1 − F (k(c; nl )))nl starts above (1 − F (k(c; ns )))ns in a right-neighborhood of c, we must have that for at least one c̃
that satisfies (A12), the following also holds:

d

dc
(1 − F (k(c; nl )))

nl

∣∣∣∣
c=c

≤ d

dc
(1 − F (k(c̃; ns )))

ns

∣∣∣∣
c=c

. (A13)

But using (A10), (A11), and k(c̃; ns ) = c̃, equation (A13) requires

ns(V − c̃)

V ns − c̃
≤ nl (V − k(c̃; nl ))

V nl − k(c̃; nl )
. (A14)

Note also that (A12), which can be equivalently restated as (1 − F (k(c̃; nl )))nl = (1 − F (c̃))ns , can be concatenated to
the definition of k̃ in (A7) to give

(1 − F (k(c̃; nl )))
nl = (1 − F (c̃))ns = (1 − F (k̃(c̃)))nl ,

40 Consider for example ns = 2, nl = 4, and F (c) = 2c − 3 on [3/2, 2]. Then (A7) yields k̃(c) = 2 −
√

4−2c
2

, and
one can check numerically that (A8) is satisfied if and only if V ≥ V ∗ ≈ 2.21634.
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which implies k(c̃; nl )) = k̃(c̃). Hence, (A14) implies

ns(V − c̃)

V ns − c̃
≤ nl (V − k(c̃; nl ))

V nl − k(c̃; nl )
= nl (V − k̃(c̃))

V nl − k̃(c̃)
. (A15)

But the extremes of equation (A15) are directly contradicted by the hypothesis in (A8). �

Characterization of the equilibrium with low costs. Proposition 1 provided the symmetric equilibrium strategy under the
assumption that c ≥ c0 ≡ (K−1)n

Kn−1
V . The strategy there fails to be weakly increasing if c < c0 because (1) would imply

T is strictly decreasing for c ∈ [c, c0 ). To maintain weak monotonicity of the equilibrium strategy, we now investigate
the possibility that an equilibrium strategy has a “flat spot,” that is, an interval over which it is constant. The following
lemma shows that if a symmetric equilibrium strategy T has a flat spot, then it must occur at 0, which implies that, for
some ĉ ≥ c, T (c) = 0 on [c, ĉ] and T is strictly increasing for c > ĉ. Moreover, the strategy T must be continuous.41

Lemma A1. Suppose T is a symmetric equilibrium strategy. Then T is continuous and if T is constant on [c̃l , c̃h] and
c ≤ c̃l < c̃h ≤ c̄, then T (c) = 0 for all c ∈ [c̃l , c̃h]. Further, c̃h ≤ c0.

Proof. Suppose T is a symmetric equilibrium strategy for which types c ∈ [c̃l , c̃h] grab at T̃ > 0, that is, a strategy with
a strictly positive flat spot: T (c) = T̃ for all c ∈ [c̃l , c̃h]. We establish two facts to show this cannot be an equilibrium
strategy. First, under the equilibrium conjecture, type c̃h must prefer a contribution of T̃ to one of T̃ + ε. As ε ↓ 0, this
will imply c̃h ≤ c0. Second, type c̃l must prefer a contribution of T̃ to one of T̃ − ε. As ε ↓ 0, this will imply c̃l ≥ c0.
Therefore, a flat spot at T̃ > 0 cannot exist in equilibrium.

Consider first c̃h. The utility of one agent in group 1 with cost realization equal to c̃h that contributes T̃ is

n − 1

Kn − 1
V ×

∫ c̃l

c

e−ρT (x) d
(
1 − (

1 − F (x)Kn−1
)) + (

1 − F (c̃l )
Kn−1)e−ρT̃ UI (c̃h ), (A16)

where UI (c) represents the payoff of a type c agent if the minimum cost of all other agents is above c̃l , that is, conditional
on all other agents having cost above c̃l .

Now the logic behind (A16) is this. The first addendum is the expected payoff if the minimum cost of all other
agents is below c̃l : the average present value of V multiplied by the probability that one of the other group-1 agents wins,
calculated under symmetry. The second addendum is the product of the probability that the minimum cost of all other
agents is above c̃l , multiplied by the present value of UI (c̃h ), with UI (c) defined as

UI (c) = V S1(n,K ) + (V − c)S2(n,K ),

where

S1(n,K ) =
n−1∑
j=1

(K−1)n∑
k=0

(
n − 1

j

)(
(K − 1)n

k

)
pj (1 − p)n− j−1 pk (1 − p)(K−1)n−k j

1 + j + k
,

S2(n,K ) =
n−1∑
j=0

(K−1)n∑
k=0

(
n − 1

j

)(
(K − 1)n

k

)
pj (1 − p)n− j−1 pk (1 − p)(K−1)n−k 1

1 + j + k
,

and

p ≡ F (c̃h ) − F (c̃l )

1 − F (c̃l )
. (A17)

The payoff UI can be understood as follows. Here j indexes other group 1 players and k indexes group 2 players.
Beginning with S2, if there are j other players in group 1 bidding T̃ and k players in the other K − 1 groups bidding T̃
(as well as this player of interest in group 1), then the player of interest in group 1 is selected with probability 1

1+ j+k
,

in which case he earns payoff V − c; but (moving to S1) if one of the other group-1 players is selected, which happens
with probability j

1+ j+k
, then he gets the benefit V without incurring any cost. And, of course, the probability of this

configuration of other players bidding T̃ is(
n − 1

j

)
pj (1 − p)n− j−1

(
(K − 1)n

k

)
pk (1 − p)(K−1)n−k .

41 The proof is not just an adaptation of the discrete-gain versus marginal-loss comparison familiar from standard
auction theory because, by grabbing an instant sooner and breaking a tie, an agent increases discretely both his benefit
and cost.

C© The RAND Corporation 2020.



958 / THE RAND JOURNAL OF ECONOMICS

With a similar logic, the limit for ε ↓ 0 of the utility of one agent in group 1 with cost c̃h that contributes T̃ + ε is

n − 1

Kn − 1
V ×

∫ c̃l

c

e−ρT (x) d
(
1 − (

1 − F (x)Kn−1
)) + (

1 − F (c̃l )
Kn−1)e−ρT̃ UR(c̃h ), (A18)

where UR(c̃h ) is this player’s payoff “from the right”:

UR(c) = V S3(n,K ) + (V − c)(1 − p)Kn−1,

where

S3(n,K ) =
n−1∑
j=1

(K−1)n∑
k=0

(
n − 1

j

)(
(K − 1)n

k

)
pj (1 − p)n− j−1 pk (1 − p)(K−1)n−k j

j + k

and p is again given by (A17).
Using properties of a binomial distribution, one can establish

S1(n,K ) = n − 1

Kn − 1

(
1 − 1 − (1 − p)Kn

pKn

)
(A19)

S2(n,K ) = 1 − (1 − p)Kn

pKn
(A20)

S3(n,K ) = n − 1

Kn − 1

(
1 − (1 − p)Kn−1

)
. (A21)

Because utility in (A16) must be at least as large as the one in (A18), we have

V S1 + (V − c̃h )S2 = UI (c̃h ) ≥ UR(c̃h ) = V S3 + (V − c̃h )(1 − p)Kn−1
, (A22)

and the extremes of (A22) imply V (S1 + S2 − S3 − (1 − p)Kn−1 ) ≥ c̃h(S2 − (1 − p)Kn−1 ), and therefore, substituting from
(A19)–(A21), we have c̃h ≤ c0.42

Moving now to c̃l , the utility of one agent in group 1 with cost realization equal to c̃l that contributes T̃ is

n − 1

Kn − 1
V ×

∫ c̃l

c

e−ρT (x) d
(
1 − (

1 − F (x)Kn−1
)) + (

1 − F (c̃l )
Kn−1)e−ρT̃ UI (c̃l ), (A23)

whereas the limit for ε ↓ 0 of the utility of one agent in group 1 with cost c̃l that contributes T̃ − ε is

n − 1

Kn − 1
V ×

∫ c̃l

c

e−ρT (x) d
(
1 − (

1 − F (x)Kn−1
)) + (

1 − F (c̃l )
Kn−1)e−ρT̃ (V − c̃l ). (A24)

Because utility in (A23) must be at least as large as the one in (A24), we have

V S1 + (V − c̃l )S2 = UI (c̃l ) ≥ V − c̃l ,

and the extremes of the above-displayed equation imply c̃l (1 − S2 ) ≥ V (1 − S1 − S2 ), or c̃l ≥ c0. Thus, we obtain c̃l = c̃h,
so a flat spot at T̃ > 0 is impossible in equilibrium.

To see that T is continuous note that any discontinuity must be a jump discontinuity. If such a jump occurs at c′,
then for sufficiently small δ > 0 the types in (c′, c′ + δ) will find it strictly profitable to decrease their grabbing times
discretely to avoid wasteful delay (there is no chance of a tie because there are no flat spots at positive times).

Finally, note that the logic leading to (A22) remains valid even if T̃ = 0. Therefore, even if T is flat at zero for
c ∈ [c, c̃h], we obtain c̃h ≤ c0. �

From Lemma A1 we now see that if an equilibrium strategy has a flat spot it must be over an interval of the form
[c, c̃h], where T takes on value 0, and c̃h ≤ c0. Furthermore, for any c where T is strictly increasing, the equilibrium
analysis is precisely as for an interior equilibrium, thus requiring c ≥ c0.

This reasoning has two implications. First, the equilibrium in Proposition 1 is unique among all symmetric ones,
without focusing only on strictly increasing strategies. Second, we have the following:

42 We note that S2 − (1 − p)Kn−1 > 0 is equivalent to 1 > (1 − p)Kn−1(1 − p + pKn) ≡ ψ (p). This latter inequality
is satisfied because ψ (0) = 1 and ψ ′(p) < 0. Therefore, if a flat spot exists, then p > 0 and S2 − (1 − p)Kn−1 > 0.
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Proposition A2 (Equilibrium when preemption costs may be low). If c < c0, then the unique symmetric equilibrium
strategy T satisfies T (c) = 0 for c ∈ [c, c0] and

T ′(c) = f (c)

(1 − F (c))

(Kn − 1)

ρ(V − c)
(c − c0 ) ∀c ∈ (c0, c̄). (A25)

Therefore, a flat spot can (and indeed does) appear in the symmetric equilibrium strategy if costs are “low.” Once
c0 is established as the point at which T begins increasing, the comparative statics described in Section 2 can be seen to
hold generally.

Proposition A3. For each c ∈ [c, c̄], the equilibrium strategy T (c; K, n) is weakly decreasing in K and weakly increasing
in n. Furthermore, c0(K, n + 1) < c0(K, n) < c0(K + 1, n), and if c < c0(K, n) ≡ (K−1)n

Kn−1
V , then

T (c; K, n + 1) > T (c; K, n) ∀c ∈ (c0(K, n + 1), c̄)

and

T (c; K, n) > T (c; K + 1, n) ∀c ∈ (c0(K, n), c̄).

Moreover, increasing K also decreases ET E .

Proof. First consider the effect of increasing n. Because c0(K, n + 1) < c0(K, n), it follows that T (c; K, n + 1) =
T (c; K, n) = 0 for c ≤ c0(K, n) and T (c; K, n + 1) > T (c; K, n) for c ∈ (c0(K, n + 1), c0(K, n)]. Finally, T (c; K, n +
1) > T (c; K, n) for c ∈ (c0(K, n), c̄] because T (c0(K, n); K, n + 1) > T (c0(K, n); K, n) and T ′ increases with n on
(c0(K, n), c̄]. To see this latter property, note that

∂T ′(c; K, n̂)

∂ n̂
= h(c)K

ρ(V − c)

(
c − K − 1

K
V

)

>
h(c)K

ρ(V − c)

(
c − (K − 1)n̂

Kn̂ − 1
V

)
(because K ≥ 2)

>0,

where the second inequality follows because T (c; K, n̂) > 0 implies c > c0(K, n̂) ≡ (K−1)n̂
Kn̂−1

V .
One similarly shows that an increase in K reduces T . Analogously to the proof of the effect of increasing n, here

we use the fact that increasing K increases c0(K, n) and decreases T ′ (see (A5)). Moreover, because individual grabbing
strategies decrease with an increase in K and because increasing K increases the number of players, it follows immediately
that ET E also decreases with K. �

From Proposition A3 we see that an increase in the number of teams, by reducing individual players’ grabbing
times, has the effect of decreasing the expected time at which the game ends. Indeed, because c0(K, n) → V as K → ∞,
everyone grabs almost instantly and ET E → 0. Not surprisingly, as the effect of increasing n on the expected duration
of the contest was ambiguous for interior equilibria, so too is it ambiguous for corner equilibria. Surprisingly, however,
whereas increasing n had the effect of increasing interim payoffs at interior equilibria, examples show the effect is
ambiguous for corner equilibria.
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